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Abstract

In the past decades, model predictive control (MPC) has been widely used as an

efficient tool in areas such as process control, power grids, transportation systems, and

manufacturing. It provides an approach that aims to design stabilizing feedback to

the system so that the performance criterion gets minimized while the state and input

constraints get satisfied. In many situations, MPC may outperform other approaches

to design and implement feedback control systems. Furthermore, MPC may solve

optimization problems with large and practically important sets of multiple-input

multiple-output (MIMO) systems efficiently. A typical implementation of MPC

predicts the optimal control inputs that guarantee a certain level of optimality based

on the interest of model behavior to the actual dynamical system. Many schemes of

model predictive control have been addressed in the past years.

Recently, the technology development of computers, sensors, and communications

make the control systems much larger and more complex than ever before.

These advances also increase the need for MPC to design the controllers for

complex multiple-input multiple-output systems. Besides, the advanced computation

hardware has significantly improved the speed and reliability of solving optimization

problems.

In general, we can differentiate the MPC scheme into linear and nonlinear model

predictive control. Linear MPC refers to the MPC schemes that deal with linear

models to predict the system dynamics. Besides, the constraints on the states

and inputs should be linear, and the cost function can be as simple as quadratic.

The optimal solutions of linear MPC rely on the dynamic models, the constraints,

iii



and the optimal problems that aim to minimize the system performance, which is

usually expressed as the cost function. Nonlinear MPC refers to the MPC schemes

based on nonlinear models or non-quadratic cost functionals with corresponding

nonlinear constraints on the states and inputs. Nevertheless, linear models are often

inadequate in describing the optimal problem because of higher product quality

specifications, increasing productivity demands, tighter environmental regulations,

and the requirements of operating conditions. In this case, people need to use

nonlinear MPC to describe the models accurately.

This dissertation studies several MPC algorithms for solving nonlinear

continuous-time systems with uncertainties. The work focuses on systems with

disturbances, system discretization, and explicit model predictive control. Meanwhile,

we ensure these algorithms may provide a series of feasible solutions and stabilize the

control systems along the prediction horizon.
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Chapter 1

Introduction

This chapter is organized as follows: introduces the background of model predictive

control in Section 1.1, presents the basic knowledge of MPC in Section 1.2, and follows

with prior work on MPC and dissertation organization in Section 1.3.

1.1 Background

Human activities implement the guidance of the basic concept of model predictive

control (MPC) in many areas. It provides the idea that people may obtain the

maximum benefit with minimum spend using a present decision according to a

prediction of future based on the current situation. For example, a chess player tries

to predict all the possible moves as far as possible to determine the actions that will

achieve minor losses. Meanwhile, the next move will be determined according to the

new situation based on the reaction of the opponent. Once the opponent has made a

move, the player will only need to add one more step to the previous prediction. The

schemes get repeated until the end of the game. Moreover, the prediction horizon is

determined by the length of the match.

Three features need to be discussed in the scheme. To begin with, the prediction

steps of each iteration are limited by the calculation ability of the player as it may

have kinds of choices for each move, which rapidly increases the cost and complexity

with the number of predicted moves. Secondly, it is crucial to decide a move among

a variety of choices. In general, a decision aims to get the best performance based
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on evaluating possible actions. A good decision balances the cost of planning the

strategy to win and obtaining benefit from the opponent. Typically, it is difficult to

set a fixed criterion for the judgment as it is better to seize the advantage with a weak

opponent while it is wiser to achieve the strategy with a strong opponent. Finally,

a crucial point to win the match depends on the length of prediction moves since a

sequence of moves based on short-term predictions may lead to a bad result. In this

case, the side with longer-term prediction moves may have the ability to eliminate

the sequences of wrong actions and win.

The above aspects explain the critical points of model predictive control. We

may derive the match as an MPC problem by describing the model, condition,

and objective in mathematics, and we can get the prediction results by solving an

optimization problem. Similarly, as chess matches, the criterion is usually determined

by minimizing a cost function among the possible choices. People use the first element

of the sequence as the control input to the system, and the prediction process is

repeated with the new states. Besides, it is important that the control signal may

guarantee the robustness of the system so that the system may reach its destination

as the chess match.

In the 1960s, the research on control theory focused on three areas:

1. Maximum principle – producing necessary conditions for open-loop optimal control

problems;

2. Dynamic programming – solving optimal feedback control problems;

3. Lyapunov stability – giving sufficient conditions to ensure the stability of control

systems.

During this period, the linear quadratic regulator (LQR) was derived as one of

the most critical methods for solving optimal control problems. LQR provides the

approach for solving the optimization problem to linear time-invariant MIMO systems

with linear time-invariant state feedback controls. The control performance is always
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a quadratic function, which presents the system energy in most cases. Meanwhile,

the robustness is guaranteed by driving the system to be asymptotically stable under

common assumptions. Most importantly, the optimal solution is explicitly provided

as a feedback gain formula which makes it easy to compute.

Nevertheless, few applications of LQR have been used in actual engineering

models during the following decades. The main reason for this is the weakness of

LQR considering the actuator saturation, which is called the constraint condition

in the optimization problem. In contrast, the former control method that has

been widely used for years – PID control – owns the ability to suit the actuator

saturation in practice. To overcome the weakness of LQR, the Pontryagin minimum

principle is proposed as a theory of optimal control that includes the effects of

saturation.However, three flaws prevent the approach from being used practically:

open-loop control law, difficulty computing the solution, and finite prediction horizon.

Nowadays, most existing control systems are operated in continuous time. Two

approaches may solve the continuous-time optimization problem. One method is to

solve the problem continuously and discretize the problem within a tiny period. The

other method is to discretize the problem first and solve the discrete-time problem via

the technique such as linear, quadratic, convex, and nonlinear programming. As an

open-loop control method, its optimal solution mainly depends on the initial states,

which is a significant disadvantage to system performance compared with feedback

controls. In this case, it is a good idea to insert a closed-loop controller into the

problem.

People find the open-loop controller can be estimated by a closed-loop controller

via recomputing the optimal problem at each discretized point with a new initial

state obtained in the previous optimal problem. Once the optimization problem is

feasible in each process and the system may achieve stability, the model predictive

control theory gets accomplished with the last method computation.
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In general, the action of the MPC algorithm is obtained by solving a finite

horizon open-loop optimal control problem according to a feedback control law in

each sampling interval. We will use the first movement of the optimization from the

sequence of optimal solutions as the input of the plant. Meanwhile, the iterations get

repeated at shifted time-horizon using the most recently available state information

as a new initial condition to avoid accumulating the errors along the time-horizon.

In this case, we may simplify the computation by making the problem piecewise

continuous.

1.2 Basic of Model Predictive Control

In the 1970s, linear MPC is invented and has become one of the critical advanced

control strategies since then. It is widely used in the area of industrial applications.

It may optimize the control performance based on the dynamic model while the

constraints get held. We can find the overviews and applications of linear MPC

techniques in [1] and [2]. So far, the theory of linear MPC grows maturely, and

it has been well studied in aspects such as computation method, system modeling,

and control strategy. We are going to describe the process of MPC theoretically in

continuous time as a feedback control method.

1.2.1 The Principle of Predictive Control

The model predictive control scheme can be treated as a repeated process on

solving finite horizon open-loop optimal control problem (FHOCP) subjects to system

dynamic, states constraint, and input constraint. As shown in Figure 1.1 of [3],

the controller predicts the dynamic behavior over the prediction horizon Tp by

determining the input in order to minimize the system performance based on the

sampled initial conditions at t. Ideally, if there do not exist model disturbance,

model-plant mismatch, and computation difficulty. In that case, we can solve the
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optimization problem along prediction horizon until any time as Tp can be determined

freely, and the problem can be solved at one time. However, it is always difficult to

find the systems that satisfy the three conditions above in most of time. In this

case, we need to divide the model and solve the problem recursively, which means

the process in Figure 1.1 gets repeated and moves forward along the time horizon.

Figure 1.1: Principle of MPC

In general, we usually make the optimal solutions be piecewise-continuous for

simplicity. And the optimal inputs remain the same value as it is calculated at t until

the next sampling time ti+1. Besides, the length of the sampling period δ can be

determined according to the demands of accuracy.

Then we can summarize the MPC scheme process as:

1 Sampling states of the system;

2 Calculating FHOCP that minimizing the system performance with constraints over

the prediction horizon based on dynamic model and sampled state;

3 Implement the first step optimal input until the next sampling iteration.
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1.2.2 Mathematical Formulation of State Feedback NMPC

Consider a continuous-time system:

ẋ(t) = f(x(t), u(t)), x(tk) = xk

where the system state x ∈ X ⊂ Rn, the control input u ∈ U ⊂ Rm, and f : X ×U →

Rn. Meanwhile, we assume f(x, u) as local Lipschitz, i.e., there exists a positive

constant Lf so that ∀x, y ∈ X , u ∈ U , the following inequality holds:

‖f(x, u) − f(y, u) ≤ Lf‖x − y‖.

Typically, the constraints may convex with the form as

U ={u ∈ Rm|umin ≤ ui ≤ umax}

X ={x ∈ Rn|xmin ≤ xi ≤ xmax}

where umin, umax, xmin, xmax are scalars and ui, xi are elements of input and state

vector.

We solve the FHOCP problem with the prediction horizon [tk, tk + Tp) at

tk based on the sampled state x(tk). Besides, we set the optimal input to be

piecewise-continuous with the length of δ(δ ≪ Tp), which means the next prediction

routine starts at tk + δ. Then we may get the following optimal control problem

Problem 1 min
u∈U

J [u|x(tk)]

s.t. ẋ(t) =f(x(t), u(t)), x(tk) = xk, t ∈ [tk, tk + Tp)

u(t) ∈U , x(t) ∈ X , x(tk + Tp) ∈ Xf

J [u|x(tk)] =
! tk+Tp

tk

L(x(t), u(t))dt + Vf (x(tk + Tp))

where xk is sampled from the plant at tk, Xf is the terminal set that the final state

stays inside. Meanwhile, we define J [u|x(tk)] as system performance, L(x(t), u(t)) as
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stage cost, and Vf (x(tk + Tp)) as terminal cost. In general, we may present

L(x(t), u(t)) =x(t)T Qx(t) + u(t)T Rx(t)

Vf (x(tk + Tp)) =x(tk + Tp)T Hx(tk + Tp)

in quadratic form which is same as Lyapunov equations, and Q, R, H are semi-positive

symmetric matrices. With the sampled state xk, we can solve Problem 1 subject to

the dynamic function and the constraints on the state and input. Besides, the solution

of the problem is used as the prediction to the control input. We define the optimal

solution as u∗(t) and it applies to the plant until tk + δ that can be presented as

u(t) = u∗(tk), t ∈ [tk, tk + δ).

For the discussion on feasibility and stability of MPC algorithm, we will provide them

with corresponding proof in the following chapters in detail.

1.3 Problem Description of Model Predictive Control

1.3.1 Systems with Disturbances

It is common to meet the situation that there exist disturbances or uncertainties

in dynamic models, such as the sampling errors to actual systems, the external

interferences to operate plants, and the deviations caused by transmission delays.

In this case, it is necessary to discuss the problem of the systems with disturbances

under the MPC scheme.

To begin with, there comes the study showing that the standard MPC algorithm

may admit a certain level of robustness concerning minor uncertainties. As it

discusses the conditions that may derive the stabilization for discrete-time nonlinear

systems with uncertainties under model predictive control schemes in [4]. The authors

prove that exponential stability theorems may still achieve asymptotic stability with
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compact uncertainties inserted. Furthermore, the authors analyze the stability of

constrained nonlinear discrete-time systems with bounded additive uncertainty in [5].

The authors provide sufficient conditions that may guarantee the framework’s robust

stability and feasibility using invariance set theory. In the paper of [6], the authors

present some robust stability results for nonlinear constrained discrete-time systems

under model predictive control schemes without any particular properties of the

terminal cost on deriving such approaches. The authors introduce two assumptions:

the value function can be upper bound by a K∞ function of the state, and the

measurement should be detectable in the MPC algorithm. And these assumptions

have been treated as common conditions for solving MPC problems nowadays. Then

the authors show the system under previous assumptions may admit stability with

small disturbances.

Another approach to overcome the impact of the disturbances is to formulate MPC

as min-max optimization problems, which is to optimize the control performance

under the worst-case uncertainty. Comparing with standard MPC schemes, it

may improve the control performance since it always considers the impact of the

disturbances. In the paper of [7, 8], the authors first provide a notion of MPC

algorithm under min-max optimization formulation. And the system feedback is also

presented in the control implementation. The authors show that it does not need to

consider all possible disturbance realizations, and the optimization is always processed

under the extreme disturbance realizations. Nevertheless, the scheme may have high

computation costs on solving the optimization problems with large horizons. In this

case, the method may have a compelling performance in solving the system within

small horizons. Meanwhile, the authors also consider the possible feasibility problems

such that one fixed control profile may ensure the formulation of min-max MPC along

the prediction horizon. It presents a min-max MPC scheme for discrete-time nonlinear

systems in [9, 10]. The authors propose that the approach may be practical under

8



classical min-max MPC problem set-up, and the input-to-state stability is ensured. To

begin with, the authors show that input-to-state practical stability can be guaranteed

under closed-loop min-max MPC systems, and the corresponding explicit bounds on

the evolution of the state have been provided. To obtain a controller that may derive

the state around the desired point, the authors offer a priori sufficient conditions for

robust stability under the input-to-state stability (ISS) framework. The authors prove

that such conditions imply the overall system uniformly ultimately bounded. Finally,

the authors formulate sufficient conditions for ISS of min-max nonlinear MPC using

a dual-mode approach. In this case, the system may get robustly asymptotically

stable without assuming that the disturbance needs to converge to zero as the state

converges to the origin.

Furthermore, people introduce an adaptive model predictive control method,

allowing the model to estimate and predict the disturbances over the prediction

horizon. It should be a promising way to improve the control performance since

the worst-case uncertainties are not affine to the overall system, comparing with

the min-max MPC scheme. In the paper of [11], the authors consider the problem

of adaptive receding horizon model predictive control, which is the earliest paper

focusing on nonlinear systems. It presents an approach to estimate the uncertainties,

and the estimation procedure is employed in a receding horizon controller. In this

case, it may achieve an accurate prediction while there exists deviation between the

estimated parameter and actual parameter. Furthermore, the overall system may

admit stability with the allowance for the deviation. The authors demonstrated the

problem focuses on identifying the regions where the uncertainties should stay inside

accordingly in [12], which is a different approach for adaptive model predictive control

as previous research. By generating a set-valued measurement of uncertainties, it

may minimize the impact of parameter identification error. Meanwhile, it may

reduce the conservativeness of the computation by implementing such estimation
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to the optimization procedure. Furthermore, the feasibly and stability of overall

system get guaranteed with constraints to state or input within the framework of

robust nonlinear MPC. It provides an adaptive MPC design technique for nonlinear

constrained systems with parametric uncertainties in [13, 14]. The authors develop

an approach that may generate the unknown parameter via a parameter estimator.

Specifically, the adaptive identifier formulated based on the Lipschitz projection

operator. Furthermore, a general min-max approach is considered combining with

the adaptive estimator. And the scheme of robust adaptive MPC is proposed

by solving the optimization problem of parameterized uncertain nonlinear systems

subject to state and input constraints. Similar to the previous work, it may reduce

the conservativeness while the robustness is still ensured under the adaptive MPC

scheme.

The work in [4–6] shows that the standard MPC algorithm admits a certain

level of robustness concerning minor uncertainties. Nevertheless, such marginal

robustness may not be enough in practice. An alternative method is to formulate

MPC as min-max optimization problems, which optimize the control performance

under the worst-case uncertainty (see [7–10] and reference therein). However, such

min-max approaches amplify the negative impact of uncertainties, either address

the robustness issue or degrade the control performance. It only approximates the

uncertainties at each sampling point in [11], while the errors may keep changing

inside each prediction interval. In the paper [12], the authors derive an adaptive

region for the uncertainties. However, it may generate unnecessary computation costs

without an accurate estimation of the uncertainties. The most related work is [13,

14], where estimators are embedded in the min-max MPC framework. Nevertheless,

the projection operator cannot be pre-calculated, which may impact the stability of

the system.
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1.3.2 System Discretization

In computer-controlled systems, the MPC schemes are often implemented in discrete

time for digital implementation. In this case, the sampling and computation of

optimal control inputs should be triggered in a discrete manner. And the models

used in the finite-horizon optimal control problem (FHOCP) should also be discrete.

As a common approach, the system is always discretized under fixed time

manners. The discretized models get expressed as piecewise constant models along

the prediction horizon. Meanwhile, the sampling periods follow the same periodic

time manner. Then the optimization problems are generated using such discrete-time

models with corresponding constraints. Typically, the authors derive algorithms of

continuous-time systems under model predictive control schemes in [15–19]. The

robustness of each algorithm gets guaranteed under appropriate stabilizing properties.

The approaches in the four articles provide a standard method of model discretization.

In the work of [20, 21], the authors propose the schemes of sampled-data model

predictive control for continuous-time linear parameter varying (LPV) systems. The

stability properties of the proposed MPC are discussed by modeling the closed-loop

systems with piecewise constant input. Meanwhile, the sampling interval is not

necessarily to be periodic with such linear systems. In this case, the approaches

are efficient to reduce computation conservativeness and achieve better performance.

The main idea of the event-triggered strategy is that the optimal control problem

is solved only under a specific event condition rather than making the computation

every step as classic MPC schemes. The authors propose a robust event-triggered

model predictive control scheme for linear time-invariant discrete-time systems

with bounded stochastic disturbances in [22]. The probability distributions of

the disturbances have been pre-determined. Meanwhile, the authors set the event

condition for the situation the state runs out of a given region so that the control
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values get updated periodically. The authors employ the event-triggered profile under

Tube MPC methods. And the robustness of the overall system gets guaranteed with

the constraints on the input and state. The same strategy is considered in [23]

to design an MPC scheme for continuous-time event-based systems. The authors

introduced a state estimator with a bounded covariance matrix. The error between

estimated state and sampled state then gets implemented into the MPC formulation.

Meanwhile, the authors prove that the overall closed-loop system is input-to-state

stable (ISS) to the estimation error.

