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ABSTRACT 

Copy number variation, as a major source of genetic variation in the human genome, are 

gains or losses of the DNA segments. Copy number variation has gained considerable 

interest as it plays important roles in human complex diseases. Therefore, accurate 

detection of CNVs with data generated by modern genotyping technologies, such as SNP 

array and whole-exome sequencing (WES), comprises a critical step toward a better 

understanding of disease etiology. However, current statistical methodologies for CNV 

detection still face analytical challenges due to numerous genetic and technological 

factors that may lead to spurious findings. First, existing methods assume the independent 

observations along the whole genome in genetic intensities for CNV detection, which is 

often violated in the genetics perspective. Second, neither SNP array nor WES offers full 

coverage of the genome in their genotyping resolution, which leads to a significant 

amount of missed variant calls by analyzing each data separately. Third, conventional 

methods adopt a single sample-based strategy that suffers from high false discovery rates 

due to prominent data noise. 

In this study, we developed (a) a SNP array CNV calling algorithm, LDcnv, that 

integrated the genomic correlation structure with a local search strategy into statistical 

modelling of the genetic intensities, which improves both detection accuracy and 

robustness; (2) a WES CNV detection method, CORRseq, that extended the 

methodological work of LDcnv coupled with a median normalization procedure, which 
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gives significant power gain for CNV identification; (3) a Bayesian Multi-sample and 

Integrative CNV (BMI-CNV) profiling method with matched samples sequenced by both 

WES and microarray, which used a Bayesian probit stick-breaking process model 

coupled with a Gaussian Mixture Model estimation for multiple sample integration. BMI-

CNV enables accurate CNV identification integrating multiple genotyping platforms with 

a genome-wide scale. The performance of these proposed methods has been evaluated by 

extensive simulation studies and real data analyses. Our novel methods have been further 

applied to the 1000 Genomes project and an international lung cancer study to identify 

lung cancer susceptibility genes. 

The proposed framework has a broad application scope for multiple study designs 

in studying the role of CNVs in various complex diseases, which will reveal the vital 

roles of CNVs in disease development and inspire new approaches for precision 

medicine. 
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CHAPTER 1 

INTRODUCTION

1.1 COPY NUMBER VARIATION AND HUMAN DISEASES 

Human genome varies considerably from one to another in numerous ways. Those 

genetic variations form the heritability of complex human traits. Progress has been made 

in revealing millions of single nucleotide polymorphisms (SNPs) as the predominant 

form of genomic variation (A et al., 2019). However, copy number variation that 

constitutes a large category of structural variation, involving genomic deletions and 

duplications, is still not well-studied. In 2004, two research groups reported the 

widespread presence of copy number variations in normal individuals and their role as a 

significant source of benign genomic variation (Zhang et al., 2009). Since then, many 

studies have been conducted, and over 202,431 copy number variants (CNVs) have now 

been reported (MacDonald et al., 2014).  

To understand the mechanisms of copy number variation formation, two well-

recognized recombination-based theories have been implicated: nonallelic homologous 

recombination (NAHR) and nonhomologous end-joining (NHEJ) (Lupski, 1998; Lupski 

and Stankiewicz, 2002; Schwarz et al., 2003; Lieber, 2008). NAHR occurs when two 

DNA sequences share high sequence similarities. During meiosis or mitosis, low copy 

repeats (LCRs) which are substrates for NAHR can be misaligned, leading to genetic 

rearrangement. Deletions or duplications occur when NAHR occurs between different 
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LCRs. On the other hand, NHEJ is mainly responsible for repairing DNA double-strand 

breaks. This error-prone process can create loss or addition of several nucleotides at the 

joining point (Lupski, 1998; Lupski and Stankiewicz, 2002; Rodgers and Mcvey, 2016). 

With the use of the array-based techniques, many NAHR or NHEJ-mediated genomic 

deletions and duplications have been observed in multiple studies (Schwarz et al., 2003; 

Lieber, 2008). 

In addition to generating polymorphism in the population, CNVs have also been 

shown to be associated with susceptibility to diseases. For example, CNVs have been 

extensively studied and demonstrated as genetic determinants for lung cancer, familial 

breast cancer, and melanoma (Frank et al., 2007; Lesueur et al., 2008; Qiu et al., 2017). 

Sebat et al. identified a deletion of 16q11.2 and duplication of 15q11-13 as autism 

susceptibility loci (J et al., 2007). Fellermann et al. showed that colonic Crohn disease 

patients had significantly fewer copies of beta-defensin gene (HBD-2) than healthy 

controls, and they demonstrated that individuals with three or fewer copies of HBD-2 had 

a higher risk of developing Crohn disease (Fellermann et al., 2003, 2006). Also, a 

recurrent deletion at 17q12 has been revealed to be associated with an increased risk of 

ASD and schizophrenia (Moreno-De-Luca et al., 2010). A common CNV in the Hp gene 

has been discovered to be a risk factor for cardiovascular disease in patients with type 2 

diabetes (Wang et al., 2019). 

1.2 STATISTICAL METHODS FOR CNV DETECTION 

Currently, comprehensive profiling of CNVs commonly relies on two major genome-

wide genotyping technologies: SNP array and next-generation sequencing (NGS). SNP 
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array is conducted by using SNP marker probes that are designed for targeting specific 

genomic loci. For each SNP locus, two different probes are designed to target two 

possible types of alleles, while the signal intensities are measured by the total 

hybridization intensities for these two probes. More recently, massive parallel next-

generation sequencing provides an appealing platform to sequence the whole genome at 

base-pair resolution. Applications of NGS usually include whole-exome sequencing 

(WES) and whole-genome sequencing (WGS). WES targets on scanning the protein-

coding regions, which constitute 1% of the genome but attribute to about 85% of disease-

related mutations (Petersen et al., 2017). In contrast, WGS focuses on the entire genome, 

providing additional information in regulatory regions. Due to the lower cost and direct 

functional interpretation, WES is still a common practice for the identification of CNVs. 

Next, we will review the existing methods and tools for these two platforms. 

1.2.1 CNV DETECTION WITH SNP ARRAY 

Traditional SNP array genotyping technology enables the detection of CNVs with high 

resolution. Array-based CNV calling methods rely on modelling and examining data 

signals, including total signal intensity (referred to as log R Ratio [LRR]) and allelic 

intensity ratio (referred to as B allele frequency [BAF]) at each SNP. Specifically, for 

each SNP marker with two alleles referred to as A and B alleles, the raw intensities for A 

and B alleles are subject to normalization and generate normalized intensity X and Y 

(https://icom.illumina.com/icom). After calculating the total intensity 𝑅 = 𝑋 + 𝑌  and 

relative intensity 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑌/𝑋)/(𝜋/2) , LRR value is defined as 𝐿𝑅𝑅 =

𝑙𝑜𝑔2(𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑/𝑅𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑), where 𝑅𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  is computed by using linear interpolation 
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(Peiffer et al., 2006). On the other hand, BAF that represents relative signal intensity ratio 

of the B allele can also be computed, referring to (Wang et al., 2007). 

After normalization of the derived signal intensities (i.e., LRR and BAF), there 

are mainly two types of statistical segmentation algorithms employed to perform CNV 

identification including change-point detection models (Truong et al., 2018) and Hidden 

Markov models (HMM) (Seiser and Innocenti, 2014). The normalization is not the 

specific focus of our project, we will focus on reviewing the existing segmentation 

algorithms as below (Olshen et al., 2004; Venkatraman and Olshen, 2007; Colella et al., 

2007; Wang et al., 2007; Tibshirani and Wang, 2008; Niu and Zhang, 2012; Xiao et al., 

2015, 2019). 

Change-point-based methods are a traditional statistical approach that has wide 

application in many areas, such as economics, neurology, manufacturing, and network 

(Lai, 1995; Lavielle and Teyssière, 2006; Koepcke et al., 2016; Taylor and Letham, 

2018; Kurt et al., 2018). In the application to CNV identification, they perform 

hypothesis tests to exhaustively identify all the change-points that can partition the 

genome into segments with the same copy number. Circular binary segmentation (CBS) 

formulates a two-sample maximal student’s t-test to recursively search for all the change-

points, where the t-statistics compares the segment mean of LRR within a specific region 

to the mean of the remaining observations  (Olshen et al., 2004; Venkatraman and 

Olshen, 2007). A change-point is declared to be significant if the corresponding P-value 

is below a certain threshold (e.g., 0.05). The main drawback of CBS is its large 

computational burden. To solve this issue, Venkatraman and Olshen then proposed two 

strategies to improve the speed of the original CBS, including approximating the tail 
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probability of the maximal t-statistics and deriving an early stopping rule ( Venkatraman 

and Olshen, 2007). More recently, Niu and Zhang proposed a novel local search 

segmentation procedure called the Screening and Ranking algorithm (SaRa), which is 

more computationally efficient than CBS (Niu and Zhang, 2012). The implementation of 

SaRa includes three steps, including calculation of mean difference before and after each 

point within a local window, finding the maximizer of the mean difference, and 

determining its statistical significance of being a change-point. This algorithm was 

utilized in the modSaRa method (Xiao et al., 2017), which achieved higher detection 

power than CBS. However, the relatively allelic intensity information (i.e., BAF) is 

underutilized in modSaRa. Therefore, modSaRa2 (Xiao et al., 2019) was further 

developed to integrate both LRR and BAF, which greatly improved the sensitivity and 

specificity of the method (Xiao et al., 2019). Besides CBS and SaRa, another popular 

approach is the penalization method. Huang et al. formalized the change-point detection 

problem as a lasso variable selection problem, where each non-zero coefficient represents 

one breakpoint (Huang et al., 2005). This framework also incorporates the genomic 

location information and spatial dependence through the penalty function. Tibshirani and 

Wang generalized the fussed lasso framework to the change-point detection problem 

(Tibshirani and Wang, 2008). Compared to Huang’s method, it adds one more penalty 

term to ensure the sparsity of the change-point estimates. 

Unlike change-point test-based methods, HMM-based methods consider a 

different model that the copy number status for all locations constitute an unknown 

sequence governed by Markov property. In this Markov model, the hidden state at each 

SNP locus only depends on the state of the previous SNP, where the probability of 
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observing a state change between nearby SNPs is described by a transition probability 

matrix. In addition to the transition probability matrix, HMM also constructs emission 

probability distributions to model both LRR and BAF, stating as the conditional 

distributions of data intensities given hidden states. HMM can then determine the most 

probable underlying sequence of the copy number states in a dynamic programming 

manner (Colella et al., 2007; Wang et al., 2007). Many HMM methods have been 

proposed in the past decades. QuantiSNP (Colella et al., 2007) uses a series of copy 

number state-specific and distance-based functions to define transition probabilities in the 

HMM. In QuantiSNP, the emission probability matrix is formed as a mixture of normal 

and uniform distribution, and the uniform component is helpful in capturing data outliers. 

QuantiSNP also generates Bayes factors for all identified CNVs to determine their 

statistical significance. PennCNV (Wang et al., 2007) utilizes similar transition and 

emission probabilities as QuantiSNP, but incorporates more sources of available data, 

such as family information and population genotype frequency, which can potentially 

improve its performance. genoCNV also develops the HMM in a similar way as 

PennCNV and QuantiSNP. The main novelty is that genoCNV not only identifies CNVs 

but also estimates their corresponding genotypes (Sun et al., 2009). As discussed later, 

the HMM has also been widely used in CNV detection with WES. 

1.2.2 CNV DETECTION WITH WES 

WES CNV detection methods mainly use the read count data to identify CNVs. 

Specifically, for each targeted genomic region (e.g., exons), the read count value is 

generated by counting the number of reads that are mapped to this region. In general, 

WES CNV detection methods follow a two-step procedure: normalization and 
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segmentation. Due to the pervasive biases that are introduced during the sequencing 

experiment, normalization procedures are crucial in eliminating biases and restoring the 

true CNV signals. Following the data normalization step, statistical segmentation 

algorithms are applied to identify the segments that share the same underlying copy 

number. Most of the tools still use array-based detection algorithms, such as CBS and 

HMM described in Section 1.2.1. Many statistical methods have been developed and 

reviewed in literature, and we are discussing a few commonly used ones 

(Sathirapongsasuti et al., 2011; Koboldt et al., 2012; Krumm, Peter H. Sudmant, et al., 

2012; Fromer et al., 2012; Plagnol et al., 2012;  Magi et al., 2013; Jiang et al., 2015; 

D’Aurizio et al., 2016; Packer et al., 2016; Jiang et al., 2018). 

 ExomeCNV (Sathirapongsasuti et al., 2011) is the earliest method for WES, which 

requires WES data from case-control pairs, such as matched tumor-normal samples. It 

calculates the read count ratios between cases and controls to reduce biases, assuming 

that biases are exon-specific and nearly constant across samples for a particular exon. 

CBS is then implemented to infer CNV calls in the segmentation. VarScan2 (Koboldt et 

al., 2012) also needs WES data from case-control pairs. Unlike other methods, it does not 

use exon regions to generate read count data. Instead, VarScan2 constructs contiguous 

regions by binning the consecutive bases whose base-level read count ratios do not 

change significantly. Read count ratios are then calculated for those newly formed 

regions and further segmented by CBS. However, these methods all utilize control 

samples to remove biases, which cannot adjust technical variability between samples. 

Thus, to control sample-to-sample technical variability, ExomeDepth (Plagnol et al., 

2012) builds up a reference set that optimally chooses the number of samples to be added 
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to the reference set. After the construction of the optimal reference set, read count ratio 

data is calculated to adjust biases. ExomeDepth then uses HMM to generate CNV calls. 

However, all the above methods assumed that biases are only exon-specific. It was soon 

discovered that those biases are also sample-specific, which cannot be completely 

removed by using the case-control pairs. Therefore, CLAMMS (Packer et al., 2016) 

selects a reference panel based on seven sequencing quality control metrics for each 

testing sample. Alternatively, CoNIFER (Krumm, Peter H Sudmant, et al., 2012) and 

XHMM (Fromer et al., 2012) uses SVD to extract the true CNV signals from the noisy 

data by removing the strongest latent factors that explain most of the data variations. The 

calculated SVD residuals are then analyzed by HMM to generate CNV calls. However, 

SVD-based approach cannot capture non-linear biases, such as GC content. More 

recently, CODEX (Jiang et al., 2015) proposed a Poisson latent factor (PLF) model, 

which improves upon the SVD-based approach to remove both systematic and observed 

biases (i.e., GC content, exon length). Expected “null” coverages assuming there is no 

CNV are estimated and compared to the observed coverage. CODEX then uses CBS for 

the data segmentation. However, CODEX and SVD-based methods all lack sensitivity for 

detecting common CNVs, as the common signals will also be removed when removing 

top latent factors. Subsequently, CODEX2 improves CODEX, which utilizes CNV 

incident rate to rescue common signals (Jiang et al., 2018). Nevertheless, both SVD and 

PLF methods process all samples at once, thus becoming computationally expensive with 

a large number of samples. EXCAVATOR (Magi et al., 2013) and EXCAVATOR2 

(D’Aurizio et al., 2016) employ a three-step median normalization procedure to remove 

the effects from the GC content, mappability score and exon size. After bias correction, 
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logarithm ratio of normalized values between case and control sample are calculated. A 

shifting level model (SLM) algorithm is applied to perform segmentation, where SLM is 

similar to the HMM but with a different parametrization strategy (Magi et al., 2010). The 

main difference between EXCAVATOR and EXCAVATOR2 is that EXCAVATOR2 

also uses off-target read counts from WES data, which enlarges the detection spectrum.  

1.2.3 GAPS IN THE CURRENT LITERATURE 

Despite the progress in developing statistical methods, current methodologies for CNV 

detection still face analytical challenges. First, existing change-point detection-based 

methods are all developed with a strong independent assumption, ignoring the non-

independence structure among genomic position in the genetics perspective. HMM-based 

segmentation methods use the Markov model with a state and distance-based transition 

probability matrix to model the dependence structure. However, HMM only employs a 

first-order Markov model, limiting the possibility to incorporate broad range correlations.  

Second, conventional methods that we reviewed above all adopt a single-sample 

scanning strategy by simply applying the CNV calling algorithm to each sample 

repeatedly, which may result in high false discovery rates and low sensitivity due to 

sample-specific noise and CNV complexity. To address this challenge, several multiple 

sample-based methods have been developed that can utilize shared information across 

samples. Most of these methods still use single sample-based scan statistics (e.g., CBS 

statistics). After computing the single-sample statistics for all samples, multiple sample 

scan statistics is obtained by combining them together (N. R. Zhang et al., 2010; Li and 

Tseng, 2011; Song et al., 2016). Besides, Vert et al. implemented a group-lasso approach 
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to detect shared CNVs (Vert and Bleakley, 2010). However, this approach tends to be 

computationally expensive when applies to large-scale genetics data.  

Third, CNV data genotyped by a single platform usually does not provide 

comprehensive coverage of the whole genome and is subject to platform-specific biases 

and nosiness. For example, WES merely explores the protein-coding regions, while SNP 

array can only genotype up to one million genetic variants. With the increasing 

availability of CNV data generated from different platforms (e.g., WES and SNP array). 

It is highly demanded to develop novel integrative CNV detection methods that can 

exploit all available information to boost both detection power and resolution. Zhou et al. 

(Zhou et al., 2018) developed iCNV, which integrates SNP and WES data. iCNV 

presents significant detection power gain compared to single platform detection. 

However, it does not incorporate information across samples in its modelling framework, 

which tends to suffer from high false positive rate. 

Thus, to address the limitations caused by the independence assumption, we 

proposed a novel algorithm (LDcnv) that models the correlated SNP data intensities 

(Chapter 2). Meanwhile, we also proposed a correlation-based method, CORRseq, as a 

novel release of LDcnv in analyzing correlated WES data (Chapter 3). Moreover, to 

address the obstacle due to the sparsity nature of SNP array and WES data and improve 

on both detection accuracy and resolution, we developed BMI-CNV, a Bayesian Multi-

sample and Integrative CNV calling method, which can efficiently integrate data from 

multiple platforms (i.e., WES and SNP array) and multiple samples (Chapter 4). 
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CHAPTER 2 

INTEGRATING GENOMIC CORRELATION STRUCTURE IMPROVES 

COPY NUMBER VARIANTS DETECTION1 

2.1 ABSTRACT 

Existing CNV detection algorithms have been developed with a strong assumption of 

independent observations in the genetic loci, and they assume each locus has an equal 

chance to be a change-point. However, this assumption is violated in the genetics 

perspective due to the existence of correlation among genomic positions such as linkage 

disequilibrium (LD). In this study, we provided theoretical proof to demonstrate the 

correlation structure of CNV data generated from SNP array. Motivated by this evidence, 

we developed a novel SNP array CNV calling algorithm, LDcnv, that models the CNV 

data with its biological characteristics relating to the genomic dependence structure. To 

evaluate the performance of LDcnv, we conducted extensive simulations and analyzed 

large-scale HapMap datasets. We showed that LDcnv presented higher precision in 

detecting short CNVs compared to existing methods. 

2.2 INTRODUCTION  

Technically, the detection of CNVs is the finding of breakpoints or boundaries of copy 

number regions from the genotyping signals. Change-point tests have been commonly 

used and implemented in several software and tools for chromosomal segmentation 

 
1 Xizhi Luo, Fei Qin, Guoshuai Cai and Feifei Xiao. Bioinformatics. 2021 Apr 

20;37(3):312-317. Reprinted here with permission of the publisher. 
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(Darvishi, 2010; Deng, 2011; Gai, et al., 2010). Among them, circular binary 

segmentation (CBS) has been widely used and is based on an exhaustive test (Olshen, et 

al., 2004). More recently, a novel segmentation procedure was utilized in modSaRa that 

adopted a local search strategy and was efficient for whole genome analysis with low 

computational complexity (Niu and Zhang, 2012; Xiao, et al., 2019; Xiao, et al., 2017). 

Our team then further proposed modSaRa2 that integrates Log R Ratio (LRR) and B 

allele Frequency (BAF) that greatly improved the sensitivity and specificity (Xiao, et al., 

2019). Nevertheless, all of these algorithms were developed with a strong assumption of 

independent observations across the genetic loci and they assume each locus has an equal 

chance to be a breakpoint (i.e., boundary of CNVs). However, this assumption is violated 

in the genetics perspective given the non-independence structure among genomic 

positions, which is referred to as linkage disequilibrium (LD). Dictated by the presence of 

recombination hotspots that segment the genome into separate blocks, LD describes the 

non-independent transmission of the alleles at adjacent locations in the genome. 

Moreover, it was discovered early that CNVs are outcomes of evolution and they 

originated from recombination-based processes (Zhang et al., 2009), which demonstrated 

the possibility of the existence of CNV breakpoints located at the recombination hotspots, 

which violates the assumption of previous segmentation methods as mentioned above. 

Given this evidence, it is essential to integrate the biological characteristics into statistical 

modeling for CNV detection.  

 Motivated by this fact, we here develop an accurate and fast segmentation 

algorithm, referred to as LDcnv, by modeling the genomic correlation structure with a 

local search strategy for optimized computational efficiency, with the correlation 
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structure derived as a function of LD measures. To investigate the performance of the 

newly proposed algorithm, we conducted simulation studies to investigate its 

performance in SNP array studies in a variety of scenarios. We demonstrated the 

improved performance of the method in array-based real data analysis by using a set of 

“gold standard validation sets” from the HapMap projects (McCarroll et al., 2008; 

Conrad et al., 2010; D. Altshuler et al., 2010). Overall, the new algorithm presented high 

sensitivity and accuracy in CNV detection, especially for detection of small-sized CNVs.  

2.3 METHODS 

2.3.1 THEORETICAL DERIVATION: CORRELATION STRUCTURE IN CNV 

DATA 

In this study, we hypothesized that the integration of the genomic correlation structure 

will boost the accuracy of CNV detection. In this section, we therefore provide 

theoretical evidence to support that the genetic intensity data (i.e., LRR) are non-

independent and presenting a correlation structure that should be deliberated in statistical 

modeling for CNV detection. 

