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Abstract 

Some complex infrastructure systems, such as nuclear facilities and bridges, are 

subject to structural damage due to environmental erosion, material deterioration, and 

other factors after long periods of use. Stress corrosion cracking (SCC) and alkali-silica 

reaction (ASR) have been identified as the primary degradation mechanisms for steel and 

concrete structures in nuclear facilities and bridges. Ensuring the integrity and operational 

safety of structures during their lifetime is an important task. Nondestructive methods and 

structural health monitoring can be used to detect damage caused by SCC and ASR 

instead of conventional visual inspection. Among the nondestructive methods, acoustic 

emission (AE) is a suitable method because it is extremely sensitive to the initiation and 

propagation of the damage in materials. Detection and localization of damage in 

structures can be achieved by deploying a network of AE sensors. However, the 

complexity of real-world structures is a challenge for the application of AE. In some 

cases, the area available for sensor attachment is limited. It would be challenging to 

deploy sensor arrays. An approach using a single AE sensor may be beneficial for 

damage detection in complex infrastructure system.   

The purpose of this dissertation is to investigate the intelligent damage detection 

and localization approach for infrastructure system such as spent nuclear fuel storage 

containers and concrete bridge components leveraging deep learning techniques and a 

single AE sensor. In addition, a novel transfer learning approach for damage localization 

without labelled historical signals for training is proposed. The finite element model is 
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developed to generate numerical AE signals for training the supervised learning model. 

Unsupervised domain adaptation technology is used to reduce the difference in 

distribution between the generated numerical AE signals and the realistic AE signals.  

The results suggest that the intelligent approach using a single AE sensor and 

deep learning techniques has a good performance. The transfer learning approach is able 

to localize AE signals with high accuracy without using labelled training data, 

demonstrating that it could be a potential approach to localize ASR and SCC events on 

infrastructure systems. However, further research is needed to standardize the method for 

field application. 
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Introduction 
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1.1 Background 

Ensuring the integrity and safety of infrastructural system throughout their service 

lives is an important task. Some complex infrastructural systems, such as nuclear 

facilities, bridges, and dams are subject to structural damage due to environmental 

erosion, material deterioration, fatigue damage, and other factors after long periods of use. 

For instance, nuclear power generation has been widely applied in the United States for 

decades. Currently, the cooling pools and dry cask storage systems (DCSS) have been 

used to store the spent fuel for over 20 years [1]. Spent fuels are placed in stainless-steel 

canisters, then water and air are removed and replaced by inert gas. After decades some 

of the older canisters are showing signs of degeneration. Stress corrosion cracking (SCC) 

has been identified as the primary degradation mechanism in the canisters due to the 

length of time they have been in use. The high salinity and humidity in the coastal region 

where those canisters are stored is another factor in their deterioration [2; 3]. Besides 

nuclear facilities, a large number of bridges in the United States have been in use over 

lengthy periods of time. In the United States, nearly 45,000 bridges are currently 

classified as structurally deficient [4]. This poses a significant threat to transportation 

safety. Alkali-silica reaction (ASR) is one of the main cracking sources in the concrete of 

bridges [5]. ASR is a chemical reaction between silica in reactive aggregate and alkaline 

ions in cement. The product of this reaction is a hygroscopic gel, which absorbs humidity 

and expands. The gel exerts pressure on the aggregate and cement matrix and causes 

cracking. The structural integrity of these infrastructures is a matter of national 

economics and a potential hazard to public safety. Therefore, inspecting the infrastructure 

and providing maintenance in a timely manner is crucial.  
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Many approaches have been utilized to inspect and monitor cracks in structures. 

Conventional approaches to inspection include regular visual inspections, coring, and 

petrographic analysis, demountable mechanical strain gauge (DEMEC gauge), relative 

humidity or moisture content measurement, and crack indexing. These approaches have 

several disadvantages. For example, visual inspection does not account for cracks below 

the surface of the structures. Moreover, visual inspection of large-scale structures is time-

consuming and prone to human error [6]. Coring and petrographic analyses are 

destructive methods that are generally unsuitable for sensitive structures such as nuclear 

facilities. Furthermore, it is difficult to evaluate the condition of the entire structure with 

only a few cores or samples. 

Utilizing nondestructive methods is a proposed solution. Several nondestructive 

methods such as radiographic inspection (RT), ultrasonic testing (UT), acoustic emission 

testing (AE), and thermal imaging/infrared testing (TIR) have been employed in the 

inspection and monitoring of infrastructural components [7-14]. AE is a method worth 

investigating among the non-destructive methods because of its extreme sensitivity to 

damage initiation and their propagation in materials [15-22]. Several researchers have 

explored AE for monitoring damage in infrastructural systems such as steel structures 

[23-26] and concrete structures [27-31]. Previous studies have proven that AE structural 

health monitoring is a reliable technique. However, traditional methods for analyzing AE 

signals are usually based on experience and can be very challenging, especially for 

complex structures. Therefore, intelligent algorithms are needed to assist in analyzing AE 

data. 
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1.2 Research significance 

Steel and concrete are the essential construction materials of infrastructures. The 

infrastructural components are under threat of structural damage after long-term 

operation. SCC and ASR are the main damage causing mechanisms in steel and concrete 

structures. The monitoring and evaluation of SCC and ASR damages in structures are 

required to ensure the serviceability and integrity of infrastructures such as stainless-steel 

spent fuel storage canisters and concrete components in bridges. AE structural health 

monitoring could be used for monitoring SCC and ASR development. However, there are 

several challenges and scientific gaps in developing an AE monitoring approach for such 

use. Some of the gaps are addressed in this dissertation. 

One of the gaps is the lack of investigation of the feasibility of AE monitoring for 

the detection of SCC damage in a large-scale stainless-steel spent fuel storage canister. 

This gap is addressed in Chapter 3.  However, there is another problem when applying 

AE monitoring in spent fuel storage canisters. The canisters are huge and are stored in a 

concrete overpack. The area available for sensor attachment is limited. It is difficult to 

employ an AE sensor array around the cracking region to detect the location of a crack. 

Artificial intelligence techniques such as machine learning and deep learning are 

investigated in Chapter 4 as a method to solve the source localization problem. 

In addition to the source localization of AE events, a gap exists in the damage 

evaluation of ASR in concrete components using AE. The selection of the appropriate AE 

features for analysis has generally been based on experience and is very challenging, 

especially for complex data sets. Therefore, an automatic approach is required to extract 
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features directly from raw AE data in order to find potential patterns in the complex data 

sets. This goal can be fulfilled by using deep learning methods explored in Chapter 5. 

Chapters 3 through 5 show how promising machine learning and deep learning is 

in the analyzation of AE signals. However, another current challenge with this method is 

the difficulty of accessing the labeled AE signals in order to train the machine learning 

and deep learning model. In Chapter 6, a novel transfer learning approach for AE analysis, 

without labeled historical AE signals, is proposed to address the challenge. 

1.3 Objectives 

The primary object of this dissertation is to develop an intelligent acoustic 

emission (AE) monitoring approach for monitoring the structural health of infrastructures 

without historical AE signals to train the artificial intelligent models. Four different 

studies are included in this dissertation to accomplish the primary objective. Each study 

has its own specific set of objectives.  

1.3.1 Structural Health Monitoring of Stainless-Steel Nuclear Fuel Storage Canister 

Using Acoustic Emission 

The AE monitoring method may work as an early warning screening during the 

overall inspection of infrastructure systems. AE monitoring can alert us to the existence 

of cracks and provide the location of the cracks. Subsequent quantitative studies of the 

damage will be investigated by the inspection methods such as ultrasonic inspection. El 

Guerjouma et al. [32] utilized AE to provide information about the damage initiation and 

development in fiber reinforced polymer composites. Ultrasonic inspection was then 

employed to quantify the damage. Shiotani et al. [33] investigated the global monitoring 

of large concrete structures using AE and ultrasonic techniques. The evaluation of AE 
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activity leads to information about any specific part of the structure that requires attention. 

Consequently, more detailed ultrasonic examinations can be conducted once the target 

area is selected.  

Understanding the capacity of AE monitoring and assessing the initiation and 

propagation of SCC in large-scale nuclear spent fuel storage canisters is one of the 

critical issues. In addition, selecting the appropriate type of AE sensor is also significant 

to crack monitoring. An experiment was conducted on a large-scale stainless-steel 

specimen made of similar length and thickness to what is typical of a nuclear spent fuel 

storage canister shell. The main objectives of this study are: 

• Evaluate the efficacy of AE monitoring as a nondestructive method to 

provide structural monitoring and assessment of stress corrosion crack on 

a 304H stainless steel plate specimen of an identical scale to field-

deployed nuclear-spent fuel storage canisters. 

• Investigate the attenuation of AE signals along the length of the steel plate 

specimen and localize the AE source on the specimen. 

• Develop finite element models to generate numerical AE signals for the 

purpose of AE sensor selection for the field application. 

1.3.2 Source Localization on Large-Scale Canisters for Used Nuclear Fuel Storage 

Using Optimal Number of Acoustic Emission Sensors 

Machine learning (a branch of Artificial Intelligence) has been applied in the field 

of acoustic emission monitoring, especially in cases where there are limitations in the 

number of sensors and sensor locations. By using machine learning algorithms, accurate 

source localization and damage identification can be conducted using only a single AE 
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sensor. This approach reduces the cost of the system and reduces cabling requirements. 

Machine learning techniques were employed to localize the simulated AE sources on the 

nuclear-spent fuel storage canister specimen. AE signals were collected by a single AE 

sensor attached to the bottom edge of the specimen. The primary objectives of this 

research are as follows: 

• Study source localization approaches using artificial neural network 

(ANN), random forest (RF), and stacked autoencoders (SAE).  

• Investigate the importance of the AE features utilized in machine learning 

techniques and study how these features affect the localization results. 

• Evaluate and compare efficiency and accuracy in terms of localization 

approaches using ANN, RF, and SAE. 

1.3.3 Evaluation of ASR in Concrete Using Acoustic Emission and Deep Learning 

In addition to crack localization, assessing the damage stage and evaluating the 

health condition of infrastructure is another objective of using AE monitoring. In this 

study, the evaluation of ASR stages in concrete using AE and artificial intelligence 

technology is investigated. The primary objectives of this research are as follows: 

• Divide the AE signals collected during the ASR process into different 

stages based on the cumulative signal strength and AE features. 

• Evaluate the ASR stages of concrete by classifying the AE signals into the 

corresponding ASR stages using convolutional neural network (CNN) and 

stacked autoencoders (SAE). 

• Compare the performance of ASR evaluation using CNN and SAE and 

discussing the efficiency in terms of computational time. 
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1.3.4 A Transfer Learning Approach for Acoustic Emission Localization Using 

Numerical Simulation and Unsupervised Domain Adaptation  

The efficiency of applying artificial intelligent technologies in AE monitoring has 

been investigated and validated by three previous studies shown in this dissertation. 

However, one of the key problems in the field application is the lack of efficient 

historical AE signals for training. This study proposes a transfer learning framework to 

solve this problem by using unsupervised domain adaptation and the finite element model 

proposed in the first study.  The primary objectives of this research are as follows: 

• Generate experimental AE signals (target domain) in a steel specimen by 

conducting Hsu Nielsen excitation. Utilizing finite element models to 

generate numerical AE signals as the data in the source domain.  

• Use geodesic flow kernel (GFK) to augment the data in the source domain 

• Using unsupervised domain adaptation to align the data distribution in the 

target and source domain. 

• Train a CNN model for AE source localization using the source domain 

after augmentation and unsupervised domain adaptation. Test the 

performance of the trained CNN model on the experimental AE signals in 

the target domain. 

1.4  Layout of dissertation 

Seven chapters are included in the dissertation. Chapter 2 is entitled “Literature 

review”. This chapter introduces background information from previously published 

literature and the methods utilized in the dissertation.  
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Chapters 3 through 6 were prepared in paper format, including published papers, 

submitted papers, and papers that are planned to be submitted. Therefore, some essential 

explanations may be repeated.  

Chapter 3 is titled “Structural Health Monitor of Stainless-Steel Structures for 

Spent Nuclear Fuel Storage Using Acoustic Emission”, where the AE signals of 

corrosion cracking in the spent fuel storage canister specimen were collected and source 

localized. A finite element model was developed to generate numerical AE signals. The 

AE sensor with the correct operating frequency range can be selected for field application 

by studying the frequency component of numerical signals. The finite element model in 

this study is also used in Chapter 6. 

Chapter 4 is titled “Source Localization on Large-Scale Canisters for Used 

Nuclear Fuel Storage Using Optimal Number of Acoustic Emission Sensors”. In this 

study, the AE signal localization of crack in the spent fuel storage canister using artificial 

intelligent technologies (ANN, RF, and SAE) was investigated.  

Chapter 5 is titled “Evaluation of ASR in Concrete Using Acoustic Emission and 

Deep Learning”. In this study, AE was employed to monitor the ASR damage in concrete 

specimens. Two deep learning technologies: CNN and SAE were utilized to evaluate the 

ASR damage stages.  

Chapter 6 is titled “A Transfer Learning Framework for Acoustic Emission 

Localization Using Numerical Simulation and Unsupervised Domain Adaptation”. In this 

study, the finite element model developed in chapter 3 was employed to generate 

numerical AE signals. Data augmentation and unsupervised domain adaptation were 

employed to expand the number of numerical signals and reduced the difference between 
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the numerical and the realistic signals. The processed numerical AE signals were utilized 

for training a transfer learning model for AE source localization. 

Chapter 7 includes a dissertation summary, research conclusions, and 

recommendations for future research.   
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2.1 Introduction 

Acoustic emission (AE) is a physical phenomenon, which is related to the stress 

wave generated by the rapid release of elastic energy that occurs when cracks or damages 

form in materials [1]. AE signals can be detected and collected by deploying AE sensors 

on the surface of an object. The method of recording and processing AE signals to 

monitor and diagnose the health status of an object is referred to as AE monitoring. This 

method is nondestructive, sensitive, and has continuous monitoring capabilities [2-7]. It 

has been widely used to monitor and detect damage in steel structures such as stress 

corrosion cracking (SCC) [8-11]. Li et al. [8] used AE to monitor the SCC of the steel 

wires used in bridge cables. The authors developed a particle swarm optimization cluster 

method to classify AE signals into different clusters in order to identify their relationship 

with SCC mechanisms. The results pointed out that the AE sources of SCC in bridge 

cables can be classified into four types: passive film breakdown, detachment of the 

corrosion product, crack initiation, and crack extension. Li et al. [9] investigated the SCC 

in prestressed strands using AE. The ant colony optimization algorithm was utilized to do 

the unsupervised pattern recognition of AE signals. Four clusters of AE signals were 

identified as being related to the four failure stages of SCC. The clustering was employed 

as the labels of a self-organizing feature mapping neural network. The results indicated 

that the AE characteristic parameter distribution of different SCC failure stages can be 

realized. Zhang et al. [10] studied the AE monitoring of 304 stainless steel in high-

temperature water. A random forest model was used to separate the AE signals of 

different SCC modes. They extracted several AE features as the input of random forest 

and observed that the rise time is the most useful feature to distinguish the AE signals. 
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Recently, AE has been applied to the detection of SCC on DCSS canisters. Soltangharaei 

et al. [11] investigated the AE monitoring of SCC on a small-scale 304 stainless steel 

plate instead of testing on the real-scale DCSS canister. The b-value and linear regression 

methods were employed for damage identification using AE data. The authors indicated 

the global b-values and the R2-values calculated by conducting linear regression could 

identify the difference of SCC damage in the steel plate. 

AE can also be utilized for the temporal evaluation of Alkali-silica reaction (ASR) 

damage in concrete structures used in bridges and nuclear facilities [12-17]. Farnam et al. 

[13] utilized peak frequency and frequency centroid to characterize signal signatures that 

emanate from cracks in aggregates and cement paste. High-frequency signals were 

observed in the earlier stage of ASR, while the low-frequency signals appeared later in 

the ASR process. X-ray images helped the authors to verify their hypothesis. Lokajíček et 

al. [14] utilized ultrasonic pulse velocity and AE to monitor the damage caused by ASR. 

Four specimens with different aggregate reactivities were used. The selection of the 

appropriate features was generally based on experience and were very challenging, 

especially for complex data sets. Therefore, an automatic approach became necessary to 

extract features directly from raw data and find potential patterns in the complex data sets. 

This goal can be fulfilled by using deep learning methods.   

Results from previous studies indicated that AE monitoring has a good capability 

for the detection and identification of cracks in steel and concrete specimens. However, 

there is a problem when applying AE monitoring in realistic complex infrastructures. In 

some cases, the area available for sensor attachment is limited, it would be challenging to 

deploy sensor arrays to localize the damages. An intelligent and automatic localization 
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approach using only a single AE sensor can be beneficial in the detection and localization 

of damages in complex metallic infrastructures. 

Adopting artificial intelligence techniques such as machine learning and deep 

learning algorithm is a potential approach. Machine learning is a supervised intelligent 

data processing technique [18]. By learning the features extracted from the data, machine 

learning can understand the data pattern and make a decision [19]. Machine learning 

models such as artificial neural network, support vector machine (SVM), K-nearest 

neighbor (KNN), and random forest has been widely utilized for signal processing [6; 20-

24]. Deep learning methods are improved intelligent techniques which are based on 

machine learning. It can automatically learn features from complex data sets without 

feature extractions [25]. In recent years, machine learning and deep learning have been 

applied to AE localization using a single AE sensor [26; 27]. Ebrahimkhanlou et al. [26] 

proposed a deep learning framework based on a stacked autoencoder network to locate 

AE events on the metallic structures. Ai et al. [27] developed a passive health monitoring 

system to locate impacts on an aircraft component using one AE sensor, random forest, 

and stacked autoencoder network. 

Previous studies have proven that using deep learning to analyze AE signals is 

promising. However, a current challenge associated with the use of the supervised 

learning algorithms on AE source localization is difficulty in accessing the labeled AE 

signals for existing structures. Transfer learning (TL) is a strategy which assists the 

supervised learning task when the available training data is limited [28]. TL has been 

utilized in the application of acoustic emission [3; 29]. However, those studies focused on 

the scenarios when the training AE signals are limited but still available. No research has 
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been conducted by using deep learning algorithms to analyze the AE signals with no 

labeled training AE signals available.  

This dissertation aims to propose the damage detection and localization approach 

for infrastructure components like nuclear spent fuel storage canisters and concrete 

bridge components leveraging artificial intelligence techniques and AE monitoring. 

Furthermore, this dissertation investigates a novel TL approach for AE localization 

without labeled historical AE signals. A finite element model is developed to generate 

numerical AE signals for the training of artificial intelligence algorithms. Unsupervised 

domain adaptation technology is utilized to decrease the difference between the generated 

numerical AE signals with realistic AE signals. The methods utilized in this dissertation 

are introduced in the following sections. 

2.2 AE signal processing methods  

In the dissertation, signal processing methods, such as fast Fourier transform, 

continuous wavelets transform, and energy-frequency analysis have been employed to 

process and study the AE signals.  

2.2.1 Fast Fourier transform (FFT) 

Fourier transform is a common method for transferring a signal from time domain 

to frequency domain. The discrete version of Fourier transform is utilized for digital 

waveforms, which is referred to as Discrete Fourier Transform (DFT), and is presented in 

the following Eq. (2.1): 

𝑋𝑘 = ∑ 𝑋𝑛𝑒
−
𝑗2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0                                                                                                     (2.1) 

Where, 𝑁 is the number of samples. 𝑋𝑛 is a signal in a time domain, and 𝑋𝑘 is 

Fourier transform coefficients for Kth frequency. 
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2.2.2 Continuous wavelets transform (CWT) 

CWT is a joint time-frequency analysis method that captures the time-frequency 

characteristics in non-stationary signals such as AE signals [30]. CWT has a good 

performance in signal processing in terms of both time and frequency [4]. The continuous 

wavelet coefficients can be expressed by a scalogram image. The 2D scalogram images 

are the input for CNN models. In this dissertation, the Morse wavelet is selected as the 

mother wavelet function to conduct CWT. The Fourier transform of Morse wavelet is 

presented in Eq (2.2): 

𝛹𝑝,𝛾(𝑥) = 𝑈(𝑥)𝛼𝑝,𝛾𝑥
𝑝2

𝛾 𝑒−𝑥
𝛾
                                                                                           (2.2) 

where 𝑈(𝑥) refers to the unit step, α𝑝,𝛾  refers to the normalizing 

constant, 𝑝2 refers to the time-bandwidth product.   𝛾 is the parameter that characterizes 

the symmetry of the Morse wavelet [31]. 

2.2.3 Energy-frequency analysis 

The energy-frequency features can be obtained by conducting an energy-

frequency analysis. The energy-frequency features refer to the energies in the frequency 

bands of the signals. The AE time domain waveforms were converted to the frequency 

domain spectrum by conducting a fast Fourier transform (FFT). The frequency range of 

the AE signals can be divided into several bands with a width of a certain frequency. The 

area under the FFT spectrum in each frequency band is the energy enclosed by that 

frequency band [5]. Therefore, energy-frequency features could be derived from each AE 

signal.  
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2.3 AI technologies for AE source localization and ASR evaluation 

2.3.1  Artificial neural network (ANN) 

An artificial neural network was utilized for source localization of AE events in 

research topic 2. Artificial neural networks (ANNs) are information processing systems 

that mimic how the human brain processes information [24; 32]. The neural network 

adopted in this section is the back-propagation (BP) network, which consists of an input 

layer, hidden layers, and an output layer. Each layer has many processing elements, 

called neurons, and all neurons are connected to one another. The number of neurons in 

the input layer and the output layer corresponds to the number of variables and outputs. 

Figure 2.1 shows a simple three-layer artificial neural network consisting of layer j, i, and 

k. The number of neurons is 𝑚 for layer j, 𝑛 for layer i and 𝑙 for layer k. 𝑊(𝑖𝑗) and 𝑊(𝑘𝑗) 

are weights between layers. The values of m and 𝑙 are related to the problem for solving, 

and n is determined by the network designer. 

 

Figure 2.1 Three-layer artificial neural network 
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2.3.2 Random forest (RF) 

Random forest was utilized for source localization of AE events in research topic 

2. Random forest is an ensemble learning algorithm, which is a type of bagging algorithm 

[23; 33]. By combining multiple weak learning models (decision trees), the results of the 

weak learning models are voted or averaged to obtain the overall model results. 

The decision tree makes classification decisions based on multiple features. At 

each node of the tree, the leaf node of the next layer is branched through a criterion 

according to the performance of the features. With layer-by-layer branching the sample 

categories included in the leaf nodes will gradually become consistent and the terminal 

leaf node is the classification result of the decision trees. In this paper, the Gini impurity 

of the node is used as the branching criterion when generating the decision tree. The Gini 

impurity of a node refers to the probability that a sample randomly selected from a node 

is misclassified when the sample is classified according to the distribution of the samples 

in the node. Therefore, the purity of the samples is negatively correlated with the Gini 

impurity. 

Assuming that the sample set 𝑁 contains 𝐾 categories, then the Gini impurity of 

node 𝑡 is obtained by Eq. (2.3): 

 𝐺 𝑛 (𝑆) =  − ∑ 𝑃( 𝑡⁄ )𝐾
𝑖=1                                                                                          (2.3) 

where 𝑃( 𝑡⁄ ) is the probability of category   at node 𝑡. When 𝐺 𝑛 (𝑆) = 0, or less 

than a predetermined threshold, it means that the samples belong to the same category. 

Otherwise, the sample is divided into two parts 𝑁  and 𝑁 , according to feature 𝐹, and is 

then allocated to the two sub-nodes. As shown in Eq. (2.4): 

𝐺 𝑛 (𝑁, 𝐹) =
𝑁1

𝑁
𝐺 𝑛 (𝑁 ) +

𝑁2

𝑁
𝐺 𝑛 (𝑁 )                                                                  (2.4) 
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According to this layer-by-layer branching, until the number of samples in the 

node is less than the predetermined threshold, or the Gini impurity of the sample set is 

less than the predetermined threshold, or there are no more features, the system stops 

growing and forms a decision tree to accomplish classification and prediction.    

Bagging is a parallel ensemble learning method [34]. A fixed number of samples 

are collected from the training set with replacements based on the bootstrapping method. 

Thereby, a sample set for each basic learning model is formed. Some samples may be 

repeated because of the replacement sampling, while some samples may not be drawn. 

The final result is voted or averaged from the result of all the basic models. The random 

forest algorithm is a combination of a decision tree and bagging. The decision tree is 

utilized as the basic learning model. Bagging improves the generalization error by 

reducing the variance of the basic learning model. The performance of bagging depends 

on the stability of the basic model. When the basic model is unstable, bagging helps to 

reduce the error caused by the random fluctuation of the training set. If the basic model is 

stable, bagging does not improve the model's performance and may even reduce the 

model’s performance. The decision tree plus the bagging effectively decreases the 

variance of a single decision tree, thereby obtaining a complete random forest.  

The random forest model can calculate and evaluate the importance of features 

through the feature division process while predicting or classifying. The calculation 

requires the help of the Gini impurity when the leaf node is branching; the method is 

shown as Eq. (2.5) and Eq. (2.6). 