In the papers of [24, 25], the authors consider an event-triggered strategy of

model predictive control schemes for discrete-time systems. The control law gets

updated with the event condition that a K∞ function of measurement error reaches

the critical region constructed by the system state. The authors show that the

event-triggered rule may generate effectively under either linear or nonlinear plants.

Furthermore, the event-triggered profile gets extended to a self-triggered formulation.

The triggered condition is determined by the previous measurement error to avoid

the need of monitoring the plant continuously. Further research [26] proposes a

novel event-triggered model predictive control scheme for nonlinear continuous-time

systems with uncertainties. In this work, the triggering condition of continuous-time

systems follows the same idea as previous papers. And the robustness analysis gets

provided to ensure the overall system is uniformly ultimately bounded under the

proposed framework.

The authors present an event-triggered control scheme for linear continuous-time

systems based on a combination of model predictive control (MPC) and integral

sliding lode (ISM) control in [27]. Similarly, the objective of such a control framework

may minimize the number of transmissions and save computation cost, while the

robustness gets ensured under the constraints. The authors introduce the sliding

mode approach to compensate the uncertainties of the system, and the MPC
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framework may optimize the control performance with corresponding constraints.

The triggering condition is determined as the controller gets updated when the

error between the measured state and computed state reaches the limitation. The

paper presents an event-triggered implementation of MPC for linear discrete-time

systems with disturbances under the same triggering condition in [28]. The stability

conditions are analyzed by the comparison of event-triggered implementation and

common time-triggered scheme. An explicitly computable set is provided based on

the disturbance bound and the event threshold accordingly. The exact triggering

condition is studied in the paper [29] under the event-triggered model predictive

control (MPC) scheme for nonlinear continuous-time systems subject to bounded

disturbances. The authors investigate sufficient conditions for ensuring feasibility

and stability. Furthermore, it is shown that the length of the prediction horizon, the

range of disturbance bound, and the level triggering condition may directly impact

the system stability.

Self-triggered model predictive control proposes an approach that may adjust

the utilization of sampling procedure along the prediction horizon other than the

conventional periodic sampling. Self-triggered MPC follows the strategy that each

sampling interval is determined online based on the current state of the system

to achieve a low average sampling rate. In this case, it may minimize the control

communication and reduce the number of control updates. The authors introduce a

self-triggered MPC strategy for discrete-time linear systems in [30]. The triggered

interval is determined by the length of the controlling time under the current input

strategy. There are three features been studied under the control formulation. To

begin with, it guarantees the asymptotic stability of the system with corresponding

constraints. Moreover, the feedback law and the triggering condition get well

designed. Finally, the overall performance shows a significant reduction in the

usage of sampling resources. The authors propose a self-triggered MPC strategy
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for discrete-time nonlinear systems in [31] as an extension to the preliminary paper.

As an improvement of the previous work, the self-triggered MPC framework owns

the flexibility to determine an appropriate input strategy within limited options

rather than employing the same strategy through the whole iteration. A similar

self-triggered MPC scheme is introduced for linear systems with additive bounded

disturbances in [32]. The self-triggered formulation is derived under Tube MPC. And

the authors proposed a constraint tightening method to ensure the robustness of the

overall system.

In the paper of [33], the authors propose a self-triggered model predictive control

scheme for a robotic model, which is a continuous-time nonlinear nonholonomic

system with additive disturbances. The triggering mechanism is considered based on

the discussion of the stability, which may drive the state into a compact set and ensure

the framework gets uniformly ultimately bounded. Furthermore, the simulation

result illustrates the efficiency of the proposed approach. The authors present a

self-triggered MPC approach for the linear time-invariant (LTI) process in [34]. It

discussed the sufficient conditions to ensure the stability of the system. Meanwhile,

it provided an explicit solution such that the optimization problem gets pre-solved

offline, and the controller gets implemented from a lookup table of state feedback

gains. Furthermore, the simulation examples show the efficiency performance of the

scheme.

The sampled-data MPC has been discussed in [15–19] as periodic models.

However, it is conservative for these approaches to estimate control periods

sometimes. In this case, the control task may have greater utilization than actual

needs. It may lead to a significant over-provisioning to the operating system. To

overcome the problem, people present the method of aperiodic sampled-data MPC,

which considers linear uncertain continuous-time systems in the work of [20, 21].

However, the models used in the FHOCP are in continuous time. Meanwhile,
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event-triggered MPC is presented as another approach. The models are defined as

discrete-time systems in the work of [22, 24, 25, 28]. It only considers the linear

continuous-time system in the work of [23, 27], which the system can be discretized

easily. In the paper [26], it derives the overall scheme in continuous time. The authors

of [29] linearize the systems arbitrarily, which disregards the impact of linearization

error on stability. Besides, self-triggered MPC also works on solving the problem.

Different from event-triggered MPC, the sampling/computation instant expressed as

a function relative to the past information. The works of [30–32, 34] only consider

the strategies under discrete-time systems. And the authors of [33] generate the

optimization problem in continuous time. In conclusion, all previous work is not

friendly for digital implementation to practical models; either the models are defined

as discrete-time systems or set to be linear systems.

1.3.3 Explicit Model Predictive Control

As an efficient approach, explicit MPC may partially solve the finite horizon optimal

control problem (FHOCP) offline, which may reduce the online computation time on

solving the FHOCP for the discrete-time model. Explicit model predictive control is

a method that can pre-calculate the FHOCP problem as an explicit function of the

states and reference vectors rather than make the whole computation in real-time,

which is a crucial advancement compare with common MPC approaches [35, 36].

It can prevent the application of MPC in several contexts, such as the expense of

computation, delay of control schemes, and feasibility of states. Typically, explicit

MPC may solve the optimization problem using multi-parametric programming

technique. The optimal control input can be expressed as the function contains

sampling state, initial input, and reference conditions. In most cases, the optimal

input is piecewise affine with concerning the states [18, 37, 38], and the MPC

controller can be expressed in linear form.
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The authors of [39] first introduce an algorithm to determine the feedback control

law for discrete-time linear time-invariant systems, which may minimize the quadratic

performance criterion with constraints on inputs and states. The online computation

of the finite horizon optimal control problem gets simplified as explicitly piecewise

linear functions to reduce the computational complexity. Then we may solve the

optimization using the Hamilton-Jacobi-Bellman equation for discrete-time linear

constrained systems under the controller structure. And the explicit solutions can

be obtained by solving multi-parametric quadratic programs with the parameters

based on of the state vector. The technique aims to avoid the procedure of online

computation, while the stability and performance properties of model predictive

control still get inherited. The authors show an efficient performance of the algorithm;

however, the scheme is not intended to replace the online computation approach,

especially for some industry systems with extensive applications. Furthermore,

the authors extend the previous work by studying the geometry properties of the

polyhedral partition in [40]. Then preliminary strategy gets improved that may

exclude the conditions such as the unnecessary partitioning, the solution to the linear

programming problems for determining the interior point of each critical region, and

the solution to the quadratic programming problem.

Explicit model predictive control may derive the topics such as trajectory

following, disturbances impaction, time-varying constraints, and criteria comparison.

In the work of [41], the authors study the explicit model predictive control schemes for

discrete-time linear time-invariant systems with constraints on inputs and states. The

authors compare the control performances under the criteria of 1-norm and ∞-norm.

Based on the discussion, the authors provide the conditions for the weighting matrices

to ensure robustness. Another work on investigating the performance of explicit MPC

algorithm is presented in [42]. It considers the explicit scheme for multiparametric

nonlinear integer programming problems, such as the cost function and constraints in
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nonlinear fashions. The author examines the main theoretical properties and proposes

an adjusted solution under sufficient conditions.

The authors propose an approximate multi-parametric algorithm based on

the explicit model predictive control scheme in [43]. The approach allows the

implementation of bounded disturbance in real-time systems, while the trajectories

may converge to the pre-defined fixed sets, and robustness of the systems get

guaranteed. The authors analyze the impact of implemented errors and provide

alternative approaches to ensure stability. Meanwhile, the corresponding explicit

control law is provided. The author derives the formulation of explicit model

predictive control for nonlinear discrete-time system under the scheme of explicit

linear state feedback approximation in [44] as an extension to previous work. The

author provides the strategy to linearize overall system, and the robustness gets

ensured if approximation error gets bounded inside the stability margin.

The previous work of [39–43] consider deriving the scheme under linear

discrete-time systems. And [44] provides an extension of the formulation to nonlinear

discrete-time systems.

1.3.4 Contribution

In our work of Chapter 2, with relatively accurate estimation and prediction, one

expects to narrow down the region where the uncertainties stay. Compare with

preliminary strategies, we estimate the uncertainty using fast adaptation. Meanwhile,

we can predict the set-valued measurement of uncertainty over the prediction horizon

at each computation cycle based on the estimation. Then the adaptive regions of

the uncertainties get structured. Finally, the conservativeness due to the worst-case

synthesis can be significantly reduced.

We introduce a sporadic MPC algorithm for nonlinear continuous-time systems

based on the Lebesgue approximation in Chapter 3. The sampling is triggered by a
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self-triggering method, which may discretize the system directly. And the sampling

and prediction step-length are determined in an aperiodic manner accordingly.

We investigate an explicit adaptive MPC(EAMPC) algorithm for nonlinear

continuous-time systems in Chapter 4. We discretize the original system and develop

an adaptive discrete-time estimator to approximate the discretization error. And we

predict the error within a bounded region over each prediction iteration. In this case,

the online computation is mainly for function evaluation based on multi-parametric

programming, which may save computation costs dynamically. And the MPC

controller maps the state into a lookup table of linear gains.

1.3.5 Dissertation Organization

We are going to present the approaches on modeling systems with disturbance

adaptively, discretizing model using Lebesgue approximation, and solving FHOCP

of nonlinear continuous-time systems explicitly in the following chapters. The

dissertation is organized as follows: Chapter 2 introduces an MPC algorithm on

solving nonlinear continuous systems with state-dependent uncertainties adaptively;

Chapter 3 presents a discrete-time MPC algorithm for nonlinear sampled-data

systems with uncertainties based on Lebesgue approximation; Chapter 4 describes

an adaptive MPC scheme on solving the nonlinear continuous-time system explicitly,

Chapter 5 provides the examples for the application of the algorithm in Chapter 4;

Chapter 6 conclude current work along with a discussion on future research.
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Chapter 2

Adaptive Model Predictive Control of

Nonlinear Systems with State-Dependent

Uncertainties

This chapter studies adaptive model predictive control (AMPC) with time-varying

and potentially state-dependent uncertainties. We propose an estimation and

prediction architecture within the min-max MPC framework. An adaptive estimator

is presented to estimate the set-valued measures of the uncertainty using piecewise

constant adaptive law, which can be arbitrarily accurate if the sampling period in

adaptation is small enough. Based on such measures, a prediction scheme is provided

that predicts the time-varying feasible set of the uncertainty over the prediction

horizon. We show that if the uncertainty and its first derivatives are locally Lipschitz,

the stability of the system with AMPC can always be guaranteed under the standard

assumptions for traditional min-max MPC approaches, while the AMPC algorithm

enhances the control performance by efficiently reducing the size of the feasible set

of the uncertainty in min-max MPC setting.

2.1 Problem Formulation

Notations: We denote by Rn the n-dimensional real vector space, by R+ the set

of the real positive numbers, and by R+
0 the set of the real non-negative numbers.
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We use ‖ · ‖ to denote the Euclidean norm of a vector and the induced 2-norm of a

matrix.

Definition 1. A continuous function α : R+
0 → R+

0 belongs to class K if it is strictly

increasing and α(0) = 0. A function α : R+
0 → R+

0 belongs to class K∞ if it belongs

to class K and limr→∞ α(r) = ∞.

Definition 2. A set S ⊆ Rn that contains the origin in its interior is called a robustly

positive invariant (RPI) set for the system governed by ẋ = g(x, w) (with the set Ω

and the terminal time T ) if for all x0 ∈ S, the state trajectory x(t) with x(0) = x0

satisfies x(t) ∈ S for any t ∈ [0, T ] and any w(t) ∈ Ω.

Definition 3. The state x(t) of a system ẋ = f(x) is called uniformly ultimately

bounded (UUB) with ultimate bound b if there exist positive constants b and c,

independent of t0 ≥ 0, and for every a ∈ (0, c), there is T = T (a, b) ≥ 0, independent

of t0, such that ‖x(t0)‖ ≤ a implies ‖x(t)‖ ≤ b for any t ≥ t0 + T .

Consider a multi-input-multi-output (MIMO) state-feedback system:

ẋ(t) = f(x(t), u(t)) + ∆(t, x(t)), x(0) = x0 (2.1)

where x : R+
0 → X is the system state, u : R+

0 → U is the control input, f : X × U →

Rn is a known function satisfying f(0, 0) = 0, and ∆ : R+
0 × Rn → Rn is unknown.

The compact sets X ⊆ Rn and U ⊆ Rm describe the state constraint and the input

constraint, respectively. In other words,

x(t) ∈ X , u(t) ∈ U (2.2)

must hold for any t ≥ 0. The function f(x, u) satisfies the following condition over

x, y ∈ X and u, v ∈ U :

‖f(x, u) − f(y, v)‖ ≤ lx‖x − y‖ + lu‖u − v‖, ∀x ∈ X , u ∈ U (2.3)
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where lx, lu ∈ R+. The uncertainty ∆(t, x) is assumed to satisfy the following

condition:

Assumption 1. Given a positive constant T , there exist constants

l∆, lt, b∆, l∆t , b∆t , l∆x , b∆x ∈ R+ such that for any t, τ ≥ 0 satisfying |t − τ | ≤ T and

any x, y ∈ X ,

‖∆(t, x) − ∆(τ, y)‖ ≤ l∆‖x − y‖ + lt|t − τ | (2.4)

‖∆(t, 0)‖ ≤ b∆ (2.5)
"""""

∂∆(t, x)
∂t

""""" ≤ l∆t‖x‖ + b∆t

"""""
∂∆(t, x)

∂x

""""" ≤ l∆x‖x‖ + b∆x

hold. Moreover the positive constants l∆, lt, b∆, l∆t , b∆t , l∆x, and b∆x are known.

Remark 1. This assumption is to ensure the growth rate of the uncertainty is bounded

so that it can be predicted over the prediction horizon. Such an assumption can often

be found in adaptive control literature [45]. A weaker assumption is that the function

∆(t, x) and its first derivatives are uniformly bounded for any t ≥ 0 and any x ∈ X .

Our approach can be easily extended under this weaker assumption. However, those

uniform bounds are usually conservative because they should be valid for any x ∈ X .

This chapter focuses on the Lipschitz assumption which will result in less conservative

and state-dependent upper bounds on ∆(t, x) and its first derivatives.

Given the fact that x should stay in a compact set X , we can define a constant θ

and a set Ω as follows:

θ = l∆ max
x∈X

‖x‖ + b∆ (2.6)

Ω = {w ∈ Rn | ‖w‖ ≤ θ}. (2.7)

We can see ∆(t, x(t)) ∈ Ω for any t ≥ 0, given inequalities (5.13) and (5.16) in

Assumption 1.
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The objective of this chapter is to stabilize the system described in equation (5.11)

subject to the state and input constraints in (5.14).

2.2 Adaptive MPC

To stabilize the system subject to the state and input constraints, we consider

the MPC approach. Let {tk}∞
k=0 denote a time sequence with tk+1 = tk + δ and

t0 = 0 where δ ∈ R+ is the MPC iteration period. The related continuous-time

min-max MPC algorithm is proposed as follows: At time tk, the controller solves the

constrained optimal control problem over the time interval [tk, tk +T ), where T is the

length of the prediction horizon greater than δ:

Problem 2 : min
û(t)∈U

max
∆̂(t)∈Wk(t)

J [û, ∆̂]

s.t. ˙̂x(t) = f(x̂(t), û(t)) + ∆̂(t),

x̂(t) ∈ X

x̂(tk + T ) ∈ Xf .

for any ∀t ∈ [tk, tk + T ), where

J [û, ∆̂] ≜
! tk+T

tk

L(x̂(t), û(t))dt + Vf (x̂(tk + T ))

L : X × U is the running cost, Vf : Rn → R+
0 is the terminal cost, ∆̂ : R+

0 → Rn

describes the uncertainty in the model, Xf ⊂ Rn is the terminal set, and Wk(t) is the

predicted feasible set at the kth iteration that covers the uncertainty over [tk, tk +T ).

Once this problem is solved at the kth iteration, then the optimal input, û∗
k(t), over

[tk, tk + δ) will be applied to the plant, i.e.

u(t) = û∗
k(t), ∀t ∈ [tk, tk + δ).

Meanwhile, the next iteration starts at tk+1.
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Remark 2. Problem 2 implies an open-loop formulation of min-max MPC. We

use this framework as a carrier to discuss how adaptation can be introduced in

MPC. Notice that our method is also applicable to feedback MPC using closed-loop

predictions. More details on applying AMPC in a feedback MPC framework can be

found in [14].

In this MPC framework, there are still several components to be determined:

Wk(t) over the time interval [tk, tk + T ), Vf , and Xf . In traditional min-max MPC

approaches, the set Wk(t) is usually defined as Wk(t) ≜ Ω, based on which Vf and

Xf can be selected [8, 10]. However, if the set Ω is very large, the worst-case analysis

will result in very conservative results, which lead to poor control performance or

even infeasibility of MPC. In our approach, we actively estimate the uncertainty w(t)

and quantify the estimation error using an adaptive estimator. With the estimated

information, it is expected to obtain a smaller set Wk(t) over the prediction horizon,

compared with Ω, which will help reducing conservativeness. The detailed AMPC

algorithm will be discussed in the following sections.

This section introduces the AMPC algorithm. It includes three steps as shown in

Figure 2.1: (i) estimate the uncertainty; (ii) predict the set Wk(t) over [tk, tk+T ); and

(iii) solve Problem 2 for u∗
k(t). Notice that once the first two steps are completed, the

third step can be solved using dynamic programming [46]. Therefore, the following

discussion will mainly focus on uncertainty estimation and prediction and stability

analysis.

