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Abstract

This dissertation considers three different topics. In the first part of the dissertation,

we use Newton Polygons to show that for the arithmetic functions g(n) = nt, where

t ≥ 1 is an integer, the polynomials defined with initial condition P g
0 (X) = 1 and

recursion

P g
n(X) = X

n

n∑
k=1

g(k)P g
n−k(X)

are X/ (n!) times an irreducible polynomial.

In the second part of the dissertation, we show that, for 3 ≤ n ≤ 8, there are

infinitely many 2-adic integer solutions to the Prouhet-Tarry-Escott (PTE) problem,

that are not rational integer solutions. In particular, we look at the 2-adic valuation of

a certain constant associated with the PTE problem and for the case n = 8 there exist

solutions whose valuation is strictly less than any known rational integer solution.

In the third part of the dissertation, we obtain a number of results pertaining to

polynomials f(x) with non-negative integer coefficients that take on a prime value

at x = b, where b ≥ 2 is an integer. In particular, we give an explicit bound M1(b)

such that if the coefficients of f(x) are each ≤ M1(b), then f(x) is irreducible. We

also show that there are similarly explicit bounds M2(b), M3(b) and M4(b), for b

sufficiently large (made explicit), that can be placed on the coefficients of f(x) such

that if f(x) is reducible then it must be divisible by at least one of the shifted

cyclotomic polynomials Φ3(x− b), Φ4(x− b) or Φ6(x− b).
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Chapter 1

Introduction

1.1 Irreducibility of a Family of Polynomials using Newton

Polygons

In [24], Heim and Neuhauser were interested in the family of polynomials defined

with initial condition P0(X) = 1 and recursion

Pn (X) = X

n

n∑
k=1

σ (k)Pn−k (X) (1.1)

for n ≥ 1, where σ (n) is the sum of divisors function. These polynomials arise as

Fourier coefficients of powers of the Dedekind eta functions, shown by Newman in

[32]. In [23], Heim, Luca and Neuhauser generalised the recurrence relation in (1.1) by

replacing σ (n) with other arithmetic functions. Namely, they studied the following.

Definition 1.1. Let g (n) be an arithmetic function. Define a family of polynomials

P g
n (X) associated with g by P g

0 (X) := 1 and

P g
n (X) = X

n

n∑
k=1

g (k)P g
n−k (X) .

In particular they looked at the coefficients of X in P g
n (X) when g (n) = n and

g (n) = n2 as these functions provide bounds on σ (n). They found explicit formulas

for the coefficients and concluded

P n
n (X) = X

n−1∑
k=0

1
(k + 1)!

(
n− 1
k

)
Xk and P n2

n (X) = X
n−1∑
k=0

1
(k + 1)!

(
n+ k

2k + 1

)
Xk.
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In [23], Heim, Lucas and Neuhauser looked further at these polynomials. One of the

results they obtained was the irreducibility of the polynomials

P̃ n
n (X) = n!

X
P n
n (X) =

n−1∑
k=0

n!
(k + 1)!

(
n− 1
k

)
Xk.

They also conjectured the irreducibility of the polynomials

P̃ n2

n (X) = n!
X
P n2

n (X) =
n−1∑
k=0

n!
(k + 1)!

(
n+ k

2k + 1

)
Xk,

a result that was proven by J. Juillerat, J. Southwick and the author in [19].

Chapter 2 discusses the work between J. Southwick and the author to generalise

the result of J. Juillerat, J. Southwick and the author. We look at the irreducibility

of the polynomials that arise when g (n) = nt for any positive integer t. To obtain

these polynomials, we modify the derivation of the polynomials in [24]. We begin by

an observation from [23] that
∞∑
n=0

P nt

n (X) qn = exp
(
X
∞∑
n=1

nt

n
qn
)
. (1.2)

We expand the right-hand side of (1.2) and manipulate it to compare formally the

coefficients of the different powers of q. We have

exp
(
X
∞∑
n=1

nt

n
qn
)

= 1 +
∞∑
k=1

1
k!X

k

( ∞∑
n=1

nt−1qn
)k

= 1 +
∞∑
k=1

1
k!X

k

 ∞∑
m1=1

· · ·
∞∑

mk=1
mt−1

1 · · ·mt−1
k qm1+···+mk


= 1 +

∞∑
n=1

n∑
k=1

1
k!X

k

 ∑
m1+···+mk=n

mt−1
1 · · ·mt−1

k

 qn,
where, in the innermost sum, the mi are positive integers. Thus for n ≥ 1 we obtain

P nt

n (X) =
n∑
k=1

1
k!

 ∑
m1+···+mk=n

mt−1
1 · · ·mt−1

k

Xk.

For 1 ≤ k ≤ n and t a positive integer, define

S (k |n, t) =
∑

m1+···+mk=n
mt

1 · · ·mt
k.

Consequently the main goal of this work is to prove the following

2



Theorem 1.2. The polynomials

f (x |n, t) =
n∑
k=1

n!
k!S (k |n, t)xk−1 (1.3)

are irreducible for all integers n ≥ 2 and t ≥ 1.

Here we note that P nt

n (X) = (X/n!) f (X |n, t− 1). The proof of Theorem 1.2 will

follow similarly to that of the main result in [19]. In Section 2.1, we define Newton

polygons along with stating a theorem of Dumas [12], and we list several results

regarding factorials and binomial coefficients. Section 2.2 is dedicated to studying

the expressions S (k |n, t) so that we can construct the Newton polygons of f (x |n, t)

in Section 2.3. We bring everything together to prove Theorem 1.2 in Section 2.4.

1.2 2-adic integer solutions to the Prouhet-Tarry-Escott problem

For n ≥ 3, we consider two lists of integers

X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn] ,

where xj 6= yj for some j ∈ {1, 2, . . . , n}, for any reordering of the xj’s. The Prouhet-

Tarry-Escott problem (the PTE problem) asks for such X and Y satisfying

n∑
j=1

xej =
n∑
j=1

yej for e ∈ {1, 2, . . . , k} (1.4)

where k is an integer in the interval [2, n− 1]. If X and Y satisfy (1.4) then the

pair is called a solution of the PTE problem, denoted X =k Y . A solution is ideal

if k = n − 1. The significance of the case k = n − 1 is that with X and Y distinct

as required above, it is impossible for (1.4) to hold if k > n − 1. Thus, the largest

possible value for k in (1.4) is n− 1.

Literature on the PTE problem is extensive. The problem is a focus of an entire

chapter (Chapter 24) of L. E. Dickson’s classical volumes “History of the Theory of

Numbers” [11] and numerous early references can be found there. The problem is

3



also discussed in G. H. Hardy and E. M. Wright’s well-known “An Introduction to

the Theory of Numbers” [22], undoubtedly in part due to Wright’s own interest in

the problem (cf. [42, 43, 44]). We note that for the first half of the twentieth century,

the problem was referred to as the Tarry-Escott problem, until Wright [43] pointed

out that E. Prouhet [36] first discussed the problem in 1851. A few of the more

recent investigations on the PTE problem include [4, 5, 9, 27, 38]. Interesting work

on generalisations of the PTE problem can be found in [1, 8]. For applications arising

from the PTE problem see [2, 21, 25, 31, 39].

An important open problem in the area is a conjecture of Wright [42] that for

every natural number n ≥ 3, an ideal solution exists. Despite its long history, ideal

solutions are only known to exist for 3 ≤ n ≤ 10 and n = 12. In particular, no ideal

solution is known for n = 11.

To help formulate further discussion, we note that the following result and its

corollary are fairly simple consequences of properties of elementary symmetric func-

tions (see [3, 4]).

Lemma 1.3. Let n and k be integers with 1 ≤ k < n. Let x1, . . . , xn and y1, . . . , yn

denote arbitrary integers. The following are equivalent:

•
n∑
j=1

xej =
n∑
j=1

yej , for e ∈ {1, 2, . . . , k},

• deg
 n∏
j=1

(z − xj)−
n∏
j=1

(z − yj)
 ≤ n− k − 1,

• (z − 1)k+1
∣∣∣
 n∑
j=1

zxj −
n∑
j=1

zyj

.
Corollary 1.4. The lists X = [x1, x2 . . . , xn] and Y = [y1, y2 . . . , yn] give an ideal

PTE solution if and only if
n∏
j=1

(z − xj)−
n∏
j=1

(z − yj) = C (1.5)

for some real constant C 6= 0.

4



We will view ideal PTE solutions over the integers as being a pair of lists {X, Y }

satisfying (1.5). For computational reasons (see [4, 7, 38]), information on possible

values of C and, in particular, on the factorisation of C given (1.5), has played an

important role in arriving at examples of ideal PTE solutions. As C depends on n,

X and Y , we define, for X =n−1 Y , the constant

Cn = Cn (X, Y ) =
n∏
j=1

(z − xj)−
n∏
j=1

(z − yj) .

Define

Cn =
∞∏
j=1

p
ej

j , (1.6)

where pj is the jth prime number and

ej = min
{
e | pej ||Cn (X, Y ) for some X and Y as above with X =n−1 Y

}
.

The values of Cn for 3 ≤ n ≤ 7 are known (see [7]):

C3 = 22

C4 = 22 · 32

C5 = 24 · 32 · 5 · 7

C6 = 25 · 32 · 52

C7 = 26 · 33 · 52 · 7 · 11.

For n = 8 and n = 9, [7] also gives

C8 = 2e1 · 33 · 52 · 72 · 11 · 13

C9 = 2e2 · 3e3 · 52 · 72 · 11 · 13 · 17e4 · 23e5 · 29e6

where

4 ≤ e1 ≤ 8, 7 ≤ e2 ≤ 9, 3 ≤ e3 ≤ 4 and 0 ≤ ej ≤ 1 for j ∈ {4, 5, 6} . (1.7)

5



In their paper, Filaseta and Markovich [18] improved on (1.7) and showed, using

Newton polygons, that

6 ≤ e1 ≤ 8 and e2 = 9.

In the same paper, for n = 8, they gave the example

X = [31914804930538, 392011859134314, 414199788923609,

550721232905543, 563570240533272, 870589495146520,

1039460985683225, 1113937730497799 ]

and

Y = [226375709153429, 382003430459158, 502458387218286,

690280771238587, 750383096702563, 764464731978500,

790357673966989, 870082337037308 ]

which has the property that
8∏
j=1

(z − xj)−
8∏
j=1

(z − yj) ≡ 95466849288194 (mod 250),

where it should be observed that the number 95466849288194 is exactly divisible

by 26. Filaseta and Markovich posed three questions based on the existence of this

example:

Question 1. Is it possible to show that a 2-adic ideal solution exists for the PTE

problem for every n ≥ 3?

Question 2. For a prime, p, is it possible to have a p-adic solution to
n∏
j=1

(z − xj)−
n∏
j

(z − yj) = C,

for which νp (C) < νp
(
Cn

)
, where νp is the usual p-adic valuation and n

is some integer ≥ 3?

6



Question 3. For a prime, p, does a p-adic ideal solution necessarily exist for n = 11?

In this chapter, we will address Question 1 restricted to 3 ≤ n ≤ 8. Namely, we

will prove the following.

Theorem 1.5. For 3 ≤ n ≤ 8 there exist lists of 2-adic integers X = [x1, x2, . . . xn]

and Y = [y1, y2, . . . yn], such that at least one xj or yj is not in Q, that satisfy

n∏
j=1

(z − xj)−
n∏
j=1

(z − yj) = Cn,

for some 2-adic integer Cn with ν2 (Cn) = kn, where

kn =



2 if n = 3, 4,

4 if n = 5,

5 if n = 6,

6 if n = 7, 8.

The case n = 8 is particularly significant as there are currently no known examples

over the integers where the same equation holds with ν2 (C8) = 6.

1.3 Irreducibility Criteria for Non-negative Integer Coefficient

Polynomials

If dndn−1 . . . d1d0 is the decimal representation of a prime, then a result of A. Cohn

[34] asserts that

f(x) = dnx
n + dn−1x

n−1 + · · ·+ d1x+ d0

is irreducible over the integers. If we generalise this setting and view f(x) as a

polynomial with non-negative integer coefficients and with f(10) prime, does the

irreducibility of f(x) depend on the coefficients being less than 10? Is the base 10

special, or do similar results hold when 10 is replaced by a different base b ≥ 2?

7



Some answers to these questions can be found in the literature. The result of Cohn

has been extended to all bases b ≥ 2 by J. Brillhart, M. Filaseta and A. Odlyzko [6].

In [15], M. Filaseta extended this to base b representations of kp where k is a positive

integer < b and p is a prime, and M. R. Murty [37] has obtained an analog in function

fields over finite fields. Furthermore, [6] allows the coefficients dj in Cohn’s theorem

to satisfy 0 ≤ dj ≤ 167 rather than 0 ≤ dj ≤ 9; and later M. Filaseta [16] showed

that the dj need only satisfy 0 ≤ dj ≤ 1030dn, and further that simply dj ≥ 0 suffices

if n ≤ 31.

Recent work by M. Filaseta and S. Gross [17] extended this last line of investigation

even further. They showed that if f(x) is a polynomial with non-negative coefficients

bounded above by

49598666989151226098104244512918

and f(10) is prime, then f(x) is irreducible over Z. They also showed that if the

coefficients are instead bounded above by

8592444743529135815769545955936773,

then f(x) is either irreducible over Z[x] or divisible by x2− 20x+ 101. Furthermore,

they showed that these values are sharp, in that they exhibited polynomials having

non-negative integer coefficients with f(10) prime and maximum coefficient one more

than each of these numbers where in each case the polynomial factors in Z[x] and in

the latter case is not divisible by x2 − 20x+ 101.

In [10], M. Cole, S. Dunn and M. Filaseta extended these results and found bounds

M1(b) such that if the coefficients of f(x) are bounded above by M1(b) and f(b) is

prime for an integer b ∈ [2, 20], then f(x) is irreducible in Z[x]. They also found

bounds M2(b) such that if the coefficients of f(x) are bounded above by M2(b) and

f(b) is prime for 3 ≤ b ≤ 5, then f(x) is either irreducible or divisible by Φ3(x− b),

where Φn(x) is the nth cyclotomic polynomial. Similarly, if 6 ≤ b ≤ 20 and the

8



coefficients of f(x) are bounded above by M2(b), then f(x) is either irreducible or

divisible by Φ4(x − b). Furthermore, they established that the upper bounds M1(b)

are sharp for 3 ≤ b ≤ 20, and that the upper bounds M2(b) are sharp for 4 ≤ b ≤ 20.

Work by M. Filaseta, J. Juillerat, J. Southwick and the author extends the results

in [10] to all integers b > 2. That is, we prove the following.

Theorem 1.6. Let b ∈ Z with b > 2. Let f(x) be a polynomial with non-negative

integer coefficients and f(b) prime. For n ∈ Z+, let Φn(x) be the nth cyclotomic

polynomial and ζn = e2πi/n. Define

B(n)
b = max

i∈{0,1}

b
Dn−i

2 c∑
k=0

(
Dn − i
2k + 1

)
(b+ Re (ζn))Dn−2k−1−i (− Im (ζn))k

Φn (1− b) ,

with Dn = bπ/arg (b+ ζn)c, and let

M1 (b) = min
n∈{3,4}

B(n)
b , M2 (b) = max

n∈{3,4}
B(n)
b , M3 (b) = B(6)

b

and

M4 (b) = (b− 1.5221)κ (b− 2.5221)
1 + cot (π/b2) , with κ =

 (b2 − 1) π

b2 arctan
(

0.8444
(b− 0.2)

)
 .

Then

• If b > 2 and each coefficient of f(x) is less than M1(b), then f(x) is irreducible.

• If b > 2 and each coefficient of f(x) is less than M2(b) and f(x) is reducible,

then it is divisible by Φ3 (x− b) if b ≤ 5 and divisible by Φ4 (x− b) if b > 5.

• If b > 69 and each coefficient of f(x) is less than M3(b) and f(x) is reducible,

then it is divisible by at least one of Φ3 (x− b) or Φ4 (x− b).

• If b > 69 and each coefficient of f(x) is less than M4(b) and f(x) is reducible,

then it is divisible by Φ3 (x− b), Φ4 (x− b) or Φ6 (x− b).

9



In particular, for b > 5, M1(b) is equal to

max
i∈{0,1}

 ∑
0≤k≤D4−i

2

(
D4 − i
2k + 1

)(
−b2

)k(b2 − 2b+ 2
)
bD4−1−i.

For b = 10, this gives

M1 (10) = 49598666989151226098104244512918,

which agrees with the bound by M. Filaseta and S. Gross given above.

Whereas M. Cole, S. Dunn and M. Filaseta were able to show for a fixed b ∈

[4, 20] ∩ Z that the given upper bounds are sharp, we were not able to do so for

general b ≥ 2. However, the bounds in Theorem 1.6 agree with the prior sharp

bounds obtained for 4 ≤ b ≤ 20, and we conjecture the bounds for M1(b), M2(b) and

M3(b) in Theorem 1.2 are sharp for all b ≥ 4. Furthermore, the values M1(b), M2(b)

and M3(b) are sharp in another way: For b > 5, if Φ4(x − b) is a factor of f(x) and

f(x) has non-negative coefficients (and where we no longer require that f(b) is prime),

then the largest coefficient must be at least as large as M1 (b). Similarly, if Φ3(x− b)

is a factor of f(x) and f(x) has non-negative coefficients (and where we no longer

require that f(b) is prime), then the largest coefficient must be at least as large as

M2 (b). Finally, if Φ6(x− b) is a factor of f(x) and f(x) has non-negative coefficients

(and where we no longer require that f(b) is prime), then the largest coefficient must

be at least as large as M3 (b).

The main focus of Chapter 4 is to provide the details on how to find the bounds

M1(b), M2(b) and M3(b).

While Theorem 1.6 focuses on bounding the coefficients of f(x), a secondary goal

of our work was to examine the situation where the coefficients are unbounded (non-

negative) integers with f(b) prime for an integer b ≥ 2. In this setting, what can be

said about the irreducibility of such a polynomial? The existing literature provides

some preliminary answers. M. Filaseta [16] has shown that for all b ≥ 2, if the degree

of such an f(x) is bounded above by π/ arcsin(1/b), then f(x) is irreducible.

10



M. Cole, S. Dunn and M. Filaseta [10] further showed that for 2 ≤ b ≤ 20 there

are sharp bounds D(b), D1(b), and D2(b) on the degree of f(x) so that if f(x) has

degree less than or equal to D(b), then f(x) is irreducible; if f(x) has degree less than

or equal to D1(b), then f(x) is only reducible if it is divisible by Φ4(x − b); while if

f(x) has degree less than or equal to D2(b), then f(x) must be divisible by Φ3(x− b)

or Φ4(x − b). The theorem below extends these ideas to all b ≥ 2 and for b ≥ 26

integrates a similar divisibility condition with Φ6(x− b).

Theorem 1.7. Fix an integer b ≥ 5, and for n ∈ {3, 4, 6} set

Dn = Dn(b) =
⌊

π

arg(b+ ζn)

⌋
and E = E(b) =

 π

arctan
(

1732
1000(2b+1)

)
 .

Let f(x) ∈ Z[x] with non-negative coefficients and with f(b) prime. If the degree of

f(x) is ≤ D4, then f(x) is irreducible. Additionally, if the degree of f(x) is ≤ D3

and f(x) is reducible, then f(x) is divisible by Φ4(x − b). Furthermore, in the case

that b ≥ 27, if the degree of f(x) is ≤ D6 and f(x) is reducible, then f(x) is divisible

by either Φ4(x − b) or Φ3(x − b). Lastly, in the case that b ≥ 27, if the degree of

f(x) is ≤ E and f(x) is reducible, then f(x) is divisible by Φ3(x− b), Φ4(x− b), or

Φ6(x− b).

The proof of Theorem 1.7 is given in J. Southwick’s dissertation [40].
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Chapter 2

Irreducibility of a Family of Polynomials using

Newton Polygons

2.1 Preliminary Material

We first introduce the notion of Newton polygons. Let f(x) = ∑r
j=0 ajx

j ∈ Z[x]

with a0ar 6= 0 and fix a prime p. For an integer m 6= 0, denote νp(m) to be the p-adic

valuation of m, that is, the exponent in the largest power of p dividing m. Let S

be the set of lattice points (j, νp(ar−j)) for 0 ≤ j ≤ r with ar−j 6= 0. The Newton

polygon of f(x) with respect to the prime p is the polygonal path along the lower

convex hull of these points from (0, νp(ar)) to (r, νp(a0)). The endpoints of every edge

belong to the set S, and the slopes of the edges strictly increase as we move from left

to right along the Newton polygon.

Newton polygons hold a wealth of information regarding the irreduciblity of a

polynomial. The main result we use regarding Newton polygons is due to Dumas

([12], [35]) and relates the Newton polygon of two polynomials to the Newton polygon

of their product.

Theorem 2.1. Let g(x) and h(x) be in Z[x] with g(0)h(0) 6= 0, and let p be a prime.

Let k be a non-negative integer such that pk divides the leading coefficient of g(x)h(x)

but pk+1 does not. Then the edges of the Newton polygon for g(x)h(x) with respect

to p can be formed by constructing a polygonal path beginning at (0, k) and using

translates of the edges in the Newton polygons for g(x) and h(x) with respect to the

prime p, using exactly one translate for each edge of the Newton polygons for g(x)
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and h(x). Necessarily, the translated edges are translated in such a way as to form a

polygonal path with the slopes of the edges increasing from left to right.

