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Abstract 

 

This dissertation studies how models become useful for scientific inquiry. 

Towards this study, I develop a theory on the cross-discipline transfer of 

mathematical models. The first part of this theory characterizes the way in which 

scientists must respond to the constraints in making a transferable model 

useable in their discipline. I invent the notion of a landing zone to identify the 

aspects of their domain that scientists prepare for the use of a transferrable 

model. The second part connects this response-to-constraints to cases of 

conceptual progress resulting from model transfer in biology and chemistry. The 

last part of this dissertation characterizes scientific inquiry as problem solving, 

where I invent a framework for identifying how scientists use models to frame 

problems so that they are easier to solve.  
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Chapter 1: Introducing Model Transfer as a Doorway 

This dissertation uses the scientific activity of model transfer as a doorway 

into a novel perspective on issues to do with modeling in science. Through 

characterizing how model transfer works, this dissertation provides an approach 

to understanding more generally what models do in science. Model transfer itself 

is an interesting puzzle; it seems peculiar that a concrete scientific representation 

like a model can target some scientific phenomena, can be used by scientists to 

study these phenomena, and then can represent something in a domain that 

studies completely different kinds of phenomena. One understanding would be 

that differences are only surface level and the phenomena of separate disciplines 

in fact share some essential connection. However, it does not seem to be the 

case that scientists understand this connection in this way, or at least their work 

indicates otherwise. In the cases I examine, scientists often fit these transferrable 

models, and the phenomena they target, into much different inquiries. Model 

transfer is also conceptually disruptive, producing tension and debate about 

foundational concepts similar to the tensions described by Thomas Kuhn taking 

place with scientific revolutions (Kuhn 1962). Whatever the connection between 

domains that allows for model transfer, there seem to be some interesting and 

messy details in the actual practice of transfer; details that provoke thoughtful 
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theorizing by scientists. I argue this interesting mess applies more generally to 

the use of models in science. We can learn about how scientific domains work 

conceptually, how models contribute to scientific aims, and how to understand 

the epistemic value of models through attending to model transfer.  

Scientific domains are complicated. For a model to be transferable, 

scientists must disentangle it from its myriad connections to the phenomena and 

to the theory of its original domain, and then re-entangle it with the new domain. 

This process recalls the boggling complexity of attaching a transplanted organ, 

with numerous sorts of networks, blood vessels, nerve fibers and tissue, needing 

work for a functional re-attaching. In scientific domains, there exist various levels 

to which scientists need to reattach the model: the level in which scientists work 

towards solving problems with its phenomena, experiments and labs, as well as 

the theoretical and conceptual level where the meaning of scientific language 

gets determined, and where scientists imbue the characters in their story telling 

with meaning. 

My dissertation explores the dimension of model transfer to do with 

grafting the transplantable model. Theorists have had less to say about this 

process of de-abstracting/de-idealizing — the scientific practice most analogous 

to grafting the organ back in the body. Accounts of model transfer so far focus on 

characterizing the process of abstracting a model (what, above, I call 

‘disentangling’), i.e. making a model transferrable (Humphreys 2002 and 2004, 

Knuuttila and Loettgers 2014). Abstraction may be more straightforward to 

understand, especially for those trained in analytic philosophy. Abstraction is a 
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process of conceptual subtraction. For example, in formal logic we subtract the 

features of a proposition by replacing natural language words and grammar with 

symbols. Rendering a model generic through abstraction similarly involves 

removing or altering assumptions that are descriptive of domain-specific 

phenomena while keeping syntactic features intact. After the surgeon separates 

the organ, the surgeon must restore its capacity to function (or be useable by the 

body) when placed back in a context rendered similar-enough. The result of 

transfer is a model that scientists can use to represent phenomena that are 

similar yet different from the model’s original use.  

In developing a theory of model transfer what must we pay attention to? 

So far, the answer is: abstraction and the product of this abstraction — the 

transferrable core of models. The underlying assumption is that once we have 

understood what makes a model generic enough to transfer, we understand how 

it can apply across disciplinary lines. On what grounds is it scientifically 

reasonable to then use an abstractable-enough-to-transfer model to study 

different types of phenomena? The first part of my dissertation motivates the idea 

that these grounds cannot only be the process that renders the model generic, or 

the property of the model being generic. To provide an account of transfer we 

must pay attention to the interaction between generic (mostly mathematical) 

factors in constructing models and the world which scientists work within. 

Otherwise, an account of model transfer does not do justice to how scientists 

achieve transfer.  
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There is some history in approaching philosophy of science with an eye to 

formal structures first — mathematical and metamathematical. The largest such 

operations were the syntactic and semantic views of theories. My dissertation 

takes a lesson from the pragmatic turn in these understandings of scientific 

theory structure and applies it to understanding model transfer. One commonly 

cited problem with the semantic conception of models, for instance, is that it does 

not do justice to how scientists work with models. Seeing models as an entirely 

theory-derived, mathematical constructs does not account for how scientists 

achieve their aims in using models. In scientific practice, highly abstract 

‘theoretical’ models rarely represent any observable system. Entirely theory-

derived models end up representing highly idealized situations that do not obtain 

in the observable world.  As the story goes, if we pay attention to how scientists 

construct models and how they use models, we realize that an account of 

modelling must pay attention to the interaction between different ‘levels’ in 

scientific domains — phenomena and theory for instance — to understand model 

construction and model use (Morgan and Morrison 1999). My dissertation takes 

this same general lesson about the turn in discussion about models from the 

semantic view to models as mediators, and applies it to discussion about model 

transfer. In my next chapter, I introduce the concept of the landing zone, to 

identify the interaction between the theoretical and practical levels in achieving 

model transfer. 

Cartwright’s (1983) description of theory entry highlights the part of 

modelling to which my investigations of model transfer draw further attention. 
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Theory entry here refers to the activity of scientists preparing descriptions of 

phenomena — facts — so that this description may be brought ‘under’ theory. 