We start from the generation of the SNP array intensities LRR, which has been 

introduced in Section 1.2.1. In our study, to present the correlation of two adjacent bi-

allelic SNPs, we assume the reference allele and alternative allele were A and a for the 

first SNP, and B and b alleles for the second SNP, alleles A and B occur with population 

frequency 𝑝𝐴 and 𝑝𝐵.  The total signal intensities for the two alleles are therefore 𝑋𝐴 + 𝑌𝐴 

and 𝑋𝐵 + 𝑌𝐵 . Under the Hardy-Weinberg equilibrium assumption (HWE), the joint 

probability for the nine possible genotypes can be calculated (shown in Supplementary 

Table A.1). For example, for the genotype AABB, the genotype frequency will be 
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(𝑝𝐴𝑝𝐵 + 𝐷𝐴𝐵)2 where 𝐷𝐴𝐵 is the coefficient of linkage disequilibrium between the two 

SNPs. 

Our main interest is then to calculate the correlation of LRR= 𝑙𝑜𝑔2(𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑/

𝑅𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) between the two SNPs. After applying the Taylor expansions, the correlation 

of the LRR intensities can be approximately represented by the correlation of 

𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐴and 𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐵, which is expressed by   

𝜌𝐴𝐵 =
𝑐𝑜𝑣(𝑋𝐴+𝑌𝐴,𝑋𝐵+𝑌𝐵)

√𝑣𝑎𝑟(𝑋𝐴+𝑌𝐴)𝑣𝑎𝑟(𝑋𝐵+𝑌𝐵)
(1)                  

Derivation of the 𝜌𝐴𝐵 shows the existence of correlation structure of the LRR intensities 

across the genome, which will be further discussed in the results (Section 2.4.2).  

2.3.2 LDcnv ALGORITHM 

Given the evidence of correlation structure in the dataset, we further proposed a novel 

algorithm constructed from a basic change-point model which identifies underlying mean 

shifts in intensities and locate breakpoints along the genome. Specifically, let 𝐘 =

(𝑌1, … , 𝑌𝑀)𝑇  denote the genetic intensities for a genome sequence with M biomarkers 

(i.e., SNPs in array data or exons in WES data). A high-dimensional linear normal mean 

model is usually adopted to model the signal intensities in previous literature and is also 

used in our framework (Niu and Zhang, 2012; Xiao et al., 2017, 2019), 

𝑌𝑖 = 𝜇𝑖 + 𝜀𝑖, 𝑖 = 1,2, … , 𝑀. (2) 

where 𝝁 = (𝜇1, … , 𝜇𝑀)𝑇  is the underlying piecewise constant mean vector, 𝜺 =

(𝜀1, … , 𝜀𝑀)𝑇 ∼ 𝑁𝑝(0, 𝚺) are the error terms. The breakpoints or boundaries of the CNVs 

are position 𝜏′𝑠 that 𝜇𝜏 ≠ 𝜇𝜏+1, where the locations of these breakpoints are reflected in 

the model as change points. We assume that there are 𝑇 ordered change points in the 
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sequence, 0 < 𝜏1 < ⋯ < 𝜏𝑇 < 𝑀. Thus, the main goal is to estimate the location vector 

consisted of all the change points, 𝝉 = (𝜏1, … , 𝜏𝑇)𝑇. Studies have worked on the problem 

of identifying the location of breakpoints when the Ys are independent. In this chapter, to 

capture the biological characteristics (i.e., genetic correlation) in the process of copy 

number states inference, we proposed the algorithm, referred to LDcnv, that 

systematically integrated the genomic correlation structure of the genetic intensities into 

statistical modelling. We assume the genetic intensities follow a multivariate normal 

distribution given the dependence structure of the genome. 

𝑌~𝑀𝑉𝑁(𝜇, Σ) (3) 

where Σ is the covariance matrix with dimension 𝑚 × 𝑚. The covariance matrix (Σ) can 

be estimated by using the correlation matrix estimated from the samples or an exterior 

large-scale population reference dataset such as samples from the 1000 Genomes project 

(Auton, Gonçalo R. Abecasis, et al., 2015). 

 Similar to the SaRa algorithm (Niu and Zhang, 2012), LDcnv was also built with 

the local diagnostic function 𝐷(𝑥)  defined as the average mean difference in the 

observations before and after a point 𝑥, 

𝐷(𝑥, 𝑤) = ∑ 𝑌𝑥+1−𝑘/𝑤
𝑤

𝑘=1
− ∑ 𝑌𝑥+𝑘/𝑤

𝑤

𝑘=1
(4) 

 where 𝑤 is the pre-defined bandwidth. In our algorithm, the quantity of 𝐷(𝑥, 𝑤) depends 

on the local 2𝑤 data points 𝑌̃ : 𝑌𝜏+1−𝑤,...... 𝑌𝜏 ,...... 𝑌𝜏+𝑤 where 𝑌̃~𝑀𝑉𝑁(𝜇, Σ̃). 𝜇 is a sub-

vector of 𝜇 with length 2𝑤; Σ̃ is a sub diagonal matrix of the covariance matrix Σ with 

dimension 2𝑤 × 2𝑤, respectively. Then 𝐷(𝑥) can be rewritten as 𝐷(𝑥) = 𝑎⃗𝑌̃. 𝑎⃗ is a 2𝑤 

vector takes the form 
1

𝑤
[𝕝𝑤×1  −𝕝𝑤×1] . Instead of using an independence correlation 
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matrix as used in SaRa, our algorithm efficiently incorporates the local correlation 

information into the statistical modeling without sacrifice on computational efficiency. 

 By derivation with the linear property of multivariate normal distribution, we 

obtained 𝐷(𝑥)~𝑁(𝑎⃗𝜇, 𝑎⃗Σ̃𝑎⃗𝑇). It turned out that the distribution of the local diagnostic 

function became a univariate normal with a covariance matrix depending on the local 

information, Σ̃ . Since both 𝜇 and Σ̃ are known or can be estimated from the local data 

sequence, the mean and variance of 𝐷(𝑥) are functions of bandwidth 𝑤. The bandwidths 

𝑤  should be carefully chosen, referring to (Xiao et al., 2015), and we suggest using 

multiple bandwidths in applications, which has been implemented in our LDcnv method 

and R package (https://github.com/adamluo12/LDcnv).  

2.3.3 COPY NUMBER INFERENCE 

After calculation of the local diagnostic statistic 𝐷(𝑥), hypothesis testing is implemented 

to find change-point candidates by a local screening and ranking strategy (Niu and 

Zhang, 2012). A similar strategy has been used in our previous work (Xiao et al., 2017, 

2019), which guarantees high computational speed in a whole genome scan. 

       Providing the distribution of 𝐷(𝑥), we first define the 𝑤-local maximizer of a 

function. For any data point 𝑥, the interval (𝑥 − 𝑤, 𝑥 + 𝑤) is called the 𝑤-neighborhood 

of 𝑥. And 𝑥 is a 𝑤-local maximizer of function 𝑓(∙) if  

𝑓(𝑥) ≥ 𝑓(𝑥′) for all 𝑥′ ∈ (𝑥 − 𝑤, 𝑥 + 𝑤) (5) 

Then let ℒ be the set of all local maximizers of the function |𝐷(𝑥, 𝑤)| and we can select a 

subset ℳ̂ = {𝜏̂1 < 𝜏̂2 < ⋯ < 𝜏̂𝑀̂} ⊂ ℒ  by setting a threshold |𝐷(𝜏̂, 𝑤)| > 𝛾 , where ℳ̂ 

and 𝑀̂ are the estimators for the locations and the number of change-points, respectively. 

To set up the threshold 𝛾, we adopted a multiple testing-based method proposed by Hao 
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et al., which focused on assessing and controlling the false discovery rate (FDR) for 

change-point location estimators (Hao et al., 2013). This FDR approach was 

demonstrated to be effective in selecting thresholding parameter that controlled the FDR 

at a target rate (e.g., FDR=0.05). See Theorem 1 in (Hao et al., 2013) and Supplementary 

B.1 for more details. As a result, the local maximizers ℳ̂  or, equivalently, local 

minimizers of p-values were selected.  

       Then we used the modified Bayesian Information Criteria (mBIC) to further 

eliminate false positives as proposed in (Zhang and Siegmund, 2007): 

𝑚𝐵𝐼𝐶(𝑀̃) =
𝑛

2
𝑙𝑜𝑔(σ̂𝑀̃

2 ) + 𝐽𝑙𝑜𝑔(𝑛) +
1

2
∑ 𝑙𝑜𝑔 (

𝑥(𝑖)

𝑛
−

𝑥(𝑖−1)

𝑛
)

𝑀̃+1

𝑖=1

(6) 

where 𝑀̃ is all the possible values of 𝑀̂ and σ̂𝑀̃
2  is the maximum likelihood estimator of 

the variance assuming 𝑥1, … , 𝑥𝑀̃ are change points. Then the final estimated number and 

the locations of change points are 𝑀̂′ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑚𝐵𝐼𝐶(𝑀̃)) and ℳ̂ = {𝜏̂1 < 𝜏̂2 < ⋯ <

𝜏̂𝑀̂′}, respectively. For copy number inference, Gaussian mixture model-based clustering 

was used for copy number state classification (Xiao et al., 2015). Each segmented region 

will be classified using a three-state classification scheme (deletion, normal/diploid and 

duplication). 

2.3.4 NUMERICAL SIMULATION STUDIES 

With the new proposed algorithm, we conducted extensive simulations to evaluate the 

performance in CNV identification. To simulate correlated genomic intensities, we used 

the first-order autoregressive (AR1) process: 

𝑌𝑖 = 𝑐 + ϕ𝑌𝑖−1 + 𝜀𝑖, 𝑖 = 1,2, … 𝑛, (7) 
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where 𝑌𝑖 was the intensities for the i-th marker; 𝜀𝑖 was a Gaussian white noise process 

with mean zero and variance σ𝜀
2 ; 𝜙  was a known coefficient that controlled the 

autocorrelation of the data series (for example, |𝜙 | < 1 generates a stationary sequence); c 

was a constant and n was the total number of markers. The underlying mean 𝜇, variance 

𝑣𝑎𝑟(𝑌𝑖)  and auto-covariance 𝐵𝑛  were given as: μ =
𝑐

1−ϕ
, 𝑣𝑎𝑟(𝑌𝑖) =

σ𝜀
2

1−ϕ2  and 𝐵𝑛 =

σ𝜀
2

1−ϕ2 ϕ|𝑛|. Using the AR1 process allows to flexibly adjust the distribution of the data by 

changing the underlying distribution of the white noise term and generates data much 

faster than the multivariate normal distribution assumption-based process without 

decomposing the covariance matrix. 

We randomly generated LRR and BAF intensities for 100 sequences (i.e., 

chromosomes) with 20,000 markers. For each sequence, 40 dispersed and non-

overlapping CNV segments were generated, the locations of which were randomly 

selected. The mean and variance were empirical values provided by the Illumina website 

(https://www.illumina.com/documents). We constructed different scenarios with different 

combinations of CNV sizes, states and correlation levels. The CNV sizes varied from 

10~50 markers, 50~100 markers and 100~200 markers. The CNV status included 

deletion of a single copy (Del.s), deletion of double copies (Del.d), duplication of a single 

copy (Dup.s) and duplication of double copies (Dup.d). To investigate the CNV data with 

different levels of correlations, the value of 𝜙 which was equivalent to the Pearson’s 

correlation coefficient in theory, was set to be 0.1, 0.3 and 0.5, corresponding to weak, 

moderate and strong correlation strength, respectively. With the generated CNV data, we 

compared the proposed method to an independence assumption-based method, CBS, a 
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shifting level model based method, SLMSuite and a hidden Markov model based method, 

PennCNV (Olshen et al., 2004; Wang et al., 2007; Orlandini et al., 2017). For LDcnv, we 

also compared the performance of using LRR data only (LDcnv_LRR) and using the 

estimates that integrates LRR and BAF (LDcnv) (Supplementary B.5) (Xiao et al., 2019). 

The performance of these methods was demonstrated by comparing the true positive rate 

(TPR) and false positive rate (FPR). 

2.3.5 PERFORMANCE EVALUATION BY APPLICATION TO THE HAPMAP 

DATASETS 

To evaluate the proposed LDcnv algorithm, we analyzed 180 healthy individuals, which 

are all Utah residents with Northern and Western European ancestry (CEU). The SNP 

array data were downloaded from the international HapMap 3 Consortium (D. Altshuler 

et al., 2010). The genetic intensities were then pre-processed by the genomic_wave.pl 

function of PennCNV (Wang, et al., 2007) to adjust the GC wave content effects.  To 

further assess the performance of LDcnv, we used the CNV profiles that have been 

validated experimentally or statistically in three previous microarray studies (McCarroll 

et al., 2008; Conrad et al., 2010; D. Altshuler et al., 2010). The HapMap project utilized 

stringent genotyping quality control (QC) and merged results from multiple calling 

algorithms, which produced 856 high-quality CNV calls (D. Altshuler et al., 2010). 

McCarroll et al. identified 1,320 high resolution CNV calls by joint analysis of multi-

platforms data (McCarroll et al., 2008), whereas Conrad et al. used tiling oligonucleotide 

array to generate a map of 11,700 CNVs, among which 8,599 were independently 

validated through stringent validation procedures (Conrad et al., 2010). Specifically, 

stringent QC procedures were adopted (i.e., the reported CNVs must overlap with at least 
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2 SNP markers, have less than 5% missing rate across all samples) to construct the “gold 

standard validation sets”.  

Using this “gold standard validation sets”, we compared the performance of the 

LDcnv method against PennCNV, SLMSuite and CBS (Olshen et al., 2004; Wang et al., 

2007; Orlandini et al., 2017). For CNV calls from all four methods, to obtain high-quality 

CNV profiles, we excluded CNVs with less than ten markers in the calling results. 

Besides, we used the database of genomic variants (DGV) as a reference of common 

variants to select the high-quality CNV profile, which curates CNV records from 55 

independent studies of clinically normal populations (MacDonald et al., 2014).  

These methods were assessed by the precision rate, recall rate and F1 score 

measures. The precision rate was defined as the ratio of identified true positives over the 

total number of identified CNVs. The recall rate was the ratio of identified true positives 

over the total number of “true CNVs” in the “gold standard validation sets”. The F1 score 

was defined as the harmonic mean of precision and recall rate which reflected the overall 

accuracy. Moreover, we evaluated the performance in subsets of the validation sets which 

consist of CNV records spanning less than 10 markers to assess the performance of these 

methods in detecting short CNVs. 

2.4 RESULTS 

2.4.1 REAL DATA SHOWS THAT THAT CNV LOCATIONS ARE RELATED 

TO THE GENOMIC STRUCTURE 

To explore the relationship between CNV locations and LD structure, we utilized the real 

data high-quality CNV profile from the international HapMap 3 Consortium which 

merged probe-intensity data from both Affymetrix and Illumina arrays (D. Altshuler et 
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al., 2010). The profile set contained 856 CNV records from 1,184 individuals. We 

randomly selected 300 high-quality CNVs and mapped to the LD block maps 

(Supplementary Figure A.1). Obviously, most of these CNV breakpoints are located 

outside of the LD blocks (across block, hybrid or random), with only 2.0% residing 

within LD blocks (inter-block). Among the CNVs that involve LD structure (i.e., across 

block, inter-block and hybrid), only 11.0% were spanning at least one LD blocks. These 

results implicated that CNVs are not randomly distributed across the genome, and their 

distribution of the breakpoints is closely related to the local LD structure. Such results 

motivated the development of our LDcnv algorithm and are consistent with the 

theoretical derivation of the correlation structure of genetic intensities in SNP array data 

(Section 2.4.2). 

2.4.2 THEORETICAL DERIVATION REVEALED THE CORRELATION 

STRUCTURE IN GENETIC INTENSITIES 

First, to further demonstrate the necessity of integrating the correlation structure into the 

segmentation algorithm, we initiated the study by a theoretical derivation to demonstrate 

the correlation structure of the genetic intensities (i.e., LRR) between two adjacent 

genomic loci. As a continued discussion of Section 2.3.1, we have the correlation 

coefficient of LRR between two loci expressed as 𝜌𝐴𝐵 =
𝑐𝑜𝑣(𝑋𝐴+𝑌𝐴,𝑋𝐵+𝑌𝐵)

√𝑣𝑎𝑟(𝑋𝐴+𝑌𝐴)𝑣𝑎𝑟(𝑋𝐵+𝑌𝐵)
, in which 

X and Y are the normalized signal intensities of the two alleles in a SNP (e.g., A and a).  

For 𝑐𝑜𝑣(𝑋𝐴 + 𝑌𝐴, 𝑋𝐵 + 𝑌𝐵), we obtained, 

𝑐𝑜𝑣(𝑋𝐴 + 𝑌𝐴, 𝑋𝐵 + 𝑌𝐵) = 𝑐𝑜𝑣(𝑋𝐴, 𝑋𝐵) + 𝑐𝑜𝑣(𝑋𝐴, 𝑌𝐵) + 𝑐𝑜𝑣(𝑌𝐴, 𝑋𝐵) + 𝑐𝑜𝑣(𝑌𝐴, 𝑌𝐵) (8) 
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As 𝑐𝑜𝑣(𝑋𝐴, 𝑋𝐵) = 𝐸(𝑋𝐴𝑋𝐵) − 𝐸(𝑋𝐴)𝐸(𝑋𝐵), the expected values of the normalized signal 

intensities 𝑋𝐴, 𝑋𝐵 and the expected values of their product need to be derived. We assume 

the joint probability density function to be 𝑓𝑋𝐴,𝑋𝐵
(𝑥𝐴, 𝑥𝐵) which are bivariate normal  

distributions conditional on the genotype G: 

𝑓𝑋𝐴,𝑋𝐵
(𝑥𝐴, 𝑥𝐵) = ∑ 𝑓𝑋𝐴,𝑋𝐵

(𝑥𝐴, 𝑥𝐵|𝐺)

4

𝑘=1

𝑃(𝐺 = 𝐺𝑘) (9) 

where 𝐺 = [𝐴𝐴𝐵𝐵, 𝐴𝐴𝐵𝑏, 𝐴𝑎𝐵𝐵, 𝐴𝑎𝐵𝑏]𝑇 is the vector of genotypes that contain alleles 

A and B. After mathematical derivation (detailed in Appendix B.2), the covariance 

between the two normalized signal intensities can be formulated as:  

𝑐𝑜𝑣(𝑋𝐴, 𝑋𝐵) = ∑ 𝐸(𝑋𝐴|𝐺𝑘)𝐸(𝑋𝐵|𝐺𝑘)[𝑃(𝐺 = 𝐺𝑘) − 𝑞(𝐺 = 𝐺𝑘)].

4

𝑘=1

(10) 

 𝑞(𝐺 = 𝐺𝑘) is the genotype frequency under the condition that the two loci are in LD. For 

example, 𝑞(𝐴𝐴𝐵𝐵) = 𝑝𝐴
2𝑝𝐵

2 . The expression of all the other genotype frequencies 

𝑃(𝐺 = 𝐺𝑘) can be found in Supplementary Table A.1. 

Similarly, we can derive the other three terms in equation (8) and then obtain 

𝑐𝑜𝑣(𝑋𝐴 + 𝑌𝐴, 𝑋𝐵 + 𝑌𝐵) as 

∑ ∑ 𝐸(𝑋𝐴|𝐺𝑖𝑘)𝐼1𝑖𝐸(𝑋𝐵|𝐺𝑖𝑘)𝐼2𝑖𝐸(𝑌𝐴|𝐺𝑖𝑘)1−𝐼1𝑖𝐸(𝑌𝐵|𝐺𝑖𝑘)1−𝐼2𝑖[𝑃(𝐺𝑖𝑘) − 𝑞(𝐺𝑖𝑘)]

4

𝑘=1

4

𝑖=1

(11) 

where 𝐺1. = [𝐴𝐴𝐵𝐵, 𝐴𝐴𝐵𝑏, 𝐴𝑎𝐵𝐵, 𝐴𝑎𝐵𝑏]𝑇 , 𝐺2. = [𝐴𝐴𝐵𝑏, 𝐴𝐴𝑏𝑏, 𝐴𝑎𝐵𝑏, 𝐴𝑎𝑏𝑏]𝑇 , 𝐺3. =

[𝐴𝑎𝐵𝐵, 𝐴𝑎𝐵𝐵, 𝑎𝑎𝐵𝐵, 𝑎𝑎𝐵𝑏]𝑇 and 𝐺4. = [𝐴𝑎𝐵𝑏, 𝐴𝑎𝑏𝑏, 𝑎𝑎𝐵𝑏, 𝑎𝑎𝑏𝑏]𝑇 .  𝐼1𝑖 and 𝐼2𝑖  are 

indicator functions of whether 𝑋𝐴 and 𝑋𝐵 contribute to the bivariate density in equation 

(9). 𝐼1𝑖 = 1, if 𝑖 = 1 or 2. 𝐼2𝑖 = 1, if 𝑖 = 1 or 3. Otherwise, 𝐼1𝑖 =  𝐼2𝑖 = 0. 
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Combining results from equation (11) and the expression of the denominator of 

𝜌𝐴𝐵 in equation (7) from Appendix B.3, the correlation of LRR between the two loci can 

be defined as: 

𝜌𝐴𝐵 =
∑ ∑ 𝐸(𝑋𝐴|𝐺𝑖𝑘)𝐼1𝑖𝐸(𝑋𝐵|𝐺𝑖𝑘)𝐼2𝑖𝐸(𝑌𝐴|𝐺𝑖𝑘)1−𝐼1𝑖𝐸(𝑌𝐵|𝐺𝑖𝑘)1−𝐼2𝑖[𝑃(𝐺𝑖𝑘) − 𝑞(𝐺𝑖𝑘)]4

𝑘=1
4
𝑖=1

√𝜋1𝑣𝑎𝑟(𝑋𝐴) + 𝜋2𝑣𝑎𝑟(𝑌𝐴)√𝜋3𝑣𝑎𝑟(𝑋𝐵) + 𝜋4𝑣𝑎𝑟(𝑌𝐵) 
 

where 𝐺𝑖𝑘  denotes the underlying k-th genotype contained in the i-th bivariate normal 

distribution (details in Appendix B.2); 𝑃(𝐺𝑖𝑘) is the corresponding genotype frequencies 

under the HWE assumption; 𝑞(𝐺𝑖𝑘) is the genotype frequencies assuming independent 

loci.  According to expression of above Equation, the correlation of LRR depends on the 

association of the two SNPs which was measured by the LD coefficient 𝐷𝐴𝐵 . For 

example, 𝑃(𝐺𝑖𝑘) − 𝑞(𝐺𝑖𝑘) = (𝑝𝐴𝑝𝐵 + 𝐷𝐴𝐵)2 − 𝑝𝐴
2𝑝𝐵

2 for genotype AABB (𝑖 = 1, 𝑘 = 1). 