We prove Theorem 1.2 by explicitly constructing the Newton polygons for the

polynomials f (x |n, t), for each prime p dividing n − 1. To do this we make use of

three lemmas regarding binomial coefficients, factorials and their p-adic valuation.

The first is a classical result of Legendre [29].

Lemma 2.2. Let n be a positive integer, and let p be a prime. Let sp(n) denote the

sum of the base p digits of n. Then

νp(n!) = n− sp(n)
p− 1 .

Lemma 2.2 implies the following result due to Kummer [28].

Lemma 2.3. Let n and j be integers with 0 ≤ j ≤ n. Then

νp

((
n

j

))
= sp(j) + sp(n− j)− sp(n)

p− 1 .

Equivalently, νp
((

n

j

))
is the number of borrows encountered when subtracting j from

n in base p.

We also note Lucas’s binomial theorem [30].

Lemma 2.4. Let n ≥ j be non-negative integers. Write, in base p, n = arp
r + · · ·+

a1p+a0 and j = jrp
r+ · · ·+j1p+j0 where 0 ≤ ai, ji ≤ p−1 for each i ∈ {0, 1, . . . , r},

and ar 6= 0. Then (
n

j

)
≡
(
ar
jr

)
· · ·

(
a1

j1

)(
a0

j0

)
(mod p).

2.2 An Explicit Formulation of the Coefficients

To construct the Newton polygons of f (x |n, t) we will require a clearer understanding

of the numbers S (k |n, t). Specifically, we will want to know enough about S (k |n, t)

so that we can talk about its p-adic valuation with respect to different primes.
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Firstly, observe that

S (k |n, t) =
∑

m1+···+mk=n
mt

1 · · ·mt
k = [xn]

((
x+ 2tx2 + 3tx3 + 4tx4 + · · ·

)k)
,

where [xn] (h(x)) denotes the coefficient of xn in the power series h(x).

Secondly, taking |x| < 1, recall

1
1− x = 1 + x+ x2 + x3 + x4 + · · · ,

and observe that

x
d

dx

( 1
1− x

)
= x

(
1 + 2x+ 3x2 + 4x3 + · · ·

)
= x+ 2x2 + 3x3 + 4x4 + · · · .

Iterating this pair of operations t times, we obtain

x
d

dx

(
· · ·

(
x
d

dx︸ ︷︷ ︸
t times

( 1
1− x

))
· · ·

)
= x+ 2tx2 + 3tx3 + 4tx4 + · · · .

For ease of notation, let D (·) := x (d/dx) (·). Then

S (k |n, t) = [xn]
((
Dt
(
(1− x)−1

))k)
. (2.1)

To study the numbers S (k |n, t) we start by studying the sequence

{
Dt (1/ (1− x))

}
t∈N

.

An induction argument gives that Dt (1/ (1− x)) is x times a polynomial of degree

t− 1 divided by (1− x)t+1. Define A (t, j) by

Dt
( 1

1− x

)
=
x
∑t−1
j=0 A (t, j)xj

(1− x)t+1 . (2.2)

Then, for any t ≥ 1, we have

d

dx

(
Dt
( 1

1− x

))
= d

dx

(
x
∑t−1
j=0 A (t, j)xj

(1− x)t+1

)

=
(1− x)t+1∑t−1

j=0 (j + 1)A (t, j)xj + (t+ 1) (1− x)t∑t
j=1 A (t, j − 1)xj

(1− x)2t+2
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=
∑t−1
j=0 (j + 1)A (t, j)xj −∑t

j=1 jA (t, j − 1)xj + (t+ 1)∑t
j=1 A (t, j − 1)xj

(1− x)t+2

=
A (t, 0) +∑t−1

j=1 [(j + 1)A (t, j) + (t− j + 1)A (t, j − 1))]xj + A (t, t− 1)xt

(1− x)t+2 .

Observe that A (1, 0) = 1 and from the above, for 0 ≤ j ≤ t, we have

A (t+ 1, j) =



A (t, 0) if j = 0

(j + 1)A (t, j) + (t− j + 1)A (t, j − 1) if 1 ≤ j ≤ t− 1

A (t, t− 1) if j = t.

The numbers A (t, j) are the so-called Eulerian numbers. See [13], [14], [20] and [41].

We will make use of the following identities associated with the Eulerian numbers:

A (t, j) =
m∑
i=0

(−1)i
(
t+ 1
i

)
(j + 1− i)t (2.3)

xt =
t−1∑
m=0

A (t,m)
(
x+m

t

)
(2.4)

A (t,m) = A (t, t− 1−m) . (2.5)

Combining (2.1) and (2.2) yields

S (k |n, t) = [xn]
(x∑t−1

j=0 A (t, j)xj

(1− x)t+1

)k =
[
xn−k

]
(∑t−1

j=0 A (t, j)xj
)k

(1− x)k(t+1)

 . (2.6)

Substituting (2.3) into the right-hand side of (2.6) and expanding with multinomial

coefficients yields the following

Lemma 2.5. The value S (k |n, t) is the coefficient of xn−k in the expansion of ∑
k0+···+kt−1=k

(
k

k0, . . . , kt−1

)(
t−1∏
i=0

A (t, i)ki

)
x
∑t−1

i=0 iki

 ∞∑
j=0

(
j + (t+ 1) k − 1

(t+ 1) k − 1

)
xj,

where k0, k1, . . . , kt−1 represent non-negative integers.

2.3 Constructing the Newton polygons

The remainder of this chapter follows the basic idea discussed in [19]. That is, we

will first explicitly construct the Newton polygons for f (x |n, t) with respect to each
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prime p | (n− 1) and then apply Theorem 2.1 to show that any factor of f (x |n, t)

has degree at least n− 1. We start by introducing some notation.

Let v = νp (n− 1) and u = blogp (n− 1)c− v. Note that since p | (n− 1) we have

v ≥ 1. Then

n− 1 = pv
u∑
j=0

ajp
j where au, a0 ≥ 1 (2.7)

is the base p expansion of n − 1. For each J ∈ {0, 1, . . . , u}, we denote by nJ the

pv+Jth truncation of n− 1 in base p. That is,

nJ = pv
J∑
j=0

ajp
j. (2.8)

Let n−1 = 0. It is useful to note at this point that when J = u, we get n − nJ = 1,

and more generally when J ∈ {−1, 0, . . . , u}, we have

n− nJ = 1 + pv
u∑

j=J+1
ajp

j. (2.9)

We prove the following

Theorem 2.6. Fix integers n ≥ 3 and t ≥ 1. Let f (x |n, t) be as in (1.3). Let p be

a prime dividing n− 1, and let

n− 1 = pv
u∑
j=0

ajp
j

be the p-ary expansion of n− 1 as in (2.7). Then the vertices of the Newton polygon

for f (x |n, t) with respect to p are precisely the points in the set

{(0, 0)} ∪


 J∑
j=0

ajp
v+j,

J∑
j=0

aj
pv+j − 1
p− 1

 ∣∣∣∣∣∣ J ∈ {0, 1, . . . , u}
 . (2.10)

To prove Theorem 2.6 it suffices to show each of the following:

1. The Newton polygon for f (x |n, t) with respect to p is the lower convex hull of

the points in (2.10).
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2. The slopes of the edges joining the successive pairs of points in (2.10) are strictly

increasing from left to right.

To do this we will first establish two lemmas.

Lemma 2.7. Let p | (n−1). For each J ∈ {0, . . . , u}, we have νp (S (n− nJ |n, t)) =

0.

Proof. Since n− (n− nJ) = nJ , Lemma 2.5 implies that S (n− nJ |n, t) is the coef-

ficient of xnJ in the expansion of ∑
k0+···+kt−1=n−nJ

(
n− nJ

k0, . . . , kt−1

)(
t−1∏
i=0

A (t, i)ki

)
x
∑t−1

i=0 iki

 (2.11)

times

∞∑
j=0

(
j + (t+ 1) (n− nJ)− 1

(t+ 1) (n− nJ)− 1

)
xj.

We first focus our attention on (2.11). We fix 0 < i0 ≤ t − 1 and derive conditions

on ki0 necessary for a given term in (2.11) to not contribute to S (n− nJ |n, t). In

particular, if ki0 ≥ pv+J+1, then by (2.8) we have

t−1∑
i=0

iki ≥ i0ki0 ≥ pv+J+1 > nJ .

Thus no terms in (2.11) with such values for ki0 would contribute to S (n− nJ |n, t).

So for all i ∈ {1, . . . , t−1}, we need only consider terms from (2.11) with ki < pv+J+1.

Now we fix more generally 0 ≤ i0 ≤ t − 1. By considering (2.9) we see for

J ∈ {0, . . . , u − 1} that if ki0 6≡ 0, 1 (mod pv+J+1), then there will be at least one

borrow when subtracting ki0 from n− nJ in base p. Hence by Lemma 2.3, we obtain

p |
(
n−nJ

ki0

)
, implying

p

∣∣∣∣
(

n− nJ
k0, . . . , kt−1

)
=
(
n− nJ
ki0

)(
n− nJ − ki0

k0, . . . , ki0−1, ki0+1, . . . kt−1

)
.

Thus, to determine S (n− nJ |n, t) modulo p, we need only consider terms in (2.11)

with k0 ≡ 0, 1 (mod pv+J+1) and ki = 0, 1 for each i ∈ {1, 2, . . . , t− 1}.
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With i ∈ {1, 2, · · · , t − 1} and ki as in the sum in (2.11), let z be the number of

such i with ki = 1. Then k0 = n−nJ−z ≡ 1−z (mod pv+J+1), where the congruence

comes from (2.9). Since k0 ≡ 0, 1 (mod pv+J+1), we must then have

z ≡ 1, 0 (mod pv+J+1).

If z ≥ pv+J+1, then we would have

t−1∑
i=0

iki =
∑

1≤i≤t−1
ki=1

i ≥
∑

1≤i≤t−1
ki=1

1 = z ≥ pv+J+1 > nJ .

This means we only need consider z = 1, 0. Hence, since A(t, 0) = 1, we use (2.9) to

deduce for each J ∈ {0, . . . , u} that

S (n− nJ |n, t) ≡
(
nJ + (t+ 1) (n− nJ)− 1

nJ

)

+ (n− nJ)
t−1∑
j=1

A (t, j)
(
nJ − j + (t+ 1) (n− nJ)− 1

nJ − j

)

≡
t−1∑
j=0

A (t, j)
(
nJ − j + (t+ 1) (n− nJ)− 1

nJ − j

)
(mod p).

(2.12)

Rewriting (2.12) yields

S (n− nJ |n, t) ≡
t−1∑
j=0

A (t, j)
(
nJ − j + (t+ 1) (n− 1− nJ) + t

nJ − j

)
(mod p).

Since (t+ 1) (n− 1− nJ) ≡ 0 (mod pv+J+1) and for 0 ≤ j ≤ t− 1, nJ − j < pv+J+1,

any borrows in the subtraction (nJ − j + (t+ 1) (n− 1− nJ) + t)− (nJ − j) in base

p will come from the subtraction (nJ − j + t)− (nJ − j) in base p.

We can use these facts to simplify S (n− nJ |n, t) further. Via the division algo-

rithm, we write nJ − j + t = q · pv+J+1 + r where 0 ≤ r < pv+J+1. Then the base p

expansion of (nJ − j + (t+ 1) (n− 1− nJ) + t) has its digits in the pv+J+1-place and

higher arising from (t+ 1) (n− 1− nJ) + q · pv+J+1, while the lower digits arise from

r. Thus we can use Lemma 2.4 to obtain(
nJ − j + (t+ 1) (n− 1− nJ) + t

nJ − j

)
≡
(

(t+ 1) (n− 1− nJ) /pv+J+1 + q

0

)(
r

nJ − j

)
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≡
(
q

0

)(
r

nJ − j

)
≡
(
nJ − j + t

nJ − j

)
(mod p).

Substituting this simplification into S (n− nJ |n, t), we obtain

S (n− nJ |n, t) ≡
t−1∑
j=0

A (t, j)
(
nJ − j + t

nJ − j

)
(mod p).

Using the symmetry of binomial coefficients, we have

S (n− nJ |n, t) ≡
t−1∑
j=0

A (t, j)
(
nJ − j + t

t

)
≡ (nJ + 1)t (mod p),

where the second equivalence comes from (2.4) and (2.5). Recalling that nJ is divisible

by pv, we see S (n− nJ |n, t) ≡ 1 (mod p) so that the lemma follows.

While Lemma 2.7 will allow us to find candidates for the vertices on the Newton

polygon of f (x |n, t), we will use the following lemma to show that no other vertices

can appear in the Newton polygon.

Lemma 2.8. Let p | (n− 1). If m ≡ n (mod p), then νp (S (n−m |n, t)) > 0.

Proof. By Lemma 2.5, we have that S (n−m |n, t) is the coefficient of xn−(n−m) = xm

in the expansion of ∑
k0+···+kt−1=n−nJ

(
n− nJ

k0, . . . , kt−1

)(
t−1∏
i=0

A (t, i)ki

)
x
∑t−1

i=0 iki


times

∞∑
j=0

(
j + (t+ 1) (n− nJ)− 1

(t+ 1) (n− nJ)− 1

)
xj.

We fix 0 ≤ i0 ≤ t− 1 and consider the ki0 appearing in the first factor above. Since

m ≡ n (mod p), we have p | (n−m). If p 6 | ki0 , then we can rewrite the multinomial

coefficient and use Lemma 2.3 to obtain(
n−m

k0, . . . , kt−1

)
=
(
n−m
ki0

)(
n−m− ki0

k0, . . . , ki0−1, ki0+1, . . . , kt−1

)
≡ 0 (mod p),
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since there will be a carry when subtracting ki0 from n−m in base p. Thus the only

nonzero terms in
∑

k0+···+kt−1=n−m

(
n−m

k0, . . . , kt−1

)(
t−1∏
i=0

A (t, i)ki

)
x
∑t−1

i=0 iki ,

when considered modulo p, are those where for each i ∈ {0, . . . , t− 1} there are non-

negative integers k′i such that ki = pk′i. That is, reducing S (n−m |n, t) modulo p,

we only need consider the coefficient of xm arising from the multiplication of
∑

pk′0+···+pk′t−1=n−m

(
n−m

pk′0, . . . , pk
′
t−1

)(
t−1∏
i=0

A (t, i)pk
′
i

)
x
∑t−1

i=0 ipk
′
i

by
∞∑
j=0

(
j + (t+ 1) (n−m)− 1

(t+ 1) (n−m)− 1

)
xj.

For each term in the first sum in order to get a contribution to the coefficient of xm

in the product, we want to consider

j = m−
t−1∑
i=0

ipk′i

in the second sum.

We now turn our attention to the binomial coefficients(
j + (t+ 1) (n−m)− 1

(t+ 1) (n−m)− 1

)
=
(
m−∑t−1

i=0 ipk
′
i + (t+ 1) (n−m)− 1

(t+ 1) (n−m)− 1

)
.

Recall m ≡ n ≡ 1 (mod p), so

m−
t−1∑
i=0

ipk′i + (t+ 1) (n−m)− 1 ≡ 0 (mod p)

and

(t+ 1) (n−m)− 1 ≡ p− 1 (mod p).

Thus, Lemma 2.3 implies that(
m−∑t−1

i=0 ipk
′
i + (t+ 1) (n−m)− 1

(t+ 1) (n−m)− 1

)
≡ 0 (mod p).

Hence, S (n−m |n, t) ≡ 0 (mod p) since each term contributing to the coefficient of

xm in the product above is divisible by p. The lemma follows.

20



We can now prove Theorem 2.6.

Proof of Theorem 2.6. Recall it suffices to show each of the following:

1. The Newton polygon for f (x |n, t) with respect to p is the lower convex hull of

the points in (2.10).

2. The slopes of the edges joining the successive pairs of points in (2.10) are strictly

increasing from left to right.

Fix integers n ≥ 3, t ≥ 1 and a prime p dividing n − 1. Starting with (1), for

0 ≤ j ≤ n− 1, set

cj = n!
j!S (j |n, t) = (n− j)!

(
n

n− j

)
S (j |n, t) .

Thus f (x |n, t) = ∑n
j=1 cjx

j−1. For J ∈ {0, . . . , u} define nJ as in (2.8), with n−1 = 0.

Note that since f (x |n, t) is monic, νp (cn) = νp (1) = 0, meaning (0, νp (cn)) = (0, 0)

is on the Newton polygon with respect to p.

Next, we show for J ∈ {0, 1, . . . , u} that

νp (cn−nJ
) = 1

p− 1

J∑
j=0

aj
(
pv+j − 1

)
. (2.13)

Using the definition of νp (·), we see that

νp (cn−nJ
) = νp (nJ !) + νp

((
n

nJ

))
+ νp (S (n− nJ |n, t)) . (2.14)

Since v ≥ 1, the difference n−nJ requires no borrows in base p. So, applying Lemmas

2.2, 2.3 and 2.7 to the respective terms in (2.14), we see

νp (cn−nJ
) = nJ − sp (nJ)

p− 1 + 0 + 0 = 1
p− 1

J∑
j=0

aj
(
pv+j − 1

)
.

Thus, we see (2.13) holds, and the set (2.10) is precisely the set

{(nJ , νp (cn−nJ
)) | J ∈ {−1, 0, . . . , u}} . (2.15)
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To prove (1) we must show that all points in the set

{(j, νp (cn−j)) | j ∈ {0, 1, . . . n− 1}}

lie on or above the lines joining successive points in (2.15). It is clear that the points

in (2.15) lie on said lines, so consider a point (m, νp (cn−m)) not belonging to (2.15).

If nJ < m < nJ+1 for some J ∈ {−1, 0, . . . , u− 1}, then it suffices to show

νp (cn−m)− νp (cn−nJ
)

m− nJ
≥
νp
(
cn−nJ+1

)
− νp (cn−nJ

)
nJ+1 − nJ

. (2.16)

Using the definition of νp (·) once more with (2.13), the inequality in (2.16) is equiv-

alent to

νp (m!) + νp
((

n
m

))
+ νp (S (n−m |n, t))− (nJ − sp(nJ))/(p− 1)

m− nJ
≥ pv+J+1 − 1

(p− 1) pv+J+1 .

(2.17)

We note from (2.9) and v ≥ 1 that sp(n)−sp(nJ) = sp(n−nJ). Using this observation

along with Lemmas 2.2 and 2.3, we multiply both sides by p− 1 to transform (2.17)

into

(m− nJ) + (sp (n−m)− sp (n− nJ)) + (p− 1) νp (S (n−m |n, t))
m− nJ

≥ pv+J+1 − 1
pv+J+1 .

Subtracting 1 and then multiplying both sides by (m− nJ) yields

sp (n−m)− sp (n− nJ) + (p− 1) νp (S (n−m |n, t)) ≥ −m− nJ
pv+J+1 . (2.18)

From (2.9), we have that

n− nJ = n− 1− nJ + 1 = pv
u∑

j=J+1
ajp

j + 1,

so

sp (n− nJ) = 1 +
u∑

j=J+1
aj. (2.19)
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Recall nJ < m < nJ+1. In the equations that follow we interpret a sum from j = u+1

to j = u as 0, which arises when J = u− 1. Then we can write

n−m = (n− 1− nJ+1) + (nJ+1 + 1−m) = pv
u∑

j=J+2
ajp

j +
∑
j∈T

εjp
j, (2.20)

where T ⊆ {0, 1, . . . J + v + 1} is a non-empty set and each εj ∈ {1, 2, . . . , p − 1}.

Thus, we obtain

sp (n−m) =
u∑

j=J+2
aj +

∑
j∈T

εj. (2.21)

Further, we can write

n−m = (n− 1− nJ) + (nJ + 1−m) = pv
u∑

j=J+1
ajp

j + nJ + 1−m. (2.22)

Setting the right-hand sides of (2.20) and (2.22) equal and solving for nJ −m gives

nJ −m =
∑
j∈T

εjp
j − aJ+1p

v+J+1 − 1. (2.23)

Substituting (2.19), (2.21) and (2.23) into (2.18) yields
∑
j∈T

εj − aJ+1 − 1 + (p− 1) νp (S (n−m |n, t)) ≥
∑
j∈T εjp

j − aJ+1p
v+J+1 − 1

pv+J+1 .

Rearranging the above gives
∑
j∈T

εj
(
1− pj−v−J−1

)
− 1 + (p− 1) νp (S (n−m |n, t)) ≥ −p−v−J−1. (2.24)

Recall T 6= ∅. Observe that if νp (S (n−m |n, t)) > 0, then the left-hand side of

(2.24) is positive, and so the inequality holds. Alternatively, the contrapositive of

Lemma 2.8 tells us that if νp (S (n−m |n, t)) = 0, then m 6≡ n (mod p), implying

0 ∈ T so that ε0 ≥ 1. This allows us to simplify the left-hand side of (2.24), obtaining
∑
j∈T

εj
(
1− pj−v−J−1

)
− 1 ≥ ε0

(
1− p−v−J−1

)
− 1 ≥

(
1− p−v−J−1

)
− 1 = −p−v−J−1.

Thus, (2.24) and the equivalent (2.16) holds. This completes the proof of (1).

For (2), let J be such that nJ 6= nJ+1. Then,

νp
(
cn−nJ+1

)
− νp (cn−nJ

)
nJ+1 − nJ

=
aJ+1

(
pv+J+1 − 1

)
(p− 1) aJ+1pv+J+1 = 1

p− 1

(
1− 1

pv+J+1

)
. (2.25)

Since the right-hand side of (2.25) increases as J increases, we deduce that (2) holds.