Cartwright counts the preparing of these descriptions as preparing phenomena to 

meet the needs of theory. Meeting the needs of a theory includes preparing 

phenomena to meet the needs of the mathematics of a theory — i.e. its 

equations. The idea of preparing phenomena to meet the needs of mathematics 

is one that I draw upon to motivate analyzing what scientists do to make model 

transfer possible. For Cartwright, the fundamental mathematical laws of physics 

do not describe any objects in reality. Therefore, under her picture of scientific 

modeling, physicists must render fundamental laws into mathematical 

descriptions that ‘get the job done’. In order to decide on what form a 

mathematical law will take scientists must ‘...present the phenomenon in a way 

that will bring it into the theory’ (Cartwright 1983, p. 133). This “presentation”, as 

she calls it, is theory entry. Scientists prepare descriptions that allow them to 

know, for instance, what boundary conditions they can use, what approximation 

procedures are valid etc. An example she uses is of the Hamiltonian in quantum 

mechanics. The Schrödinger equation tells us how a quantum system evolves 

subject to a Hamiltonian; hence, to model a quantum system, one must know 

how to pick the Hamiltonian. Cartwright argues that when a physics student 

learns quantum mechanics, they are not just learning ‘the theory’; more 

importantly, they learn skills about how to make the theory useable, one of which 

is how to choose the correct model Hamiltonian. This choice depends on how 

one wants to set the stage for modelling, and other scientific activities. For 
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instance, the choice can depend on whether the ‘particle in a box’ Hamiltonian, 

linear harmonic oscillator, or coulomb potential offer more useful modes of theory 

entry. Deciding how to prepare the phenomena is an activity that has more to do 

with practical rules. Some of these rules are constraints on applicability imposed 

by theory — we need equations to be solvable and this constraint dictates which, 

for instance, Hamiltonian we use — some are rules of thumb learned through lab 

work or rules to do with norms of communication that make collaboration 

possible. Pragmatic considerations are necessary to make scientific work on 

phenomena using the theoretical laws of physics possible.  

A similar sort of choice takes place in physical chemistry, where to use 

models from physics, pragmatic standards guide the fitting of abstract, theoretical 

mathematics to the phenomena, and preparing the phenomena to be the target 

of a transferable model. This modelling in physical chemistry is the focus of the 

next two chapters of my dissertation, where I use this history to build a case 

study to support my account of model transfer. 

In my second chapter, I discuss how there exists a sort of scientific activity 

that seems to be the locus of theorizing with model transfer. This type of 

decision-making is analogous to what Cartwright means by theory-entry. It 

involves choices made in order to present the phenomena in a way that makes 

the phenomena modellable by a transferrable model. An example from 

Cartwright (and one applicable to quantum chemistry) would be the detailing of 

how a target system is ‘like’ a particle in a box when using a ‘particle-in-box’ 

Hamiltonian with a Schrödinger equation. I call this sort of a detailing a ‘landing 
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zone’ in my first chapter. It is a thing to which transferrable model templates 

apply. I use two accounts of model transfer to set the stage for introducing 

landing zones: Knuutilla’s (2011 and 2013) concept of a model template and 

Humphrey’s (2002, 2004) concept of a computational template. These accounts 

are the foundation for my identification of the transferrable thing in model 

transfer. Although I agree with Knuutilla that conceptual features of model 

templates contribute significantly to scientific theorizing, just an account of model 

templates does not exhaust the scientific theorizing to do with model transfer. 

My second chapter takes the concept I develop in the first chapter and 

uses it to characterize the impact that these practical considerations in preparing 

phenomena have on the theoretical level of scientific domains. I call this impact 

‘conceptual progress’. An upshot of attending to conceptual progress resulting 

from model transfer is that it offers a novel direction from which to approach 

puzzles in philosophy of science to do with interdisciplinarity and intertheoretical 

reduction. 

A theory of model transfer promises to be an interesting analytic tool for 

approaching other puzzles in philosophy of science. My second chapter 

discusses one such puzzle about the connection between reduction and scientific 

concepts. The puzzle goes like this. Much of the modelling in chemistry uses 

mathematics transferred from physics. However, there exists tension between 

chemical and physical conceptions of phenomena for modelling. Roughly 

speaking, since the empirical concepts do not travel with the mathematics, there 

exists a puzzle about what determines the chemist’s conceptualization of 
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phenomenon. In philosophy of chemistry, a classic question regarding the 

relationship between chemistry and physics at the theoretical level is about inter-

theoretic reduction (Scerri 2007, Hendry 2010, Gonzalez, Fortin, Lombardi 2018).  

An idea in this discussion is that the meaning of chemical concepts could be 

‘traced back’ to physics concepts if it were the case there was a strong inter-

theory link like reduction. However, a chemist's conception of phenomena like 

bonding is not straightforwardly reducible according to dominant literature in 

philosophy of chemistry. Molecular orbitals, valence bonds, resonance, Pauli 

forces are just some examples of notions central to mathematical modelling in 

chemistry that confound inter-theoretic reduction.  This leaves a question: where 

do these scientific concepts come from? 

To answer this question, I examine the preparation that modelers make in 

order to transfer model templates. Modelers prepare phenomena by inventing 

new categories, or altering the meaning of current categories, in their domain as 

a response to the requirements of the model template’s mathematics. Bader’s 

topological atom is an example of an alteration to the category ‘atom’. To 

characterize this preparation, I examine the assumptions these modelers make 

when using a model template, and debates about description of phenomena that 

take place surrounding these assumptions, to characterize how model transfer 

impacts conceptual progress. These impacts result in mini-paradigm shift like 

changes in the way that scientists view the world they work within. I argue this is 

because in order to make a model useful scientists must engage in a creative, 

intellectual pursuit, inventing new sorts of things. In the second chapter, I 
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compare the use of the virial theorem in chemistry brought about by the invention 

of the ‘topological atom’ and the use of the ideal gas law in ecology brought 

about by the invention of idealized populations. Both inventions resulted in 

debate over the conception of discipline-specific phenomena that I analyze as 

resulting from conceptual progress. Paying attention to these inventions to make 

model transfer possible locates a mechanism for the invention of scientific 

concepts, the mechanism that makes chemical concepts not straightforwardly 

reducible physical concepts.  

My third chapter presents a positive framework accounting for the 

epistemic workings of transferable models, and modelling in general. This 

framework uses cognitive science theory on problem solving. Seeing model 

transfer through the lens of problem solving helps us to understand the activities 

that makes transfer possible, and how these models hold epistemic value for the 

investigations they see use within. Broadly, in the cognitive science literature, the 

activity of problem solving is split between two types of action, framing and 

searching. Mathematical models see use in scientific efforts to frame 

investigations and models hold value if this framing makes possible the use of 

heuristics in a search for the solution to problem. 

Framing is the activity wherein problem solvers decide which aspects of 

the task environment are salient to solving the problem. Broadly, framing is the 

activity where scientists conceptualize the problem by determining what 

information is relevant to track and structuring the search around this information. 

Scientific models give scientists ways to organize and structure information 
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towards this end. Scientists may use model transfer to shake up (or reframe) an 

investigation that they see as spinning its wheels, or in need of a new 

perspective. In a scientific investigation, altering or reframing the problem will 

involve bringing in different sorts of mathematical tools for modelers to use from 

an outside source in the same way an everyday problem solver might bring new 

tools to bear on an intractable problem. 