 𝐼𝑡(𝐹) =  𝐺 𝑛 (𝑁) − 𝐺 𝑛 (𝑁, 𝐹)                                                                             (2.5) 

𝑆(𝐹) = ∑ 𝐼𝑡(𝐹)𝑡                                                                                                       (2.6) 
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Where, 𝐼𝑡(𝐹) refers to the decrease of the Gini impurity before and after node 𝑡 is 

split into two sub-nodes according to feature 𝐹. The absolute importance of feature  𝑆(𝐹) 

can be defined as the sum of 𝐼𝑡(𝐹) at all nodes split by feature 𝐹. The importance score 

of each feature can be obtained by normalizing the absolute importance of all features.    

2.3.3 Stacked autoencoder (SAE) 

Stacked autoencoders were utilized for source localization of AE events in 

research topic 2. An autoencoder is a three-layer neural network model with an input 

layer, a hidden layer, and an output layer [35]. The network structure is shown in Figure 

2.2. The input and output layers have the same dimensions, while the hidden layer has a 

smaller dimension.  

 

Figure 2.2. Autoencoder 

Assuming the input data is an 𝑛 dimensional vector {𝑥1, 𝑥2, 𝑥3 𝑥𝑛}, the process 

of mapping the input data to the 𝑚 (𝑚 < 𝑛) dimensional vector  {ℎ1, ℎ2, ℎ3 ℎ𝑚} in the 

hidden layer through the nonlinear encoding function 𝐸 is named as the encoder stage. 

The process of mapping the 𝑚 dimension vector in the hidden layer to the 𝑛 dimension 
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vector {𝑥 1, 𝑥 2, 𝑥 3 𝑥 𝑛} in the output layer through the decoding function 𝐷 is referred 

to as the decoder stage. The encoding function 𝐸  and the decoding function 𝐷  are 

presented in Eq. (2.7) and Eq. (2.8).  

ℎ = 𝐸(𝑥) = 𝑆𝜃(𝑤𝑥 + 𝑏)                                                                                                              (2.7) 

𝑥 = 𝐷(ℎ) = 𝑆𝜃′(w ℎ + 𝑏 )                                                                                       (2.8) 

Where, {𝜃,  𝜃′} = {𝑤, w′, 𝑏, 𝑏 } is the mapping parameter set in the autoencoder. 

𝑤 and 𝑤  are the weights of encoding and decoding stages. Both are 𝑚 × 𝑛 dimensional 

matrix. 𝑏 and 𝑏  are the 𝑛 dimensional bias vectors of encoding and decoding stages. 𝑆 is 

the activation function. The activation function for the autoencoder in this paper is a 

sigmoid function (Eq. (2.9)). 

𝑓(𝑥) =
1

1+𝑒−𝑥
                                                                                                                                    (2.9) 

The process of transferring the input vector {𝑥1, 𝑥2, 𝑥3 𝑥𝑛} to the output vector 

{𝑥 1, 𝑥 2, 𝑥 3 𝑥 𝑛} is called reconstruction. The training object of the autoencoder is to 

minimize the error in data reconstruction by constantly adjusting the mapping parameters 

set {𝜃,  𝜃′} = {𝑤, w′, 𝑏, 𝑏 }. A training process of 𝑁 iterations can be expressed By Eq. 

(2.10).  

𝜃,  𝜃′ = argmin
1

𝑁
∑  𝐿(𝑥𝑖 , 𝑥′

𝑖
) = argmin

1

𝑁
∑  ‖𝑥𝑖 − 𝑥 𝑖‖

2𝑁
𝑖=1

𝑁
𝑖=1                               (2.10)                                                                                                            

Where, 𝑥𝑖 and 𝑥 𝑖 refer to the  th element in the input and output vector. 𝐿 is the 

mean squared error between 𝑥𝑖 and 𝑥 𝑖. 

By minimizing reconstruction errors, the vector in the hidden layer preserves the 

information contained in the input vector. In the meantime, the dimension is significantly 

reduced [24]. Therefore, the vector {ℎ1, ℎ2, ℎ3 ℎ𝑚} in the hidden layer can be seen as 

the feature set extracted from the input vector.  
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The classification stacked autoencoder consists of multiple autoencoders and a 

softmax layer. The first autoencoder extracts the feature set of the input data and takes the 

obtained feature set as the input data of the next autoencoder for further feature extraction. 

All the training processes in autoencoders are unsupervised training, no labels are needed 

in this stage. The feature set from the last autoencoder is used as the input of the softmax 

classifier for supervised training. The corresponding classes of input data are required to 

be known by their labels. Assume the inputs contain   classes. The final output of a 

stacked autoencoder is a   dimensional vector, where each element represents the 

probability that the input belongs to this class. The class with the highest probability can 

be considered as the classification result. 

2.3.4 Convolutional neural network (CNN) 

CNN is a class of commonly used deep neural networks that are applied for image 

processing [36]. CNN is composed of three main parts: the input layer, the feature 

extraction layers, and the fully connected (FC) layer. The input layer is used to input the 

test and training data. Feature extraction layers are the core of the convolutional neural 

network, mainly including convolutional layers and pooling layers, which cooperate to 

derive the features from images and learn potential patterns in the data set. The 

architecture of a typical CNN with two convolutional layers and two pooling layers is 

shown in Figure 2.3. 
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Figure 2.3 Architecture of a typical CNN 

The convolutional layers are utilized to extract the features from images [37]. In 

the convolutional layer, multiple convolutional kernels are employed to filter the input 

and generate feature maps [37]. Generally, the output of the jth feature maps of the nth 

convolutional layer can be obtained by Eq. (2.11): 

𝑥𝑗
𝑛 =  𝑓(∑ 𝑥𝑖

𝑛−1𝑀
𝑖=1 ∗  𝑖𝑗

𝑛 + 𝑏𝑗
𝑛)               (2.11) 

where 𝑓(·)  refers to the activation function,  ∗  refers to the operation of 

convolutional kernels,  𝑖𝑗
𝑛  is the kernel of the nth filter, 𝑏𝑗

𝑛  is the corresponding bias 

matrix, 𝑥𝑖
𝑛−1 refers to the input feature map transferred from the (n-1)th convolutional 

layer. 

The pooling layer is used to down-sampling feature maps obtained from the previous 

convolutional layer [38]. If the image feature maps are directly utilized for the 

classification without any processing, a great computational complexity will be generated, 

and the model will be prone to overfitting. Therefore, a further reduction in the 

dimensionality of feature maps is required, which is the reason for the pooling layer after 

each convolutional layer. The input feature image is divided into mutually exclusive 

regions, and the feature information of adjacent image regions is aggregated for analysis. 

Convolutional 

layer 1
Convolutional

layer 2

Pooling

layer 1

Pooling 

layer 2

Input image

Feature maps
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This type of down-sampling method is called pooling [39]. Pooling can be divided into 

maximum pooling and mean pooling according to different operation modes. The general 

expression of the pooling layer is provided by Eq. (2.12): 

𝑥𝑗
𝑛 =  𝑓(𝛽𝑗

𝑛𝑠𝑑𝑜𝑤𝑛(𝑥𝑗
𝑛−1) + 𝑏𝑗

𝑛)                  (2.12) 

where 𝑓(·) refers to the activation function,  𝛽𝑗
𝑛  and 𝑏𝑗

𝑛  refers to the multiplicative 

bias and the additive bias, Sdown refers to the down-sampling function, 𝑥𝑗
𝑛−1 refers to the 

input feature maps,  𝑥𝑗
𝑛 refers to the output feature map after down-sampling. 

2.4 Finite element modeling (FEM) 

Physical problems are usually described by partial differential equations (PDE). For 

most of the problems in realistic scenarios, it may be challenging to find analytic 

solutions to these partial differential equations. However, approximate equations can be 

constructed according to different methods of discretization, and numerical model 

equations can be obtained, which are similar to these partial differential equations [40]. 

These model equations can be solved numerically. Thus, the solutions of these numerical 

model equations are approximate solutions of the natural solutions of the corresponding 

partial differential equations. The finite element method (FEM) is used to calculate these 

approximate solutions [40]. 

The numerical AE waveform can be obtained by solving the dynamic equation of 

motion through FEM [27]. The dynamic equation of motion is shown in Eq. (2.13): 

[𝑀]{𝑉̈} + [𝐶]{𝑉̇} + [𝐾]{𝑉} = {𝑃(𝑡)}                                                                       (2.13) 

Where, [𝑀]  is the mass matrix, [𝐶]  is the damping matrix, [𝐾]  is the stiffness 

matrix, {𝑉} is the displacement victor, {𝑉̇} is the velocity victor, {𝑉̈} is the acceleration 

victor, {𝑃(𝑡)} is the applied load vector. 
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2.5 Transfer learning and unsupervised domain adaptation 

The basic principles of transfer learning (TL) and unsupervised domain adaptation 

are introduced in this section. Generally, a sufficient number of training data and the 

corresponding labels are required by a supervised learning model such as artificial neural 

network, and decision tree. However, in some cases, enough training data with labels are 

difficult to obtain. TL is a strategy to solve this problem. Assuming there are two datasets. 

The first dataset {𝑋𝑠, 𝑌𝑠} =  {(𝑥𝑠1, 𝑥𝑠2,  , 𝑥𝑠𝑚), (𝑦𝑠1, 𝑦𝑠2,  , 𝑦𝑠𝑚)} . 

Where(ys1, ys2,  , ysm) is the label of (𝑥𝑠1, 𝑥𝑠2,  , 𝑥𝑠𝑚), and it is known.  The second 

dataset {𝑋𝑡, 𝑌𝑡} = {(𝑥𝑡1, 𝑥𝑡2,  , 𝑥𝑡𝑛), (𝑦𝑡1, 𝑦𝑡2,  , 𝑦𝑡𝑛)} , while the labels 

(𝑦𝑡1, 𝑦𝑡2,  , 𝑦𝑡𝑛)are unknown for this dataset. The concept of transfer learning is to 

execute the classification of {𝑋𝑡, 𝑌𝑡} based on the acquired knowledge from the model 

with training on {𝑋𝑠, 𝑌𝑠} . The dataset {𝑋𝑠, 𝑌𝑠}  is named source domain (𝐷𝑆 ) and the 

dataset {𝑋𝑡, 𝑌𝑡} to be classified is called target domain (𝐷𝑇). One of the issues of TL is, 

the performance of TL based on 𝐷𝑆 and 𝐷𝑇 is not good when the difference between the 

source domain and the target domain is significant. Unsupervised domain adaptation is a 

technique for learning the domain invariant features from the annotated source domain 

and the unannotated target domain and reducing the distribution difference [41]. 

2.5.1 Manifold embedded distribution alignment (MEDA) 

As mentioned above, 𝐷𝑆: {𝑋𝑠, 𝑌𝑠}, and 𝐷𝑇: {𝑋𝑡, 𝑌𝑡} has different data destruction 

which means they have different marginal probabilities (𝑃𝑠(𝑥𝑠) ≠ 𝑃𝑡(𝑥𝑡)). and different 

conditional probability ( 𝑄𝑠(𝑥𝑠|𝑦𝑠) ≠ 𝑄𝑡(𝑥𝑡|𝑦𝑡) ). Manifold embedded distribution 

alignment (MEDA) is an unsupervised domain adaptation algorithm to reduce the 

distribution difference by utilizing manifold feature learning and dynamic distribution 
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alignment [42]. Manifold feature learning is utilized to reduce the data drift between the 

source domain and target domain. Dynamic distribution alignment is employed to 

alignment the marginal and conditional distribution. The MEDA aims to articulate a 

cross-domain classifier 𝑓 to predict the unknown 𝑌𝑡 . 

2.5.2 Manifold feature learning 

Manifold feature learning is an unsupervised domain adaptation method [43]. 

Manifold refers to the space with local Euclidean spatial properties, including curves and 

surfaces of various dimensions. One characteristic of manifold space is that features in 

the manifold space usually have good geometric structures. The manifold learning 

leverage this characterize to avoid feature distortions by mapping high-dimensional data 

into a low-dimensional manifold space. In MEDA, the geodesic flow kernel (GFK) is 

employed to conduct the manifold feature transformation. More details about GFK can be 

found in [44]. The process of manifold feature learning in MEDA is presented in Figure 

2.4. 

 

Figure 2.4 Procedures of MEDA 

Manifold feature learning

Dynamic 

distribution 

alignment

Domain 

classifier

Manifold space

Manifold space

Source domain Source domain Source domain

Target domain Target domain Target domain



31 

2.5.3 Dynamic distribution alignment 

The importance of marginal distributions (P) and conditional distributions (Q) of 

the source domain and target domain tend to vary with the similarity of the two domains. 

For instance, marginal distribution is more significant when there are large differences 

between the source domain and target domain, while conditional distribution is more 

dominant when the two domains have high similarities. Therefore, the importance of P 

and Q needs to be quantitatively measured rather than simply counting them with the 

same weights. To accomplish this goal, the dynamic distribution alignment process is 

proposed in MEDA to dynamically evaluate the importance of these two distributions. 

The process of dynamic distribution alignment could be presented by Eq. (2.14): 

𝐷𝑓(𝐷𝑆, 𝐷𝑡) = ( − 𝜔)𝐷𝑓(𝑃𝑠, 𝑃𝑡) + 𝜔∑ 𝐷𝑓
(𝑡)(𝑄𝑠, 𝑄𝑡)

𝑇
𝑡=1                                                (2.14) 

Where, 𝑡 ∈ { , , ,  , 𝑇}  represents the classes of data, 𝐷𝑓(𝐷𝑆, 𝐷𝑡)  is the 

distribution after alignment. 𝐷𝑓(𝑃𝑠, 𝑃𝑡)  refers to the marginal distribution alignment. 

𝐷𝑓
(𝑡)(𝑄𝑠, 𝑄𝑡) is the conditional distribution alignment for class 𝑡. 

After the manifold feature learning and dynamic distribution alignment are 

completed. A domain classifier can be derived by Eq. (2.15). The procedure of dynamic 

distribution alignment and classification is illustrated in Figure 6.1. 

𝑓 = argmin∑ (𝑦𝑖 − 𝑓(𝑍𝑖))
2𝑡

𝑖=1 + 𝛼 ‖𝑓‖𝐾
2 + 𝛽 𝐷𝑓(𝐷𝑆, 𝐷𝑡) + 𝛾𝑅𝑓(𝐷𝑆, 𝐷𝑡)                (2.15) 

Where, 𝑅𝑓  (·) is a Laplacian regularization to utilize the similar geometric 

properties of the nearest point in the manifold. α, β and 𝛾  are the regularization 

parameters.  
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Chapter 3                                                                                            

Structural Health Monitor of Stainless-Steel Structures for Spent 

Nuclear Fuel Storage Using Acoustic Emission1 

  

 
1 Li Ai, Vafa Soltangharaei, Bruce Greer, and Paul Ziehl. Structural Health Monitor of 

Stainless-Steel Structures for Spent Nuclear Fuel Storage Using Acoustic Emission. To 

be submitted to a journal 



39 

3.1 Abstract 

Nuclear power generation has been widely applied in the United States. The dry 

cask storage system (DCSS) canister has been utilized for the storage of highly 

radioactive spent fuel for decades. The structural health monitoring of the DCSS 

stainless-steel canister is urged to evaluate the structural integrity. Acoustic emission (AE) 

is a nondestructive structural monitoring technique that can offer real-time and long-term 

degradation detection. This paper investigated the application of long-distance AE 

monitoring of stress corrosion cracking (SCC) on the DCSS canister. The innovation of 

the paper lies in the testing on a full-scale 304H stainless-steel plate specimen which was 

made of similar length and thickness to a realistic SCSS canister. The condition to induce 

SCC was provided by applying tensile stress at the notch on the plate surface which was 

exposed to the Potassium Tetrathionate solution. The waveforms and the frequency 

content of the AE signals acquired in the test were studied. Furthermore, a finite element 

(FE) model was developed to generate numerical AE signals for the purpose of the AE 

sensor selection for the field application. The AE signals obtained from the test and the 

FE model were compared and discussed. 

Keywords: Acoustic emission; dry cast storage system; finite element modelling; 

stainless-steel; stress corrosion cracking 

3.2 Introduction 

Nuclear power generation is currently one of the major sources of electrical 

energy in the United States and has been extensively used for decades [1]. The 

advantages of nuclear power generation are its characteristics of clean and sustainability, 

in contrast to fossil power generation, nuclear power plants use nuclear fission reactions 
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to release energy to generate electricity. The generation process does not produce harmful 

gases such as Sulphur dioxide and does not pollute the air [2]. It also helps to reduce the 

greenhouse effect and improve the climate by not producing Carbon dioxide [3; 4]. 

Meanwhile, Nuclear power generation consumes very little nuclear fuel. However, there 

are some disadvantages. One of the most harmful is that it produces highly radioactive 

spent fuel, which must be handled with high-level safety standards [5]. In the United 

States, spent fuel is currently stored in cooling ponds and dry cast storage systems 

(DCSS). Most DCSS has been in use for over four decades since the 1970s and are about 

to exceed the operation time that was originally licensed [1]. The new program for the 

storage of the spent fuel is using the new functional repository. While with the continued 

delays in the opening of the functional repository. The DCSS currently under operation 

needs to be inspected to extend the licensed operating time. Stress corrosion cracking 

(SCC) is one of the main mechanisms of damage to DCSS [6]. The main part of the 

DCSS is a stainless-steel canister, the top of which is sealed by welding. The whole 

canister is covered by the concrete overpack to prevent radiation leakage to the outside. 

The DCSS canister is particularly susceptible to SCC due to the residual stresses in the 

top welding zone and the high humidity and salinity condition of the coastal area where 

the DCSS is located [6; 7]. Therefore, the nondestructive inspection of the SCC on the 

DCSS canister is needed. 

Acoustic emission (AE) is a nondestructive structural health monitoring technique. 

This method is sensitive and has continuous monitoring capabilities [8-13]. It has been 

widely used for the detection and evaluation of defects in steel structures [14-17]. Yu et 

al. [14] investigated the prediction of fatigue crack in steel bridge components using AE. 
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Several AE signal characteristics were studied to build a correlation with the crack 

behavior. The results indicated that AE absolute energy rate might be a suitable index for 

the prediction of fatigue life of steel components in the bridge. Hossain et al. [15] utilized 

AE to study the fatigue damage mechanisms of ASTM A572 grade 50 steel. AE signals 

were collected during the test and compared with the results provided by digital imaging 

correlation (DIC) and scanning electronic microscopy (SEM). The authors presented the 

conclusion that the AE events do not generate in the early stage of fatigue crack growth. 

Droubi et al. [16] used AE to detect the welding defect in welded joints structures. A 

Hsu-Nielsen pencil lead break test was conducted to simulate the welding defect on one 

side of the testing specimen, while the AE sensor was attached on the other side to collect 

AE signals. The results indicated that AE features such as energy, peak amplitude, and 

RMS value can be employed to identify the defect in carbon steel welds. Cao et al. [17] 

studied the damage of Q235A steel during axial tension using AE. The results showed 

that the cumulative ringing counts of AE can be utilized to represent the damage factor of 

Q235A steel during the tensile process. 

AE also has been employed for the investigation of SCC on steel structures [18-

21]. Dongsheng Li et al. [18] used AE to monitor the SCC of the steel wires that are used 

in bridge cables. The authors developed a particle swarm optimization cluster method to 

classify AE signals to different clusters and built their relationship with SCC mechanisms. 

The results pointed out that the AE sources of SCC in bridge cables can be classified into 

four types: passive film breakdown, detachment of the corrosion product, crack initiation, 

and crack extension. Dongsheng Li et al. [19] investigated the SCC in prestressed strands 

using AE. The ant colony optimization algorithm was utilized to do the unsupervised 
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pattern recognition of AE signals. Four clusters of AE signals can be identified and can 

be related to four failure stages of SCC. The clustering was employed as the labels of a 

self-organizing feature mapping neural network. The results indicated that the AE 

characteristic parameter distribution of different SCC failure stages can be realized. 

Zhang et al. [20] study the AE monitoring of 304 stainless steel in high-temperature 

water. A random forest model was used to separate the AE signals of different SCC 

modes. They extracted several AE features as the input of random forest and observed 

that the rise time is the most effective feature to distinguish the AE signals. Recently, 

applications of AE have been investigated to detect SCC on DCSS canisters. 

Soltangharaei et al. [21] investigated the AE monitoring of SCC on a small-scale 304 

stainless steel plate instead of testing on the real-scale DCSS canister. The b-value and 

linear regression methods were employed for damage identification using AE data. The 

authors indicated the global b-values and the R2-values calculated by conducting linear 

regression can identify the difference of SCC damage in the steel plate. 

The results from the previous research indicated that AE monitoring has a good 

capability to detect and identify SCC events. However, most of these avenues of research 

were conducted on small-scale specimens and did not study the problems related to the 

AE monitoring of SCC on a full-scale specimen of DCSS canister. In this paper, the 

research was conducted based on the previous research of the authors [21]. A full-scale 

stainless-steel specimen of DCSS canister was fabricated and tested for the feasibility of 

applying AE monitoring of SCC when the source of SCC and the AE sensor has a long 

distance. Furthermore, a finite element (FE) model was developed to obtain the numerical 

AE signals for the AE sensor selection in the field application. 
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3.3 Materials and experimental setup 

A corrosion experiment was conducted on a full-scale stainless-steel plate 

specimen to simulate a realistic experimental environmental condition for the SCC on a 

DCSS canister. The specimen is made of 304H stainless steel. According to the previous 

research [21], a heat treatment was necessary for the initiation and propagation of SCC 

on the steel specimen. Therefore, in this study, the full-scale steel specimen was vacuum 

heat-treated in a large vacuum oven. The vacuum heat treat recipe consisted of solution 

annealing at 1,100°C followed by sensitizing heat treatment at 700°C for two hours 

followed by 500°C at 24 hours. Samples of the material were cut from the specimen and 

ASTM A262, Practice A, was performed. The results could be an indicator to observe if 

the heat treatment was successful in sensitization of the material. Micrographs of the 

results are presented in Figure 3.1. The ditching around the grain indicated the 

sensitization was successful. These carbides were formed in the grain boundaries by the 

bonding of carbon and chromium in the specimen. The ditching around the grain reduced 

the concentration of chromium and makes the steel specimen more susceptible to 

intergranular SCC [21]. 

 
 

Figure 3.1 Micrographs of material after ASTM 262 Practice A testing at 200 x (left) and 

500 x (right) 
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The primary objective of the experiments was to examine the capability of 

acoustic emission monitoring on a full-scale DCSS canister when there is a long distance 

between the AE sensors and the AE sources. The test specimen was made of similar 

length and thickness to what is typical of DCSS canister shells and of the greatest width 

that could be managed. This resulted in a specimen size of 198 x 60 x 0.63 in (5029 x 

1524 x 16 mm). A 3D model of the specimen is shown in Figure 3.2. Four stress 

concentrating starter notch was produced on the top surface of the plate. Four sets of two 

perpendicular welded lugs were fabricated on the bottom side of the plate in the locations 

of notches. Each lug has a hole located 3 in. (76 mm) from the bottom face of the plate. 

These holes allow for a 0.75 in. (19 mm) diameter bolt and nut to be inserted through the 

tabs. Once tightened, the welded tabs are forced toward one another to create the loading 

on the plate. This action creates bending within the plate, providing the tension that can 

cause the SCC around the notch’s area.  

 

Figure 3.2 Three-dimensional model of the full-scale specimen 
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In order to achieve realistic stress waves created from the crack extension events, 

it was desired to apply appropriate stress that less than 90% of the yielding stress [1]. 

This approach would set a target strain of 0.001500 on the outer surface of the top of the 

specimen. However, the experiment difficulties with crack initiation were encountered. 

This situation might be caused by the weld residual stress. The weld zone and heat-

affected zone (HAZ) would have the highest levels of tensile weld residual stress [22; 23]. 

The tension stresses that higher than the yielding stress are needed to counteract the weld 

residual stress. Therefore, the target strain on the outer surface was increased to 0.002500. 

This resulted in stress levels exceeding yield on the outer surface but still be within the 

weld residual stress levels from related research [22; 23]. In this paper, the tension was 

applied to notch 1 and notch 3 since the SCC of the DCSS canister usually occurred on 

the edge. Micro-measurement strain gauges were attached to the plate.  

Two bolted extension plates were attached to the specimen to simulate the circumstance 

that the canister is placed on the bottom support. By using the weight of a typically 

loaded canister of 70,000 pounds and a diameter of 67 inches, and assuming that the 

contact loading of the base is uniform, the pressure on the bottom surface of a vertical 

canister is calculated to be 20 psi. For the size of the contact face of the attachment plates, 

the necessary force for one connection bolt is 37.5 lbs. 

The torque applied to the bolt to achieve the stress is calculated using the following 

equation: 

𝑇 = 𝐾 ∗ 𝐷 ∗ 𝐹                                                                                                                  (3.1) 

where, 𝑘 represents the bolt torque friction factor, 𝐷 refers to the diameter of the 

threaded bolt section, 𝐹 refers to the desired force to apply. 
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The required torques for all the bolts are shown in Table 2.1. A 1/2" Drive Beam 

Torque Wrench (0-150 lb.-ft./0-204 N-m) was applied. To accomplish the target stress in 

the plate. Micro-measurement strain gauges were attached to ensure the correct loading. 

The information collected from the gauges was recorded by a P3 Strain Indicator and 

Recorder (Figure 3.3a).   