This completes the proof of the Theorem 2.6.
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2.4 Proof of Theorem 1.2

We now have what we need to prove Theorem 1.2, namely

Theorem 1.2. The polynomials

f (x |n, t) =
n∑
k=1

n!
k!S (k |n, t)xk−1.

are irreducible for all integers n ≥ 2 and t ≥ 1.

Proof. When n = 2, we have f (x | 2, t) = x + 2t which is irreducible. For n ≥ 3, let

p be a prime dividing n − 1 and adopt the notation of Section 4. From the proof of

Theorem 2.6, the slope of the line segments joining two successive points in (2.10) is

of the form

1
p− 1

(
1− 1

pv+J+1

)
= pv+J+1 − 1

(p− 1) pv+J+1

for J ∈ {−1, 0, 1, . . . , u}. Observe that when this last fraction is reduced, the de-

nominator is pv+J+1. This implies that for a segment with this slope, the horizontal

distance between the consecutive lattice points is pv+J+1. In particular, from Theo-

rem 2.6, the smallest horizontal distance between any two consecutive lattice points

on the Newton polygon of f (x |n, t) with respect to p is pv, and so the horizontal

distance between every pair of consecutive lattice points is divisible by pv. This is

true for every prime power pv dividing n−1. Thus, any irreducible factor of f (x |n, t)

has degree divisible by n − 1. Since the degree of f (x |n, t) is n − 1, the proof is

complete.
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Chapter 3

2-adic integer solutions to the

Prouhet-Tarry-Escott problem

3.1 Preliminary Material

Let n be a fixed positive integer and let X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn]

be lists of integers. Define

w (z) = w (X, Y, z) =
n∏
j=1

(z − xj)−
n∏
j=1

(z − yj) .

Recall from Corollary 1.4 that the pair {X, Y } is an ideal PTE solution over the

integers if and only if w(z) is a non-zero constant. We adapt this definition in the

following.

Definition 3.1. For a positive integer k, let X and Y be lists whose entries are

integers that lie in the interval
[
0, 2k

)
. We say that the pair {X, Y } is an ideal PTE

solution modulo 2k if

w (X, Y, z) ≡ C (mod 2k), (3.1)

for some integer C 6≡ 0 (mod 2k).

Ideal PTE solutions modulo 2k satisfy the following.

Proposition 3.2. If {X, Y } is an ideal PTE solution modulo 2k, then

∑
x∈X

xi ≡
∑
y∈Y

yi (mod 2k), for i ∈ {1, 2, . . . , n− 1}.
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Proof. Let X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn] be an ideal PTE solution

modulo 2k. Define, for 0 ≤ j ≤ n, integers aj and bj such that

n∏
j=1

(z − xj) =
n∑
j=0

ajz
j and

n∏
j=1

(z − yj)
n∑
j=0

bjz
j.

Note that

w (z) =
n−1∑
j=0

(aj − bj) zj.

Since {X, Y } is an ideal PTE solution modulo 2k, we have that

aj ≡ bj (mod 2k) for j ∈ {1, 2, . . . , n− 1}. (3.2)

The integers aj and bj are precisely the (n− j)th elementary symmetric polynomials

in X and Y , respectively. For each 0 ≤ i ≤ n− 1, we know that ∑n
j=1 x

i
j and

∑n
j=1 y

i
j

can be expressed as linear combinations of aj and bj. By (3.2), the result follows.

The converse to Proposition 3.2 is not true. For example, the listsX = [1, 0, 0] and

Y = [1, 1, 1] satisfy the conclusion of Proposition 3.2 with k = 1, but w (X, Y, z) ≡

z+1 (mod 2). This differs from the the result over the integers in Corollary 1.4. With

this in mind, we define ideal PTE solutions modulo 2k as we do in Definition 3.1 rather

than an analog of (1.4) as we are interested in studying the 2-adic valuation of Cn

defined in (1.6).

We will now look at some more properties of ideal PTE solutions modulo 2k.

Lemma 3.3. If {X, Y } is an ideal PTE solution modulo 2k, for some k > 0, then X

and Y contain the same number of odd entries.

Proof. Let ox and oy be the number of odd entries in X and Y respectively. Without

loss of generality, suppose ox − oy ≥ 0. Then

w (z) ≡ zn−ox (z + 1)ox + zn−oy (z + 1)oy (mod 2)

≡ zn−ox (z + 1)oy
(
(z + 1)ox−oy + zox−oy

)
(mod 2). (3.3)
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If {X, Y } is an ideal PTE solution modulo 2k, for some k > 0, then {X, Y } satis-

fies (3.1) with C = w (0). So we have,

w (z) ≡ w (0) (mod 2),

which is constant. We see that (3.3) is constant only if

(z + 1)ox−oy + zox−oy ≡ 0 (mod 2).

which happens only when ox − oy = 0. That is, {X, Y } is an ideal PTE solution

modulo 2k only if X and Y have the same number of odd entries.

Given an ideal PTE solution modulo 2k, we are interested in whether or not there

exists a lift of that solution that is an ideal PTE solution modulo 2k+1. We now

introduce some notation that will be useful when talking about lifting solutions. For

ordered lists A = [a1, . . . , an] and B = [b1, . . . , bn] and integers c we define list addition

and scalar multiplication as

A+B = [a1 + b1, . . . , an + bn] and c · A = [c · a1, . . . , c · an] ,

respectively. We will let {Xk, Yk} represent a solution modulo 2k with each entry

of Xk and Yk in the interval
[
0, 2k

)
. Further, wk (z) will represent the correspond-

ing polynomial w (Xk, Yk, z). Let Tk = 2k · [t1, . . . , tn] and Uk = 2k · [u1, . . . , un]

where tj, uj ∈ {0, 1} for 1 ≤ j ≤ n. Let
{
X+
k , Y

+
k

}
= {Xk + Tk, Yk + Uk}, whose

corresponding polynomial is

w+
k (z) :=

n∏
j=1

(
z − xj − 2ktj

)
−

n∏
j=1

(
z − yj − 2kuj

)
. (3.4)

Observe that each entry of X+
k and Y +

k is in the interval (0, 2k+1] and congruent to

their corresponding entries in Xk and Yk modulo 2k. Also, w+
k (z) ≡ wk(z) (mod 2k).

We refer to {X+
k , Y

+
k } as a lift of {Xk, Yk}. If {Xk, Yk} is an ideal PTE solution

modulo 2k, lifting will refer to the process of finding a pair {X+
k , Y

+
k } that is a
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lift of {Xk, Yk}. A pair {Xk, Yk} is said to be lifted if a lift {X+
k , Y

+
k } has been

found. If {Xk, Yk} is an ideal PTE solution modulo 2k, we say that {Xk, Yk} has

been successfully lifted if we have found a lift {X+
k , Y

+
k } that is an ideal PTE solution

modulo 2k+1. In this case, {X+
k , Y

+
k } will be referred to as a successful lift of {Xk, Yk}.

Studying the polynomials wk (z) and w+
k (z) is going to be key to us finding 2-

adic solutions. Specifically, we want to get a handle on the coefficients of wk (z) and

w+
k (z).

For a list S = [s1, . . . , sn] and 1 ≤ j ≤ |S|, denote by ej (S) the jth elementary

symmetric polynomial whose variables are the elements in S. For later purposes, we

note that e0 (S) = 1. We also make note of the following.

Lemma 3.4. Let S = [s1, . . . , sn] be a list of integers and let nodd denote the number

of odd entries in S. Then

ej (S) ≡ 0 (mod 2j−nodd), for j > nodd.

Proof. Each term in ej (S) is a product of j entries in S. If j > nodd then necessarily

each term in ej (S) must contain at least j−nodd even entries. The result follows.

For a pair {Xk, Yk}, we can write

wk (z) = w (Xk, Yk, z) =
n−1∑
j=0

(−1)n−j (en−j (Xk)− en−j (Yk)) zj.

If {Xk, Yk} is an ideal PTE solution modulo 2k, then wk (z) ≡ wk (0) (mod 2k). For

1 ≤ j ≤ n− 1, define the integers dj by

dj = en−j (Xk)− en−j (Yk)
2k .

Then

wk (z) = wk (0) + 2k
n−1∑
j=1

(−1)n−j djzj. (3.5)
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Define Ŝi = [s1, . . . , si−1, si+1, . . . , sn]. That is, Ŝi is the list S with the ith entry

removed. Expanding w+
k (z) given in (3.4) yields

w+
k (z) = 2k

n∑
i=1

−ti ∏
1≤j≤n
j 6=i

(z − xj) + ui
∏

1≤j≤n
j 6=i

(z − yj)

+ wk (z) + 22kp(z)

= 2k
n−1∑
j=0

(−1)n−j
(

n∑
i=1

(
en−1−j

(
X̂ i
k

)
ti − en−1−j

(
Ŷ i
k

)
ui
))

zj

+ wk (z) + 22kp (z) ,
(3.6)

for some polynomial p (z) with integer coefficients. Let nodd be the number of odd

entries in each of Xk and Yk. For each i, both X̂ i
k and Ŷ i

k contain at least nodd − 1

odd entries. So, by Lemma 3.4, en−1
(
X̂ i
k

)
ti− en−1

(
Ŷ i
k

)
ui is divisible by 2n−nodd , for

each 1 ≤ i ≤ n. With this in mind and substituting (3.5) into the (3.6), we obtain

w+
k (z) = 2k

n−1∑
j=1

(−1)n−j
(
dj +

n∑
i=1

(
en−1−j

(
X̂ i
k

)
ti − en−1−j

(
Ŷ i
k

)
ui
))

zj

+ wk (0) + 2k+n−noddC + 22kp (z) ,

for some integer C. For 1 ≤ j ≤ n− 1, define

d+
j = dj +

n∑
i=1

(
en−1−j

(
X̂ i
k

)
ti − en−1−j

(
Ŷ i
k

)
ui
)
.

Then

w+
k (z) = 2k

n−1∑
j=1

(−1)n−j d+
j z

j + wk (0) + 2k+n−noddC + 22kp (z) , (3.7)

and in particular

w+
k (0) = wk (0) + 2k+n−noddC + 22kp (0) . (3.8)

Proposition 3.5. If {Xk, Yk} is an ideal PTE solution modulo 2k and {X+
k , Y

+
k } is

any lift of {Xk, Yk}, then ν2(w+
k (0)) = ν2(wk(0)).

Proof. From (3.8), we have

ν2
(
w+
k (0)

)
= ν2

(
wk (0) + 2k+n−noddC + 22kp (0)

)
.
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Since {Xk, Yk} is an ideal PTE solution modulo 2k we have ν2(wk(0)) < k. Then,

since n ≥ nodd, we have

ν2
(
wk (0) + 2k+n−noddC + 22kp (0)

)
= ν2 (wk (0)) .

Hence ν2(w+
k (0)) = ν2 (wk (0)).

The following corollary immediately follows.

Corollary 3.6. If {Xk, Yk} is an ideal PTE solution modulo 2k and ({Xi, Yi})∞i=k+1

is a sequence of successive lifts of {Xk, Yk}, then ν2 (wi (0)) = ν2 (wk (0)).

Proposition 3.7. A lift {X+
k , Y

+
k } of an ideal PTE solution modulo 2k is an ideal

PTE solution modulo 2k+1 if and only if

d+
j ≡ 0 (mod 2) (3.9)

for each 1 ≤ j ≤ n− 1.

Proof. From Definition 3.1 and Proposition 3.5, the lift {X+
k , Y

+
k } is an ideal PTE

solution modulo 2k+1 if and only if

w+
k (z)− w+

k (0) ≡ 0 (mod 2k+1).

This consequence is equivalent to having both 2k dividing w+
k (z) − w+

k (0) and the

congruence
(
w+
k (z)− w+

k (0)
)
/2k ≡ 0 (mod 2). From (3.7) we see that

w+
k (z)− w+

k (0) ≡ 2k
n−1∑
j=1

(−1)n−j d+
j z

j (mod 2k+1).

This is equivalent to 2k dividing w+
k (z)− w+

k (0) and

w+
k (z)− w+

k (0)
2k ≡

n−1∑
j=1

(−1)n−j d+
j z

j (mod 2). (3.10)

The right-hand side of (3.10) is 0 (mod 2) if and only if (3.9) holds for each 1 ≤ j ≤

n− 1. Proposition 3.7 follows.
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The next examples illustrate that not every solution can lift and even if we can

successfully lift a solution, we are not guaranteed to be able to lift the solution more

than once.

If n = 4 and the pair {Xk, Yk} is an ideal PTE solution modulo 2k, then Propo-

sition 3.7 implies a lift
{
X+
k , Y

+
k

}
is an ideal PTE solution modulo 2k+1 if the

tj, uj ∈ {0, 1} satisfy

0 ≡ d1 +
4∑
i=1

(
e2
(
X̂ i
k

)
ti − e2

(
Ŷ i
k

)
ui
)

(mod 2),

0 ≡ d2 +
4∑
i=1

(
e1
(
X̂ i
k

)
ti − e1

(
Ŷ i
k

)
ui
)
, (mod 2),

0 ≡ d3 +
4∑
i=1

(
e0
(
X̂ i
k

)
ti − e0

(
Ŷ i
k

)
ui
)

(mod 2).

Suppose Xk and Yk each contain exactly one odd entry. Without loss of generality

we suppose that x1 and y1 are odd. Then the above congruences become

0 ≡ d1 (mod 2),

0 ≡ d2 +
4∑
i=2

(ti + ui) (mod 2),

0 ≡ d3 +
4∑
i=1

(ti + ui) (mod 2).

We can always find a solution to the last two congruences, but we have no control

over the first. So, we can only lift the solution {Xk, Yk} if the coefficient of z in wk (z)

is divisible by 2k+1, which is not always the case. For example,

X6 = [1, 42, 0, 0], Y6 = [33, 2, 4, 4] and w6 (z) = −320z2 + 1088z − 1056,

is an ideal PTE solution modulo 26, but the coefficient of z in wk (z) is not divisible

by 27, so we cannot lift {X6, Y6} to an ideal PTE solution modulo 27.

Now consider

X6 = [1, 34, 24, 0] , Y6 = [33, 10, 12, 4] and w6 (z) = −192z2 + 6528z − 15840,
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which is also an ideal PTE solution modulo 26. The coefficient of z in w6(z) now is

divisible by 27, so we can lift {X6, X6} if we can choose the tj’s and uj’s so that they

satisfy

1 ≡
4∑
i=2

(ti + ui) (mod 2),

0 ≡
4∑
i=1

(ti + ui) (mod 2).

One possible assignment is t2 = t4 = u1 = u4 = 1 and t1 = t3 = u2 = u3 = 0, which

gives

X+
6 = [1, 98, 24, 64] , Y +

6 = [97, 10, 12, 68] and w+
6 (z) = 4224z − 640992.

This is an ideal PTE solution modulo 27. Similar to the first example, the coefficient

of z in w+
6 (z) is not divisible by 28, so we will not be able to find a successful lift of

{X+
6 , Y

+
6 } to a solution modulo 28. If we make a different assignment above, however,

say t3 = u1 = 1 and t1 = t2 = t4 = u2 = u3 = u4 = 0, we obtain

X+
6 = [1, 34, 88, 0] Y +

6 = [97, 10, 12, 4] and w+
6 (z) = 384z2 + 17664z − 46560.

With these lists, the coefficient of z in w+
6 (z) is indeed divisible by 28, so we will be

able to keep lifting. That is, we can let {X7, Y7} = {X+
6 , Y

+
6 } and repeat the lifting

process.

What we have seen is that, even though Proposition 3.7 gives the criteria to find

a successful lift of a pair {Xk, Yk}, not all lifted solutions we obtain can continue to

be lifted. In the next section, for 3 ≤ n ≤ 8 we will present sufficient criteria for

{Xk, Yk} to have a successful lift and give examples of ideal PTE solution modulo 2k

that can be lifted indefinitely.

3.2 Sequences of Ideal PTE Solutions modulo 2k

For a positive integer K, suppose ({Xk, Yk})∞k=K is a sequence of pairs such that

{Xk, Yk} is an ideal PTE solution modulo 2k and {Xk+1, Yk+1} is a lift of {Xk, Yk}
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for each k ≥ K. Define for each k ≥ K and j ∈ {1, 2, . . . , n− 1} the integers dk,j by

dk,j = en−j (Xk)− en−j (Yk)
2k . (3.11)

Then, by (3.5), we obtain

wk (z) = wk (0) + 2k
n−1∑
j=1

(−1)n−j dk,jzj. (3.12)

Since {Xk+1, Yk+1} is a lift of {Xk, Yk}, by (3.7), we see that

wk+1 (z) = 2k
n−1∑
j=1

(−1)n−j d+
k,jz

j + wk (0) + 2k+n−noddC ′k + 22kpk (z) , (3.13)

for an integer C ′k, a polynomial pk(z) ∈ Z[z], and

d+
k,j = dk,j +

n∑
i=1

(
en−1−j

(
X̂ i
k

)
tk,i − en−1−j

(
Ŷ i
k

)
uk,i

)
. (3.14)

Lemma 3.8. Suppose, for an integer k, that {Xk, Yk} is an ideal PTE solution

modulo 2k and {Xk+1, Yk+1} is a lift of {Xk, Yk}. Let dk+1,j and d+
k,j be as in (3.11) and

(3.14), respectively. Let m be a positive integer and aj be an integer for 1 ≤ j ≤ n−1.

Then for k > m, we have
n−1∑
j=1

ajdk+1,j ≡ 0 (mod 2m) (3.15)

if and only if
n−1∑
j=1

ajd
+
k,j ≡ 0 (mod 2m+1).

Proof. Note that (3.15) holds if and only if

2
n−1∑
j=1

ajdk+1,j ≡ 0 (mod 2m+1). (3.16)

Comparing (3.12) and (3.13) we have

2dk+1,j = d+
k,j + 2kpk,j, for j ∈ {1, 2, . . . , n− 1},

for some integer pk,j. Substituting the above into (3.16) yields
n−1∑
j=1

ajd
+
k,j + 2k

n−1∑
j=1

ajpk,j ≡ 0 (mod 2m+1).

Since k > m, the result follows.
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We will now show for 3 ≤ n ≤ 8 that there exist infinitely many sequences of

pairs ({Xk, Yk})∞k=kn+1 such that, for each k ≥ kn + 1, we have {Xk, Yk} is an ideal

PTE solution modulo 2k with ν2 (wk (0)) = kn and {Xk+1, Yk+1} is a lift of {Xk, Yk}.

In the next section we establish Theorem 1.5 by describing how one can construct a

2-adic integer solution from a sequence ({Xk, Yk})∞k=kn+1.

3.2.1 n = 3

Lemma 3.9. For n = 3, if {Xk, Yk} is an ideal PTE solution modulo 2k, for some

k > 0, with nodd = 1, then there exists a lift {X+
k , Y

+
k } of {Xk, Yk} that is an ideal

PTE solution modulo 2k+1.

Proof. Without loss of generality we suppose that x1 and y1 are odd. By (3.14) we

have

d+
k,1 ≡ dk,1 + tk,2 + tk,3 + uk,2 + uk,3 (mod 2)

d+
k,2 ≡ dk,2 + tk1, + tk,2 + tk,3 + uk,1 + uk,2 + uk,3 (mod 2).

(3.17)

Let

tk,1 = dk,1 + dk,2 (mod 2), uk,1 = 0,

tk,2 = dk,1 (mod 2), tk,3 = 0

uk,2 = uk,3, uk,3 ∈ {0, 1}.

(3.18)

Substituting (3.18) into (3.17) yields

d+
k,1 ≡ 0 (mod 2)

d+
k,2 ≡ 0 (mod 2).

Thus (3.9) holds and so by Proposition 3.7, {X+
k , Y

+
k } is an ideal PTE solution

modulo 2k+1.

Proposition 3.10. There exist infinitely many sequences ({Xk, Yk})∞k=3 with

{X3, Y3} = {[1, 4, 0], [5, 6, 2]},
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such that for each k > 3, the pair {Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal

PTE solution modulo 2k with ν2 (wk (0)) = k3 = 2.

Proof. Observe that

w3 (z) = 8z2 − 48z + 60 ≡ 4 (mod 23).

So, {X3, Y3} is an ideal PTE solution modulo 23, that is not an integer solution

to the PTE problem and that satisfies ν2 (w3 (0)) = 2. Since {X3, Y3} satisfies the

hypothesis of Lemma 3.9, so will any lift {X3, Y3}, and we see that we can construct

a sequence ({X3, Y3})∞k=3 such that for each k > 3, the pair {Xk, Yk} is a lift of

{Xk−1, Yk−1} that is an ideal PTE solution modulo 2k, by lifting {X3, Y3} successively

with the assignments (3.18). By Corollary 3.6, it follows that ν2 (wk (0)) = 2 for all

k ≥ 3. To see that there are infinitely many such sequences, observe that in (3.18)

we allow for uk,3 to be either 0 or 1. Thus, we can construct a sequence ({Xk, Yk})∞k=3

corresponding to any sequence of 0’s and 1’s for the values of uk,3.

3.2.2 n = 4

Lemma 3.11. For n = 4, if {Xk, Yk} is an ideal PTE solution modulo 2k, for some

k > 0, with nodd = 2 and

0 ≡ dk,1 + dk,2 + dk,3 (mod 2), (3.19)

then there exists a lift {X+
k , Y

+
k } of {Xk, Yk} that is an ideal PTE solution modulo

2k+1.