11 
 

Chapter 2: The Landing Zone 

1 — Discussion 

Why are some scientific models especially transferable, seeing uses in 

domains much different from the one where they originate? There exists a short 

history of discussion concerning this question. In Extending Ourselves, Paul 

Humphreys draws up a unit of analysis for the invention and deployment of 

tractable mathematics - computational templates (Humphreys 2004). According 

to Humphreys, models are transferable if they have computational templates at 

their core. Tarja Knuuttila and Andrea Loettgers offer some modifications to 

Humphreys’ analysis in two papers  (Knuuttila and Loettgers 2011, 2014), 

arguing that there are also conceptual features of models that factor into the 

spread (transfer) of certain mathematical models. Both accounts of model 

transfer work towards a depiction of progress in the sciences as constituted by, in 

part, the redeployment of models in new domains. My contribution to this 

depiction is a new notion - the landing zone - a target system that makes 

possible the use of transferable mathematics in a new domain. 

Two aspects of scientific modeling motivate Humphreys’ analysis of model 

transfer. First, as Humphreys sees it, progress in the sciences largely involves a 

drive towards tractable application of mathematics: “Whenever you have a 
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sudden increase in usable mathematics, there will be a sudden, concomitant 

increase in scientific progress in the area affected” (Humphreys 2004, pp. 55). A 

drive towards tractability results in the spread of computational techniques across 

scientific domains. Therefore, an account of the dissemination of computational 

techniques that highlights the role of mathematical tractability ought to provide us 

with a new vector for depicting scientific progress. The story of model transfer is 

thus also a story about the advancement of the sciences. In analyzing model 

transfer, we may gain insight into the rationality of scientific progress. 

Additionally, scientific models are, of course, insofar as they are 

mathematical, limited to the available mathematics. For instance, Newtonian 

models of the solar system employed calculus, and before them, the Ptolemaic 

models of the solar system employed the geometry of epicycles. Newton’s 

invention of calculus drove development in modeling the solar system by 

providing usable methods for calculating planetary motion in celestial mechanics. 

Humphreys argues that in analyzing the invention and transfer of these 

mathematically tractable parts of models, we come to a novel perspective on how 

certain methodologies and modeling practices such as those found in Newton’s 

celestial mechanics become available. 

Analysis of the invention and deployment of tractable mathematics 

requires a unit of analysis, some thing that is the fundamental object of 

investigation. Accounts of scientific progress have typically invented such units of 

analysis - paradigms, research programs, theories. Humphreys invents the 

computational template. A computational template is a generalizable and 
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tractable equation, function, or computational method. Transferable models have 

computational templates at their core. Humphreys thinks, similar to the inventors 

of these other units of analysis, that we can make a cogent categorization of the 

sciences based on dominant computational templates. For instance, percolation 

theory, a way to describe the behavior of networks —clustering of nodes — sees 

use in a preponderance of models across domains. As a computational method, 

it makes possible the application of mathematics towards representing 

“phenomena as varied as the spread of fungal infections in orchards, the spread 

of forest fires, the synchronization of firefly flashing, and ferromagnetism” 

(Humphreys 2004, pp. 70). The invention and deployment of percolation theory 

as a computational template constitutes notable progress in the study of these 

phenomena. 

Computational templates that see as wide of dissemination as percolation 

theory are rare yet influential. A computational template can be an equation, 

function or a computational method like percolation theory. According to 

Humphreys, computational templates are transferable because they are tractable 

and generalizable, features they owe to having a particular syntactic form. For 

instance, common to all uses of percolation theory is a function that describes 

the system state - the state of being ‘magnetic’ for the Ising model or the state of 

being ‘infected’ for fungal growth models. This state function’s syntactic form, the 

relationship between variables, is invariant between applications, thus 

generalizable and transferable. 

Knuuttila and Loettgers’ ‘model templates’ constitute a second approach to 
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identifying the factors important to explaining model transfer, building on 

Humphrey’s notion of a computational template. According to them, the analysis 

of syntactic form and the computational tractability that it affords does not 

exhaust the factors involved in model transfer. They write that model transfer 

“cannot be accounted for by tractability alone. In [the Ising model’s] case, apart 

from mathematical forms and methods, a very general conceptual idea of the 

kind of mechanism of interaction involved was also transferred” (Knuuttila and 

Loettgers 2014, pp. 297). Model templates, they argue, facilitate the transference 

of models because they sensitize us to patterns shared by a variety of empirical 

systems. Their notion of a model template captures the “intertwinement of a 

mathematical structure and associated computational tools with theoretical 

concepts that, taken together, depict a general mechanism that is potentially 

applicable to any subject or field displaying particular patterns of interaction” 

(Knuuttila and Loettgers 2014, pp. 295). Thus, both computational and 

conceptual features of a particular mathematical tool contribute to its transfer. 

Futhermore, even though they characterize the Ising model template as being 

about a ‘mechanism’, the general conceptual idea at the heart of a model 

template does not need to be an idea about causal structure (Knuuttila and 

Loettgers 2016). They mention that ideas about, for instance, cooperative 

phenomena, have ‘explanatory universality’ just within physics due to 

mathematical explanation — instead of causal.  

 In this chapter, I will refer to the transferable mathematical core of a model 

as Knuuttila and Loettgers’ ‘model template’ - an “abstract conceptual idea 
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embedded into a mathematical form or method”.  For the Ising model template 

that they discuss, these abstract conceptual ideas are “critical point phenomena”, 

“phase transitions”, and “equilibrium states” and they constitute a “conceptual 

framework that cannot be detached” from the model template (Knuuttila and 

Loettgers 2014, pp. 298). They are ideas concerning the existence of types of 

things. Since they constitute a “conceptual framework that cannot be detached 

from the model”, for the Ising model template mathematics to be usable, critical 

point phenomena, phase transitions and equilibrium states must be assumed to 

exist. 

Knuuttila and Loettgers’ addition to this discussion highlights the 

conceptual features in model transfer. Since model templates are mathematics 

embedded with concepts about mechanisms and types of systems/objects, they 

carry with them ontological commitments. These conceptual features of 

templates factor in the construction of models to the extent that the target 

phenomena must be compatible with the model template’s ontological 

commitments. To characterize this preparatory activity, I propose a 

complementary notion to that of a model template for discussion on model 

transfer, the ‘landing zone’. As an addition to analyzing the thing transferred, this 

notion of a landing zone contributes towards analysis of the things to which 

templates may be applied. Model templates are not simply applied to a system, 

but a specifically prepared target. Broadly defined, a landing zone is a model’s 

target system. It has two characteristic functional roles. First, it functions as the 

target for mathematical description for a model. Additionally, it functions to make 
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possible the use of transferable mathematics. Modelers design a landing zone to 

fulfil requirements for the use of a transferable model template. These two 

functional roles are definitive of a landing zone. Identifying features of scientific 

modelling that function as a landing zone complements discussion surrounding 

model transfer. 

 There are two motivations for further analysis of these features in 

modelling that I call landing zones. First, adding this notion to current accounts of 

model transfer identifies the ontological features of a target system that make 

possible the use of transferable templates. Second, it enables accounts of 

transfer to depict scientific decision making by providing a unit for analysis of 

salient features in the target system that are prerequisite for the use of 

transferable mathematics. A significant part of progress in model building is not 

only the invention of usable mathematics, but also the construction of a model 

(including, at least to some degree, its ontology) in a manner that makes model 

templates useable. This ontology, if the model transfer is successful, often 

becomes a prominent feature in a domain’s modeling practice, as the case I 

introduce later in this chapter illustrates.   