2.2.1 Adaptive Estimation

This subsection introduces the algorithm to estimate the uncertainty ∆(t, x(t)). We

expect to identify the set where ∆(t, x(t)) stays. To obtain a tight estimation, we
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Figure 2.1: AMPC Procedure

take advantage of fast adaptation. The adaptive estimator is defined by

ż(t) = −ax̃(t) + f(x(t), u(t)) + σ̂(t), z(0) = x0 (2.8)

where z : R+
0 → Rn is the state of the estimator, a ∈ R+ is an arbitrarily chosen

positive constant and x̃(t) = z(t) − x(t) is the state estimation error. The signal,

σ̂(t), is updated according to the piecewise constant adaptation law:

σ̂(t) = −Υ(Ts)x̃(kTs) (2.9)

for t ∈ [kTs, (k + 1)Ts) and k = 0, 1, 2, · · · , where Ts ∈ R+ (Ts ≪ δ) is the sampling

period, and

Υ(Ts) = a

eaTs − 1 .

Remark 3. The parameter a has to be positive to ensure convergence of x̃(t). On

one hand, the larger a is, the faster x̃(t) converges. On the other hand, a should not

be too large from the robustness perspective. Also notice that the selection of a should

keep Υ(Ts) away from being close to 0 or ∞ in order to prevent potential numerical

issues.
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The performance of this estimator is established in the following lemma:

Lemma 1. Consider the system (5.11) and the estimator defined by equations (4.9)

and (2.9). If Assumption 1 is satisfied, then the following inequality

‖∆(t, x(t)) − σ̂(t)‖ ≤ γ(Ts) (2.10)

holds for any t ≥ 0, where γ : R+
0 → R+

0 is defined by

γ(Ts) = 2rTs + ‖1 − e−aTs‖θ (2.11)

r = l∆t max
x∈X

‖x‖ + b∆t + (l∆x max
x∈X

‖x‖ + b∆x)
#

max
x∈X ,u∈U

‖f(x, u)‖ + θ
$

and θ is defined in (2.6).

Proof. Consider the system (5.11) and the estimator in (4.9). The error dynamics of

x̃(t) satisfies

˙̃x(t) = −ax̃(t) + σ̂(t) − ∆(t, x(t)), x̃(0) = 0.

With the sampling period Ts, the dynamics can be discretized as

x̃(t) = e−a(t−kTs)x̃(kTs) +
! t

kTs

e−a(t−τ) (σ̂(τ) − ∆(τ, x(τ))) dτ.

for any t ∈ [kTs, (k + 1)Ts). By the adaptive law in equation (2.9), σ̂(τ) is constant

over [kTs, (k + 1)Ts), which is equal to σ̂(kTs). So the preceding equation can be

rewritten as

x̃(t) = e−a(t−kTs)x̃(kTs) +
! t

kTs

e−a(t−τ)dτ σ̂(kTs) −
! t

kTs

e−a(t−τ)∆(τ, x(τ))dτ

for any t ∈ [kTs, (k + 1)Ts). Since x̃(t) is continuous, the preceding equation implies

x̃(kTs + Ts) =e−aTs x̃(kTs) +
! kTs+Ts

kTs

e−a(kTs+Ts−τ)dτ σ̂(kTs)

−
! kTs+Ts

kTs

e−a(kTs+Ts−τ)∆(τ, x(τ))dτ

=e−aTs x̃(kTs) + 1
a

%
1 − e−aTs

&
σ̂(kTs) −

! kTs+Ts

kTs

e−a(kTs+Ts−τ)∆(τ, x(τ))dτ
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which implies

x̃(kTs + Ts) = −
! kTs+Ts

kTs

e−a(kTs+Ts−τ)∆(τ, x(τ))dτ (2.12)

given the adaptive law in equation (2.9).

Let us now consider the term at the right-hand side in equation (2.12). Since the

exponential function e−a(kTs+Ts−τ) is always positive and ∆(t, x(t)) is continuous, by

the first mean value theorem, there exist τ ∗ ∈ [kTs, (k + 1)Ts] such that

! kTs+Ts

kTs

e−a(kTs+Ts−τ)∆(τ, x(τ))dτ =
! kTs+Ts

kTs

e−a(kTs+Ts−τ)dτ · ∆(τ ∗, x(τ ∗))

= 1
a

%
1 − e−aTs

&
∆(τ ∗, x(τ ∗)).

Applying this equation into equation (2.12) implies

x̃(kTs + Ts) = −1
a

%
1 − e−aTs

&
∆(τ ∗, x(τ ∗)).

Meanwhile, the adaptive law in equation (2.9) means

x̃(kTs + Ts) = −1
a

(eaTs − 1)σ̂(t)

for any t ∈ [kTs + Ts, kTs + 2Ts). Combining these two equations yields

∆(τ ∗, x(τ ∗)) = eaTs σ̂(t).

Therefore, for any t ∈ [kTs + Ts, kTs + 2Ts),

‖∆(t, x(t)) − σ̂(t)‖

≤ ‖∆(t, x(t)) − e−aTs∆(τ ∗, x(τ ∗))‖

≤ ‖∆(t, x(t)) − ∆(τ ∗, x(τ ∗))‖ + ‖(1 − e−aTs)∆(τ ∗, x(τ ∗))‖

≤
! t

τ∗
‖∆̇(τ, x(τ))‖dτ + ‖1 − e−aTs‖‖∆(τ ∗, x(τ ∗))‖

≤
! kTs+2Ts

kTs

‖∆̇(τ, x(τ))‖dτ + ‖1 − e−aTs‖‖∆(τ ∗, x(τ ∗))‖ (2.13)

where the last inequality holds because τ ∗ ≥ kTs.
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Note that for any t ≥ 0,

d

dt
∆(t, x(t)) =∂∆

∂t
+ ∂∆

∂x
ẋ

=∂∆
∂t

+ ∂∆
∂x

(f(x, u) + ∆(t, x)).

Therefore, we have
"""∆̇(t, x(t))

"""

≤
"""""

∂∆
∂t

""""" +
"""""

∂∆
∂x

""""" (‖f(x, u)‖ + ‖∆(t, x)‖)

≤ l∆t‖x‖ + b∆t + (l∆x‖x‖ + b∆x)
#

max
x∈X ,u∈U

‖f(x, u)‖ + l∆‖x‖ + b∆

$

≤ l∆t max
x∈X

‖x‖ + b∆t + (l∆x max
x∈X

‖x‖ + b∆x)
#

max
x∈X ,u∈U

‖f(x, u)‖ + l∆ max
x∈X

‖x‖ + b∆

$

= r

where the second inequality comes from Assumption 1. Applying the preceding

inequality and ‖∆(τ ∗, x(τ ∗))‖ ≤ θ into inequality (2.13) yields

‖∆(t, x(t)) − σ̂(t)‖ ≤ 2rTs + ‖1 − e−aTs‖θ

which completes the proof.

Remark 4. The adaptive estimator in (4.9) and (2.9) is an extension of the

piecewise-constant adaptive law proposed in L1 adaptive control literature [45, 47,

48] to nonlinear systems with a much simpler adaptation structure. It enables us to

derive a tight and uniform bound on ‖∆(t, x(t)) − σ̂(t)‖. Notice that the bound γ(Ts)

can be arbitrarily small as long as the sampling period Ts is small enough, which

implies that the estimation accuracy is subject to the hardware limitation. Another

advantage of using the piecewise-constant adaptive law is the ease of implementation

in computer-controlled systems, compared with projection-based adaptive laws [45,

49]. Notice that a small Ts will not significantly increase the computation workload

because the major computational cost in the AMPC is to solve Problem 2, which takes

place every δ unit-of-time and δ is much larger than Ts.
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With inequality (2.10), we know that ∆(t, x(t)) will stay in the ball centered at

σ̂(t) with the radius γ(Ts). Accordingly, at time tk, we have

∆(tk, x(tk)) ∈ Λk ≜ {w ∈ Rn | ‖w − σ̂(tk)‖ ≤ γ(Ts)}. (2.14)

The set Λk will be used as the initial set for the prediction of the feasible set of the

uncertainty, Wk(t), over the prediction horizon [tk, tk + T ).

2.2.2 Prediction of Feasible Sets for the Uncertainty

As discussed in Subsection 2.2.1, the adaptive estimator can only provide set-valued

estimates of ∆(t, x(t)) in the past (by time t). In the MPC framework, however, one

important step is to predict the state trajectory. It requires the future information on

∆(t, x) as indicated in Problem 2. Therefore, at time tk we must predict and quantify

the change of ∆(t, x) over the time interval [tk, tk + T ), i.e. we must predict the set

Wk(t) over [tk, tk + T ), in which ∆(t, x) stays for sure.

Consider the error dynamics of ε(t) = x(t) − x(tk) over [tk, tk + T ):

d

dt
‖ε(t)‖ ≤ ‖ε̇(t)‖ = ‖ẋ(t)‖ = ‖f(x(t), u(t)) + ∆(t, x(t))‖

≤ lx‖x(t)‖ + lu‖u(t)‖ + l∆‖x(t)‖ + b∆

≤ (lx + l∆) ‖x(t)‖ + ξ

≤ (lx + l∆) ‖x(t) − x(tk)‖ + (lx + l∆) ‖x(tk)‖ + ξ

where the second inequality comes from inequality (5.12) and ξ = lu maxu∈U ‖u‖+b∆.

Solving this differential inequality over [tk, tk + T ) with the initial condition ε(tk) = 0

implies

‖ε(t)‖ ≤
'

‖x(tk)‖ + ξ

lx + l∆

( %
e(lx+l∆)(t−tk) − 1

&
.
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Applying this inequality into inequality (5.13) yields

‖∆(t, x(t)) − ∆(tk, x(tk))‖ ≤ l∆‖x(t) − x(tk)‖ + lt(t − tk)

≤ l∆

'

‖x(tk)‖ + ξ

lx + l∆

( %
e(lx+l∆)(t−tk) − 1

&
+ lt(t − tk).

Since ‖∆(tk, x(tk)) − σ̂(tk)‖ ≤ γ(Ts) as shown in Lemma 5.11, the preceding

inequality indicates

‖∆(t, x(t)) − σ̂(tk)‖ ≤ ‖∆(tk, x(tk)) − σ̂(tk)‖ + ‖∆(t, x(t)) − ∆(tk, x(tk))‖

≤ γ(Ts) + l∆

'

‖x(tk)‖ + ξ

lx + l∆

( %
e(lx+l∆)(t−tk) − 1

&
+ lt(t − tk)

≜ φ(x(tk), t − tk),

which means that

∆(t, x(t)) ∈ Ŵk(t)

holds for any t ∈ [tk, tk + T ), where

Ŵk(t) ≜ {w ∈ Rn | ‖w − σ̂(tk)‖ ≤ φ(x(tk), t − tk)} . (2.15)

Note that Ŵk(tk) = Λk where Λk is defined in equation (2.14). In fact, Ŵk(t) can be

regarded as the expansion of Λk along the prediction horizon [tk, tk + T ).

To summarize, we have the following lemma:

Lemma 2. The uncertainty ∆(t, x(t)) always stays inside the set Ŵk(t) defined in

equation (2.15) for any t ∈ [tk, tk + T ).

With this lemma and equation (4.8), we know that ∆(t, x(t)) will stay in both Ω

and Ŵk(t). Meanwhile, it is inside Ŵk−1(t) because Ŵk−1(t) is a set-valued estimate

of ∆(t, x(t)) at time tk−1. Accordingly, we define the feasible set of ∆(t, x(t)) by

Wk(t) ≜ Ω ∩ Ŵk(t) ∩ Ŵk−1(t) (2.16)
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for any t ∈ [tk, tk + T ), which can be computed at time tk and Ŵ−1(t) = Ω. The

reason to include Ŵk−1(t) in the definition is to ensure Wk(t) ⊆ Wk−1(t) for any

t ∈ [tk, tk−1 + T ), which will be used later in stability analysis. In general, most

elements in Ŵk(t) will be included in Ŵk−1(t) over [tk, tk−1 +T ) since Ŵk(t) is always

a more accurate set-valued estimate of ∆(t, x) compared with Ŵk−1(t), which is

computed at tk−1.

The variation in Wk(t) is described in Figure 2.2. At t = tk, we have Ŵk(tk) = Λk

as mentioned before. Since γ(Ts) can be very small given a short sampling period

Ts, the set Ŵk(tk) will be small, according to its definition in equation (2.15), which

implies that Wk(tk) is also small. As time elapses, Ŵk(t) continuously grows until it

completely covers Ω defined in equation (4.8). Then Wk(t) becomes equal to Ω. In

this process, the growth rate plays an important role. The smaller the rate is, the

slower Ŵk(t) expands, which will lead to a smaller feasible set for ∆(t, x) for Problem

2. As the result, Problem 2 will admit a less conservative solution.

Figure 2.2: Prediction of the sets containing ∆(t, x(t))

With the definition of the time-varying set Wk(t), the AMPC algorithm is

summarized as follows.
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Table 2.1: Adaptive MPC Algorithm

At time t = t0,
1 Compute γ(Ts) according to (2.11);
2 Run the estimator defined in (4.9) and (2.9);
At time t = tk,
3 Predict Wk(t) over [tk, tk + T ) based on (2.16);
4 Solve Problem 2 for u∗

k(t) over [tk, tk + T );
5 Set u(t) = u∗

k(t) for all t ∈ [tk, tk + δ).

Remark 5. Notice that the uncertainty does not depend on the inputs in our

formulation. When the system contains input-dependent uncertainties, the proposed

AMPC algorithm cannot be directly applied because the growth rate of the uncertainties

may be unbounded due to possible discontinuity in the input u(t). One possible solution

is to add constraints on the input in Problem 2 so that the change in u(t) can be

bounded. Meanwhile, the set Ŵk(t) has to be re-defined since it may grow in a

piecewise continuous manner. We will investigate state/input-dependent uncertainties

in the future.

Remark 6. Notice that the set Wk(t) provides a more accurate set-valued estimate

of the uncertainty, compared with the traditional min-max MPC which considers the

worst-case static set, Ω, for the uncertainty. With more accurate estimates of the

uncertainty in Problem 2, the cost function J [û, ∆̂] can be further minimized which

leads to higher control performance.

2.2.3 Stability Analysis

This subsection discussion the stability of the AMPC algorithm. We first introduce

the following assumptions that are standard in MPC formulation [10, 19, 50].

Assumption 2. There exist a positive constant c ∈ R+, class K function β, α1,

α2 : R+
0 → R+

0 , and a function h : Rn → Rm with h(0) = 0 such that:

(i) Xf ⊆ XU ≜ {x ∈ X | h(x) ∈ U}, and 0 ∈ int(Xf );
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(ii) Xf is a RPI set for system (5.11) in closed-loop with u = h(x) and ∆(t, x) ∈ Ω;

(iii) L(x, u) ≥ β(‖x‖) holds for all x ∈ X and all u ∈ U ;

(iv) α1(‖x‖) ≤ Vf (x) ≤ α2(‖x‖) for all x ∈ Xf ;

(v) The following inequality holds for all x ∈ Xf , and w ∈ Ω.

∂Vf (x)
∂x

(f(x, h(x)) + w) ≤ −L(x, h(x)) + c. (2.17)

With Assumption 2, the main result is presented as follows.

Theorem 1. Consider the system (5.11) controlled by the AMPC law. If

Assumptions 1 and 2 hold, then the overall closed-loop system is uniformly ultimately

bounded.

Proof. First, let us define multiple Lyapunov functions for the closed-loop system.

For any t ∈ [tk, tk+1), let

Vk(t, x) ≜ min
û(τ)∈U

max
∆̂(τ)∈Wk(τ),∀τ∈[t,tk+T )

! tk+T

t
L(x̂k(τ), û(τ))dτ + Vf (x̂k(tk + T ))

where x̂k(t) is the predicted state at the kth iteration. Notice that given x̂k(t) = x,

we have

min
û0(τ)∈U , ∆̂(τ)=0

! tk+T

t
L(x̂0

k(τ), û0(τ))dτ + Vf (x̂0
k(tk + T )) ≤ Vk(t, x)

≤ min
ûΩ(τ)∈U

max
∆̂(τ)∈Ω

! tk+T

t
L(x̂Ω

k (τ), ûΩ(τ))dτ + Vf (x̂Ω
k (tk + T ))

where x̂0
k(τ) and x̂Ω

k (τ) are generated under (0, û0) and (Ω, ûΩ), respectively. By

Assumption (iii) and (iv), we know that there exist two class K functions χ1, χ2 and

a positive constant ζ, independent of k, such that χ1(‖x‖) ≤ Vk(t, x) ≤ χ2(‖x‖) + ζ.

With the Lyapunov function Vk(t, x), we have

Vk(tk, x(tk)) = min
û(τ)∈U

max
∆̂(τ)∈Wk(τ),∀τ∈[tk,tk+T )

! tk+T

tk

L(x̂k(τ), û(τ))dτ + Vf (x̂k(tk + T ))

=
! tk+T

tk

L(x̂∗
k(τ), û∗

k(τ))dτ + Vf (x̂∗
k(tk + T ))

x̂k(tk) =x̂∗
k(tk) = x(tk)
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where x̂∗
k(t) and û∗

k(t) are the optimal state and input, respectively, generated at

the kth iteration with the initial condition x(tk). Also, we use ∆̂∗
k(t) to denote the

corresponding worst-case disturbance. Note that the input û∗
k(t) will be applied to

the plant over the time interval [tk, tk+1).

Next, let us define a feasible control input that can be applied at tk+1:

ûk+1(t) ≜

)
**+

**,

û∗
k(t), ∀t ∈ [tk+1, tk + T )

h(x̂k+1(t)), ∀t ∈ [tk + T, tk+1 + T )

where x̂k+1(t) is the predicted state generated by ûk+1(t) with an arbitrary disturbance

∆̂k+1(t) ∈ Wk+1(t) over [tk+1, tk+1 + T ). The corresponding cost is then

Jk+1(ûk+1, ∆̂k+1) =
! tk+1+T

tk+1
L(x̂k+1(τ), ûk+1(τ))dτ + Vf (x̂k+1(tk+1 + T ))

x̂k+1(tk+1) = x(tk+1).

We now examine the difference between Vk and Jk+1, which is shown as.