Proof. Without loss of generality we suppose that xj and yj are odd for j ∈ {1, 2}.

By (3.14) we have

d+
k,1 ≡ dk,1 + tk,3 + tk,4 + uk,3 + uk,4 (mod 2),

d+
k,2 ≡ dk,2 + tk,1 + tk,2 + uk,1 + uk,2 (mod 2),

d+
k,3 ≡ dk,3 + tk,1 + tk,2 + tk,3 + tk,4 + uk,1 + uk,2 + uk,3 + uk,4 (mod 2).

(3.20)
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Let tk,j and uk,j in {0, 1} be defined by

tk,1 ≡
dk,1 + dk,2 + dk,3

2 (mod 2), tk,2 = 0,

uk,1 ≡ tk,1 + dk,2 (mod 2), uk,2 = 0,

tk,3 ≡ dk,2 + dk,3 (mod 2), tk,4 = 0,

uk,3 = uk,4, uk,4 ∈ {0, 1}.

(3.21)

Note that such tk,j and uk,j in {0, 1} exist since (3.19) holds. Substituting (3.21)

into (3.20) yields that each of d+
k,1, d+

k,2 and d+
k,3 is 0 (mod 2). Thus, (3.9) holds and

Proposition 3.7 implies that {X+
k , Y

+
k } is an ideal PTE solution modulo 2k+1.

Proposition 3.12. There exist infinitely many sequences ({Xk, Yk})∞k=3 with

{X3, Y3} = {[1, 1, 0, 0], [7, 3, 6, 2]}, (3.22)

such that for each k > 3, the pair {Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal

PTE solution modulo 2k with ν2 (wk(0)) = k4 = 2.

Proof. Observe that

w3 (z) = 16z3 − 112z2 + 288z − 252 ≡ 4 (mod 23).

So, {X3, Y3} is an ideal PTE solution modulo 23, that is not an integer solution to

the PTE problem and that satisfies ν2 (w3 (0)) = 2. Also note that

d3,1 + d3,2 + d3,3 = −36− 14− 2 ≡ 0 (mod 2),

so {X3, Y3} satisfies (3.19) with k = 3.

First we prove that we can construct a sequence ({Xk, Yk})∞k=3 of ideal PTE so-

lutions modulo 2k that are obtained by successively lifting {X3, Y3}. Since {X3, Y3}

satisfies the hypothesis of Lemma 3.11 with k = 3, it suffices to show that for an

integer k > 3, if {Xk, Yk} is an ideal PTE solution modulo 2k congruent to {X3, Y3}
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(mod 8) that satisfies (3.19), then the lift of {Xk, Yk} obtained in the proof of Propo-

sition 3.11 also satisfies (3.19) but with k replaced by k + 1.

From (3.14) we note that for all k > 3 we have

d+
k,j ≡ dk,j +

n∑
i=1

(
en−1−j

(
X̂ i

3

)
tk,i − en−1−j

(
Ŷ i

3

)
uk,i

)
(mod 2m)

for j ∈ {1, 2, 3} and m ≤ 3. Substituting (3.22) into the above with m = 2 yields

d+
k,1 ≡ dk,1 + tk,3 + tk,4 − uk,3 − uk,4 (mod 4)

d+
k,2 ≡ dk,2 + tk,1 + tk,2 + 2tk,3 + 2tk,4 + uk,1 + uk,2 (mod 4)

d+
k,3 ≡ dk,3 + tk,1 + tk,2 + tk,3 + tk,4 − uk,1 − uk,2 − uk,3 − uk,4 (mod 4).

From the above we deduce that

d+
k,1 + d+

k,2 + d+
k,3 ≡ dk,1 + dk,2 + dk,3 + 2 (tk,1 + uk,3 + uk,4) (mod 4).

Substituting the assignment (3.21) into the above yields

d+
k,1 + d+

k,2 + d+
k,3 ≡ 2 (dk,1 + dk,2 + dk,3) (mod 4).

Since {Xk, Yk} satisfies (3.19), we have

d+
k,1 + d+

k,2 + d+
k,3 ≡ 0 (mod 4),

and so by Lemma 3.8, we see that {Xk+1, Yk+1} satisfies (3.19) but with k replaced

by k + 1.

So, we can construct a sequence ({Xk, Yk})∞k=3 such that for each k > 3, the pair

{Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal PTE solution modulo 2k, by lifting

{X3, Y3} successively with the assignments (3.21). By Corollary 3.6 it follows that

ν2 (wk(0)) = 2 for all k ≥ 3. To see that there are infinitely many such sequences,

observe that in (3.21) we allow for uk,4 to be either 0 or 1. Thus, we can construct a

sequence ({Xk, Yk})∞k=3 corresponding to any sequence of 0’s and 1’s for the values of

uk,4.
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3.2.3 n = 5

Lemma 3.13. For n = 5, if {Xk, Yk} is an ideal PTE solution modulo 2k, for some

k > 0, with nodd = 1 and

0 ≡ dk,1 + 2dk,2 (mod 8) and 0 ≡ dk,2 (mod 2), (3.23)

then there exists a lift {X+
k , Y

+
k } of {Xk, Yk} that is an ideal PTE solution modulo

2k+1.

Proof. From (3.23), we see that 2dk,2 ≡ 0 (mod 4), and so

dk,1 ≡ 0 (mod 4).

Without loss of generality we suppose that x1 and y1 are odd. By (3.14) we have

d+
k,1 ≡ dk,1 (mod 2)

d+
k,2 ≡ dk,2 (mod 2)

d+
k,3 ≡ dk,3 +

5∑
j=2

(tk,j + uk,j) (mod 2)

d+
k,4 ≡ dk,4 +

5∑
j=1

(tk,j + uk,j) (mod 2)

(3.24)

Let tk,j and uk,j in {0, 1} be defined by

tk,1 ≡ dk,3 + dk,4 (mod 2), uk,1 = 0,

tk,2 ≡
dk,2
2 + dk,3 (mod 2), tk,3 = 0,

uk,2 ≡
dk,1 + 2dk,2

8 (mod 2), tk,4 = 0,

uk,3 ≡ uk,2 + dk,2
2 (mod 2), tk,5 = 0,

uk,4 = uk,5, uk,5 ∈ {0, 1}.

(3.25)

Note that such tk,j and uk,j in {0, 1} exist since (3.23) holds. Substituting (3.25)

into (3.24) yields that each d+
k,j in (3.24) is 0 (mod 2). Thus, (3.9) holds and so by

Proposition 3.7, the pair {X+
k , Y

+
k } is an ideal PTE solution modulo 2k+1.
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Proposition 3.14. There exist infinitely many sequences ({Xk, Yk})∞k=5 with

{X5, Y5} = {[1, 4, 8, 16, 0], [17, 14, 10, 18, 2]}, (3.26)

such that for each k > 5, the pair {Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal

PTE solution modulo 2k with ν2 (wk (0)) = k5 = 4.

Proof. Observe that

w5 (z) = 32z4 − 1152z3 + 14080z2 − 66816z + 85680 ≡ 16 (mod 25).

So, {X5, Y5} is an ideal PTE solution modulo 25, that is not an integer solution to

the PTE problem and that satisfies ν2 (w5 (0)) = 4. Also note that

d5,1 + 2d5,2 = −2088− 880 ≡ 0 (mod 8),

d5,2 = −440 ≡ 0 (mod 2),

so {X5, Y5} satisfies (3.23), with k = 5.

First we prove that we can construct a sequence ({Xk, Yk})∞k=5 of ideal PTE so-

lutions modulo 2k that are obtained by successively lifting {X5, Y5}. Since {X5, Y5}

satisfies the hypothesis of Lemma 3.13 with k = 5, it suffices to show that for an

integer k > 5, if {Xk, Yk} is an ideal PTE solution modulo 2k congruent to {X5, Y5}

(mod 32) that satisfies (3.23), then the lift of {Xk, Yk} obtained in the proof of Propo-

sition 3.13 also satisfies (3.23) but with k replaced by k + 1.

From (3.14) we note that for all k > 5 we have

d+
k,j ≡ dk,j +

n∑
i=1

(
en−1−j

(
X̂ i

5

)
tk,i − en−1−j

(
Ŷ i

5

)
uk,i

)
(mod 2m),

for j ∈ {1, 2, . . . , 4} and m ≤ 5. For j ∈ {1, 2}, substituting (3.26) into the above

with m = 4 yields

d+
k,1 ≡ dk,1 − 4uk,2 − 4uk,3 − 4uk,4 − 4uk,5 (mod 16),

d+
k,2 ≡ dk,2 + 8tk,2 + 4tk,3 − 4tk,4 − 4tk,5 + 6uk,2 + 2uk,3 − 6uk,4 − 6uk,5 (mod 16).
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From the above we deduce that

d+
k,1 + 2dk,2 ≡ dk,1 + 2dk,2 + 8 (tk,3 + tk,4 + tk,5 + uk,2) (mod 16),

d+
k,2 ≡ dk,2 + 2 (uk,3 + uk,2) (mod 4).

Substituting the assignment (3.25), into the above yields

d+
k,1 + 2d+

k,2 ≡ 2 (dk,1 + 2dk,2) (mod 16),

d+
k,2 ≡ 2dk,2 (mod 4).

Since {Xk, Yk} satisfies (3.23), we have

d+
k,1 + 2d+

k,2 ≡ 0 (mod 16),

d+
k,2 ≡ 0 (mod 4),

and so by Lemma 3.8, we see that {Xk+1, Yk+1} satisfies (3.23) with k replaced by

k + 1.

So, we can construct a sequence ({Xk, Yk})∞k=5 such that for each k > 5, the pair

{Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal PTE solution modulo 2k, by lifting

{X5, Y5} successively with the assignments (3.25). By Corollary 3.6 it follows that

ν2 (wk(0)) = 4 for all k ≥ 5. To see that there are infinitely many such sequences,

observe that in (3.25) we allow for uk,5 to be either 0 or 1. Thus, we can construct a

sequence ({Xk, Yk})∞k=5 corresponding to any sequence of 0’s and 1’s for the values of

uk,5.

3.2.4 n = 6

Lemma 3.15. For n = 6, if {Xk, Yk} is an ideal PTE solution modulo 2k, for some

k > 0, with nodd = 3 and

0 ≡ dk,1 − dk,2 + dk,3 − dk,4 + dk,5 (mod 8),

0 ≡ dk,2 + dk,4 (mod 2),

0 ≡ dk,3 + dk,5 (mod 2),

(3.27)
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then there exists a lift {X+
k , Y

+
k } of {Xk, Yk} that is an ideal PTE solution modulo

2k+1.

Proof. From the first congruence in (3.27), we have

0 ≡ dk,1 + dk,2 + dk,3 + dk,4 + dk,5 (mod 2).

Adding the second and third congruences in (3.27) to the above yields

dk,1 ≡ 0 (mod 2).

Without loss of generality we suppose that xj and yj are odd for j ∈ {1, 2, 3}. By

(3.14) we have

d+
k,1 ≡ dk,1 (mod 2)

d+
k,2 ≡ dk,2 +

6∑
j=4

(tk,j + uk,j) (mod 2)

d+
k,3 ≡ dk,3 +

6∑
j=1

(tk,j + uk,j) (mod 2)

d+
k,4 ≡ dk,4 +

6∑
j=4

(tk,j + uk,j) (mod 2)

d+
k,5 ≡ dk,5 +

6∑
j=1

(tk,j + uk,j) (mod 2).

(3.28)

Let tk,j and uk,j in {0, 1} be defined by

tk,1 ≡
dk,2 + dk,4

2 (mod 2), tk,3 = 0,

uk,2 ≡
dk,1 − dk,2 + dk,3 − dk,4 + dk,5

8 (mod 2), tk,6 = 0,

tk,5 ≡ tk,1 + dk,3 + dk,5
2 (mod 2), uk,1 = 0,

tk,4 ≡ tk,5 + dk,4 (mod 2), uk,3 = 0,

tk,2 ≡ tk,1 + uk,2 + dk,4 + dk,5 (mod 2), uk,4 = 0,

uk,5 = uk,6, uk,6 ∈ {0, 1}.

(3.29)

Note that such tk,j and uk,j in {0, 1} exist since (3.27) holds. Substituting (3.29)

into (3.28) yields that each d+
k,j in (3.28) is 0 (mod 2). Thus, (3.9) holds and so by

Proposition 3.7, the pair {X+
k , Y

+
k } is an ideal PTE solution modulo 2k+1.
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Proposition 3.16. There exist infinitely many sequences ({Xk, Yk})∞k=6 with

{X6, Y6} = {[3, 1, 1, 2, 8, 0], [59, 29, 45, 42, 12, 20]}, (3.30)

such that for each k > 6, the pair {Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal

PTE solution modulo 2k with ν2 (wk (0)) = k6 = 5.

Proof. Observe that

w6 (z) = 192z5 − 17024z4 + 717248z3 − 16020991z2

+ 179123712z − 776109600

≡ 32 (mod 26).

So, {X6, Y6} is an ideal PTE solution modulo 26, that is not an integer solution to

the PTE problem and that satisfies ν2 (w6 (0)) = 5. Also note that

d6,1 − d6,2 + d6,3 − d6,4 + d6,5 = −2798808 + 250328

− 11207 + 266− 3 ≡ 0 (mod 8)

d6,2 + d6,4 = −250328− 26 ≡ 0 (mod 2)

d6,3 + d6,5 = −11207− 3 ≡ 0 (mod 2),

so {X6, Y6} satisfies (3.27), with k = 6.

First we prove that we can construct a sequence ({Xk, Yk})∞k=6 of ideal PTE so-

lutions modulo 2k that are obtained by successively lifting {X6, Y6}. Since {X6, Y6}

satisfies the hypothesis of Lemma 3.15 with k = 6, it suffices to show that for an

integer k > 6, if {Xk, Yk} is an ideal PTE solution modulo 2k congruent to {X6, Y6}

(mod 64) that satisfies (3.27), then the lift of {Xk, Yk} obtained in the proof of Propo-

sition 3.15 also satisfies (3.27) but with k replaced by k + 1.

From (3.14) we note that for all k > 6 we have

d+
k,j ≡ dk,j +

n∑
i=1

(
en−1−j

(
X̂ i

6

)
tk,i − en−1−j

(
Ŷ i

6

)
uk,i

)
(mod 2m),
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for j ∈ {1, 2, . . . , 5} and m ≤ 6. Substituting (3.30) into the above with m = 4 yields

d+
k,1 ≡ dk,1 + 8tk,4 + 6tk,5 − 2tk,6 − 2uk,5 + 6uk,6 (mod 16)

d+
k,2 ≡ dk,2 − 6tk,1 − 2tk,2 − 2tk,3 − 5tk,4 + tk,5 − 7tk,6

+ 6uk,1 − 6uk,2 − 6uk,3 − 3uk,4 + 3uk,5 − 5uk,6 (mod 16)

d+
k,3 ≡ dk,3 + 5tk,1 − 5tk,2 − 5tk,3 − tk,4 + tk,5 − 7tk,6

+ 3uk,1 + uk,2 + uk,3 − 7uk,4 − 5uk,5 + 3uk,6 (mod 16)

d+
k,4 ≡ dk,4 − 4tk,1 − 2tk,2 − 2tk,3 − 3tk,4 + 7tk,5 − tk,6

− 4uk,1 − 2uk,2 − 2uk,3 − 5uk,4 − 3uk,5 + 5uk,6 (mod 16)

d+
k,5 ≡ dk,5 + tk,1 + tk,2 + tk,3 + tk,4 + tk,5 + tk,6

− uk,1 − uk,2 − uk,3 − uk,4 − uk,5 − uk,6 (mod 16).

(3.31)

Recall the tk,j and uk,j in (3.29) that were assigned to be zero.

tk,3 = 0, tk,6 = 0, uk,1 = 0, uk,3 = 0 and uk,4 = 0.

Substituting the above into (3.31) yields

d+
k,1 ≡ dk,1 + 8tk,4 + 6tk,5 − 2uk,5 + 6uk,6 (mod 16)

d+
k,2 ≡ dk,2 − 6tk,1 − 2tk,2 − 5tk,4 + tk,5 − 6uk,2 + 3uk,5 − 5uk,6 (mod 16)

d+
k,3 ≡ dk,3 + 5tk,1 − 5tk,2 − tk,4 + tk,5 + uk,2 − 5uk,5 + 3uk,6 (mod 16)

d+
k,4 ≡ dk,4 − 4tk,1 − 2tk,2 − 3tk,4 + 7tk,5 − 2uk,2 − 3uk,5 + 5uk,6 (mod 16)

d+
k,5 ≡ dk,5 + tk,1 + tk,2 + tk,4 + tk,5 − uk,2 − uk,5 − uk,6 (mod 16).

From the above we deduce that

d+
k,1 − d+

k,2 + d+
k,3 − d+

k,4 + d+
k,5 ≡ dk,1 − dk,2 + dk,3 − dk,4 + dk,5

+ 8 (uk,2 + uk,5 + uk,6) (mod 16)

d+
k,2 + d+

k,4 ≡ dk,2 + dk,4 + 2tk,1 (mod 4)

d+
k,3 + d+

k,5 ≡ dk,3 + dk,5 + 2 (tk,1 + tk,5 + uk,5 + uk,6) (mod 4).
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Substituting the assignment (3.29) into the above yields

d+
k,1 − d+

k,2 + d+
k,3 − d+

k,4 + d+
k,5 ≡ 2 (dk,1 − dk,2 + dk,3 − dk,4 + dk,5) (mod 16)

d+
k,2 + d+

k,4 ≡ 2 (dk,2 + dk,4) (mod 4)

d+
k,3 + d+

k,5 ≡ 2 (dk,3 + dk,5) (mod 4).

Since {Xk, Yk} satisfies (3.27), we have

d+
k,1 − d+

k,2 + d+
k,3 − d+

k,4 + d+
k,5 ≡ 0 (mod 16)

d+
k,2 + d+

k,4 ≡ 0 (mod 4)

d+
k,3 + d+

k,5 ≡ 0 (mod 4),

and so by Lemma 3.8, we see that {Xk+1, Yk+1} satisfies (3.27) with k replaced by

k + 1.

So, we can construct a sequence ({Xk, Yk})∞k=6 such that for each k > 6, the pair

{Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal PTE solution modulo 2k, by lifting

{X6, Y6} successively with the assignments (3.29). By Corollary 3.6 it follows that

ν2 (wk(0)) = 5 for all k ≥ 6. To see that there are infinitely many such sequences,

observe that in (3.29) we allow for uk,6 to be either 0 or 1. Thus, we can construct a

sequence ({Xk, Yk})∞k=6 corresponding to any sequence of 0’s and 1’s for the values of

uk,6.

3.2.5 n = 7

Lemma 3.17. For n = 7, if {Xk, Yk} is an ideal PTE solution modulo 2k, for some

k > 0, with nodd = 3 and

0 ≡ dk,1 + dk,2 − dk,3 + dk,4 − dk,5 + dk,6 (mod 8),

0 ≡ dk,2 + dk,3 − dk,4 − 3dk,5 − dk,6 (mod 8),

0 ≡ dk,3 + dk,5 (mod 2),

0 ≡ dk,4 + dk,6 (mod 2),

(3.32)
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then there exists a lift {X+
k , Y

+
k } of {Xk, Yk} that is an ideal PTE solution modulo

2k+1.

Proof. From the first and second congruences in (3.32), we have

0 ≡ dk,1 + dk,2 + dk,3 + dk,4 + dk,5 + dk,6 (mod 2),

0 ≡ dk,2 + dk,3 + dk,4 + dk,5 + dk,6 (mod 2).

Combining these with the third and fourth congruences in (3.32) we deduce

0 ≡ dk,1 (mod 2) and 0 ≡ dk,2 (mod 2).

Taking xj and yj odd for j ∈ {1, 2, 3} and using (3.14), we have

d+
k,1 ≡ dk,1 (mod 2)

d+
k,2 ≡ dk,2 (mod 2)

d+
k,3 ≡ dk,3 +

7∑
j=4

(tk,j + uk,j) (mod 2)

d+
k,4 ≡ dk,4 +

7∑
j=1

(tk,j + uk,j) (mod 2)

d+
k,5 ≡ dk,5 +

7∑
j=4

(tk,j + uk,j) (mod 2)

d+
k,6 ≡ dk,6 +

7∑
j=1

(tk,j + uk,j) (mod 2)

(3.33)

Let tk,j and uk,j in {0, 1} be defined by

tk,1 ≡
dk,3 + dk,5

2 (mod 2), tk,5 = 0

tk,6 ≡ tk,1 + dk,4 + dk,6
2 + dk,5 (mod 2), tk,7 = 0

tk,3 ≡ tk,6 + dk,1 + dk,2 − dk,3 + dk,4 − dk,5 + dk,6
8 (mod 2), uk,1 = 0

tk,2 ≡ tk,1 + tk,3 + dk,5 + dk,6 (mod 2), uk,2 = 0

uk,4 ≡ tk,2 + dk,2 + dk,3 − dk,4 − 3dk,5 − dk,6
8 (mod 2), uk,3 = 0

tk,4 ≡ tk,6 + uk,4 + dk,5 (mod 2), uk,5 = 0

uk,6 = uk,7, uk,7 ∈ {0, 1}.

(3.34)
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Note that such tk,j and uk,j in {0, 1} exist since (3.32) holds. Substituting (3.34)

into (3.33) yields that each d+
k,j in (3.33) is 0 (mod 2). Thus, (3.9) holds and so by

Proposition 3.7, the pair {X+
k , Y

+
k } is an ideal PTE solution modulo 2k+1.