This appearance of a new sort of ontology also took place with the transfer 

of the Ising model template to neuroscience. The Ising model template’s 

computational methods make modelling cooperative phenomena tractable. The 

model represents ferromagnetic materials as a lattice of nodes where each node 

has two states, spin up or spin down. The model thus contains a mathematical 

function that assigns a probability of realizing an ensemble of states. For 
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ferromagnetics, this is a function of temperature. Each node has an interaction 

with its neighbour; physicists specify this interaction as a constant in the state 

function which varies depending on the material modelled. In the typical two 

dimensional Ising model, each node interacts with four neighbors. The Ising 

model takes this mathematical description of the possible ensemble of 

microstates and uses a partition function along with a state function to describe 

the overall macro state of the system, its energy typically. For these mathematics 

to be useable —tractable —, scientists must prepare the phenomena. 

The transfer of this Ising model template required neuro-scientists to 

prepare a similar description of neurons. One difficulty is that neurons are quite 

different from the ‘atoms’ in an Ising model system in many ways. For one, 

neurons in a biological network are not binary. Their interactions are chemical 

and electrical, and these chemical and electrical states vary continuously For 

instance, the neurons in a human brain interact by releasing neurotransmitters. 

The release of neurotransmitters depends on the action potential - a measure of 

the voltage of a neuron. There are a multitude of possible input and outputs for 

each neuron that affect the action potential, and action potentials can take on a 

continuous range of possible voltages. This myriad of possible values makes it 

so that neurons, unmodified, do not exhibit the sort of simple, cooperative 

interactions that make possible the application of the Ising model template. As 

described, this target system is thus not a suitable home. 

  So, in part, the notion of cooperative mechanisms embedded in the Ising 

model template makes neural networks a potentially relevant site for application. 
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However, there are important preparatory conditions for the use of this template 

in neuroscience as part of the Hopfield model — a model of memory in 

neuroscience that Knuuttila and Loettgers study in their article on model 

templates (2014). The conceptual and computational features of a model 

template by themselves do not completely depict the factors in this case of model 

transfer. For instance, in order to apply the template at the core of the Ising 

model as a representation of neural networks in the Hopfield model, there needs 

to be some feature invented as the target for description by the Hopfield model 

that makes possible the representation of neurons as binary- "[neurons] are 

rendered binary by introducing a threshold: if the summed up signals exceed a 

threshold, the neuron fires an action potential and goes over into a quiet state. 

The model neuron σ takes the value 1 in case it is active, and the value 0 if it is 

inactive" (Knuuttila and Loettgers 2014, pp. 293). This 'binary neuron’ that exists 

in neither the domain of neurobiology nor the Ising model template is part of the 

landing zone, the lattice of neurons. It is a landing zone that Hopfield prepares by 

specifying the ‘simple cooperating phenomena’ as neurons with action potentials. 

The landing zone, along with the binary neuron, functions as a target for 

description by the Ising model template’s state function by instantiating a 

necessary property - binaryness. This property makes possible the description of 

neurons as simple cooperating phenomena, thus functioning to make possible 

transfer of the Ising model template. The Hopfield model’s target system is 

ontologically compatible with the Ising model template because it claims the 

same sorts of things exist. A similar mechanism, handshaking, is identified by 
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Bursten for the ontological compatibility of multiscale models (Bursten 2018). The 

ontological compatibility functioning of the landing zone is made possible by an 

ontological claim about the sort of thing that the model represents. In this case it 

is a claim that neurons are discreet. Much like how the Ising model template 

consists of mathematical methods embedded with concepts about what exists, 

target systems that function as landing zones provide an ontology built into a 

mathematical method. To be more specific, the landing zone provides an 

ontology in that the properties that the target system features instantiate are an 

answer to the question ‘what exists?’ In the Hopfield model’s case, since Hopfield 

describes the binary neuron as having two values, this answer is “binary 

phenomena”. 

Adding the notion of a landing zone to this discussion makes salient an 

important and potentially interesting factor in model transfer that neither previous 

account covers. To demonstrate that the notion of a landing zone is an important 

addition to the discussion on model transfer, I provide a case study on a model in 

chemistry constructed from two model templates. This model is the Quantum 

Theory of Atoms in Molecules (QTAIM) and the transferrable templates it uses 

are the virial theorem and density functional theory (DFT). First, I will be 

examining QTAIM’s use of the virial theorem as a technique to make calculating 

kinetic energy tractable. The virial theorem is a model template and as such 

requires a target system to have an appropriate landing zone, an ontology that 

manifests features that make the template applicable.  QTAIM uses the virial 

theorem as a computational method for making the calculation of kinetic energy 
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from electron density tractable.  It has a well-known conceptual condition for its 

use as a technique that the landing zone of QTAIM satisfies, namely, that the 

system it describes be bounded and in equilibrium. QTAIM’s landing zone, the 

topological atom, instantiates these properties, thus satisfying conditions for the 

use of the virial theorem. QTAIM also uses density functional theory as a 

computational method for rendering the quantum-mechanical description of 

atoms and molecules mathematically tractable.  Again, there are ontological 

prerequisites for the application of DFT that the topological atom satisfies. 

Specifically, the topological atom provides a form to electron density that affords 

description of chemical properties in three dimensions. 

2 — Using Physics in Chemistry 

The problem with using mathematics from physics (for example, quantum 

mechanics) to describe chemical phenomena is that the mathematics is mostly 

intractable in this domain. Consider describing the state of a molecule - the 

‘position’ of nuclei and electrons, and the potential and kinetic energies of these 

particles. There exists mathematics in physics used to describe the state of these 

same entities, the Schrödinger equation. It may seem that transfer of this 

mathematics to chemistry in describing the same features ought to be 

straightforward. However, molecules involve many more particles and a higher 

degree of complexity in their interactions than an individual atom. Even for the 

simple molecules, an oxygen-oxygen molecule for instance, a completely 

‘physics-based’ computational approach is impossible. One could characterize 
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the history of modeling in 20th-century chemistry as progress towards inventing 

modifications of the Schrödinger equation that make its application possible. 

Along with this computational challenge comes conceptual difficulties. 

How does a chemist make these mathematical modifications meaningful? It is 

not enough to draw up constraints and approximations. There exist different 

features in chemistry that these modified mathematics must describe while also 

avoiding unnecessary mathematical description of features that are not of 

interest to the chemist - the interactions within a nucleus for example. To make 

such modifications meaningful and rational, as in having good reasons for 

constraints and approximations, requires chemists to make some claim about 

what exists.   