As we see, the correlation of the LRR will be equal to zero if the LD coefficient between 

the two SNPs equals to zero since 𝜌𝐴𝐵 = 0 if 𝐷𝐴𝐵 = 0. 

As such, in theory, we showed that the correlation of LRR intensities is related to 

the coefficient of LD measure between two SNPs, although the relationship does not 

admit a simple format. This result demonstrated the correlation structure in SNP array 

data and imply the need to take the correlation structure of LRR into consideration in 

CNV detection. 

2.4.3 SIMULATION STUDIES SHOW IMPROVED PERFORMANCE OF LDcnv 

First, we used the simulated data to evaluate the performance of the LDcnv methods in 

SNP array analysis under a variety of scenarios: (1) different correlation levels (i.e. ϕ =

0.1, 0.3 and 0.5); (2) different CNV sizes (i.e. 10~50 markers, 50~100 markers and 

100~200 markers); and (3) different CNV states (i.e. Del.d, Del.s, Dup.d and Dup.s). The 
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LDcnv method presented a consistent power across various settings. For data with 

moderate correlation coefficient (ϕ = 0.3) that is assumed to be close to real data, we 

found gain in detecting CNVs from single copy duplication/deletions (i.e., Dup.s and 

Del.s) to double copy changes (i.e., Dup.d and Del.d) (Table 2.1), and the estimations of 

CNVs are stable across different scenarios of CNV states and sizes. For short CNVs (<50 

markers), the performance of the LDcnv was obviously superior to the other methods 

when the CNVs had small jump sizes (Dup.s and Del.s), whereas the CBS and SLMSuite 

methods showed diminished power. For example, when the CNVs had a length between 

10-50 markers and the CNV state was single copy duplication (Dup.s), the LDcnv 

method had a TPR at 0.97, while the FPR was 0.03. The corresponding TPRs and FPRs 

for PennCNV were 0.91 and 0.07; 0.85, 0.11 for CBS; and 0.77, 0.04 for SLMSuite, 

respectively. When the CNV size increased from 10-50 markers to 100-200 markers, the 

LDcnv maintained a stable performance and was comparable to the SLMSuite method, 

except for detecting single copy duplications. In the contrary, the PennCNV method 

presented diminished power. For example, for single copy deletions with a length 

between 100 to 200 markers, the LDcnv method (TPR=0.99, FPR=0.03) and SLMSuite 

(TPR=0.99, FPR=0.01) showed significantly better performance than PennCNV 

(TPR=0.86, FPR=0.11). A similar pattern was observed when the correlation increased 

from 0.1 to 0.5 (Supplementary Tables A.3 and A.4). Besides, increased sensitivity and 

specificity of LDcnv (that integrates LRR and BAF) were clearly observed compared to 

LDcnv that only uses LRR intensities (LDcnv_LRR), which was consistent with our 

previous findings (Xiao et al., 2019). 
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 In conclusion, the LDcnv method, which integrated the correlation structure in the 

model, largely presented overall high accuracy, stability, and robustness in CNV 

detection, especially for detection of short CNVs with small jump sizes. 

2.4.4 APPLICATION TO THE HAPMAP DATASETS 

We further applied the LDcnv method to a real data study in comparison with CBS, 

SLMSuite and PennCNV (Olshen et al., 2004; Wang et al., 2007; Orlandini et al., 2017). 

Using the DGV as a common variant reference database, 47.30% of the CNVs identified 

by LDcnv have been reported as common variants that are not diseases relevant.  

With the validation sets from the three datasets (including HapMap3, Conrad et 

al., and McCarrol et al.), the total number of “true” CNVs included in these three datasets 

were 19,936, 121,453 and 11,961, separately. Among them, 10,005 (50.18%), 98,387 

(81.01%) and 5,277 (44.12%) were short CNVs with length less than ten markers. The 

overall performance of the LDcnv method was greater than that of the other methods in 

all three validation sets (Supplementary A.5, Figure 2.1). Specifically, LDcnv presented 

the highest F1 scores and detected much more true positives than other methods, although 

the precision is compromised. For example, in the HapMap dataset, LDcnv accurately 

detected 7,016 true positives. The corresponding true positives were 3,760 for PennCNV; 

3,965 for CBS and 4,942 for SLMSuite. For detection of short CNVs (Supplementary 

Table A.6, Supplementary Figure A.2), the LDcnv method was also superior to the other 

methods in all three validation sets and it presented obviously the highest F1 scores and 

identified the largest number of true positives in detecting short CNVs. As expected, 

PennCNV was the conservative one that detected the lowest number therefore presented 

the lowest precision rate (Supplementary Table A.6, Supplementary Figure A.2). These 
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results further demonstrated that the integration of correlation structure significantly 

improved the overall performance of CNV detection in LDcnv. 

2.5 DISCUSSION 

In this chapter, we first presented the theoretical derivation of the correlation structure of 

the genetic intensity data from SNP array data. We found that the array-based LD 

structure, which was computed from the genotype frequencies, can be reflected in the 

correlation structure of the genetic intensity data. We stated that the correlation between 

two loci in the genetic intensity will depend on the LD coefficient computed from SNP 

allele frequencies. This evidence provided strong support of the existence of genomic 

dependence structure in the CNV data. A correlation-based segmentation algorithm for 

CNV detection that accommodates the non-independence nature of the genetic intensities 

is then introduced. Simulation and real data analyses suggested that the LDcnv algorithm 

presented stable performance and essential advantages over the other comparative 

methods, especially the independence assumption based methods.  

The largest power gain tended to occur when CNVs were short and with small 

jump sizes, e.g., the duplication of a single copy. The superiority of the LDcnv algorithm 

over PennCNV and SLMSuite was further demonstrated, especially in detecting short 

CNVs, which is the most difficult copy number states to be detected due to the embedded 

undetectable signal in the random noises. A possible explanation for this phenomenon is 

that short CNVs tend to have more evident correlation structure when they are located 

within an LD block. Such a characteristic cannot be easily captured by the hidden 

Markov model adopted in PennCNV and SLMSuite, which assumes a constant level of 

Markov dependence across the genome.          
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Indeed, the clinical relevance of small CNVs has been demonstrated in many 

studies. For example, Reza et al. (Asadollahi et al., 2014) investigated a cohort of 714 

patients with neurodevelopment disorders and verified the diagnostic importance of small 

CNVs. However, due to the noise of genotyping data, small segments are usually very 

difficult to distinguish from the normal noise signals. As such, the LDcnv algorithm may 

serve as an important tool for detecting small CNVs.  

With LDcnv, we address the non-independence noise signal assumption by 

introducing a covariance matrix in the statistical modeling. To be noted, although this 

proposed algorithm was motivated by the existence of LD structure in the genome, our 

statistical modeling was not utilizing such information directly since the LD coefficient 

was computed from the genotypes instead of from the genetic intensities. To retain the 

covariance structure of the genetic intensities in the model, we can either use the 

correlation matrix estimated from the samples in the data or LD-based computation from 

reference samples (i.e., samples from the 1000 Genomes project). The advantage of the 

data-based estimation of the covariance relies on its feasibility and simplicity; however, 

the covariance might be data specific, and the computational concerns will be 

encountered for large sample sizes. In contrast, the LD-based estimates with information 

coming from the population level might be more stable but be susceptible to a specific 

population substructure. As discussed in Mathew et al. (Mathew et al., 2018), an 

alternative way is to use the map functions (e.g., the Haldane function) in an exponential 

function to estimate the covariance structure on each chromosome. 

Moreover, we have mainly demonstrated that the LD structure can be reflected in 

the genetic intensity data (i.e., LRR in SNP array). However, the correlation structures of 
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the BAF intensities were still not clear and not easily constructed. As a result, the 

theoretical study of the method that integrate LRR and BAF requires further studies. To 

alleviate the problems brought by such limitation, we only adopted data-based estimates 

for the covariance structure of the integrated LRR and BAF intensity in the statistical 

modeling. In addition, we used 300 high-quality CNV data from HapMap to demonstrate 

that CNVs were not randomly distributed across the genome. One possible explanation 

might be that the LD blocks under study were not long enough to contain a CNV. 

Rigorous examinations of this assumption with shorter CNVs should be further studied in 

the future.  

To profile CNV, various techniques have been used including SNP array and next 

generation sequencing (NGS) technologies. Due to the high cost and prohibitive 

computational requirements in NGS, SNP array is still an excellent choice for a genome-

wide analysis of CNVs in large GWASs, and there are many unexplored large-scale 

cohorts with SNP array data. This work is motivated to fill in a gap in the statistical 

modeling of CNV data and we start with SNP array data analysis as one of the important 

directions of applications. Our method developed in this study also has great potential to 

be implemented in the WES data analysis, which we pursue in chapter 3.  
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TABLES AND FIGURES 

Table 2.1 Summary of CNV calls on simulated data at ϕ =0.3 from all methods. True 

positive rates (TPRs) and false positive rates (FPRs) of LDcnv, LDcnv_LRR, PennCNV, 

SLMSuite and CBS with different CNV states and CNV sizes, the autoregressive 

coefficient (ϕ) was fixed at ϕ =0.3 which was corresponding to Pearson’s correlation 

coefficient at 0.3. Del.d: deletion of double copies; Del.s: deletion of single copy; Dup.s: 

duplication of single copy; Dup.d: duplication of double copies. 

CNV 

State 
Method 

CNV length (markers) 

 10~50 50~100  100~200 

TPR FPR TPR FPR TPR FPR 

Del.d 

LDcnv 0.99 <0.01 0.97 <0.01 0.99 0.01 

LDcnv_LRR 0.98 0.01 0.98 0.01 0.98 0.01 

PennCNV 1.00 <0.01 1.00 <0.01 1.00 <0.01 

SLMSuite 0.99 <0.01 1.00 <0.01 0.99 <0.01 

CBS 1.00 0.04 1.00 0.07 1.00 0.09 

Del.s 

LDcnv 0.99 0.02 0.97 0.01 0.99 0.03 

LDcnv_LRR 0.98 0.01 0.98 0.01 0.98 0.02 

PennCNV 0.96 0.03 0.95 0.04 0.86 0.11 

SLMSuite 0.98 0.01 0.99 0.01 0.99 <0.01 

CBS 0.98 0.03 0.98 0.04 0.98 0.05 

Dup.s 

LDcnv 0.97 0.03 0.94 0.03 0.93 0.05 

LDcnv_LRR 0.92 0.08 0.92 0.09 0.92 0.12 

PennCNV 0.91 0.07 0.92 0.08 0.87 0.11 

SLMSuite 0.77 0.04 0.95 0.04 0.97 0.03 

CBS 0.85 0.11 0.88 0.12 0.88 0.13 

Dup.d 

LDcnv 1.00 <0.01 1.00 <0.01 0.99 <0.01 

LDcnv_LRR 1.00 <0.01 1.00 <0.01 1.00 <0.01 

PennCNV 1.00 <0.01 0.99 <0.01 0.99 0.01 

SLMSuite 1.00 <0.01 1.00 0.00 1.00 0.00 

CBS 1.00 0.01 1.00 0.02 1.00 0.04 
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Figure 2.1 Assessment of CNV calls generated by LDcnv, PennCNV, CBS and 

SLMSuite methods with validation datasets from (a) HapMap 3 (b) Conrad et al (c) 

McCarroll et al. The x-axis is the precision and the y-axis present the recall rate. The grey 

contours are F1 scores calculated as the harmonic mean of precision rate and recall rate, 

which are 0 to 1 from left bottom to right top. 
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CHAPTER 3 

INTEGRATING GENOMIC CORRELATION STRUCTURE ENHANCES COPY 

NUMBER VARIANTS DETECTION FROM WHOLE-EXOME SEQUENCING 

DATA2  

3.1 ABSTRACT 

WES is effective in identifying CNVs with finer resolution compared to SNP array. We 

have previously shown evidence of the genomic correlation structure in SNP array data 

and developed a novel algorithm, LDcnv, which showed significantly improved detection 

power through integrating the correlation. However, it remains unexplored whether the 

genomic correlation exists in WES data and how such correlation structure integration 

can improve CNV detection accuracy. 

As a continuation of Chapter 2, in this project, we first used the 1000 Genomes 

Project WES data to evaluate the correlation structure before and after two commonly 

used normalization approaches: a median-based method and a Poisson latent factor (PLF) 

model-based method. Strong evidence of correlation structure was found before and after 

implementing the median normalization. Motivated by this fact, we developed a 

correlation-based method, CORRseq, as a novel release of the LDcnv algorithm in 

profiling WES data. Furthermore, given the weak correlation structure of WES data after 

PLF-based normalization, we also proposed SARA for analyzing independent data.

 
2 Fei Qin & Xizhi Luo, Guoshuai Cai and Feifei Xiao. Briefings in Bioinformatics, 2021; 

bbab215. Reprinted here with permission of the publisher. 
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The performance of CORRseq and SARAseq was evaluated in extensive simulation 

studies and real data from the 1000 Genomes Project. CORRseq outperformed existing 

methods in detecting medium and large CNVs. While SARAseq, which assumed the 

independent observations, performed the best in detecting short CNVs. The application of 

CORRseq to the TRICL consortium identified candidate lung cancer risk associated 

CNVs in 1p21.1, 1p23.3, 11q11.2, 17q21.32, 22q11.22 regions. 

3.2 INTRODUCTION 

With the rapid technological development, WES has offered an appealing platform for 

CNV identification due to its low cost, high coverage, and relatively simplified analysis 

process (Zare et al., 2017). Many statistical methods have been developed to detect 

CNVs from WES data, such as XHMM (Fromer et al., 2012), CoNIFER (Krumm, Peter 

H Sudmant, et al., 2012), EXCAVATOR (Magi et al., 2013), and CODEX (Jiang et al., 

2015) (see Section 1.2.2 for a detailed review). Technically, these methods consist of two 

main procedures: data normalization and segmentation.  

 WES data is highly contaminated with experimental noise due to biases, which 

makes proper normalization procedures crucial in processing WES data. Many methods 

have then been developed to remove biases and restore the true CNV signals, such as 

VarScan2 (Koboldt et al., 2012), CLAMMS (Packer et al., 2016), CoNIFER (Krumm, 

Peter H. Sudmant, et al., 2012), EXCAVATOR (Magi et al., 2013), and CODEX (Jiang 

et al., 2015) (see Section 1.2.2 for a comprehensive review). Among them, two 

normalization approaches have been commonly used in the existing literature that is 

relevant to our study, including a median normalization approach and a Poisson latent 

factor (PLF) model-based approach. Median normalization approach used a three-step 
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procedure to sequentially remove three observed sources of bias (i.e., exon length, GC-

content, and mappability) (Magi et al., 2012). Specifically, for each exon, it corrects raw 

WES data according to the deviation of the median intensities of exons that have the 

same biases values as this exon from the overall median. As discussed in Section 1.2.2, 

median normalization approach is effective and computationally efficient in removing 

known sources of bias, especially when processing large-scale datasets. This median 

approach was implemented in tools EXCAVATOR (Magi et al., 2013) and 

EXCAVATOR2 (D’Aurizio et al., 2016). Recently, CODEX (Jiang et al., 2015) and 

CODEX2 (Jiang et al., 2018) used a PLF model-based method, which is capable of 

removing both systematic and observed biases. The proposed PLF model includes several 

linearly additive terms to model the observable biases (i.e., exon length, mappability 

score, and GC content). In addition, it also includes terms in the form of the latent factors, 

which can specifically capture unobservable biases due to other unknown experimental 

variables. Following the data normalization step, statistical segmentation algorithms are 

applied to locate all the change points and identify the segments that share the same 

underlying copy number. Most WES CNV detection tools still use algorithms that were 

previously designed to analyze SNP array data (see detailed reviews in Section 1.2.1 and 

1.2.2). For example, ExomeDepth (Plagnol et al., 2012), CoNIFER (Krumm, Peter H 

Sudmant, et al., 2012) and XHMM (Fromer et al., 2012) adopted HMM as their 

segmentation algorithm. On the other hand, ExomeCNV (Sathirapongsasuti et al., 2011), 

CODEX (Jiang et al., 2015), and CODEX2 (Jiang et al., 2018) all use CBS algorithm. 

Still, these methods assume that observed data across different loci are independent. In 

Chapter 2, we have demonstrated the correlation structure in SNP array data which 
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demonstrated the necessity of integrating the non-independence structure in segmentation 

algorithms. However, it is yet to be determined whether the correlation structure 

systematically exists in WES data, especially after applying different normalization 

methods. Moreover, given different correlation structures of the normalized data 

generated from different normalization methods, it remains uncertain about the necessity 

of integrating correlation structure in profiling WES data and how such correlation 

structure integration can improve the accuracy of CNV detection in statistical modeling.    

 In this chapter, we first conducted an initial evaluation to explore the correlation 

structure in WES data before and after median normalization and PLF normalization. It 

was found that the median normalization approach retained the correlation structure of 

raw read count data, while the Poisson latent factor (PLF) based approach significantly 

reduced the correlation. Based on such findings, we proposed a correlation-based method, 

CORRseq, which utilized the theory from LDcnv segmentation algorithm to 

systematically integrate the correlation structure in median normalized data. Due to the 

weak correlation structure of PLF normalized data, we also developed an alternative 

independent-based method in parallel, so as referred to SARAseq, which was built upon 

on our previously developed SNP array method modSaRa (Xiao et al., 2017). Spike-in 

simulation studies and a further application to a real WES dataset with experimentally 

validated CNVs showed that CORRseq significantly improved the detection accuracy, 

especially for that of medium and large CNVs. CORRseq was further applied to the 

international TRICL dataset to identify lung cancer-associated CNVs. Methods 

developed in this chapter were included in a comprehensive and user-friendly R package, 

“CORRseq” (https://github.com/adamluo12/CORRseq). 
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3.3 METHODS 

3.3.1 EVALUATION OF CORRELATION STRUCTURE IN REAL WES DATA 

To explore the genomic correlation structure in the raw read counts of WES data, we 

utilized data of 89 healthy samples from the 1000 Genomes Project (Auton, Gonçalo R 

Abecasis, et al., 2015). Among them, 46 samples were sequenced at the Baylor College 

of Medicine using the Illumina HiSeq 2000 and 2500 platforms with the Roche HGSC 

VCRome capture kit and 43 samples were sequenced at the Washington University using 

the Illumina HiSeq 2000 platform with the Nimblegen SeqCap EZ Human Exome 

Library v.3.0 capture kit. The detailed experimental samples and genotyping information 

was described in previous literature (Jiang et al., 2018). Five normal samples from the 

1000 Genomes project were arbitrarily chosen and treated as control samples in 

calculating the genetic intensities with the normalization procedures. 

 With these samples, the correlation structure was evaluated before and after two 

commonly used normalization procedures: a three-step median normalization method 

(Magi et al., 2013) and a PLF-based normalization method (Jiang et al., 2015). The 

median normalization approach used the exon mean read count (EMRC), which was 

defined as 𝐸𝑀𝑅𝐶 = 𝑅𝐶/𝐿 for each exon region, where 𝑅𝐶  represented the number of 

reads mapped to the exon region, and 𝐿 was the exon length. A three-step procedure was 

then implemented to remove the effects from the GC content, mappability score and exon 

size by 𝐸𝑀𝑅𝐶𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐸𝑀𝑅𝐶𝑖 ×

𝑚

𝑚𝑒
, where 𝐸𝑀𝑅𝐶𝑖  was the mean read count for exon 𝑖, 𝑚𝑒 

was the median EMRC of all the exons with the same 𝑒 value (where 𝑒 = [GC content, 

mappability score, exon size]) as the 𝑖-th exon, and m was the overall median of all the 

exons. The procedure was used to normalize both testing and control samples. Control 
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samples were then pooled together, across which the mean EMRC was calculated by 

exon and used as the reference. Logarithm transformation of the ratio of EMRC from the 

testing sample and that of the pooled reference was calculated (i.e., log2R-MED) and 

used as input for CNV detection. Meanwhile, the PLF-based normalization method fitted 

a Poisson latent factor model to simultaneously correct the measurable sources of biases 

and unmeasurable systemic biases. Afterward, an iterative maximum-likelihood 

algorithm was adopted to estimate the expected read counts under the null condition (i.e., 

there is no CNV). Logarithm transformation of the ratio of observed read counts and 

expected “null” read counts were calculated and referred to as log2R-PLF.    

 For the evaluation of correlation structure, 200 consecutive exons were randomly 

chosen from chromosomes 1, 5, and 9 and were studied in all samples. We investigated 

the correlation structure of the raw read depth, log2R-MED, and log2R-PLF by 

calculating the overall strength of the correlation represented by the average squared 

correlation coefficient estimates, 𝑟2̅̅ ̅.  

3.3.2 CORRseq AND SARAseq 

Given the obvious correlation structure observed in the log2R-MED data (shown in 

Figure 3.2B), we developed CORRseq, which systematically integrated the data 

correlation structure in a change point detection model for CNV profiling with WES data. 

Specifically, let 𝐘 = (𝑌1, … , 𝑌𝑀)𝑇  denote the normalized log2R-MED on M exons in a 

single sequence for each sample, we still assume the genetic intensities follow a 

multivariate normal distribution given the dependence structure of the genome as defined 

in Section 2.3.2. In parallel, as the PLF-based normalization approach dramatically 

eliminates the correlation structure (as shown in results with Figure 3.2C), the SARAseq 
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method was developed, which instead assumed the independent observations. As a result, 

the main difference of the segmentation algorithm with CORRseq and SARAseq methods 

mainly relies on the assumption of the observed data.  

 Figure 3.1 illustrated the workflows of our proposed CORRseq and SARAseq 

methods. CORRseq requires WES read count data from both testing and control samples 

as inputs. Read counts are normalized using a median normalization approach and 

segmented by a correlation-based algorithm described in Section 2.2.2-2.2.3 (i.e., 

LDcnv). SARAseq only requires WES read count data from testing samples. WES read 

counts are then normalized using a PLF-based normalization approach and analyzed by 

an independent assumption based algorithm (modSaRa). SARAseq implement the same 

procedures as CORRseq, except using a different distribution of  𝐷(𝑥), 𝐷(𝑥)~𝑁 (0,
2𝛔𝟐

𝑤
). 