Jk+1(ûk+1, ∆̂k+1) − Vk(tk, x(tk))

=
! tk+1+T

tk+1
L(x̂k+1, ûk+1)dτ + Vf (x̂k+1(tk+1 + T )) − Vk(tk, x(tk))

=
! tk+T

tk+1
L(x̂k+1, ûk+1)dτ +

! tk+1

tk

L(x, u)dτ + Vf (x̂k+1(tk + T ))
- ./ 0

Φ1

−Vk(tk, x(tk))

+
! tk+1+T

tk+T
L(x̂k+1, ûk+1)dτ + Vf (x̂k+1(tk+1 + T )) − Vf (x̂k+1(tk + T ))

- ./ 0
Φ2

−
! tk+1

tk

L(x, u)dτ. (2.18)

Integrating inequality (2.17) in Assumption 2 over the time interval [tk +T, tk+1 +

T ), we have

Φ2 ≤ δc. (2.19)
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Let us now consider Φ1. Notice that Φ1 is the cost of system (5.11) over [tk, tk + T )

with the initial condition x(tk), the input u∗
k(t), and the disturbance

∆̃(t) ≜

)
**+

**,

∆(t, x(t)), ∀t ∈ [tk, tk+1)

∆̂k+1(t), ∀t ∈ [tk+1, tk + T )
.

Based on the definition of Wk(t) in equations (2.16), we know Wk+1(t) ⊆ Wk(t) for

t ∈ [tk+1, tk + T ). Therefore, ∆̂k+1(t) ∈ Wk+1(t) ⊆ Wk(t) and ∆̃(t) ∈ Wk(t). Also,

we realize that Vk(tk, x(tk)) is the cost of system (5.11) over [tk, tk + T ) with the

same initial condition x(tk), the same input u∗
k(t), but the worst-case disturbance

over Wk(t). Consequently, we can conclude that Φ1 − Vk(tk, x(tk)) ≤ 0. Applying

this inequality and inequality (2.19) into inequality (2.18) implies

Jk+1(ûk+1, ∆̂k+1) − Vk(tk, x(tk)) ≤ δc −
! tk+1

tk

L(x, u)dτ.

Since ∆̂k+1(t) is any disturbance in Wk+1(t), we have

max
∆̂k+1(τ)∈Wk+1(τ)

Jk+1(ûk+1, ∆̂k+1) − Vk(tk, x(tk)) ≤ δc −
! tk+1

tk

L(x, u)dτ.

and therefore

Vk+1(tk+1, x(tk+1)) − Vk(tk, x(tk))

= min
ûk+1(τ)∈U

max
∆̂k+1(τ)∈Wk+1(τ)

Jk+1(ûk+1, ∆̂k+1) − Vk(tk, x(tk))

≤δc −
! tk+1

tk

L(x(τ), u(τ))dτ

≤δc −
! tk+1

tk

β(‖x(τ)‖)dτ

where the last inequality comes from item (iii) in Assumption 2. Notice that for any

t ∈ [tk, tk+1), Vk(t, x(t)) ≤ Vk(tk, x(tk)) holds. Therefore, by Theorem 2.5 in [10], we

can conclude that the overall closed-loop system is uniformly ultimately bounded.

2.3 Simulation

This section presents the simulation results that demonstrate the performance of the

proposed AMPC algorithm. The system under consideration is the simplified model
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of the short-period dynamics of an aircraft [51]:

ẋ =

1

223
−0.1686 0.9562

−0.4002 −0.3393

4

556 x +

1

223
0

−1.5313

4

556 u + ∆(t, x)

where the state x = [x1, x2]⊤ includes the angle of attack and the pitch rate and

the input u(t) represents the elevator deflection. The state must satisfy |x1(t)| ≤ 2

and |x2(t)| ≤ 2 for any t ≥ 0. The input constraint is −2 ≤ u(t) ≤ 2. We set

the prediction horizon to be T = 1.5 and δ = 0.1. The running cost function is

L(x, u) = x⊤x + 0.01u⊤u and the terminal cost function is Vf (x) = x⊤x. With this

setting and Xf = X , Assumption 2 can be verified.
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Figure 2.3: Comparison between AMPC and min-max MPC

In the first simulation, the external disturbance is assumed to be a sinusoidal

signal ∆(t, x) = [1, 1]⊤ sin(0.4πt), which is independent of the state. The system

is run for 10 seconds. We compare the simulation results with the min-max MPC

approach. Figure 2.3 shows the state trajectories of the systems under AMPC (solid

line) and min-max MPC (dashed line). From the top two plots, we see that x1 by

35



AMPC stays much closer to the origin than that generated by min-max MPC, while

the trajectories of x2 are comparable for both cases. The input trajectories are also

comparable as as shown in the bottom plot, which suggests that AMPC admits a

smaller cost over the running time.
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Figure 2.4: The states and the inputs generated by AMPC
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Figure 2.5: The feasible sets of the uncertainty Ŵk(t) for t ∈ [tk, tk + T )
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Figure 2.6: Comparison between AMPC and min-max MPC
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The second simulation considers state-dependent uncertainties, where

∆(t, x) =

1

223
0.3 0.1

0 −0.2

4

556 x +

1

223
0.2 sin(0.4πt)

0.2 sin(0.4πt)

4

556 .

Figure 2.4 shows that the system under AMPC achieves similar performance to the

first simulation, which is not surprising. Figure 2.5 plots the predicted set of the

uncertainty, Ŵk(t), over [tk, tk + T ), computed at tk = 3 using equations (2.15). It

can be observed that the expansion of the set is consistent to the plot in Figure 2.2.

The third simulation examines whether the proposed AMPC algorithm can be

applied to tracking problems. The objective is to transfer the output y(t) = x1 to

the reference level 2, i.e., y(t) tracks 2. The running cost function is

L(x, u) = (x1 − 2)⊤(x1 − 2) + 0.01u⊤u

and the terminal cost is chosen to be Vf (x) = (x1 − 2)T (x1 − 2). The trajectory of

the output y(t) obtained from applying the AMPC algorithm is plotted in Figure 2.6.

Again, it is compared with the output of the min-max MPC approach with Wk = Ω.

Thanks to the adaptive estimator and the reduced feasible set for the uncertainty

Wk(t), we can see that the performance of the proposed AMPC is superior to that of

the min-max MPC from Figure 2.6.

2.4 Conclusion

As discussed in context, the proposed AMPC algorithm enhances the control

performance by increasing estimation and prediction accuracy. We realize that timing

is very important in this framework: (i) the estimation error can be very small with

a short sampling period in adaptation; and (ii) if the uncertainty changes fast, the

set Wk(t) will converge to Ω very soon in prediction, which minimizes the benefit of

using adaptation (similar situations happen when the prediction horizon is overlong).

Further work will be done to study the impact of timing parameters on control
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performance and AMPC feasibility. Another observation is that the entire framework

in this chapter is continuous-time, which matches the idea of fast adaptation in the

adaptive control literature. However, implementing such continuous-time AMPC

will be computationally expensive. The continuous-time min-max optimization in

Problem 2 is challenging, especially when the plant is nonlinear. A more reasonable

way is to seek discrete-time AMPC algorithms, even for continuous-time plants. The

recent advances on sampled-data systems in fact provide the possibility [52, 53].

This is also one of the reasons to introduce the piecewise constant adaptive law, as

mentioned in Remark 4. Developing discrete-time AMPC algorithms will be the work

to be done in the future.
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Chapter 3

Lebesgue-Approximation-Based Model

Predictive Control for Nonlinear

Sampled-Data Systems with Measurement Noises

For computer-controlled systems, the MPC algorithms should be in discrete-time in

order to implement on actual systems. In this case, the sampling and computation

of optimal control inputs are triggered in discrete-time manners; and the models

used in the finite-horizon optimal control problem (FHOCP) are discrete-time. This

chapter presents a discrete-time MPC algorithm, based on Lebesgue approximation,

for nonlinear sampled-data systems. In this algorithm, the sampling instants are

triggered by a self-triggered scheme. The predictive model in the FHOCP is iterated

in an aperiodic manner subject to the Lebesgue approximation model. Sufficient

conditions are derived on feasibility and stability of the closed-loop systems with the

guarantee of exclusion of Zeno behavior.

3.1 Problem Formulation

Definition 1. A continuous function α : R+
o → R+

0 belongs to class K if it is strictly

increasing and α(0) = 0, lims→∞ α(s) = ∞.

Definition 2. The state x(t) of a system ẋ = f(x) is called uniformly ultimately

bounded (UUB) with ultimate bound b if there exist positive constants b and c,
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independent of t0 ≥ 0, and for every a ∈ (0, c), there is T = T (a, b) ≥ 0, independent

of t0 , such that ‖x(t0)‖ ≤ a implies ‖x(t)‖ ≤ b for any t ≥ t0 + T .

Consider a nonlinear continuous system:

ẋ(t) = f(x(t), u(t)), x(t0) = x0 (3.1)

where x ∈ X ⊂ Rn is the system state, u ∈ U ⊂ Rm is the control input, and f : Rn ×

U → Rn. The sets X , U are the constraint sets on the state and input, respectively.

We assume f(x, u) is locally Lipschitz, i.e., there exists a positive constant Lf so that

∀x, y ∈ X , u ∈ U , the following inequality holds:

‖f(x, u) − f(y, u) ≤ Lf‖x − y‖.

The main idea of MPC is described as follows: at time tk, the system obtains the

sampled state x̃(tk) and uses it as the initial point, the controller solves the FHOCP

over the prediction horizon [tk, tk + Tk], where Tk is the horizon length, and identify

the next sampling time instant tk+1. Then the calculated optimal control input will

be applied to the plant over the time interval (tk+1 ≤ tk + Tk). The next sampling

and prediction will start at tk+1.

We assume the sampled state contains measurement noise, i.e.,

x̄(tk) = x(tk) + ω(tk)

where ω(tk) is the noise satisfying

‖ω(tk) ≤ σ‖. (3.2)

In our discrete-time MPC framework, the sampling time instants and the

calculation of FHOCP must be discrete. In general, the next sampling time tk+1

can be expressed as

tk+1 = tk + φk

41



where φk ∈ R+ is the inter-sampling time interval to be defined. The cost function

of the FHOCP at the kth computation is

J [û|x(tk)] =
! tk+Tk

tk

L(x̂, û)dτ + Vf (x̂(tk + Tk)) (3.3)

where x̂ : R+ → Rn and û : R+ → Rm are the predictive state and input, respectively,

L : Rn × Rm → R+ is the running cost function, and Vf : Rn → R+ is the terminal

cost function.

Our objective is to design a design a completely discrete-time and cost-efficient

MPC algorithm to stabilize system (4.10), in the presence of measurement noises and

state/input constraints.

3.2 LAMPC Algorithm

This section presents the LAMPC algorithm. To begin with, we define the LAM for

FHOCP starts at time tk ,

x̂i+1
k = x̂i

k + dx̂i
k

D̂i
k

‖dx̂i
k‖ , x̂0

k = x̂k

ti+1
k = ti

k + D̂i
k

‖dx̂i
k‖ , t0

k = tk

dx̂i
k = f(x̂i

k, ûi
k),

(3.4)

where x̂i
k, ûi

k, and D̂i
k = D(x̂i

k, ûi
k) are the predictive state, input, and state-dependent

discretization level of LAM at the ith iteration, respectively. The threshold function

D : Rn × Rm → R+ will be discussed later.

Let N ∈ N be the number of iterations, and the horizon length can be described

as Tk = tN
k − t0

k. Using zero-order-hold approximation x̂(τ)x̂i
k, û(τ) = ûi

k for any
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τ ∈ [ti
k, ti+1

k ), and the cost function (4.11) can be rewritten as

J [ûk|x̄(tk)] =
N−17

i=0

! ti+1
k

ti
k

L(x̂(τ), û(τ))dτ + Vf (x̂(tN
k ))

=
N−17

i=0
L(x̂i

k, ûi
k)(ti+1

k − ti
k) + Vf (x̂N

k )

=
N−17

i=0
L(x̂i

k, ûi
k) D̂i

k

‖dx̂i
k‖ + Vf (x̂N

k ).

Then we can state the FHOCP at tk as a discrete-time optimal control problem with

x̂0
k = x̄(tk):

V (x̂(tk)) = min
ûi

k
∈U

J [ûk|x̂(tk)]

subject to x̂i+1
k = x̂i

k + dx̂i
k

D̂i
k

‖dx̂i
k‖ , i = 0, 1, · · · , N − 1

x̂i
k ∈ Xi, x̂N

k ∈ XN = Xf

(3.5)

where Xi are the constraint on the predictive state x̂i
k, and XN is the set of terminal

states.

Let ûi,∗
k (i = 0, · · · , N − 1) be the optimal solutions and x̂i,∗

k ∈ Xi be the

corresponding optimal states. Accordingly, dx̂i
k and D̂i

k (4.1) in (4.12) can be

represented as

D̂i,∗
k = D(x̂i,∗

k , ûi,∗
k ), dx̂i,∗

k = f(x̂i,∗
k , ûi,∗

k ).

With the optimal solution, we can define the next sampling time instant tk+1,

following the time iteration as (4.12)

tk+1 = t1,∗
k = tk + D̂0,∗

k

‖dx̂0,∗
k ‖

. (3.6)

The LAMPC algorithm is summarized as follows.

Table 3.1: LAMPC Algorithm Routine

At time t = tk

1 Sample the state and obtain x̄(tk);
2 Solve the FHOCP (4.13) for x̂i,∗

k , ûi,∗
k ;

3 Apply the optimal solution û0,∗
k to the plant, i.e, set u(t) = û0,∗

k over [tk, tk+1);
4 Start the next sampling and computation cycle at time tk+1 defined by (3.6)
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3.3 Feasibility

In order to guarantee feasibility of LAMPC, the constraint sets Xi in the FHOCP

must be correctly defined. Notice that we do not have direct access to x(t), but only

access to x̂i,∗
k . Therefore, to ensure x(t) ∈ X , the idea is to reduce the constraint

set X by certain amount to obtain Xi and hopefully x̂1,∗
k ∈ X1 can imply x(t) ∈ X .

To begin with, we first study the error dynamics between the LAM (4.12) and the

continuous-time dynamics (4.10). Let z(t) be defined as

z(t) = x̄(tk) + dx̂0,∗
k (t − tk), ∀t ∈ [tk, tk+1].

Note that z(tk) = x̂0,∗
k = x̄(tk) and z(tk+1) = x̂1,∗

k

Lemma 1. Consider the system (4.10) and the signal z(t), then for any t ∈ [tk, tk+1],

the following inequality holds

‖x(t) − z(t)‖ ≤ εk ≜ D̂0,∗
k (e

Lf

D̂
0,∗
k

‖dx̂
0,∗
k

‖ − 1) + σe
Lf

D̂
0,∗
k

‖dx̂
0,∗
k

‖

where σ is defined in (3.2).

Proof. According to the definition of z(t), we may get that

ż = dx̂0,∗
k = f(x̂0,∗

k , û0,∗
k ), ∀t ∈ [tk, tk+1].

Let us set the error as e(t) = x(t) − z(t), and we can get its dynamics as:

ė(t) = f(x(t), û0,∗
k ) − f(x̄(tk), û0,∗

k )
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which leads to the inequality
d

dt
‖e(t)‖ ≤ ‖ė(t)‖

= ‖f(x(t), û0,∗
k ) − f(x̄(tk), û0,∗

k )‖

≤ Lf‖x(t) − x̄(tk)‖

= Lf‖x(t) − z(t) + z(t) − x(tk)‖

≤ Lf‖e(t)‖ + Lf‖z(t) − z(tk) + z(tk) − x̄(tk)‖

≤ Lf‖e(t)‖ + Lf‖z(t) − z(tk)‖

≤ Lf‖e(t)‖ + Lf‖dx̂0,∗
k (t − tk)‖

≤ Lf‖e(t)‖ + Lf‖dx̂0,∗
k (tk+1 − tk)‖

= Lf‖e(t)‖ + Lf‖dx̂0,∗
k ‖ D̂0,∗

k

‖dx̂0,∗
k ‖

= Lf‖e(t)‖ + LfD̂0,∗
k .

Solving the inequality with ‖e(tk)‖ ≤ σ, we obtain

‖e(t)‖ ≤ D̂0,∗
k (eLf (t−tk) − 1) + σeLf (t−tk)

≤ D̂0,∗
k (eLf (tk+1−tk) − 1) + σeLf (tk+1−tk)

= D̂0,∗
k (e

Lf

D̂
0,∗
k

‖dx̂
0,∗
k

‖ − 1) + σe
Lf

D̂
0,∗
k

‖dx̂
0,∗
k

‖

for any t ∈ [tk, tk+1].

Let

ε = sup εk = max
x∈X ,u∈U

D(x, u)(eLf
D(x,u)

‖f(x,u)‖ − 1) + σeLf
D(x,u)

‖f(x,u)‖

and

X1 ≜ X − 2ε

where X1 is the Pontryagin difference between X and a ball B(2ε) centered at the

origin with the radius 2ε as it shows in . With the result of Lemma 1, if x̄(t0) ∈

X − ε, x(t) ∈ X can be guaranteed for any t ∈ [tk, tk+1).
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Figure 3.1: The relationship between X and X1

Assumption 1. To ensure feasibility, we assume that for any x, y ∈ X , u ∈ U , there

exists a positive constant Ls such that

‖D(x, u) f(x, u)
‖f(x, u)‖ − D(y, u) f(y, u)

‖f(y, u)‖‖ ≤ LS‖x − y‖ (3.7)

and there exists a function h(x) : Rn ∈ Rm, h(0) = 0 such that

0 ∈int(Xf ) (3.8)

Xf + ε(Ls + 1)N−1 ⊂XU ≜ {x ∈ XN−1|h(x) ∈ U} (3.9)

x ∈ Xf + ε(Ls + 1)N−1 ⇒x + D(x, h(x)) f(x, h(x))
‖f(x, h(x))‖ ∈ Xf (3.10)

And we construct an admissible control input for the LAM at the (k + 1)th

computation with the initial condition x̂0
k+1 = x(tk+1):

ûi
k+1 =

)
**+

**,

ûi+1,∗
k , i = 0, 1, · · · , N − 2

h(xi
k+1). i = N − 1

(3.11)

We compute the optimization input from 0 to (N − 1)th step in each computation

cycle. As a result, the ith control input calculated in the current cycle can be mapped

to the (i − 1)th input in next iteration.
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With ûi
k+1 and x̂0

k+1 = x̄(tk+1), the LAM can generate the states at the (k + 1)th

computation cycle as x̂i
k+1. Then we will study the difference between x̂i−1

k+1 and x̂i,∗
k .