For example, a classical application of physics in chemistry is the 

description of ‘bond energy’. All bonding involves a lowering of the kinetic energy 

of a system. A modeler in chemistry will want to try to predict or describe the 

energetics of bonding - the reduction of kinetic energy for instance. To modify 

math from physics for this purpose requires a complete overhaul of the 

Schrödinger equation to solve chemical ‘wave functions’ - functions describing 

the states of bonding electrons. To specify these modifications requires some 

notion of what the new computational methods are about.  

The chemical bond does not exist as an entity of concern for physics. So 

in transferring mathematics to describe bonding, a chemist will have to determine 

not only what modifications to make to the mathematics, but also how these 

modifications relate to the entities modelled. For instance, one of the first 
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methods invented to make quantum chemistry tractable, introduced by Linus 

Pauling, involved valence bond wave functions. Pauling eliminated spherical 

coordinates from quantum mechanical calculations, leaving only the angular 

component, making calculations derived from a Schrödinger equation tractable 

(Pauling 1960). Pauling’s method required plugging in what chemists knew about 

bond angles for a molecule rather than leaving them as something to be 

calculated. These modifications required some thing to be hypostatized as that 

which the mathematics describes. Thus, Pauling invented the notion of a valence 

bond, providing cogency to his approximation of the Schrödinger equation. 

Drawing up the valence bond also involved making substantive claims about the 

nature of chemical bonds - that they were ‘directional’ or instance. So, the 

problem for chemists in transfering mathematics from physics is to not only 

invent tractable deployment, but also to prepare notions making this deployment 

meaningful.  

Consider the seemingly uncontroversial notion that atoms exist in 

molecules. This ontology consists of two claims about the relation between 

molecules and atoms. These claims are that (a) atoms occur as separate 

entities, preserved in molecules, and (b) that interactions between these atoms 

contribute to the structure and properties of the molecule.  

“To retrieve [atoms in molecules] from accurate quantum mechanical 

wave functions presents a nontrivial challenge because, in fact, chemical 

binding results from electrons being shared between several atoms. To 

recover and identify atoms in an electronic wave function requires 

therefore a transformation of its representation in such a way that the 

wave function becomes constructed from subunits that exhibit atomic 

character” (Schmidt et al 2014, pp. 10). 
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This difficulty in choosing the most appropriate transformation of the wave 

function has shaped the transfer of physics to chemistry. Notions like resonance, 

valence bonds, and molecular orbitals guided these choices. An account of 

progress in quantum chemistry must inevitably connect these conceptual 

developments to transfer of mathematics. To follow is a brief history on these 

developments in modeling the chemical bond.  

Since the development of the Heitler-London linear combination of atomic 

orbitals (LCAO) approach, applying quantum mechanics to chemistry has seen 

successive developments in making use of the Schrödinger equation less 

complex and more accurate. The twin developments of the valence bond (VB) 

approach by Pauling and Slater, and the molecular orbital (MO) approach by 

Mulliken and Hund, simplified mathematical description of chemical properties 

while making fundamentally different claims about the existence of bonds. They 

differ over what Weisberg and Hendry call the “structural conception of bonding” 

(Weisberg, Hendry 2008). The valence bond approach involved picking out one 

electron from each bonding atom and constructing a wave function that 

represents a localized, paired-electron bond. This LCAO method is based on the 

hypothesis that bonding is localized (Brush 1999) — by ‘localized’ I mean that 

there is an area positioned with respect to other features of the molecule that the 

method/model assumes the bonding electrons to likely be. Characteristic of 

valence bond models is the covalent bond, a directional, sub-molecular 
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relationship between individual atomic centers that is responsible for holding the 

atoms together (Weisberg 2008).  

That the chemical bond is structurally defined and localized is a 

fundamental ontological claim in VB modelling methods. Concepts like 

resonance, and the structural conception of local, inter-atomic bonding, guide the 

interpretation of wave functions to make them a tractable description of chemical 

information. VB methods, informed by this ontology, approximate the molecular 

wave function using atomic wave functions in appropriate valence states. Values 

such as bond energy result from quantum mechanical resonance interaction 

between patterns of spin arrangements (Hiberty and Shaik 2014). Thus, the 

existence of a localized valence bond concept guides the transformation of the 

wave function from describing atoms to tractably describing chemical bonds 

between atoms. 

Molecular orbital methods contrast with this approach by representing 

chemical bonds as delocalized. Contrary to VB approaches, these models 

distribute electrons throughout the entire molecule. Instead of considering 

electrons as either bonding or nonbonding, MO methods assign a continuously 

varying bonding power to all electrons in the molecule (Gavroglu and Simoes 

2011). Chemists characterize molecular orbitals as bonding, nonbonding, or anti-

bonding depending on their contribution to the overall bond order — number of 

bonds — in the molecule. This contrasts with VB’s method of establishing a 

“symmetric” relationship in the position coordinates and an antisymmetric relation 

in the spin-coordinates between two electrons (Gavroglu and Simoes 2011). The 
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delocalized bond forms a basis whereby the MO approach develops approximate 

wave functions. MO theory is not constrained by representing bonds as 

directional and local because these sorts of bonds do not exist in the model 

systems of MO approaches. A delocalized bond ontology justifies different 

methods, for instance, developing a scheme to assign quantum numbers to 

electrons in molecules based on molecular spectroscopy data (Brush 1999). The 

delocalized perspective also allows for the mixing of ionic terms in the calculation 

of the molecular wave function (Weisberg 2008). These steps are given meaning 

by the implicit claim that molecular orbitals exist within the target systems of MO 

theory. Molecular orbital ontology provides a basis for interpretation of quantum 

mechanics in chemistry. For instance, it enables experimental data - molecular 

spectroscopy —  to count as basis for inferring molecular orbitals from atomic 

orbitals. This is an important ‘shortcut’ for tractable use of quantum mechanics. 

Finally, density functional theory (DFT) constitutes a notably different 

approach. In physics, DFT is a mathematical method that allows one to ‘replace’ 

the wave function with so-called ‘density functionals’ as carrier of basic 

information of a quantum system (Proft, Ayers, Geerlings 2014). This affords a 

‘quantum’ definition of energy that does not use the Hamiltonian operator for 

instance - the part of a Schrödinger equation that makes describing molecular 

interactions difficult.  However, for this DFT template to be useful in describing 

chemical properties, for it to be transferable, it needs specification. For instance, 

the exchange-correlation energy - a term in the Kohn-Sham energy functional - 

cannot be exactly expressed. Instead, modelers must approximate its value from 
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first principle considerations or parameterization (Proft, Ayers, Geerlings 2014). 

Thus, DFT requires other mathematical tools and more specific ontological 

claims in order to make it applicable in chemistry.  