Table 2.1 Plate loading and bolt torque 

Locations Load Bolt Torque Bolt Torque 

Notch 1 7560 lb. 1020.6 lb.-in. 85.05 lb.-ft. 

Notch 3 7350 lb. 992.3 lb.-in.  82.69 lb.-ft. 

Connection 37.5 lb. 5.06 lb.-in. 0.42 lb.-ft. 

 

A corrosive environment on the surface of the plate is necessary for crack 

initiation. A Potassium tetrathionate (K2S4O6) solution was used to induce SCC at the 

notch. The solution (1% W @ pH 3) was stored in a tube container (Figure 3.3b), which 

was attached with silicone on the surface of the plate around notch 1 and notch 3.  

  

Figure 3.3 Micro Measurements P3 strain indicator and recorded 

The layout of AE sensors is shown in Figure 3.4. The resonate sensor has a higher 

selectivity than the broadband sensor when there is a long distance from the source. 

Therefore, resonant sensors (type R3I-AST) with a frequency response range of 10-40 
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kHz were attached to the locations further away from the crack event location. Broadband 

sensors (WDI-AST) with a frequency response range of 100-900 kHz were attached 

around the crack event location to obtain data for analysis in the frequency domain. The 

coordinates of the sensors are provided in Table 2.2. 

 

Figure 3.4 sensors layout 

Table 2.2 Sensor coordinates 

Sensors Detecting Notch 1 (x, y) Detecting Notch 3 (x, y) 

Sensors 1 (9.75 in., 34.00 in.) (173.00 in., 34.00 in.) 

Sensors 2 (16.75 in., 33.00 in.) (180.00 in., 33.00 in.) 

Sensors 3 (10.75 in., 27.00 in.) (174.00 in., 27.00 in.) 

Sensors 4 (17.75 in., 26.00 in.) (181.00 in., 26.00 in.) 

Sensors 5 (-3.00 in., 50.00 in.) (-3.00 in., 50.00 in.) 

Sensors 6 (-3.00 in., 10.00 in.) (-3.00 in., 10.00 in.) 

Sensors 7 (2.00 in., 50.00 in.) (2.00 in., 50.00 in.) 

Sensors 8 (2.00 in., 10.00 in.) (2.00 in., 10.00 in.) 

Sensors 9 (194.00 in., 50.00 in.) (194.00 in., 50.00 in.) 

Sensors 10 (192.00 in., 50.00 in.) (192.00 in., 50.00 in.) 

Sensors 11 (56.00 in., 30.00 in.) (56.00 in., 30.00 in.) 

(a) Sensor layout-location1

(b) Sensor layout-location2
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Data collected from the sensors were obtained using a 16-channel PCI DISP 

system (manufactured by MISTRAS Group, Inc. of Princeton Junction, New Jersey). The 

pre-trigger time, a setting in the software which recovers acoustic waveforms prior to 

crossing the threshold was set to 256 μs. The sampling rate was set to 1MHz (1,000,000 

samples per second). The time from threshold crossing to peak amplitude, peak definition 

time, was set to 200 μs. The hit definition time, which determines when to stop recording 

a hit and is typical twice the peak definition time, was set to 400 μs. The hit lockout time, 

which minimizes recording of late-arriving signals and reflected hits, was set to 200 μs 

[24]. The calibration of the sensitivity of all the sensors and channels was conducted by 

applying Hsu-Nielsen sources before starting the test [25]. 

3.4 Results and analyzing 

3.4.1 Visual inspection 

The steel specimen was visually inspected after several days. Visible cracks 

occurred on the plate. The microscopic photos of the corroded area around notches 1 and 

3 are provided in Figure 3.5. The cracks around notch 1 were scattered over a large area 

while around notch 3, two cracks appeared at both sides of the notch. 
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(a) Notch 1 

 

(b) Notch 3 

Figure 3.5 Microscopic pictures of the notch 

3.4.2 AE data analysis 

The suspicious and non-genuine signals were mixed in the AE data during the 

recording. Therefore, the filtering of the AE data is necessary before analysis can be 

performed. The AE event that was captured by at least four AE sensors within a specific 

wave travel time were kept while the AE event that was captured by three or fewer AE 

sensors were deleted. After the above filtering is completed, the waveforms of the rest 

data were further visually inspected and any non-genuine data that may remain was 

deleted. 
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The filtered AE data captured by the WDI sensors for notch 1 and its cumulative 

signal strength (CSS) are shown in Figure 3.6a. The jumps in the CSS curve are 

representative of a new crack initiation event or a crack extension along an existing crack 

[26]. The initial jump in CSS can be observed around day three, another three major 

jumps in CSS occur later in the plot. The first major event near day four, a second event 

around day seven, and a third event occurred around day eight. The filtered AE data 

captured by the R3I sensors for notch 1 and the corresponding CSS curve are shown in 

Figure 3.6b. The entire filtered data from all sensor types due to crack extension at notch 

1 is shown in Figure 3.6c. The two major jumps of CSS can be observed to occur around 

days three and four. This indicates that the initiation and propagation of SCC might occur 

around days three and four.   
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(a) WDI sensors 

 

(b) R3I sensors 

 

(c) All sensors 

Figure 3.6 Filtered AE data showing hit amplitude versus time and cumulative signal 

strength for notch 1 

 

The filtered WDI sensor data for notch 3 and the CSS curve are shown in Figure 

3.7a. The first major jump in CSS occurs around day one. The other three major jumps 

occur around days two, five, and eight. The filtered R3I sensor data for notch 3 and 

associated CSS curves are shown in Figure 3.7b. The collective processed data from all 

sensors for crack extension from notch 3 is shown in Figure 3.7c. The major jumps of 

CSS happened around days one and five which might be the sign of the initiation and 

propagation of SCC.  
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(a) WDI sensors 

 

(b) R3I sensors 

 

(c) All sensors 

Figure 3.7 Filtered AE data showing hit amplitude versus time and cumulative signal 

strength for notch 3 

 

3.4.3 AE source localization and AE waveforms 

A modified time of arrival (TOA) algorithm was utilized to conduct the AE 

source localization. Akaike Information Criterion (AIC) was employed for a better 

estimation of motion initiations [27]. More details about the algorithm can be found in 

the previous research of the authors [21]. The AE data captured by sensors 1-4 were 

utilized for the source localization. The Crack extension events were located, the location 

of these events (shown as red dots) and their respective time of occurrence during testing 

is shown in Figure 3.8a for notch 1, and Figure 3.8b for notch 3.   
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(a) Notch 1 

 

(b) Notch 3 

Figure 3.8 Source localization results 

The waveforms for all acquired data are recorded through the data acquisition 

system which can be viewed or extracted for further evaluation. Fast Fourier Transform 

(FFT) was performed to analyze data in the frequency domain. The waveforms and the 

FFT magnitude for event 2 in around notch 3 for all the WDI sensors (sensor 1-4), and 

R3I sensors that far away from notch 3 (sensor 5-8) are shown in Figure 3.9, and Figure 

3.10. The waveforms of sensors 5-8 indicated that the resonant sensors have the 

capability to detect the AE signals from such a long distance, which means the resonate 

attached on the bottom edge that far away from the top are able to capture the events. A 

frequency range of the cracking events captured close to the notch (sensor 1-4.) showed 

that genuine hits fell within a range of 100-300 kHz, three distinct major peaks of FFT 

magnitude are observed around 145 kHz, 200 kHz, and 270 kHz for the signals of WDI 

sensors. whereas cracking events captured away from the crack extension events (sensor 

5-8) showed that genuine hits fell within a range of 30-100 kHz Two distinct major peaks 
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are observed around 30 kHz, and 80 kHz for the signals of R3I sensors. the peaks in 

response are affected by the sensitivity of the sensors selected. This information is 

valuable for the selection of resonant AE sensors for field applications. A FE model was 

developed and discussed in Section.4. The model is aimed to generate numerical AE 

signals. The frequency spectrum of the numerical signals can guide sensor selection.  
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Figure 3.9 Event 2 related to Notch 3 captured by WDI sensor: (left) time domain 

waveform; (right) FFT spectrum   
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Figure 3.10 Event 2 related to Notch 3 captured by R3I sensor: (left) time domain 

waveform; (right) FFT spectrum 
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the frequency content when the waves travel across the connection. As introduced in 

Section 2, two bolted small plates were fabricated to simulate the support structures on 

the bottom. Sensors 7 and 8 were attached near the edge of the large plate. Sensors 5 and 

6 were attached to the bolted small plates next to sensors 7 and 8. It can be observed in 

Figure 3.10, for the AE crack event around notch 3. the amplitude decreased from 0.02 V 

to 0.018 V when the wave crossed through the bolted gap from sensor 7 to sensor 5. The 

amplitude decreased from 0.02 V to 0.019 V when the wave crossed through the bolted 

gap from sensor 8 to sensor 6. Two peaks in the FFT can still be observed in 30 kHz, and 

75 kHz. While the magnitude of the peak at 75 kHz decreased, which means the high-

frequency content of the signal receive more influence than the low-frequency content 

when the wave travels across the gap. For the AE crack event on notch 1, the maximum 

amplitude decreased from 0.042 V to 0.035 V when the wave crossed through the bolted 

gap from sensor 7 to sensor 5. The maximum amplitude decreased from 0.037 V to 0.031 

V when the wave crossed through the bolted gap from sensor 8 to sensor 6 The 

waveforms of Sensor 5 through 8 for location 1 are shown in Figure 3.11.  
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Figure 3.11 Waveforms of signals - Notch 1: (a) Sensor 8; (b) Sensor 6; (c) Sensor 7; (d) 

Sensor 5 

 

The reduction in amplitude was 16.7% for notch 1 and 10% for notch 3. The 

decrease in amplitude is acceptable, and the AE acquisition system was able to capture 

the crack events from notch 3 with sensors 5 and 6 which are attached to the bolted plates 

and have a long distance from the source. The favorable attenuation characteristics of the 

signals are primarily attributable to the geometry of the large-scale specimen and this 

favorable geometry is shared with the field deployed DSS canister.  

3.5 FE modeling 

3.5.1 Model description 

An FE model was developed to obtain the numerical AE signals on the steel plate. 

The frequency content of the numerical signals can provide guidance for AE sensor 
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experimental steel specimens. The model was developed on the commercial FE platform 

ABAQUS, the solver is Explicit. By controlling the size of the mesh, the high-frequency 

dynamic response can be obtained [28-32]. The appropriate mesh size can be calculated 

by the following equations [33]: 

𝑣 = √
𝐸

𝜌
× (

1−𝜇

(1−2𝜇)(1+𝜇)
)                                                                                                   (3.2) 

𝜆 = 2𝑣 ∗ 𝑑𝑡                                                                                                                     (3.3)   

𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒 =
𝜆

20
                                                                                                               (3.4) 

Where, 𝑣  refers to the theoretical elastic propagation speed of the P-wave, 𝐸 

refers to the young’s modulus of the steel specimen, 𝜌 is referring to the density, 𝜇 is the 

Poisson’s ratio. 𝜆 represents the length of the wave, 𝑑𝑡 is the time period of the input 

source. 

Given the property of the steel specimen and the input function that applied in this 

model, the model was meshed using an element size of 0.002 m, with 8-noded linear 

brick elements with reduced integration (C3D8R). The output time interval was set to 

1 × 10−6 seconds to match the sampling rate of the AE acquisition system.  A Gaussian 

distribution function was utilized as the input source to simulate the SCC on the steel 

plate. The source was input at the point of event 2 (shown as ‘event 2’ in Figure 3.12). 

Observation areas (labeled as ‘S1 - S11’ in Figure 3.12) were included to capture the 

modeling results, which are functions of surface displacement versus time. 
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Figure 3.12 Finite element model representation for steel specimen 

3.5.2 Source function 

The crack source applied in this study is a Gaussian distribution function [34; 35] 

as shown in Figure 3.13.  

 

Figure 3.13 Input source function 

Eq. (5) shows the source function, where parameter 𝑎 adjusts the period of the 

Gaussian distribution function, which influences the frequency content of modeling 

output. Parameter C adjusts the peak value of the Gaussian distribution function, which 

influences the amplitude of the modeling output.  
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                                                                                                  (3.5) 
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Where, 𝐶 was set to 1.25 to adjust the function peak to unity. The value of 𝑎 was 

determined based on several trials to calibrate the model in terms of frequency. Based on 

comparisons with experimental data, the value of 𝑎 was set to 0.5. This value resulted in 

waveforms with a prominent frequency range of 100 to 300 kHz, which is similar to the 

frequency range of the experimental data.  

3.5.3 Output setting 

The output of the modeling is the out-of-plan nodal displacement versus time. In 

reality, the bottom surface of an AE sensor will be excited by the wave and convert the 

response to electric signals. However, in FE modeling, a node has an infinity small 

geometry that cannot represent the whole bottom surface of the sensor. Therefore, a 

combination of multiple nodes would be a strategy to mimic the AE bottom surface. In 

this paper, the single line output was employed [36]. Only the out-of-plane displacements 

of nodes in a single straight line away from the input source are recorded. A weight is 

assigned to each node to account for the fact that the sensor has a circular bottom area. 

Assume the single line output is a combination of 𝑛  nodes. The combination can be 

calculated based on the following equations:   

𝑤𝑖 =
𝑑𝑦∙𝑑𝑥𝑖

∑ 𝑑𝑦∙𝑑𝑥𝑖
𝑛
𝑖=1

=
𝑑𝑦∙√(

𝐷

2
)

2
−𝐶𝑦𝑖

2

∑ 𝑑𝑦∙√(
𝐷

2
)

2
−𝐶𝑦𝑖

2𝑛
𝑖=1

                                                                                (3.6) 

𝑈𝑠𝑒𝑛𝑠𝑜𝑟 = ∑ 𝑤𝑖 ∙ 𝑈𝑖
𝑛
𝑖=1                                                                                                      (3.7) 

Where, 𝑤𝑖 is referring to the weight that assigns to the 𝑖 𝑡ℎ node from the left side 

in the x-direction. 𝑑𝑦 refers to the distance between two nodes. 𝐷 is the diameter of the 

AE bottom area, 𝐶𝑦𝑖 refers to the distance from the 𝑖 𝑡ℎ node to the center of the circle. 

𝑈𝑠𝑒𝑛𝑠𝑜𝑟 is the single line output of the sensor, 𝑈𝑖  is nodal out of plane displacement of the 𝑖 𝑡ℎ 
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node. All the parameters in Eq are shown in the schematic top view of the sensor (Figure 

3.14a).  

The single line outputs of sensor 1 (WDI sensor) and sensor 7 (R3I sensor) when 

detecting notch 3 are selected and shown in this paper. Figure 3.14b shows the geometric 

dimensions of two sensor types and their nodal output definitions in the FE model. The 

diameter of the bottom surface of both WDI and R3I sensors is 1.125 in (28.6 mm) [37; 

38]. The 9 nodes (shown as the red dot) in the straight line away from the source are set 

up to record the out-of-plane displacement.  

 

(a) Single line output 

 

(b) Geometric dimension of AE sensors and 

the nodal output definition in FE model 

Figure 3.14 Output setting 

3.5.4 The simulation of AE sensor response 

The AE sensors convert the excitation on the bottom piezoelectric materials to 

electric signals. The signals captured by different types of AE sensors are varying due to 

the sensors’ piezoelectric properties. The stable sensitive frequency range of the WDI 

sensor is from 100 to 900 kHz. The R3I sensor has a stable sensitive frequency range 
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around 20-60 kHz. To simulate the frequency response of AE sensors, the bandpass 

Butterworth filters with the frequency of 100-500 kHz, and 20-100 were developed in 

MATLAB and used to be consistent with the sensitivity of the WDI, and R3I sensors in 

terms of frequency. The frequency response curves of WDI and R3I sensors are provided 

as the red curve in Figure 3.15. The final results of the modeling can be obtained by 

applying the bandpass filter to the single line output which is introduced in Section 4.3 

Output setting.  

 

(a) WDI sensor 

 

(b) R3I sensor 

Figure 3.15 Frequency response of sensors [37; 38] 

3.5.5 Results of FE model 

The results of the FE modeling are shown in Figure 3.16. This Figure represents 

expected wave propagation, in terms of nodal displacement, from the point where the 

input source was applied. Figure 3.16a shows the wave initiated from the input source at 

2× 10−6 seconds. Figure 3.16b shows that the wave is propagating to the other side of 

the plate at 8× 10−6 seconds. It can be observed that the displacement near the location 

of the input source is much larger than the others. This is due to the low-frequency 

vibration of the steel plate. The low-frequency vibration noise can be removed by 

applying the bandpass filter. 
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Figure 3.16 Wave propagation results 

The numerical signals captured by sensors 1, and 7 were employed to compare 

with the experimental AE signals. The raw nodal out of plane displacement of the 9 

selected nodes (Figure 3.14b) for sensors 1, and 7 are presented in Figure 3.17. Sensor 1 

receives a lot of vibration noise. While sensor 7 which is far from the input source was 

not affected too much by the vibration. The single line combination of the displacement 

output of the 9 nodes was conducted based on Eq. (5), and (6). 

 

(a) Sensor 1  

 

(b) Sensor 7  

Figure 3.17 Nodal displacement of all the 9 nodes 

-3E-11

-2.5E-11

-2E-11

-1.5E-11

-1E-11

-5E-12

0

5E-12

0 0.0005 0.001 0.0015

D
is

p
la

ce
m

en
t 

(m
)

Time (s)

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

-9E-13

-7E-13

-5E-13

-3E-13

-1E-13

1E-13

3E-13

5E-13

7E-13

9E-13

0 0.001 0.002 0.003 0.004

D
is

p
la

ce
m

en
t 

(m
)

Time (s)

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8



65 

The bandpass Butterworth filters were implemented to the single line combination 

output. Amplitudes of the waveforms after filtering are normalized to the peak amplitude. 

FFT analysis was conducted, and the experimental signals and FFT versus numerical 

signals and FFT are presented in Figure 3.18. For results of sensor 1 (Figure 3.18a-18d), 

It can be observed in Figure 3.18b that most of the low-frequency vibration noise in the 

numerical signals of sensor 1 was removed after filtering. By observing Figure 3.18c, it 

can be noticed that the primary frequency of experimental signals of sensor 1 is in the 

range of 100-300 kHz, three distinct peaks are observed around 145 kHz, 200 kHz, and 

270 kHz. In the numerical FFT magnitude (Figure 3.18d), the primary frequency lies in 

100-300 kHz which has in agreement with the experimental. While two distinct peaks are 

observed in similar frequencies with experimental around 130 kHz and 260 kHz, while 

the peak around 200 kHz is not obvious. These results indicate that the numerical signal 

of WDI (sensor 1) can simulate the experimental signal in some context, and the primary 

frequency range is aligned with the experimental signal.   

For results of sensor 7 (Figure 3.18e-18h), the numerical waveform (Figure 3.18e) 

showed a high similarity with the experimental waveform (Figure 3.18f). The primary 

frequency range of the experimental signal is 30-100 kHz (Figure 3.18g). The peak 

frequency is around 70 kHz, and the second-largest magnitude can be found at around 30 

kHz. In the numerical FFT magnitude (Figure 3.18h), the same primary frequency of 30-

100 kHz can be observed, while only one peak around 30 kHz can be observed, the peak 

around 80 kHz is not obvious. This may be related to the frequency sensitivity of the R3I 

sensor. As shown in the sensitive curve in Figure 3.15b, the R3I has relatively stable 

frequency sensitivity in the ranges of 25-50 kHz and 75-100 kHz, but relatively low 
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sensitivity in the range of 60-70 kHz. This might cause a gap of magnitude around 60-70 

kHz, and two peaks around 30, and 80 kHz in the experimental FFT magnitude. However, 

the simulation of R3I sensor response (introduced in Section 4.4 The simulation of AE 

sensor response) only has the sensitive range of 30-100 kHz, the gap of sensitivity in 65-

70 is not included. The comparison of experimental signal versus numerical signal of the 

R3I sensor (sensor 7) indicates the FE model can simulate the AE signals that captured 

by the R3I sensor attached far away from the source. The primary frequency range of 

numerical signals is aligned with the experimental signal. However, the slight difference 

in the peak frequency also suggests a more realistic simulation of R3I sensor response is 

needed in future research.  
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(a) Experimental waveform-sensor 1 

 

(b) Numerical waveform-sensor 1 

 

(c) Experimental FFT-sensor 1 

 

(d) Numerical FFT-sensor 1 

 

(e) Experimental waveform-sensor 7 

 

(f) Numerical waveform-sensor 7 

 

(g) Experimental FFT-sensor 7 

 

(h) Numerical FFT-sensor 7 

Figure 3.18 Experimental signals versus numerical signals 
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3.6 Conclusions 

In this paper, the full-scale steel plate which simulates the real-sized DCSS 

canister was studied for the AE monitoring of stress corrosion cracking (SCC). Four WDI 

sensors were attached near the cracks and seven R3I sensors were attached with varying 

distances from the cracks. The frequency analysis and source localization of SCC events 

was conducted. Furthermore, a FE model was developed to acquire numerical AE signals. 

The FE model was compared to the experimental signals. 

Pertinent conclusions and observations are as follows: 

The R3I sensors attached on the bolted plates away from the crack extension 

events were able to capture the events, and the decrease in amplitude across the contact 

surface was minimal. This indicates that attaching resonant AE sensors on the bottom 

support structures of the DCSS canister for the monitoring of SCC is feasible. 

A frequency range of the cracking events captured close to the notch showed that 

genuine hits fell within a range of 100-300 kHz, whereas cracking events captured away 

from the crack extension events showed that genuine hits fell within a range of 30-100 

kHz. This information is valuable for the selection of resonant AE sensors for field 

applications.   

The frequency content of waves generated by the FE model is similar to the 

values attributed to the experimental AE data both from the WDI and R3I sensors. The 

model may be useful for the selection of sensor types located far from crack extension 

events.  
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The research will continue to develop a surface output that is more realistic than 

the single line output, and the advanced filter that simulates the whole sensitivity of the 

R3I sensor is also the subject of future research. 
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Chapter 4  

Source Localization on Large-Scale Canisters for Used Nuclear Fuel 

Storage Using Optimal Number of Acoustic Emission Sensors1  

 

  

 

1  Li Ai, Vafa Soltangharaei, Mahmoud Bayat, Bruce Greer, and Paul Ziehl. (2021), 

Source Localization on Large-Scale Canisters for Used Nuclear Fuel Storage Using 

Optimal Number of Acoustic Emission Sensors. Nuclear Engineering and Design, 375, 

111097. 
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4.1 Abstract 

The dry cask storage system (DCSS) canisters have been used for the storage of 

high-level nuclear for decades.  The inspections are needed to ensure that structural 

integrity is maintained. One mechanism of degradation on DCSS canisters that is of 

interest is stress corrosion cracking (SCC). Acoustic emission (AE) is a non-destructive 

technique that can be employed as an inspection approach since it can offer real-time 

degradation detection. This paper presents the approaches that can localize SCC sources 

by minimal acoustic emission (AE) sensor. To achieve this goal, three machine learning 

techniques (artificial neural network, random forest, stacked autoencoders) were adopted 

to improve the conventional source localization approach. In this paper, source 

localization is treated as a classification problem. The testing specimen was divided into 

multiple zones and located the AE signals to their corresponding zones. The AE signals 

were processed to create two datasets: a dataset consisting of AE parametric features and 

a dataset consisting of AE waveforms. Source localization approaches using artificial 

neural networks, random forest, and stacked autoencoders were trained and tested based 

on the datasets. The results show all three machine learning techniques can learn to map 

AE signals to their sources. Among them, stacked autoencoders have the best 

performance (97.8% accuracy of stacked autoencoders versus 91.5% of random forest, 

and 80.0% of ANN), demonstrating that it could be a potential approach to localize SCC 

events on DCSS canister.     

Keywords: Dry cast storage systems; Acoustic emission; Source localization; Machine 

learning 
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4.2 Introduction 

Nuclear power generation has been widely applied in the United States for 

decades [1]. Currently, spent fuel is stored in cooling pools and dry cast storage systems 

(DCSS). DCSS use was initiated in the 1970s. Spent fuels are placed in stainless-steel 

canisters, then water and air are removed and replaced by an inert gas. These dry storage 

systems were originally licensed for an operation period of 20 years. With the continued 

delays in the opening of a functional repository for the storage of these materials, the 

systems that are currently in operation now will be required to be operational for a 

significantly longer time. To extend the operation license, the inspections of the DCSS 

canister are needed to ensure structural operability. Stress corrosion cracking (SCC) has 

been identified as the main degradation mechanism of concern on DCSS canisters 

because of the high salinity and humidity in the coastal region where those DCSS 

canisters are placed [2-4]. Therefore, the in-situ examination for the detection of SCC 

defects is desirable. 

Acoustic emission (AE) is a non-destructive structural health monitoring 

technique [5-14]. It has been widely used to detect cracks in the infrastructures such as 

bridges [14], dams [15], and nuclear facilities [16-18]. Recently, applications of AE have 

been investigated to detect stress corrosion cracking. Soltangharaei et al. [19] utilized AE 

and pattern recognition to identify the AE signal signatures caused by the propagation of 

SCC in DCSS. A small-scale 304 stainless steel plate was employed instead of testing on 

the real-scale DCSS canister. The results indicated that AE monitoring has a good 

capability to detect and identify SCC events.  
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However, there is a problem when applying AE monitoring in the realistic DCSS 

canister. The canisters are very large and are stored in a concrete overpack. Figure 4.1 

shows a cutaway mockup of a DCSS canister.  