Proposition 3.18. There exist infinitely many sequences ({Xk, Yk})∞k=7 with

{X7, Y7} = {[3, 5, 1, 10, 2, 0, 0], [115, 29, 121, 38, 38, 28, 36]}, (3.35)

such that for each k > 7, the pair {Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal

PTE solution modulo 2k with ν2 (wk (0)) = k7 = 6.

Proof. Observe that

w7 (z) = 384z6 − 65024z5 + 541708z4 − 254614016z3

+ 6846752256z2 − 98422903808z + 587366176320

≡ 64 (mod 27).

So, {X7, Y7} is an ideal PTE solution modulo 27, that is not an integer solution to

the PTE problem and that satisfies ν2 (w7 (0)) = 6. Also note that

d7,1 + d7,2 − d7,3 + d7,4 − d7,5 + d7,6 = −768928936− 53490252 + 1989172

− 42321 + 508− 3 ≡ 0 (mod 8)

d7,2 + d7,3 − d7,4 − 3d7,5 − d7,6 = −53490252− 1989172

+ 42321 + 1524 + 3 ≡ 0 (mod 8)

d7,3 + d7,5 = −1989172− 508 ≡ 0 (mod 2)

d7,4 + d7,6 = −42321− 3 ≡ 0 (mod 2),

so {X7, Y7} satisfies (3.32), with k = 7.

First we prove that we can construct a sequence ({Xk, Yk})∞k=7 of ideal PTE so-

lutions modulo 2k that are obtained by successively lifting {X7, Y7}. Since {X7, Y7}

satisfies the hypothesis of Lemma 3.17 with k = 7, it suffices to show that for an
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integer k > 7, if {Xk, Yk} is an ideal PTE solution modulo 2k congruent to {X7, Y7}

(mod 128) that satisfies (3.32), then the lift of {Xk, Yk} obtained in the proof of

Proposition 3.17 also satisfies (3.32) but with k replaced by k + 1.

From (3.14) we note that for all k > 7 we have

d+
k,j ≡ dk,j +

n∑
i=1

(
en−1−j

(
X̂ i

7

)
tk,i − en−1−j

(
Ŷ i

7

)
uk,i

)
(mod 2m),

for j ∈ {1, 2, . . . , 6} and m ≤ 7. Substituting (3.35) into the above with m = 4 yields

d+
k,1 ≡ dk,1 − 4tk,6 − 4tk,7 + 4uk,6 + 4uk,7 (mod 16)

d+
k,2 ≡ dk,2 + 4tk,1 − 4tk,2 − 4tk,3 − 2tk,4 + 6tk,5

− 4uk,1 + 4uk,2 + 4uk,3 + 6uk,4 + 6uk,5 + 4uk,6 − 4uk,7 (mod 16)

d+
k,3 ≡ dk,3 + 4tk,1 + 4tk,2 + 4tk,3 − 3tk,4 + 5tk,5 + 7tk,6 + 7tk,7

− 4uk,1 − 4uk,2 − 4uk,3 + 7uk,4 + 7uk,5 − 3uk,6 + 5uk,7 (mod 16)

d+
k,4 ≡ dk,4 + tk,1 + 7tk,2 + 3tk,3 − 7tk,4 + tk,5 + 7tk,6 + 7tk,7

− uk,1 + uk,2 + 5uk,3 + 3uk,4 + 3uk,5 + 5uk,6 − 3uk,7 (mod 16)

d+
k,5 ≡ dk,5 + 2tk,1 + 4tk,3 − 5tk,4 + 3tk,5 + 5tk,6 + 5tk,7

− 2uk,1 + 8uk,2 + 4uk,3 + uk,4 + uk,5 + 7uk,6 − uk,7 (mod 16)

d+
k,6 ≡ dk,6 + tk,1 + tk,2 + tk,3 + tk,4 + tk,5 + tk,6 + tk,7

− uk,1 − uk,2 − uk,3 − uk,4 − uk,5 − uk,6 − uk,7 (mod 16).

(3.36)

Recall the tk,j and uk,j in (3.34) that were assigned to be zero.

tk,5 = 0, tk,7 = 0, uk,1 = 0, uk,2 = 0 uk,3 = 0 and uk,5 = 0.

Substituting the above into (3.36) yields

d+
k,1 ≡ dk,1 − 4tk,6 + 4uk,6 + 4uk,7 (mod 16)

d+
k,2 ≡ dk,2 + 4tk,1 − 4tk,2 − 4tk,3 − 2tk,4 + 6uk,4 + 4uk,6 − 4uk,7 (mod 16)

d+
k,3 ≡ dk,3 + 4tk,1 + 4tk,2 + 4tk,3 − 3tk,4 + 7tk,6 + 7uk,4 − 3uk,6 + 5uk,7 (mod 16)
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d+
k,4 ≡ dk,4 + tk,1 + 7tk,2 + 3tk,3 − 7tk,4 + 7tk,6 + 3uk,4 + 5uk,6 − 3uk,7 (mod 16)

d+
k,5 ≡ dk,5 + 2tk,1 + 4tk,3 − 5tk,4 + 5tk,6 + uk,4 + 7uk,6 − uk,7 (mod 16)

d+
k,6 ≡ dk,6 + tk,1 + tk,2 + tk,3 + tk,4 + tk,6 − uk,4 − uk,6 − uk,7 (mod 16).

From the above we deduce that

d+
k,1 + d+

k,2 − d+
k,3 + d+

k,4 − d+
k,5 + d+

k,6 ≡ dk,1 + dk,2 − dk,3 + dk,4 − dk,5 + dk,6

+ 8tk,3 + 8tk,6 + 8uk,6 + 8uk,7 (mod 16)

d+
k,2 + d+

k,3 − d+
k,4 − 3d+

k,5 − d+
k,6 ≡ dk,2 + dk,3 − dk,4 − 3dk,5 − dk,6

+ 8tk,2 + 8uk,4 + 8uk,6 + 8uk,7 (mod 16)

d+
k,3 + d+

k,5 ≡ dk,3 + dk,5 + 2tk,1 (mod 4)

d+
k,4 + d+

k,6 ≡ dk,4 + dk,6 + 2tk,1 + 2tk,4 + 2uk,4 (mod 4).

Substituting the assignment (3.34) into the above yields

d+
k,1 + d+

k,2 − d+
k,3 + d+

k,4 − d+
k,5 + d+

k,6 ≡ 2dk,1 + 2dk,2 − 2dk,3

+ 2dk,4 − 2dk,5 + 2dk,6 (mod 16)

d+
k,2 + d+

k,3 − d+
k,4 − 3d+

k,5 − d+
k,6 ≡ 2 (dk,2 + dk,3 − dk,4 − 3dk,5 − dk,6) (mod 16)

d+
k,3 + d+

k,5 ≡ 2 (dk,3 + dk,5) (mod 4)

d+
k,4 + d+

k,6 ≡ 2 (dk,4 + dk,6) (mod 4).

Since {Xk, Yk} satisfies (3.32), we have

d+
k,1 + d+

k,2 − d+
k,3 + d+

k,4 − d+
k,5 + d+

k,6 ≡ 0 (mod 16)

d+
k,2 + d+

k,3 − d+
k,4 − 3d+

k,5 − d+
k,6 ≡ 0 (mod 16)

d+
k,3 + d+

k,5 ≡ 0 (mod 4)

d+
k,4 + d+

k,6 ≡ 0 (mod 4).

and so by Lemma 3.8, we see that {Xk+1, Yk+1} satisfies (3.32) with k replaced by

k + 1.
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So, we can construct a sequence ({Xk, Yk})∞k=7 such that for each k > 7, the pair

{Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal PTE solution modulo 2k, by lifting

{X7, Y7} successively with the assignments (3.34). By Corollary 3.6 it follows that

ν2 (wk(0)) = 6 for all k ≥ 7. To see that there are infinitely many such sequences,

observe that in (3.34) we allow for uk,7 to be either 0 or 1. Thus, we can construct a

sequence ({Xk, Yk})∞k=7 corresponding to any sequence of 0’s and 1’s for the values of

uk,7.

3.2.6 n = 8

Lemma 3.19. For n = 8, if {Xk, Yk} is an ideal PTE solution modulo 2k, for some

k > 0, with nodd = 4 and

0 ≡ dk,1 + dk,2 + dk,3 + dk,4 + dk,5 + dk,6 + dk,7 (mod 16),

0 ≡ dk,2 + dk,4 + dk,6 (mod 8),

0 ≡ dk,3 + 2dk,4 + dk,5 − 2dk,6 − 3dk,7 (mod 8),

0 ≡ dk,4 + dk,6 (mod 2),

0 ≡ dk,5 + dk,6 (mod 2),

(3.37)

then there exists a lift {X+
k , Y

+
k } of {Xk, Yk} that is an ideal PTE solution modulo

2k+1.

Proof. Without loss of generality we suppose that xj and yj are odd for j ∈ {1, 2, 3, 4}.

In addition to (3.37), we will justify and make use of three additional congruences

modulo 2 that follow from (3.37), namely

dk,1 ≡ 0 (mod 2), dk,2 ≡ 0 (mod 2), and dk,3+dk,6+dk,7 ≡ 0 (mod 2). (3.38)

The first of these follows from adding the first three congruences in (3.37), the second

from adding the second and fourth congruences in (3.37), and the third from adding

the third and fifth congruences in (3.37).
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By (3.14) we have

d+
k,1 ≡ dk,1 (mod 2)

d+
k,2 ≡ dk,2 (mod 2)

d+
k,3 ≡ dk,3 +

8∑
j=5

(tk,j + uk,j) (mod 2)

d+
k,4 ≡ dk,4 +

4∑
j=1

(tk,j + uk,j) (mod 2)

d+
k,5 ≡ dk,5 +

4∑
j=1

(tk,j + uk,j) (mod 2)

d+
k,6 ≡ dk,6 +

4∑
j=1

(tk,j + uk,j) (mod 2)

d+
k,7 ≡ dk,7 +

8∑
j=1

(tk,j + uk,j) (mod 2).

(3.39)

Let tk,j and uk,j in {0, 1} be defined by

tk,1 ≡
dk,1 + dk,2 + dk,3 + dk,4 + dk,5 + dk,6 + dk,7

16 (mod 2), tk,2 = 0,

tk,7 ≡
dk,4 + dk,6

2 + dk,6 + dk,7 (mod 2), tk,4 = 0,

uk,3 ≡ tk,1 + dk,2 + dk,4 + dk,6
8 (mod 2), tk,6 = 0,

uk,1 ≡ tk,1 + tk,7 + dk,5 + dk,6
2 + dk,6 (mod 2), tk,8 = 0,

tk,3 ≡ tk,1 + uk,3 + uk,1 + dk,6 (mod 2), uk,2 = 0,

uk,5 ≡ tk,1 + tk,3 + dk,3 + 2dk,4 + dk,5 − 2dk,6 − 3dk,7
8 (mod 2), uk,4 = 0,

tk,5 ≡ uk,5 + dk,4 + dk,6
2 (mod 2), uk,6 = 0,

uk,7 = uk,8, uk,8 ∈{0, 1}.

(3.40)

Note that such tk,j and uk,j in {0, 1} exist since (3.37) holds. Substituting (3.40) into

(3.39) yields that each d+
k,j in (3.39) is 0 (mod 2), where here we make use of the

congruences in both (3.37) and (3.38). Thus, (3.9) holds and so by Proposition 3.7,

the pair {X+
k , Y

+
k } is an ideal PTE solution modulo 2k+1.
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Proposition 3.20. There exist infinitely many sequences ({Xk, Yk})∞k=7 with

{X7, Y7} = {[83, 19, 33, 1, 42, 10, 64, 0], [15, 7, 13, 101, 14, 22, 28, 52]}, (3.41)

such that for each k > 7, the pair {Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal

PTE solution modulo 2k with ν2 (wk (0)) = k8 = 6.

Proof. Observe that

w7 (z) = 256z6 + 22272z5 − 4687360z4 + 213128960z3

− 3822272256z2 + 27546254848z − 61825283520

≡ 64 (mod 27).

So, {X7, Y7} is an ideal PTE solution modulo 27, that is not an integer solution to

the PTE problem and that satisfies ν2 (w7 (0)) = 6. Also note that

dk,1 + dk,2 + dk,3 + dk,4 + dk,5 + dk,6 + dk,7 = −215205116

− 29861502− 1665070− 36620

− 174 + 2 + 0 ≡ 0 (mod 16),

dk,2 + dk,4 + dk,6 = −29861502− 36620 + 2 ≡ 0 (mod 8),

dk,3 + 2dk,4 + dk,5 − 2dk,6 − 3dk,7 = −1665070− 73240

− 174− 4− 0 ≡ 0 (mod 8),

dk,4 + dk,6 = −36620 + 2 ≡ 0 (mod 2),

dk,5 + dk,6 = −174 + 2 ≡ 0 (mod 2),

so {X7, Y7} satisfies (3.37) with k = 7.

First we prove that we can construct a sequence ({Xk, Yk})∞k=7 of ideal PTE so-

lutions modulo 2k that are obtained by successively lifting {X7, Y7}. Since {X7, Y7}

satisfies the hypothesis of Lemma 3.19 with k = 7, it suffices to show that for an

integer k > 7, if {Xk, Yk} is an ideal PTE solution modulo 2k congruent to {X7, Y7}
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(mod 128) that satisfies (3.37), then the lift of {Xk, Yk} obtained in the proof of

Proposition 3.19 also satisfies (3.37) but with k replaced by k + 1.

From (3.14) we note that for all k > 7 we have

d+
k,j ≡ dk,j +

n∑
i=1

(
en−1−j

(
X̂ i

7

)
tk,i − en−1−j

(
Ŷ i

7

)
uk,i

)
(mod 2m),

for j ∈ {1, 2, . . . , 7} and m ≤ 7. Substituting (3.41) into the above with m = 5 yields

d+
k,1 ≡ dk,1 + 4tk,7 + 4tk,8 + 16uk,5 + 16uk,6 − 4uk,7 − 4uk,8 (mod 32),

d+
k,2 ≡ dk,2 + 12tk,1 + 12tk,2 + 4tk,3 + 4tk,4 − 6tk,5

− 6tk,6 − 12tk,7 − 12tk,8 + 4uk,1 + 4uk,2 + 12uk,3

+ 12uk,4 + 10uk,5 − 14uk,6 + 8uk,7 (mod 32),

d+
k,3 ≡ dk,3 − 8tk,1 − 8tk,2 + 16tk,3 + 16tk,4 − 7tk,5 − 7tk,6 + tk,7 + tk,8

− 8uk,1 − 8uk,2 + 7uk,5 + 7uk,6 − uk,7 − uk,8 (mod 32),

d+
k,4 ≡ dk,4 − 13tk,1 − 13tk,2 − 15tk,3 − 15tk,4 − 12tk,5

− 12tk,6 + 16tk,7 + 16tk,8 + 9uk,1 + uk,2 − 5uk,3

− 13uk,4 + 4uk,5 − 12uk,6 + 8uk,7 − 8uk,8 (mod 32),

d+
k,5 ≡ dk,5 + 15tk,1 + 15tk,2 − tk,3 − tk,4 + 6tk,5

+ 6tk,6 − 6tk,7 − 6tk,8 + 9uk,1 − 7uk,2 + 9uk,3

− 7uk,4 + 10uk,5 + 10uk,6 + 6uk,7 + 6uk,8 (mod 32),

d+
k,6 ≡ dk,6 + 9tk,1 + 9tk,2 − 5tk,3 − 5tk,4 − 14tk,5

− 14tk,6 − 4tk,7 − 4tk,8 − 13uk,1 + 11uk,2 − 15uk,3

+ 9uk,4 − 14uk,5 − 6uk,6 − 8uk,8 (mod 32),

d+
k,7 ≡ dk,7 + tk,1 + tk,2 + tk,3 + tk,4 + tk,5 + tk,6 + tk,7 + tk,8

− uk,1 − uk,2 − uk,3 − uk,4 − uk,5 − uk,6 − uk,7 − uk,8 (mod 32).

(3.42)

Recall from (3.40) that we have

tk,2 = 0, tk,4 = 0, tk,6 = 0, tk,8 = 0 uk,2 = 0 uk,4 = 0 and uk,6 = 0.
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Substituting the above into (3.42) yields

d+
k,1 ≡ dk,1 + 4tk,7 + 16uk,5 − 4uk,7 − 4uk,8 (mod 32),

d+
k,2 ≡ dk,2 + 12tk,1 + 4tk,3 − 6tk,5

− 12tk,7 + 4uk,1 + 12uk,3 + 10uk,5 + 8uk,7 (mod 32),

d+
k,3 ≡ dk,3 − 8tk,1 + 16tk,3 − 7tk,5

+ tk,7 − 8uk,1 + 7uk,5 − uk,7 − uk,8 (mod 32),

d+
k,4 ≡ dk,4 − 13tk,1 − 15tk,3 − 12tk,5

+ 16tk,7 + 9uk,1 − 5uk,3 + 4uk,5 + 8uk,7 − 8uk,8 (mod 32),

d+
k,5 ≡ dk,5 + 15tk,1 − tk,3 + 6tk,5

− 6tk,7 + 9uk,1 + 9uk,3 + 10uk,5 + 6uk,7 + 6uk,8 (mod 32),

d+
k,6 ≡ dk,6 + 9tk,1 − 5tk,3 − 14tk,5

− 4tk,7 − 13uk,1 − 15uk,3 − 14uk,5 − 8uk,8 (mod 32),

d+
k,7 ≡ dk,7 + tk,1 + tk,3 + tk,5

+ tk,7 − uk,1 − uk,3 − uk,5 − uk,7 − uk,8 (mod 32).

From the above we deduce that

d+
k,1 + d+

k,2 + d+
k,3 + d+

k,4 + d+
k,5 + d+

k,6 + d+
k,7 ≡ dk,1 + dk,2 + dk,3 + dk,4

+ dk,5 + dk,6 + dk,7 + 16tk,1

+ 16uk,7 + 16uk,8 (mod 32),

d+
k,2 + d+

k,4 + d+
k,6 ≡ dk,2 + dk,4 + dk,6

+ 8tk,1 + 8uk,3 (mod 16),

d+
k,3 + 2d+

k,4 + d+
k,5 − 2d+

k,6 − 3d+
k,7 ≡ dk,3 + 2dk,4 + dk,5 − 2dk,6 − 3dk,7

+ 8tk,1 + 8tk,3 + 8uk,5

+ 8uk,7 + 8uk,8 (mod 16),

d+
k,4 + d+

k,6 ≡ dk,4 + dk,6 + 2tk,5 + 2uk,5 (mod 4),
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d+
k,5 + d+

k,6 ≡ dk,5 + dk,6 + 2tk,3 + 2tk,7

+ 2uk,3 + 2uk,7 + 2uk,8 (mod 4).

Substituting the assignment (3.40) into the above yields

d+
k,1 + d+

k,2 + d+
k,3 + d+

k,4 + d+
k,5 + d+

k,6 + d+
k,7 ≡ 2dk,1 + 2dk,2 + 2dk,3 + 2dk,4

+ 2dk,5 + 2dk,6 + 2dk,7 (mod 32),

d+
k,2 + d+

k,4 + d+
k,6 ≡ 2 (dk,2 + dk,4 + dk,6) (mod 16),

d+
k,3 + 2d+

k,4 + d+
k,5 − 2d+

k,6 − 3d+
k,7 ≡ 2dk,3 + 4dk,4 + 2dk,5

− 4dk,6 − 6dk,7 (mod 16),

d+
k,4 + d+

k,6 ≡ 2 (dk,4 + dk,6) (mod 4),

d+
k,5 + d+

k,6 ≡ 2 (dk,5 + dk,6) (mod 4).

Since {Xk, Yk} satisfies (3.37), we have

d+
k,1 + d+

k,2 + d+
k,3 + d+

k,4 + d+
k,5 + d+

k,6 + d+
k,7 ≡ 0 (mod 32),

d+
k,2 + d+

k,4 + d+
k,6 ≡ 0 (mod 16),

d+
k,3 + 2d+

k,4 + d+
k,5 − 2d+

k,6 − 3d+
k,7 ≡ 0 (mod 16),

d+
k,4 + d+

k,6 ≡ 0 (mod 4),

d+
k,5 + d+

k,6 ≡ 0 (mod 4).

and so by Lemma 3.8, we see that {Xk+1, Yk+1} satisfies (3.37) with k replaced by

k + 1.

So, we can construct a sequence ({Xk, Yk})∞k=7 such that for each k > 7, the pair

{Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal PTE solution modulo 2k, by lifting

{X7, Y7} successively with the assignments (3.40). By Corollary 3.6 it follows that

ν2 (wk(0)) = 6 for all k ≥ 7. To see that there are infinitely many such sequences,

observe that in (3.40) we allow for uk,8 to be either 0 or 1. Thus, we can construct a
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sequence ({Xk, Yk})∞k=7 corresponding to any sequence of 0’s and 1’s for the values of

uk,8.

3.3 2-adic Integer Solutions

We now prove Theorem 1.5.

Theorem 1.5. For 3 ≤ n ≤ 8 there exist lists of 2-adic integers X = [x1, x2, . . . xn]

and Y = [y1, y2, . . . yn], such that at least one xj or yj is not in Q, that satisfy
n∏
j=1

(z − xj)−
n∏
j=1

(z − yj) = Cn,

for some 2-adic integer Cn with ν2 (Cn) = kn, where

kn =



2 if n = 3, 4,

4 if n = 5,

5 if n = 6,

6 if n = 7, 8.