The general lesson from these different methods is that at some point 

chemists need to make weighty assumptions about phenomena in chemistry in 

order to make sense of methods for approximating a wave function. Some of 

these assumptions are incompatible, like the localized versus delocalized bonds 

of VB and MO. Either bonds exist in some location relative to other molecular 

features or they do not. This is what I have called so far an ‘ontological’ claim 

because making the assumption asserts that a sort of feature in chemistry either 

exists or does not — i.e. VB’s assumption of localized bond asserts that bonds 

exist in a way that can be understood as localized, 

The entwinement of ontological claims and model transfer in the history of 

using physics in chemistry prompts further analysis. Conceptual work in detailing 

what transferable mathematics describes is a substantial factor in the progress of 

chemistry modeling. Not only does it shape how mathematics eventually see use, 

but these ontological claims seem necessary for chemists to make sense of the 

use of certain computational methods. One particularly powerful and promising 

method, constituting a model template, is the virial theorem. The virial theorem 

provides a method for vastly reducing the complexity of descriptions of particle 

interactions in a molecule, and its transfer from physics to chemistry constitutes 

notable progress in chemical modeling. However, there exists well-known 

conditions for its use that a model’s target must satisfy.  
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3 — The Virial Theorem as a Template 

Bader’s resituating of the virial theorem in physical chemistry afforded new 

methodology for modelling, extracting information about ‘atoms’ from electron 

density data.  Central to the virial theorem is an equation relating time-averaged 

kinetic energy and potential energy (T = -1/2V). Using algebra and substituting 

domain specific equations for kinetic energy or potential energy allows a modeller 

to use this equation toward tractably describing these properties. Thus, the virial 

theorem, besides consisting of an equation, is also a model template. For 

instance, in its original use by Clausius, one can derive a function for modelling 

the kinetic energy of a set of particles. This derivation involves substituting in 

place of the potential energy part of the equation an expression to do with forces. 

The virial equation in classical mechanics affords the identification of kinetic 

energy with force. This relation between force and kinetic energy affords greater 

tractability in describing a system because it allows a modeller to essentially 

‘convert’ a vector (force) description of a system into a scalar description, a 

conversion valuable for reducing the complexity in mathematically describing 

some systems. Scalars are typically less complex than vector quantities. 

  However, intermediate steps in this transformation of the virial equation 

into an equation relating forces and kinetic energy require characteristic 

assumptions about the target system. Very generally, the chosen special form of 

the virial theorem assumes that the target system is in bounded equilibrium; the 

target system is quasi-stationary and the individuals interact via an inverse 

square law type force. This assumption entails that a target system cannot be too 
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dynamic. For instance, it would be unwise to use the virial theorem-derived 

functions to model a group of particles part of an explosion — a supernova 

perhaps. A model so constructed would fail to accurately describe kinetic energy 

because an explosion is not a system in bounded equilibrium. Systems like our 

earth-moon planetary system, or the solar system are example of virial theorem 

applicable targets. The orbits are stable and periodic, meaning, for instance, the 

change in kinetic energy over time averages out to 0.  

 Like with the meaning of ‘clustering’ with the Ising model template, the 

meaning of ‘stable equilibrium’ depends on the domain where the virial theorem 

sees use. There are specific assumptions that are variously interpreted with this 

more general assumption. One such assumption is about the nature of 

interactions in the target system. In order to afford a simpler mathematical 

representation of forces, the virial equilibrium must hold true. Kinetic energy and 

potential energy must be in a stable ratio. If, for instance, outside 

potentials/forces influence the target system, then there is no guarantee that this 

ratio will remains stable for the entities of interest. Thus, one example 

assumption is that there are not ‘outside’ forces acting on the system. All 

interactions are only between entities being targeted by the model. Whether this 

is true or not depends less on the ‘real’ system and more on what the modeller 

stipulates as a target. Universal gravitation at the large scale makes any real star 

system an unsuitable target. However, the virial theorem still sees much 

successful use in stellar models. This is because modellers can delineate targets 

where the outside interactions cancel out, or become negligible - boundaries for 
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instance where gravitational potential are equal from all directions. The 

boundaries for these targets are spatial and temporal — stipulating where and for 

how long a given model applies. Besides the practical purpose of delineating a 

boundary as an area of application for a virial theorem model, the target system 

must be conceivable. To put it broadly, the target system must make sense; it 

must cohere with general conceptions about phenomena in a given domain.  

Take for instance the first use of the virial theorem in quantum chemistry 

by Hellman and Slater (Hellman 1931 and Slater 1933). They separately proved 

that a chemist using the virial theorem could describe the kinetic and potential 

energy of a molecule when they knew the total energy. This version of the virial 

theorem came to be known as the “molecular virial theorem” (Gavroglu and 

Simões 2012). Using this form of the virial theorem, Slater built a model where 

kinetic energy was a function of the distance between nuclei in a molecule. This 

afforded a method to isolate the kinetic energy of the electron from that of the 

nucleus, approximating away nuclear motion, and making kinetic energy simpler 

to model for bonding. However, Slater’s use of the virial theorem required an 

idealizing assumption, “replace the coupling between electronic and nuclear 

motion with an [idealized] external force acting on the nuclei” (Slater 1933, p. 

687). Thus, he assumed molecules were containers exerting a force on nuclei, 

keeping them in place. This conceptual strategy afforded the use of the virial 

theorem by providing the model with compatible assumptions, couching 

necessary virial theorem compatibility requirements in terms of chemistry’s 

domain-specific notions like molecule, nuclei, and inter-nuclear distance. This 
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conception of the molecule then put pressure on a chemist’s understanding of 

bonding, whether bonding is caused by changes in potential or kinetic energy - 

the molecular ‘box’ expanding or shrinking. Despite first introduction of the virial 

theorem in this type of model almost a century ago, these debates about how to 

conceive of bonding are alive today (Backsey, Nordholm, Reudenberg 2018).  

 Thus, the virial theorem, as a model template, consists of a mathematical 

tool for modelling and also a corresponding conceptual requirement. I say 

conceptual because besides stipulating of mathematical ‘boundaries - 

parameters or limits perhaps - for a model built using the virial theorem to be 

useful at all, its target must be something the discipline studies. So the target 

must both constitute requirements for the use of the virial theorem - 

boundedness- and also qualities characteristic of domain-specific phenomena.  

Despite its usefulness in a wide range of applications, chemists regard the 

virial theorem as having the potential to be an unreliable mathematical tool. In 

chemistry, it is often the case the molecules are not good targets for application 

for the virial theorem. The aforementioned stability requirement limits modeling 

molecules using the virial theorem to ones that are in their ‘ground state’. There 

is also controversy regarding whether models of bonding in chemistry target 

appropriately constrained systems for using the virial theorem (Burdett 1997). 

The stability requirement is open for interpretation. Some models, like Hellman’s 

box model, formulate this stable target as a box shaped boundary limiting the 

positions of electrons. However, this results in controversial claims about the 

nature of bonding — that for instance bonding is the result of lowering in kinetic 
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energy of a molecule (Burdett 1997). Stable equilibrium is a widely known special 

condition of the application of the virial theorem in physics; similarly, in chemistry, 

the virial theorem’s use as a computational method requires a target constituted 

of features that meet this condition. This is the aforementioned conceptual 

difficulty in transfering mathematics from physics — how to appropriately 

describe the ontology of such a target system. 