 

Figure 4.1 Cutaway mockup of simulated dry storage cask system 

The available area for sensor attachment is limited. In a recent study about the AE 

monitoring of DCSS canister, sensors were placed on the bottom support structure of the 

canister. However, SCC crack would usually occur on the canister far away from the 

bottom. It is difficult to employ an array of four or more AE sensors around the cracking 

region to detect the location of a crack using the time of arrival approach. Machine 

learning techniques could be alternative methods to solve the source localization problem 

in this situation.   

Artificial neural network (ANN) is a field of interest in machine learning [20]. 

Soltangharaei et al. [21] utilized a back-propagation neural network to localize the impact 

on aircraft components. Acoustic emission events are collected by a single AE sensor 

during the impact experiment. AE features such as energy, amplitude, and signal strength 

were adopted as the neural network's input. The outputs were zonal source localization 
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results. The results showed that source localization of AE events using a back-

propagation neural network has the capability to acquire accurate localization results. 

However, the problems of locally optimal solutions and explosion gradient [22] have 

become the main bottlenecks of ANN. Moreover, a good dimension reduction or feature 

selection is usually needed. Therefore, when applying ANN to the analysis of AE data, 

appropriate parametric AE features are supposed to be extracted from the original AE 

signals.   

Random forest is one of the present state-of-the-art classifiers based on ensemble 

learning strategy [23]. It has a fast-training speed, and it is robust to the number of 

training samples. Moreover, it can provide the ranking of features importance, which 

means a good feature selection can be obtained instead of manual selection. The random 

forest has a wide application in fault diagnose. Cerrada et al. [24] built a robust system 

for the multi-class fault diagnosis in spur gears using genetic algorithms and random 

forest. An acceptable diagnose accuracy was obtained based on the real vibration signals. 

Patel et al. [25] presented a random forest classifier as an approach for the classification 

of bearing fault and feature selection. The most important features of vibration signals 

were selected and assigned to the random forest model. Results indicated the random 

forest is turn out to be a suitable approach for fault diagnosis of any rotating machine.  

Stacked autoencoders is a deep learning algorithm composed of multi-layer 

autoencoders. [26]. The concept of deep learning stems from the study of artificial neural 

networks. The most attractive advantage of deep learning is that no feature selection or 

dimension reduction is needed [27]. Raw data can be utilized as input. Deep learning 

combines low-level features to form more abstract high-level features to discover the 
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distributed feature representations of data. A stacked autoencoder has been utilized for 

AE source localization. Karvelis et al. [28] studied the structural health monitoring of 

ship hulls using the acoustic emission method. A stacked autoencoder neural network 

was employed to obtain the locations of AE events induced by SCC on ship hulls. The 

source localization approach was validated, and the results indicate that the method can 

be very effective and efficient.  

The goal of this paper is to propose machine learning-based source localization 

approaches for large-scaled steel structures like DCSS canisters. The Source localization 

approaches based on ANN, random forest, and stacked autoencoder are proposed and 

results compared.   

4.3 Test Setup and Experimental Procedure 

The primary objective of the experiments was to examine the capability of the 

proposed source localization techniques on the DCSS canister when a single AE sensor is 

employed on the bottom edge. To simulate a realistic experimental environmental 

situation for the test setup, a test specimen was made of similar length and thickness to 

what is typical of DCSS canister shells and of the greatest width that could be managed. 

This resulted in a specimen size of 5029 x 1524 x 16 mm. The plan view of the specimen 

is provided in Figure 4.2. The specimen is fabricated from 304/304H stainless steel.  
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Figure 4.2 Plan view of the specimen 

AE is a physical phenomenon related to stress waves generated by the rapid 

release of elastic energy when cracks or damage are formed in materials [29; 30]. By 

attaching AE sensors to the surface of an object, AE signals can be detected and recorded. 

The technique of collecting and analyzing AE signals to diagnose the status of an object 

is referred to as AE monitoring [31]. The Hsu-Nielsen pencil lead break [32] is one of the 

widely used artificial sources to generate AE signals by conducting pencil lead break on 

the object to which the AE sensor is attached. In this paper, A Hsu-Nielsen pencil lead 

break test was conducted to simulate the cracks that usually initiate on the canister. 135 

points were set up on the specimen (marked as red dots in Figure 4.3). The Hsu-Nielsen 

pencil lead break was repeated 30 times on each of these points. The AE sensor was 

attached to the upper left corner of the specimen to simulate the circumstance that the 

sensor is placed on the bottom support of a DCSS canister. 4050 AE events were 

collected during the experiment. 
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Figure 4.3 Locations of AE sensor and pencil lead breaks 

To determine the appropriate AE sensor applied in the study. An attenuation test 

has been conducted on a resonant sensor (type R3I-AST) with a frequency response 

range of 10-40 kHz, a resonant sensor (type R6I-AST) with a frequency response range 

of 40-100 kHz, and a broadband sensor (type WDI-AST) with a frequency response 

range of 100-900 kHz. Pencil lead breaks were conducted on the specimen with a 

distance to the sensor from 0 - 5000 mm. The results are provided in Figure 4.4.  

 

Figure 4.4 Attenuation curves 

It can be observed, R3I-AST sensor has the highest sensitivity in long distances. 

Therefore R3I-AST sensor was employed in this study to ensure the events far away from 
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the sensor can be detected. The calibration of the AE sensor was conducted by applying 

the Hsu-Nielsen pencil lead break beside the AE sensor when it was attached to the steel 

plate. The standard of a reliable and sensitive AE sensor is that the acquired amplitude of 

the waveform is close to 80 dB for the broadband sensor, and 90 dB for the resonating 

sensor. It can also be observed in Figure 4.4, when the distance is close to 0 mm, the 

amplitude of the resonate sensors and the broadband sensor reached 90 dB, and 80 dB. 

The Data collected from the sensor was obtained using a 16-channel PCI digital signal 

processing (DSP) system (manufactured by Mistras Group, Inc. of Princeton Junction, 

New Jersey). The pre-trigger time, a setting in the software, which recovers acoustic 

waveforms prior to crossing the threshold, was set to 256 μs. The sampling rate was set to 

1MHz (or 1,000,000 samples per second). The time from threshold crossing to peak 

amplitude, peak definition time, was set to 200 μs. The hit definition time, which 

determines when to stop recording a hit, was set to 400 μs. Its value typically twice the 

peak definition time. The hit lockout time, which minimized the recording of late arrival 

signals and reflected hits, was set to 200 μs [33].  

4.4 Data Collection 

4.4.1 Zone code 

The source localization approaches proposed in the paper belong to the family of 

the paper are the zonal localization method, and AE events will be localized to their 

corresponding zones. In this paper, the AE events collected in the experiment were 

divided into five zones. Figure 4.5 shows the zonal divisions. From left to right, the AE 

events on the specimen are divided into zones 1, zones 2, zones 3, zones 4, and zones 5. 

There are 810 AE events in each of the zones.  
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Figure 4.5. Zone codes 

4.4.2 Feature-based data 

AE features are used to reduce the amount of information carried by the AE signal 

to a specific value [34]. Those features can represent the characteristics of AE signals in 

several aspects. For example. “Amplitude” refers to the maximum amplitude at the peak, 

“Counts” indicates the number of threshold crossings, “Rise time” represents the time 

interval between the first threshold crossing and maximum amplitude. Fifteen features 

were extracted from the AE events collected in the experiment. The names and 

descriptions of the features are provided in Table 4.1. The AE data after feature 

extraction forms the feature-based dataset, which contains 4,050 data, and each data has 

15 sample points. The feature-based data was utilized as the input for source localization 

approaches using ANN and random forest, which are introduced in Section 4.1 and 

Section 4.2. The zone codes introduced in Section 3.1 were utilized as labels during 

training and testing processes. 
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Table 4.1 Descriptions of the input features for random forest 

Features Descriptions 

Amplitude (dB) The maximum amplitude at the peak 

Count The number of threshold crossings 

Rise time (μs) Time interval between first threshold crossing and maximum 

amplitude 

Duration (μs) Time between first and last threshold crossing of signal 

Average frequency (kHz) Counts/Duration 

Root mean square (RMS) 

(V) 
The effective voltage with a characteristic time 𝑇𝑅𝑀𝑆  for 

average ranging from 10 to 1000 𝑚𝑠 
Average signal level 

(ASL) (V) 
The effective voltage with a characteristic time 𝑇𝐴𝑆𝐿  for 

average ranging from 10 to 1000 𝑚𝑠 
Energy The measure of the electrical energy measured for an AE 

signal 

Absolute energy The absolute measure of the electrical energy measured for 

an AE signal 

Peak frequency (kHz) Frequency of maximum signal contribution 

Reverberation frequency 

(kHz) 
Frequency after the peak 

Initial frequency (kHz) Frequency before the peak 

Signal strength A parameter to evaluate the AE source strength  

Frequency centroid 

(kHz) 

A parameter to characterize the overall frequency content of 

an AE signal  

Counts to peak (PCNTS) The number of threshold crossings from the first threshold 

crossing to the peak  

 

4.4.3 Waveform-based data 

During AE data acquisition, the sampling rate was set to 1 MHz, and the duration 

was set to 2,000 μs. An AE waveform collected during the impact test, therefore, has 

2,000 sample points. A dataset consisting of original AE waveforms was constructed 

based on AE events from the experiment. In the waveform-based dataset, there are 4,050 

AE waveforms, and each one is a one-dimensional series with 2,000 sample points. This 

dataset was utilized as the input for the source localization approach using stacked 

autoencoders. The zone codes introduced in Section 3.1 were utilized as labels during 

training and testing processes. In each of the five zones, 810 AE signals of pencil lead 
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break were collected. A single signal was randomly selected from the 810 AE signals of 

each zone and shown in Figure 4.6. It can be observed that the AE waveforms in different 

zones have different data distribution patterns. The stacked autoencoders can learn the 

patterns of waveforms and classify them into the corresponding zones. 

All waveforms in the waveform-based dataset were normalized by amplitude to a 

range of -1 to 1. The specimen is large, and the amplitude of the waveforms, therefore, 

varies greatly in different zones due to attenuation. If a dataset without normalization is 

used, the network will focus on the amplitude while other important characteristics may 

be ignored, significantly impacting the results. To minimize dimensional influences 

between waveforms, normalization processing is therefore needed [35]. After the original 

waveforms are normalized, all characteristics are in the same order of magnitude for 

comprehensive comparative evaluation. 
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Figure 4.6 The waveform in each zone 

4.5 Methods 

4.5.1 Back-Propagation Neural Network 

Artificial neural networks (ANNs) are information processing systems that mimic 

how the human brain processes information [36]. The neural network adopted in this 

section is a back-propagation (BP) network; it consists of an input layer, hidden layers, 

and an output layer, each layer has many processing elements, called neurons, and each 
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neuron is connected to each other. The number of neurons in the input layer and the 

output layer corresponds to the number of variables and the number of outputs. Figure 4.7 

shows a simple three-layer artificial neural network consisting of layers j, i, and k. The 

number of neurons is 𝑚 for layer j, 𝑛 for layer i, and 𝑙 for layer k. 𝑊(𝑖𝑗) and 𝑊(𝑘𝑗) are 

weights between layers. The values of m and 𝑙 are related to the problem for solving, and 

n is determined by the network designer. 

 

Figure 4.7 Three-layer artificial neural network 

The performance of an ANN model depends on the configuration of the network, 

including the number of neurons in hidden layers and activation functions for each layer. 

The number of neurons in hidden layers is determined using a trial-and-error method [37]. 

But some guidelines have been developed to decide the upper limit without losing fidelity 

in approximating. One commonly used method in determining cap for neurons in hidden 

layers is: 

𝑁ℎ𝑖𝑑𝑑𝑒𝑛 ≤ 2𝑁𝑖𝑛𝑝𝑢𝑡 + 1 (4.1) 

where 𝑁ℎ𝑖𝑑𝑑𝑒𝑛  is the number of neurons in the hidden layers and 𝑁𝑖𝑛𝑝𝑢𝑡  is the 

number of input variables. However, to avoid overfitting the training data, the number of 
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neurons should also be determined with consideration of the training sample size. Rogers 

et al. [38] commend the following relationship: 

𝑁ℎ𝑖𝑑𝑑𝑒𝑛 ≤
𝑆𝑡𝑟𝑎𝑖𝑛

𝑁𝑖𝑛𝑝𝑢𝑡 + 1
 

(4.2) 

where 𝑆𝑡𝑟𝑎𝑖𝑛 is the sample size of training data. Here, we determine the upper 

limit for the number of hidden layer neurons as the smallest of the values for 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 

calculated by Eq. (1) and (2).  

A trial-and-error test was conducted for the selection of ANN model 

configuration. The process is shown in Table 4.2. The input data of the network is the 

feature-based AE data introduced in Section 3.2. The zone codes are presented in Section 

3.1 were utilized as the labels of the input. It is noticed that the highest accuracy is 80.1%, 

whose corresponding configuration is two hidden layers with 20 neurons for each of the 

hidden layers while the lowest (76.6%) accuracy was observed when the corresponding 

configuration was one hidden layer with 10 neurons. There is some evidence of lower 

accuracy when neuron numbers reach the upper limit, and generally, networks with 2 

hidden layers have better performance than counterparts in one hidden layer model. In 

this study, two hidden layers with 20 neurons for each of the hidden layers were selected 

as the configuration of the ANN in AE source localization.  

Table 4.2 Artificial neural networks configuration selection process. 

Hidden layers Neurons Accuracy (%) 

1st hidden 2nd hidden  

1 10 N/A 76.6 

20 N/A 78.9 

31 N/A 77.7 

2 10 10 76.9 

20 20 80.1 

31 31 79.1 
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4.5.2 Random Forest 

Random forest (RF) is an ensemble learning method containing multiple decision 

trees [39]. Decision tree models are trained to be independently, and the results produced 

by these models are put together, with the final prediction receiving the most votes. At 

present, the mainstream decision tree algorithm includes C4.5 and classification and 

regression trees (CART). C4.5 is a decision tree algorithm proposed by Quinlan et al. 

[40]. C4.5 builds decision trees from a set of training data using the concept of 

information entropy. In a C4.5 tree, each node can be branched into multiple sub-nodes, 

the combination of features is not supported in the nodes. C4.5 can only be used for 

classification problems [41]. For the CART decision tree, each node is branched into only 

two sub-nodes, supporting a combination of features, and can be used for classification 

and regression problems [42]. In the random forest, the CART decision tree is a 

commonly used approach. In this paper, Gini impurity was adopted as the criterion for 

the branching CART decision tree.      

The steps to create a random forest are as follow: 

(1) Sample randomization: Assume there is an original dataset named 𝑇  which 

has 𝑁  samples. By using the bootstrapping method, 𝑁  samples are taken from the 

original dataset 𝑇 with replacement and form a new subset. These 𝑁 samples in the new 

subset may contain a sample that has been taken many times or a sample that has never 

been taken. The probability that a sample has never been taken can be obtained by Eq. 

(4.3). The limit of the probability can be calculated by Eq. (4.4): 

ℎ(𝑁)  (1 −
1

𝑁
)𝑁 

(4.3) 
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lim
𝑁→∞

(1 −
1

𝑁
)
𝑁

 0. 68 
(4.4) 

According to Eq. (4), nearly 36.8% of the data in the original data set may not 

appear in the new subset. This unselected data is called out-of-bag (OOB) data, which 

can be used to test the decision tree's generalization performance. 

(2) Feature randomization: Assume each sample in the new subset has 𝑛 features. 

𝑡 features (𝑡 ≤ 𝑛) are randomly selected and transfer to the decision tree. By calculating 

the information contained in each feature, a feature with the most classification ability is 

selected for node branching. Genuer et al. [43] recommend the following relationship 

between 𝑛 and 𝑡: 

𝑡 ≈ √𝑛       (5) 

 (3) Create a decision tree: By repeating steps (1) and (2) for 𝑚 times, 𝑚 subsets 

that contain 𝑡 features in each sample can be obtained. Each subset is transferred to an 

individual decision tree. In other words, 𝑚 decision trees are created. 

(4) Form the random forest: the 𝑚 trees are formed into a random forest. The 

decision trees inside the random forest generate their own classification results. The final 

results are determined according to the number of votes.  

An advantage of the random forest is the ability to assess the importance of 

features [44]. The calculation requires the help of the Gini impurity. By adding noise to 

one of the features. The new Gini impurity is obtained and compare with the value of the 

old Gini impurity before adding the noise. The difference between the Gini impurities is 

utilized as a measure of the importance of this feature. 

In this paper, a random forest classification model contains 800 decision trees was 

adopted for AE data source localization. The feature-based AE dataset, which was 
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introduced in Section 3.2, was utilized for training and to test this approach. By using the 

Bootstrapping method, 800 subsets were drawn from the original AE dataset. Each 

sample in the new subsets has 4 features that were randomly selected from the original 15 

features. The number of features in the new subset was determined by Eq (6). The subsets 

were assigned the decision trees. These decision trees inside the random forest work 

independently and generate their own localization results. The final result is given by 

voting. Figure 4.8 shows the random forest used in this paper. The output of the random 

forest model is the zoning code of the corresponding AE event.  

 

Figure 4.8 The architecture of the random forest 

Generally, the error of random forest will decrease with the increase of the 

number of decision trees. Once the number of decision trees increased to a certain 

number, the error of the model will converge to a certain value. Continue to increase the 

number of decision trees will not reduce the error but increase the computational cost of 

the entire random forest. Therefore, an appropriate number of decision trees is critical to 
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the optimization of the random forest. To determine the number, the random forest model 

was tested with tree numbers varying from 200 to 2000, with an interval of 200. The 

zoning code introduced in Section 3.1 was utilized as the labels of the input feature-based 

AE data. The determination process of the number of trees is shown in Table 4.3. The 

classification mistake rate keeps decreasing before the number of trees reaches 800, while 

no significant change of classification error can be observed when the number of trees 

continually increased to 2000. However, a small fluctuation can still be observed, and this 

is because, in a random forest, each decision tree randomly selects training samples in a 

given training dataset based on bootstrapping. The decision trees within two random 

forests (e.g., random forests with 800 trees and 1000 trees) are different, which results in 

a small fluctuation when the tree number increase from 800 to 2000. While the general 

trend is towards a plateau. Comprehensively considering all the above, the number of 

decision trees is defined as 800 in this paper. 

Table 4.3 Description of the selection process of trees number 

Trees number Error (%) 

200 14.7 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

2000 

11.8 

10.1 

9.5 

9.8 

9.9 

9.6 

9.5 

10.1 

9.9 

 

4.5.3 Stacked Autoencoder 

Autoencoder is a three-layer neural network model with an input layer, hidden 

layer, and output layer [45]. The network structure is shown in Figure 4.9. The input 
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layer and the output layer have the same dimension, while the hidden layer has a smaller 

dimension.  

 

Figure 4.9 Scheme of autoencoder 

Assuming the input data is a 𝑛 dimensional vector {𝑥1 𝑥2 𝑥3 𝑥𝑛}, the process 

of mapping the input data to the 𝑚 (𝑚 < 𝑛) dimensional vector  {ℎ1 ℎ2 ℎ3 ℎ𝑚} in the 

hidden layer through the nonlinear encoding function 𝐸 is named as encoder stage. The 

process of mapping the 𝑚 dimension vector in the hidden layer to the 𝑛 dimension vector 

{𝑥′1 𝑥′2 𝑥′3 𝑥′𝑛}  in the output layer through the decoding function 𝐷  is named as 

decoder stage. The encoding function 𝐸 and the decoding function 𝐷 are presented in Eq. 

(4.6) and Eq. (4.7):  

ℎ  𝐸(𝑥)  𝑆𝜃(𝑤𝑥 + 𝑏) (4.6) 

𝑥′  𝐷(ℎ)  𝑆𝜃′(w′ℎ + 𝑏′) (4.7) 

Where, {𝜃  𝜃′}  {𝑤 w′ 𝑏 𝑏′} is the mapping parameter set in the autoencoder. 

𝑤 and 𝑤′ are the weights of encoding and decoding stages; both are 𝑚 × 𝑛 dimensional 

matrix. 𝑏 and 𝑏′ are the 𝑛 dimensional bias vectors of encoding and decoding stages. 𝑆 is 

the activation function. The activation function for the autoencoder in this paper is a 

sigmoid function (Eq. (4.8)): 
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𝑓(𝑥)  
1

1 + 𝑒−𝑥
 

(4.8) 

The process of transferring the input vector {𝑥1 𝑥2 𝑥3 𝑥𝑛} to the output vector 

{𝑥′1 𝑥′2 𝑥′3 𝑥′𝑛} is called reconstruction. The training object of the autoencoder is to 

minimize the error in data reconstruction by constantly adjusting the mapping parameters 

set {𝜃  𝜃′}  {𝑤 w′ 𝑏 𝑏′}. A training process of 𝑁 iterations can be expressed By Eq. 

(4.9): 

𝜃  𝜃′  argmin
1

𝑁
∑  𝐿 (𝑥𝑖  𝑥 ′

𝑖
)  argmin

1

𝑁
∑ ‖𝑥𝑖 − 𝑥′𝑖‖

2
𝑁

𝑖=1

𝑁

𝑖=1

 
(4.9) 

Where, 𝑥𝑖 and 𝑥′𝑖 refer to the  th element in the input and output vector.     𝐿 is 

the mean squared error between 𝑥𝑖 and 𝑥′𝑖. 

By minimizing reconstruction errors, the vector in the hidden layer well preserves 

the information contained in the input vector; in the meantime, the dimension is 

significantly reduced [40]. Therefore, the vector {ℎ1 ℎ2 ℎ3 ℎ𝑚} in the hidden layer can 

be seen as the feature set extracted from the input vector.  

The classification stacked autoencoder consists of multiple autoencoders and a 

softmax layer [46]. The first autoencoder extracts the feature set of the input data and 

takes the obtained feature set as the input data of the next autoencoder for further feature 

extraction. All the training processes in autoencoders are unsupervised training, and no 

labels are needed in this stage. The feature set from the last autoencoder is used as the 

input of the softmax classifier for supervised training. The corresponding classes of each 

input data are required to be known as the labels. Assume the inputs contain   classed. 

The final output of a stacked autoencoder is a   dimensional vector; each element 



95 

represents the probability that the input belongs to this class. The class with the highest 

probability can be considered as the classification result.  

The stacked autoencoder network utilized in this paper has two autoencoders. The 

first autoencoder has a hidden size of 100, and the second autoencoder has a hidden size 

of 50. Different from ANN and random forest, the input data of the network is the 

waveform-based AE data introduced in Section 3.3. The corresponding zone code of the 

AE data is utilized as the labels in the training of the softmax layer. A source localization 

result is obtained as the output of this stacked autoencoder neural network. Figure 4.10 

shows the structure of the stacked autoencoder applied in this paper.  

 

Figure 4.10 Stacked Autoencoder network with two autoencoders 

 

4.6 Results and Discussion 

4.6.1 Source localization using BP-ANN 

The feature-based AE dataset was adopted in the scenario of source localization 

using ANN. In the 4050 data collected during the experiment, 2025 AE data were 

randomly selected for training, 675 AE data were randomly selected for validation. The 

remaining 1350 data were utilized to test the performance of the trained ANN. The 
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source localization results are shown in Figure 4.11a as a confusion matrix. The numbers 

of AE data that are correctly localized in their corresponding zones are shown in the main 

diagonal of the confusion matrix. There were 1080 AE events correctly located in the 

corresponding zone, accounting for 80% of the total AE data. In other words, the overall 

accuracy was 80%. In addition to accuracy, precision, and recall for each class are 

usually implemented to evaluate the performance of classification in each class [47]. The 

value of precision is obtained by Eq. (4.10): 

𝑃𝑟𝑒𝑐 𝑠 𝑜𝑛  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

（4.10） 

Where 𝑇𝑃  refers to true positives, which means the number of samples that 

correctly classify into the corresponding class, 𝐹𝑃 refers to false positives, which is the 

number of samples that do not belong to the class but are classified into the class by error. 

Precisions of the five class are respectively 86.9%, 76.6%, 76.7%, 75.5%, 87.4% from 

zone 1 to 5.  

The value of recall can be obtained by Eq. (4.11): 

𝑅𝑒𝑐𝑎𝑙𝑙  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

（4.11）  

Where 𝐹𝑁 refers to false negatives, the number of samples that belong to the class 

but are classified into the other classes by error. Recalls of the five classes are 

respectively 84.6%, 79.0%, 77.5%, 75.5%, 83.2% from zone 1 to 5. 

Precision and recall influence each other. A class with high precision usually has 

a low recall and vice versa [48]. To comprehensively evaluate the efficiency of the 

classifier in each class, the F1-score can be employed. 
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(a) 

 
(b) 

Figure 4.11 Performance of each classification using ANN: (a) confusion matrix; (b) 

evaluation of each zone 

 

F1-score, also referred to as the balanced F score, is defined as the harmonic mean 

of precision and recall [49]. It can be provided by Eq. (4.12):  

𝐹1  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
   （4.12） 

F1 of the five classes are respectively 85.7%, 77.8%, 77.1%, 75.5%, 85.2% from 

zone 1 to 5. The values of precision, recall and F1 for each class are compared and shown 

in Figure 4.11b. Zones on the edge (zone 1 and 5) performed better than the inner areas 

(zones 2, 3, and 4). This situation occurs because when localizing the events in the inner 

zone, the misclassification events were almost localized in the nearby zones. While the 

zones near the edge have one nearby zone, misclassification occurred primarily in that 

zone only. 