Lemma 2. Given inequality (3.7), the following inequality holds

‖x̂i−1
k+1 − x̂i,∗

k ‖ ≤ εk(Ls + 1)i−1, i = 1, 2, · · · , N.

Proof. Let’s prove the statement using mathematical induction. To begin with, it

is obvious that the inequality agrees with the conclusion in Lemma 1 for i = 0.

Assuming the inequality holds,

According to (4.12), we can get that

x̂i+1,∗
k = x̂i,∗

k + D(x̂i,∗
k , ûi,∗

k ) f(x̂i,∗
k , ûi,∗

k )
‖f(x̂i,∗

k , ûi,∗
k )‖

x̂i
k+1 = x̂i−1

k+1 + D(x̂i−1
k+1, ûi,∗

k ) f(x̂i−1
k+1, ûi,∗

k )
‖f(x̂i−1

k+1, ûi,∗
k )‖

.

Therefore,

‖x̂i
k+1 − x̂i+1,∗

k ‖

=‖x̂i−1
k+1 + D(x̂i−1

k+1, ûi,∗
k ) f(x̂i−1

k+1, ûi,∗
k )

‖f(x̂i−1
k+1, ûi,∗

k )‖
− x̂i,∗

k − D(x̂i,∗
k , ûi,∗

k ) f(x̂i,∗
k , ûi,∗

k )
‖f(x̂i,∗

k , ûi,∗
k )‖

‖

≤‖x̂i−1
k+1 − x̂i,∗

k ‖ + ‖D(x̂i−1
k+1, ûi,∗

k ) f(x̂i−1
k+1, ûi,∗

k )
‖f(x̂i−1

k+1, ûi,∗
k )‖

− D(x̂i,∗
k , ûi,∗

k ) f(x̂i,∗
k , ûi,∗

k )
‖f(x̂i,∗

k , ûi,∗
k )‖

‖.

According to (3.7), we can get that

‖x̂i
k+1 − x̂i+1,∗

k ‖ ≤ (1 + Ls)‖x̂i−1
k+1 − x̂i,∗

k ‖

≤ εk(Ls + 1)p,

which finishes the proof by following the same rule of initial assumption.

According to Lemma 2, we can define the reduced constraint sets in the FHOCP

at each iteration as

Xi ≜ X − ε(
i7

p=1
(Ls + 1)p−1 + 1), i = 1, · · · , N − 1. (3.12)
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And Figure 3.2 shows the relationship between X and constraint set Xi.

Figure 3.2: The relationship between X and X3

Theorem 1. With (3.12) holds, along with the assumptions of (3.8)-(3.10), the

FHOCP of (4.13) is always feasible.

Proof. We will prove that for x̂i,∗
k ∈ Xi, i = 1, 2, · · · , N , there always have x̂i

k+1 ∈

Xi, x̂N
k+1 ∈ Xf and ûi

k+1 ∈ U as previous iteration, which makes it exists a feasible

solution ûi
k+1 of the optimization problem (4.13) at the (k + 1)th iteration.

To begin with, let us show that ûi
k+1 ∈ U , i = 0, 1, · · · , N − 1. Based on (3.11),

we may get that ûi
k+1 = ûi+1,∗

k ∈ U , i = 0, 1, · · · , N − 2. As it for i = N − 1, we can

get that

‖x̂N−1
k+1 − x̂N,∗

k ‖ ≤ ε(Ls + 1)N−1, x̂N,∗
k ∈ Xf

according to Lemma 2. With (3.9) holds, it may conclude that

x̂N−1
k+1 ∈ Xf + ε(Ls + 1)N−1 ⊂ XU (3.13)

which ensure that ûN−1
k+1 ∈ U .

Secondly, we will show that x̂i
k+1 ∈ Xi, i = 1, · · · , N − 1 and x̂N

k+1 ∈ Xf . Based on

(3.13), we may have x̂N
k+1 ∈ Xf according to the assumption of (3.10). Meanwhile,

we can get that

‖x̂i
k+1 − x̂i+1,∗

k ‖ ≤ ε(Ls + 1)i, x̂i+1,∗
k ∈ Xi+1, x̂N,∗

k ∈ Xf ⊂ XN−1
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with Lemma 2 holds. Then we conclude that

x̂i
k+1 ∈ Xi+1 + ε(Ls + 1)i = X − ε(

i7

p=1
(Ls + 1)p−1 + 1) = Xi, i = 1, · · · , N − 1.

which completes the proof.

3.4 Stability

This section discusses stability of the closed-loop system. Before presenting the main

results, we will first define the threshold function D(x, u) because this function will

directly affect system stability. If the threshold D̂i
k is too large, the LAM may

significantly deviate from the actual system, which may lead to instability. Let

D(x, u) = ‖f(x, u)‖
Lf

log(max { ρL(x, u)
‖f(x, u)‖ , δ} + 1) (3.14)

where δ is an arbitrarily small positive constant and ρ is a positive constant to be

determined. Such a choice of the threshold can avoid Zeno behavior since D(x,u)
‖f(x,u)‖ ≥

log δ+1
Lf

always holds and therefore ti+1
k − ti

k ≥ log δ+1
Lf

according to (4.12)

Assumption 2. Assume the following inequalities holds:

β(‖x‖) ≤ L(x, u)
‖f(x, u)‖ , γ(‖x‖) ≤ D(x, u), Vf (x) ≤ α(‖x‖) (3.15)

Vf (x + D(x, h(x)) f(x, h(x))
‖f(x, h(x))‖) − Vf (x) ≤ −L(x, h(x)) D(x, h(x))

‖f(x, h(x))‖ (3.16)

where L(x, u) is the stage cost function; β, γ, α : R → R are class K∞ functions.

Besides, we assume there exist the following Lipschitz continuous conditions

|Vf (x) − Vf (y)| ≤LVf
‖x − y‖

|L(x, u) D(x, u)
‖f(x, u)‖ − L(y, u) D(y, u)

‖f(y, u)‖ | ≤Lc‖x − y‖.

Note that the inequalities are common assumption conditions in MPC algorithms.
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Theorem 2. Suppose the hypotheses in Assumption 1, 2 along with Theorem 1 hold,

if there exist the condition that

ρ
L(x, u)

‖f(x, u)‖ ≥ θ(eLf
D(x,u)

‖f(x,u)‖ − 1), ρ ∈ (0, 1)

θ = Lc
(Ls + 1)N−1 − 1

Ls

+ LVf
(Ls + 1)N−1

(3.17)

‖x̄(tk)‖ ≥ max{γ−1( 2ρσ

1 − ρ
), β−1(θ

ρ
)} (3.18)

the system (4.10) under the MPC algorithm (4.13) is UUB.

Proof. Let J [ûk+1|x̄(tk+1)] be the cost of the FHOCP generated by ûi
k+1 in (3.11)

with initial condition x̄(tk+1). Consider

J [ûk+1|x̄(tk+1)] − V (x̄(tk)) (3.19)

=
N−17

i=0
L(x̂i

k+1, ûi
k+1)

D̂i
k+1

‖dx̂i
k+1‖

+ Vf (x̂N
k+1) − V (x̄(tk))

=
N−27

i=0
L(x̂i

k+1, ûi
k+1)

D̂i
k+1

‖dx̂i
k+1‖

+ L(x̂N−1
k+1 , ûN−1

k+1 ) D̂N−1
k+1

‖dx̂N−1
k+1 ‖

+ Vf (x̂N−1
k+1 ) − Vf (x̂N−1

k+1 )

+ Vf (x̂N
k+1) + L(x̂0,∗

k , x̂0,∗
k ) D̂0,∗

k

‖dx̂0,∗
k ‖

− L(x̂0,∗
k , x̂0,∗

k ) D̂0,∗
k

‖dx̂0,∗
k ‖

− V (x̄(tk))

≤{
N−27

i=0
L(x̂i

k+1, ûi
k+1)

D̂i
k+1

‖dx̂i
k+1‖

+ Vf (x̂N−1
k+1 ) + L(x̂0,∗

k , x̂0,∗
k ) D̂0,∗

k

‖dx̂0,∗
k ‖

− V (x̄(tk))}

+ {L(x̂N−1
k+1 , ûN−1

k+1 ) D̂N−1
k+1

‖dx̂N−1
k+1 ‖

+ Vf (x̂N
k+1) − Vf (x̂N−1

k+1 )} − L(x̂0,∗
k , x̂0,∗

k ) D̂0,∗
k

‖dx̂0,∗
k ‖

and we mark the first two parts of polynomial as Φ, Ψ. According to (3.16), we may

get

Ψ = L(x̂N−1
k+1 , ûN−1

k+1 ) D̂N−1
k+1

‖dx̂N−1
k+1 ‖

+ Vf (x̂N
k+1) − Vf (x̂N−1

k+1 ) ≤ 0, (3.20)

since ûN−1
k+1 = h(x̂N−1

k+1 ) and x̂N
k+1 = x̂N−1

k+1 + D(x̂N−1
k+1 , ûN−1

k+1 ) f(x̂N−1
k+1 ,ûN−1

k+1 )
‖f(x̂N−1

k+1 ,ûN−1
k+1 )‖ .

Let us consider about the sign of Φ. Note that the first term of Φ can be written

as
N−27

i=0
L(x̂i

k+1, ûi
k+1)

D̂i
k+1

‖dx̂i
k+1‖

=
N−17

i=1
L(x̂i−1

k+1, ûi−1
k+1)

D̂i−1
k+1

‖dx̂i−1
k+1‖

.
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According to (4.13),

V (x̄(tk)) =
N−17

i=0
L(x̂i,∗

k , ûi,∗
k ) D̂i,∗

k

‖dx̂i,∗
k ‖

+ Vf (x̂N,∗
k ).

And we can rewrite Φ as

Ψ =
N−17

i=1
L(x̂i−1

k+1, ûi−1
k+1)

D̂i−1
k+1

‖dx̂i−1
k+1‖

−
N−17

i=1
L(x̂i,∗

k , ûi,∗
k ) D̂i,∗

k

‖dx̂i,∗
k ‖

+ Vf (x̂N−1
k+1 ) − Vf (x̂N,∗

k ).

By the Lipschitz conditions of Assumption 2, along with Lemma 2, we can write the

inequality as

Ψ ≤
N−17

i=1
Lc‖x̂i−1

k+1 − x̂i,∗
k ‖ + LVf

‖x̂N−1
k+1 − x̂N,∗

k ‖

≤
N−17

i=1
Lcεk(Ls + 1)i−1 + LVf

εk(Ls + 1)N−1

≜εkθ

(3.21)

Then we may represent (3.19) as

J [ûk+1|x̄(tk+1)] − V (x̄(tk)) ≤ −L(x̂0,∗
k , x̂0,∗

k ) D̂0,∗
k

‖dx̂0,∗
k ‖

+ εkθ

with the conclusion of (3.20) and (3.21). Therefore, it may establish that

V (x̄(tk+1)) − V (x̄(tk))

= min
ûk+1

J [ûk+1|x̄(tk+1)] − V (x̄(tk))

≤ − L(x̂0,∗
k , û0,∗

k ) D̂0,∗
k

‖dx̂0,∗
k ‖

+ εkθ

= − L(x̂0,∗
k , û0,∗

k ) D̂0,∗
k

‖dx̂0,∗
k ‖

+ D̂0,∗
k (e

Lf

D̂
0,∗
k

‖dx̂
0,∗
k

‖ − 1)θ + σ(e
Lf

D̂
0,∗
k

‖dx̂
0,∗
k

‖ − 1)θ + σθ

≤ − L(x̂0,∗
k , û0,∗

k )
‖f(x̂0,∗

k , û0,∗
k )‖

(D̂0,∗
k − ρD̂0,∗

k − ρσ) + σθ

with the definition of εk and (3.17). Besides, we may get

D̂0,∗
k − ρD̂0,∗

k ≥ 2ρσ
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by combining the conditions of (3.15) and (3.18). According to the definition of

β(‖x‖) in (3.15) and (3.18), the preceding inequality implies that

V (x̄(tk+1)) − V (x̄(tk)) ≤ − L(x̂0,∗
k , û0,∗

k )
‖f(x̂0,∗

k , û0,∗
k )‖

ρσ + σθ

≤ − β(‖x̄(tk)‖)ρσ + σθ

≤0.

(3.22)

Meanwhile, by (3.16) in Assumption 2, we can get that

Vf (x̂i+1
k ) − Vf (x̂i

k) ≤ −L(x̂i
k, h(x̂i

k)) D(x̂i
k, h(x̂i

k))
‖f(x̂i

k, h(x̂i
k)‖ .

Summing up the inequality above for i = 0, 1, · · · , N − 1, then it may have

Vf (x̂N
k ) − Vf (x̂0

k) ≤ −
N−17

i=0
L(x̂i

k, h(x̂i
k)) D(x̂i

k, h(x̂i
k))

‖f(x̂i
k, h(x̂i

k)‖ .

According to the definition of V (x̄(tk)),

V (x̄(tk)) ≤
N−17

i=0
L(x̂i

k, h(x̂i
k)) D(x̂i

k, h(x̂i
k))

‖f(x̂i
k, h(x̂i

k)‖ + Vf (x̂N
k )

≤Vf (x̂0
k) = Vf (x̄(tk)) ≤ α(‖x̄(tk)‖)

together with (3.22) holds, it implies that x̄(tk) will be uniformly ultimately bounded,

which also leads to the conclusion that x(t) is UUB.

3.5 Simulation

This section shows how the LAMPC works on a nonlinear system with measurement

noises. We consider the crane model in [54] with the excitation angle φ and the

horizontal trolley position p:

ṗ(t) = v(t)

v̇(t) = u(t)

φ̇(t) = ω(t)

ω̇(t) = −gsin(φ(t)) − u(t)cos(φ(t)) − bω(t)
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where x = (p, v, φ, ω)T is the state and u is the control input. The control input

must satisfy −0.5 ≤ u(t) ≤ 0.5. Besides, we use the parameters b = 0.2J and

g = 9.81m/s2. The measurement noise ω(tk) satisfies ‖ω(tk)‖ ≤ 0.05.

The running cost function and the terminal cost function are defined as

L(x, u) = |f(x, u)| · (|x| + |u| + 1), Vf (x) = 5|x|.

The threshold function D(x, u) is defined by (3.14). The BARON solver [55] is used

to solve the nonlinear FHOCP.

Figure 3.3: The state and input trajectory generated by LAMPC
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Figure 3.4: The history of V (x̄(tk))

Figure 3.5: The inter-sampling time intervals and the prediction horizons
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As it shows, Figure 3.3 plot the the state and input trajectories of the system.

It is obvious that the system converges to a small neighborhood of the origin and

the constraints are not violated. Figure 3.4 plots the trajectory of V (x̄(tk)). We can

see that V (x̄(tk)) keeps decreasing until being close to zero. This is consistent to

the theoretical results. And Figure 3.5 shows the history of the inter-sampling time

intervals generated by the self-triggered scheme (top) and the length of prediction

horizons at each sampling instants (bottom). It is clear that those intervals are

time-varying until the state stays around the steady state. Also notice that they are

strictly greater than zero.

3.6 Conclusion

This chapter presents a LAMPC algorithm for nonlinear continuous-time systems

with measurement noises. A self-triggered method is used to trigger the sampling

and computation and the LAM is designed to discretize the FHOCP. We show that

with appropriate design of the threshold function in the LAM, even when the sampled

state contains measurement noises, the LAMPC can still guarantee the system to be

UUB. Meanwhile, this work can be applied to output-feedback systems as long as

the observer is well designed such that the error between the estimated state and the

actual state is uniformly bounded as stated in (3.2).
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Chapter 4

Explicit Adaptive Model Predictive Control

for Nonlinear Continuous-Time System with

Uncertainty

As we discussed in Chapter 2, adaptive MPC (AMPC) may practically achieve

stability in the presence of uncertainties with tight estimation and prediction.

Nevertheless, the existing work focuses on continuous-time controllers where the finite

horizon optimal control problem (FHOCP) is formulated in continuous-time. Solving

such an FHOCP online will take a significant amount of computation resources. It

will prevent applications of AMPC in systems with fast dynamics. Moreover, in

practice, many controllers are implemented in digital environments, which require

discrete-time control algorithms that can comprise intermittent sampling and task

jitters in the system.

This chapter investigates an explicit adaptive model predictive control algorithm

for nonlinear continuous-time systems. In this algorithm, we develop a discrete-time

adaptive estimator to approximate the discretization error over the prediction horizon

and the upper bound of the estimation error is derived. The finite-horizon optimal

control problem (FHOCP) is formulated in discrete-time subject to the linearized

system model and the state/input constraints. And multi-parametric programming

is applied to find the explicit solution to the proposed FHOCP as a function based on

current state and the estimated uncertainties. Given the resulting close-loop system

with mixed continuous/discrete-time behaviors, we derive sufficient conditions on
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feasibility of the proposed EAMPC and show that the system will be uniformly

ultimately bounded under the proposed algorithm. Finally, we provide simulations

to demonstrate the performance of the algorithms.

4.1 Basic of Explicit MPC

Consider a linear discrete-time model

xk+1 =Axk + Buk (4.1)

where xk is sampled from the plant, U , X are the constraints to the input and state

with the shape of polyhedral as

U ={u ∈ Rm|umin ≤ ui ≤ umax

X ={x ∈ Rn|xmin ≤ xi ≤ xmax}
(4.2)

where umin, umax, xmin, xmax are scalars and ui, xi are the elements of the input and

state, and Xf is the terminal set that the final state stays inside. Meanwhile, we

define J [uk|xk] as the system performance with

L(xk, uk) =1
2xT

k Qxk + 1
2uT

k Ruk

F (xN) =1
2xT

NPxN

as stage cost and terminal cost, and Q, R, P are semi-positive symmetric matrices.

We can always present the future state as

xk+i = Aixk +
i−17

j=0
AjBuk+i−1−j.

By using it to substitute the states into (4.1) and (4.2), we can represent Problem 3

in the form as

Vz(xk) = min
z

1
2zT Hz

s.t. Gz ≤W + Sxk

(4.3)
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where z ≜ U + H−1F T xk, U =
8
uk uk+1 · · · uk+N−1

9T

and H, G, W, S are

the matrices of appropriate dimensions. The problem of the multi-parametric

programming can be solved through Karush-Kuhn-Tucker (KKT) conditions as

Hz + GT λ = 0, λ ∈ Rq;

λi(Giz − W i − Sixk) = 0,

λi ≥ 0, j = 1, ..., q

Gz − W − Sxk ≤ 0.