3.3.3 SPIKE-IN SIMULATION AND APPLICATION TO WES DATA FROM 

THE 1000 GENOMES PROJECT 

To evaluate the performance of our proposed methods (i.e., CORRseq and SARAseq), we 

conducted in silico spike-in studies that best retained the noise and correlation structure 

of the real data. With the raw read depth data from chromosomes 1 and 2 in the 70 

samples from the 1000 Genomes Project (Auton, Gonçalo R Abecasis, et al., 2015), we 

first applied filters to remove the exons across all samples that may contain CNVs. 

Specifically, the filtering step excluded exons those were either detected by our methods 

(CORRseq and SARAseq), or two commonly used methods, CODEX2 (Jiang et al., 

2018) and EXCAVATOR2 (D’Aurizio et al., 2016), or those were reported by the 

Database of Genomic Variants (MacDonald et al., 2014). As such, the remaining 

sequences were treated as the background CNV-free sequences. This background CNV-
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free data was also used as negative controls for median and PLF normalization 

procedures. Second, for each sample, signals of 60 CNV segments were added to the 

background data with varied lengths (short: 5~20 exons, medium: 20~50 exons, and long: 

50~80 exons) and varied copy number states (deletion and duplication), respectively. 

Deletions were spiked in by multiplying the background depth of coverage by a normal 

random variable 𝑁(0.2, 0.12), and duplications were spiked-in similarly with another 

normal random variable 𝑁(5.0, 0.12) (Jiang et al., 2018).  

 With the simulated data, we evaluated the performance of the proposed CORRSeq 

by benchmarking to EXCAVATOR2 and CODEX2. EXCAVATOR2 uses a 

Heterogeneous Shift Level Mean (HSLM) model (Magi et al., 2010, 2011) for 

segmentation, and a FastCall algorithm (Benelli et al., 2010) was utilized for CNV 

classification. A CBS algorithm (Olshen et al., 2004) was used for the segmentation in 

CODEX2 (Jiang et al., 2018), assuming independent observations. These methods were 

assessed by using the precision rate (
True Positives

True Positives + False  Positives
) , recall rate 

(
False Positives

True Positives + False  Positives
), and F1 score (2 ∗

Precision ∗ Recall

Precision + Recall
). 

 We also evaluated the performance of our methods by analyzing 36 healthy 

individuals from the 1000 Genomes Project (Auton, Gonçalo R Abecasis, et al., 2015). 

CNV calling was assessed using the “validation sets” from three high-quality microarray 

CNV studies (International HapMap 3 Consortium, 2010 (D. Altshuler et al., 2010); 

Conrad et al., 2010 (Conrad et al., 2010); McCarroll et al., 2008 (McCarroll et al., 

2008)). These three validation datasets have samples being genotyped by both SNP array 

and WES therefore serve as gold standard datasets for many existing studies (Xiao et al., 

2019; Luo et al., 2020; Jiang et al., 2018). In total, there were 1,327,6,700 and 1,946 
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high-quality CNVs from these three datasets, respectively. More details of these 

validation sets can be found at Luo et al. (Luo et al., 2020). To improve the quality of 

“validation sets” for CNV evaluation, stringent quality control procedures were 

conducted (i.e., the reported CNV must overlap with two exons, have less 5% missing 

rate across all samples). With these three validation sets, our methods were compared to 

CODEX2 and EXCAVATOR2. Still, for EXCAVATOR2 and CORRseq, additional five 

samples from the 1000 Genomes Project were selected and used for control samples in 

the normalization step. Similarly, each method was evaluated using the precision rates, 

recall rates, and F1 scores.   

3.3.4 ANALYSIS OF TRICL CASES AND CONTROLS 

We applied CORRseq and EXCAVATOR2 to the Transdisciplinary Research Into 

Cancer of the Lung (TRICL) with 1,084 cases and 919 controls (Amos et al., 2017). 

Study samples were sequenced at the Center for Inherited Disease Research (CIDR) 

using Illumina HiSeq2500 platform. the raw sequence data (FASTQ format) was 

processed via GATK best practice workflow to produce BAM files by using 1000 

genomes phase 2 reference (Auton, Gonçalo R Abecasis, et al., 2015; Geraldine A. Van 

der Auwera, 2020). Data clean-up procedures such as base call quality recalibration 

variant filtering and genotypes refinement were performed. Principal component analysis 

(PCA) was performed on quality metric generated from sequencing pipeline to exclude 

quality outliers. Kinship coefficient between each pair of participants was also calculated 

to identify and exclude duplicated and related samples.  

 To keep high-quality CNV calls for the downstream association analysis, post-

calling quality control (QC) filters were applied. Specifically, the filter step remove 
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individual CNV calls that (1) are overlapped with centromeric regions; (2) are extremely 

short (i.e., < 5 exons) or long (i.e., >80 exons for CORRseq and >200 exons for 

EXCAVATOR2). Individual samples were excluded if they had >100 CNVs. Finally, 

CNV calls from these two methods were combined as the final calling set. 

 To identify CNV loci that confer risk for lung cancer, logistic regression was 

performed to test CNV association at both the level of individual genes and CNV regions 

(CNVRs),  

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒 = 1)) = β0 + β𝑑𝑒𝑙𝐷𝐸𝐿 + β𝑑𝑢𝑝𝐷𝑈𝑃 + 𝛃𝐗 + 𝛃′ ∑ 𝑃𝐶𝑖

4

𝑖=1

(9) 

CNVRs were constructed using tool CNVRuler by merging overlapped CNV segments 

(i.e., at least 1 bp) and trimming any long, rare regions (Kim et al., 2012). DEL and DUP 

were two indicator variables for deletions and duplications separately. We adjusted the 

covariates including smoking status (ever/never), age, and gender. Top 4 principal 

components were also included to adjust for the population structure (Patterson et al., 

2006). 

3.4 RESULTS 

3.4.1 CORRELATIONS STRUCTURE EXISTS IN WES DATA FROM THE 1000 

GENOMES PROJECT 

To understand the correlation structure in WES data and the potential influence from 

normalization steps, we first utilized the 1000 Genomes project data to investigate the 

correlation pattern in WES data. The correlation structure of the raw read depth, and that 

of normalized by median and PLF-based normalization approaches were evaluated 

separately. As a result, a moderate correlation (𝑟2̅̅ ̅ = 0.38) among exons was observed in 
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both WES raw read counts and median normalized data (Figure 3.2A-B). On the 

contrary, the latent factor-based normalization approach dramatically reduced the 

underlying correlation structure (𝑟2̅̅ ̅ = 0.05) (Figure 3.2C), as most of the covariance  

captured by top latent factors were removed during normalization procedure (Friguet et 

al., 2009). Together, such result provided strong evidence of the existence of correlation 

structure among exons in raw WES data and the median normalized data, which 

motivated the development of CORRseq as described in Section 3.2.2. Given the 

independent structure of the PLF normalized dataset, we also developed SARAseq 

method for handling such non-correlated data. 

3.4.2 EVALUATION OF CORRseq VIA SPIKE-IN STUDIES AND 

APPLICATION TO THE 1000 GENOMES PROJECT 

We first evaluated the performance of our methods using spike-in simulations under 

different scenarios. When the CNV size was greater than 20 exons, CORRseq performed 

the best in almost all the scenarios. For example, for duplications with length 20~50 

exons, CORRseq had an F1 score of 97.23, while the corresponding F1 score was 92.62 

for EXCAVATOR2, and 67.53 for CODEX2. Besides, the superior performance of the 

independence structure-based method, SARAseq, was clearly observed in detecting short 

CNVs (i.e., 5~20 exons) (Figure 3.3). For example, for deletions with length 5~20 exons, 

SARAseq had an F1 score of 87.41, while the corresponding F1 score was 83.52 for 

CORRseq, 81.52 for EXCAVATOR2, and 67.98 for CODEX2, respectively (Table 3.1). 

It was also noteworthy to mention that both SARAseq and CORRseq outperformed 

CODEX2 and EXCAVATOR2 in almost all the scenarios, except for detecting deletions 

with CNV length 50~80 exons. CODEX2 presented nearly perfect recall rates in all 
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scenarios, but the precision rates were compromised. This is because CODEX2 

implemented CBS-based procedure, which tended to be sensitive and may capture many 

false positive signals (Niu and Zhang, 2012).  

 We further applied our methods to a real data benchmarking against 

EXCAVATOR2 and CODEX2. Three high-quality CNV validation datasets from 

HapMap3 (D. Altshuler et al., 2010), Conrad et al. (Conrad et al., 2010), and McCarroll 

et al. (McCarroll et al., 2008) were utilized for evaluation. Among them, the majority of 

the “true” CNVs were short CNVs (2~20 exons) (i.e., 91.9%, 90.7% and 88.6% for 

HapMap3, Conrad et al., and McCarroll et al., respectively). The overall performance of 

SARAseq was better than that of other three methods in HapMap3 and Conrad et al. 

datasets with the highest F1 scores (Table 3.2, Figure 3.4). In the Conrad et al. dataset, 

SARAseq had an F1 score of 24.66, while the corresponding F1 score was 17.50 for 

CORRseq, 22.57 for CODEX2, and 22.92 for EXCAVATOR2 (Table 3.2).  

EXCAVATOR2 achieved high recall rates but suffered from low precision. These results 

further demonstrated the advantage of SARAseq in detecting short CNVs. 

 In conclusion, our proposed CORRseq method, which integrated the correlation 

information, presented significantly improved performance in CNV detection, especially 

for the detection of medium and large CNVs. Meanwhile, the independence assumption 

based SARAseq presented a consistent power gain in detecting short CNVs. These results 

further suggested that we need to design statistical methods in the segmentation step by 

evaluating the correlation structure of the data after normalization.  
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3.4.3 APPLICATION TO TRICL STUDY 

A total 1,033 lung cancer cases and 875 control samples passed the pre-calling QC 

(Supplementary Table A.7). Using the TRICL WES datasets, we identified 166,062 

CNVs in autosomes from two methods in total. Overall, we detected more deletions than 

duplication (113,093 vs. 52,969). No significant difference in the overall proportion of 

deletions and duplications between cases and controls was observed (49% vs. 51% for 

deletions and 52% vs. 48% for duplications, respectively). Also, there was no difference 

in the length of deletions and duplications between cases and controls (Supplementary 

Table A.8). 

 Those identified CNVs were mapped to 4,992 genes and 4,469 CNVRs. Those 

CNVRs included 147 common CNVRs (i.e., occurring in >= 1% of samples), 2,036 rare 

CNVRs (i.e., <1%), and 2,286 singletons. Our gene-based association analysis identified 

the deletion genes FCGR3A in 1q23.3 region (OR=1.76, 95% CI=1.28-3.13, P-

value=0.002), AMBRA1 in the 11q11.2 region (OR=3.71, 95% CI=1.40-9.83, P-

value=0.008), NPEPPS in the 17q21.32 region (OR=1.37, 95% CI=1.08-1.75, P-

value=0.01) and duplication genes ZNF280A in the 22q11.22 region (OR=1.4, 95% 

CI=1.14-1.70), PRAME in the 22q11.22 region (OR=1.37, 95% CI=1.12-1.68, P-

value=0.001), AMY2B in the 1q21.1 region (OR=1.80, 95% CI=1.14-2.82, P-value=0.01) 

(Supplementary Table A.9). Using CNVR-based association testing, results highlighted 

the deletion regions in 1p36.33, 12q23.3, 17q21.32, 10q25.3, 19p13.3, 3p14.3 and 

duplication regions in 22q11.22, 13q14.11, 12p13.2 (Supplementary Table A.10). 
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3.4.4 PACKAGE DEVELOPMENT AND EXAMPLE USAGE 

Here, we build a user-friendly R package, CORRseq, designed to perform the CNV 

detection with WES data using the proposed CORRseq and SARAseq method. The 

package includes procedures for mapped read count calculation, data normalization, and 

CNV calling. Below, we present a real data example to illustrate the usage of the 

package. 

 CORRseq requires two types of input files: genome sequencing data files (.BAM) 

and WES target file (.BED). Function CODEX2::getcoverage() is used to generate raw 

read count data matrix. The output data matrix contains information for one exon per 

row, and each column represents data for one study sample. CORRseq also accepts direct 

input of read count data generated by using other tools, such as SAMTools and GATK 

(Li et al., 2009; Geraldine A. Van der Auwera, 2020). CORRseq:normalize() is then 

applied to perform median normalization approach and generate log2R-MED for CNV 

calling. An optional smoothing step, CORRseq::smooth() is recommended to remove the 

potential outliers of log2R-MED. After that, CORRseq::CNVout() is implemented to 

generate CNV calls. CORRseq produces comma delimited files (.csv) that has 8 columns 

with each row corresponding to one CNV records. The first four columns contain sample 

ID, chromosome, start and end positions of CNV in base pair. While the last three 

columns contain detailed information of the identified CNV segments, including length 

of the CNV in base pair as well as in number of exons, and the copy number state of the 

called segment (deletion or duplication). In parallel, we also developed procedures of 

performing SARAseq, which uses CORRseq::PLF() for normalization and 

CORRseq::SARAseqCNVout() for CNV identification. 
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 Figure 3.6 displays the plots of log2R-MED of four CNVs on chromosome 6 

identified by CORRseq using WES data from the 1000 Genomes Project (Auton, 

Gonçalo R. Abecasis, et al., 2015). In the absence of CNV events, log2R-MEDs are 

expected to be clustered around zero. Figure 3.6a shows two typical examples of 

deletions, where the signal intensities within the detected region are below zero. While 

intensities within two identified regions in figure 3.6b are above zero, which indicate the 

presence of duplication events. 

3.5 DISCUSSION 

In this chapter, we developed a correlation-based method CORRseq, built on our 

previous SNP array method with the capability of analyzing WES data coupled with the 

median normalization procedure. We also developed SARAseq utilizing an independent 

assumption-based segmentation algorithm and the PLF-based normalization procedure. 

Through simulations and applications, we demonstrated the desirable performance of 

these methods and their application scopes. 

 Our preliminary study explored the correlation structure in the real data and 

investigated the potential influence from different normalization methods on the design 

of segmentation methods. This is the first report to evaluate the impact of different 

normalization methods on the correlation structure of WES CNV. We found that latent 

factor-based normalization method significantly reduced the correlation structure inherent 

in the read count data, while median normalization method retained the correlation 

structure. This finding provides great direction for developing CNV detection methods in 

future studies. Intuitively, we may develop independence assumption-based segmentation 

method with PLF-based normalization and correlation-based segmentation methods 
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coupled with median normalization, though more real data shall be studied and exhibited 

in the showcase. Also, the different correlation structure presented in the real data after 

median and PLF-based normalization led us to an inspiring question, shall we consider 

the genomic correlation structure in developing statistical methods for CNV detection? 

Indeed, similar concerns have been dabbled in previous literature but have not been 

thoroughly discussed. Fromer et al. and D’Aurizio et al. both assumed the adjacent exon 

targets in genome were correlated, and the correlation strength was directly related to the 

genomic distance between exons (Fromer et al., 2012; D’Aurizio et al., 2016). Zhang et 

al. and McCarroll et al. analyzed the common CNVs and employed the assumption that 

the correlations structure exist between chromosomal sites within CNV regions (Q. 

Zhang et al., 2010; McCarroll et al., 2008). Moreover, Wei et al. recommended that the 

CNV detection methods should take the correlation of read depths into consideration in 

analyzing next-generation-sequencing data (Wei and Huang, 2020). In this study, our 

results supported this evidence and suggested that segmentation methods without 

considering correlation structure can identify short CNVs with high accuracy though they 

need to be coupled with normalization procedure that removes the correlation. Also, the 

correlation-based segmentation method coupled with normalization that retains the 

correlation would perform better for detecting medium and long CNVs. These findings 

imply the advantage of utilizing genomic correlation information on detecting medium 

and long CNVs with improved accuracy though it gives little gains for small-sized CNVs.  

 There are still limitations in our study. First, our methods adopted a single sample 

scanning strategy, which may result in high false discovery rate and low sensitivity due to 

sample-specific noise and CNV complexity. Multi-sample based CNV detection methods 
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that borrow the comprehensive information from multiple samples is thought to improve 

the robustness and detection power with noisy data (Song et al., 2016; Wang et al., 

2020). Our methods have potential to be extended to the multi-sample setting, where the 

main challenge is developing scan statistics that can effectively integrate information 

across samples. Second, our methods merely exploited the WES read counts from exon 

regions, limiting the possibility to study the CNVs on non-coding regions. While in many 

of these WES cohorts, the SNP array data for the same samples are also available. 

Methods that can integrate information from multiple platforms (i.e., WES and SNP 

array) is expected to offer a full-coverage CNV detection. Therefore, in the following 

chapter, we focus on developing statistical approach that can effectively integrate multi-

platform and multi-sample data.  
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TABLES AND FIGURES 

Table 3.1 Assessment of CORRseq and SARAseq based on simulation data. CNV 

calls were generated by CORRseq, SARAseq, CODEX2, and EXCAVATOR2. The CNV 

size varied from 5~20, 20~50 to 50~80 exons. Precision rates and recall rates, as well as 

the F1 scores, were summarized for each method.  

CNV 

Length 

(exon) 

Methods 

Deletions (%)  Duplications (%) 

Precision Recall F1  Precision Recall F1 

5~20 CORRseq 89.16 78.55 83.52  90.22 81.48 85.62 

 SARAseq 95.72 80.43 87.41  83.89 97.05 89.99 

 CODEX2 51.51 99.95 67.98  45.99 100.00 63.01 

 EXCAVATOR2 78.17 85.17 81.52  78.41 65.36 71.29 

20~50 CORRseq 90.02 99.00 94.30  94.66 99.95 97.23 

 SARAseq 91.31 88.57 89.92  92.23 99.43 95.69 

 CODEX2 53.37 100.00 69.59  50.98 100.00 67.53 

 EXCAVATOR2 80.34 98.93 88.67  86.72 99.38 92.62 

50~80 CORRseq 93.14 99.17 96.06  89.63 100.00 94.53 

 SARAseq 71.79 93.57 81.25  90.66 99.12 94.70 

 CODEX2 46.84 100.00 63.80  59.26 100.00 74.42 

 EXCAVATOR2 79.97 99.36 88.62  84.65 99.69 91.56 
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Table 3.2 Assessment of CORRseq and SARAseq based on the 1000 Genomes Project data. Assessment of CNV calls generated 

by CORRseq, SARAseq, CODEX2, and EXCAVATOR2 using validation sets from HapMap3, Conrad et al., and McCarroll et al.. 

Precision rates and recall rates, as well as the F1 scores, were summarized for each method. 

 

 

 

 

 

 

 

 

 

 
 

 

Methods 
HapMap3 (%)  Conrad (%)  McCarroll (%) 

Precision Recall F1  Precision Recall F1  Precision Recall F1 

CORRseq 17.45 40.62 24.41  12.12 31.46 17.50  14.15 37.04 20.48 

SARAseq 48.39 67.57 56.39  19.42 33.79 24.66  36.52 56.03 44.22 

CODEX2 45.37 56.32 50.26  22.40 22.75 22.57  45.69 50.48 47.97 

EXCAVATOR2 17.10 64.08 27.00  14.64 52.79 22.92  19.03 69.09 29.84 
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Figure 3.1 Analysis workflow of CORRseq and SARAseq. CORRseq requires WES 

read count data from both testing and control samples as inputs. Read counts are 

normalized using a median normalization approach to adjust exon length, GC-content, 

and mappability biases. Logarithm transformation of the ratios of normalized data from 

the testing and the pooled control samples is calculated, which is referred to as log2R-

MED. CORRseq implements a correlation-based algorithm (LDcnv) to identify CNVs. 

SARAseq only requires WES read count data from testing samples. Read counts are 

normalized using a PLF-based approach to mitigate observable biases (GC content, 

amplification efficiency, and exon size) and latent systemic biases and estimate the 

expected “null” read counts. Logarithm of the observed read counts and expected “nulls” 

are calculated, which is referred to as log2R-PLF. SARAseq uses an algorithm assuming 

independence (modSaRa) for the CNV identification. 
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Figure 3.2 Assessment of genomic correlation structure of WES data from 1000 

Genomes project. The left panel is the correlation heatmaps across 200 consecutive 

exons in chromosome 1, 5, and 9 for WES raw read counts (RC) data (A). The middle 

and right panels are the correlation heatmaps of WES data after median normalization (B) 

and latent factor-based normalization (C). Median normalization retains the correlation 

structure of raw read counts, while the PLF-based approach significantly reduces the 

underlying correlation.   
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Figure 3.3 Assessment of CORRseq and SARAseq based on simulation data. CNV 

calls were generated by CORRseq, SARAseq, CODEX2, and EXCAVATOR2. The CNV 

size varied from 5~20 (short), 20~50 (medium) to 50~80 (long) exons. Precision rates 

and recall rates, as well as the F1 scores, were summarized for each method. Del: 

deletion; Dup: duplication. 
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Figure 3.4 Assessment of CORRseq and SARAseq based on the 1000 Genomes 

Project data. Assessment of CNV calls generated by CORRseq, SARAseq, CODEX2, 

and EXCAVATOR2 using validation sets from HapMap3, Conrad et al., and McCarroll 

et al.. Precision rates and recall rates, as well as the F1 scores were summarized for each 

method.  
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Figure 3.5 Overview of the application to the TRICL case-control study. The figure 

outlines the study design with a brief description of quality control (QC) steps. Summary 

of key results includes the sample size and number of CNVs at various stages of analysis. 