Proof. Fix n and let {Xkn+1, Ykn+1} be the corresponding pair from the list below.

{[1, 4, 0],[5, 6, 2]},

{[1, 1, 0, 0],[7, 3, 6, 2]},

{[1, 4, 8, 16, 0],[17, 14, 10, 18, 2]},

{[3, 1, 1, 2, 8, 0],[59, 29, 45, 42, 12, 20]},

{[3, 5, 1, 10, 2, 0, 0],[115, 29, 121, 38, 38, 28, 36]},

{[83, 19, 33, 1, 42, 10, 64, 0],[15, 7, 13, 101, 14, 22, 28, 52]}.

In the previous section we established that, from each of the above ideal PTE solutions

modulo 2kn+1, we can construct a sequence ({Xk, Yk})∞k=kn+1 such that for each k >

kn+1, the pair {Xk, Yk} is a lift of {Xk−1, Yk−1} that is an ideal PTE solution modulo

2k.
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For 1 ≤ j ≤ n and k ≥ kn + 1, we let xk,j and yk,j denote the jth entry of Xk and

Yk, respectively, and let tk,j and uk,j denote the corresponding tj and uj when lifting

from {Xk, Yk} to {Xk+1, Yk+1}. For 0 ≤ k < kn + 1, let tk,j, uk,j ∈ {0, 1} be such that

xkn+1,j =
kn∑
k=0

tk,j2k and ykn+1,j =
kn∑
k=0

uk,j2k.

For 1 ≤ j ≤ n, define the formal power series

xj =
∞∑
k=0

tk,j2k and yj =
∞∑
k=0

uk,j2k.

For 3 ≤ n ≤ 8, the sequence ({Xk, Yk})∞k=kn+1 can be constructed by successively

using the assignments given in (3.18), (3.21), (3.25), (3.29), (3.34) and (3.40), respec-

tively. In each of these assignments we have uk,n−1 = uk,n, and we have a free choice

of whether we want them both to equal 0 or both to equal 1. If we choose uk,n to

be equal to 1 infinitely often with no repeating pattern then we ensure that yn, and

yn−1, are 2-adic integers that are not rational integers (or rational numbers).

Recall that the field of 2-adic numbers, Q2, is a metric space with respect to the

metric d (p, q) = 2−ν2(p−q), for p, q ∈ Q2. From (3.8) we see that wk+m (0)−wk (0) ≡ 0

(mod 2k) for each k ≥ kn+1 and m ≥ 1. Thus, the sequence (wk (0))∞i=kn+1 is Cauchy

in Q2, and so, since Q2 is complete, (wk (0))∞i=kn+1 is convergent in Q2. Define

Cn = lim
k→∞

wk (0) ∈ Q2.

Then the xj and yj are 2-adic integers satisfying

n∏
j=1

(z − xj)−
n∏
j=1

(z − yj) = Cn.

By construction, our choice of {Xkn+1, Ykn+1} gives

wkn+m (0) ≡ wkn+1 (0) ≡ 2kn (mod 2kn+1),

which implies ν2 (Cn) = kn. This completes the proof.
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Chapter 4

Irreducibility Criteria for Non-negative

Integer Coefficient Polynomials

Recall Theorem 1.6.

Theorem 1.6. Let b ∈ Z with b > 2. Let f(x) be a polynomial with non-negative

integer coefficients and f(b) prime. For n ∈ Z+, let Φn(x) be the nth cyclotomic

polynomial and ζn = e2πi/n. Define

B(n)
b = max

i∈{0,1}

b
Dn−i

2 c∑
k=0

(
Dn − i
2k + 1

)
(b+ Re (ζn))Dn−2k−1−i (− Im (ζn))k

Φn (1− b) , (4.1)

with Dn = bπ/arg (b+ ζn)c, and let

M1 (b) = min
n∈{3,4}

B(n)
b , M2 (b) = max

n∈{3,4}
B(n)
b , M3 (b) = B(6)

b

and

M4 (b) = (b− 1.5221)κ (b− 2.5221)
1 + cot (π/b2) , with κ =

 (b2 − 1) π

b2 arctan
(

0.8444
(b− 0.2)

)
 .

Then

• If b > 2 and each coefficient of f(x) is less than M1(b), then f(x) is irreducible.

• If b > 2 and each coefficient of f(x) is less than M2(b) and f(x) is reducible,

then it is divisible by Φ3 (x− b) if b ≤ 5 and divisible by Φ4 (x− b) if b > 5.

• If b > 69 and each coefficient of f(x) is less than M3(b) and f(x) is reducible,

then it is divisible by at least one of Φ3 (x− b) or Φ4 (x− b).
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• If b > 69 and each coefficient of f(x) is less than M4(b) and f(x) is reducible,

then it is divisible by Φ3 (x− b), Φ4 (x− b) or Φ6 (x− b).

The focus of this chapter is to give the details on how to find the bounds M1(b),

M2(b) and M3(b). The bound M4 (b) is found in J. Juillerat’s dissertation [26]. To

start, in Section 4.1 we explain why the polynomials Φn(b) for n ∈ {3, 4, 6} play such

an important role, which in turn gives the motivation for finding the bounds M1(b),

M2(b) and M3(b).

4.1 A Root Bounding Function

The following lemma can be found in [16, Lemma 1].

Lemma 4.1. Fix an integer b ≥ 2. Let f(x) be a polynomial with non-negative integer

coefficients such that f(b) is prime. If f(x) is reducible, then f(x) has a non-real root

in the disc Db = {z ∈ C : |b− z| ≤ 1}.

A motivating idea for this section is to replace the disc Db in Lemma 4.1 with a

different region such that if α = reiθ is in this region, then |θ| is bounded above by a

small number.

For a given integer b ≥ 6, to establish the bounds M1(b), M2(b) and M3(b) in

Theorem 1.6 we utilise three main methods. First, we introduce certain rational

functions that will give us information about the location of possible roots of f(x)

assuming f(x) is reducible. While better rational functions can be chosen, as in [10],

we will make choices to simplify the results in later sections. Second, we will obtain

four upper bounds for the coefficients of f(x) such that if a bound is satisfied, then

f(x) cannot have a root at a certain location. Third, we will determine the minimum

M(b) of these four bounds; hence, if the coefficients of f(x) are bounded above by

M(b), then f(x) cannot have roots at the locations required for f(x) to be reducible.

In the remainder of this section, we focus on the first of these ideas.
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Recall that Φn(x) denotes the nth cyclotomic polynomial, and let ζn = e2πi/n.

As usual, for z ∈ C, the notation z will refer to the complex conjugate of z. Thus,

ζn = e−2πi/n. Fix an integer b ≥ 2, and let f(x) be a non-constant polynomial with

non-negative integer coefficients such that f(b) is prime. Suppose f(x) = g(x)h(x),

where g(x) and h(x) are in Z[x], g(x) and h(x) have positive leading coefficients, and

g(x) and h(x) are not identically ±1. Since f(b) is prime, we may take, without loss

of generality, g(b) = ±1 and h(b) = ±f(b). Using the ideas of [17], we want to show

that either g(x) has a root in common with one of

Φ3(x− b) = x2 − (2b− 1)x+ b2 − b+ 1,

Φ4(x− b) = x2 − 2bx+ b2 + 1,

Φ6(x− b) = x2 − (2b+ 1)x+ b2 + b+ 1,

or g(x) has a root in a certain region Rb to be defined shortly.

We define

Fb(z) = Nb(z)
Db(z) ,

where

Nb(z) = |b− 1− z|2e2(|b+ ζ3 − z||b+ ζ3 − z|)2e3

· (|b+ i− z||b− i− z|)2e4(|b+ ζ6 − z||b+ ζ6 − z|)2e6 ,

Db(z) = |b− z|4(e3+e4+e6)+2(e2+d+1),

and e2, e3, e4, e6, and d are all non-negative integers that could depend on b. Although

we want some flexibility on the choices for e2, e3, e4, e6, and d for a given b, for clarity,

we indicate in Table 4.1 the choices for these variables we use to establish Theorem 1.6.

Note that the values for b ≤ 20 are the same as the values chosen in [10]. The values

we chose for b ≥ 21 are not sufficient to obtain results that include b ≤ 20. Thus, we

will refer to [10] to make a statement about all b ≥ 2. Our choices for b ≥ 21 were

based on trial and error to give us our desired results.
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Table 4.1 Numbers used in Fb(z) for b

b 2 3 4 5 6 ≤ b ≤ 20 b ≥ 21
e2(b) 20 0 0 0 0 0
e3(b) 4 15 9 6 4 1
e4(b) 0 2 2 2 2 1
e6(b) 0 0 3 3 3 1
d(b) 0 3 3 3 3 1

Setting z = x+ iy, direct computations show that the following expressions in Nb

and Db simplify as shown:

|b− 1− z|2 = y2 + (x− b)2 + 2(x− b) + 1,

(|b+ ζ3 − z||b+ ζ3 − z|)2 = y4 + (2(x− b)2 + 2(x− b)− 1)y2

+
(
(x− b)2 + (x− b) + 1

)2
,

(|b+ i− z||b− i− z|)2 = y4 + (2(x− b)2 − 2)y2 + ((x− b)2 + 1)2,

(|b+ ζ6 − z||b+ ζ6 − z|)2 = y4 + (2(x− b)2 − 2(x− b)− 1)y2

+ ((x− b)2 − (x− b) + 1)2,

and

|b− z|2 = y2 + (x− b)2.

Notice that each one of these expressions is in Z[b, x, y2]. Thus, Nb(z) and Db(z) are

in Z[b, x, y2], making Fb(z) a rational function in b, x and y2. Moreover, we observe

that for each integer b ≥ 3, the polynomial

Pb(x, y) = Db(x+ iy)−Nb(x+ iy)

can be written as

Pb(x, y) =
r∑
j=0

aj(b, x)y2j
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where r = 2(e3 + e4 + e6) + e2 + d + 1 and each aj(b, x) is in Z[b, x]. We write the

factor g(x) of f(x) in the form

g(x) = c
m∏
j=1

(x− βj),

where c is the leading coefficient of g(x) and β1, . . . , βm are the roots of g(x) and,

therefore, roots of f(x). One can check that

|g(b− 1)|2e2|g(b+ ζ3)g(b+ ζ3)|2e3|g(b+ i)g(b− i)|2e4|g(b+ ζ6)g(b+ ζ6)|2e6

|g(b)|4(e3+e4+e6)+2(e2+d+1)

and
1

c2(d+1)

m∏
j=1
Fb(βj)

are equal. We denote this common value by V = Vb(g).

Since each of g(b+ζ3)g(b+ζ3), g(b+ i)g(b− i) and g(b+ζ6)g(b+ζ6) is a symmetric

polynomial in the roots of an irreducible monic quadratic in Z[x], we conclude that

each of these expressions are themselves integers. Also, g(b− 1) is an integer and, by

assumption, g(b) = ±1. Thus, by looking at the first expression for V , either V = 0

or V ∈ Z+.

We can say more about when V = 0. Since f(x) has non-negative integer coef-

ficients, it cannot have a positive real root, and neither can its factor g(x). There-

fore, g(b − 1) 6= 0. Either expression for V now implies that V = 0 if and only if

g(b+ζ3)g(b+ζ3), g(b+ i)g(b− i), or g(b+ζ6)g(b+ζ6) is zero, which happens precisely

when g(x) is divisible by at least one of Φ3(x− b), Φ4(x− b) and Φ6(x− b). If one of

these is not a factor of g(x), we have V ∈ Z+. Observe that Fb(z) is a non-negative

real number for all z ∈ C with z 6= b. By looking at the product in the second

expression for V , we see that if V 6= 0, then Fb(βj) ≥ 1 for at least one value of

j ∈ {1, . . . ,m}. Said differently, if V 6= 0, then there is a root βj of g(x), and thus of

f(x), that lies in

Rb = {z ∈ C : Fb(z) ≥ 1}.
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Figure 4.1 The region Rb for b ≥ 21, along with the location of b+ ζn for
n ∈ {3, 4, 6}.

We have, then, four locations where roots of g(x) may lie. Our next step is to

find four bounds, B(3)
b , B(4)

b , B(6)
b and Bb such that if g(x) shares a root in common

with Φn (x− b), for n ∈ {3, 4, 6}, or the region Rb, then it has a coefficient at least as

large as B(n)
b , for n ∈ {3, 4, 6}, or Bb, respectively. Comparing these four bounds will

allow us to find the four bounds as stated in Theorem 1.6. In the next two sections

we present the details of finding the bounds B(n)
b for n ∈ {3, 4, 6}. J. Juillerat gives

the details for finding the bound Bb in their dissertation [26], which is

Bb = (b− 1.5221)κ (b− 2.5221)
1 + cot (π/b2) with κ = κ (b) =

 (b2 − 1) π

b2 arctan
(

0.8444
(b− 0.2)

)
 . (4.2)

4.2 Bounds Based on Recurrence Relations

In this section we will establish results that will help us find bounds B(n)
b for n ∈

{3, 4, 6} such that if f(x) is divisible by Φn(x− b), then f(x) must have a coefficient

≥ B(n)
b . We take b ≥ 5.

Much of this section is based on the work done in [10] and [17]. We give enough

background from these to describe our work for general b.
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Fix positive integers A and B and integers bj such that

f(x) = h(x)g(x) = (b0x
s + b1x

s−1 + · · ·+ bs−1x+ bs)(x2 − Ax+B) (4.3)

is a polynomial of degree n = s+2 with non-negative integer coefficients. We restrict

ourselves to the case where

x2 − Ax+B = Φn(x− b), with n ∈ {3, 4, 6}

so that

(A,B) ∈ {(2b− 1, b2 − b+ 1), (2b, b2 + 1), (2b+ 1, b2 + b+ 1)}.

Recalling b ≥ 5, for these values of (A,B), the following inequalities can be directly

verified and will be used later:

√
B − 2 > 0

1− A+B > 1

2B − A > 0

4B − A2 > 0

3− 3A+ 2B > 0

A2 − 3B > 0

1− A < 0

−B2 + A2 −B < 0

A3 − AB −B2 < −1 (if b ≥ 7).

(4.4)

Define bj = 0 for all j < 0 and all j > s. Since the coefficients of f(x) are all

non-negative, we deduce that b0 ≥ 1 and bj ≥ Abj−1 −Bbj−2 for all j ∈ Z. Define

βj =



0 if j < 0,

1 if j = 0,

Aβj−1 −Bβj−2 if j ≥ 1,

(4.5)

so that the βj satisfy a recurrence relation for j ≥ −1. In particular, β1 = A and

β2 = A2−B. Also, with our restriction on our choice of x2−Ax+B above, we have

β1 ∈ {2b− 1, 2b, 2b+ 1},
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so the sequence β0, β1, . . . is initially increasing. We obtain a closed form for the solu-

tion to this recurrence relation. The recurrence relation has characteristic polynomial

x2 −Ax+B, which has roots b+ ζn and b+ ζn for some n ∈ {3, 4, 6}. So βj has the

closed form

βj = c1(b+ ζn)j + c2(b+ ζn)j,

for some constants c1 and c2 depending on A and B. Taking j = 0, we obtain

c2 = 1 − c1; and taking j = −1, we see that c1 = (b+ ζn) /
(
ζn − ζn

)
. Substituting

these values for c1 and c2 and reducing, we deduce

βj = 1
ζn − ζn

[
(b+ ζn)j+1 − (b+ ζn)j+1

]

= |b+ ζn|j+1ei(j+1) arg (b+ζn) − |b+ ζn|j+1e−i(j+1) arg (b+ζn)

ζn − ζn

= |b+ ζn|j+1

sin (2π/n) sin ((j + 1) arg(b+ ζn)).

(4.6)

We note that B is the constant term of the minimal polynomial for b+ ζn, so

B = |b+ ζn|2. (4.7)

For ease of notation, we set

θ = θn = arg(b+ ζn) ∈ (0, π/2) and D = Dn = bπ/θnc (4.8)

where θ and D depend on both b and n. We now take a moment to obtain some

useful inequalities involving θ and D that will be used later.

Lemma 4.2. Let b ∈ Z with b ≥ 3, and let n ∈ {3, 4, 6}. Then π/θn 6∈ Z.

Proof. Letting r = arg(b + ζn)/π, it suffices to show r 6∈ Q. Observe that for n ∈

{3, 4, 6} we have

arg(b+ ζn) = arctan(x) where x ∈
{ √

3
2b− 1 ,

1
b
,

√
3

2b+ 1

}
.
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In each case, we have sin2(arctan(x)) = x2/(x2 + 1) ∈ Q, and hence

cos(2πr) = 1− 2 sin2(πr) = 1− 2 sin2(arg(b+ ζn)) ∈ Q.

By Corollary 3.12 in [33], we deduce that if r ∈ Q and cos(2πr) ∈ Q, then cos(2πr)

is an element of {0,±1/2,±1}. One checks that 0 < arg(3 + ζn) < π/6 for each

n ∈ {3, 4, 6}. Since, for fixed n ∈ {3, 4, 6}, the value of πr = arg(b+ ζn) decreases to

0 as b increases, we see that 1/2 < 1−2 sin2(πr) < 1. Thus, cos(2πr) 6∈ {0,±1/2,±1},

and the lemma follows.

From Lemma 4.2, we obtain

Dn =
⌊
π

θn

⌋
<

π

θn
= π

arg(b+ ζn) for b ≥ 3 and n ∈ {3, 4, 6}. (4.9)

For n ∈ {1, 2} and for n ≥ 4, the inequality

arg (b+ ζn) ≤ arg (b+ ζ4) (4.10)

is easily verified for all b ≥ 4. For n = 3, we show that (4.10) also holds for b ≥ 4.

Observe that

arg (b+ ζ3) = arctan
( √

3
2b− 1

)
and arg (b+ ζ4) = arctan

(1
b

)
.

We deduce that, for n = 3 and b ≥ 4, it suffices to show
√

3
2b− 1 ≤

1
b
.

The latter inequality holds for b ≥ 3.74. Thus, (4.10) holds for all b ≥ 4 and n ≥ 1.

From (4.10), for b ≥ 4 and all n ∈ N, we deduce that

arg (b+ ζn) ≤ arg (b+ ζ4) = π

π/ arg (b+ ζ4) <
π

bπ/ arg (b+ ζ4)c = π

D4
, (4.11)

where the strict inequality follows from (4.9).

From (4.6) and (4.7), we obtain

βj =
√
B
j+1

sin(2π/n) sin((j + 1)θ). (4.12)
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By taking j = 0 in (4.6), with (4.5), we see that

sin(θ) = sin(2π/n)√
B

. (4.13)

From (4.12), we deduce βj > 0 provided sin ((j + 1)θ) > 0. Thus, βj > 0 if 0 <

(j + 1)θ < π or, equivalently, if 0 ≤ j ≤ D − 1. On the other hand, we have

π < (bπ/θc+ 1)θ < 2π

so that (4.12) implies βD < 0.

We claim that βj−1 < βj for 1 ≤ j ≤ D − 2. Given (4.12), we can view βj as a

differentiable function of j. Differentiating βj with respect to j, we obtain

dβj
dj

=
√
B
j+1

sin (2π/n)
[
sin ((j + 1)θ) log

√
B + θ cos ((j + 1)θ)

]
.

Setting this last expression equal to 0 to find critical values, we have

log
√
B sin ((j + 1)θ) + θ cos ((j + 1)θ) = 0,

which implies

tan((j + 1)θ) = − θ

log
√
B

= − 2θ
logB.

Solving for j + 1, we find the solutions

j + 1 = mπ − arctan(2θ/ logB)
θ

where m ∈ Z. The smallest positive solution for j + 1 occurs when m = 1. Since

b ≥ 5, we have logB ≥ log 21 > 3. Also, arctan(x) < x for all x > 0. Thus, the

smallest positive solution for j + 1 is

π

θ
− arctan(2θ/ logB)

θ
>
π

θ
− arctan(θ)

θ
>
π

θ
− 1 ≥

⌊
π

θ

⌋
− 1 = D − 1.

Thus, the least positive critical point occurs for some j > D − 2. Since the sequence

β0, β1, . . . is initially increasing, we see that the derivative is positive for j ≤ D − 2.
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We show next that

βD−1 6= βD−2.

Assume otherwise. Then (4.12) gives

√
B sin(Dθ) = sin((D − 1)θ) = sin(Dθ) cos(θ)− cos(Dθ) sin(θ).

From (4.9), we have Dθ < π. Also,

(D + 1)θ = (bπ/θ + 1c)θ > π and 0 < θ < π/2,

so

Dθ > π − θ > π/2.

Thus, we obtain sin(Dθ) > sin(π − θ) = sin(θ). Hence,

0 = sin(Dθ)(
√
B − cos(θ)) + cos(Dθ) sin(θ)

> sin(θ)(
√
B − 1)− sin(θ)

= sin(θ)(
√
B − 2) > 0,

where the last inequality holds by (4.4). Thus, we have a contradiction, so

βD−1 6= βD−2.

Summarizing, we now know

βD < 0 < β0 < β1 < · · · < βD−2 6= βD−1. (4.14)

Define J to be the smallest positive integer such that

βJ+1 < βJ and βJ−1 < βJ .