The Quantum Theory of Atoms in Molecules (QTAIM) is a model 

constructed by Richard Bader in the early 1970s that holds an interesting place in 

the history of solving the difficulties in transferring math from physics to 

chemistry. QTAIM’s attempt to make quantum mechanics useable involves 

several steps that take the wave function and make it into a mathematical 

description of ‘topological atoms’. The last and most important step in this 

transformation is the use of the virial theorem as a computational method for 

calculating energy. With QTAIM, the goal is to make chemical quantities like 

bond energy calculable when given molecular formula. For instance, knowing 

that water has two hydrogen and one oxygen atom, QTAIM ought to describe the 

energy contribution of, for instance, oxygen to the molecule. Additionally, Bader 

constructed QTAIM to simulate the structure of the molecule, so we ought to be 

able to use the model to tell us the shape that bonded atoms form. These 

functions of the model depend on the usability of the virial theorem. It is the 

linchpin in making the math from physics useable - describing energy 

contribution and molecular shape. Moreover, the virial theorem has stringent 

ontological conditions for its use as discussed in the previous section. The virial 
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theorem requires that a target system instantiate characteristic assumptions 

about what types of things exists. Thus, the usability of the virial theorem is 

contingent on the ontological claims made in constructing QTAIM’s target 

system.  

The topological atom is the target system for QTAIM, constructed to fulfil 

the ontological requirement for application of the virial theorem. Topological 

atoms function in this way through a partitioning method. This method partitions a 

molecule into regions of electron density that are in equilibrium, affording the 

usability of the virial theorem by satisfying conditions for its transfer. To construct 

the topological atom, QTAIM partitions the molecule into fragments that additively 

contribute to properties of the molecule. These features of the topological atom 

are unique to quantum chemistry and indispensable to QTAIM’s use of 

transferable math from physics. For the next parts of this paper, I will discuss this 

function where it concerns the usability of the virial theorem.  

What follows here is a more technical description of how the topological 

atom makes possible the use of the virial theorem. The mathematical method 

behind its functioning begins with electron density information obtained through 

either experiment or using an electron density function (DFT). Electron density 

replaces the wave function as basic carrier of system information in this density 

functional template. This is the first aforementioned step in making math from 

physics useable. Partitioning electron density data then involves identifying the 

closed surfaces where the first derivative of the electron density is zero — thus, 

‘zero-flux boundary’. These surfaces become the stable boundaries separating 
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topological atoms in the molecule. A gradient field allows QTAIM to identify the 

vectors of steepest ascent through the electron density topology. Zero flux 

surfaces then partition atoms in the gradient vector field. These ‘stationary’ points 

in the electron density gradient, where there is no change in charge/electron 

density, are ‘saddle points’. Once these saddle points are identified, gradient 

paths (GP) that follow the line of steepest ascent to each of the stationary points, 

and a line of steepest descent, partition the surface. 

The fragments partitioned by these GPs are virial fragments - topological 

atoms. The applicability of the virial theorem is a direct result of this spatial 

partitioning of a molecule. Each fragment is in virial equilibrium. With zero-flux 

boundaries dividing the molecule, one can derive a mathematical description of 

the total energy of the topological atoms using the virial theorem, allowing the 

modeler to differentiate between kinetic energy and potential energy using DFT 

functionals. As Bader puts it, “If the virial theorem exists for an atom - that is, for 

a region of space bounded by a zero-flux surface — one could use this theorem 

to define the energy of an atom in a molecule” (Bader 2011 p. 24). The way 

QTAIM defines the energy of the atom in a molecule using the virial theorem is 

through volume integration. In short, the virial theorem allows one to use 

computational methods from statistical mechanics. These computational 

methods make using quantum mechanics in chemistry tractable. In addition, the 

use of these methods is possible because of the topological atom’s zero-flux 

partitioning that then provides a spatially bounded atom in QTAIM’s model 

system. This partitioning method supplies the topological atom with properties 
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such as ‘in stable equilibrium’ and ‘transferable’. Since the topological atom 

instantiates these properties, it is ontologically compatible with the virial theorem.  

4 — The Landing Zone 

Before QTAIM, modeling approaches used chemical bond concepts as the 

characteristic features that guide the 1-electron wave function approximation 

(LCAO) towards calculating molecular energy and the energy of bond formation. 

For QTAIM, the fundamental consideration for tractable interpretation of the wave 

function is the topological atom - called ‘virial fragment’ in Bader’s early work. 

Rather than bonds, we choose as our fundamental parts mononuclear 

fragments of the system with boundaries defined in real space. We do so 

for two reasons: (a) all of the properties of such a fragment may be 

rigorously defined, and (b) theory and comparison with experiment 

indicate that such fragments are the fundamental building blocks for a total 

system (Bader 1975, pp. 36). 

 

Bader frames the beginnings of QTAIM as a choice between two ontologies. 

Here we see justification of QTAIM’s ontological claims. Reason (a) results from 

Bader’s successes in using the virial theorem as a model template. Molecular 

fragments obey the virial theorem relation between potential and kinetic energy 

affording description of chemical properties using electron density. Reason (b) 

appears because Bader’s model successfully analyzes electron density data 

obtained from x-ray/neutron diffraction, assigning energies that cohere well with 

other observations of kinetic and potential energy.  

Observations justify Bader’s construction of QTAIM’s target system. Some 

of Bader’s decisions in this construction connect to ontology of past chemistry, 
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“The atom played the central role in early chemical theories. The properties of a 

molecule were related to those of its constituent atoms” (Bader 1975, pp. 131). In 

later works, Bader cites Dalton’s early atomic theory as consisting of an ontology 

that chemistry could find itself rooted again with QTAIM (Bader 1990). 

Fundamentally, Bader’s intention is to build a target system with an ontology that 

diverges from the modelling practices of past quantum chemistry. 

“The quantum theory of atoms in molecules, QTAIM, demonstrates that 

every measurable property of a system, finite or periodic, can be equated 

to a sum of contributions from its composite atoms (Bader 1990). Indeed, 

without this possibility, the concept of the atom as the building block of 

matter loses its usefulness” (Bader and Matta 2012, pp. 254). 