The computing time for the training process on an intel i-7 four-core CPU was 

7.96 seconds. The computing time required for the testing data running on a trained ANN 

was 0.02 seconds. 

4.6.2 Source localization using random forest 

The data used for the training of this network were 2,700 feature-based AE 

signals randomly selected from all 4,050 data. The remaining 1,350 signals were utilized 
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for testing. Figure 4.12a shows the confusion matrix of the random forest source 

localization result. Overall, the accuracy on the test set was 90.5%. 1,222 AE signals 

were correctly localized, while 128 were in error. The number of AE signals correctly 

localized in their corresponding zone is shown in the main diagonal of the confusion 

matrix (Figure 4.12a). Figure 4.12b shows the precision and recall for each zone. From 

zone 1 to 5. Precision of the five classes is respectively 94.8%, 90.1%, 92.6%, 86.6%, 

88.8%. Recall of the five classes are respectively 94.8%, 92.0%, 91.2%, 85.7%, 88.8%. 

F1 of the five classes are respectively 94.8%, 91.0%, 91.9%, 86.1%, 88.8%. Zone 1 

performed the best rather than the other zones (zones 2, 3, 4, and 5). This might be 

caused by the attenuation of signals during the transmission. Zone 1 has the smallest 

distance from the AE sensor, which results in the signal from zone 1, retaining the 

complete information.  

The computing time for the training process within an intel i-7 four-core CPU was 

4.03 seconds. The computing time for testing was 0.02s. 

 

 
(a) 

 
(b) 

Figure 4.12 Performance of each classification using random forest: (a) confusion 

matrix; (b) evaluation of each zone 
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The importance percentage of AE features can be provided by the random forest 

model. The names of all 15 features and their corresponding percentages of importance 

are shown in Figure 4.13a. Their ranking descends from left to right. By observing Figure 

4.13a, it can be noticed that the importance of the features "peak frequency" and "rise 

time" are significantly higher than the rest. Those two features have a major impact on 

the source localization results. Features "average frequency", "ASL" and "reverberation 

frequency hold the lowest importance, meaning their impact on the results is limited. 

Deleting them will not have a significant influence on localization performance. 

 

(a)                                                 (b) 

Figure 4.13 Importance of features: (a) the ranking; (b) cumulative importance 

The appropriate features can be selected from the feature set by the guidance of 

the ranking of feature importance when the input has a large dimension. Deleting the 

features with low importance can reduce the computing time and may increase the 

classification accuracy. In this paper, features were selected based on the cumulative 

importance of features. The cumulative importance can be obtained by the calculation of 

one-by-one accumulation by the sequencing of importance, which can be observed in 
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shown in Figure 4.13b. Four subsets were extracted from the feature-based dataset based 

on the cumulative importance of features: Subset 1 consists of "peak frequency", "rise 

time", "initial frequency", "amplitude" and "duration". The sum of the important 

percentage of the features in this subset is 65%. Subset 2 which in consist of "peak 

frequency", "rise time", "initial frequency", "amplitude", "duration", "PCNTS" and 

"counts". The sum of the importance percentage is 75%. Subset 3 which in consist of 

"peak frequency", "rise time", "initial frequency", "amplitude", "duration", "PCNTS", 

"counts", "absolute energy" and "frequency centroid". The sum of the importance 

percentage is 85%. Subset 4 which in consist of "peak frequency", "rise time", "initial 

frequency", "amplitude", "duration", "PCNTS", "counts", "absolute energy", "frequency 

centroid", "energy" and "RMS". The sum of the important percentage of the features in 

this subset is 95%. The accuracies and computing times of the random forest models 

attained by inputting the four subsets are plotted in Figure 4.14. The accuracy increased 

as low importance features were deleted. The total time required for training and testing 

reduces with the deletion of these features. The maximum accuracy (91.5%) was 

observed when the subset with 75% of the cumulative importance was utilized as the 

input; meanwhile, the total computing time was 2.98 seconds, in which the training 

required 2.97 seconds and the testing required 0.01 seconds. Comparing with the case 

using the original feature-based dataset, the accuracy increased from 90.5% to 91.5%, 

training time was reduced from 4.03 seconds to 2.97 seconds, and testing time was 

reduced from 0.02 seconds to 0.01seconds. This indicates the accuracy and computing 

time can be optimized by using the subset with 75% of cumulative importance. Therefore, 

the random forest model which utilized the subset consisting of "peak frequency", "rise 
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time", "initial frequency", "amplitude", "duration", "PCNTS" and "counts" is preferred 

and compared with ANN and stacked autoencoders in Section 5.4.  

 
Figure 4.14 Accuracies and computing times of random forest using inputs with 

different cumulative importance 
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waveform-based AE dataset. Figure 4.15a shows the input data with 2,000 sample points 

entering the first autoencoder and the reconstructed data. Figure 4.15b shows input data 

with 100 sample points and data reconstructed by the second autoencoder. It can be 

observed from the figure that the reconstructed data is very similar to their input. They 

have similar data distribution patterns. This indicates that the two autoencoders can 

successfully reconstruct their input. Figure 4.16 shows the original input data, and the 

feature sets extracted by the first and the second autoencoders. In the end, the input 

waveform-based AE data with 2,000 sample points was compressed to the feature set 

with 50 sample points, and most of the effective information was saved in the feature set. 

The condensed feature set was employed by a softmax layer for classification. 

 

 

 
(a)                                                   (b) 

Figure 4.15 The input and reconstruction patterns of autoencoders: (a) the first 

autoencoder; (b) the second autoencoder 
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Figure 4.16. Patterns of the input waveform and extracted features: (a) input 

waveform; (b) the first compressed feature set; (c) the second compressed feature set 

 

The data used for the training of this network contained 2,700 waveform-based 
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The computing time for the training process on an intel i-7 four-core CPU was 

352.89 seconds. The computing time for testing was 0.04 seconds.  

 

 
(a) 

 
(b) 

Figure 4.17. Performance of classification using SAE: (a) confusion matrix; (b) 

evaluation of each zone 

 

4.7 Discussion 
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accuracy obtained by ANN (80.0%), and the accuracy given by random forest is 
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however, the features input to ANN, and random forest are extracted manually from the 

AE signals and there may be several useful features that are not extracted as input. The 

training time of stacked autoencoders (352.89 seconds) is significantly more than ANN 

(7.96 seconds) and random forest (2.97 seconds), while the time for the trained machine 

learning models to run the testing processes don’t show a wide variety. A testing time for 

stacked autoencoders, ANN, and the random forest is respectively 0.04 seconds, 0.02 

seconds, and 0.01 seconds.  
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Table 4.4 Accuracies and computing times of three algorithms 

Machine learning algorithm      Accuracy  Training time (s) Testing 

time (s) 

 ANN 80.0% 7.96 0.02 

 Random forest (75% cumulative importance) 91.5% 2.97 0.01 

 Stacked autoencoders 97.8% 352.89 0.04 

 

 

Figure 4.18 Comparison of F1-scores 

The F1-scores obtained by three different algorithms are shown in Figure 4.18. It 

can be observed that the F1 scores of five zones obtained by random forest and stacked 

autoencoders are relatively stable while the F1-scores obtained by ANN show a big 

variety in different zones. Moreover, the F1-scores of stacked autoencoders are generally 

the highest of the three. This means the stacked autoencoder has the best performance for 

localization in each zone.  

To summarize, the source localization approach using stacked autoencoders has 

the best accuracy but the largest training time, while the testing times do not differ much 

by using models being trained. If there is no minimum requirement for training time, the 

source localization approach using stacked autoencoders is the most desirable. The 

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

1 2 3 4 5

F
1
-s

c
o

re

Zone code

ANN

Random forest

Stacke autoencoders



106 

approach using random forest is slightly worse than using stacked autoencoders but much 

better than using ANN. The approach using random forest is supposed to be an 

acceptable choice in the case that waveforms are not available and only AE parametric 

features can be provided. 

4.8 Conclusions 

This paper considered three machine learning approaches to localize simulated 

SCC AE sources on a 304 stainless steel specimen, which has a similar length and 

thickness with the realistic DCSS canister. ANN, random forest, and stacked 

autoencoders were used. This study aims to detect and localize AE sources with only one 

sensor attached opposite the source. To collect a sufficient number of AE data for 

training and testing, AE sources were simulated on the specimen by conducting Hsu-

Nielsen pencil lead break tests. The main conclusions are as follows: 

The performance of three machine learning approaches was compared. The 

stacked autoencoders have the best performance (97.8% accuracy versus 91.5% and 

80.0%). Although the training time required for stacked autoencoders is more than the 

other two (352.89 seconds versus 0.02 seconds and 0.01second), their computing time 

required for testing is similar.  

Feature selection can be achieved by running a random forest. The random forest 

model indicated that the AE parametric features "peak frequency", "rise time", "initial 

frequency", "amplitude", "duration", "PCNTS" and "counts" made up 75% of the 

cumulative importance for all 15 features. Using them as the input for random forest 

leads to increasing accuracy and decreasing computational time. 
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The F1-scores indicated that the performance of stacked autoencoders in various 

zones is the best among the three. Moreover, good performance in terms of stability in 

various zones was observed in stacked autoencoders while ANN resulted in more 

variability.  

4.9 Acknowledgment 

This paper was partially supported by Electric Power Research Institute (EPRI) 

under project number 1-108781. 

4.10 References 

[1] Y. Xie, J. Zhang,2015. Chloride-induced stress corrosion cracking of used nuclear 

fuel welded stainless steel canisters: A review, Journal of Nuclear Materials 466 

85-93. 

[2] J.W. Hill, Acoustic Emission Detection in 304H Stainless Steel due to 

Intergranular Stress Corrosion Cracking, University of South Carolina, 2018. 

[3] H. Yeom, T. Dabney, N. Pocquette, K. Ross, F.E. Pfefferkorn, K. Sridharan,2020. 

Cold spray deposition of 304L stainless steel to mitigate chloride-induced stress 

corrosion cracking in canisters for used nuclear fuel storage, Journal of Nuclear 

Materials 538 152254. 

[4] X. Wu,2020. On residual stress analysis and microstructural evolution for 

stainless steel type 304 spent nuclear fuel canisters weld joint: Numerical and 

experimental studies, Journal of Nuclear Materials 534 152131. 

[5] X. Li,2002. A brief review: acoustic emission method for tool wear monitoring 

during turning, International Journal of Machine Tools and Manufacture 42 157-

165. 



108 

[6] K. Ono,2011. Application of acoustic emission for structure diagnosis, 

Diagnostyka 3-18. 

[7] R. Anay, V. Soltangharaei, L. Assi, T. DeVol, P. Ziehl,2018. Identification of 

damage mechanisms in cement paste based on acoustic emission, Construction 

and Building Materials 164 286-296. 

[8] V. Soltangharaei, R. Anay, N.W. Hayes, L. Assi, Y. Le Pape, Z.J. Ma, P. 

Ziehl,2018. Damage mechanism evaluation of large-scale concrete structures 

affected by alkali-silica reaction using acoustic emission, Applied Sciences 8 

2148. 

[9] D. Li, K.S.C. Kuang, C.G. Koh,2018. Rail crack monitoring based on Tsallis 

synchrosqueezed wavelet entropy of acoustic emission signals: A field study, 

Structural Health Monitoring 17 1410-1424. 

[10] L. Ai, B. Greer, J. Hill, V. Soltangharaei, R.A.P. Ziehl, Finite element modeling 

of acoustic emission in dry cask storage systems generated by cosine bell sources, 

AIP Publishing LLC, 2019, 130001. 

[11] L. Ai, V. Soltangharaei, R. Anay, M.J. van Tooren, P. Ziehl, Data-driven source 

localization of impact on aircraft control surfaces, IEEE, 2020, 1-10. 

[12] V. Soltangharaei, R. Anay, L. Ai, E.R. Giannini, J. Zhu, P. Ziehl,2020. Temporal 

evaluation of ASR cracking in concrete specimens using acoustic emission, 

Journal of Materials in Civil Engineering 32 04020285. 

[13] D. Li, Y. Wang, W.-J. Yan, W.-X. Ren,2020. Acoustic emission wave 

classification for rail crack monitoring based on synchrosqueezed wavelet 



109 

transform and multi-branch convolutional neural network, Structural Health 

Monitoring 1475921720922797. 

[14] R. Anay, A. Lane, D.V. Jáuregui, B.D. Weldon, V. Soltangharaei, P. Ziehl,2020. 

On-Site Acoustic-Emission Monitoring for a Prestressed Concrete BT-54 

AASHTO Girder Bridge, Journal of Performance of Constructed Facilities 34 

04020034. 

[15] S. Wang, Y. Liu, H. Zhou, Y. Zhang, Z. Wu, Q. Yang,2019. Experimental study 

on failure process of arch dam based on acoustic emission technique, Engineering 

Failure Analysis 97 128-144. 

[16] T. Nozawa, K. Ozawa, Y. Asakura, A. Kohyama, H. Tanigawa,2014. Evaluation 

of damage accumulation behavior and strength anisotropy of NITE SiC/SiC 

composites by acoustic emission, digital image correlation and electrical 

resistivity monitoring, Journal of nuclear materials 455 549-553. 

[17] P. Véronique, S. Eric, G. François, K. Jean, R. François, C. Michel,2015. In situ 

high temperature oxidation analysis of Zircaloy-4 using acoustic emission 

coupled with thermogravimetry, Journal of Nuclear Materials 461 365-375. 

[18] S.H. Baek, H.-S. Shim, J.G. Kim, D.H. Hur,2018. Visualization and acoustic 

emission monitoring of nucleate boiling on rough and smooth fuel cladding 

surfaces at atmospheric pressure, Nuclear Engineering and Design 330 429-436. 

[19] V. Soltangharaei, J. Hill, L. Ai, R. Anay, B. Greer, M. Bayat, P. Ziehl,2020. 

Acoustic emission technique to identify stress corrosion cracking damage, 

Structural Engineering and Mechanics 75 723-736. 



110 

[20] I.A. Basheer, M. Hajmeer,2000. Artificial neural networks: fundamentals, 

computing, design, and application, Journal of microbiological methods 43 3-31. 

[21] V. Soltangharaei, R. Anay, D. Begrajka, M. Bijman, M.K. ElBatanouny, P. Ziehl, 

M.J. Van Tooren, A minimally invasive impact event detection system for aircraft 

movables, 2019, 1268. 

[22] Y. Bengio, P. Simard, P. Frasconi,1994. Learning long-term dependencies with 

gradient descent is difficult, IEEE transactions on neural networks 5 157-166. 

[23] L. Breiman,2001. Random forests, Machine learning 45 5-32. 

[24] M. Cerrada, G. Zurita, D. Cabrera, R.-V. Sánchez, M. Artés, C. Li,2016. Fault 

diagnosis in spur gears based on genetic algorithm and random forest, Mechanical 

Systems and Signal Processing 70 87-103. 

[25] R.K. Patel, V. Giri,2016. Feature selection and classification of mechanical fault 

of an induction motor using random forest classifier, Perspectives in Science 8 

334-337. 

[26] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of 

deep networks, 2007, 153-160. 

[27] I. Arel, D.C. Rose, T.P. Karnowski,2010. Deep machine learning-a new frontier 

in artificial intelligence research [research frontier], IEEE computational 

intelligence magazine 5 13-18. 

[28] P. Karvelis, G. Georgoulas, V. Kappatos, C. Stylios,2021. Deep machine learning 

for structural health monitoring on ship hulls using acoustic emission method, 

Ships and Offshore Structures 16 440-448. 



111 

[29] H. Wadley, R. Mehrabian,1984. Acoustic emission for materials processing: a 

review, Materials Science and Engineering 65 245-263. 

[30] C.U. Grosse, M. Ohtsu, Acoustic emission testing, Springer Science & Business 

Media, 2008. 

[31] C.B. Scruby,1987. An introduction to acoustic emission, Journal of Physics E: 

Scientific Instruments 20 946. 

[32] T. Boczar, M. Lorenc,2004. Determining the repeatability of acoustic emission 

generated by the Hsu-Nielsen calibrating source, Molecular and quantum 

Acoustics 25 177-192. 

[33] A. Laksimi, S. Benmedakhene, L. Bounouas, Monitoring acoustic emission 

during tensile loading of thermoplastic composites materials, 1999. 

[34] S.M. Ali, K. Hui, L. Hee, M.S. Leong, A.M. Abdelrhman, M.A. Al-Obaidi,2019. 

Observations of changes in acoustic emission parameters for varying corrosion 

defect in reciprocating compressor valves, Ain Shams Engineering Journal 10 

253-265. 

[35] T. Jayalakshmi, A. Santhakumaran,2011. Statistical normalization and back 

propagation for classification, International Journal of Computer Theory and 

Engineering 3 1793-8201. 

[36] M.H. Hassoun, Fundamentals of artificial neural networks, MIT press, 1995. 

[37] R. Sun, Y. Chen, A. Dubey, P. Pugliese,2021. Hybrid electric buses fuel 

consumption prediction based on real-world driving data, Transportation 

Research Part D: Transport and Environment 91 102637. 



112 

[38] L.L. Rogers, F.U. Dowla,1994. Optimization of groundwater remediation using 

artificial neural networks with parallel solute transport modeling, Water 

Resources Research 30 457-481. 

[39] A. Liaw, M. Wiener,2002. Classification and regression by randomForest, R news 

2 18-22. 

[40] J.R. Quinlan, C4. 5: programs for machine learning, Elsevier, 2014. 

[41] S. Sathyadevan, R.R. Nair, in, Computational intelligence in data mining-volume 

1, Springer, 2015, pp. 549-562. 

[42] L. Rutkowski, M. Jaworski, L. Pietruczuk, P. Duda,2014. The CART decision 

tree for mining data streams, Information Sciences 266 1-15. 

[43] R. Genuer, J.-M. Poggi, C. Tuleau-Malot,2010. Variable selection using random 

forests, Pattern recognition letters 31 2225-2236. 

[44] B.H. Menze, B.M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich, 

F.A. Hamprecht,2009. A comparison of random forest and its Gini importance 

with standard chemometric methods for the feature selection and classification of 

spectral data, BMC bioinformatics 10 1-16. 

[45] A. Ng,2011. Sparse autoencoder, CS294A Lecture notes 72 1-19. 

[46] S. Tao, T. Zhang, J. Yang, X. Wang, W. Lu, Bearing fault diagnosis method 

based on stacked autoencoder and softmax regression, IEEE, 2015, 6331-6335. 

[47] F. Guo, Y. Qian, Y. Wu, Z. Leng, H. Yu,2021. Automatic railroad track 

components inspection using real‐ time instance segmentation, Computer‐

Aided Civil and Infrastructure Engineering 36 362-377. 



113 

[48] M. Buckland, F. Gey,1994. The relationship between recall and precision, Journal 

of the American society for information science 45 12-19. 

[49] L. Zhong, L. Hu, H. Zhou,2019. Deep learning based multi-temporal crop 

classification, Remote sensing of environment 221 430-443. 

 



114 

Chapter 5                                                                      

Evaluation of ASR in Concrete Using Acoustic Emission and Deep 

Learning1                                                   

 
1 Li Ai, Vafa Soltangharaei, and Paul Ziehl. (2021) Evaluation of ASR in Concrete Using 

Acoustic Emission and Deep Learning. Nuclear Engineering and Design, 380, 1110. 
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5.1 Abstract 

Alkali-silica reaction (ASR) is one of the main damages causes in concrete 

structures such as nuclear power plants which may endanger their serviceability and 

integrity. Acoustic emission (AE) is a passive nondestructive method for structural health 

monitoring. It is very sensitive and has the capability of monitoring structures 

continuously. This method may be an alternative for early damage detection in concrete 

nuclear structures affected by ASR. The innovation of this paper lies in the 

implementation of deep learning algorithms to evaluate the ASR progress. ASR was 

monitored by AE in a concrete specimen, which was cast with reactive coarse aggregates 

and reinforced by steel rebars. The AE signals recorded during the experiment were 

filtered and divided into two classes. Two deep learning algorithms of convolutional 

neural network (CNN) and stacked autoencoder were employed to classify the AE signals 

into the corresponding classes. The model based on CNN resulted in a classifier with 

higher accuracy than the model based on the autoencoder network.  

Keywords: Acoustic emission; Alkali silica reaction; Continuous wavelet transform 

Convolutional neural network; Stacked autoencoder 

5.2 Introduction 

Concrete is one of the important infrastructure materials which is wildly applied 

in civil engineering structures. However, the brittle mechanical property of concrete 

makes it vulnerable to cracking. ASR is one of the main sources of cracking in concrete 

structures. ASR is a chemical reaction between silica in reactive aggregate and alkaline 

ions in cement. The product of this reaction is a hygroscopic gel, which absorbs humidity 

and expands [1]. The gel exerts pressure on the aggregate and cement matrix and causes 
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cracking. The common structures, which are exposed to ASR are bridges [2-5], concrete 

dams [6; 7], nuclear power plants, and nuclear waste containments [8-11]. Because of the 

safety and radioprotection functions of concrete structures in nuclear power plant, the 

effects of ASR to current and long-term operations must be thoroughly addressed.  

Many approaches were applied to monitor ASR damage and evaluate its effect on 

structures. The conventional approaches include regular-base visual inspection, coring 

and petrographic analysis, demountable mechanical strain gauge (DEMEC gauge), 

relative humidity or moisture content measurement, and crack indexing. These 

approaches have several disadvantages. For example, visual inspection is usually not 

effective for the early detection of ASR damage. Generally, due to in-plane constraints of 

structures, the surface cracks appear in a late stage of ASR process, and the visual 

inspection of large-scale structures is time-consuming and prone to human error [12]. 

Coring and petrographic analyses are destructive methods that are generally not suitable 

for sensitive structures such as nuclear power plants. Furthermore, it is difficult to 

evaluate the condition of entire structure with only a few cores or samples. 

AE can be an alternative for the temporal evaluation of ASR damage in concrete 

structures used in nuclear facilities. This method is sensitive and has a continuous 

monitoring capability [13-19]. Recently, there have been several investigations conducted 

where AE was applied for the detection of damage and the quantification of the defects 

caused by ASR [1; 15; 20-24]. Farnam et al. [21] utilized peak frequency and frequency 

centroid to characterize signal signatures that emanate from cracks in aggregates and 

cement paste. High-frequency signals were observed in the earlier stage of ASR, while 

the low-frequency signals appeared later in the ASR process. X-ray images helped the 
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authors to verify their hypothesis. Lokajíček et al. [22] utilized both ultrasonic pulse 

velocity and AE to monitor the damage caused by ASR. Four specimens with different 

aggregate reactivities were used. The selection of the appropriate features was generally 

based on experience and very challenging especially for complex data sets. Therefore, an 

automatic approach is required to extract features directly from raw data and find 

potential patterns in the complex data sets. This goal can be fulfilled by using deep 

learning methods.  

Deep learning is one of the artificial intelligent techniques that simulates 

information processing in the human brain [25; 26]. The advantage of deep learning is 

using raw data instead of extracted features as an input set. Therefore, there is no need for 

feature extraction and feature selection, which can be challenging for complex data sets 

[27]. CNN is one of the state-of-art deep learning algorithms [28-31], which develops 

rapidly, and is widely studied in image recognition and target detection. Redmon et al. 

[28] proposed Yolov3 as an improved architecture of Yolo network. This improved 

architecture has a higher accuracy, and training speed is acceptable. Ren et al. [29] 

proposed a faster R-CNN (Region-based CNN). This new target detection model 

proposes a Region Proposal Network (RPN) based on a Fast R-CNN, which significantly 

increase the efficiency of target detection. In addition to design a deeper architecture of 

CNN, using a hybrid method is another strategy to improve the performance of CNN [32; 

33]. Niu et al. [32] presented a hybrid model based on CNN and Support Vector Machine 

(SVM) to recognize the handwriting digits. In the hybrid model, the convolutional layers 

extract features, and the SVM works as a recognizer. The results indicated that this fusion 

could obtain better accuracy than a single model. Kim et al. [33] proposed a hybrid model 
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for the prediction of residential energy consumption. The hybrid model consisted of CNN 

and a long short-term memory network (LSTM). The convolutional layers could extract 

features from complex variables that affected energy consumption. The LSTM layers 

were designed to model the temporal information of irregular trends in time series 

components. Compared with the previous work, a better performance was observed by 

using the proposed hybrid model. 

In recent years, deep learning has been applied in AE [34-37]. Ebrahimkhanlou et 

al. [34] worked on a deep learning framework based on a stacked autoencoder network to 

locate AE events on the metal structures. Li et al. [35] utilized a convolutional neural 

network for AE wave classification to obtain a more accurate and comprehensive rail 

crack monitoring in the field with complex cracking conditions, high-operational noise, 

and large data. Shevchik et al. [36] proposed an on-site quality monitoring system for 

additive manufacturing by utilizing AE and a spectral convolutional neural network. Ai et 

al. [37] developed a passive nondestructive health monitoring system to locate impacts on 

an aircraft component based on AE and deep learning. An autoencoder algorithm was 

trained by the data and utilized as a part of the health monitoring system.   