PCA: principal component analysis; KC: kinship coefficient; Chr: chromosome. 
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Figure 3.6 CNVs identified by CORRseq from the 1000 Genomes Project. The figure 

shows the data intensities of four CNVs (two deletions and two duplications). The 

regions between two blue vertical lines are identified CNVs. X-axis indicates the 

genomic position on chromosome 6 and the y-axis is the signal intensity (i.e., Log2R-

MED). Column (a): deletions; (b) duplications. 
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CHAPTER 4 

BMI-CNV: A BAYESIAN FRAMEWORK FOR MULTIPLE GENOTYPING 

PLATFORMS DETECTION OF COPY NUMBER VARIANTS3 

4.1 ABSTRACT 

Whole-exome sequencing (WES) enables detection of CNVs with high resolution in 

functional protein-coding regions. However, variations in the intergenic or intragenic 

regions are excluded from these studies. Fortunately, in many exiting large cohorts, 

samples have been previously sequenced by different genotyping platforms, such as SNP 

array. As a result, methods for integrating multiple genotyping platforms are highly 

demanded for improved CNV detection. Moreover, conventional single sample-based 

CNV calling methods often suffer from high false discovery rate. A multi-sample 

strategy may reduce detection error and will be more robust to data variations.  

We developed BMI-CNV, a Bayesian Multi-sample and Integrative CNV (BMI-

CNV) profiling method with data sequenced by both WES and microarray. By 

incorporating complementary and concurrent information from multiple platforms, our 

method can accurately detect CNVs with a genome-wide scale. With extensive 

simulations, BMI-CNV outperformed existing methods with remarkably improved 

accuracy for both multiple and single platform analyses. By applying to the matched 

1000 genomes project and HapMap project data, we showed that BMI-CNV accurately 

 
3 Xizhi Luo, Guoshuai Cai, Alexander C. Mclain, Christopher I. Amos, Bo Cai, Feifei 

Xiao. Submitted to Bioinformatics, 06/24/2021. 
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detected common variants. We further applied it to the TRICL consortium with matched 

WES and OncoArray data and generated preliminary results involving several lung 

cancer risk associated genes in 17q11.2, 1p36.12, 8q23.1 and 5q22.2 regions, which may 

provide new insights into the etiology of lung cancer.   

4.2 INTRODUCTION  

With the dramatic growth of modern technologies and the accompanying cost drop in 

sequencing, massive WES datasets have been generated from large-scale biomedical 

studies, which allows for the identification of genomic variants in functional protein-

coding regions (Amos et al., 2017). However, exons only encompass 1% of the genome, 

limiting the possibility to investigate the impact of CNVs located in the non-coding 

regions (Craig Venter et al., 2001). Moreover, WES is subject to the non-uniform 

coverage of sequence reads in the assembly procedure due to the existence of short 

duplications or deletions, resulting in many dropped out segments which are originally 

mapped to the exome. For example, Fang et al., found that more than 16% of the exons 

cannot be captured by WES experiments (Fang et al., 2014). This will lead to negligence 

in detecting short CNVs and therefore integrating available SNP array has great potential 

to overcome this challenge. In many of these WES cohorts, the same samples have been 

previously genotyped by the SNP array. For instance, the international Transdisciplinary 

Research In Cancer of the Lung (TRICL) consortium genotyped 2,003 subjects with both 

WES and SNP array data (Amos et al., 2017). The Alzheimer’s Disease Genetics 

Consortium (ADGC) and Alzheimer’s Disease Sequencing Project (ADSP) (Karch et al., 

2016; Beecham et al., 2017) have also collected such multi-platform data. Consequently, 
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the demand for multi-platform (e.g., WES and SNP) integration methods, which will 

comprehensively study CNV in a full-coverage manner, has dramatically increased.  

 Similar efforts such as iCNV have been made by Zhou et al. for integrative 

segmentation (Zhou et al., 2018). In iCNV, data from different platforms were first 

normalized and standardized and then jointly segmented by a Hidden Markov Model 

(Zhou et al., 2018). This method had a significant boost in accuracy compared to WES, 

however, it only used information from a single sample. As we know, technological and 

biological factors prominent in real data usually increase the variations and noise in data 

intensities, leading to unreliable findings with single-sample scanning of CNVs. 

Consequently, multiple sample strategies previously introduced for detecting common 

CNVs can improve the robustness and detection power with noisy data. Such a direction 

has been supported by various existing studies (N. R. Zhang et al., 2010; Siegmund et al., 

2011; Song et al., 2016), but none has focused on multi-platform integration. Moreover, 

most widely used WES methods such as CODEX2 and EXCAVATOR are also for 

single-sample scanning (Magi et al., 2013; Jiang et al., 2018). As a result, it is of highly 

demand to develop a full spectrum CNV detection method that can meanwhile achieve 

high accuracy using comprehensive information from all samples. 

 In this study, we developed BMI-CNV, a Bayesian Multi-sample and Integrative 

CNV calling method. Comparing to existing approaches, BMI-CNV efficiently integrates 

data from multiple platforms (i.e., WES and SNP array) and multiple samples to exploit 

the comprehensive information, leading to a full spectrum study of CNVs. Extensive 

numerical simulation studies showed that BMI-CNV presented significantly improved 

sensitivity over the existing methods. The method was further illustrated by applying to 
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the HapMap project (D. M. Altshuler et al., 2010) and the 1000 Genomes project (Auton, 

Gonçalo R. Abecasis, et al., 2015). It was further applied to the international TRICL 

dataset to identify lung cancer-associated CNVs. This new method has a wide scope of 

applications and has great potential to be further extended to profile CNVs for whole-

genome sequencing and single-cell sequencing data analyses. 

4.3 METHODS 

METHODS OVERVIEW 

Our method mainly focuses on CNV detection by integrating the SNP array and WES 

data, although it can also be naturally applied to the WES data only situation. Figure 4.1 

shows an overview of the framework of BMI-CNV. First, WES read counts and SNP 

array intensities are integrated using a series of data integration procedures, including 

normalization, standardization, and merging. Our main algorithm consists of two main 

stages: Stage I uses a Bayesian PSBP method (Section 4.2.2) coupled with a Gaussian 

mixture model-based initial data filtering (Section 4.2.4) to identify shared CNV regions, 

and Stage II as the individual CNV calling procedure (Section 4.2.3).  

4.3.1 DATA DESCRIPTION AND MODELS 

First, we performed platform-specific normalization procedures for the original data. For 

WES data, we utilized the EXCAVATOR2 median normalization procedure to generate 

log2R-MED as described in section 3.3.1, with external controls being pre-specified by 

researchers (D’Aurizio et al., 2016). This log2R-MED data was then processed by the 

lowess-scatter plot procedure to adjust read-depth differences between testing and control 

samples and remove coverage dependent bias. For array data, PennCNV was used to 
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adjust the genomic wave on genetic intensities (i.e., Log R ratio (LRR)) (Wang et al., 

2007).  

      To bring the SNP array LRR values and the WES-derived log2R-MED to the same 

scale, we standardized each data via a robust scaling approach (Rousseeuw and Croux, 

1993). Compared to the conventional standardization method, the robust scaling approach 

used median and interquartile ranges to mitigate the influence from potential outliers and 

signals from double deletions (Details in Supplementary C.1). The WES and SNP array 

data were merged by chromosomal coordinates to effectively integrate information for 

joint segmentation.  

 Let Y denote a 𝑛 ×  𝑚 data matrix obtained from the pre-CNV calling procedures 

described above, where 𝑌𝑖𝑗 represented the processed genetic intensities (e.g., LRR from 

array or log2R-MED from WES) for the i-th (i=1, 2,…, m) marker (e.g., SNPs from array 

or exons from WES) in sample j (j=1, 2,…, n). We assumed a classic normal kernel for 

𝑌𝑖𝑗,   

𝑌𝑖𝑗 ∼ 𝑁(𝑌𝑖𝑗|𝜙𝑖) (10) 

𝜙𝑖 = (μ𝑖, σ𝑖
2) is an unknown vector of the underlying mean and variance at position i 

across all samples, in which different values of 𝜙𝑖  indicated the existence of different 

copy number states. We assumed there were five copy number states, including the 

deletion of a single copy (del.S), deletion of double copies (del.D), diploid, duplication of 

a single copy (dup.S), and duplication of double copies (dup.D).  We considered τ to be a 

change point for sample j if 𝜙𝑗,τ ≠ 𝜙𝑗,τ+1. The research goal is to estimate the locations 

of all the change points from all samples. CNV segments can then be generated by 

connecting adjacent change points. Conventional single sample methods have worked on 
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this problem by simply applying the calling algorithm to each data sequence repeatedly 

(D’Aurizio et al., 2016; Jiang et al., 2018).  

 In our method, we assumed that certain change points were shared by multiple 

samples with population frequency 𝑝𝜏; and there were G change points in total. Let 𝝉 =

{𝜏1, … , 𝜏G} denote the locations of those shared change points. For each 𝜏𝑔(𝑔 = 1, … 𝐺), 

we considered the j-th sample as a CNV carrier if 𝜙𝑗,𝜏𝑔
≠ 𝜙𝑗,𝜏𝑔+1. Therefore, the goal is 

now to estimate all the sample shared CNV regions (i.e., 𝝉) and then identify individual 

carriers. We used a two-stage method described below. Stage I uses a probit stick-

breaking process to identify shared CNV regions (Section 4.2.2) and initially filters 

locations without CNVs (Section 4.2.4). Stage II calls CNVs individually (Section 4.2.3). 

4.3.2 STAGE-I: SHARED CNV INFERENCE BY BAYESIAN PROBIT STICK-

BREAKING PROCESS MODEL 

We modelled the corresponding latent means and variances 𝜙𝑖 using the Bayesian model 

through a probit stick-breaking process (PSBP) (Chung and Dunson, 2009; Rodríguez 

and Dunson, 2011). Unlike other non-parametric processes (e.g., Dirichlet process), 

PSBP immunes to the centering problems, which guarantees the mean of latent variable 

(i.e., 𝜙𝑖 ) is centered at a specific level, making it ideal to model 𝜙𝑖  (Cai and 

Bandyopadhyay, 2017). The PSBP also has a nice shrinkage property, allowing for 

efficiently clustering high dimensional 𝜙𝑖  to a small number of clusters (i.e., copy 

number states). Moreover, the PSBP mixture model can capture multimodal and heavy-

tailed distribution, which relaxed the normality assumption of latent 𝜙𝑖, providing more 

flexible scenarios for modelling the complex CNV data. Specifically, we assumed 𝜙𝑖 

followed an unknown distribution 𝐺 ∼ 𝑃𝑆𝐵𝑃(α𝐺0) with centering distribution 𝐺0  and 
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shape measure 𝛼 that reflected how far away the random distribution 𝐺 is from the center 

𝐺0. Following Rodriguez et al., 𝐺 admitted a representation of the form (Rodríguez and 

Dunson, 2011): 

𝜙𝑖 ∼ 𝐺(. ) = ∑ ω𝑙

𝐿

𝑙=1

δθ𝑙
(. ) (11) 

where 𝐿  represented the number of all possible copy number states (e.g., L=5), 𝜃𝑙 =

(𝜇𝑙, 𝜎𝑙
2) are possible distinct mean and variance specific to each copy number state (𝑙 =

1, 2, . . , 𝐿), δθ𝑙
(. ) is a degenerate distribution at 𝜃𝑙 , and 𝜔𝑙 = Φ(α𝑙) ∏ (1 − Φ(α𝑟))𝑟<𝑙  

represented the probability of assigning 𝜃𝑙  to each position where Φ(. )  is the probit 

function and α𝑙 ∼ 𝑁(μα, σα
2 ). Following this structure, each 𝜙𝑖 was assigned to one of the 

{𝜃𝑙} based on the observed intensities across all potential carriers of the copy number 

state for locus 𝑖. The carriers were initially identified using the strategy described below 

in Section 2.4. To simultaneously implement the variable selection and clustering 

procedures for the purpose of CNV detection, we further reconstructed the PSBP model 

as follows (George and McCulloch, 1993; Cai and Bandyopadhyay, 2017): 

𝜙𝑖 ∼ 𝛾𝑖𝐺μ=0 + (1 − 𝛾𝑖)𝐺(. ) (12) 

where the 𝐺μ=0 was the underlying distribution of the normal copy number states with 

the mean fixed at zero (i.e., diploids). γ𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(κ) is an indicator of 𝜙𝑖 being in 

𝐺μ=0 (i.e., normal state) or not, which incorporated variable selection of the locus across 

samples. Specifically, when γ𝑖 = 1 , 𝜙𝑖  followed a distribution 𝐺μ=0 ; whereas γ𝑖 = 0 

indicated a potential CNV locus following 𝐺(. )  defined in equation (1). Within this 

framework, the posterior probability of 𝜙𝑖 being 𝐺μ=0 or not was first calculated through 

inference on γ𝑖. While the 𝜙𝑖 given γ𝑖 = 0 was then assigned to its most possible state 
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according to the posterior probabilities of belonging to various copy number states 

(details in Section 4.2.5). 

4.3.3 STAGE-II: INDIVIDUAL CNV CALLING  

After a CNV region is identified across samples, we then determine the carriers in the 

samples, that is, to call CNVs in each individual sample. Specifically, after obtaining the 

posterior mean and variance estimates specific to each copy number state (i.e., 𝜃𝑙  and 

σ̂2
𝑙 , 𝑙 = 1, … , 𝐿 ), we constructed the interval for each state as 𝐶𝑙 = [θ̂𝑙 − 𝑐1𝑙σ𝑙̂ , θ̂𝑙 +

𝑐2𝑙σ𝑙̂]. We considered a sample as the carrier and classified the segment into the l-th copy 

number state if its segmental mean fell within one specific interval 𝐶𝑙. Values of 𝑐1 and 

𝑐2 could be arbitrarily chosen according to empirical evidence about the magnitude of 

mean shifts of each CNV state, which may vary by genotyping platforms. In practice, we 

will suggest plotting the genotyping signals of CNV segments that were identified under 

different combinations of 𝑐1 and 𝑐2 for visualization. True positive rate (TPR) could be 

calculated for each combination. The optimal choices for 𝑐1 and 𝑐2 would achieve the 

highest TPR.  

4.3.4 INITIAL DATA POOLING BY GAUSSIAN MIXTURE MODEL  

A major complexity of multi-sample integration is how to effectively combine the 

information in the presence of samples containing no CNV signals. The intensities from 

non-carriers will dilute the signal, which may hence significantly decrease the detection 

power. Li and Tseng adopted a weighted technique to downweigh the non-carriers; Sung 

et al. used the ordered p-values from all samples and only selected samples with small p-

values for CNV inference (Li and Tseng, 2011; Song et al., 2016). With the same spirit, 
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we considered a preliminary data filtering step so that only intensities that were most 

likely arising from the carriers would be selected for stage-I CNV calling.  

 Specifically, for the i-th position, we let 𝑌𝑖𝑗 = (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑛)𝑇 denote the CNV 

data vector across all samples. A Gaussian mixture model with three copy number 

mixture states (including deletions, normal state, and duplications) was considered: 

𝑃(𝑌𝑖𝑗 = 𝑦) = ∑ π𝑘

3

𝑘=1

𝑃(𝑌𝑖𝑗 = 𝑦|𝑍𝑖𝑗 = 𝑘) (13) 

𝑍𝑖𝑗  was the latent mixture component, π𝑘  was the mixture proportion reflecting the 

probability that 𝑌𝑖𝑗 belonged to the 𝑘-th mixture component, and 𝑃(𝑌𝑖𝑗 = 𝑦|𝑍𝑖𝑗 = 𝑘) ∼

𝑁(μ𝑘, σ2
𝑘) was the component distribution. All the component-specific parameters (i.e., 

π𝑘, μ𝑘, σ2
𝑘) were estimated by the expectation-maximization (EM) algorithm. Samples 

were then assigned to latent clusters with the largest estimates of π𝑘 (Dempster et al., 

1977). Afterward, samples showing evidence of diploid (i.e., 𝑘 = 2) will be filtered. 

4.3.5 HYPERPARAMETERS CHOICES AND MCMC ALGORITHM  

For the PSBP mixture model described in equations (1-2), we developed a Markov Chain 

Monte Carlo (MCMC) algorithm relying on a modification of the Gibbs sampler to 

perform the posterior inference (Ishwaran and James, 2001). Note that with the proper 

choices of priors and hyperpriors described below, all full conditionals are very 

straightforward and can be analytically derived.  

 We adopted the following choices for the hyperparameters (Details in 

Supplementary C.2). For variable selection variable γ𝑖 ∼ 𝐵𝑒𝑟(κ) , we used the Beta 

conjugate hyperprior for the parameter κ. For the component-specific 𝜃𝑙 = (𝜇𝑙, 𝜎𝑙
2) of 

𝐺(. )  defined in equation (15), we used the conjugate normal and inverse gamma 
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hyperpriors for 𝜇𝑙  and 𝜎𝑙
2 , respectively. The posteriors of parameters can then be 

computed via the MCMC algorithm, for which the detailed updating steps are in 

Supplementary C.3. We introduced the latent variable 𝑠𝑖 such that 𝑠𝑖 = 𝑙 denoted the i-th 

position was assigned to the l-th component, and 𝑠𝑖  was sampled from a multinomial 

distribution. To update the latent α𝑙  and weight parameter ω𝑙 , we adopted a data 

augmentation approach (Rodríguez and Dunson, 2011). We introduced a collection of 

conditionally independent latent variable 𝑧𝑖𝑙(𝑠𝑖) ∼ 𝑁(α𝑙 , 1), and we defined 𝑠𝑖 = 𝑙 if and 

only if 𝑧𝑖𝑙(𝑠𝑖) > 0 and 𝑧𝑖𝑟(𝑠𝑖) < 0 for r < l. Therefore, we have, 

𝑃𝑟(𝑠𝑖 = 𝑙) = 𝑃𝑟(𝑧𝑖𝑙(𝑠𝑖) > 0, 𝑧𝑖𝑟(𝑠𝑖) < 0 for r < l) 

= Φ(α𝑙) ∏(1 − Φ(α𝑟))

𝑟<𝑙

= ω𝑙 (14) 

The augmented variable 𝑧𝑖𝑙(𝑠𝑖) can be imputed by sampling from its full conditional 

distribution, 

𝑧𝑖𝑙(𝑠𝑖) = {
𝑁−(α𝑙 , 1)𝑙 < 𝑠𝑖

𝑁+(α𝑙, 1)𝑙 = 𝑠𝑖
(15) 

where 𝑁−  and 𝑁+  denoted the negative and positive truncated normal distributions. 

Given 𝑧𝑖𝑙(𝑠𝑖), α𝑙  can be updated from its conjugate full conditional distribution. The 

component-specific parameters, 𝜃𝑙  and σ2
𝑙  were also updated from their conjugate full 

conditionals. Finally, we updated γ𝑖 based on the marginal likelihoods for (𝒚, 𝒔) and 𝜅 

from its conjugate full conditional distribution. 

4.3.6 NUMERICAL SIMULATIONS 

To evaluate the performance of our method, we conducted simulations under various 

settings. Four copy number states were simulated including del.S, del.D, dup.S, and 

dup.D. The CNV length varied from 10~30 markers (i.e., SNPs and exons), 30~60 
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markers and 60~100 markers. The CNV population frequency was set to be 20%, 50% or 

100%, respectively.  

 First, we evaluated our method when both WES and SNP array data were 

available. For WES data, to generate data retaining the true noise structure and exon 

distribution, we conducted a spike-in design (Jiang et al., 2018; Zhou et al., 2018). We 

started with read depth data on chromosome 1 in 81 samples from the 1000 Genomes 

Project (Auton, Gonçalo R. Abecasis, et al., 2015). Exons harboring CNVs identified by 

EXCAVATOR2 and CODEX2 and reported in the Database of Genomic Variants (DGV) 

were removed (MacDonald et al., 2014; D’Aurizio et al., 2016; Jiang et al., 2018). The 

read depth data of the remaining exons were treated as WES random noise background. 

We multiplied the background read depth by 𝑐/2, where 𝑐 was sampled from a normal 

distribution with mean and variance provided in Supplementary C.6. For SNP array data, 

we utilized the similar strategy used in Xiao et al. to simulate intensities (i.e., LRR) (Xiao 

et al., 2019), which mimicked the real data from the international HapMap consortium 

(D. M. Altshuler et al., 2010). We then randomly selected and spiked in 50 dispersed 

CNV segments of varying length and frequency for every single sequence.  

 Using the simulated datasets, our method BMI-CNV was compared to the existing 

integrative method iCNV (Zhou et al., 2018). The performance of methods was assessed 

by precision rate, recall rate, and F1 score measures (Supplementary C.6). We also 

evaluated the performance of our method when only WES data was available. Our 

method’s performance was compared against that of CODEX2, EXCAVATOR2, and 

iCNV in the single-platform mode (D’Aurizio et al., 2016; Jiang et al., 2018; Zhou et al., 

2018).  
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4.3.7 APPLICATION TO THE 1000 GENOMES PROJECT AND HAPMAP 

DATASETS 

To further illustrate the characteristics of our method, we analyzed the same 81 

individuals using SNP array and WES data from the 1000 genomes project and the 

international HapMap consortium. A detailed description of the experimental samples 

and genotyping platforms was provided in Section 2.2.5 and Section 3.2.1. Raw read 

counts and SNP array data were processed and normalized to generate log2R-MED and 

LRR intensities. For the WES data, we arbitrarily selected four normal samples from the 

1000 genomes project as controls in the calculation of log2R-MED intensity (details in 

Supplementary C.4). The posterior inference of BMI-CNV was based on 2,000 MCMC 

samples with a burn-in period of 500 iterations.  

4.3.8 INTEGRATIVE ANALYSIS OF TRICL CASE-CONTROL STUDY  

We further applied BMI-CNV to the international lung cancer study TRICL (Amos et al., 

2017). We applied BMI-CNV to 1,163 samples genotyped by both OncoArray and WES 

data, and 829 samples that only had WES data using our integrative analysis mode and 

single platform analysis mode, respectively (details in Supplementary C.4 and C.5).  

 CNV calls were annotated by known gene regions obtained from UCSC Genome 

Browser (Kent et al., 2002). A gene-based association test described in Section 3.3.4 was 

performed to investigate the influence of CNV on lung cancer susceptibility. Effects from 

deletions and duplication were evaluated separately, while adjusting the covariates, 

including smoking status (ever/never), age, gender, and top 4 principal components 

(Patterson et al., 2006). In addition to study the overall lung cancer risk, we also 

performed stratification analyses by histological types of lung cancer (squamous cell lung 
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cancer [SQC] and lung adenocarcinoma [LUAD]). The significance of the effects from 

deletions and duplications were tested separately via the Wald test (i.e., β𝑑𝑒𝑙 = 0, β𝑑𝑢𝑝 =

0 ), all nominal P-values were adjusted by Benjamini-Hochberg (BH) procedure 

(Benjamini and Hochberg, 1995).  