Observe that (4.14) implies that J is well-defined and

J = D − 2 or J = D − 1. (4.15)
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As a consequence, recalling (4.9) again, we have

0 < (J + 1)θ < π. (4.16)

Since θ = arg(b + ζn) Recalling b ≥ 5, (4.11) and (4.8), and using arctan x < x for

x > 0, we also obtain

J ≥ D − 2 ≥ π

θ
− 3 ≥ π

arg (b+ ζ4) − 3 = π

arctan(1/b) − 3 > bπ − 3 > 6. (4.17)

In (14) of [17], the definition of J was used to establish

bj ≥ βjb0 for all integers j ≤ J + 1. (4.18)

The identical argument works to establish (4.18) here, and we will take advantage of

this inequality as well.

We now note some further useful observations from [17]. Let

U = U(A,B) = max
j≥0
{bj} and L = L(A,B) = min

j≥0
{bj}. (4.19)

Since bj = 0 for j > s, we have the trivial bound L ≤ 0. From equation (4.18), we

obtain U ≥ βJb0.

We are interested in A and B with f(x) divisible by Φn(x − b) = x2 − Ax + B,

where n ∈ {3, 4, 6}. We view A and B as fixed. We want f(x) to have non-negative

integer coefficients but with the largest coefficient as small as possible. Theorem 3.8

in [40] implies such f(x) exist (also, see Lemma 3 in [16]). Let

M = M(A,B) denote the maximum coefficient for such an f(x). (4.20)
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Let ` ∈ Z+. We consider the matrix equation

1 1 1 . . . 1 1 1

−A B 0 . . . 0 0 0

1 −A B . . . 0 0 0
... ... ... . . . ... ... ...

0 0 0 . . . B 0 0

0 0 0 . . . −A B 0

0 0 0 . . . 1 −A B





µ0

µ1

µ2

...

µ`−3

µ`−2

µ`−1



=



1

0

0
...

0

0

0



(4.21)

in the unknowns µ0, µ1, . . . , µ`−1. Let ` = J + 1. We make some observations about

the solutions to (4.21), as well as produce a closed form for such a solution.

Lemma 4.3. Let b be an integer ≥ 5. Let A and B be such that x2 − Ax + B is

Φn(x− b) where n ∈ {3, 4, 6}. The above matrix equation has a solution where µj > 0

for all 0 ≤ j ≤ J .

Proof. Let M be the matrix in (4.21) with ` = J + 1. The equation in (4.21)

arising from the second row of M is equivalent to the condition µ1 = Aµ0/B. The

next ` − 2 = J − 1 rows ofM correspond to a recurrence relation for µ0, µ1, . . . , µJ

beginning with µ0 and µ1 and satisfying

µj = Aµj−1

B
− µj−2

B
for 2 ≤ j ≤ J.

We will have a solution in µj to (4.21) provided then that we can find µ0 > 0 for

which µ1 = Aµ0/B and the above recurrence gives ∑0≤j≤J µj = 1. Observe that with

µ0 defined arbitrarily, this solution gives each µj as a multiple of µ0. With this in

mind, we define µ∗j = µj/µ0.

As before, we find the characteristic polynomial for this recurrence relation to find

the general term. This recurrence has characteristic polynomial x2 − Ax/B + 1/B,

which is the reciprocal polynomial of x2 − Ax+B divided by B; hence, the roots of
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the characteristic polynomial are 1/(b+ ζn) and 1/(b+ ζn). So

µ∗j = c1

(
1

b+ ζn

)j
+ c2

(
1

b+ ζn

)j
(4.22)

for j ≥ 0, where c1 and c2 are constants to be determined. Taking j = 0 in (4.22),

we see that since µ∗0 = 1 we obtain c2 = 1 − c1. Next, we take j = 1 and use both

ζn − ζn = −2i sin (2π/n) and (4.7). Since µ∗1 = A/B, we obtain

c1 =
A
B
− 1

b+ζn

1
b+ζn
− 1

b+ζn

= A− (b+ ζn)
−2i sin(2π/n)

and

c2 = 1− c1 = ζn − ζn
−2i sin (2π/n) −

A− (b+ ζn)
−2i sin(2π/n) = A− (b+ ζn)

2i sin(2π/n) .

Thus, for 0 ≤ j ≤ J , we have

µ∗j = A− (b+ ζn)
−2i sin(2π/n)

(
1

b+ ζn

)j
+ A− (b+ ζn)

2i sin(2π/n)

(
1

b+ ζn

)j

= 1
2B sin (2π/n)

[
B − A(b+ ζn)
i(b+ ζn)j−1 + A(b+ ζn)−B

i(b+ ζn)j−1

]
.

Recall (4.8). As in (4.6), for any t ∈ Z, we deduce

(b+ ζn)t − (b+ ζn)t = −2i|b+ ζn|t sin (tθ).

Taking t = j and t = j − 1 with 0 ≤ j ≤ J , we obtain

µ∗j = 1
2B sin (2π/n)

[
2Ai|b+ ζn|j sin (jθ)− 2Bi|b+ ζn|j−1 sin ((j − 1)θ)

i|b+ ζn|2(j−1)

]

= 1
B sin (2π/n)

[
A|b+ ζn|j sin(jθ)−B|b+ ζn|j−1 sin((j − 1)θ)

Bj−1

]
.

Using (4.5) and (4.6), we get

µ∗j = Aβj−1 −Bβj−2

Bj
= βj
Bj

(4.23)

for 1 ≤ j ≤ J . As µ∗0 = 1 = β0/B
0, we see that µ∗j = βj/B

j for all j ∈ [0, J ]∩Z. The

definition of J implies µ∗j is positive for 0 ≤ j ≤ J .
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Recall that we want ∑0≤j≤J µj = 1, which is equivalent to ∑0≤j≤J µ
∗
j = 1/µ0. Set

K =
J∑
j=0

µ∗j =
J∑
j=0

βj
Bj
. (4.24)

As K > 0, we can take µ0 = 1/K to deduce that the lemma holds.

From the proof of Lemma 4.3, we have a closed form for µj > 0 satisfying (4.21).

Because we will be using this closed form, we would like a nicer way to write K. To

do so, observe that, for m a positive integer, we have
m∑
j=1
rj sin(jθ) =

m∑
j=1

rj · e
ijθ − e−ijθ

2i

= 1
2i

m∑
j=1

(reiθ)j − (re−iθ)j

= 1
2i

reiθ m−1∑
j=0

(reiθ)j − re−iθ
m−1∑
j=0

(re−iθ)j


= 1
2i

[
reiθ

1− rmemiθ
1− reiθ − re

−iθ 1− rme−miθ
1− re−iθ

]

= reiθ(1− rmemiθ)(1− re−iθ)− re−iθ(1− rme−miθ)(1− reiθ)
2i|1− reiθ|2

= reiθ − re−iθ − rm+1e(m+1)iθ + rm+1e−(m+1)iθ + rm+2emiθ − rm+2e−miθ

2i|1− reiθ|2

= r sin(θ)− rm+1 sin((m+ 1)θ) + rm+2 sin(mθ)
|1− reiθ|2 .

(4.25)

From (4.12) and (4.24), we see that

K =
J∑
j=0

βj
Bj

= 1
sin(2π/n)

J∑
j=0

√
B
j+1 sin((j + 1)θ)
√
B

2j

=
√
B

2

sin(2π/n)

J∑
j=0

(
1√
B

)j+1

sin((j + 1)θ)

= B

sin(2π/n)

J+1∑
j=1

(
1√
B

)j
sin(jθ).
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Using (4.25) with r = 1/
√
B and m = J + 1, we get

K = B

sin(2π/n)

√
B
−1 sin(θ)−

√
B
−J−2 sin((J + 2)θ) +

√
B
−J−3 sin((J + 1)θ)

|1−
√
B
−1
eiθ|2

= B

sin(2π/n)

√
B

2J+3 sin(θ)−
√
B
J+2 sin((J + 2)θ) +

√
B
J+1 sin((J + 1)θ)

√
B

2J+4
B−2|B −

√
Beiθ|2

.

Using (4.13) and rearranging, we obtain

K = 1
BJ−1|B −

√
Beiθ|2

BJ+1 −
√
B
J+2 sin((J + 2)θ)

sin(2π/n) +
√
B
J+1 sin((J + 1)θ)

sin(2π/n)

 .
By (4.7) and (4.8), we see

√
Beiθ = |b + ζn|ei arg(b+ζn) = b + ζn for each n ∈ {3, 4, 6}.

Thus, from (4.12) with j = J + 1 and j = J , we acquire

K = BJ+1 − βJ+1 + βJ
BJ−1|b+ ζn −B|2

. (4.26)

Recalling from the proof of Lemma 4.3 that µ∗j = µj/µ0, µ0 = 1/K and (4.23),

we see that

µj = βj
BjK

. (4.27)

In the next section, we will use the value of K in (4.26) and βj in the formulation

of µj in (4.27) to obtain bounds for L = L(A,B) and M = M(A,B), which were

defined in (4.19) and (4.20).

4.3 Establishing Bounds

Recall the setup thus far. Let f(x) = g(x)h(x) be a polynomial in Z[x] with non-

negative coefficients where g(x) = x2−Ax+B is Φ3(x−b), Φ4(x−b), or Φ6(x−b), and

h(x) has positive leading coefficient denoted b0 as in (4.3). Recall thatM(A,B) is the

smallest value that the largest coefficient of f(x) can be under these conditions. It is

worth noting that we do not require f(b) to be prime in the definition of M(A,B).

We proceed towards proving Theorem 1.6. Using the previous sections, we will

find three bounds, B(3)
b , B(4)

b , and B(6)
b such that if f(x) has coefficients less than
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or equal to B(n)
b with f(b) prime, then f(x) cannot be divisible by Φn(x − b) for

n ∈ {3, 4, 6}. Note the difference between B(n)
b and M(A,B); M(A,B) does not

require f(b) to be prime while B(n)
b does. We begin by showing both of the following:

(i) The value of M(A,B) is (1− A+B) · βJ for each n ∈ {3, 4, 6}.

(ii) If the maximal coefficient of f(x) equals M(A,B), then f(b) is composite.

Assuming (i) and (ii), we explain now that we can take B(n)
b = M(A,B). If f(x) has

each coefficient less than M(A,B), then f(x) cannot be divisible by Φn(x− b) by the

minimality of M(A,B). Note that this conclusion does not require f(b) to be prime.

If we further require f(b) to be prime, then by (ii), we would also have that the largest

coefficient of f(x) cannot equal M(A,B). Hence, we can take B(n)
b = M(A,B).

Notice the dependence on n; A and B are the integers such that x2 − Ax + B is

Φn(x − b), so A and B depend on n. Also, βJ depends on D and θ, both defined in

(4.8), so βJ depends on n.

We start by establishing (i). We follow the method used in [10]. Suppose first

that

M(A,B) ≤ (1− A+B) · βJ . (4.28)

We eventually want a contradiction if strict inequality holds; however, there will be

a significance in seeing what this inequality gives us. Since M(A,B) is a coefficient

of f(x), it must be positive. Also, by definition, βJ > 0; thus, in order for (4.28) to

make sense, we must have 1− A+B > 0, which follows from (4.4).

We start by setting

u = µ0B, v = µ`−2 − µ`−1A and w = µ`−1, (4.29)

where µj is as in (4.27) and where ` = J + 1. Then [17] establishes that

M ≥
⌈
u2 − (v + w)2

u
· U
⌉
≥ u2 − (v + w)2

u
· U (4.30)
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≥ u2 − (v + w)2

u
βJb0 ≥

(u2 − (v + w)2)βJ
u

and

0 ≤ −L ≤ v + w

u2 − (v + w)2 ·M. (4.31)

From (4.28) and (4.30), we have

b0βJ ≤ U(A,B) ≤ uM(A,B)
u2 − (v + w)2 ≤

u(1− A+B) · βJ
u2 − (v + w)2 . (4.32)

We make an observation about this inequality with ` = J + 1.

Lemma 4.4. With the prior notation,

u(1− A+B) · βJ
u2 − (v + w)2 < βJ + 1.

Proof. Simplifying the left-hand side of the inequality above, we obtain

u(1− A+B) · βJ
u2 − (v + w)2 = µ0B(1− A+B)βJ

µ2
0B

2 − (µJ−1 − µJ(A− 1))2

=
1
K
B(1− A+B)βJ

B2

K2 − ( βJ−1
KBJ−1 − βJ

KBJ (A− 1))2

= KB2J+1(1− A+B)βJ
B2J+2 − (BβJ−1 − AβJ + βJ)2

= KB2J+1(1− A+B)βJ
B2J+2 − (βJ − βJ+1)2 .

From the definition of K in (4.26), we obtain

u(1− A+B) · βJ
u2 − (v + w)2 = B2J+1(1− A+B)βJ(BJ+1 − βJ+1 + βJ)

BJ−1|b+ ζn −B|2(B2J+2 − (βJ − βJ+1)2) .

Since n ∈ {3, 4, 6}, the field Q(ζn) is of degree 2 over Q and |b+ ζn−B|2 is the norm

of b+ ζn −B in the field Q(ζn) over Q. The norm of b+ ζn −B is the constant term

of its minimal polynomial over Q, which is (x + B)2 − A(x + B) + B. Thus, we see

that

|b+ ζn −B|2 = B(1− A+B).
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Therefore,

u(1− A+B) · βJ
u2 − (v + w)2 = BJ+2(1− A+B)βJ(BJ+1 − βJ+1 + βJ)

B(1− A+B)(BJ+1 − βJ + βJ+1)(BJ+1 + βJ − βJ+1)

= BJ+1βJ
BJ+1 − βJ + βJ+1

= BJ+1βJ
BJ+1 − βJ + AβJ −BβJ−1

= BJ+1

BJ+1

βJ
+ A− 1−B βJ−1

βJ

.

To prove the lemma, we need to show

BJ+1

BJ+1

βJ
+ A− 1−B βJ−1

βJ

< βJ + 1,

which is the same as showing

BJ+1 < BJ+1 + BJ+1

βJ
+
(
A− 1−BβJ−1

βJ

)
(βJ + 1).

Moving all terms to one side, this is equivalent to(
1− A+B

βJ−1

βJ

)
(βJ + 1)− BJ+1

βJ
< 0.

For ease of notation, let

∆ = 1− A+B
βJ−1

βJ
< 1− A+B, (4.33)

where the inequality follows from the definition of J which implies βJ > βJ−1. From

(4.12), it suffices to show

∆
√BJ+1 sin((J + 1)θ)

sin(2π/n) + 1
− BJ+1 sin(2π/n)

√
B
J+1 sin((J + 1)θ)

< 0.

From (4.16), we have sin((J + 1)θ) > 0. Multiplying by sin(2π/n) sin((J + 1)θ) in

the previous inequality, we see that we want

∆
(√

B
J+1

sin2((J + 1)θ) + sin((J + 1)θ) sin(2π/n)
)
−
√
B
J+1

sin2(2π/n) < 0.

75



Rearranging, we want to show

√
B
J+1 [

∆ sin2((J + 1)θ)− sin2(2π/n)
]

+ ∆ sin(2π/n) sin((J + 1)θ) < 0.

From (4.33), we see that it suffices to show that
√
B
J+1

[(1− A+B) sin2((J + 1)θ)− sin2(2π/n)]

+ ∆ sin(2π/n) sin((J + 1)θ) < 0.
(4.34)

We now break the proof into two cases, J = D − 1 and J = D − 2. Because

sin((D − 1)θ) is close to sin(π) = 0, we will do some simple approximations to prove

(4.34) when J = D − 1. When J = D − 2, the value of sin((D − 2)θ) is not close

enough to 0 to do the same approximations, so a different technique is employed.

Recall (4.8) which implies for b ≥ 5 that

0 < θ = arctan(b+ ζn) ≤ arctan(5 + ζ4) = arctan(1/5) < π/4.

Hence, when J = D − 1, we have

π > Dθ ≥ (π/θ − 1)θ = π − θ > π/2, (4.35)

so sin(Dθ) < sin(π − θ) = sin(θ) = sin(2π/n)/
√
B by (4.13). With J = D − 1 and

(4.33), and since 1− A+B > 0 by (4.4), the left-hand side of (4.34) is

√
B
D

[(1− A+B) sin2(Dθ)− sin2(2π/n)] + ∆ sin(Dθ) sin(2π/n)

<
√
B
D
[
(1− A+B)sin2(2π/n)

B
− sin2(2π/n)

]
+ (1− A+B)sin2(2π/n)√

B
.

Thus, it suffices to show the right side above is < 0 to establish (4.34). After dividing

out by sin2(2π/n), we want to establish the equivalent inequality

√
B
D
[1− A+B

B
− 1

]
+ 1− A+B√

B
=
√
B
D
[1− A

B

]
+ 1− A+B√

B
< 0.

Multiplying both sides of the inequality by B
√
B, we now want to show

√
B
D+1

[1− A] +B(1− A+B) < 0,
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or equivalently

(1− A)
(√

B
D+1

+B
)

+B2 < 0.

By (4.4), we see that 1 − A < 0 for b ≥ 3. One can check directly that D ≥ 3 for

each n ∈ {3, 4, 6} where D is defined in (4.8). Thus the above inequality holds for

b ≥ 3, so (4.34) has been established for J = D − 1.

We now move towards proving (4.34) for J = D − 2. Recall (4.13) and note that

sin (2π/n) = Im (b+ ζn) =
√

4B − A2/2, so

sin (θ) =
√

4B − A2

2
√
B

= sin(2π/n)√
B

, cos (θ) = A

2
√
B
, and

tan (θ) =
√

4B − A2

A
= 2 sin(2π/n)

A
.

(4.36)

By the definition of J , we have βJ > βJ+1, which for J = D − 2 is βD−2 > βD−1.

Using (4.12), we obtain

sin((D − 1)θ) >
√
B sin(Dθ). (4.37)

Define η by

Dθ = π − η.

Then, by the definition of D and Lemma 4.2, we have 0 < η < θ.

From (4.37) and (4.36), we obtain now that

√
B <

sin((D − 1)θ)
sin(Dθ) = sin(π − η − θ)

sin(π − η)

= sin(η + θ)
sin(η) = sin(η) cos(θ) + cos(η) sin(θ)

sin(η)

= cos(θ) + sin(θ) cot(η).

After manipulating this, we see that

η < arctan
(

sin (θ)√
B − cos (θ)

)
= arctan

(√
4B − A2

2B − A

)
=: τ.
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From the definition of τ we obtain the values

sin (τ) =
√

4B − A2

2
√
B(1− A+B)

, cos (τ) = 2B − A
2
√
B(1− A+B)

,

and tan (τ) =
√

4B − A2

2B − A ,

(4.38)

which are well-defined by (4.4).

Lastly, by comparing sin(θ) and sin(τ) in (4.36) and (4.38) and noting 1−A+B > 1

by (4.4), we see that τ < θ. Using the inequality arctan x ≤ x for x ∈ (0, π/2), we

observe that for b ≥ 2 and n ∈ {3, 4, 6} we have

η + θ < τ + θ < 2θ < π

2 . (4.39)

To prove (4.34), we first show that ∆ > 0. Using (4.12), we have

∆ = 1− A+B
βD−3

βD−2

= 1− A+
√
B

sin(Dθ − 2θ)
sin(Dθ − θ)

= 1− A+
√
B

sin(η + 2θ)
sin(η + θ) .

(4.40)

Recall that η < τ and by (4.39) we have both η + θ and τ + θ are in (0, π/2), so

sin (η + 2θ)
sin (η + θ) = cos (θ) + sin (θ) cot (η + θ) > cos (θ) + sin (θ) cot (τ + θ) . (4.41)

Using (4.36) and (4.38) we see that

cos (θ) + sin (θ) cot (τ + θ) = cos (θ) + sin (θ) 1− tan (τ) tan (θ)
tan (τ) + tan (θ)

= A

2
√
B

+
√

4B − A2

2
√
B

·
1−

√
4B−A2

2B−A

√
4B−A2

A√
4B−A2

2B−A +
√

4B−A2

A

= A

2
√
B

+
√

4B − A2

2
√
B

· A (2B − A)− (4B − A2)
2B
√

4B − A2

= A

2
√
B

+ A− 2
2
√
B

= A− 1√
B

. (4.42)
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Combining (4.40), (4.41), and (4.42), we deduce that

∆ > 0 for J = D − 2. (4.43)

Note sin(2π/n) sin((J + 1)θ) < 1, so to show (4.34) it suffices to show
√
B
D−1

[(1− A+B) sin2((D − 1)θ)− sin2(2π/n)] + ∆ < 0. (4.44)

From (4.40), we see that (4.44) is equivalent to
√
B
D−1

[(1− A+B) sin2(η + θ)− sin2(2π/n)] + 1− A+
√
B

sin(η + 2θ)
sin(η + θ) < 0. (4.45)

To show this inequality, we are going to view η in (4.45) as a variable and let it range

from 0 to τ , and see that the left-hand side of (4.45) is increasing to zero in this

range.

Observe what happens if we let η = τ in (4.45). The inequality in (4.41) becomes

an equality. When combined with (4.42), we obtain ∆ = 0. Thus, the left-hand side

of (4.45) is equal to
√
B
D−1

[(1− A+B) sin2(θ + τ)− sin2(2π/n)]. (4.46)

Using (4.36) and (4.38), we see that

sin2(θ + τ) = (sin θ cos τ + cos θ sin τ)2

=
(

sin(2π/n)√
B

2B − A
2
√
B
√

1− A+B
+ A

2
√
B

sin(2π/n)√
B
√

1− A+B

)2

= sin2(2π/n)
4B2(1− A+B)(2B)2

= sin2(2π/n)
1− A+B

.