And we can get the inequalities

GH−1G̃T (G̃H−1G̃T )−1(W̃ + S̃xk) ≤W + Sxk

(G̃H−1G̃T )−1(W̃ + S̃xk) ≤0
(4.4)

for active constraints where S̃, G̃, W̃ are the matrices constructed by the rows in

original matrices for λj ∕= 0. Then we may get the critical region R0 satisfying (4.4)

and divide the constraints set into different regions R1 · · · R5 based on the boundary

of the R0 as it shows in Figure 4.1. In this case, the optimization problem gets

simplified and the optimal solutions and be presented by the central point of each

polyhedron once x gets into corresponding area.

Figure 4.1: Division of Constraint Set X

For the process of selecting active constraints on composing (4.4) and dividing

corresponding regions can be pre-computed offline, we can get the full sequence of
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optimized solutions by applying sampled state xk during online computation and use

the element uk as the current input. In conclusion, explicit MPC does not need

complex real-time computation compares with common MPC approaches.

4.2 Explicit MPC Scheme

In this section, we will provide the approach for solving the optimal problem as

Problem 3. We can always get xk+i in terms of x(tk) and U = [uk, ..., uN−1]T so that

the summing function can be represented as

J [U |x(tk)] =
N−17

i=0
(xT

k+iQxT
k+i + uT

k+iRuT
k+i) + xT

k+NPxk+N − xT
k Qxk

=

1

22222222223

xk+1

xk+2

...

xk+N

4

55555555556

T 1

22222222223

Q 0 · · · 0

0 Q
. . . ...

... . . . . . . 0

0 · · · 0 P

4

55555555556

1

22222222223

xk+1

xk+2

...

xk+N

4

55555555556

+

1

22222222223

uk

uk+1

...

uk+N−1

4

55555555556

T 1

22222222223

R 0 · · · 0

0 R
. . . ...

... . . . . . . 0

0 · · · 0 R

4

55555555556

1

22222222223

uk

uk+1

...

uk+N−1

4

55555555556

.

Meanwhile, we can present the states vector as
1

22222222223

xk+1

xk+2

...

xk+N

4

55555555556

=

1

22222222223

A

A2

...

AN

4

55555555556

xk +

1

22222222223

B 0 · · · 0

AB B
. . . ...

... ... . . . 0

AN−1B AN−2B · · · B

4

55555555556

1

22222222223

uk

uk+1

...

uk+N−1

4

55555555556

.

Let us make Ā = [A, ..., AN ]T and present the matrices as

B̄ =

1

22222222223

B 0 · · · 0

AB B
. . . ...

... ... . . . 0

AN−1B AN−2B · · · B

4

55555555556

, C̄ =

1

22222222223

Q 0 · · · 0

0 Q
. . . ...

... . . . . . . 0

0 · · · 0 P

4

55555555556

, D̄ =

1

22222222223

R 0 · · · 0

0 R
. . . ...

... . . . . . . 0

0 · · · 0 R

4

55555555556

.

59



And we can get that

J [U |x(tk)] =[Āxk + B̄U ]T C̄[Āxk + B̄U ] + UT D̄U

=xT
k ĀT C̄Āxk + 2xT

k ĀT C̄B̄U + UT B̄T C̄B̄U + UT D̄U

so that we may determine that H = 2D̄, F = 2ĀC̄B̄. If we have boundary condition

as

xk+i ≤ v, i = 0, 1, · · · , n

where v is the upper bound of the element, then it can be presented as

Āxk + B̄U ≤ V, where V =
8
v v · · · v

9T

1×Nn

which makes the shape of constrain set X as a convex polyhedral. We can represent

Problem 3 as

min
U

J [U |x(tk)] =xT
k ĀT C̄Āxk + 2xT

k ĀT C̄B̄U + UT B̄T GB̄U + UT D̄U

B̄U ≤V − Āxk

and we can set G = B̄, S = D̄−1ĀC̄B̄ − Ā. Then the parameters of (4.3) get

determined, and we may solve the problem via using multi-parametric programming

as previous section.

4.3 Problem Formulation

Notations: We denote by Rn the n-dimensional real vector space, by R+ the set of

real positive numbers, by R+
0 the set of real non-negative numbers, and by Z+

0 the

set of non-negative integers. We use ‖ · ‖ to denote the Euclidean norm of a vector

and the induced 2-norm of a matrix. Given a positive constant d, let B(d) = {x ∈

Rn | ‖x‖ ≤ d}. Given two sets X , S ⊆ Rn, X + S is the Minkowski sum of these two

sets.
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Definition 1. A continuous function α : R+
0 → R+

0 belongs to class K if it is strictly

increasing and α(0) = 0.

Definition 2. The state x(t) of a system ẋ = f(x) is called uniformly ultimately

bounded (UUB) with ultimate bound b if there exist positive constants b and c,

independent of t0 ≥ 0, and for every a ∈ (0, c), there is T = T (a, b) ≥ 0, independent

of t0 , such that ‖x(t0)‖ ≤ a implies ‖x(t)‖ ≤ b for any t ≥ t0 + T .

Consider a nonlinear multi-input-multi-output (MIMO) state-feedback system:

ẋ = f(x) + Bu(t), x(0) = x0 (4.5)

where x : R+
0 → X is the system state, u : R+

0 → U is the control input, f : Rn ×

Rm → Rn is a known nonlinear continuously differentiable function. The compact sets

X ⊂ R+
n , U ⊂ R+

m describe the state constraint and the input constraint, respectively,

i.e.,

x(t) ∈ X , u(t) ∈ U

must hold for any t ≥ 0. Besides, we assume f(x) is locally Lipschitz that satisfies

‖f(x) − f(y)‖ ≤ lx‖x − y‖ (4.6)

for any x, y ∈ X , where lx ∈ R+. Then we can get that

‖f(x)‖ ≤ lx max
x∈X

‖x‖ = fmax. (4.7)

Let T to be the sampling period. So the state x(tk) is sampled at tk = kT . Let us

denote xk = x(tk) for simplicity.

When the sampled state xk is obtained, a discrete-time N -step FHOCP will be

solved. And the FHOCP with x̄0
k = xk under EAMPC framework is formulated as
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follows:

Problem 3: min
ūi

k
∈U

J [ūk|xk, σk]

s.t. x̄i+1
k = x̄i

k + BTūi
k + Tσk, i = 0, 1, · · · , N − 1

x̄i
k ∈ X̄i, x̄N

k ∈ X̄N = Xf (4.8)

where

J [ūk|xk, σk] =
N−17

i=0
(x̄iT

k Qx̄i
k + ūiT

k Rūi
k) + x̄NT

k Px̄N
k (4.9)

x̄i
k, ūi

k are the predicted state and input generated at tk+i = (k + i)T at the kth

computation cycle. In this formulation, Q, R, P are semi-positive symmetric matrices,

σk is a parameter that estimates the discretization error at tk, and X̄i is the constraint

set used in FHOCP of the predicted state. The optimal solution ū0,∗
k will be applied

to the plant as the input during t ∈ [tk, tk+1), i.e.,

u(t) = ū0,∗
k , ∀t ∈ [tk, tk+1).

We may present the system dynamic of (4.8) as

ȳi
k = Aiȳ0

k +
i−17

j=0
AjEūi−1−j

k , ȳi
k = [x̄i

k; Tσk]

where A = [In In; 0 In], E = [BT ; 0]. And we are going to use the approach of

explicit MPC to solve the optimize problem as previous section during each prediction

iteration.

Finally, the next computation cycle starts at tk+1 by solving the same problem

but a different initial state x̄0
k+1 = xk+1 and a different parameter σk+1 in order to get

a close-loop FHOCP. The control objective is stabilize the continuous-time system

under the framework (4.8).
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4.4 Adaptive Estimator

In this section, we design the discrete-time adaptive estimator. To begin with, let us

take integral on both sides of equation (5.11) over [tk, tk+1)

! tk+1

tk

ẋ dt =
! tk+1

tk

(f(x) + Bu(t)) dt

which provides the discretized system

xk+1 =xk + BTuk +
! tk+1

tk

f(x)dt (4.10)

where uk = u(tk) as u(t) is a constant over [tk, tk+1).

Let us consider the adaptive estimator

x̂k+1 =Γεk + xk + BTuk + Tσk, x̂0 = x0 (4.11)

where x̂k is the state of the estimator, εk = x̂k −xk, Γ is an arbitrarily chosen positive

constant over (0, 1), σk is estimated by the following adaptive law

σk = − Γ
T

εk + f(xk). (4.12)

Note that the estimator runs independent of the optimizer.

Lemma 1. Consider the system (4.10) and the estimator (4.11). The inequality

‖f(x) − σk‖ ≤lx(fmax + max
u∈U

‖Bu‖)(t − tk + ΓT )

≜φ(t − tk)
(4.13)

holds for any t ∈ [tk, tk+N), where fmax is defined in (5.12).

Proof. By (4.10) and (4.11), the error εk+1 satisfies

εk+1 =Tf(xk) −
! tk+1

tk

f(x)dt

=Tf(xk) − Tf(x(τ ∗
k ))
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for τ ∗
k ∈ [tk, tk+1) by applying the first mean value theorem. Equation (4.12) also

implies that

σk+1 = − Γ
T

εk+1 + f(xk+1).

Therefore, it exists that

σk+1 = Γf(x(τ ∗
k )) − Γf(xk) + f(xk+1)

for all k ∈ Z+
0 . Consider the difference between f(x) and σk for t ∈ [tk, tk+N):

‖f(x) − σk‖

≤‖f(x) − f(xk)‖ + ‖f(xk) − σk‖

≤‖f(x) − f(xk)‖ +
"""−Γf(x(τ ∗

k−1)) + Γf(xk−1))
"""

≤lx‖x(t) − xk‖ + lxΓ‖x(τ ∗
k−1) − xk−1‖

≤lx(fmax + max
u∈U

‖Bu‖)(t − tk + ΓT ) ≜ φ(t − tk)

and the proof gets finished.

Remark 1. The bound φ can be arbitrarily close to 0, if T is small enough and Γ

is close to 1. It implies that when the sampling rate is high enough, the estimation

error can be very small. Besides, σk is always converges to f(x) as the system reaches

stability.

Lemma 1 suggests that we can use the constant σk to approximate f(x) over the

prediction horizon [tk, tk+N) and formulate the discrete-time dynamics constraint by

represent the system in (5.11) as follows:

x̄i+1
k = x̄i

k + BTūi
k + Tσk

where xk(tk+i) = x̄i
k. It shows the routine of EAMPC in Figure 5.3 with corresponding

description as Table 5.2.
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Figure 4.2: The Procedure of EAMPC

Table 4.1: EAMPC Algorithm Routine

1. At tk, run the estimator defined in (4.11) and compute σk by (4.12);
2. Solve the FHOCP in (4.8) with the parameters xk and σk;
3. Apply ū0,∗

k as the input to the plant for t ∈ [tk, tk+1);
4. Repeat Step 1-3 until the state researches the destination.

4.5 Feasibility Analysis

This section discusses the feasibility of EAMPC. To begin with, we are going to

discuss the condition which may ensure x(t) ∈ X under the constrains of (4.8). The

basic idea is making X1 to be a reduced set of X based on the difference between

x(tk+1) and x̄1
k, so that x̄1

k ∈ X1 implies x(t) ∈ X for t ∈ [tk, tk+1]. Let us construct a
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continuous-time system over t ∈ [tk, tk+1] as

żk = Bū0,∗
k + σk = Buk + σk, zk(tk) = x(tk) = x̄0

k (4.14)

according to (4.8), so that

zk(t) = zk(tk) + (Buk + σk)(t − tk) (4.15)

and zk(tk+1) = x̄1
k. Consider the error between zk(t) and x(t) over the time interval

t ∈ [tk, tk+1] with same control input ū0,∗
k and initial state x(tk), the following Lemma

holds.

Lemma 2. Consider the systems (5.11) and (4.14), the following inequality holds

‖x(t) − zk(t)‖ ≤ Tφ(T ) (4.16)

for any t ∈ [tk, tk+1].

Proof. Comparing the systems (5.11) and (4.14), we may get the dynamic of error

e(t) = x(t) − zk(t) as

ė = f(x) − σk

which may lead to the differential inequality

d

dt
‖e(t)‖ ≤‖f(x) − σk‖.

Then we may solve the inequality as

‖e(t)‖ ≤Tφ(T )

for any t ∈ [tk, tk+1].

With (4.16) holds, we may define the constraint set X1 and ensure x(t) ∈ X over

the prediction horizon by the following theorem.
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Theorem 1. Assume the hypotheses in Lemma 2 holds, if x(t0) ∈ X −B(Tφ(T )) and

set

X1 ≜ X − 2B(Tφ(T )) (4.17)

then x ∈ X for any t ≥ t0 under the model of (4.8).

Proof. We may present zk(t) as

zk(t) = (1 − θ)zk(tk) + θzk(tk+1), θ = t − tk

tk+1 − tk

based on (4.15) for any t ∈ [tk, tk+1] so that θ ∈ [0, 1]. Let us discuss the statement

in a recursive way. Firstly, at the moment of t0, we have

z0(t0) = x(t0) = x̄0
0 ∈ X − B(Tφ(T ))

with the assumption holds, and we may also get

z0(t1) = x̄1
0 ∈ X1 = X − 2B(Tφ(T )).

In this case, we may find that

z0(t) ∈ X − B(Tφ(T )), t ∈ [t0, t1]

as X − B(Tφ(T )) is a compact set for both of z0(t0), z0(t1). According to (4.16), it

may imply that x(t) ∈ X for any t ∈ [t0, t1]. Secondly, for the situation of t1, we may

get that

z1(t1) = x(t1) = x̄0
1 ∈ X1 + B(Tφ(T )) = X − B(Tφ(T ))

with (4.16) holds. Together with the definition

z1(t2) = x̄1
1 ∈ X1 = X − 2B(Tφ(T ))

we may get that

z1(t) ∈ X − B(Tφ(T )), t ∈ [t1, t2]
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and x(t) ∈ X for any t ∈ [t1, t2] as similar as previous iteration. And the proof gets

completed by keep the processing along the prediction horizon with the conclusion

that x(t) ∈ X for any t ∈ [tk, tk+1].

Let us construct a control sequence for (4.8) at the (k + 1)st FHOCP with the

initial condition x̄0
k+1 = xk+1 as

ūi
k+1 =

)
**+

**,

ūi+1,∗
k , i = 0, 1, · · · , N − 2

h(x̄i
k+1), i = N − 1

(4.18)

where ūi+1,∗
k donates the optimal solution of the kth FHOCP, x̄i

k+1 is the predicted

state generated by ūi
k+1 at the (k + 1)st computation cycle, and h(x) : Rn → Rm

is a feedback law that will be defined later. We will consider ūi+1,∗
k , h(x̄N−1

k+1 ) as one

possible solution to the (k + 1)st FHOCP.

According to (4.10) and (4.11), it yields that

‖εk+1 − εk‖ ≤
""""Tf(xk) − Tf(xk−1) −

! tk+1

tk

f(x)dt

+
! tk

tk−1
f(x)dt

"""""

≤T lx‖xk − xk−1‖ + T‖f(x(τ ∗
k )) − f(x(τ ∗

k−1))‖

≤T 2(lx + 1)(fmax + max
u∈U

‖Bu‖)

Given the Lipschitz condition on f(x), there exist the inequality that

‖σk+1 − σk‖ ≤ ‖f(xk+1 − f(xk))‖ + Γ
T

‖εk+1 − εk‖

≤ lx‖xk+1 − xk‖ + Γ
T

‖εk+1 − εk‖

≤ T (Γlx + Γ + lx)(fmax + max
u∈U

‖Bu‖)

≜ Λ(T ). (4.19)

Lemma 3. There exists the relationship between states of neighboring prediction

routine as the following inequality

‖x̄i
k+1 − x̄i+1,∗

k ‖ ≤ γi ≜ Tφ(T ) + iTΛ(T ). (4.20)

68



holds for i = 0, 1, · · · , N − 1.

Proof. We prove the statement using mathematical induction. According to Lemma

2, it is obvious that (4.20) holds for i = 0 as

‖x̄0
k+1 − x̄1,∗

k ‖ =‖x(tk+1) − x̄1,∗
k ‖

≤Tφ(T ).

Assuming (4.20) holds for i = p − 1, i.e.,

‖x̄p−1
k+1 − x̄p,∗

k ‖ ≤ γp−1 = Tφ(T ) + (p − 1)Λ(T ).

Notice that

x̄p+1,∗
k =x̄p,∗

k + BTūp,∗
k + Tσk

x̄p
k+1 =x̄p−1

k+1 + BTūp,∗
k + Tσk+1.

Therefore, by the inequality (4.19), we have

‖x̄p
k+1 − x̄p+1,∗

k ‖ ≤‖x̄p−1
k+1 − x̄p,∗

k ‖ + TΛ(T )

≤Tφ(T ) + pTΛ(T )

=γp

which means that (4.20) holds for i = p. Besides, we may get limT →0,Γ→1 γi = 0 as

limT →0 Λ(T ) = 0 and limT →0,Γ→1 φ(T ) = 0.

With Theorem 1 and Lemma 3 holds, we may construct the constraint set for

i = 1, 2, · · · , N − 1 as:

X̄i ≜ X − B(εi), εi = (i + 1)Tφ(T ) +
i−17

p=0
pTΛ(T ). (4.21)

Assumption 1. It satisfies the following conditions that:

h(0) = 0, 0 ∈ interior(X̄N), X̄N + B (γN−1) ⊂ XU ≜ {x ∈ X̄N−1 | h(x) ∈ U} (4.22)

x ∈ X̄N + B (γN−1) ⇒ x + BTh(x) + Tf(x) ∈ X̄N − B(Tφ(NT )) (4.23)

where φ(NT ) is defined in (4.13).
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Theorem 2. If Assumption 1 hold and the FHOCP in (4.8) is feasible at t0, then

the FHOCP is always feasible for k = 0, 1, · · · under the constraint sets defined in

(4.21).