4.4 RESULTS  

4.4.1 SIMULATIONS SHOWED IMPROVED PERFORMANCE OF BMI-CNV IN 

INTEGRATIVE ANALYSIS AND SINGLE PLATFORM ANALYSIS 

We first evaluated the performance of BMI-CNV with simulated data when both SNP 

array and WES data were available. Various simulation settings were considered, 

including different CNV sizes and population frequencies. Overall, BMI-CNV 

outperformed iCNV in all scenarios with higher F1 scores (Figure 4.2, Table 4.1). iCNV 

tended to be conservative compared to our method, which maintained a high precision 

rate, although the recall rate was compromised. For example, when the simulated CNVs 

had a length of 30-60 markers and the population frequency was 20%, BMI-CNV had a 

precision at 0.70, a recall rate at 0.83, and an F1 score at 0.76. The corresponding values 

for iCNV were 0.99, 0.37, and 0.54, respectively. Moreover, at a certain value of CNV 

size, we observed the improved performance of BMI-CNV as CNV frequencies increased 

from 20% to 100%, and it achieved the highest F1 score when all the samples were 

carriers. The performance of the iCNV method was not sensitive to the CNV frequencies. 

Regarding computational speed, our method took about 280 minutes to scan a 

chromosome with 90,739 markers from 81 samples based on 2,000 MCMC sampling 

runs. The computation was performed on a regular laptop with an Intel Core i7 processor 

and 24.00 GB of RAM. 
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 Next, we utilized the simulated WES data to assess the performance of BMI-CNV 

benchmarking against existing WES CNV detection methods. The performance of BMI-

CNV was superior to other methods on detecting medium and long CNVs reflected by 

the largest F1 scores (Figure 4.3, Table 4.2). CODEX2 performed the best for detecting 

short CNVs, except for detecting low-frequency CNVs (i.e., frequency=20%). iCNV and 

EXCAVATOR2 tended to be conservative, as they achieved a high precision rate but 

with a significant sacrifice on recall rate. It was also noteworthy to mention that, when 

the CNV size was fixed at a certain value, the performance of BMI-CNV and CODEX2 

were both improved with increased CNV frequencies, and they achieved the highest F1 

scores when all the samples were carriers. Still, the performance of EXCAVATOR2 and 

iCNV were not subject to CNV frequencies, as they mainly scan one sample at a time. 

The shared information from multiple samples was not utilized in the calling algorithms. 

In conclusion, the BMI-CNV method, which integrated information from multiple 

samples, presented evidently improved performance in common CNV detection for both 

multi-platform integration and single-platform analyses.   

4.4.2 APPLICATION TO THE 1000 GENOMES PROJECT AND HAPMAP DATA 

We further applied BMI-CNV to the public datasets from the 1000 genomes project and 

HapMap data for evaluation. In total, we identified 37, 213 CNVs from 81 samples 

(Figure 4.4). Among them, 28% of the CNVs have been previously reported by DGV 

(MacDonald et al., 2014). Most CNVs tended to be short (< 20 markers) and had a 

frequency of less than 50%. The total number of deletions was nearly the same as that of 

duplications (19, 194 vs. 18, 019). Supplementary Figure A.3 showed the summary of 

CNVs, which suggested no difference between deletions and duplications in the CNV 
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length and frequency. Moreover, by integrating the SNP array data, our method 

recovered 4, 418 CNVs that resided in the non-coding regions that would be missed by 

the same method using WES data alone.  

 Supplementary Figure A.4 illustrated one typical common deletion region, 

suggesting that 27 out of 81 samples were carriers of this variant. A clear pattern of the 

shared deletion was observed through visual inspection of the signal intensities for this 

region across samples, and our proposed method presented accuracy in identifying this 

region. We also explored an alternative data integration strategy that only used intronic 

SNPs from the array data. Comparing to the main method using all SNPs, integrative 

calling with only intronic SNPs yielded a similar number of CNVs but a lower 

concordance rate with DGV (26% vs. 28%), implying the advantage of utilizing 

information of all SNPs on slightly improved accuracy (Figure 4.4, Supplementary 

Figure A.5). 

4.4.3 INTEGRATIVE ANALYSIS OF TRICL CASES AND CONTROLS 

With the TRICL datasets, we identified 253,183 CNVs in autosomes from 1,992 samples 

(Figure 4.5) in total. Overall, we detected more deletions than duplications, with an 

average length of deletions (in markers) larger than that of the duplications (13.46 

markers vs. 8.72 markers) (Supplementary Table A.11). No significant difference in the 

overall proportion of deletions and duplications between cases and controls was observed 

(49% vs. 51% for deletions and 52% vs. 48% for duplications, respectively). Also, there 

was no difference in the length of deletions and duplications between cases and controls 

(Supplementary Table A.11).  
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 Those identified CNVs were mapped to 3,472 genes. An association test with SQC 

subgroup highlighted the deletion gene LGALS9 in 17q11.2 region (OR=4.14, 95% 

CI=1.65-10.38, P-value=0.002) and duplication genes HSPG2 in 1p36.12 region 

(OR=4.79, 95% CI=1.75-13.10, P-value=0.002), EIF3E in 8q23.1 region (OR=2.19, 95% 

CI=1.31-3.64, P-value=0.003). Association results in the LUAD subgroup identified the 

duplication gene YTHDC2 in 5q22.2 region (OR=2.88, 95% CI=1.62-5.12, P-

value=0.0003), which was also identified in the overall lung cancer risk model by 

adjusting the histological subtypes as a covariate (Supplementary Table A.12). The 

intensities’ plots indicated that all of those variants were valid CNV segments that 

showed distinct data patterns from other non-carriers and adjacent regions 

(Supplementary Figure A.6).  Although these genes were not significant after multiple 

comparison adjustments, they still provided potential evidence and great insights into 

future studies on the roles of CNVs in lung cancer risk.  

4.5 DISCUSSION  

Challenges shared by existing WES methods are the lack of sensitivity for common 

CNVs and the incapability of studying the non-coding regions of the genome. In this 

chapter, we have developed a multiple sample-based method, BMI-CNV, to improve 

common CNV detection with WES data, allowing for the integration of available SNP 

array data. The simulation results demonstrated the desirable performance across 

different scenarios of CNV sizes and population frequencies. The improvement for 

calling long and high-frequency CNVs was the most substantial. We reanalyzed the WES 

data from the 1000 Genomes Project and SNP array data previously generated by 

HapMap project 3 and demonstrated the advantage of multi-platform integration over the 
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single-platform analysis. Finally, our application of BMI-CNV to WES and OncoArray 

datasets of the TRICL consortium indicated potential lung cancer associated CNVs. 

 This is the first report demonstrating the improved performance of CNV detection 

by utilizing a multi-sample and multiple-platform strategy. The advantages of our method 

in theory are in two aspects. First, utilizing information across samples will dramatically 

reduce the false positives and boost the detection power. We showed that BMI-CNV 

presented essential advantages over other single-sample methods in detecting common 

variants. The advantage has been previously shown in Song et al. (Song et al., 2016), 

which proved that the underlying statistical power of multi-sample methods converged to 

one at a faster rate than single-sample methods. Second, BMI-CNV integrates available 

SNP data to detect CNVs in non-coding regions. allowing for full spectrum genomic 

variants investigation. Indeed, the important role of CNVs in non-coding regions has 

been revealed in numerous studies. For example, Kumaran et al. identified 1,812 breast 

cancer-associated CNVs mapping to non-coding regions (Kumaran et al., 2018). 

D’Aurizio et al. and Kuilman et al. developed WES-based methods, EXCAVATOR2 and 

CopywriteR, which used both the targeted reads and the nonspecifically captured off-

target reads (i.e., from the non-coding region) (Kuilman et al., 2015; D’Aurizio et al., 

2016). Unfortunately, the information contained in the off-targets is too biased and 

incomplete. Our method utilizes the more complete SNP array data from the matched 

samples, which provides a more reliable and unbiased solution. iCNV uses a single 

hidden Markov model to jointly analyze data from all platforms. It assumes that those 

overlapping markers (i.e., exons and SNPs) share the same copy number and indeed use 

one platform to validate the calls from the other. In contrast, BMI-CNV systematically 
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combines data sequences from multi-platforms and allows the overlapping markers to 

have different copy number states.   

 Our method still presents limitations. First, it does not detect rare CNVs, as the 

power will be attenuated in the existence of a large proportion of non-carriers. Second, it 

will have low power to detect CNVs with similar proportions of duplications and 

deletions in the samples, which might be less likely to happen for germline variations. 

Our method may split those CNVs into several smaller deletions and duplications, as 

each CNV locus is equally likely to be assigned to deletion or duplication. Thirdly, our 

data integration strategy merely combines multi-platform datasets into one data sequence 

instead of using them as separate sources of input, which may lose some information 

especially for overlapping markers (e.g., exons and SNPs). One possible solution is to 

implement dimension reduction techniques on those datasets and perform CNV 

identification on the inferred latent factors, similar idea has been used for the integrative 

analysis of multi-omics data (Ma and Zhao, 2012; Meng et al., 2016; Park et al., 2021). 

Another solution is to implement the methodologies of multivariate change-point 

detection (Aue et al., 2009; Kuncheva, 2013; Montañez et al., 2015; Truong et al., 2020). 

Those methods have been extensively used to identify changes in multivariate time series 

data. 
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TABLES AND FIGURES 

Table 4.1 Summary of performance of our method on simulated data in integrative 

analysis. Precision rate, recall rate and F1 score are summarized for CNV calls generated 

by BMI-CNV and iCNV in integrative analysis. Frequency: CNV frequency. 

  BMI-CNV iCNV 

CNV length 

(markers) Frequency Precision Recall F1 Precision Recall F1 

 20% 0.54 0.71 0.61 0.98 0.35 0.51 

10~30 50% 0.58 0.90 0.71 0.98 0.35 0.51 

 100% 0.79 0.91 0.84 0.98 0.35 0.52 

 20% 0.70 0.83 0.76 0.99 0.37 0.54 

30~60 50% 0.75 0.87 0.81 0.99 0.35 0.52 

 100% 0.92 0.85 0.89 0.99 0.36 0.53 

 20% 0.75 0.88 0.81 0.99 0.40 0.57 

60~100 50% 0.87 0.89 0.88 0.99 0.39 0.56 

 100% 0.88 0.89 0.89 0.99 0.40 0.57 
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Table 4.2 Summary of performance of our method on simulated data in WES analysis. Precision rate, recall rate and F1 score are 

summarized for CNV calls generatedby BMI-CNV, iCNV, EXCAVATOR2 and CODEX2 in WES analysis. Frequency: CNV 

frequency. 

 

 

 

 

 

 

 

 

  BMI-CNV iCNV EXCAVATOR2 CODEX2 

CNV 

length  Frequency Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 

 20% 0.44 0.77 0.56 0.99 0.40 0.57 0.90 0.21 0.34 0.37 0.99 0.54 

10~30 50% 0.46 0.85 0.59 0.98 0.39 0.56 0.87 0.21 0.34 0.49 0.98 0.65 

 100% 0.90 0.64 0.74 0.99 0.37 0.54 0.87 0.25 0.39 0.97 0.63 0.76 

 20% 0.81 0.55 0.65 0.99 0.42 0.59 0.80 0.19 0.30 0.35 0.99 0.51 

30~60 50% 0.65 0.79 0.71 0.99 0.42 0.59 0.81 0.20 0.32 0.48 0.91 0.63 

 100% 0.82 0.79 0.81 0.99 0.43 0.60 0.84 0.25 0.38 0.99 0.69 0.81 

 20% 0.78 0.72 0.75 0.99 0.54 0.70 0.93 0.26 0.41 0.25 0.74 0.37 

60~100 50% 0.80 0.77 0.78 0.99 0.53 0.69 0.87 0.31 0.46 0.45 0.42 0.43 

 100% 0.87 0.78 0.83 0.99 0.54 0.70 0.90 0.39 0.54 0.99 0.68 0.81 
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Figure 4.1 Analysis workflow of BMI-CNV. BMI-CNV requires two inputs: (1) WES 

raw read count data from testing and control samples that are computed by using 

genotyping tools such as SAMtools; (2) SNP array intensities. WES read counts are 

normalized to correct exon length, GC-content and mappability biases. Logarithm of 

normalized values between testing and pooled control samples are calculated. SNP array 

intensities are normalized to adjust the genomic waves. The WES and SNP array data are 

standardized by robust scaling approach and then integrated. For CNV calling, BMI-

CNV carries out a two-stage framework to generate CNV calls. In stage I, an initial data 

filtering procedure is coupled with a Bayesian PSBP method to identify shared CNV 

regions. In stage II, an individual CNV calling procedure is performed to call CNVs in 

each sample. 
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Figure 4.2 Performance assessment of BMI-CNV and iCNV on simulated data in 

integrative analysis. Simulated CNVs are of frequency 20%, 50% and 100% and length 

10~30 markers (short), 30~60 markers (medium) and 60~100 markers (long). The grey 

contours are F1 scores calculated as the harmonic mean of precision and recall rates. 
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Figure 4.3 Performance assessment of BMI-CNV, iCNV, EXCAVATOR2 and 

CODEX2 on simulated data in WES analysis. Simulated CNVs are of frequency 20%, 

50% and 100% and length 10~30 markers (short), 30~60 markers (medium) and 60~100 

markers (long). The grey contours are F1 scores calculated as the harmonic mean of 

precision and recall rates. 
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Figure 4.4 Overview of the application to the 1000 genomes project and HapMap 

data. The figure outlines the study design with brief description of quality control (QC) 

methods. Summary of key results include the sample size and number of CNVs at various 

stages of analysis. Left: CNV calling results using all SNPs and exons; right: CNV 

calling results using intronic SNPs and exons. Chr: chromosome. 
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Figure 4.5 Overview of the integrative analysis of TRICL case-control study. The 

figure outlines the study design with brief description of quality control (QC) steps. 

Summary of key results include the sample size and number of CNVs at various stages of 

analysis. IBD: identical by descent; KC: kinship coefficient; LRR_SD: standard deviation 

of Log R ratio; Chr: chromosome; PCA: principal component analysis. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE PERSPECTIVES 

CNVs are an important and pervasive source of genetic variation that accounts for a 

significant proportion of inherited susceptibility to human diseases. Understanding the 

mechanisms underlying the influences of CNVs will be instrumental for many basic 

research areas. Accurate identification of CNVs is highly demanded to provide a 

comprehensive view of human genetic variation. This dissertation developed three novel 

methods to improve the CNV detection, which can be implemented with data from 

various genotyping platforms: SNP array, WES, and combination of SNP array and 

WES. First, we developed a novel algorithm LDcnv. LDcnv employs a local search 

strategy that directly integrated the genomic correlation structure, allowing for efficient 

CNV identification with correlated data. Through extensive simulations and analyses of 

HapMap datasets, we showed that LDcnv outperforms existing methods, especially for 

detecting short CNVs.  

 To further explore the potential of correlation-based algorithm on detecting CNVs 

in WES data, we developed two different CNV detection tools. We evaluated the existing 

normalization approaches and find the median based normalization retained the 

correlation structure and achieved superior performance coupled with the LDcnv 

algorithm, so as referred to the CORRseq method. The performance of CORRseq was 

evaluated in extensive simulation studies and real data applications from the 1000 

Genomes Project. CORRseq outperformed existing methods in detecting medium and
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large CNVs. We also developed a Bayesian Multi-sample and multi-platform CNV 

detection method to achieve higher accuracy and resolution. By utilizing data sequenced 

by both WES and microarray, BMI-CNV addresses the limitation shared by single-

platform methods due to the sparse nature of WES and microarray, while incorporating 

information across samples significantly improves the robustness of CNV identification 

against data noises. With extensive simulations, BMI-CNV outperformed existing 

methods for both multiple and single platform analyses.  

 These newly developed methods will be useful for the genetics and genomics 

community in studying CNVs with complex and high-throughput data. Genomic 

correlation structure is an important component in understanding and modelling the CNV 

data. In our work, we explored the correlation structure of the genetic intensity data from 

both SNP array and WES data. Strong evidence was found to support the existence of 

genomic dependence structure in the CNV data. Especially in the SNP array data, we 

theoretically proved that the correlation between two loci in the genetic intensity will 

depend on the LD coefficient computed from SNP allele frequencies. Both LDcnv and 

CORRseq demonstrated the promise of modelling the genomic correlation structure in 

obtaining more accurate and reliable CNV estimates with SNP array and WES data. 

These methods also fill in a gap in existing change-point detection methods to allow for 

modelling correlated observations. BMI-CNV provided a Bayesian framework to jointly 

investigate CNV signals from multiple samples and platforms, which has several 

essential advantages over other modelling strategies. First, the nonparametric PSBP can 

relax the restrictive parametric assumption and allows flexible modelling of the complex 

high-throughput data. Second, the Bayesian framework enables great flexibility and 
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possibility to incorporate prior relevant information such as the documented CNV hotspot 

information (Wang et al., 2007). Finally, the PSBP framework can be easily extended to 

accommodate the complex data dependence structure by replacing the independent 

weights with stochastic processes (e.g., Gaussian process) without sacrificing 

computational tractability (Rodríguez and Dunson, 2011). It opens a door to exploit 

various sources of available information to improve the performance of CNV calling 

algorithms.  

The application of our newly developed methods, CORRseq and BMI-CNV, to 

TRICL case-control study identified several candidate lung cancer risk related genes, 

which may provide new insights into the etiology of lung cancer. The discovered 

significantly associated deletion genes AMBRA1, FCGR3A, and LGALS9 were previously 

found to be novel prognostic markers in lung cancer, loss and low expression of which 

were correlated with fast tumor growth and poor survival outcome (He et al., 2019; Xu 

and Guo, 2020; Chaikovsky et al., 2021). The significant amplification genes HSPG2, 

EIF3E, YTHDC2, ZNF280A, PRAME, and AMY2B also have been frequently described 

as oncogenes in diverse tumor types, including lung cancer, gastrointestinal cancers, and 

breast cancer (Yang et al., 2015; Xu et al., 2020; Liu et al., 2021). Besides that, the 

regions 1p36, 3p14, and 19q13.3 were previously identified as a tumor suppression 

region, where loss of those tumor suppressors contributes to cancer development 

(Whang-Peng, 1989; Sobottka et al., 2000; Carén et al., 2007). Further large-scale studies 

are needed to validate these potential findings.   

 Next, we will extend our methods to be capable of analyzing single-cell DNA-

sequencing (scDNA-seq) data. scDNA-seq data is ideal for inferring CNVs in each cell, 
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which make it possible to study various tumor characteristics, such as intra-tumor 

heterogeneity and tumor evolutionary trajectory. Tumors are typically heterogeneous, 

which comprise of several sub-clonal populations (Navin and Hicks, 2010; McGranahan 

and Swanton, 2017). Identifying and extracting those genetically distinct sub-populations 

is crucial for reconstructing tumor evolutionary trajectories, which may uncover the 

mechanisms of tumor progression. Several studies have implicated CNVs in dissecting 

and clustering of tumor cells (Zack et al., 2013; Velazquez-Villarreal et al., 2020; Zhou 

et al., 2020) and performing evolutionary analysis (Dorri et al., 2020; Kuipers et al., 

2020), where a key challenge comes from low and uneven sequencing coverage that may 

lead to false calls (Mallory et al., 2020; Lähnemann et al., 2020). Another direction is to 

perform single-cell RNA-sequencing (scRNA-seq) in parallel to scDNA-seq using the 

same tumor samples, our Bayesian framework can be extended to integrate multiple data 

types to enhance detection power. Moreover, single cell transcriptomic profiling is 

promising in characterizing tumor heterogeneity and  trajectories, numerous methods 

have been developed, see Kiselev et al. and Saelens et al. for complete reviews (Kiselev 

et al., 2019; Saelens et al., 2019). However, one issue is that different data types may 

provide inconsistent CNV results, where CNVs identified in one data are absent in other 

data types. Another complexity is that although CNVs are related to gene expression 

alterations, the precise quantification of association between CNVs and gene expression 

on a cellular scale remain to be elucidated. In addition to that, our method may also be 

further extended to incorporate case-control status to directly identify disease-associated 

CNVs in a single model. We will also explore the possibility of integrating heterogeneous 

measurements of biological variations, such as genetic, epigenetic, and gene expression 
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variations, to comprehensively assess the generic architectures of diseases. Especially 

with the advent of the single cell multimodal omics method, where multiple 

measurements can be simultaneous generated on single cells (Li et al., 2019; Zhu et al., 

2020). However, integrative computational methods have just started to emerge, more 

sophisticated methods are needed to effectively handle the high level of data sparseness 

and noisiness and information discrepancies among different data types. 
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APPENDIX A 

SUPPLEMENTARY FIGURES AND TABLES 

Table A.1 Joint genotype probabilities for two diallelic loci. The joint genotype 

probabilities were calculated under the Hardy-Weinberg equilibrium assumption. A and a 

are reference and alternate alleles in the first locus, pA is the probability of the reference 

allele; B and b are the reference and alternate alleles in the second locus, pB is the 

probability of the reference allele; 𝐷𝐴𝐵  is the coefficient of linkage disequilibrium 

between two loci.  