The main focus of this paper is to relate AE data collected during ASR process 

and attribute them to ASR expansion strains. CNN and autoencoder networks were used 

to develop data-driven models and relate raw data to classes, which were corresponding 

to strain ranges. Using this method, sensitive structures such as nuclear power plants or 

waste containments can be continuously monitored for ASR cracking without 

interrupting the structural serviceability and destructing the structures. Furthermore, ASR 

process phases can be determined using a developed data-driven model. The authors are 
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currently not aware of any published similar works that implement a deep learning 

algorithm to relate AE data to ASR expansion strains.  

5.3 Test setup and experimental procedure  

A concrete block specimen with the dimensions of the 305 mm × 305 mm × 1120 

mm was prepared for ASR testing. The specimen was cast with reactive coarse 

aggregates and reinforced by steel rebars. The geometric of the specimen is shown in 

Figure 5.1a. The details of the reinforcements are presented in Figure 5.1b. The specimen 

had four longitudinal US #7 steel rebars and transversal US #6 steel rebars with 150 mm 

spacing. All rebars were T-headed to compensate for the short development length. 

 

Figure 5.1 Structural details of specimen  

Ten AE sensors were attached to the surfaces of the specimen using grey 

double/bubble epoxy. The sensor layout is presented in Fig. 1a [15]. Three sensors 

(sensor 8-10) were attached to the front longitudinal side surface. Three sensors (sensor 

5-7) were attached on the back longitudinal side surface. Two sensors (sensor 1-2) were 

attached on the top, while sensor 3-4 were attached to the bottom surface. The sensors 

were PKWDI with an operating frequency of 200-850 kHz. AE signals were acquired by 
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a 24-channel Micro-II Express data acquisition system manufactured by MISTRAS 

Group, Inc. (Princeton Junction, NJ, USA). The sampling rate was set to 5 MHz.  

A chamber with the dimensions of 243 cm (width) × 243 cm (length) × 122 cm 

(height) was designed and built to accelerate the ASR process by providing high 

temperature and humidity. The temperature inside the chamber was kept at 37 ± 3 oC. 

The humidity was kept around 95% ± 5%. The specimen was placed on a steel carrier 

with wheels, which was designed and fabricated as the support of the specimen. DEMEC 

gauges were used for the expansion measurement by measuring the distance between pins 

(Fig. 1a) along three dimensions. The expansion was measured regularly every month, 

and the maintenance of AE sensors was conducted at the same time to ensure the bonding 

status between sensors and specimen. More details about the test setup and procedures 

can be found in [15]. 

5.4 Analysis procedure 

In this paper, two methods based on deep learning were proposed to evaluate ASR 

in concrete. One is based on continuous wavelet transforms (CWT) and CNN. The other 

one is based on a stacked autoencoder network. The AE signals are divided into two 

subsets according to the temporal evolution of signal features. Each subset of data can be 

attributed to an ASR expansion range. The data-driven models are developed using 

CNNs and stacked autoencoders to attribute the AE signals to the corresponding subsets.  

5.4.1 Continuous wavelets transform 

CWT is a joint time-frequency analysis method that captures the time-frequency 

characteristics in non-stationary signals such as AE signals [38]. CWT has a good 

performance in signal processing in terms of both time and frequency [39]. The 
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continuous wavelet coefficients can be expressed by a scalogram image. The 2D 

scalogram images are the input for CNN models. In this paper, the Morse wavelet is 

selected as the mother wavelet function to conduct CWT. The Fourier transform of Morse 

wavelet is presented in Eq (5.1): 

𝛹𝑝,𝛾(𝑥) = 𝑈(𝑥)𝛼𝑝,𝛾𝑥
𝑝2

𝛾 𝑒−𝑥
𝛾
                                                                                             (5.1) 

where 𝑈(𝑥)refers to the unit step, α𝑝,𝛾 refers to the normalizing constant, 𝑝2 refers to 

the time-bandwidth product.   𝛾 is the parameter that characterizes the symmetry of the 

Morse wavelet [40]. In this paper, 𝑝2 and 𝛾 was defined as 60 and 3. 

5.4.2 Convolutional neural network 

CNN is a deep neural network with convolutional filters [41]. CNN is generally 

composed of three main parts: an input layer, feature extraction layers, and a fully 

connected layer. The core part of the feature extraction layers mainly includes 

convolutional layers and pooling layers. The architecture of a typical CNN with two 

convolutional layers and two pooling layers is shown in Figure 5.2. 

 

Figure 5.2 Architecture of a typical CNN 

In the convolutional layer, multiple convolutional kernels are employed to filter 

the input and generate feature maps. The pooling layer is used for the down-sampling of 
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feature maps obtained from the previous convolutional layer [42]. If the image feature 

maps are directly used for classification without any processing, a great computational 

complexity will be generated, and the model is prone to overfitting. Therefore, a further 

reduction in the dimensionality of feature maps is required, which is the reason to 

construct the pooling layer after each convolutional layer. The fully connected layer is 

employed at the end of the CNN model. It converts the feature maps, resulting from the 

previous pooling layer to one feature vector. 

GoogLeNet is an architecture of CNN that developed based on the LeNet model 

[43]. The number of layers is extended up to 22. The GoogLeNet model is pre-trained by 

more than a million images from a subset of ImageNet database [44]. GoogLeNet has 

been reported to have a good performance for the identification of acoustic emission 

signals in the scenarios such as the monitoring of wear in sliding bearing system [45; 46] 

and the monitoring of stay cable in a bridge [47]. Therefore, GoogLeNet was selected in 

this paper as a preliminary study of applying CNN to evaluate concrete ASR expansion. 

In this paper, the input data is 2D wavelet images. Before input datasets, the data 

is labeled and normalized. The wavelet coefficients are scaled between 0 to 1. 

5.4.3 Stacked autoencoder 

The stacked autoencoder is also employed to classify the data, and the results are 

compared to CNN. The stacked autoencoder neural network is a deep neural network 

composed of multiple autoencoders [48]. An autoencoder is a neural network usually 

with three layers. The number of neurons in the input and output layers is the same. The 

algorithm condenses the input data according to the dimension of the hidden layer and 

reconstructs the output of condensed data to the output layer [49]. An objective function 
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is designed to minimize the error in input data and output data. The compression process 

of input data can be considered as the feature extraction process. In stacked multiple 

autoencoders, more than one autoencoder is utilized to condense the data. In other words, 

the data is condensed several times by multiple autoencoders. A SoftMax layer is 

connected to the last autoencoder to classify final compressed features. In this paper, a 

stacked autoencoder with two autoencoders is employed. The input data is the Fast 

Fourier Transforms (FFT) magnitude of the AE waveforms. In other words, the input 

data set includes a matrix with rows representing the number of signals and columns 

representing FFT magnitudes of signals. The first and second autoencoder has a size of 

100 and 50 neurons, respectively. Figure 5.3 illustrates the structure of the stacked 

autoencoder network used in this paper. 

 

Figure 5.3 A stacked autoencoder composed of two autoencoders 

5.5 Results and discussion 

5.5.1 Analysis of features and class definition 

The AE data acquired from the sensors during ASR have been utilized for 

analysis. Some sensors collected a large amount of extraneous data due to faulty 

connections and environmental noise. Therefore, the first step before analyzing the AE 

data is filtering. The noises from faulty connections have specific signal features such as 
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small counts, average frequency, and peak frequency. Initially, the noises related to the 

faulty connections were removed by deleting the data with an average frequency lower 

than 60 kHz. Some faulty data remained from the first stage. Therefore, another filter was 

applied to the contaminated channel by removing the signals with a peak frequency of 

less than 80 kHz. The filtering procedure mentioned above removed a large amount of 

faulty data. Then, a procedure was developed to further filter the data based on AE event 

definition. An AE event refers to a set of hits acquired by different sensors in a specific 

time interval, which is defined based on a stress wave velocity and specimen dimensions. 

Only the events which include at least four hits were considered valid data and kept, and 

the rest of the data was considered as noise and was therefore deleted. 

Several AE features were extracted from the AE signals after filtering. Those 

features can be divided into non-frequency-based features and frequency-based features. 

The non-frequency-based features in this paper are counts, counts to peak, amplitude, rise 

time, duration, and signal strength. The non-frequency-based features are presented for a 

typical AE waveform, as shown in Figure 5.4a. 

 

 
(a) Non-frequency-based feature 

extraction 

(b) Frequency-based feature extraction 

for 80-120 kHz 

 

Figure 5.4 AE features  
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Figure 5.5 Temporal evolution of AE features during ASR process 

To extract the frequency-based features, the AE signals were transferred to the 

frequency domain using FFT. The frequency domain of each signal was divided by ten 

equal intervals with a bandwidth of 40 kHz. The energies corresponding to each 

frequency band were derived by calculating the area under the FFT spectrum in that 

frequency band (Figure 5.4b). The energies in the frequency bands were normalized to 

the total energy of the signal, which was calculated by the area under the entire FFT 

spectrum (Figure 5.4b). These normalized energies for different frequency bands are 
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referred to as frequency-based features in this paper. Figure 5.4b shows the extraction of 

frequency-based features in the range of 80 -120 kHz. 

The average temporal evolution of some features such as counts, counts to peak, 

amplitude, signal strength, signal energy for 0-40 kHz, and signal energy for 80-120 kHz 

are illustrated in Figure 5.5. All the features were normalized to 0-1. The features shown 

in Figure 5.5 indicate the change in the temporal evolution at almost the same time, 

around 190 to 200 days. The possible reason for the trends shown in Figure 5.4 is the 

dominant crack mechanisms in different ASR stages are vary. Petrographic analysis was 

conducted on the specimens at the end of the ASR experiment to investigate the crack 

mechanism inside the concrete specimen. Cross-section slices were sawn from 

approximately one-half of the length of the specimen. In total, fourteen 38-mm-thick 

cross-section slices were sawn from the specimen, with the cross-sections oriented 

parallel to the Y-Z plane. Each slice was further cut into quarter sections and polished for 

stereo-optical microscopy examinations and a manual point count procedure (MPCP). 

The Point count results were totaled for each slice, including the four quarter sections. 

The results are shown in Figure 5.6 as the weighted normalized cracking score. The 

details of the petrographic analysis can be found in [15]. 
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Figure 5.6 Average of weighted normalized cracking score for reactive specimens 

 

The petrographic results indicate that microcrack and macrocrack formations are 

the primary damage mechanisms in the specimen. Previous research has reported that in 

the later stage of the ASR process, macrocrack formations and extension of the existing 

crack exceeded microcrack formation [15]. The energy release rate of crack propagation 

is changing with the size of the crack. The relationship between crack size and energy-

releasing is presented in Figure 5.8. According to Griffith's crack theory, the energy-

releasing reaches a peak when the crack length exceeds the critical length ac. The energy 

release rate keeps decreasing with the continuous propagation of crack [50]. Therefore, in 

this paper, the microcrack formation in the early stage of ASR (before 190) could release 

more energy than the macrocrack formation in the later stage (after 190 days). And this 

could explain the decreasing of features such as counts, counts to peak, amplitude, and 

signal strength after day 190. Previous literature also indicates that AE signals with low-

frequency have been attributed to crack extension, whereas AE signals with high-

frequency are attributed to the initiation of small-scale cracks [51; 52]. That may be the 

reason for observing the decreasing of signal energy for 80-120 kHz and increasing of 

signal energy for 0-40 kHz after day 190. 

0

1

2

3

4

5

6

7

Macrocracks

in paste

Microcracks in

paste

Macrocracks

in aggregate

Microcracks in

aggregate

W
ei

g
h
te

d
 N

o
rm

al
iz

ed
 

C
ra

ck
in

g
 S

co
re



128 

 

 
Figure 5.7 Relationship between energy and crack length 

 

The signal amplitudes and the cumulative signal strength (CSS) for the concrete 

specimen are presented in Figure 5.6a. The jumps in the cumulative signal strength curve 

are representative of a new crack initiation event or a crack extension along an existing 

crack. The major jump occurs around 200 days, which coincides with the time related to 

change in the AE features shown in Figure 5.6. The crack width was monthly measured 

for the surface cracks. The maximum crack widths were not necessarily attributed to the 

same crack and same location during the ASR process. The maximum crack widths in 

terms of time are illustrated in Figure 5.6. A curve was also fitted to the crack width data, 

as seen in the figure. The first visual crack was observed at 146 days. The crack width 

grow rate increase slowly from day 146 to day 190 and then expands rapidly from day 

190 through day 300. Microscopic photos of cracks at 146 and 269 days are also 

presented in Figure 5. 8. 
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Figure 5.8 AE amplitudes, CSS and volumetric strain presentations with phases 

 In addition to the crack width, expansion strains were measured monthly on the 

specimen surfaces. The strain measurements were conducted along different dimensions 

on the specimen surfaces during ASR. The volumetric strain is defined as the 

accumulation of average strains along the X, Y, and Z axes. Results of the volumetric 

strain range are presented in Figure 5.8. 

In this paper, the entire ASR process was divided into two phases, considering the 

AE features, crack widths and CSS trends. The first phase is between 1-190 days, 

(microcrack initiation phase). The first visible crack was observed in this phase. The 
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strain changed from 0.00% to 0.21% in phase 1. The days between 190 to 300 were 

defined as phase 2 (macrocrack extension phase), the strain changed from 0.21% to 

0.55%. This paper aims to automatically classify AE signals recorded during the ASR 

process according to the assigned phases (phase 1 and phase 2) by using the proposed 

deep learning models. 

5.5.2 Waveforms and CWT images 

There are 1668 and 1402 AE signals in classes 1 and 2, respectively. The input set 

for the stacked autoencoder was FFT spectra of AE signals. The other data set was 

prepared by conducting CWT on the data. The coefficients of CWTs were saved as 2D 

contour images, and the images were utilized as an input data set for CNN. Both deep 

learning models (autoencoder and CNNs) classify the AE signals into the attributed 

classes. A time-domain waveform and its FFT spectrum are randomly selected for each 

class and presented in Figure 5.9. Moreover, the CWT images of the signals are presented 

in Figure 5.10. The amplitudes of AE waveforms were normalized to a range of -1 to 1. 

The frequency-domain waveforms were normalized by the maximum magnitudes, and 

the wavelet coefficients were scaled between 0 to 1.  
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Figure 5.9 Waveforms of AE signals in Phases 1 and 2   

 

(a) Phase 1 (b) Phase 2 

Figure 5.10 CWT image of AE signals in classes 1 and 2 

5.5.3 Evaluation of ASR data using CNN 

From all CWT contour images, 70% of images were randomly selected for a 

training set of CNN, and 30% of images were randomly selected for a validation set. The 

designated phases (phase 1 or 2) of the AE signals were utilized as data labels. The 

classification result of validation dataset is presented in the confusion matrix (Figure 
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5.11a). Among the CWT images in phase 1, 74.6% of images were correctly classified as 

phase 1, while 25.4% of images were classified as phase 2. Among the images in phase 2, 

80.2% of them were correctly classified, while 19.8% of images were misclassified as 

phase 1. In total, 707 images were correctly classified to the corresponding phases, which 

was 76.7% of all images in the validation data set. In other words, the accuracy of the 

CNN classifier is 76.7% (Figure 5.11a). Most of the error occurred around day 190 which 

is the separation day of phases 1 and 2. It was challenging for the deep learning model to 

precisely classified the signals around day 190 because the ASR phases was manually 

divided, the AE signals in the boundaries of phases 1 and 2 has very similar 

characteristics.  This problem in classification task could be solved by considering the 

overlap area [53]. Implementing overlap area would be the subject of future work. Some 

errors might subject to the condition of different AE sensors in the experiment. Although 

all the sensors utilized in this paper are type PKWDI, the sensitivity of the sensors may 

vary due to the time of use. The vary of sensors sensitivity can reflect on the AE signals, 

which may have some impact on the performance of the deep learning model. Another 

factor that might cause the error could be the bonding of sensors. The AE sensors were 

bonded to the concrete specimen using grey double/bubble epoxy. The bonding between 

the specimen and sensor tends to loose after a period of time due to the high humidity and 

high temperature environment. The insecure bonding of sensor could also reflect on the 

AE signals and influence the performance of deep learning model. To minimize the error 

cause by the AE bonding status, the maintenance of AE sensors was conducted monthly 

to ensure the bonding status between sensors and specimen. 
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Precision and recall are employed as parameters to evaluate the classification 

performance in each phase. Generally, precision can be calculated by Eq. (5.2):   

𝑃𝑟𝑒𝑐𝑖 𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                      (5.2) 

where, 𝑇𝑃, is the true positive, which refers to the number of samples correctly 

classified to the attributed class. 𝐹𝑃 is the false positive, which refers to the number of 

samples that do not belong to the class and are misclassified into the class. The precisions 

of CNN model using all AE data for classes 1 and 2 are 85.5% and 66.8%, respectively 

(Figure 5.11a).  

The recall parameter can be calculated as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                           (5.3) 

where 𝐹𝑁 is the false negative, which is the number of samples that belong to a 

class but are misclassified as other classes. The recall parameter of the CNN model for 

classes 1 and 2 was calculated as 74.6% and 80.2% (Figure 5.11a). 

The precision parameter has an inverse relationship with the recall parameter. 

Generally, a class with a high precision value has a low recall value and vice versa [54]. 

F1-score is a parameter to evaluate the efficiency of the classifier in each phase (class) by 

considering both recall and precision parameters. The F1-score is the harmonic mean of 

the precision and recall [55]. The values of the F1-score for phase 1 and phase 2 are 79.7% 

and 72.9%, respectively, and presented in Fig. 11b. 
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      (a) Confusion matrix (b) Recall, precision, and F1-score 

Figure 5.11 Performance of CNN using all AE signals 

A CNN model was developed using the data from one sensor. The selected sensor 

(sensor 6) had the largest number of AE signals (421) among all sensors. AE signals were 

transferred to CWT images. Among all images, 70% of the data were randomly selected 

for the training set, and the rest (30%) were employed for the validation set. The result of 

the CNN model is presented in Fig. 12a. Among the images in phase 1, 85.5% of images 

were correctly classified as phase 1, and 14.5% of images were misclassified as phase 2. 

Among the images in phase 2, 86.0% of images in phase 2 were successfully classified, 

and 14.0% of images were erroneously assigned to phase 1. The total accuracy of the 

model is 85.7% (Figure 5.12a). The precisions of phases 1 and 2 are 90.2% and 79.6%, 

respectively (Figure 5.12a). The recall parameters for phases 1 and 2 are 85.5% and 

86.0%, respectively (Figure 5.12a). The F1-score for phases 1 and 2 are 87.8% and 

82.7%, respectively (Figure 5.12b).  
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      (a) Confusion matrix (b) Recall, precision, and F1-score 

Figure 5.12 Performance of CNN model using data from a single sensor  

5.5.4 Evaluation of ASR using stacked autoencoder 

The FFT magnitudes of AE signals were employed as the input for the stacked 

autoencoder models. The ratios of training and validation data for the autoencoder 

models were consistent with the selected ratios for CNN models. The assigned classes 

(phases) for the AE signals were utilized as the data labels, similar to the CNN models. 

The results are presented in Fig. 11. The accuracy of classification using all signals is 

72.6%. The precision parameters for phases 1 and 2 are 76.1% and 68.4%, respectively. 

The recall parameter for phases 1 and 2 are 74.6% and 70.1%, respectively (Figure 5.13a). 

The F1-score parameter for phases 1 and 2 are 75.4% and 69.2%, respectively (Figure 

5.13b). The total accuracy of classification for the autoencoder model using signals from 

a single sensor is 80.2%. The precision values for phases 1 and 2 are 87.8% and 61.1%, 

respectively. The recall values of phases 1 and 2 are 84.9% and 66.7%, respectively 

(Figure 5.13c). The F1-score values for phases 1 and 2 are 86.3% and 66.4%, 

respectively (Figure 5.13d). 
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Figure 5.13 Performance of stacked autoencoder 

5.5.5 Comparison and discussion 

Two shallow machine learning methods, Support Vector Machine (SVM) and K-

Nearest Neighbor (KNN) were also utilized to correlate AE signals to ASR expansion, 

and the results were compared with the deep learning models. The input data of the 

machine learning models are the parametric features extracted from the AE waveforms. 

The names of the features and their description are presented in Table 5.1. According to 

the accuracies observed in CNN and stacked autoencoder, the model trained by signals 

from a single sensor indicated a higher accuracy than the models using all signals. 

Therefore, in this paper, the SVM and KNN models were trained and tested by the signal 

features from the single sensor. 
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Table 5.1 Descriptions of the input parametric features 

Parametric features Feature descriptions 

Amplitude 

Energy 

The peak amplitude of AE waveform 

The measure of the electrical energy measured for an AE signal 

Count 

Counts to peak (PCNTS) 

The number of threshold crossings 

The number of threshold crossings from the first threshold crossing to the 

peak 

Rise time The time interval between first threshold crossing and peak 

Duration The time between the first and last threshold crossing   

Average frequency 

Signal strength 

Counts divided by Duration 

A parameter to characterize the overall frequency content of an AE signal 

Absolute energy The absolute measure of the electrical energy measured for an AE signal 

Peak frequency Frequency of maximum signal contribution 

Reverberation frequency Frequency after the peak 

Initial frequency Frequency before the peak 

Signal strength Integral of the rectified voltage signal over the duration of the AE 

waveform 

 

In this paper, the RBF was selected as the kernel function of SVM [56]. The “K” 

for the KNN model was set to 4 after conducting serval trial and error tests. The 

classification accuracy of the CNN models, the stacked autoencoder, SVM, and KNN are 

presented in Table 5.2. The CNN models have higher classification accuracies than the 

autoencoder model, and the deep learning methods have higher accuracies than the two 

shallow machine learning methods. The accuracy of the CNN model using the data from 

a single sensor is the highest among the evaluated methods (85.2%). Computing time is 

evaluated for the models. The average time required for training and the average time to 

classify a single signal in the test dataset are presented in Table 5.2. The training time for 

CNN process (using GPU-GTX-1080) are significantly more than the training times for 

the other models using intel i7-6700 CPU. However, the times for the trained models to 

classify a single AE signal are almost similar, as shown in Table 5.2. All the trained 

models can finish their task within 0.1 seconds. For the application envisioned, the model 

will be trained offline; therefore, the training time will not be a primary concern. 
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Table 5.2 Accuracies and computing times of all the models 

Models     Accuracy  Training 

Time (s) 

Testing 

time (s) 

Platform 

Stacked autoencoder (all signals) 72.6% 377.64 0.04 CPU i7-6700 

Stacked autoencoder (signals from a single sensor) 80.2% 219.57 0.03 CPU i7-6700 

CNN (all signals) 

CNN (signals from a single sensor) 

SVM (features from a single sensor) 

KNN (features from a single sensor) 

76.7% 

85.2% 

71.2% 

69.2% 

1562.12 

612.36 

2.51 

1.64 

0.08 

0.06 

0.01 

0.01 

GPU GTX1080 

GPU GTX1080 

CPU i7-6700 

CPU i7-6700 

 

The F1-scores parameters for the four proposed models are presented in Figure 

5.14. F1-score values of the CNN model using data from the single sensor are generally 

the highest, and they are relatively consistent between the two classes (Figure 5.14). 

However, a notable difference of F1-scores in the two classes can be observed in the 

autoencoder models (Figure 5.14).  

The CNN model using data from the single sensor has the highest accuracy and 

the most consistent performance among the two classes. Therefore, the CNN model is a 

better option to estimate the range of ASR volumetric strains from AE signals than the 

autoencoder models. 

 

Fig 5.14 F1-score of phases 1 and phase 2 
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5.6 Summary and conclusions 

The evaluation method based on deep learning is proposed to assess the condition 

of ASR progress in concrete structures. To verify the effectiveness of the proposed 

method, a concrete specimen with reactive coarse and reinforcements was cast and placed 

in a chamber for 300 days to accelerate the ASR by providing high temperature and 

humidity. AE sensors were affixed on the specimen surfaces to acquire stress waves 

emitted during the ASR due to cracking. The ASR expansion was measured using 

DEMEC gauge on a regular basis. A CNN and stacked autoencoder models were trained 

using the AE data for classification purposes and determining ASR volumetric strain 

ranges. The main conclusions of the paper are summarized as follows:  

Both CNN and stacked autoencoder can classify the AE signals to their ASR 

phases with acceptable accuracy, while a higher accuracy was observed in the 

classification using the CNN than stacked autoencoder. In addition, using AE signals 

from a single sensor leads to a better performance of classification than using signals 

captured by all the sensors.  

The F1-scores indicated that the classification result of CNN using signals from a 

single sensor has the best performance in both phases (classes). Moreover, good 

consistency of F1-scores between two phases was observed for the CNN models. 