Proof. We will prove that if x̄i,∗
k ∈ X̄i and ui,∗

k ∈ U , then x̄i
k+1 ∈ X̄i and ūi

k+1 ∈ U ,

which means that they are feasible to the FHOCP at the (k + 1)st computation.

To begin with, let us show that ūi
k+1 ∈ U for i = 0, 1, · · · , N − 1. Based on (4.18),

we know that ūi
k+1 = ūi+1,∗

k ∈ U , i = 0, 1, · · · , N − 2. For i = N − 1, we know by

Lemma 3 that

|‖x̄N−1
k+1 ‖ − ‖x̄N,∗

k ‖| ≤ ‖x̄N−1
k+1 − x̄N,∗

k ‖ ≤ γN−1.

Since x̄N,∗
k ∈ X̄N , with (4.22), it implies that

x̄N−1
k+1 ∈ X̄N + B (γN−1) ⊂ XU

and therefore ūN−1
k+1 = h(x̄N−1

k+1 ) ∈ U .

Secondly, we will show that x̄i
k+1 ∈ X̄i, i = 1, · · · , N − 1. By Lemma 3, we know

|‖x̄i
k+1‖ − ‖x̄i+1,∗

k ‖| ≤ ‖x̄i
k+1 − x̄i+1,∗

k ‖ ≤ γi.

Also, we have

x̄i+1,∗
k ∈ X̄i+1 and x̄N,∗

k ∈ X̄N ⊂ X̄N−1.

Therefore,

x̄i
k+1 ∈ X̄i+1 + B (γi) = X̄i, i = 1, · · · , N − 1.

for i = 1, · · · , N − 1.

Finally, we show that x̄N
k+1 ∈ X̄N . Since

x̄N
k+1 = x̄N−1

k+1 + BTh(x̄N−1
k+1 ) + Tσk+1

there exists the error Tφ(NT ) between σk+1 and f(x) according to (4.13). With

(4.23) holds, we may ensure x̄N
k+1 ∈ X̄N and the proof gets finished.
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4.6 Stability

It discusses the stability of the system under EAMPC algorithm in this section.

Assumption 2. There exist the positive constants lVf
, lL, d ∈ R+, ρ ∈ (0, 1), and

class K∞ functions α, η : R → R, such that

(i) for any x, y ∈ X and u ∈ U

|Vf (x) − Vf (y)| ≤lVf
‖x − y‖

|L(x, u) − L(y, u)| ≤lL‖x − y‖

L(x, u) ≥ η(‖x‖), Vf (x) ≤ α(‖x‖)

(4.24)

(ii) for any x ∈ X̄N + B(γN−1)

Vf (x + BTh(x) + Tf(x)) − Vf (x) ≤ −L(x, h(x)) + d (4.25)

Theorem 3. If Assumption 1–2 hold and the FHOCP in (4.8) is feasible, the system

is uniformly ultimately bounded.

Proof. Let us consider

J [ū|xk+1, σk+1] − V (xk)

=
N−17

i=0
L(x̄i

k+1, ūi
k+1) + Vf (x̄N

k+1) − V (xk)

=
N−27

i=0
L(x̄i

k+1, ūi
k+1) + Vf (x̄N−1

k+1 ) + L(x̄0,∗
k , ū0,∗

k )

− V (xk) + L(x̄N−1
k+1 , ūN−1

k+1 ) + Vf (x̄N
k+1)

− Vf (x̄N−1
k+1 ) − L(x̄0,∗

k , ū0,∗
k ).

(4.26)

Meanwhile, there exists

Vf (x̄N−1
k+1 + BTh(x̄N−1

k+1 ) + Tf(x)) − Vf (x̄N−1
k+1 )

≤ − L(x̄N−1
k+1 , h(x̄N−1

k+1 )) + d
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with (4.25) holds. As we have

|Vf (x̄N−1
k+1 + BTh(x̄N−1

k+1 ) + Tf(x)) − Vf (x̄N
k+1)|

=lVf
‖x̄N−1

k+1 + BTh(x̄N−1
k+1 ) + Tf(x) − x̄N

k+1‖

≤lVf
Tφ(NT )

according to (4.13). Then we may get

Vf (x̄N
k+1) − Vf (x̄N−1

k+1 ) + L(x̄N−1
k+1 , h(x̄N−1

k+1 ))

≤d + lVf
Tφ(NT ).

(4.27)

Also, notice that

V (xk) =
N−27

i=0
L(x̄i+1,∗

k , ūi+1,∗
k ) + L(x̄0,∗

k , ū0,∗
k ) + Vf (x̄N,∗

k )

then we may consider the first four terms in(4.26) as

N−27

i=0
L(x̄i

k+1, ūi
k+1) −

N−27

i=0
L(x̄i+1,∗

k , ūi+1,∗
k )

+ Vf (x̄N−1
k+1 ) − Vf (x̄N,∗

k )

≤
N−27

i=0
|L(x̄i

k+1, ūi
k+1) − L(x̄i+1,∗

k , ūi+1,∗
k )|

+ |Vf (x̄N−1
k+1 ) − Vf (x̄N,∗

k )|

≤
N−27

i=0
lL‖x̄i

k+1 − x̄i+1,∗
k ‖ + lVf

‖x̄N−1
k+1 − x̄N,∗

k ‖

≤
N−27

i=0
lLγi + lVf

γN−1 = lLεN−1 + lVf
γN−1 (4.28)

where the last inequality comes from Lemma 3. Applying (4.27) and (4.28) into (4.26)

yields

J [ū|xk+1, σk+1] − V (xk)

≤ lLεN−1 + lVf
γN−1 + d + lVf

Tφ(NT )
- ./ 0

ζ

−L(xk, uk).
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Then we can further derive this inequality as follows:

V (xk+1) − V (xk) = min
ū

J [ū|xk+1, σk+1] − V (xk)

≤ζ − L(xk, uk)

≤ζ − η(‖xk‖)

which implies xk gets uniformly ultimately bounded. As V (x(t)) ≤ V (xk) for any

t ∈ [tk, tk+1), which may conclude that x(t) is also uniformly ultimately bounded.

4.7 Simulation

This section presents simulation results that demonstrate the performance of EAMPC

algorithm. Consider the example as
)
**+

**,

ẋ1 =0.1x2
1 − 0.25x2 + 2u1

ẋ2 =0.5x1 − 0.1x3
2 + u2

where x = [x1 x2]T ∈ X ≜ {x ∈ R2| ‖x‖∞ ≤ 5}, u = [u1 u2]T ∈ U ≜ {u ∈ R2| ‖u‖∞ ≤

5}. Note that we use uniform norm to present distance of vectors in order to match

the conditions on solving multi-parametric programming problem. We set the step

length T = 0.05, the prediction steps to be 4 in each iteration, and the parameter

of discretize estimator Γ = 0.04. And we solve the problem via multi-parameter

quadratic programming (MPQP) by using toolbox [56].

To begin with, let us check whether Assumption 1, 2 may get satisfied as common

conditions in MPC formulation. We can get the value of lx = 2.5, fmax = 12.5. Then

we may present (4.13) as

φ(t − tk) =56.25(t − tk + 0.002).

Furthermore, there exists the coefficients that

‖σk+1 − σk‖ ≤Λ(T ) = 59.4T = 2.97.
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Besides, we may always let

h(x) = −B−1(x/T + f(x))

in order to guarantee that

x + BTh(x) + Tf(x) = 0 ∈ X̄N − B(NTφ)

for (4.23). And we may determine the feasible sets as

X̄0 =X = {‖x‖∞ ≤ 5}

X̄1 =X − B(0.15) = {‖x‖∞ ≤ 4.85}

X̄2 =X − B(0.44) = {‖x‖∞ ≤ 4.56}

X̄3 =X − B(0.88) = {‖x‖∞ ≤ 4.12}

X̄N =X − B(1.48) = {‖x‖∞ ≤ 3.52}

Then the conditions of Assumption 1 get satisfied and we may present the

corresponding relationship of each set as the following figure. To simplify the

computation, we are going to use X̄N as the uniform boundary along the prediction

horizon.

Figure 4.3: Relationship between each Constraint Sets
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Let us construct the functions of stage cost and terminal cost as

L(x, u) =1
4xT x + 1

4uT u

Vf (x) =1
4xT x

then we may get lVf
= 2.5, lL = 5, and the K∞ functions can be defined as

η(‖x‖) = 1
4xT x, α(‖x‖) = xT x.

And we may find that

Vf (x + BTh(x) + Tf(x)) − Vf (x) ≤ − L(x, h(x)).

In this case, the conditions of Assumption 2 get guaranteed.

Let us run the example under EAMPC and common online MPC to compare the

performance of each algorithm. According to Figure 4.5, the system of online MPC

get stabilized more quickly and the optimization get stopped around t = 5. However,

the trajectory of EAMPC in Figure 5.4 runs more gentle and smoother compare with

online MPC, which means the control of EAMPC may prevent the system states with

sudden change.

As it shows in the following table, the computation of EAMPC takes 5.78 seconds

with total cost of 363.96 for 25 prediction length, while it spends 52.99 seconds with

total cost of 69.04 for online MPC under same computation steps. The computation

time of online MPC is much longer than EAMPC although the total cost of online

MPC is low, which lead to a rough trajectory of online MPC. In conclusion, we may

find that EAMPC owns a better performance than common online MPC approaches

on dealing with nonlinear FHOCP.

Table 4.2: Comparison of EAMPC and online MPC

Running Time Total Cost Total Length
EAMPC 5.78s 363.96 25online MPC 52.99s 69.04
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Figure 4.4: The State and Input Trajectory Generated by EAMPC

Figure 4.5: The State and Input Trajectory Generated by online MPC
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Figure 4.6: The Trajectory of f(x) v.s σk

Finally, it shows the approximation of f(x) with σk via the discretize estimator in

Figure 5.7. We may find that the trajectory of σk always follows f(x). And it works

well along the prediction horizon.

4.8 Conclusion

This chapter presents an adaptive explicit MPC algorithm for nonlinear

continuous-time system with uncertainty. It solves the optimization problems by

linearizing and discretizing the original model. Besides, it provides a method

to approximate the error generated by remodeling the original system adaptively.

Based on these works, it may improve the performance of the system and save the

computation cost. Finally, we will discuss the impact of linearization on control

performance and corresponding feasibility for future work.
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Chapter 5

Explicit Adaptive Model Predictive Control

on robotic manipulators

Robotics is a complex field with diverse areas such as physics, statics, dynamics,

electronics, control theory, and computer programming, to name a few. In our

research, we are interested in the control of robotic manipulators. In this chapter, we

study the approach to building the mathematic model of robotic manipulators and

operating the system using the algorithm of explicit adaptive model predictive control.

We review the knowledge of Lagrange’s equation, which is a common approach to

denote robot dynamics. Besides, we introduce a fundamental geometric structure

of robot manipulators, such as manipulator configuration, kinematic, and inverse

kinematic based on the content of [57]. And we are going to provide two examples of

the approach to derive robotic manipulators under explicit adaptive model predictive

control algorithm.

5.1 Derivation of Manipulator Dynamics

Lagrange’s equation aims to present the motion systems in the form as

d

dt

∂L

∂q̇
− ∂L

∂q
= τ (5.1)

where q is defined as joint-variable vector, τ is the vector of generalized forces, and

L is the difference between the kinetic energy K and potential energy P as

L = K − P. (5.2)
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Typically, q consists of the elements as variable angle θi and/or variable length di of

each joint while τ contains torque ni and/or force fi of each joint.

In general, the dynamics of robots are always been presented in the form as

M(q)q̈ + V (q, q̇) + G(q) = τ (5.3)

with the name as Lagrange’s mechanics, where M(q) is defined as inertia matrix,

V (q, q̇) is Coriolis/centripetal vector, and G(q) is gravity vector. It is necessary

to determine the kinetic energy K and potential energy P , along with Lagrange’s

equation, in order to get the general form (5.3).

To begin with, let’s discuss the kinetic energy of a point on the ith link in a

general manipulator model. We can determine the position of the point based on the

kinematics as

r = Ti ri , ri =
8
x y z 1

9T

4×1

where Ti is a 4 × 4 homogeneous transformation matrix contains the scalar joint

variables q1, q2, · · · , qi, ri is the position of the point in the reference coordinates of

the ith link. According to the knowledge of kinematics, we can get the velocity of

the point in the base coordinates as

v = dr

dt
= d(Ti ri )

dt
=

i7

j=1

∂Ti

∂qj

q̇j ri

and we can replace the upper summation limit i by n which is the total number of

links of in the manipulator as it is obvious that

∂Ti

∂qj

= 0, j > i.
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Then we can determine the kinetic energy of the point with infinitesimal mass dm

and velocity of v as

dKi =1
2vT vdm =, v =

8
vx vy vz 0

9T

=1
2trace

:
vvT

;
dm

=1
2trace

<
dTi

dt
ri ri T [dTi

dt
]T

=

=1
2

n7

j=1

n7

k=1
trace

<
∂Ti

∂qj

ri ri T [∂Ti

∂qk

]T
=

q̇j q̇kdm

Thus the total kinetic energy of link i can be given as

Ki =
!

dKi = 1
2

n7

j=1

n7

k=1
trace

<
∂Ti

∂qj

Ii[
∂Ti

∂qk

]T
=

q̇j q̇k, Ii =
!

ri ri T dm

and the detail of pseudo-inertia matrix Ii is provided in [57]. As it for the total kinetic

energy of the manipulator, we can present it as

K =
n7

i=1
Ki

=1
2

n7

i=1

n7

j=1

n7

k=1
trace

<
∂Ti

∂qj

Ii[
∂Ti

∂qk

]T
=

q̇j q̇k (5.4)

=1
2 q̇T M(q)q̇ (5.5)

where we make

q̇ =
8
q̇1 q̇2 · · · q̇n

9T

1×n

and M(q) as a n × n symmetric inertia matrix with the elements of

mjk(q) =
n7

i=max j,k

trace
<

∂Ti

∂qj

Ii[
∂Ti

∂qk

]T
=

,
∂Ti

∂qj

= 0, j > i.

With (5.5), it provides a convenient expression for kinetic energy in terms of known

quantities and the joint variable vector q. Besides, M(q) should be symmetric and

positive definite.
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For the next step, let’s determine the potential energy of a general manipulator.

For the link i with the mass mi at the center of gravity

r̄i =
8
x̄ ȳ z̄ 1

9T

in the coordinates of its frame i, the potential energy of the link can be given by

Pi = −mig
T Ti r̄i , g =

8
gx gy gz 0

9T

where g is gravity vector according to the base coordinates. For the most of cases,

we can express

g =
8
0 0 −9.81 0

9T

while the robot is operated on the earth. Therefore, we can get the total potential

energy as

P (q) = −
n7

i=1
mig

T Ti r̄i

= −
n7

i=1
gT TiIie4, e4 =

8
0 0 0 1

9T

.

(5.6)

According to (5.2),(5.5), and (5.6), we can determine

L(q, q̇) =K(q, q̇) − P (q)

=1
2 q̇T M(q)q̇ − P (q)

(5.7)

With (5.7) hold, we can also get the components of (5.1) as

∂L

∂q̇
=∂K

∂q̇
= M(q)q̇

d

dt

∂L

∂q̇
=M(q)q̈ + Ṁ(q)q̇

∂L

∂q
=∂K(q, q̇)

∂q
− ∂P (q)

∂q

(5.8)

Finally, we can express the Lagrange’s mechanics as

M(q)q̈ + V (q, q̇) + G(q) =τ

V (q, q̇) = Ṁ(q)q̇ − ∂K(q, q̇)
∂q

, G(q) =∂P (q)
∂q

(5.9)
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by substituting (5.8) into (5.1), which is the general form of manipulator dynamics

(5.3).

As it for the dynamic function in state space, we may represent (5.3) as

Newton-Euler equation
1

223
q

q̇

4

556 =

1

223
q̇

−M−1(q)(V (q, q̇) + G(q))

4

556 +

1

223
0

M−1(q)

4

556 u(t), u(t) = τ (5.10)

where τ is treated as input u(t), joint-variable vector q and its derivative q̇ is defined

as the element of system state.

We provide an example for the approach on constructing the Lagrange’s equation.

Consider a two-link planar elbow arm with the knowledge of joint variable vector and

generalized force vector

q =
8
θ1 θ2

9T

, τ =
8
τ1 τ2

9T

as it shows in the figure.

Figure 5.1: Two-link Planar Elbow Arm
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To begin with, we may build the kinematic matrices as

T1 =

1

22222222223

cos(θ1) − sin(θ1) 0 a1 cos(θ1)

sin(θ1) cos(θ1) 0 a1 sin(θ1)

0 0 1 0

0 0 0 1

4

55555555556

T2 =

1

22222222223

cos(θ1) cos(θ2) − sin(θ1) sin(θ2) 0 a1 cos(θ1) + a2 cos(θ1) cos(θ2)

sin(θ1) sin(θ2) cos(θ1) cos(θ2) 0 a1 sin(θ1) + a2 sin(θ1) sin(θ2)

0 0 1 0

0 0 0 1

4

55555555556

Assuming the mass of each link is concentrated at its ends then we may get

Ii =

1

22222222223

a2
i m

2
i 0 0 aimi

0 0 0 0

0 0 0 0

aimi 0 0 mi

4

55555555556

, i = 1, 2.

According to (5.4) (5.6), we can determine the kinetic and potential energy as

K =1
2

27

i=1

27

j=1

27

k=1
trace

<
∂Ti

∂qj

Ii[
∂Ti

∂qk

]T
=

q̇j q̇k

=1
2m1a

2
1θ̇

2
1 + 1

2m2a
2
1θ̇

2
1 + 1

2m2a
2
2(θ̇1 + θ̇2)2 + m2a1a2(θ̇2

1 + θ̇1θ̇2) cos(θ2),

P = −
n7

i=1
gT

i IiTie4, e4 =
8
0 0 0 1

9T

=m1ga1 sin(θ1) + m2ga1 sin(θ1) + m2ga2 sin(θ1 + θ2).
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Then we can get the normal form (5.3) according to (5.8) as

M(q)q̈ + V (q, q̇) + G(q) = τ

M(q) =

1

223
(m1 + m2)a2

1 + m2a
2
2 + 2m2a1a2 cos(θ2) m2a

2
2 + m2a1a2 cos(θ2)

m2a
2
2 + m2a1a2 cos(θ2) m2a

2
2

4

556

V (q, q̇) =

1

223
−m2a1a2(2θ̇1θ̇2 + θ̇2

2) sin(θ2)

m2a1a2θ̇
2
1 sin(θ2)

4

556

G(q) =

1

223
(m1 + m2)ga1 cos(θ1) + m2ga2 cos(θ1 + θ2)

m2ga2 cos(θ1 + θ2)

4

556

and the example gets finished.