 

Locus 

1 

Locus 

2 Probabilities 

AA BB (𝑝𝐴𝑝𝐵 + 𝐷𝐴𝐵)2 

AA Bb 2(𝑝𝐴𝑝𝐵 + 𝐷𝐴𝐵)(𝑝𝐴(1 − 𝑝𝐵) − 𝐷𝐴𝐵) 

AA bb (𝑝𝐴(1 − 𝑝𝐵) − 𝐷𝐴𝐵)2 

Aa BB 2(𝑝𝐴(1 − 𝑝𝐵) − 𝐷𝐴𝐵)((1 − 𝑝𝐴)𝑝𝐵 − 𝐷𝐴𝐵) 

Aa Bb 

2(𝑝𝐴𝑝𝐵 + 𝐷𝐴𝐵)((1 − 𝑝𝐴)(1 − 𝑝𝐵) + 𝐷𝐴𝐵)

+ 2(𝑝𝐴(1 − 𝑝𝐵) − 𝐷𝐴𝐵)((1 − 𝑝𝐴)𝑝𝐵 − 𝐷𝐴𝐵) 

Aa bb 2(𝑝𝐴(1 − 𝑝𝐵) − 𝐷𝐴𝐵)((1 − 𝑝𝐴)(1 − 𝑝𝐵) + 𝐷𝐴𝐵) 

aa BB ((1 − 𝑝𝐴)𝑝𝐵 − 𝐷𝐴𝐵)
2
 

aa Bb 2((1 − 𝑝𝐴)𝑝𝐵 − 𝐷𝐴𝐵)((1 − 𝑝𝐴)(1 − 𝑝𝐵) + 𝐷𝐴𝐵) 

aa bb ((1 − 𝑝𝐴)(1 − 𝑝𝐵) + 𝐷𝐴𝐵)
2
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Table A.2 Relationship between CNV locations and LD map. The frequency of each 

type of relationship between CNV location and LD was shown, the frequency was 

calculated based on 300 random selected CNVs from 856 high quality CNVs from the 

international HapMap 3 Consortium. 

 Across Block Inter-block Hybrid Random 

Frequency 11.00% 2.00% 4.00% 83.00% 

Across Block: CNV regions covering at least one LD block; Inter Block: CNV regions 

occurs within one LD block; Hybrid: only one breakpoint locating within LD block; 

Random: CNVs locating in the area with weak or no LD structure. 
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Table A.3 Summary of CNV calls on simulated data at ϕ =0.1 from all methods. 

True positive rates (TPRs) and false positive rates (FPRs) of LDcnv, PennCNV, CBS and 

SLMSuite with different CNV states and CNV sizes are shown, while the autoregressive 

coefficient (ϕ) was fixed at ϕ =0.1 which was corresponding to Pearson’s correlation 

coefficient at 0.1. Del.d: deletion of double copies; Del.s: deletion of single copy; Dup.s: 

duplication of single copy; Dup.d: duplication of double copies. 

 

CNV 

State 
Method 

CNV length (markers) 

 10~50 50~100  100~200 

TPR FPR TPR FPR TPR FPR 

Del.d 

LDcnv_eCN 1.00 0.00 0.94 <0.01 0.93 <0.01 

LDcnv_LRR 0.99 <0.01 0.99 <0.01 0.99 <0.01 

PennCNV 1.00 <0.01 1.00 0.00 1.00 <0.01 

SLMSuite 0.99 <0.01 1.00 <0.01 0.99 <0.01 

CBS 1.00 0.01 1.00 0.02 1.00 0.02 

Del.s 

LDcnv_eCN 0.99 0.01 0.95 0.01 0.96 0.01 

LDcnv_LRR 0.99 <0.01 0.99 <0.01 0.97 <0.01 

PennCNV 0.98 0.02 0.96 0.03 0.90 0.08 

SLMSuite 0.99 <0.01 0.99 <0.01 0.97 <0.01 

CBS 0.99 0.02 0.99 0.01 0.99 0.01 

Dup.s 

LDcnv_eCN 0.98 0.01 0.93 0.01 0.94 0.01 

LDcnv_LRR 0.90 0.01 0.95 0.02 0.96 0.03 

PennCNV 0.91 0.07 0.92 0.07 0.88 0.1 

SLMSuite 0.79 0.02 0.98 0.02 0.99 0.01 

CBS 0.93 0.05 0.94 0.05 0.93 0.06 

Dup.d 

LDcnv_eCN 1.00 <0.01 1.00 <0.01 0.98 <0.01 

LDcnv_LRR 1.00 <0.01 1.00 0.00 1.00 0.00 

PennCNV 1.00 <0.01 0.99 0.01 0.99 <0.01 

SLMSuite 1.00 0.00 1.00 0.00 1.00 0.00 

CBS 1.00 <0.01 1.00 <0.01 1.00 >0.01 
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Table A.4 Summary of CNV calls on simulated data at ϕ =0.5 from all methods. 

True positive rates (TPRs) and false positive rates (FPRs) of LDcnv, PennCNV, CBS and 

SLMSuite with different CNV states and CNV sizes, the autoregressive coefficient (ϕ) 

was fixed at ϕ =0.5 which was corresponding to Pearson’s correlation coefficient at 0.5. 

Del.d: deletion of double copies; Del.s: deletion of single copy; Dup.s: duplication of 

single copy; Dup.d: duplication of double copies. 

 

CNV 

State 
Method 

CNV length (markers) 

 10~50 50~100  100~200 

TPR FPR TPR FPR TPR FPR 

Del.d 

LDcnv_eCN 0.99 0.01 0.96 0.01 0.99 0.03 

LDcnv_LRR 0.95 0.02 0.97 0.03 0.94 0.02 

PennCNV 0.99 0.01 0.99 0.01 1.00 <0.01 

SLMSuite 0.99 0.03 0.99 0.02 0.99 0.01 

CBS 1.00 0.23 1.00 0.44 1.00 0.64 

Del.s 

LDcnv_eCN 0.96 0.06 0.95 0.08 0.96 0.09 

LDcnv_LRR 0.94 0.08 0.98 0.10 0.96 0.10 

PennCNV 0.89 0.05 0.88 0.09 0.83 0.14 

SLMSuite 0.88 0.05 0.98 0.02 0.99 0.02 

CBS 0.94 0.26 0.94 0.46 0.95 0.62 

Dup.s 

LDcnv_eCN 0.88 0.12 0.89 0.09 0.91 0.11 

LDcnv_LRR 0.74 0.24 0.70 0.30 0.71 0.30 

PennCNV 0.84 0.11 0.86 0.13 0.83 0.18 

SLMSuite 0.56 0.08 0.91 0.09 0.92 0.08 

CBS 0.69 0.32 0.80 0.57 0.79 0.76 

Dup.d 

LDcnv_eCN 0.99 0.01 0.96 0.01 0.99 0.03 

LDcnv_LRR 0.99 0.01 0.98 0.02 0.97 0.03 

PennCNV 0.99 0.01 0.99 0.01 1.00 <0.01 

SLMSuite 0.99 0.02 0.99 <0.01 1.00 <0.01 

CBS 1.00 0.23 1.00 0.44 1.00 0.64 
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Table A.5 Overall assessment of CNV calling on the HapMap project dataset. Performance assessment of CNV calls from the 

HapMap Project 3 in the 180 HapMap samples by LDcnv, PennCNV, CBS and SLMSuite on reports from (a) HapMap3 (b) Conrad et 

al. (c) McCarroll (MCC) et al. studies. The recall rate was defined as the ratio of identified true positives over the total number of 

“true CNVs”. The F1 score was calculated as harmonic mean of precision rate and recall rate. TP: True positives among the detected 

CNVs.  

  HapMap3 Conrad MCC 

  TP Precision Recall F1 TP Precision Recall F1 TP Precision Recall F1 

LDcnv 7016 35.76% 35.19% 35.48 9999 47.58% 8.23% 14.04 4560 46.96% 38.12% 42.08 

PennCNV 3760 53.23% 18.81% 27.85 4880 64.56% 4.01% 7.56 2640 66.48% 22.07% 33.14 

CBS 3965 55.17% 19.88% 29.23 5025 65.08% 4.13% 7.80 2532 64.72% 21.16% 32.00 

SLMSuite 4942 53.24% 24.78% 33.00 6213 62.44% 5.00% 9.00 3136 62.00% 26.21% 36.63 
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Table A.6 Assessment of calling performance in short CNVs on the HapMap project dataset. Performance assessment on 

detecting short CNVs (<10 markers) from the HapMap Project 3 in the 180 HapMap samples by LDcnv, PennCNV, CBS and 

SLMSuite on reports from (a) HapMap3 (b) Conrad et al. (c) McCarroll (MCC) et al. studies. The recall rate was defined as the ratio 

of identified true positives over the total number of “true CNVs”. The F1 score was calculated as harmonic mean of precision rate and 

recall rate. TP: True positives among the detected CNVs.  

  HapMap3 Conrad MCC 

  TP Precision Recall F1 TP Precision Recall F1 TP Precision Recall F1 

LDcnv 1849 8.00% 18.48% 11.17 4167 15.33% 4.23% 6.63 1390 11.86% 26.34% 16.36 

PennCNV 177 2.65% 1.76% 2.12 698 8.78% 0.70% 1.31 206 5.33% 3.90% 4.51 

CBS 1249 8.49% 12.48% 10.11 2879 16.73% 2.90% 4.94 834 10.50% 15.80% 12.61 

SLMSuite 698 6.94% 6.97% 6.95 1398 12.07% 1.42% 2.54 540 9.65% 10.23% 9.93 
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Table A.7 Demographic characteristics of the participants studies after quality 

control filters. 

 Lung cancer cases Controls 

 Number % Number % 

Passed QC 1,033 55 875 45 

Age     

<=50 years 292 28 277 32 

>50 years 741 72 598 68 

Sex     

Male 607 59 511 58 

Female 426 41 364 42 

Smoking status     

Never 124 12 304 35 

Ever 6 1 3 1 

Former 413 40 373 43 

Current 484 47 192 21 

Histology     

Adenocarcinoma 548 53 875 - 

Squamous cell carcinoma 332 32 875 - 

Small cell carcinoma 33 3 875 - 
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Table A.8 Summary of joint CORRseq and EXCAVATOR2 calling results on 

TRICL data. 

Status 

N 

sample N del N dup 

Del 

mean 

size 

(exons) 

Del 

mean 

size (kb) 

Dup 

mean 

size 

(exons) 

Dup 

mean 

size 

(kb) 

Cases 1,033 60,997 28,841 16.36 176.61 23.26 235.06 

Controls 875 52,096 24,128 16.58 179.13 23.17 236.27 

Total 1,908 113,093 52,969 16.46 177.77 23.22 235.62 

N sample, number of samples; N del, number of deletions; N dup, number of duplications; Del, 

deletions, dup, duplications. 
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Table A.9 Top significantly associated CNVs with lung cancer risk (P-value<0.01) 

Gene Chr CNV Case:Cont OR (95% CI) P-value 

ZNF280A 22q11.22 Duplication 700:529 1.40(1.14, 1.70) 0.001 

LL22NC03-

63E9.3 22q11.22 Duplication 708:536 1.38(1.13, 1.69) 0.001 

PRAME 22q11.22 Duplication 705:535 1.37(1.12, 1.68) 0.001 

UBXN10 1p36.12 Duplication 108:62 1.58(1.12, 2.23) 0.009 

AMY2B 1p21.1 Duplication 71:31 1.80(1.14, 2.82) 0.01 

LOC100130964 8p11.22 Deletion 107:59 1.76(1.23, 2.50) 0.001 

FCGR3A 1q23.3 Deletion 76:31 2.00(1.28, 3.13) 0.002 

LRRC46 17q21.32 Deletion 37:15 2.56(1.33, 4.93) 0.004 

MRPL10 17q21.32 Deletion 53:25 2.01(1.20, 3.37) 0.007 

AMBRA1 11p11.2 Deletion 20:6 3.71(1.40, 9.83) 0.008 

NRAP 10q25.3 Deletion 173:108 1.45(1.10, 1.91) 0.009 

NPEPPS 17q21.32 Deletion 227:152 1.37(1.08, 1.75) 0.01 

Chr, chromosome; Case, number of CNVs in cases; Cont, number of CNVs in controls; OR, 

odds ratio; 95% CI, 95% confidence interval. 
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Table A.10 Top significantly associated CNVRs with lung cancer risk (P-value<0.01) 

CNVR Chr CNV Case:Cont 

OR (95% 

CI) 

P-

value Genes 

CNVR_4385 22q11.22 Duplication 713:542 

1.36(1.11, 

1.66) 0.002 

IGLL5,PRAME,GGTLC2,ZNF280B, 

ZNF280A,LL22NC0363E9.3, 

POM121L1P,MIR5571,MIR650,BMS1P20 

CNVR_3148 13q14.11 Duplication 48:19 

2.09(1.19, 

3.67) 0.01 DGKH,AKAP11 

CNVR_2882 12p13.2 Duplication 21:6 

3.58(1.29, 

9.88) 0.01 PRB2,PRB1 

CNVR_5 1p36.33 Deletion 110:63 

1.59(1.13, 

2.24) 0.008 ATAD3A,SSU72,TMEM240 

CNVR_3042 12q23.3 Deletion 25:8 

3.04(1.30, 

7.09) 0.01 WSCD2 

CNVR_3829 17q21.32 Deletion 553:423 

1.28(1.06, 

1.55) 0.01 

EFCAB13,KPNB1,NPEPPS,THCAT158, 

MRPL45P2,TBKBP1,ITGB3 

CNVR_2509 10q25.3 Deletion 172:108 

1.43(1.08, 

1.88) 0.01 HABP2,NRAP 

CNVR_4010 19p13.3 Deletion 119:67 

1.53(1.09, 

2.13) 0.01 

WASH5P,MIR1302-2, 

MIR1302-9,MIR1302-10,MIR1302-

11,FAM138A,FAM138F,FAM138C, 

LINC01002,OR4F17 

CNVR_859 3p14.3 Deletion 31:15 

2.35(1.20, 

4.62) 0.01 

WNT5A,ERC2,LINC02017,ERC2-

IT1,MIR3938,CACNA2D3 

Chr, chromosome; Case, number of CNVs in cases; Cont, number of CNVs in controls; OR, odds ratio; 95% CI, 95% confidence interval; 

genes, genes mapped to CNVRs. 
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Table A.11 Summary of BMI-CNV calling results on TRICL data. 

Methods  N sample N del N dup 

Del 

Mean size 

(markers) 

Del 

Mean 

size (kb) 

Dup 

Mean size 

(markers) 

Dup 

Mean 

size (kb) 

BMI-CNV 

Cases 1,075 66,705 62,440 12.91 32.30 8.38 33.21 

Control 917 68,560 55,478 14.00 30.64 9.09 31.72 

Total 1,992 135,265 117,918 13.46 31.46 8.72 32.51 

N sample, number of samples; N del, number of deletions; N dup, number of duplications; Del, deletions, dup, duplications. 
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Table A.12 Top significantly associated CNVs with lung cancer risk (P-value<0.005). 

Gene Stratum CNV Chr Case:Cont OR (95% CI) P-value P.adj 

YTHDC2 LUAD Duplication 5q22.2 37:22 2.88(1.62,5.12) 0.0003 0.24 

MROH1 LUAD Duplication 8q24.3 26:12 3.58(1.70,7.55) 0.001 0.24 

NPEPPSP1 LUAD Deletion 17q12 308:401 1.55(1.21,1.98) 0.0005 0.07 

LOC101929950 LUAD Deletion 17q12 308:401 1.55(1.21,1.98) 0.0005 0.07 

HSPG2 SQC Duplication 1p36.12 12:10 4.79(1.75,13.10) 0.002 0.99 

EIF3E SQC Duplication 8q23.1 33:54 2.19(1.31,3.64) 0.003 0.99 

ACAD11 SQC Duplication 3q22.1 20:27 2.69(1.39,5.20) 0.003 0.99 

HMGA2 SQC Duplication 12q14.3 15:11 3.50(1.44,8.53) 0.005 0.99 

LGALS9 SQC Deletion 17q11.2 11:17 4.14(1.65,10.38) 0.002 0.21 

COG3 SQC Deletion 13q14.13 19:30 2.74(1.39,5.38) 0.004 0.21 

TESK2 SQC Deletion 1p34.1 24:34 2.45(1.34,4.48) 0.004 0.21 

FUBP1 SQC Deletion 1p31.1 6:5 8.65(1.91,39.18) 0.005 0.21 

TBC1D23 SQC Deletion 3q12.1 12:4 5.64(1.66,19.15) 0.005 0.21 

YTHDC2 LC Duplication 5q22.2 54:22 2.43(1.42,4.18) 0.001 0.28 

MROH1 LC Duplication 8q24.3 35:12 2.89(1.41,5.93) 0.004 0.56 

HSPG2 LC Duplication 1p36.12 23:10 3.14(1.43,6.88) 0.004 0.56 

SCARF2 LC Duplication 22q11.21 56:21 2.19(1.27,3.77) 0.005 0.56 

FAM230J LC Duplication 22q11.21 56:21 2.19(1.27,3.77) 0.005 0.56 

RIMBP3 LC Duplication 22q11.21 56:21 2.19(1.27,3.77) 0.005 0.56 

CRIPT LC Duplication 2p21 26:8 3.28(1.43,7.49) 0.005 0.56 

P.adj is the adjusted P-values using Benjamini-Hochberg procedure; LUAD, lung adenocarcinoma; SQC, squamous cell lung cancer; 

LC, lung cancer; Chr, chromosome; Case, number of CNVs in cases; Cont, number of CNVs in controls; OR, odds ratio; 95% CI, 

95% confidence interval. 

 

 



 

106 
 

 

Figure A.1 Four classifications of the CNV locations in the LD genome map. The 

graphs summarized the frequency of CNV types with the existing high-quality CNVs 

from the HapMap phase 3 project. (a) Across block: CNVs spanning at least one LD 

blocks, (b) Inter-block: CNVs locating within a LD block, (c) Hybrid: only one 

breakpoint locating within LD block, and (d) Random: CNVs locating in the area with 

weak or no LD structure. The black arrows in each plot represent the start and end points 

of the CNV 
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Figure A.2 Assessment of CNV calling performance in short CNVs on the HapMap 

project datasets. Performance assessment on detecting short CNVs (<10 markers) from 

the HapMap Project 3 in the 180 HapMap samples by LDcnv, PennCNV, CBS and 

SLMSuite on reports from (a) HapMap3 (b) Conrad et al. (c) McCarroll (MCC) et al. 

studies. The grey contours are F1 scores calculated as the harmonic mean of precision 

rate and recall rate. 
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Figure A.3 Summary of length and frequency of BMI-CNV calling results on 1000 

genome and HapMap project data. Genomic length (in markers and kb) and population 

frequency of CNVs are compared between deletions and duplications. CNVs tend to be 

short in size with frequency less than 50%, whereas there is no difference between 

deletions and duplications. 
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Figure A.4 Case illustration of one common deletion region of chromosome 3. The 

plot shows a common deletion region identified by BMI-CNV at position 52,404,727- 
52,425,389 of chromosome 3, this variant is shared across 27 samples. Each plot is a 

sample, x-axis is the genomic position and y-axis is the signal intensity (i.e. LRR or 

log2R-MED). The mean signal intensities are shown by bold black lines. A clear shared 

deletion pattern is observed.  
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Figure A.5 Comparison of length and frequency of BMI-CNV calling results on 

1000 genome and HapMap project data under two different data integration 

strategies. Genomic length (in markers and kb) and population frequency of CNV calling 

results under two data integration strategies are compared. Upper: data integration using 

exons and all SNPs; Lower: data integration using exons and intronic SNPs.  
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Figure A.6 Data intensity of top lung cancer related CNVs. The figure shows the data 

intensities of four lung cancer related CNV genes: (1) LGALS9; (2) HSPG2; (3) EIF3E; 

(4) YTHDC2. The mean signal intensity for each sample is shown by step bold line. For 

each gene, we included all carriers and other 50 randomly selected non-carriers. Vertical 

dashed lines depict regions identified by BMI-CNV, x-axis is the genomic position and y-

axis is the signal intensity (i.e. LRR or log2R-MED). All variants are valid CNV 

segments which show distinct data patterns from other non-carriers and adjacent regions. 
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APPENDIX B 

INTEGRATING GENOMIC CORRELATION STRUCTURE IMPROVES COPY 

NUMBER VARIATIONS DETECTION 

B.1 FALSE DISCOVERY RATE APPROACH  

As discussed in (Hao et al., 2013), identifying multiple CNVs or change-points is 

a natural multiple comparison problem. We adopted the false discovery rate (FDR) 

approach to adjusting the p-values in our method, as proposed by (Hao et al., 2013). We 

used the similar strategy as used in the screening and ranking algorithm (Niu and Zhang, 

2012), the test statistic 𝐷(𝑥) was calculated, naturally the larger values of which tended 

to support the existence of change-points. Then all local maximizers of 𝐷(𝑥, 𝑏)  or, 

equivalently, local minimizers of p-values were selected. The locations of change-points 

were determined by setting a thresholding rule |𝐷(𝜏̂, 𝑤)| > 𝛾 or 𝑝(𝜏̂) < 𝑝∗. As stated in 

(Hao et al., 2013), when the null distribution, 𝐹0, of the local minimizers of p-values is 

known, adjusted p-values could be calculated by 𝐹0
−1(𝑝(𝜏̂)) . Conventional FDR 

procedure, such as Benjamini-Hochberg (Benjamini and Hochberg, 1995), could then be 

directly applied to determine the thresholding values (i.e., 𝑝∗), which guaranteed the FDR 

was controlled at a designated level. In the scenario when 𝐹0 is unknown, it could be 

empirically estimated by generating a very long sequence of 𝐷(𝑥)~𝑁(0, 𝑎⃗Σ̃𝑎⃗𝑇) random 

variables and collected the resulting local minimizers as 𝐹0̂. In practice, the covariance 
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matrix Σ̃ was unknown but can be accurately estimated due to the sparsity of change 

points.

B.2 DETAILS OF THE DERIVATION OF 𝒄𝒐𝒗(𝑿𝑨 + 𝒀𝑨, 𝑿𝑩 + 𝒀𝑩) 

For 𝑐𝑜𝑣(𝑋𝐴 + 𝑌𝐴, 𝑋𝐵 + 𝑌𝐵), we obtained 

𝑐𝑜𝑣(𝑋𝐴 + 𝑌𝐴, 𝑋𝐵 + 𝑌𝐵) = 𝑐𝑜𝑣(𝑋𝐴, 𝑋𝐵) + 𝑐𝑜𝑣(𝑋𝐴, 𝑌𝐵) + 𝑐𝑜𝑣(𝑌𝐴, 𝑋𝐵) + 𝑐𝑜𝑣(𝑌𝐴, 𝑌𝐵). (1) 

To calculate each term in (1), we define the corresponding bivariate normal distributions 

conditional on the genotype as follow (using 𝑓𝑋𝐴,𝑋𝐵
(𝑥𝐴, 𝑥𝐵) as an example): 

 

𝑓𝑋𝐴,𝑋𝐵
(𝑥𝐴, 𝑥𝐵) = ∑ 𝑓𝑋𝐴,𝑋𝐵

(𝑥𝐴, 𝑥𝐵|𝐺)

4

𝑘=1

𝑃(𝐺 = 𝐺𝑘) (2) 

Where 𝐺 = [𝐴𝐴𝐵𝐵, 𝐴𝐴𝐵𝑏, 𝐴𝑎𝐵𝐵, 𝐴𝑎𝐵𝑏]𝑇 which have all the genotypes that contain the 

alleles A and B (Table B.1).  