Considering computing time, global accuracy, and classifier performance in two 

phases, the CNN model using the data from a single sensor is the most efficient model 

among the evaluated models to monitor the temporal evolution of the concrete specimen 

affected by ASR.  
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Having access to ASR data for real concrete structures is one of the practical 

issues for training a supervised learning method. Future research could focus on either the 

novel AE data augmentation method or utilizing numerical model to generate enough 

number of training data. 
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Chapter 6                                                                   

A Transfer Learning Approach for Acoustic Emission Localization on 

Stainless Steel Structure Using Numerical Simulation and Unsupervised 

Domain Adaptation1

 
1 Li Ai, Paul Ziehl. A Transfer Learning Approach for Acoustic Emission Localization on 

Stainless Steel Structure Using Numerical Simulation and Unsupervised Domain 

Adaptation. To be submitted to a journal 
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6.1 Abstract 

The detection and localization of damage in metallic structures using acoustic 

emission (AE) monitoring and artificial intelligence technology such as deep learning has 

been widely studied. However, a current challenge of this approach is the difficulty of 

obtaining sufficient labeled historical AE signals for the training process of deep learning 

models. This problem can be approached through the implementation of transfer learning. 

The innovation of this paper lies in the development of a transfer learning approach for 

AE source localization on the stainless-steel structures when no historical labeled AE 

signals are available for training. A finite element model is developed to generate 

numerical AE signals for the training. Unsupervised domain adaptation technology is 

utilized to reduce the distribution difference between the numerical and the realistic AE 

signals and derived the localization results of the unlabeled realistic AE signals. The 

results suggest that the proposed approach is able to localize the AE signals with high 

accuracy without using labeled training data 

Keywords: Acoustic emission; finite element modeling; source localization; transfer 

learning; unsupervised domain adaptation  

6.2 Introduction 

Metallic material is one of the important construction materials for infrastructure 

components. Some metallic structures such as rails, bridges, and nuclear facilities are 

subject to structural damage due to environmental erosion [1-3], fatigue damage [4; 5], 

and other factors after long periods of use. Ensuring the integrity and safety operation of 

the metallic structures over their service life is a significant task. Traditional approaches 

included regular-base visual inspection has been applied to inspect and monitor damage 
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on metallic structures. However, the visual inspection of large-scale structures is usually 

time-consuming and prone to human error. To improve the reliability and efficiency of 

damage inspection, an automatic monitoring approach is thereby needed. 

Acoustic emission (AE) is a structural health monitoring method that is extremely 

sensitive to damage propagation in materials [6-14]. The detection and localization of the 

cracks in metallic structures can be implemented by deploying an AE sensor array [15-

17]. Pearson et al. [15] developed the Akaike information criteria Delta-t mapping 

technique to overcome the difficulty of applying traditional time-of-arrival techniques to 

locate AE events in complex metal structures. The results show that the Akaike 

information criteria Delta-t mapping technique is a feasible option for AE source 

localization. Sai et al. [16] proposed a novel AE localization method and a detection 

system for AE localization based on time reversal focusing imaging and fiber Bragg 

grating sensors network. Results indicating the method improved the AE detection and 

source localization with high precision. Yan et al. [17] proposed a new method to solve 

the multi-leakage source location problem of metal pressure vessels using AE sensors 

combined with a multi-signal classification (MUSIC) algorithm and wavelet packet 

analysis. AE sensors are deployed into a linear array to acquire signals from multiple 

leakage sources. The results suggested that the method can successfully locate two leak 

sources. Results from previous studies indicated that AE monitoring with multiple 

sensors has a good capability to detect and identify cracks in metallic specimens. 

However, there is a problem when applying AE monitoring in realistic complex metallic 

infrastructures. For some cases, the available area for sensor attachment is limited, it 

would be difficult to deploy sensor arrays to localize the damages. An intelligent and 
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automatic localization approach with only using a single AE sensor can be beneficial to 

the detection and localization of the damages in complex metallic infrastructures. 

Adopting artificial intelligence techniques such as machine learning and deep 

learning can be an approach. Machine learning is a supervised intelligent data processing 

technique [18]. By learning the feature extracted from the data, machine learning can 

understand the pattern of data and make a decision [19]. Machine learning models such 

as artificial neural network, support vector machine (SVM), K-nearest neighbor (KNN), 

and random forest has been widely utilized for signal processing [20-25]. Deep learning 

methods are improved intelligent techniques which are based on machine learning. It can 

automatically learn features from complex data sets without feature extractions [26]. In 

recent years, machine learning and deep learning have been applied to AE localization 

using a single AE sensor [27-29]. Ebrahimkhanlou et al. [27] proposed a deep learning 

framework based on a stacked autoencoder network to locate AE events on the metallic 

structures. Ai et al. [28] studied the single sensor AE source localization on the stainless 

steel canister by leveraging an artificial neural network and random forest. Ai et al. [29] 

developed a passive health monitoring system to locate impacts on an aircraft component 

using one AE sensor, random forest, and stacked autoencoder network. 

Previous studies have proven that using deep learning to localize AE signals is 

promising. However, a current challenge of using the supervised learning algorithms on 

AE source localization is the difficulty to have access to the labeled AE signals for 

existing structures. Transfer learning (TL) is a strategy to assist the supervised learning 

task when the available training data is limited [30]. TL has been utilized in the 

application of acoustic emission [31; 32]. Li et al. [31] utilized a multi-branch CNN 
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model for AE wave classification on rails. The weights of a pre-trained AlexNet are 

adopted except the last fully connected later to save time for training and to acquire a 

robust network using limited training AE data available. Chen et al. [32] proposed a 

transfer learning approach for AE–based rail condition evaluation. The weights of a CNN 

model trained by open-access audio data were utilized to train on the AE signals collected 

from the experiment. TL has a good performance in the aforementioned studies. However, 

those studies focused on the scenarios when the training AE signals are limited but still 

available. The authors are currently not aware of the publications of the studies that using 

deep learning algorithm to localize the AE signals on metallic structure with no labeled 

training AE signals available. Therefore, this paper investigates a novel TL approach for 

AE localization on stainless steel structures without labeled historical AE signals to fill 

the prementioned gap. A finite element model is developed to generate numerical AE 

signals for the training of deep learning algorithm. Unsupervised domain adaptation 

technology is utilized to decrease the difference between the generated numerical AE 

signals with realistic AE signals.  

6.3 Theoretical background 

6.3.1 Transfer learning and unsupervised domain adaptation 

The basic principles of transfer learning (TL) and unsupervised domain adaptation 

are introduced in this section. Generally, a sufficient number of training data and the 

corresponding labels are required by a supervised learning model such as artificial neural 

network, and decision tree. However, in some cases, enough training data with labels are 

difficult to obtain. TL is a strategy to solve this problem. Assuming there are two datasets. 

The first dataset {𝑋𝑠, 𝑌𝑠} =  {(𝑥𝑠1, 𝑥𝑠2, … , 𝑥𝑠𝑚), (𝑦𝑠1, 𝑦𝑠2, … , 𝑦𝑠𝑚)} . Where 
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(ys1, ys2, … , ysm) is the label of (𝑥𝑠1, 𝑥𝑠2, … , 𝑥𝑠𝑚), and it is known.  The second dataset 

{𝑋𝑡, 𝑌𝑡} = {(𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑛), (𝑦𝑡1, 𝑦𝑡2, … , 𝑦𝑡𝑛)} , while the labels (𝑦𝑡1, 𝑦𝑡2, … , 𝑦𝑡𝑛) are 

unknown for this dataset. The concept of transfer learning is to execute the classification 

of {𝑋𝑡, 𝑌𝑡} based on the acquired knowledge from the model with training on {𝑋𝑠, 𝑌𝑠}. The 

dataset {𝑋𝑠, 𝑌𝑠} is named source domain (𝐷𝑆) and the dataset {𝑋𝑡, 𝑌𝑡} to be classified is 

called target domain (𝐷𝑇). One of the issues of TL is, the performance of TL based on 𝐷𝑆 

and 𝐷𝑇 is not good when the difference between the source domain and the target domain 

is significant. Unsupervised domain adaptation is a technique to learn the domain 

invariant features from the annotated source domain and the unannotated target domain 

and reduce the distribution difference [33]. 

6.3.2 Manifold embedded distribution alignment 

As mentioned above, 𝐷𝑆: {𝑋𝑠, 𝑌𝑠}, and 𝐷𝑇: {𝑋𝑡, 𝑌𝑡} has different data destruction 

which means they have different marginal probabilities (𝑃𝑠(𝑥𝑠) ≠ 𝑃𝑡(𝑥𝑡)). and different 

conditional probability ( 𝑄𝑠(𝑥𝑠|𝑦𝑠) ≠ 𝑄𝑡(𝑥𝑡|𝑦𝑡) ). Manifold embedded distribution 

alignment (MEDA) is an unsupervised domain adaptation algorithm to reduce the 

distribution difference by utilizing manifold feature learning and dynamic distribution 

alignment [34]. Manifold feature learning is utilized to reduce the data drift between the 

source domain and target domain. Dynamic distribution alignment is employed to 

alignment the marginal and conditional distribution. The MEDA aims to articulate a 

cross-domain classifier 𝑓 to predict the unknown 𝑌𝑡 . 

6.3.3 Manifold feature learning 

Manifold feature learning is an unsupervised domain adaptation method [35]. 

Manifold refers to the space with local Euclidean spatial properties, including curves and 
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surfaces of various dimensions. One of the characterizes of manifold space is that 

features in the manifold space usually have good geometric structures. The manifold 

learning leverage this characterize to avoid feature distortions by mapping high-

dimensional data into a low-dimensional manifold space. In MEDA, the geodesic flow 

kernel (GFK) is employed to conduct the manifold feature transformation. More details 

about GFK can be found in [36]. The process of manifold feature learning in MEDA is 

presented in Fig 6.1. 

 

Figure 6.1 Procedures of MEDA 

6.3.4 Dynamic distribution alignment 

The importance of marginal distributions (P) and conditional distributions (Q) of 

the source domain and target domain tend to vary with the similarity of the two domains. 

For instance, marginal distribution is more significant when there are large differences 

between the source domain and target domain, while conditional distribution is more 

dominant when the two domains have high similarities. Therefore, the importance of P 

and Q needs to be quantitatively measured, rather than simply counting them with the 
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same weights. To accomplish this goal, the dynamic distribution alignment process is 

proposed in MEDA to dynamically evaluate the importance of these two distributions. 

The process of dynamic distribution alignment could be presented by Eq. (6.1): 

𝐷𝑓(𝐷𝑆, 𝐷𝑡) = (1 − 𝜔)𝐷𝑓(𝑃𝑠, 𝑃𝑡) + 𝜔 ∑ 𝐷𝑓
(𝑡)(𝑄𝑠, 𝑄𝑡)𝑇

𝑡=1                                                (6.1) 

Where, 𝑡 ∈ {1,2,3, … , 𝑇}  represents the classes of data, 𝐷𝑓(𝐷𝑆, 𝐷𝑡)  is the 

distribution after alignment. 𝐷𝑓(𝑃𝑠, 𝑃𝑡)  refers to the marginal distribution alignment. 

𝐷𝑓
(𝑡)(𝑄𝑠, 𝑄𝑡) is the conditional distribution alignment for class 𝑡. 𝜔 ∈ [0,1] refers to the 

adaptive factor. If 𝜔 is close to 0, meaning the distribution difference between the source 

domain and target domain is large. Therefore, marginal distribution alignment is more 

important. If 𝜔 is close to 1, it means the difference between domains is small, and the 

conditional distribution alignment is more dominant. 𝜔 = 0.5  mans the marginal and 

conditional distribution share equal importance. The optimizing of 𝜔 will be introduced 

in the following paragraph. 

Maximum mean discrepancy (MMD) is utilized to explore the distribution 

distance between two domains [37]. The MMD distance between domain 𝑎 and 𝑏 could 

be obtained by Eq. (6.2): 

𝑀𝑀𝐷2(𝑎, 𝑏) = ‖𝐸𝑚[𝜃(𝑍𝑠)] − 𝐸𝑐[𝜃(𝑍𝑡)]‖𝐻𝑘

2                                                                  (6.2)   

Where, 𝑀𝑀𝐷(𝑎, 𝑏)  is the distance between domain 𝑎  and 𝑏 , 𝐻𝑘  refers to the 

reproducing kernel Hilbert space induced by feature map 𝜃(·), 𝐸 [·] is the mean of the 

embedded samples. 𝑍𝑠  and 𝑍𝑡  are the features transformed to the reproducing kernel 

Hilbert space. 
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For the purpose of computing the MMD about 𝑓, the projected MMD [38] is 

adopted to calculate the marginal distribution alignment (𝐷𝑓(𝑃𝑠, 𝑃𝑡)) and conditional 

distribution alignment (𝐷𝑓
(𝑡)(𝑄𝑠, 𝑄𝑡)) by the following equations:  

𝐷𝑓(𝑃𝑠, 𝑃𝑡) = ‖𝐸𝑚[𝑓(𝑍𝑠)] − 𝐸𝑐[𝑓(𝑍𝑡)]‖𝐻𝑘

2                                                                      (6.3) 

𝐷𝑓
(𝑡)(𝑄𝑠, 𝑄𝑡) = ‖𝐸𝑚[𝑓(𝑍𝑠

(𝑡)
)] − 𝐸𝑐[𝑓(𝑍𝑡

(𝑡)
)]‖

𝐻𝑘

2

                                                           (6.4) 

By substituting Eq. (3) and (4) into Eq. (1), the final dynamic distribution 

alignment could be obtained by Eq. (6.5): 

𝐷𝑓(𝐷𝑆, 𝐷𝑡) = (1 − 𝜔)‖𝐸𝑚[𝑓(𝑍𝑠)] − 𝐸𝑐[𝑓(𝑍𝑡)]‖𝐻𝑘

2  

                      +𝜔 ∑ ‖𝐸𝑚[𝑓(𝑍𝑠
(𝑡)

)] − 𝐸𝑐[𝑓(𝑍𝑡
(𝑡)

)]‖
𝐻𝑘

2
𝑇
𝑡=1                                      (6.5) 

After the manifold feature learning and dynamic distribution alignment are 

completed. A domain classifier can be derived by Eq. (6.6). The procedure of dynamic 

distribution alignment and classification is illustrated in Figure 6.1. 

𝑓 = arg min ∑ (𝑦𝑖 − 𝑓(𝑍𝑖))2𝑡
𝑖=1 + 𝛼 ‖𝑓‖𝐾

2 + 𝛽 𝐷𝑓(𝐷𝑆, 𝐷𝑡) + 𝛾𝑅𝑓(𝐷𝑆, 𝐷𝑡)                   (6.6) 

Where, 𝑅𝑓  (·) is a Laplacian regularization to utilize the similar geometric 

properties of the nearest point in the manifold. α, β and 𝛾  are the regularization 

parameters.  

The label 𝑌𝑡  of the target domain could be obtained by the domain classifier. 

However, the confidence level of the obtained label may not be high because the adaptive 

factor 𝜔 might not be the optimized value. Therefore, an optimization process of 𝜔 is 

designed in MEDA. The main procedure can express by Eq. (6.7): 

𝜔 = 1 −
𝑑𝑃

𝑑𝑃+∑ 𝑑𝑄
𝑇
𝑡=1

                                                                                                         (6.7) 
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Where, 𝑑𝑃 refers to the A-distance [39] of marginal distribution, 𝑑𝑄 refers to the 

A-distance of the conditional distribution of each class.  

The adaptive factor 𝜔  will be calculated at every iteration of the dynamic 

distribution adaptation, and the predicted label 𝑌𝑡 will also be updated with the iterations. 

More details about dynamic distribution alignment could be found in [34]. 

6.3.5 Acoustic emission monitoring 

Acoustic emission is a physical phenomenon, which is related to the stress wave 

generated by the rapid release of elastic energy when cracks or damages form in materials 

[40]. AE signals can be detected and collected by deploying AE sensors on the surface of 

an object. The method of recording and processing AE signals to diagnose the health 

status of an object is referred to as AE monitoring. Conventional approaches such as the 

time of arrival method have been widely utilized to localize the AE source by deploying 

sensor arrays. Usually, three or more sensors are needed. Several studies have focused on 

using one AE sensor to localize the AE source based on deep learning and deep learning 

algorithm. However, a current challenge of this approach is the difficulty of obtaining the 

labeled AE signals for the training process of machine learning and deep learning models. 

A TL approach was proposed in this paper to solve this problem. Details of the approach 

will be introduced in the following paragraph. 

6.4 Materials and Experimental Setup 

The experiment is aimed to collect the AE signals as the source domain for the TL 

AE source localization approach proposed in this paper. A specimen fabricated from 304 

stainless steel is utilized in the experiment. The dimension of the specimen is 0.61 x 0.30 

x 0.00635 meters. The plan view of the specimen is provided in Figure 6.2.  
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6.4.1 Experiment procedures 

The Hsu-Nielsen pencil lead break (PLB) is one of the widely used artificial 

sources to generate AE signals by conducting pencil lead break on the object to which the 

AE sensor is attached [41]. In this paper, A Hsu-Nielsen PLB test was conducted to 

simulate the cracks on the steel plate. Four zones were set up on the specimen. The center 

of each zone is marked as red dots. The PLB was repeated 100 times on each of these 

points. A single AE sensor was attached to the corner of the specimen. 400 AE events 

were collected during the experiment. The location of the AE sensor and the four zones 

are shown in Figure 6.2. 

 

Figure 6.2 Experimental setup 

6.4.2 Acoustic emission instrument setup 

The hardware of the AE system was produced by the MISTRAS Group Inc., 

Princeton Junction, New Jersey. The AE sensor utilized in this experiment is wideband 

type WDI-AST. The sensors have an operating frequency range of 100-900 kHz. The AE 

sensors were attached to the specimen by using red double/bubble epoxy. AE signals 
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were acquired by a 16-channel DISP system. The details regarding the AE acquisition 

parameters are presented in Table 6.1. The pre-trigger time, which recovers AE 

waveforms before the threshold crossing, was defined as 256 µs. The sampling rate was 

1MHz. The duration was set to 2,000 µs. The peak definition time (PDT), which refers to 

the time between the first threshold crossing to the peak amplitude, was defined as 200 µs, 

and the hit definition time (HDT) was set to 400 µs. This controls the stop point of 

recording and is usually twice the peak definition time. The hit lockout time (HLT), 

which prevents recording late-arriving signals and reflected hits, was set to 400 µs. The 

threshold was 32 dB. The low and high pass digital filters were set to 20 kHz, and 400 

kHz, respectively. 

Table 6.1 AE acquisition parameters 

Setting Value 

Hit Definition Time 400 µs 

Peak Definition Time 200 µs 

Hit Lockout Time 200 µs 

Sampling Rate 5000 kHz 

Threshold 32dB 

Pre-trigger Time 256 µs 

Low Pass Digital Filter 20 kHz 

High Pass Digital Filter 400 kHz 

 

6.5 The proposed TL approach for AE source localization 

In this paper, the AE source localization is considered a classification problem. 

The AE signals will be classified to their corresponding zone. A TL approach for AE 

source localization by leveraging numerical simulation and unsupervised domain 

adaptation is proposed. This approach aims to localize the AE events using one AE sensor 

while no labeled training data is available. A real-sized three-dimensional finite element 

model is developed to simulate the AE signals generating.  
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Figure 6.3 Schematic of the proposed TL AE source localization approach 

The numerical AE signals obtained by the finite element model will be utilized 

for data augmentation to enable the large amount of data required for the following 

training process. The data after augmentation is utilized as the source domain. The AE 

signals collected during the experiment are employed as the target domain. An improved 

manifold embedded distribution alignment is utilized as the unsupervised domain 
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adaptation method to reduce the difference between the source, and the target domain and 

finally derived the source localization results. The workflow of the proposed approach is 

presented in Figure 6.3. 

6.5.1 Acoustic emission waveform simulation 

The finite element model to simulate AE signals emitted is presented in this 

section. The model was developed on commercial finite element platform ABAQUS and 

the solver is Explicit. By applying the excitation source and reducing the size of the mesh, 

the high-frequency dynamic response can be obtained [42-46]. The finite element model 

has the same dimensions as the steel plate in the experiment. The material property 

utilized in the model is steel with the young’s modulus 193 GPa, the density is 8000 

kg/m3. The mesh size is 0.001 meters. The zonal definition and excitation points are kept 

the same with the experiment (Figure 6.4a and 6.4b).  

 

(a)  (b)  (c)  

Figure 6.4 Finite element setup: (a) experimental specimen; (b) finite element model; (c) 

excitation locations in zone 1 

During the experiment, when conducting PLB in one point, the locations to apply 

the excitations were not exactly in the same points due to human error, a slight position 

shift is inevitable. To simulate the position shift and also increase the diversity of 

numerical signals, five sub-points are designed in the model as shown in Fig. 5c. The 
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excitation sources will be applied in the five sub-points to generate the numerical signals 

in one zone.  

In previous studies, the PLB has been simulated by several excitation functions 

such as the cosine bell function [46], exponential function [47], and Gaussian distribution 

function [48]. This paper selected the cosine bell function (Eq. (6.8)) and the exponential 

function (Eq. (6.9)) as the excitation source in the finite element model. The expressions 

of the excitation function are presented as follow: 

𝐹(𝑡) = {
1

2
− cos ((𝜋𝑡)

1

2𝑇
)                                       for 𝑡 ≤ 𝑇  

1                                                                    for 𝑡 > 𝑇  
                                                       (6.8)                                                                                                                                                  

𝐹(𝑡) = {exp (− (
1

2
(𝑡 − 𝑇)

5

𝑇
)

2
)                            for 𝑡 ≤ 𝑇                   

1                                                                   for 𝑡 > 𝑇                   
                                         (6.9) 

Where 𝑇 refers to the period of the functions. In order to further increase the 

diversity of the numerical signals and simulate the randomness of the period of PLB 

applied in the experiment, three different periods: 𝑇1 = 1 𝜇𝑠 , 𝑇2 = 1.25 𝜇𝑠 , and 𝑇3 =

1.5 𝜇𝑠 are utilized for the excitation functions. All the six excitation sources implemented 

in the model are illustrated in Figure 6.5. 

The modeled PLB starts a load of 0 N, ramps up to a certain value, after which it 

stays constant. The actual load of PLB breaks during the experiment is unknown. This 

paper assumes the magnitude of the load is 1 N. This assumption value is of low 

significance because this value will only affect the amplitude of the obtained numerical 

waveform which will be normalized to -1 and 1. 
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Figure 6.5 Excitation functions 

When the stress wave passes through an AE sensor, the bottom surface of the AE 

sensor is excited by the stress wave and the wave is thereby captured. However, in the FE 

model, the dynamic response is obtained by extracting the displacement versus time in 

one node. This node has an infinity small geometry that cannot represent the whole 

bottom surface of the sensor. Therefore, a combination of multiple nodes would be a 

strategy to simulate the AE bottom surface. In this paper, a single line output was 

employed [47]. The out-of-plane displacements of the nodes in a single straight line are 

collected. A weight is assigned to each node to account for the circular geometry of the 

sensor. Assume the single line output is composed of 𝑛 nodes. The combinational output 

of the 𝑛 nodes can be calculated based on the following equations:   

𝑤𝑖 =
𝑑𝑦∙𝑑𝑥𝑖

∑ 𝑑𝑦∙𝑑𝑥𝑖
𝑛
𝑖=1

=
𝑑𝑦∙√(

𝐷

2
)

2
−𝐶𝑦𝑖

2

∑ 𝑑𝑦∙√(
𝐷

2
)

2
−𝐶𝑦𝑖

2𝑛
𝑖=1

                                                                              (6.10) 

𝑈𝑠𝑒𝑛𝑠𝑜𝑟 = ∑ 𝑤𝑖 ∙ 𝑈𝑖
𝑛
𝑖=1                                                                                                           (6.11) 
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Where, 𝑤𝑖 is referring to the weight that assigns to the 𝑖 𝑡ℎ node from the left side 

in the x-direction. 𝑑𝑦 refers to the distance between two nodes, 𝐷 is the diameter of the 

AE sensor, 𝐶𝑦𝑖  refers to the distance from the 𝑖 𝑡ℎ  node to the center of the circle. 

𝑈𝑠𝑒𝑛𝑠𝑜𝑟 is the single line output of the sensor, 𝑈𝑖  is nodal out of plane displacement of the 𝑖 𝑡ℎ 

node. All the parameters in the equation are shown in the schematic bottom view of the 

sensor (Figure 6.6c).  

The location of the sensor in the finite element model is the same as the 

experiment as shown in Figure 6.4a and 6.4b. The geometric dimensions of the WDI-

AST sensor are shown in Figure 6.6a. The diameter of the bottom surface is 28.6 mm. 

The single line output defined in the FE model is presented in Figure 6.6b. Fifteen nodes 

can be observed on the line.  

 

(a)  (b)  (c)  

Figure 6.6 Numerical waveform output setting: (a) geometric dimension of WDI-AST 

sensor; (b) nodes definition for single line output in FE model; (c) parameters to calculate 

single line output 

AE sensors convert the excitation on the bottom to the electrical signal through 

the piezoelectric material. Different type of AE sensors has various frequency sensitive 

range because their piezoelectric material properties are not the same. The stable 
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the frequency response of the WDI-AST sensor, a bandpass Butterworth filter with the 

frequency of 100-900 kHz is developed and used to be filtered the 𝑈𝑠𝑒𝑛𝑠𝑜𝑟 obtained from 

the finite element model. The filtered waveforms are the final numerical AE waveforms.  

In summary, four zones are defined in the finite element model, while each zone 

has five sub-points. The six excitation sources are implemented in each of the sub-point. 