Hence, the expression in (4.46), which is the left-hand side of (4.45), is zero.

We now move to showing that (4.45) is negative when η ranges from 0 to τ . We

begin by showing the similar expression
√
B [(1− A+B) sin2(η + θ)− sin2(2π/n)] + 1− A+

√
B

sin(η + 2θ)
sin(η + θ) (4.47)
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is negative for η between 0 and τ . By applying angle-sum identities for sine and

cosine and rearranging, we rewrite (4.47) as

−4 (1− A+B)
(
A2 −B

)√
4B − A2 cos3 (η)

+
(
3A2 (1− A+B)−B

(
4B − A2

)
+ 4
√
B
)√

4B − A2 cos (η)

+
(
4A (1− A+B)

(
A2 − 3B

))
sin3 (η)

+
(
A
(
4B − A2

)
(3− 3A+ 2B)− 4 (2B − A)

√
B
)

sin (η)

divided by

4
(√

4B − A2 cos (η) + A sin (η)
)√

B. (4.48)

It is clear that the denominator (4.48) is positive, so we focus on the numerator,

which we call W . If we can show that W is increasing for 0 < η < τ , then it must be

negative. Differentiating W with respect to η yields

dW

dη
= 12 (1− A+B)

(
A2 −B

)√
4B − A2 cos2 (η) sin (η)

+B
(
4B − A2

)
sin (η)

+ 12 (1− A+B)
(
A2 − 3B

)
cos (η) sin2 (η)

+ A
(
4B − A2

)
(3− 3A+ 2B) cos (η)

−
(
3A2 (1− A+B) + 4

√
B
)√

4B − A2 sin (η)

− 4 (2B − A)
√
B cos (η) ,

(4.49)

where (4.49) is written so that each expression in A and B that appears is positive

by (4.4), a trait that will be carried forward for the remainder of this argument. We

now bound (4.49) below by an expression that does not depend on η. Recall that

0 < η < τ < θ. Then, using (4.36) and (4.38), the bounds

A

2
√
B

= cos (θ) ≤ cos (η) ≤ 1 and 0 ≤ sin (η) ≤ sin (τ) =
√

4B − A2

2
√
B (1− A+B)
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give us

dW

dη
>
A2 (4B − A2) (3− 3A+ 2B)

2
√
B

−

(
3A2 (1− A+B) + 4

√
B
)

(4B − A2)

2
√
B (1− A+B)

− 4 (2B − A)
√
B,

(4.50)

where in (4.49), the first 3 terms have been bounded by 0 ≤ sin (η), the fourth has

been bounded by cos (θ) ≤ cos (η), the fifth has been bounded by sin (τ) ≥ sin (η),

and the sixth has been bounded by 1 ≥ cos (η).

Since B − 2A > 0 for b ≥ 3 and b ≥ 2, we have

0 < 3 (B − 2A) < 3B − 4A < 4− 4A+ 3B < B (4− 4A+ 3B) ,

which when rearranged gives

4B (1− A+B) > B2. (4.51)

Also, by the arithmetic-geometric mean inequality, we obtain

A2 + 4B
2A ≥ 2

√
B. (4.52)

Using (4.51) and (4.52), we bound the right-hand side of (4.50) below by

A2 (4B − A2) (3− 3A+ 2B)
(A2 + 4B) / (2A)

− (3A2 (1− A+B) + 2 (A2 + 4B) / (2A)) (4B − A2)
B

− 2 (2B − A) A
2 + 4B
2A .

(4.53)

Substituting A = 2 (b+ Re (ζn)) and B = (b+ ζn)
(
b+ ζn

)
, the expression in (4.53)

becomes

−32
(
4b2 − 9b+ 3

)
cos8 (2π/n)

− 16
(
40b3 − 111b2 + 62b− 12

)
cos7 (2π/n)
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− 8
(
164b4 − 546b3 + 400b2 − 121b+ 9

)
cos6 (2π/n)

− 4
(
352b5 − 1380b4 + 1188b3 − 307b2 − 84b+ 23

)
cos5 (2π/n)

− 4
(
208b6 − 948b5 + 873b4 + 223b3 − 562b2 + 227b− 45

)
cos4 (2π/n)

− 8
(
32b7 − 168b6 + 128b5 + 430b4 − 516b3 + 305b2 − 80b+ 11

)
cos3 (2π/n)

− 8
(
4b8 − 24b7 − 16b6 + 394b5 − 449b4 + 355b3 − 86b2 + 30b+ 2

)
cos2 (2π/n)

+ 4
(
32b7 − 308b6 + 384b5 − 380b4 + 92b3 − 57b2 − 28b+ 1

)
cos (2π/n)

+ 4
(
4b8 − 44b7 + 64b6 − 76b5 + 23b4 − 19b3 − 14b2 + b− 3

)

divided by

2b cos4 (2π/n) +
(
11b2 + 1

)
cos3 (2π/n)

+ b
(
17b2 + 7

)
cos2 (2π/n)

+
(
10b4 + 9b2 + 1

)
cos (2π/n)

+ b
(
2b2 + 1

) (
b2 + 1

)
.

The final lower bound comes from bounding the first of these below and the second

of these above using |cos (2π/n)| ≤ 1/2. Doing this and collecting powers of b yields

dW

dη
>

64b8 − 1280b7 + 3232b6 − 8216b5 + 3950b4 − 3288b3 − 374b2 − 110b− 149
16b5 + 40b4 + 58b3 + 47b2 + 23b+ 5 .

The denominator is positive, and one checks that the numerator is as well for b ≥ 18.

To prove the expression in (4.45) is negative, we observe that since ∆ ≥ 0, we

have

(1− A+B) sin2((D − 1)θ)− sin2(2π/n) < 0.

Since D ≥ 1, the expression in (4.47) being negative implies (4.45) holds.

Recall the setup so far. We are working under the assumptions that f(x) is a

polynomial with non-negative integer coefficients such that

f(x) = h(x)g(x) = (b0x
s + b1x

s−1 + · · · bs−1x+ bs)(x2 − Ax+B)
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where Φn(x− b) = x2−Ax+B. From Lemma 4.4 and (4.32), we see that b0 < 2, and

since b0 is an non-negative integer, b0 = 1. Thus, (4.28) implies that h(x) is monic.

Also, using Lemma 4.4 and (4.32) with b0 = 1, we have

βJ ≤ U(A,B) < βJ + 1.

Thus, we have established that U(A,B) = βJ . Recalling (4.19), we see that the

largest coefficient of h(x) is βJ . Next, we observe the following.

Lemma 4.5. Under the assumption (4.28) with u, v, and w defined as in (4.29), we

have

δ := v + w

u2 − (v + w)2 ·M(A,B) ∈ (0, 1)

for all b ≥ 3.

Proof. From (4.31), we see that δ ≥ 0. We now claim that δ 6= 0. The only way δ

could = 0 is if M(A,B) = 0 or v + w = 0. From the definition of M(A,B), we see

that M(A,B) ≥ 1. By way of contradiction, assume that v + w = 0, then v = −w.

By the definitions of v and w in (4.29) with ` = J + 1 we have

µJ−1 − µJA = −µJ .

From (4.27), we see that µJ 6= 0 and

0 = 1− A+ µJ−1

µJ
= 1− A+B

βJ−1

βJ
.

Notice that the right-hand side is the definition of ∆ in (4.33). We showed that ∆ > 0

for J = D− 2 by (4.43), so recalling (4.15), we restrict our attention to the case that

J = D − 1. Using (4.12), the sum of angles formula for sine, and (4.36), we obtain

∆ = 1− A+B
βD−2

βD−1
= 1− A+

√
B

sin(Dθ − θ)
sin(Dθ)

= 1− A+
√
B

sin(Dθ) cos(θ)− cos(Dθ) sin(θ)
sin(Dθ)
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= 1− A+
√
B (cos(θ)− sin(θ) cot(Dθ))

= 1− A+
√
B

(
A

2
√
B
− sin(2π/n)√

B
cot(Dθ)

)

= 1− A

2 − sin(2π/n) cot(Dθ).

From (4.35) and (4.36), we see that

∆ = 1− A

2 − sin(2π/n) cot(Dθ)

> 1− A

2 − sin(2π/n) cot(π − θ)

= 1− A

2 + sin(2π/n) cot(θ)

= 1− A

2 + A sin(2π/n)
2 sin(2π/n)

= 1.

Thus we have a contradiction in both cases, so v + w 6= 0. Hence, δ > 0.

Next, we show that δ < 1. We start by observing that Lemma 4.4 and (4.28) give

us

δ = uM(A,B)
u2 − (v + w)2

v + w

u
< (βJ + 1)v + w

u
.

Using the definitions of u, v, and w in (4.29) with ` = J + 1, we obtain

δ < (βJ + 1)v + w

u
= (βJ + 1) µJ−1 − µJ(A− 1)

µ0B
.

From (4.27) and (4.12), we have

δ < (βJ + 1) µJ−1 − µJ(A− 1)
µ0B

= βJ + 1
B

(
βJ−1

BJ−1 −
βJ
BJ

(A− 1)
)

= βJ + 1
BJ+1 (BβJ−1 + (1− A)βJ)

=

√
B

J+1 sin((J+1)θ)
sin(2π/n) + 1
BJ+1

√BJ+2 sin(Jθ)
sin(2π/n) + (1− A)

√
B
J+1 sin((J + 1)θ)

sin(2π/n)



=
√
B
J+1 sin((J + 1)θ) + sin(2π/n)
√
B
J+1 sin2(2π/n)

(√
B sin(Jθ) + (1− A) sin((J + 1)θ)

)
.
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We make a few observations to help simplify. First, (1−A) sin((J+1)θ) ≤ 0 since

sin((J+1)θ) > 0 by (4.16). Second, using (4.16), (4.15), and noting that D > π/θ−1,

we have

π > Jθ ≥ (D − 2)θ > (π/θ − 3)θ = π − 3θ.

arg (b+ ζn) ≤ arg (b+ ζ4) = π

π/ arg (b+ ζ4) <
π

bπ/ arg (b+ ζ4)c = π

D4
,

From (4.9) and (4.11), for b ≥ 5 we obtain

θ ≤ arg(b+ ζ4) < π

θ4
= π

arctan(1/b) <
π

6 .

Putting these together, we get for b ≥ 5 that

π > Jθ > π − 3θ > π

2 ,

so sin(Jθ) < sin(3θ). Likewise, from (4.16), we have π > (J + 1)θ > π − 2θ > π/2.

Thus, sin((J + 1)θ) < sin(2θ). Using these bounds, we acquire

δ <

√
B
J+1 sin(2θ) + sin(2π/n)
√
B
J sin2(2π/n)

sin(3θ).

Using double and triple angle formulas for sin θ and (4.36) with
√

4B − A2 =

2 sin(2π/n), we get

δ <

√
B
J+12 sin θ cos θ + sin(2π/n)
√
B
J sin2(2π/n)

(3 sin θ − 4 sin3 θ)

=

√
B
J+1A sin(2π/n)

B
+ sin(2π/n)

√
B
J sin2(2π/n)

(
3sin(2π/n)√

B
− 4sin3(2π/n)

B
√
B

)

= A
√
B
J−1 + 1
√
B
J

(
3√
B
− 4sin2(2π/n)

B
√
B

)

= A
√
B
J−1 + 1

√
B
J+3 (3B − 4 sin2(2π/n))

= A
√
B
J−1 + 1

√
B
J+3 (A2 −B).
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This last expression is less than 1 precisely when

(A
√
B
J−1

+ 1)(A2 −B)−
√
B
J+3

< 0.

Thus, since J > 6 by (4.17), and using (4.4), we get

(A
√
B
J−1

+ 1)(A2 −B)−
√
B
J+3

=
√
B
J−1

(A3 − AB −B2) + A2 −B

< −
√
B
J−1

+ A2 −B < −B2 + A2 −B < 0

for b ≥ 7. Thus, the lemma holds for b ≥ 7. Direct calculations on small b show that

Lemma 4.5 holds for b ≥ 3.

Thus, from Lemma 4.5 and (4.31) we see that L = 0 where L is defined in (4.19).

Putting this together with the consequences of Lemma 4.4, we see that (4.28) implies

h(x) is monic, the largest coefficient of h(x) corresponds to the value of βJ , and all

the coefficients of h(x) are non-negative. The proofs of (i) and (ii) now follow directly

from [10, page 172], which we reproduce here.

We continue to assume (4.28) and deduce as in [17] that h(x) can be written as a

sum over non-negative integers k of polynomials which are xk times
(
β0x

J+β1x
J−1 + · · ·+ βJ

)
xJ+t′ +

(
xJ+t′−1 + xJ+t′−2 + · · ·+ xJ

)
βJ

+
(
βJ − β0

)
xJ−1 +

(
βJ − β1

)
xJ−2 + · · ·+

(
βJ − βJ−1

)
,

(4.54)

where t′ = t′(k) is a non-negative integer. The values of k are taken so that there are

no overlapping terms for different k and so that the coefficient of xk−1 in h(x) is 0.

To show (i), we assume that strict inequality holds in (4.28). Observe that since

f(x) = (x2 − Ax + B)h(x) with h(x) as described above, we see that f(x) has a

coefficient equal to

(βJ − β1)− A(βJ − β0) +BβJ = (1− A+B)βJ − β1 + Aβ0

= (1− A+B)βJ ,
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which corresponds to the coefficient of xJ when the expression in (4.54) is multiplied

by x2−Ax+B. This contradicts our assumption, showing that M(A,B) ≥ (1−A+

B)βJ .

To show that equality holds, we will exhibit a polynomial motivated by (4.54)

with t′ = 0. Consider

h0(x) = β0x
2J + β1x

2J−1 + · · ·+ βJx
J

+ (βJ − β0)xJ−1 + (βJ − β1)xJ−2 + · · ·+ (βJ − βJ−1).

Applying (4.5), we deduce that

(x2 − Ax+B)h0(x) = x2J+2 +
(
(1− A)βJ +BβJ−1 − 1

)
xJ+1

+ (1− A+B)βJxJ + · · ·+ (1− A+B)βJx2

+
(
(B − A)βJ + AβJ−1 −BβJ−2

)
x+B(βJ − βJ−1).

Note that the coefficient of x here can be rewritten as (1− A+ B)βJ . Furthermore,

the constant term of (x2 − Ax+B)h0(x) can be rewritten as

(1− A+B)βJ − βJ + βJ+1.

Since J was defined so that βJ−1 < βJ and βJ+1 < βJ , we see that the maximal

coefficient of (x2 − Ax + B)h0(x) is (1 − A + B)βJ . The definition of M(A,B) now

implies that the equality given in (i) holds.

Now we prove (ii). Since (i) holds, we have f(x) = (x2 − Ax + B)h(x) where

h(x) is a sum over some non-negative integers k of polynomials which are xk times

polynomials of the form (4.54). We refer to the polynomial in (4.54) as part of h(x).

We begin by showing that with A,B and J fixed, but t′ arbitrary, each part of h(x)

is divisible by

h1(x) =
J∑
j=0

(βJ−j − βJ−j−1)xj,
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where we recall from (4.5) that β−1 = 0. From this definition of h1(x), we have
J∑
j=0

βJ−jx
j ≡

J∑
j=0

βJ−j−1x
j ≡

J∑
j=1

βJ−jx
j−1 (mod h1(x)).

We deduce that the polynomial in (4.54) is(
J∑
j=0

βJ−jx
j

)
xJ+t′ +

(
J+t′−1∑
j=0

xj
)
βJ −

J∑
j=1

βJ−jx
j−1

≡
(

J∑
j=1

βJ−jx
j−1
)
xJ+t′ +

(
J+t′−1∑
j=0

xj
)
βJ −

J∑
j=1

βJ−jx
j−1

≡
(

J∑
j=0

βJ−jx
j

)
xJ+t′−1 +

(
J+t′−2∑
j=0

xj
)
βJ −

J∑
j=1

βJ−jx
j−1

≡
(

J∑
j=0

βJ−jx
j

)
xJ+t′−2 +

(
J+t′−3∑
j=0

xj
)
βJ −

J∑
j=1

βJ−jx
j−1

...

≡
J∑
j=0

βJ−jx
j −

J∑
j=1

βJ−jx
j−1 ≡ 0 (mod h1(x)).

Thus, we obtain that each part of h(x), and therefore h(x) itself is divisible by h1(x).

Using that h(x) consists of at least one part as in (4.54) with t′ ≥ 0 and J ≥ 1, we

deduce that

h(b) ≥ (β0b
J + β1b

J−1 + · · ·+ βJ)bJ > β0b
J + β1b

J−1 + · · ·+ βJ > h1(b) > 1.

This means h(b) is the integer h1(b) times an integer that is greater than 1. We

deduce that f(b) = g(b)h(b) = h(b) is composite. This finishes the proof of (ii).

Thus, for n ∈ {3, 4, 6}, we have bounds B(n)
b such that if f(x) is a polynomial with

non-negative integer coefficients with f(b) a prime, and has coefficients less than or

equal to

B(n)
b = (1− A+B)βJ , (4.55)

then f(x) cannot be divisible by Φn(x − b). To see how the explicit expression for

B(n)
n in (4.1) comes to be, we have, from the definition of βj in (4.6),

βj = 1
2i Im(ζn)

[
(b+ ζn)j+1 − (b+ ζn)j+1

]
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= 1
2i Im(ζn)

[
(b+ Re(ζn) + i Im(ζn))j+1 − (b+ Re(ζn)− i Im(ζn))j+1

]
.

Writing out the binomial expansion of each term and combining like terms yields

βj = 1
2i Im(ζn)

j+1∑
k=0

(
j + 1
k

)
(i Im(ζn))k(b+ Re(ζn))j+1−k

−
j+1∑
k=0

(
j + 1
k

)
(−i Im(ζn))k(b+ Re(ζn))j+1−k



= 1
2i Im(ζn)

j+1∑
k=0

(
j + 1
k

)
(b+ Re(ζn))j+1−k

(
(i Im(ζn))k − (−i Im(ζn))k

)

=
∑

0≤k≤ j+1
2

(
j + 1

2k + 1

)
(b+ Re(ζn))j−2k(− Im(ζn)2)k.

Recall that in (4.15), J was defined to be either Dn − 1 or Dn − 2. Evaluating βj

at j = Dn − 1 and j = Dn − 2, we get

βDn−1 =
∑

0≤k≤Dn
2

(
Dn

2k + 1

)
(b+ Re(ζn))Dn−2k−1(− Im(ζn)2)k

and

βDn−2 =
∑

0≤k≤Dn−1
2

(
Dn − 1
2k + 1

)
(b+ Re(ζn))Dn−2k−2(− Im(ζn)2)k,

respectively. Thus,

βJ = max
i∈{0,1}

 ∑
0≤k≤Dn−i

2

(
Dn − i
2k + 1

)
(b+ Re (ζn))Dn−2k−1−i (− Im (ζn))k

 . (4.56)

Further, observe that

(1− A+B) = Φn (1− b) , (4.57)

for n ∈ {3, 4, 6}. Substituting (4.56) and (4.57) into (4.55) yields (4.1).

4.4 Comparing the Bounds and Establishing Theorem 1.6

We summarize what we have done so far. Let b be an integer greater than or equal

to 2, and let f(x) be in Z[x] with non-negative coefficients and f(b) prime. We write
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f(x) = g(x)h(x) with g(x) 6≡ ±1, h(x) 6≡ ±1, and both g(x) and h(x) having positive

leading coefficients. Using the fact that f(b) is prime, we reduced our considerations

to g(b) = ±1. We then showed that either g(x), and hence f(x), is divisible by at

least one of Φ3(x − b), Φ4(x − b), and Φ6(x − b), or g(x) has a root β ∈ Rb. In the

previous sections we established that if the coefficients of f(x) are less than or equal

to B(n)
b defined in (4.55), then f(x) does not have a root in common with Φn(x− b)

for n ∈ {3, 4, 6}. In [26] it is shown that if the coefficients of f(x) are less than or

equal to Bb, with Bb as in (4.2), then f(x) does not have a root in the region Rb.

Letting M(b) be the minimum of these four bounds, then if the coefficients of

f(x) are less than or equal to M(b), f(x) is irreducible. In [26], J. Juillerat shows the

following. 

B(3)
b < B(4)

b for 2 ≤ b ≤ 5,

B(4)
b < B(3)

b for b ≥ 6,

B(3)
b < B(6)

b for b ≥ 2,

B(3)
b < Bb for b ≥ 3,

B(6)
b < Bb for b ≥ 70.

Having established these inequalities, we have that for b large enough, each of

the following hold; if the coefficients of f(x) are less than or equal to B(4)
b , then f(x)

is irreducible; if the coefficients of f(x) are less than or equal to B(3)
b and f(x) is

reducible, then f(x) is divisible by Φ4(x− b); if the coefficients of f(x) are less than

or equal to B(6)
b and f(x) is reducible, then f(x) is divisible by Φ4(x− b) or Φ3(x− b);

and if the coefficients of f(x) are less than or equal to Bb and f(x) is reducible, then

f(x) is divisible by Φ4(x− b), Φ3(x− b), or Φ6(x− b).

With respect to Theorem 1.6, we note that M1(b) = B(3)
b and M2(b) = B(4)

b , for

3 ≤ b ≤ 5, and M1(b) = B(4)
b and M2(b) = B(3)

b , for b > 5. Further, M3(b) = B(6)
b , and

M4(b) = Bb. This establishes Theorem 1.6.
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