Table B.1 All possible Bivariate distributions and assigned Genotypes.  The bivariate 

distributions fs involve in calculating 𝑐𝑜𝑣(𝑋𝐴 + Xa, 𝑋𝐵 + Xb) = 𝑐𝑜𝑣(𝑋𝐴, 𝑋𝐵) + 𝑐𝑜𝑣(𝑋𝐴, Xb) +

𝑐𝑜𝑣(Xa, 𝑋𝐵) + 𝑐𝑜𝑣(Xa, Xb) are listed, joint genotypes that are associated with each bivariate 

distribution are also shown under the negligibility assumption. 

Covariance Bivariate Distributions Genotypes 

cov(XA, XB) fXA,XB
(xA, xB) (AA, BB), (AA, Bb), (Aa, BB), (Aa, 

Bb) 

cov(XA, X𝑏) fXA,𝑋𝑏
(xA, x𝑏) (AA, Bb), (AA, bb), (Aa, Bb), (Aa, 

bb) 

cov(𝑋𝑎, XB) f𝑋𝑎,XB
(𝑥𝑎, xB) (Aa, BB), (Aa, Bb), (aa, BB), (aa, Bb) 

cov(𝑋𝑎, 𝑋𝑏) f𝑋𝑎,𝑋𝑏
(𝑥𝑎, 𝑥𝑏) (Aa, Bb), (Aa, bb), (aa, Bb), (aa, bb) 

 

So 
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𝐸(𝑋𝐴𝑋𝐵) = 𝐸(𝑋𝐴|𝐴𝐴)𝐸(𝑋𝐵|𝐵𝐵)[𝑃(𝐴𝐴𝐵𝐵) − 𝑝𝐴
2𝑝𝐵

2]

+ 𝐸(𝑋𝐴|𝐴𝐴)𝐸(𝑋𝐵|𝐵𝑏)[𝑃(𝐴𝐴𝐵𝑏) − 2𝑝𝐴
2𝑝𝐵(1 − 𝑝𝐵)]

+ 𝐸(𝑋𝐴|𝐴𝑎)𝐸(𝑋𝐵|𝐵𝐵)[𝑃(𝐴𝑎𝐵𝐵) − 2𝑝𝐴(1 − 𝑝𝐴)𝑝𝐵
2]

+ 𝐸(𝑋𝐴|𝐴𝑎)𝐸(𝑋𝐵|𝐵𝑏)[𝑃(𝐴𝑎, 𝐵𝑏) − 4𝑝𝐴(1 − 𝑝𝐴)𝑝𝐵(1 − 𝑝𝐵)] 

Besides, 𝐸(𝑋𝐴) = 𝐸(𝑋𝐴|𝐴𝐴)𝑃(𝐴𝐴) + 𝐸(𝑋𝐴|𝐴𝑎)𝑃(𝐴𝑎)  where 𝑃(𝐴𝐴) = 𝑝𝐴
2  and 

𝑃(𝐴𝑎) = 2𝑝𝐴(1 − 𝑝𝐴)  assuming HWE. Similarly, 𝐸(𝑋𝐵) = 𝐸(𝑋𝐵|𝐵𝐵)𝑃(𝐵𝐵) +

𝐸(𝑋𝐵|𝐵𝑏)𝑃(𝐵𝑏) where 𝑃(𝐵𝐵) = 𝑝𝐵
2 and 𝑃(𝐵𝑏) = 2𝑝𝐵(1 − 𝑝𝐵). Therefore, 

𝑐𝑜𝑣(𝑋𝐴, 𝑋𝐵) = 𝐸(𝑋𝐴𝑋𝐵) − 𝐸(𝑋𝐴)𝐸(𝑋𝐵)

= 𝐸(𝑋𝐴|𝐴𝐴)𝐸(𝑋𝐵|𝐵𝐵)[𝑃(𝐴𝐴𝐵𝐵) − 𝑝𝐴
2𝑝𝐵

2]

+ 𝐸(𝑋𝐴|𝐴𝐴)𝐸(𝑋𝐵|𝐵𝑏)[𝑃(𝐴𝐴𝐵𝑏) − 2𝑝𝐴
2𝑝𝐵(1 − 𝑝𝐵)]

+ 𝐸(𝑋𝐴|𝐴𝑎)𝐸(𝑋𝐵|𝐵𝐵)[𝑃(𝐴𝑎𝐵𝐵) − 2𝑝𝐴(1 − 𝑝𝐴)𝑝𝐵
2]

+ 𝐸(𝑋𝐴|𝐴𝑎)𝐸(𝑋𝐵|𝐵𝑏)[𝑃(𝐴𝑎𝐵𝑏) − 4𝑝𝐴(1 − 𝑝𝐴)𝑝𝐵(1 − 𝑝𝐵)]

= ∑ 𝐸(𝑋𝐴|𝐺𝑘)𝐸(𝑋𝐵|𝐺𝑘)[𝑃(𝐺 = 𝐺𝑘) − 𝑞(𝐺 = 𝐺𝑘)]

4

𝑘=1

 

As 𝑐𝑜𝑣(𝑋𝐴, 𝑋𝐵) = 𝐸(𝑋𝐴𝑋𝐵) − 𝐸(𝑋𝐴)𝐸(𝑋𝐵), the expected values of the normalized 

signal intensities 𝑋𝐴, 𝑋𝐵 and the expected values of their product need to be derived. The 

expression of all the other genotype frequencies 𝑃(𝐺 = 𝐺𝑘) can be found in 

Supplementary Table A.1. 

B.3 DETAILS OF THE DERIVATION OF √𝒗𝒂𝒓(𝑿𝑨 + 𝒀𝑨)𝒗𝒂𝒓(𝑿𝑩 + 𝒀𝑩) 

According to the normalization procedure of the Illumina platform 

(https://dnatech.genomecenter.ucdavis.edu/wpcontent/uploads/2013/06/illumina_gt_norm

alization), the normalized intensities of the two alleles 𝑋 and 𝑌 can be decomposed into 
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the summation of two independent raw intensities u and v. Therefore, we can express the 

raw intensities of the two loci as follows: 

𝑋𝐴 = 𝑎𝑢 + 𝑏𝑣, 𝑌𝐴 = 𝑐𝑢 + 𝑑𝑣 (3) 

𝑋𝐵 = 𝑎′𝑢′ + 𝑏′𝑣′, 𝑌𝐵 = 𝑐′𝑢′ + 𝑑′𝑣′ (4) 

where 𝑎, 𝑎′, 𝑏, 𝑏′, 𝑐, 𝑐′, 𝑑, 𝑑′ are normalizing constants. Accordingly, the denominator 

part of 𝜌𝐴𝐵 could be calculated as: 

√𝑣𝑎𝑟(𝑋𝐴 + 𝑌𝐴)𝑣𝑎𝑟(𝑋𝐵 + 𝑌𝐵) = √𝜋1𝑣𝑎𝑟(𝑋𝐴) + 𝜋2𝑣𝑎𝑟(𝑌𝐴)√𝜋3𝑣𝑎𝑟(𝑋𝐵) + 𝜋4𝑣𝑎𝑟(𝑌𝐵) (5) 

where 𝜋1 = 1 + 𝑎𝑐 , 𝜋2 = 1 + 𝑏𝑑 , 𝜋3 = 1 + 𝑎′𝑐′ , 𝜋4 = 1 + 𝑏′𝑑′ . It turns out that the 

formula above does not depend on the correlation of the raw signal intensities of the two 

loci. 

B.4 DETAILS OF THE INTEGRATION OF LRR AND BAF 

We consider a diallelic locus A on a chromosome with two alleles, 𝐴1 and 𝐴2, let 

𝑮∗ = (𝐺1
∗,  … , 𝐺𝑛

∗)𝑻 denote the genotype of a locus with eight possible genotypes and 

𝑺∗ = (𝑆1
∗,  … , 𝑆𝑛

∗)𝑻  be the underlying copy number which includes deletion of double 

copy (Del.D), deletion of single copy (Del.S), normal state (Diploids), duplication of 

single copy (Dup.S) and duplication of double copy (Dup.D). To integrate BAF 

information, we first introduce Lesser Allele Frequency (LAF) which it is less sparse 

compared to BAF: 

𝐿𝐴𝐹 = {
𝐵𝐴𝐹 ∀𝐵𝐴𝐹 ≤ 0.5

1 − 𝐵𝐴𝐹 ∀𝐵𝐴𝐹 > 0.5
(6) 

We then model LRRs and LAFs for each of different copy number scenarios as 

bivariate Gaussian distributions, with the empirical estimates of mean μ  and variance σ2 
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were embedded in the software cnvPartition 

(https://www.illumina.com/documents/products/technotes/technote_cnv_algorithms.pdf). 

The likelihood of observing LRR and BAF for a given locus under each model is 

calculated via bivariate normal density, except for double deletion, the likelihood is 

calculated by using LRR alone. These genotype likelihoods for i-th locus are summarized 

by five composite copy number likelihoods: 𝐿𝑠𝑘,𝑖 = ∑ 𝐿𝐺𝑖
(𝑘 = 1,  2,  . . ,5)𝐺𝑖⊂𝑠𝑘

. As a 

result, for the i-th locus, the preliminary copy number estimate eCN is defined as (Xiao, 

et al., 2019). 

𝑒𝐶𝑁𝑖 =
∑ (𝑘 − 1)𝐿𝑠𝑘,𝑖

5
𝑘=1

∑ 𝐿𝑠𝑘,𝑖

(7) 
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APPENDIX C 

BMI-CNV: A BAYESIAN FRAMEWORK FOR MULTIPLE GENOTYPING 

PLATFORMS DETECTION OF COPY NUMBER VARIANTS 

C.1 DATA NORMALIZATION AND STANDARDIZATION 

We implemented a three-step median normalization procedure to mitigate the 

effect of three main observed sources of bias: exon length, GC-content and mappability 

(D’Aurizio et al., 2016). Let 𝑅𝐶k′𝑗
w  denote the raw read depth for exon 𝑘′ in sample j, 

each 𝑅𝐶k′𝑗
w  was then normalized according to: 

𝑅𝐶̂k′𝑗
w = 𝑅𝐶k′𝑗

w ×
𝑚

𝑚𝑥

(8) 

where m is the overall median, 𝑚𝑥 is median of all the exons with the same values of 

exon length, mappability and GC-content. We applied this normalization procedure to 

both test and control samples. All pre-specified control samples were pooled together by 

averaging reads on each exon across all samples to form the common reference baseline. 

Finally, we calculated the log2-ratio of normalized read counts between test samples and 

the reference baseline (log2R-MED). 

To bring SNP array LRR and WES derived log2R-MED to the same measuring scale, we 

standardized each via a robust scaling approach to produce 𝑦̂k𝑗
𝑠  and 𝑦̂k′𝑗

w . Specifically, let 

𝑦k𝑗
𝑠  denote the LRR data corresponding to k-th SNP marker in sample j; let 𝑦k′𝑗

w  denote 

the normalized log2R-MED for exon 𝑘′ in sample j (Rousseeuw and Croux, 1993), then  
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𝑦̂k′𝑗
w =

𝑦k′𝑗
w − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑦k′𝑗

w )

interquartile(𝑦k′𝑗
w )

 𝑎𝑛𝑑 𝑦̂k𝑗
𝑠 =

𝑦k𝑗
𝑠 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑦k𝑗

𝑠 )

interquartile(𝑦k𝑗
𝑠 )

(9)

Where interquartile(. ) equaled the difference between 75th and 25th percentiles.
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C.2 FULL MODEL SPECIFICATION  

We assumed a normal linear regression model, the 𝜙𝑖 was further modelled by a variable 

selection prior, where 𝐺(. ) is the PSBP. 

𝑌𝑖𝑗 ∼ 𝑁(𝑌𝑖𝑗|𝜙𝑖) (10) 

𝜙𝑖 ∼ 𝛾𝑖𝛿0 + (1 − 𝛾𝑖)𝐺(. ); δ0 = (𝜇0, τ0) (11) 

𝐺(. ) = ∑ ω𝑙

𝐿

𝑙=1

δθ𝑙
(. ); 𝜃𝑙 = (𝜇𝑙, τ𝑙) (12) 

𝜔𝑙 = Φ(α𝑙) ∏(1 − Φ(α𝑙))

𝑟<𝑙

; α𝑙 ∼ 𝑁(μα, τα) (13) 

we introduced the latent variable 𝑠𝑖 and 𝑧𝑖𝑙(𝑠𝑖), 𝑠𝑖 = 𝑙 denoted the i-th position was 

assigned to the l-th component, 

𝑠𝑖 ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝1, … , 𝑝𝐿−1) (14) 

𝑧𝑖𝑙(𝑠𝑖) = {
𝑁−(α𝑙(𝑠𝑖), 1) 𝑙 < 𝑠𝑖

𝑁+(α𝑙(𝑠𝑖), 1) 𝑙 = 𝑠𝑖
(15) 

For component specific parameters 𝜇𝑙, 𝜎𝑙 , we assumed conjugate normal and gamma 

hyperpriors: 

𝜇𝑙 ∼ 𝑁(μμ, τμ); τ𝑙 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎τ, 𝑏τ) (16) 

For variable selection parameter 𝛾𝑖, we assumed a Bernoulli-Beta conjugate prior: 

γ𝑖 ∼ 𝐵𝑒𝑟(𝜅); 𝜅 ∼ 𝑏𝑒𝑡𝑎(𝑎0, 𝑏0) (17) 
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Assuming data were properly normalized and standardized, we adopted the following 

choices for the hyperparameters. For 𝐺(. ), 𝜇𝑙 = {−5, −2, 0.1, 1, 2}; τ𝑙 =

{0.4, 1, 1, 1, 1};  μα = 0; τα = 1; μμ = 0; τ𝑚𝑢 = 1; 𝑎τ = 𝑏τ = 0.5. For variable selection 

prior, 𝑎0 = 𝑏0 = 0.5. 
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C.3 MCMC ALGORITHM 

Step 1. Update  𝑠𝑖 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑚, given 𝛾𝑖 = 0 

𝑃𝑟(𝑆𝑖 = 𝑙) =
ω𝑙𝑁(𝑦𝑖.|𝜇𝑙, τ𝑙)

∏ ω𝑙
𝐿
𝑙=1 𝑁(𝑦𝑖.|𝜇𝑙, τ𝑙)

(18) 

where  ω𝑙 = Φ(α𝑙) ∏ (1 − Φ(α𝑟))𝑟<𝑙 . 

Step 2. Update 𝑧𝑖𝑙 𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 𝑎𝑛𝑑 𝑙 = 1, … , 𝐿  

𝑧𝑖𝑙(𝑠𝑖) = {
𝑁−(α𝑙(𝑠𝑖), 1) 𝑙 < 𝑠𝑖

𝑁+(α𝑙(𝑠𝑖), 1) 𝑙 = 𝑠𝑖
(19) 

Step 3. Update α𝑙  for l = 1, … , L, 

α𝑙 ∼ 𝑁 (
∑ 𝑧𝑖𝑙𝑆𝑖>𝑙 + μα

𝑛𝑙 + 1
,

1

𝑛𝑙 + 1
) (20) 

where 𝑛𝑙 = ∑ 1(𝑆𝑖 ≥ 𝑙)𝑚
𝑖=1 . 

Step 4. Update 𝜇𝑙 𝑓𝑜𝑟 𝑙 = 1, . . . , 𝐿, 

𝜇𝑙 ∼ 𝑁 (
μμτμ + τ𝑙 ∑ 𝑦(𝑆𝑖 = 𝑙)

τμ + 𝑛2τ𝑙
, τμ + 𝑛2τ𝑙) (21) 

where 𝑛2 is the number of elements in  𝑦(𝑆𝑖 = 𝑙). 

Step 5. Update τ𝑙 𝑓𝑜𝑟 𝑙 = 1, . . . , 𝐿, 

τ𝑙 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝑎τ + 𝑛2, 𝑏τ + 0.5 ∑(𝑦 − 𝜇𝑙)) (22) 

Step 6. Update γ𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 

𝑃𝑟(γ𝑖 = 1) =
𝑎𝑖

𝑎𝑖 + 𝑏𝑖

(23) 

𝑎𝑖 = κ ∫ ∏ 𝑁(𝑦(𝑆𝑖 = 𝑙)|𝜇𝑙, τ𝑙)𝑓(𝜇𝑙)f(τ𝑙) 𝑑𝜇𝑙𝑑τ𝑙 (24) 

𝑏𝑖 = (1 − κ) ∏ 𝑁(𝑦|𝜇0, τ0) (25) 

where  𝑓(𝜇𝑙) and f(τ𝑙) are distributions of 𝜇𝑙 and τ𝑙, respectively, the integration in equation 

(17) could be solved using the approximation: 
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𝑝(𝑦) =
𝑝(𝑦|𝜇𝑙 , τ𝑙)𝑓(𝜇𝑙)f(τ𝑙)

𝑝(𝜇𝑙|𝑦)𝑝(τ𝑙|𝑦)
(26) 

Step 7. Update 𝜅 

𝜅 ∼ 𝐵𝑒𝑡𝑎(𝑎0 + ∑γ𝑖, 𝑏0 + 𝑚 − ∑γ𝑖) (27) 
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C.4 SNP ARRAY AND WES DATA PROCESSING 

In the application of BMI-CNV to analyze 1000 genomes project and HapMap datasets 

(D. M. Altshuler et al., 2010; Auton, Gonçalo R. Abecasis, et al., 2015). all Affymetrix 

raw CEL files were downloaded from website (ftp://ftp.ncbi.nlm.nih.gov/hapmap). We 

used the Affymetrix Power Tools and PennCNV package to generate LRR signals (Wang 

et al., 2007). For WES data, the raw BAM files were downloaded from website 

(ftp://ftp.1000genomes.ebi.ac.uk). The BAM files were processed, sorted and filtered 

using SAMtools to generate raw read count (Li et al., 2009). We then used the three-step 

normalization procedure described in Section A.1 to calculate the log2R-MED data, 4 

external samples: NA10851, NA18502, NA12272, NA19072 were selected as control 

samples. 

In the application of BMI-CNV to analyze samples from international lung cancer study 

(TRICL) with both OncoArray data and WES data. (Amos et al., 2017). The OncoArray 

was designed from a list of 533,000 SNP markers. To retain high-quality genotype data, 

we applied the following quality control (QC) filters to remove (1) low quality samples 

(call rate<0.95); (2) unexpected duplicated and related samples (identical by descent 

(IBD)>0.2). Intensity data was obtained for each probe using GenomeStudio, genomic 

wave was adjusted by PennCNV. For WES data, QC procedures including base call 

quality recalibration variant filtering, genotypes refinement and Principal component 

analysis (PCA) of quality metric to exclude quality outliers. Kinship coefficient was also 

calculated to identify and exclude duplicated and related samples (Zheng et al., 2012). 

Raw read count data were then generated and normalized. 
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C.5 POST-CALLING CNV QUALITY CONTROL (QC)  

After obtaining the raw CNVs, to retain high quality CNV call, we first merged adjacent 

CNV calls (<5 markers).  We then applied the following CNV pruning and filtering 

procedures including removing CNV calls that were (1) overlapped with centromeric 

regions; (2) < 3 exons or <10 SNPs, >100 markers and >500kb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

125 
 

C.6 NUMERICAL SIMULATION 

DATA SIMULATION 

For SNP array data, we simulated the log R ratio (LRR) and B allele frequency (BAF) 

from the normal distribution, 

𝐿𝑅𝑅 ∼ 𝑁(μ𝐿𝑅𝑅 , σLRR
2 ) (28) 

𝐵𝐴𝐹 ∼ 𝑁(𝜇𝐵𝐴𝐹, σBAF
2 ) (29) 

The empirical mean and variance values were provided by Illumina website 

(https://www.illumi na.com/documents) and summarized below (Table A.6.1). 

For WES data, we spiked in the CNV signals by multiplying the raw read depth by a 

factor c/2, c was sampled from normal distribution, 

𝑐 ∼ 𝑁(μ𝐶𝑁𝑉, σ𝐶𝑁𝑉
2 ) (30) 

Where the choices of mean and standard deviation (i.e. μ𝐶𝑁𝑉, σ𝐶𝑁𝑉) parameters of 

different copy number states were summarized below (Table A.6.2). 

PERFORMANCE EVALUATION METRICS 

The performance of all the calling methods was assessed by precision rate, recall rate and 

F1 score measures. The precision rate which measured the proportion of CNV calls from 

methods that overlapped with the true CNV set was defined as, True positives/(True 

positives + False positives), while the recall rate which measured the proportion of true 

CNVs that were called by methods was defined as, True positives/(True positives + False 
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negatives). The F1 score was defined as the harmonic mean of precision and recall rate 

which reflected the overall accuracy, 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
. 

Table C.1 Copy number states and empirical parameter settings for SNP array data. 

LRR: log R ratio; BAF: B allele frequency; SD: standard deviation. 

 

Table C.2 Copy number states and empirical parameter settings for WES data. 

Copy Number State μ𝐶𝑁𝑉 σ𝐶𝑁𝑉 

Double Deletion 0.05 0.10 

Single Deletion 1.00 0.10 

Single Duplication 3.50 0.10 

Double Duplication 6.00 0.10 

 

 

 

 

 

 

 

 

 

 

Copy Number State LRR 

mean 

LRR SD BAF 

mean 

BAF 

SD 

Double Deletion -5.00 2.00 NA NA 

Single Deletion -0.45 0.18 0, 1 0.03 

Normal 0.00 0.18 0, 0.5, 1 0.03 

Single Duplication 0.30 0.18 0, 1/3, 2/3, 1 0.03 

Double Duplication 0.75 0.18 0, 1/4, 2/4, 3/4, 1 0.03 
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APPENDIX D 
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