In total, 120 numerical AE waveforms can be obtained after the simulation is completed.  

6.5.2 Data augmentation of numerical waveforms 

One problem of the simulations of acoustic emission is time-consuming since it 

requires a very small mesh size. In this paper, the average time for the finite element to 

generate one numerical signal is 26 minutes. 52 hours were spent to generate all the 120 

numerical AE signals. It is difficult to produce sufficient data for the source domain based 

on finite element simulations alone. A data augmentation process is therefore designed to 

reduce the time to produce a sufficient amount of source domain data. As introduced in 

Section 2.2.1, GFK is an unsupervised domain adaptation method. It could decrease the 

difference between two datasets by mapping them into the same low-dimensional 

subspace and then reconstruct. A new dataset similar to the original one can thereby be 

obtained. Inspired by this, a data augmentation process is developed by inputting the 120 

numerical AE waveforms and the 400 experimental AE waveforms into GFK. By 

changing the dimension of the low-dimensional subspace, the new datasets with slight 

differences can be derived. Four different subspaces with four different dimensions were 

employed to conduct the data augmentation. Finally, 480 waveforms were obtained. The 

computing time is 23.2 seconds. These waveforms are prepared as the source domain for 

the improved manifold embedded distribution alignment (introduced in Section 4.3). It 
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should be mentioned that the data augmentation is unsupervised. No information on 

labels is used during the process. 

6.5.3 Improved manifold embedded distribution alignment 

The original MEDA employs k-nearest neighbor (KNN) as the domain classifier 

in the dynamic distribution alignment process. The domain classifier can derive labels for 

the target domain, However, the data in source and target domain in this paper are high-

dimensional time series with 2048 sample points, the machine learning model such as 

KNN does not perform very well when dealing with high-dimensional inputs without 

feature extraction. Previous research has reported that convolutional neural network 

(CNN) structures such as ResNet, and GoogLeNet work well on the identification of raw 

acoustic emission signals in the applications such as the monitoring of wear and bridge 

[49-51]. Therefore, an improved MEDA is developed by replacing the KNN classifier 

with the ResNet-18. This paper names the improved MEDA as MEDA-ResNet-18. The 

procedures of MEDA-ResNet-18. can be found in Figure 6.3. 

ResNet-18 is a CNN structure with the idea of residuals [52]. Sometimes, the 

network's performance becomes less reliable when using a deeper structure due to 

gradient vanishing/explosion problems hindering network convergence. A residual block 

module was developed and applied in the ResNet-18 structure to overcome this problem 

by introducing skip connections that enable gradients to flow across several layers. The 

skip connections cause the outputs to learn a residual mapping.  

In this paper, the last FC layer of ResNet-18 is modified to have the class number 

consistent with the number of zones on the steel plate. Figure 6.7 shows the main 

structure of the modified ResNet-18. 
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Figure 6.7 The main structure of the modified ResNet-18 

The data in the source and target domain after manifold feature learning is converted 

to continuous wavelet transform (CWT) images and utilized as the input for the ResNet-

18 model. The Morse wavelet is selected as the mother wavelet function to conduct CWT. 

The Fourier transform of Morse wavelet is presented in Eq. (6.12): 

𝛹𝑝,𝛾(𝑥) = 𝑈(𝑥)𝛼𝑝,𝛾𝑥
𝑝2

𝛾 𝑒−𝑥𝛾
                                                                                        (6.12) 

where 𝑈(𝑥) refers to the unit step, 𝛼𝑝,𝛾  refers to the normalizing constant, p^2 

refers to the time-bandwidth product.   γ is the parameter that characterizes the symmetry 

of the Morse wavelet [53]. In this paper, 𝑝2 and   𝛾 was defined as 60 and 3. 

6.6 Results and Discussions 

6.6.1 Numerical acoustic emission waveforms 

The results of the finite element modeling are presented in Figure 6.8. This figure 

represents expected wave propagation, in terms of displacement, from the point where the 

excitation source is applied. The wave generated by excitations in four zones is captured 

by a sensor and converted to numerical AE waveforms according to the method 

introduced in Section 3.1.  
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Figure 6.8. Results of AE simulation: (a) wave propagated from zone 1; (b) wave 

propagated from zone 2; (c) wave propagated from zone 3; (d) wave propagated from 

zone 4 

 

The comparison of the numerical AE waveform and the experimental AE 

waveform from zone 1 is presented in Figure 6.9a and 6.9b. The amplitudes of 

waveforms are normalized from -1 to 1. Fast Fourier transformations (FFT) analysis was 

conducted, and the frequency spectrums are shown in Fig. 10c and 10d. it can be noticed 

that the primary frequency of the experimental signal is in the range of 100-250 kHz 

(Figure 6.9c). In the numerical FFT magnitude (Figure 6.9d), the primary frequency also 

lies in 100-250 kHz which is aligned with the experimental signal frequency range. The 

alignment of the frequency component suggests that the numerical signal can simulate the 

experimental signal to some extent, however, some relatively obvious differences in the 

waveforms indicate that the simulation is not entirely consistent with the experiment. The 

unsupervised domain adaptation method proposed in this paper is utilized to decreases 

the difference between numerical and experimental AE signals.   
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Figure 6.9 Experimental signals versus numerical signals: (a) experimental waveform; (b) 

numerical waveform; (c) experimental FFT spectrum; (d) numerical FFT spectrum 

 

6.6.2 Unsupervised domain adaptation and transfer learning 

The 480 numerical AE waveforms after data augmentation are utilized as the 

source domain, the 400 AE signals recorded by the experiment are used as the target 

domain. After manifold feature learning, the waveforms in the reconstructed source and 

target domain are transformed to CWT coefficients. Fig. 11a and 11c illustrate example 

CWT coefficients of signals from source and target domain. The wavelet coefficients are 

scaled between 0 to 1. The Y-axis of the CWT coefficient was then converted to a 

logarithmic coordinate to present the time-frequency component more clearly. The 

coefficients were saved as RGB images with the size of 224 × 224 × 3 pixels (Figure 

6.10b and 6.10d). The RGB images are employed as the input of the ResNet-18 domain 

classifier. 
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Figure 6.10. Continuous wavelets transform of source and target domain: (a) CWT 

coefficients of source domain; (b) RGB image of source domain; (c) CWT coefficients of 

the target domain; (d) RGB image of the target domain 

 

The CWT images in the source domain are employed to train the CNN model in 

MEDA-ResNet-18. 90% of the CWT images in the source domain are randomly selected 

as a training dataset. A validation dataset is constructed by the remaining 10% of the 

CWT images. The computing of the CNN model is conducted on a workstation with a 

CPU-Intel i7-6700 3.40 GHz, 32 GB RAM, and an Nvidia GPU-GTX1080. For the 

ResNet-18 deployed in this paper, the gradient descent optimization was conducted using 

the Adaptive moment estimation (Adam) method [54]. The minibatch size was 32, the 

learning rate was 0.0001. Figure 6.11a and 6.11b presents the accuracy and loss curves of 

the training and validation datasets from iteration 1 to 30. Both training and validation 

datasets get 100% accuracy by the end of iteration 30, and the losses are close to 0. The 
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training and validation reach the convergence around iteration 5, and the curves are stable 

after converging.  

 

Figure 6.11 Training and validation curves: (a) accuracy curves; (b) loss curves 

 

After the ResNet-18 model is trained by the source domain, the CWT images in 

the target domain are inputted into the trained model to derive the prediction label. As 

prementioned, the derived label may not be accurate. The optimized prediction label can 

be obtained by dynamic distribution alignment after several iterations are conducted. The 

optimized prediction label is the final output of the MEDA-ResNet-18. In addition to the 

iterations number, the dimension of the low-dimensional manifold space 𝑑 utilized during 

the manifold feature learning is another factor that can influence the result of MEDA-

ResNet-18. To acquire the appropriate iterations number and dimension of manifold 

space, a trial-and-error test is conducted. The results are presented in Figure 6.12.  
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Figure 6.12 Iteration of dynamic distribution alignment in MEDA-ResNet-18 

 

Seven manifold space dimensions (180, 190, 200, 210, 220, 230, and 240) are 

utilized in MEDA-ResNet-18. For all the dimensions, the accuracies of the predicted 

label increased to over 90% after iteration 6. The accuracies remain almost constant as 

the number of iterations increases to 10. It indicates that the iteration number should at 

least be 6. The highest accuracy (93.8%) can be observed when the manifold space 

dimension is 190. Therefore, 190 is selected as the optimum manifold space dimension 

for MEDA-ResNet-18.  

6.6.3 Comparison and discussion 

To evaluate the effectiveness of the proposed TL approach, six scenarios are 

designed, and their corresponding accuracies are compared. Scenario 1 is training and 

testing with 480 numerical waveforms in the source domain. Scenario 2 is training and 

testing with 400 experimental waveforms in the target domain. Scenario 3 is training on 

the source domain and testing on the target domain without unsupervised domain 

adaptation. Scenario 4 is training on the source domain and testing on the target domain 

with GFK manifold feature learning only, no dynamic distribution alignment is 

conducted. Scenario 5 is training on the source domain and testing on the target domain 
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with the original MEDA. Scenario 6 is training on the source domain and testing on the 

target domain with improved MEDA-ResNet-18. 

The goal of scenarios 1 and 2 is to study the performance of AE source 

localization on the steel specimen if a sufficient number of well-labeled training data is 

available. ResNet-18 is employed in the two scenarios. The training, validation, and 

testing ratio are 80%, 10%, and 10%. The results of scenarios 1 and 2 are shown in the 

confusion matrixes in Figure 6.13. The accuracy is 100% for training and testing on the 

480 numerical waveforms in the source domain. The accuracy is 97.5 % for the 400 

numerical waveforms in the source domain. Results indicating that a good localization 

performance can be obtained if labeled training data can be provided. 

 

Figure 6.13 Source localization accuracy: (a) scenario 1; (b) scenario 2 

 

The objective of scenarios 3 to 6 is to investigate the performance of TL when no 

labeled training AE waveforms are available. The results are presented in the confusion 

matrixes in Figure 6.14. The numbers of AE data that are correctly localized in their 

corresponding zones are shown in the main diagonal of the confusion matrix. When using 
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480 numerical AE waveforms as the source domain, and using 400 experimental AE 

waveforms as target domain, meanwhile no unsupervised domain adaptation method is 

applied (scenarios 3), a low prediction accuracy (43.0%) is observed (Figure 6.14a).  

When using GFK manifold feature learning as the unsupervised domain adaptation 

method, the prediction accuracy increases from 43.0% to 77.5% (Figure 6.14b). The 

accuracy further increases to 89.8% when the unsupervised domain adaptation method is 

changed to MEDA. Finally, the highest prediction accuracy (93.8%) can be acquired if 

the improved MEDA-ResNet-18 is utilized (Figure 6.14d). By observing the results of 

the four scenarios, it can be noticed that the prediction accuracy of the target domain 

significantly increases if unsupervised domain adaptation is implemented. Among the 

three unsupervised domain adaptation methods, the improved MEDA-ResNet-18 

proposed in this paper has the best performance.  
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Figure 6.14. Source localization accuracy: (a) scenario 1- no unsupervised domain 

adaptation; (b) scenario 2- using GFK manifold feature learning; (c) scenario 3- using 

MEDA; (d) scenario 4- using MEDA-ResNet-18 

 

In addition to accuracy, precision rate, and recall rate for each class are usually 

implemented as the metrics to evaluate the performance of classification in each class 

[55]. The value of precision rate and recall rate is obtained by the following equations: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                             (6.13)   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                       (6.14) 
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Where 𝑇𝑃  refers to true positives, which means the number of samples that 

correctly classify into the corresponding class, 𝐹𝑃 refers to false positives, which is the 

number of samples that do not belong to the class but are classified into the class by error. 

𝐹𝑁  refers to false negatives, the number of samples that belong to the class but are 

classified into the other classes by error.  

Precision and recall influence each other. A class with high precision usually has 

a low recall and vice versa [55]. To comprehensively evaluate the efficiency of the 

classifier in each class, the F1-score can be employed. F1-score, also referred to as the 

balanced F score, is defined as the harmonic mean of precision and recall [56]. It can be 

provided by Eq. (6.15):  

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                           (6.15) 

The comparison of the three metrics, precision rates, recall rate, and F1-score for 

the four zones of scenarios 3-6 are presented in Figure 6.15. The figure indicates that the 

three metrics of scenario 6 using improved MEDA-ResNet-18 are generally the highest, 

particularly much higher than scenario 3 using no unsupervised domain adaptation. It can 

be noticed that the three metrics obtained by scenario 6 are relatively stable while the 

other three scenarios show obvious variety in different zones. These observations of 

precision rates, recall rate, and F1-score suggest scenario 6 using the improved MEDA-

ResNet-18 presents the best performance. This is aligned with the observation of 

accuracy.  
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Figure 6.15 Comparison of classification performance in each zone: (a) recall rate; (b) 

precision rate; (c) F1-score 

 

6.7 Conclusion and summary 

This paper proposes a TL approach for the localization of acoustic emission 

without historical AE signals for training. A finite element model is developed to 

simulate the stress wave propagation and generate numerical AE signals. The distribution 
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MEDA-ResNet-18 unsupervised domain adaptation method, and the source localization 

results of the realistic AE signals are acquired. A 304 stainless steel plate was used as an 

experimental specimen to collect AE signals and validate the proposed approach. The 

main conclusions of the paper are summarized as follows:   

The source localization approach using the ResNet-18 model is validated by 

respectively using the collected experimental AE signals and numerical signals. Results 

indicate that a good localization performance can be observed when the labeled training 

data is available. 

The numerical signals generated by the finite element model are employed as the 

labeled source domain. The experimental AE signals are adopted as the unlabeled target 

domain. The TL source localization accuracies of the scenarios that using no 

unsupervised domain adaptation method (43.0%), using the GFK method (77.5%), using 

MEDA (89.8%), and using the improved MEDA-ResNet-18 (93.8%) are compared and 

discussed. The results suggest that using the unsupervised domain adaptation method can 

significantly increase the localization accuracy on the target domain. The best 

performance is obtained by the improved MEDA-ResNet-18 (93.8%). Recall rate, 

precision rate, and F1-score suggest that the improved MEDA-ResNet-18 has the 

optimum performance of localization for each individual zone. 

The frequency content of the signal generated by the finite element model is 

similar to the values attributed to the experimental AE signal. However, the similarity 

between the waveforms of the numerical and experimental AE signal is not significant. 

Future work can be the improvement of the model by developing a surface output that is 

more realistic than the single line output adopted in this paper. 
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7.1 Summary 

Steel and concrete are significant construction materials of infrastructures. The 

infrastructural components are subject to structural damage after long-term use. SCC and 

ASR are the primary mechanisms of damage in steel and concrete structures [1; 2]. The 

monitoring and evaluation of SCC and ASR damages in structures are needed to ensure 

the serviceability and integrity of infrastructures such as stainless steel spent fuel storage 

canisters and concrete components in bridges. The AE structural health monitoring could 

be used for the monitoring of SCC [3-6] and ASR [7-11]. However, there are several 

challenges and scientific gaps that exist in the path toward developing the AE monitoring 

approached for the SCC damage in the spent fuel storage canister and the ASR damage in 

concrete nuclear containment. Some of the gaps are addressed in this dissertation. One of 

the gaps in the AE monitoring of spent fuel storage canister is the lack of investigation 

about the feasibility of AE monitoring to detect the SCC damage in a large-scale stainless 

steel spent fuel storage canister. Furthermore, when applying AE monitoring in the 

realistic spent fuel storage canister. The canisters are huge and are stored in a concrete 

overpack. The available area for sensor attachment is limited. It is difficult to employ an 

AE sensor array around the cracking region to detect the location of a crack [12]. There is 

another gap for the AE monitoring of ASR in concrete components. The selection of the 

appropriate AE features for ASR analysis was generally based on experience and very 

challenging especially for complex data sets. Therefore, an automatic approach is 

required to extract features directly from raw AE data and find potential patterns in the 

complex data sets. Therefore, four different studies are defined to approach the primary 

goal. 
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In the first study, AE monitoring was conducted on a full-scale 304H stainless-

steel plate specimen which was made of similar length and thickness to a realistic SCSS 

canister. The condition to induce SCC was provided by applying tensile stress at the 

notch on the plate surface which was exposed to the Potassium Tetrathionate solution. 

The waveforms and the frequency content of the AE signals acquired in the test were 

studied. Furthermore, a finite element (FE) model was developed to generate numerical 

AE signals for the purpose of the AE sensor selection for the field application. The AE 

signals obtained from the test and the FE model were compared and discussed. 

The second study presents the approaches that can localize SCC sources by 

minimal AE sensor. To achieve this goal, three machine learning techniques (artificial 

neural network, random forest, stacked autoencoders) were adopted to improve the 

conventional source localization approach. In this paper, source localization is treated as 

a classification problem. The testing specimen was divided into multiple zones and 

located the AE signals to their corresponding zones. The AE signals were processed to 

create two datasets: a dataset consisting of AE parametric features and a dataset 

consisting of AE waveforms. Source localization approaches using artificial neural 

networks, random forest, and stacked autoencoders were trained and tested based on the 

datasets. 

In the third study. The deep learning algorithms was employed to evaluate the 

ASR progress. ASR was monitored by AE in a concrete specimen, which was cast with 

reactive coarse aggregates and reinforced by steel rebars. The AE signals recorded during 

the experiment were filtered and divided into two classes. Two deep learning algorithms 
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of convolutional neural network (CNN) and stacked autoencoder were employed to 

classify the AE signals into the corresponding classes. 

The fourth study proposed a transfer learning approach for AE source localization 

on the stainless-steel structures when no historical labeled AE signals are available for 

training. A finite element model is developed to generate numerical AE signals for the 

training. Unsupervised domain adaptation technology is utilized to reduce the distribution 

difference between the numerical and the realistic AE signals and derived the localization 

results of the unlabeled realistic AE signals. 

7.2 Conclusion of each study 

7.2.1 Structural Health Monitor of Stainless-Steel Structures for Spent Nuclear Fuel 

Storage Using Acoustic Emission 

In this study, the full-scale steel plate which simulates the real-sized DCSS 

canister was studied for the AE monitoring of stress corrosion cracking (SCC). Four WDI 

sensors were attached near the cracks and seven R3I sensors were attached with varying 

distances from the cracks. The frequency analysis and source localization of SCC events 

was conducted. Furthermore, a FE model was developed to acquire numerical AE signals. 

The FE model was compared to the experimental signals. Pertinent conclusions and 

observations are as follows: 

• The R3I sensors attached on the bolted plates away from the crack 

extension events were able to capture the events, and the decrease in 

amplitude across the contact surface was minimal. This indicates that 

attaching resonant AE sensors on the bottom support structures of the 

DCSS canister for the monitoring of SCC is feasible 
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• A frequency range of the cracking events captured close to the notch 

showed that genuine hits fell within a range of 100-300 kHz, whereas 

cracking events captured away from the crack extension events showed 

that genuine hits fell within a range of 30-100 kHz. This information is 

valuable for the selection of resonant AE sensors for field applications.   

• The frequency content of waves generated by the FE model is similar to 

the values attributed to the experimental AE data both from the WDI and 

R3I sensors. The model may be useful for the selection of sensor types 

located far from crack extension events. 

7.2.2 Source Localization on Large-Scale Canisters for Used Nuclear Fuel Storage 

Using Optimal Number of Acoustic Emission Sensors 

This study considered three machine learning approaches to localize simulated 

SCC AE sources on a 304 stainless steel specimen, which has a similar length and 

thickness with the realistic DCSS canister. ANN, random forest, and stacked 

autoencoders were used. This study aims to detect and localize AE sources with only one 

sensor attached opposite the source. To collect a sufficient number of AE data for 

training and testing, AE sources were simulated on the specimen by conducting Hsu-

Nielsen pencil lead break tests. The main conclusions are as follows: 

• The performance of three machine learning approaches was compared. 

The stacked autoencoders have the best performance (97.8% accuracy 

versus 91.5% and 80.0%). Although the training time required for stacked 

autoencoders is more than the other two (352.89 seconds versus 0.02 
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seconds and 0.01second), their computing time required for testing is 

similar. 

• Feature selection can be achieved by running a random forest. The random 

forest model indicated that the AE parametric features "peak frequency", 

"rise time", "initial frequency", "amplitude", "duration", "PCNTS" and 

"counts" made up 75% of the cumulative importance for all 15 features. 

Using them as the input for random forest leads to increasing accuracy and 

decreasing computational time. 

• The F1-scores indicated that the performance of stacked autoencoders in 

various zones is the best among the three. Moreover, good performance in 

terms of stability in various zones was observed in stacked autoencoders 

while ANN resulted in more variability. 

7.2.3 Evaluation of ASR in Concrete Using Acoustic Emission and Deep Learning 

The evaluation method based on deep learning is proposed to assess the condition 

of ASR progress in concrete structures. To verify the effectiveness of the proposed 

method, a concrete specimen with reactive coarse and reinforcements was cast and placed 

in a chamber for 300 days to accelerate the ASR by providing high temperature and 

humidity. AE sensors were affixed on the specimen surfaces to acquire stress waves 

emitted during the ASR due to cracking. The ASR expansion was measured using 

DEMEC gauge on a regular basis. A CNN and stacked autoencoder models were trained 

using the AE data for classification purposes and determining ASR volumetric strain 

ranges. The main conclusions of the paper are summarized as follows: 
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• Both CNN and stacked autoencoder can classify the AE signals to their 

ASR phases with acceptable accuracy, while a higher accuracy was 

observed in the classification using the CNN than stacked autoencoder. In 

addition, using AE signals from a single sensor leads to a better 

performance of classification than using signals captured by all the 

sensors. 

• The F1-scores indicated that the classification result of CNN using signals 

from a single sensor has the best performance in both phases (classes). 

Moreover, good consistency of F1-scores between two phases was 

observed for the CNN models. 

• Considering computing time, global accuracy, and classifier performance 

in two phases, the CNN model using the data from a single sensor is the 

most efficient model among the evaluated models to monitor the temporal 

evolution of the concrete specimen affected by ASR. 

7.2.4 A Transfer Learning Approach for Acoustic Emission Localization on Stainless 

Steel Structure Using Numerical Simulation and Unsupervised Domain Adaptation 

This study proposes a TL approach for the localization of acoustic emission 

without historical AE signals for training. A finite element model is developed to 

simulate the stress wave propagation and generate numerical AE signals. The distribution 

difference of the numerical and the realistic AE signals is reduced by an improved 

MEDA-ResNet-18 unsupervised domain adaptation method, and the source localization 

results of the realistic AE signals are acquired. A 304 stainless steel plate was used as an 
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experimental specimen to collect AE signals and validate the proposed approach. The 

main conclusions of the paper are summarized as follows:   

• The source localization approach using the ResNet-18 model is validated 

by respectively using the collected experimental AE signals and numerical 

signals. Results indicate that a good localization performance can be 

observed when the labeled training data is available. 

• The numerical signals generated by the finite element model are employed 

as the labeled source domain. The experimental AE signals are adopted as 

the unlabeled target domain. The TL source localization accuracies of the 

scenarios that using no unsupervised domain adaptation method (43.0%), 

using the GFK method (77.5%), using MEDA (89.8%), and using the 

improved MEDA-ResNet-18 (93.8%) are compared and discussed. The 

results suggest that using the unsupervised domain adaptation method can 

significantly increase the localization accuracy on the target domain. The 

best performance is obtained by the improved MEDA-ResNet-18 (93.8%). 

Recall rate, precision rate, and F1-score suggest that the improved MEDA-

ResNet-18 has the optimum performance of localization for each 

individual zone. 

• The frequency content of the signal generated by the finite element model 

is similar to the values attributed to the experimental AE signal. However, 

the similarity between the waveforms of the numerical and experimental 

AE signal is not significant. Future work can be the improvement of the 
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model by developing a surface output that is more realistic than the single 

line output adopted in this paper. 

The above conclusions are based on the initial research results. More research 

should be conducted regarding this subject. 

7.3 Recommendation and future work 

The primary goal of this dissertation is to develop an intelligent acoustic emission 

(AE) monitoring approach for structural health monitoring of infrastructures such as 

spent fuel storage canister and bridge concrete component without historical AE signals 

to train the artificial intelligent models. Some challenges were addressed in this 

dissertation; however, more research should be conducted before starting to implement 

the approach in the field. 

In this dissertation, the single sensor source localization of SCC was investigated 

using simulated Hsu-Nielsen signals. The Hsu-Nielsen signals can simulate the CSS 

signals to some context. However, a long-term corrosion experiment could be conducted 

in the future to collect a sufficient number of SCC signals to investigate the single sensor 

localization approach using artificial intelligence algorithms.  

The frequency content of the signal generated by the finite element model is 

similar to the values of the experimental AE signal. However, the similarity between the 

waveforms of the numerical and experimental AE signal is not significant. Future work 

can be the improvement of the model by utilizing a novel excitation source function. In 

addition, developing a surface output that is more realistic than the single line output in 

this dissertation could be the subject of future research. 
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The effectiveness of more unsupervised domain adaptation method can be 

investigated for the proposed transfer learning localization approach in the future.  And 

the application of the transfer learning localization approach in other materials such as 

concrete and composite could also be the focus of future work. 
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