5.2 Deriving An Manipulator Dynamic Model Using

EAMPC

To begin with, let us consider an manipulator model as:

M(θ)θ̈ + V (θ, θ̇) + G(θ) = τ

where θ = [θ1 θ2]T is the vector of angles, τ = [τ1 τ2]T is torque input, M(θ) is

defined as inertia matrix, V (θ, θ̇) is Coriolis/centripetal vector, and G(θ) is gravity

vector. We are going to represent the Lagrange’s mechanics (5.10) as Hamiltonian

formulation in order to linearize the input, so that the dynamic structure of EAMPC

gets satisfied. Let us define generalized momentum by

p = ∂L

∂θ̇
= M(θ)θ̇ (5.11)

so that the kinetic energy (5.5) can be expressed as

K =1
2 θ̇T M(θ)θ̇

=1
2pT M−1(θ)p

=1
2pT θ̇.

(5.12)
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Let us define the manipulator Hamiltonian as

H =K + P

=2K − (K − P )

=pT θ̇ − L

and the corresponding equations of motion should be

∂H

∂p
=θ̇ (5.13)

and

∂H

∂θ
= − ∂L

∂θ

= − d

dt

∂L

∂θ̇
+ τ

= − ṗ + τ

(5.14)

according to (5.1) and (5.11). We can also represent (5.14) as

ṗ = − ∂H

∂θ
+ τ

= − ∂(K + P )
∂θ

+ τ

= − 1
2

∂

∂θ
(pT M(q)p) − ∂P

∂θ
+ τ

= − 1
2(In

>
pT )∂M−1(θ)p

∂θ
− G(θ) + τ

(5.15)

based on (5.9) and (5.12), where G(θ) is the gravity vector and ? is the Kronecker

product. Combining (5.13) (5.16), we may get that

d

dt

1

223
θ

p

4

556 =

1

223
M−1(θ)p

−1
2(In

?
pT )∂M−1(θ)p

∂θ
− G(θ)

4

556 +

1

223
0

In

4

556 τ (5.16)

so that we obtain the system with linearize form of input.
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For specification, we have

V (θ, θ̇) =

1

223
−θ̇2m2L1lm2 sin θ2 −(θ̇2 + θ̇1)m2L1lm2 sin θ2

θ̇1m2L1lm1 sin θ2 0

4

556 ,

G(θ) =

1

223
gm1lm1 sin θ1 + gm2L1 sin θ1 + gm2lm2 sin(θ1 + θ2)

gm2lm2 sin(θ1 + θ2)

4

556

M(θ) =

1

223
m1l

2
m1 + m2(L2

1 + lm2 + 2L1lm2 cos θ2) + I1 + I2 m2(l2
m2 + L1lm2 cos θ2) + I2

m2(l2
m2 + L1lm2 cos θ2) + I2 m2l

2
m2 + I2

4

556

with the parameters show in the following table.

Table 5.1: Specification of Parameters

m1 m2 L1 L2 lm1 lm2 I1 I2
kg kg m m m m kg · m2 kg · m2

2.970 0.540 0.400 0.355 0.124 0.146 0.11175 0.00708

We use (5.16) to build the system dynamic, and our objective is deriving the

manipulator via optimized path under explicit adaptive MPC algorithm. The

simulation finished in 12 seconds with step length T = 0.1, Γ = 0.1, 2000 optimization

iterations, and 40 prediction steps in each iteration.

As we can see from Figure 5.2, the initial state of the angles is (1, −2)T , and

it converges to the origin smoothly, as well as the trajectory of the input torque.

Besides, the estimator shows a good performance on tracking f(x) in Figure 5.3. It

shows that the explicit adaptive MPC algorithm may have an excellent efficiency to

implement the practical systems.
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Figure 5.2: The Trajectory of Angles and Torque

Figure 5.3: The Trajectory of f(x) v.s σk
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5.3 Deriving An Actual Manipulator Using EAMPC

In this section, we are going to operate an actual robotic manipulator under the

EAMPC algorithm. The PincherX 100 Robot Arm is developed by Interbotix as it

shows in Figure 5.6, which featuring the DYNAMIXEL X-Series Smart Servo Motors

that may offer a high resolution of 4096 positions. And the system may provide

the data such as temperature monitoring, positional feedback, voltage levels, load,

and compliance settings. As the heart of the PincherX 100, Robotis DYNAMIXEL

U2D2 in Figure 5.4 enables easy access to DYNAMIXEL Wizard software. Finally,

PincherX 100 offers 4 degrees of freedom and a full 360 degree of rotation. It shows

the technical specifications of PincherX 100 in Table 5.2 and the default joint limits

of each servo motor in Table 5.3.

Table 5.2: Technical Specifications of PincherX 100

PincherX-100
Degrees of Freedom 4

Reach 300mm
Total Span 600mm
Accuracy 5mm

Working Payload 50g
Total Servos 5
Wrist Rotate No

Table 5.3: Default Joint Limits

Joint Min Max Servo ID(s)
Waist −180◦ 180◦ 1

Shoulder −111◦ 107◦ 2
Elbow −121◦ 92◦ 3

Wrist Angle −180◦ 180◦ 4
Gripper 30mm 74mm 5
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Figure 5.4: PincherX 100 U2D2 and Power Hub

The DYNAMIXEL servos support up to 360 degrees of rotation, making the

PincherX 100 Robot Arm has a 30cm horizontal reach from the center of the base

to the gripper with a total span of 60cm as it shows in Figure 5.5. Besides, an

advantage of the X-Series manipulator is we can design the gripper fingers for different

projects under X-Series gripper carriages. We may download the CAD files, design

the structures, and make customization via 3D print.

Figure 5.5: PincherX 100 Reach
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Figure 5.6: PincherX Technical Drawings

As a software development kit, DYNAMIXEL SDK provides DYNAMIXEL

control functions using packet communication. The API of DYNAMIXEL SDK

is designed for DYNAMIXEL actuators and DYNAMIXEL-based platforms. We

may operate the actuators under all three operating systems: Windows, Linux, and

MacOS, and it supports various programming languages such as C, C++, C#,

Python, Java, MATLAB, and LabVIEW. In this case, we can configure register

settings such as PID gains, Control Modes (position, velocity, current, or PWM)

to tune joint motions via programming languages. We may also get feedback

information such as firmware updates, diagnostics, configuration and testing, data

plotting, generating, and monitoring DYNAMIXEL packets. Finally, the libraries

of DYNAMIXEL servos may abstract away the serial communication layer allowing

developers to concentrate their time on higher-level code.
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Let us discuss the approaches to operate the PincherX 100 Robot Arm under the

EAMPC algorithm. To begin with, we are going to design the system dynamic and

corresponding control objective. The position of the links in manipulator systems

should be determined by Denavit-Hartenberg parameters, which consist of four

parameters associated with a particular convention for attaching reference frames

to the links of the manipulator, such as

T =

1

22222222223

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 I

4

55555555556

=

1

223
R P

O I

4

556

where R = [n, o, a] that presents the rotation matrix with vector n –the cosine value of

the angel between current x-axis and the three axises in ordinary coordinate system,

vector o – the cosine value of the angel between current y-axis and the three axises

in ordinary coordinate system, and vector a – the cosine value of the angel between

current z-axis and the three axises in ordinary coordinate system; P presents the

position vector which is the position should be appeared in ordinary coordinate

system; O presents the zero matrix, and I presents the proportion between the

unit length. Besides, there exist three forms of the rotation matrix as the current

coordinate system get rotated compare with ordinary coordinate system such as

Rx(θx) =

1

2222223

1 0 0

0 cos(θx) −sin(θx)

0 sin(θx) cos(θx)

4

5555556
, Ry(θy) =

1

2222223

cos(θy) 0 sin(θy)

0 1 0

−sin(θy) 0 cos(θy)

4

5555556

Rz(θz) =

1

2222223

cos(θz) −sin(θz) 0

sin(θz) cos(θz) 0

0 0 1

4

5555556
.
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Then we may determine the Denavit-Hartenberg matrix according to the

parameters of Figure 5.6 and corresponding transformation rules as

T =P1Rz(θ1)Rx(θ2)P2P3Rx(θ3)P4Rx(θ4)P4

P1 =

1

22222222223

1 0 0 0

0 1 0 0

0 0 1 89.45

0 0 0 1

4

55555555556

, P2 =

1

22222222223

1 0 0 0

0 1 0 100

0 0 1 0

0 0 0 1

4

55555555556

, P3 =

1

22222222223

1 0 0 0

0 1 0 0

0 0 1 −35

0 0 0 1

4

55555555556

P4 =

1

22222222223

1 0 0 0

0 1 0 100

0 0 1 0

0 0 0 1

4

55555555556

, Rz(θ1) =

1

22222222223

cos(θ1) −sin(θ1) 0 0

sin(θ1) cos(θ1) 0 0

0 0 1 0

0 0 0 1

4

55555555556

Rx(θ2) =

1

22222222223

1 0 0 0

0 cos(θ2) −sin(θ2) 0

0 sin(θ2) cos(θ2) 0

0 0 0 1

4

55555555556

, Rx(θ3) =

1

22222222223

1 0 0 0

0 cos(θ3) −sin(θ3) 0

0 sin(θ3) cos(θ3) 0

0 0 0 1

4

55555555556

Rx(θ4) =

1

22222222223

1 0 0 0

0 cos(θ4) −sin(θ4) 0

0 sin(θ4) cos(θ4) 0

0 0 0 1

4

55555555556

where θ1, · · · , θ4 present the rotation angle of each joint. And the position of the

gripper finger in ordinary coordinate system should be P = T ×
8
0 0 0 1

9T

. We

find that the running velocity can be expressed as

ẋ = d

dt
P.
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Then we determine the discretized system dynamic and control objective as

min J [uk|xk]

s.t. xk+1 =xk + Tsuk

xk ∈X ⊂ Rm

J [uk|xk] =
N−17

k=0
L(xk, uk) + F (xN)

where xk presents the position of the gripper finger, u is the angular velocity of

each joint, Ts = 0.1, and the constraint X = {xk ∈ R3 | x1 ∈ (−300, 300), x2 ∈

(−300, 300), x3 ∈ (54.45, 389.45)}. And the control objective is always finds the

shortest path operating the gripper finger to reach the destination.

Specifically, we have

uk = Ṗ = ∂

∂θk

P
8
±ω ±ω ±ω ±ω

9T

, θk =
8
θ1 θ2 θ3 θ4

9T

, ω = 6.28rad/s

where ω is angular velocity of each servo motor and the sign of each angular velocity

is determined according to the changing angle of each motor. Meanwhile, we also set

the rules on computing θk as

min
θk∈Θ

J [θk|uk]

s.t. uk = 1
Ts

∂

∂θk

P
8
±ω ±ω ±ω ±ω

9T

, ω = 6.28rad/s

J [uk|xk] =L(θk − θk−1)

where Θ = {θ ∈ R4| θ1 ∈ (0, 2π), θ2 ∈ (0, π), θ3 ∈ (−π, 0), θ4 ∈ (−π/2, π/2)}. In

this case, we may always find the minimum movements of each joint to reach the

destination, so that the energy on operating the manipulator get optimized.
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Figure 5.7: The Trajectory of Gripper

Figure 5.8: The Trajectory of Position and Angle
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Figure 5.9: The Trajectory of σk

Based on previous settings, we operate the PincherX 100 manipulator arm with

the code generated on Matlab. We set the step length as T = 0.75, the parameter

of discretize estimator Γ = 0.5, the prediction steps of each iteration n = 10, and

the total computation circle N = 50. Besides, we also set a threshold that the

computation gets stopped as the difference between current angles and the desired

angles less or equal to 0.0012 rad. And the actions of online computation and

manipulator operation spend 9 seconds.

As it shown in in Figure 5.7, the control objective is find the shortest path to reach

the destination for the gripper. In Figure 5.8,the trajectory of the state converge to

the reference position [35; 269.45] gently. And the rotation angle of each joint starts

to adjust the value around the target after t = 4. It shows the trajectory of the

estimation error σk shown in Figure 5.9. We may find there exists a big disturbance

to the sampling state before T = 5, which caused by the vibration from the servo

motors. And estimator provides a positive support to operate the manipulator.

In conclusion, the EAMPC algorithm shows an efficient performance to the

operation of PincherX 100 manipulator arm.
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Chapter 6

Conclusion and Future Work

This chapter intends to to emphasize the main contribution of the dissertation. The

chapter ends with explaining the works for future research.

6.1 Conclusion

This dissertation presents three algorithms for solving the MPC problems in practical

application, which may improve the optimization accuracy, control efficiency, and

computation cost.

To begin with, we present an AMPC algorithm for systems with time-varying

and state-dependent uncertainties in Chapter 2. In this algorithm, we estimate the

uncertainty using fast adaptation. With the set-valued estimation of the uncertainty

as the initial condition, we can predict the set-valued measurement of uncertainty over

the prediction horizon at each computation cycle. Based on the prediction, a min-max

finite-horizon optimization problem is solved for the control input. We show that

the proposed adaptive uncertainty estimator can ensure uniform boundedness of the

estimation error, and the derived uniform bound can be arbitrarily small by increasing

the sampling rate in adaptation. Furthermore, the uncertainty is guaranteed to stay

inside the predicted feasible sets, which can be much tighter than the traditional

min-max MPC approach. It, therefore, allows the proposed AMPC to achieve better

control performance. We show that if the uncertainty and its first derivatives are local

Lipschitz, the stability of the system under AMPC can always be guaranteed under
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standard assumptions for min-max MPC approaches. Simulation results show that

the control performance can be improved by the proposed AMPC scheme remarkably,

comparing with the traditional min-max approach.

Secondly, we introduce a sporadic MPC algorithm for nonlinear continuous-time

systems based on Lebesgue approximation in Chapter 3. The sampling is triggered

by a self-triggering method, and the model is discretized in an aperiodic manner.

The basic idea of the Lebesgue approximation model (LAM) in this chapter is to

calculate the state and the period at the same time when a linear approximation

of state meets a threshold function. With such an aperiodic model, the predicted

horizon gets enlarged comparing with periodic models if we set the same prediction

iterations.

Besides, we investigate an explicit adaptive MPC(EAMPC) algorithm for

nonlinear continuous-time systems in Chapter 4. We develop an adaptive

discrete-time estimator to approximate the discretization error over the prediction

horizon with bounded estimation error. Accordingly, the finite-horizon optimal

control problem (FHOCP) is formulated discretely with the linearized system model.

And multi-parametric programming is applied in each prediction routine to find

the explicit solution of FHOCP subject to state and estimated uncertainty. In this

case, online computation is mainly for function evaluation based on multi-parametric

programming, and it can save computation costs dynamically. Given the resulting

closed-loop system with mixed continuous/discrete-time behaviors, we derive

sufficient conditions on the feasibility of the proposed EAMPC and show the system

is uniformly ultimately bounded under the proposed algorithm.

Finally, we apply the EAMPC algorithm to manipulator models to study its

efficiency to operate practical systems. We provide the approach to build the

mathematical model of robotic manipulators and set corresponding control objectives

under the EAMPC algorithm. We introduce knowledge such as Lagrange’s mechanics,
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Hamiltonian formulation, and Denavit-Hartenberg parameters. In conclusion, the

performance of such models is efficient under the EAMPC algorithm.

6.2 Future Work

For the future work, we consider a general framework for the co-design of discrete-time

MPC law and the associated scheduling schemes, where the discrete-time model

used in MPC approximates the behavior of the plant with state-dependent sampling

periods. We are going to study the stability of sampled-data systems controlled

by discrete-time model predictive control (MPC) algorithms. Sufficient conditions

are derived to guarantee uniform ultimate boundedness of the resulting closed-loop

system. The results can be applied to most existing model approximation methods

with either fixed or time-varying sampling rates.

We are going to relax the assumption of first-order approximation and considers

a more general framework of discrete time MPC for continuous-time systems

that is suitable to various approximation models with either time-triggered or

event/self-triggered scheduling schemes. The discrete-time model used in MPC can

approximate the behavior of the plant with state-dependent sampling periods. The

allowable model approximation error is also state-dependent and therefore admits a

tighter error bound in MPC framework, compared with the error bound related to

period only.

Another research topic mainly focuses on deriving the system and taking

advantage of explicit model predictive control, which may pre-solve the optimization

problems offline and save online computation. We are going to apply a sporadic time

manner to the original system as well as the structure of the explicit computation.

We may follow the rules to design the aperiodic time manner based on the content of

Chapter 3. Most importantly, it may overcome the limitation of the original system,

such as the form of the system input in Chapter 4. Finally, the stability should
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get satisfied by following the basic requirements of event/self-triggered scheduling

schemes, and computation steps admit the standard explicit model predictive control

procedure.

A variety of research on nonlinear model predictive control (NMPC) has been

derived. Most schemes assume that the full state information can be obtained entirely.

Nevertheless, the condition may not easily achieve in practice. In this case, it is

important to study the approaches to estimate the system states except sampling from

the plant directly. As shown in recent works, the strategy of combining sampled-data

NMPC for continuous-time systems with high-gain observers may overcome this

problem.

According to current research, this technique may estimate the output robustly

and ensure a fast convergence of the overall system. Moreover, it has shown

the high-gain observer can recover the system performance completely under a

sufficiently observer gain and a bounded controller. However, it is also known that

the measurement noise may have a significant impact on the stability of the system,

through the current research shows the good robust performance when uncertainty

and disturbances. One purpose of our future work on NMPC is to construct a

high-gain observer that takes the form of a piecewise linear function and achieves a

fast state estimation. We are going to design an adaptive control scheme based on a

high-gain observer, which may overcome the impact of measurement noise adaptively.

Meanwhile, the high-gain observer may be discretized via the Lebesgue approximation

so that the computation cost gets saved under the discrete-time model. Furthermore,

we may apply the explicit model predictive control strategy to reduce the computation

time on solving the optimization problem.
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