 

This possibility for mathematically describing chemical properties is the result of 

the topological atom’s functioning as a landing zone. For Bader, the topological 

atom’s successful functioning as a landing zone demonstrates the possibility of 

“a return to Dalton’s notion of an atom as a bounded space-filling object frees 

chemistry from the yoke of arbitrary models and definitions” (Bader and Matta 

2012, pp. 256). This constitutes a sort of conceptual progress, a progress in 

transferring physics to chemistry by using a fundamentally different ontology in 

shaping this transfer. The successes of QTAIM then provides reason to take its 

ontology seriously. Indeed, since QTAIM’s development, topological modelling 

has seen a marked increase in use. Instead of depicting progress in the history of 

quantum chemistry as progress in theory or progress in mathematical 

description, we can also characterize a conceptual progress in the invention of 

target system features that make possible the transfer of mathematical tools.  
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Introducing the notion of a landing zone identifies the topological atom as a 

feature that functions by furnishing QTAIM with an ontology. It provides an 

ontology by being a vehicle for ontological claims. Presenting the topological 

atom as QTAIM’s target system answers two ontological questions. These 

questions are ‘what exists?’ and ‘what relations between things exist?’. The way 

a modeler answers these questions in building a model is to prepare features of 

a target system so that they instantiate a specific ontology. So, for instance, 

Bader designs the topological atom so that it is bounded and space filling. This 

answers the first question “what exists [in chemistry]?” with “spatially bounded 

and space filling atoms”. Bader also designs the topological atom so that one can 

infer, additively, properties of the molecule from properties of the atoms. This 

answers the second question “what relations exist [specifically, between wholes 

and parts]?” with “additive relations exist [specifically, the properties of the whole 

are completely determined the properties of the parts]”. These claims are 

substantially different from the ontology of VB or MO models. 

Since models like QTAIM introduce ontology that may be divergent from 

that common to a scientific domain, answers to these questions need to 

demonstrate that the claims are reasonable. More than just describing the 

ontology of the target system, the topological atom demonstrates that this 

ontology has epistemological value. It does so by showing that its design affords 

key chemical information - molecular structure and bond energies. It does so by 

making possible the use of tractable mathematics.  In order to make use of, for 

instance, the virial theorem as a transferable template, these aforementioned 
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ontological questions require specific answers.  

In other words, scientists construct landing zones in part by imposing 

ontological claims about their domain that are justified in part because they 

enable the transfer of useful models. Landing zone claims also give meaning to 

transferable mathematics, allowing a modeler to take certain calculations as 

information about domain-specific properties, like with the virial theorem. The 

quantities it describes are only information about atoms when these quantities 

are specified. Returning briefly to the discussion on model templates, both 

Knuuttila and Humphreys acknowledge the need for a template to be specified by 

the scientists using them.  

This account of landing zones helps us understand in a bit more detail what 

is going on with specification. Humphreys’ (2004) mentions briefly about 

ontology’s place in model construction as a part of specification. Claims about 

ontology are necessary for the use of transferable mathematics not only in that 

they make possible the use of a specific template, but also in providing meaning. 

Computational templates as a generalizable syntactic form need their unspecified 

form mapped to domain-specific concepts in order to be meaningful for a domain. 

This mapping involves what Humphreys calls construction assumptions. For 

Humphreys these assumptions comprise a quintuple — (Ontology, Abstraction, 

Idealization, Constraints, Approximations). They guide correction of a template to 

a specific phenomenon, and these assumptions are mathematical except for 

ontology. Ontology is necessary to turn a general model into a model about a 

specific type of system, guiding specification of the other elements of the 
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quintuple. “Although a multinomial model in statistics may be a model of many 

different phenomena, it is a model of dice-tossing only when the objects are 

deliberately specified as dice” (Humphreys 2004, pp. 78). Ontology guides 

specification of mathematics assumptions like constraints.  For example, the 

multinomial distribution for a six sided dice-tossing model requires that the value 

of k = 6. The ontology of this model - six-sided dice - guides how the math is 

specified.  It does so by answering ‘what exists?’ for the model system. Thus, it 

gives meaning to the mathematics by giving reason for the transformation of a 

general multinomial function into a function with specific constraints. Since the 

notion of a landing zone identifies what instantiates these claims for a model, it 

identifies what Humphreys refers to here as ontology. In this way, the landing 

zone is an extension to Humphreys work, identifying the features of models that 

instantiate necessary assumptions for the specification of transferable 

mathematics.  

5 — Functional Groups 

This section goes into greater detail on how the topological atom’s 

ontology prepares for the meaningful transfer of mathematics, and how this 

ontology connects to the conception and study of other phenomena in the 

domain. Since the topological atom’s partitioning method provides a form to 

electron density that makes depicting molecular structure with the density 

functional theory (DFT) model template possible, it affords identification of what 

chemists call ‘functional groups’. A functional group is a collection of atoms in a 

molecule that generally have the same structure across molecules, and that, in 
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biology, share a function because of this similarity in structure. The functioning, 

roughly, has to do with shape. By affording direct identification of the shape of 

‘sub-units’ like functional groups, the topological connects  QTAIM to other 

phenomena in chemistry that valence bonds and molecular orbitals cannot — in 

as direct a way, using one model. QTAIM represents atoms as a three 

dimensional objects using the topological atom as a sort of cookie cutter for 

electron density. “A display of [partitioned charge density] for a molecule will 

make visible to the eye, without further mathematical analysis, the definitions of 

its atoms and of a particular set of lines linking certain pairs of nuclei within the 

molecule-its molecular graph” (Bader 1990, pp. 14).  With QTAIM’s target 

system, molecules have a clear, identifiable structure. This is part of what Bader 

calls “recovering the concept of a functional group”.   

In some domains of chemistry, functional groups are phenomena of 

interest. Valence bond and molecular orbital theory models do no prioritize the 

representation of these phenomena because the atom is not a bounded, spatial 

thing for these models. Particular “functional” groupings of atoms exhibit 

characteristic properties that enable one to detect their presence in any molecule 

and to predict the properties resulting from their shape (Bader 2007). QTAIM’s 

topological treatment of the molecule provides easily partitioned subunits. A 

result of this approach is that structures like functional groups become more 

immediately accessible in its representation. This is in contrast to the MO 

approach, where the delocalized bonding ontology results in target systems that 

cannot provide information about functional groups. 



40 
 

 QTAIM’s identification of functional groups depends on two aspects of the 

topological atom. First, a topological atom’s shape affords inference about 

chemical properties. “The atoms of QTAIM that look the same (that is, have the 

same form in real space) exhibit the same properties” (Bader 2013, pp. 262). 

This is a result of mathematical methods for integrating over volume from 

QTAIM’s use of the virial theorem. In addition, the topological atom is 

transferable on the basis that its shape determines its identity. A chemist using 

QTAIM can identify functional groups within different molecules by their shape in 

the topology of electron density. Thus, the topological atom prepares the DFT 

template, and the virial theorem, as a source of information about functional 

groups and molecular structure, providing meaningful transfer of these templates. 

Features of the topological atom make possible the mapping of general and 

transferable mathematics to domain specific concepts like functional groups. 

Specification of a model template requires ontology, that the target system 

instantiate claims about the existence of things and relations. This specification 

provides general mathematics with meaning. A modeler can then use this 

mathematics as a source of information about domain-specific phenomenon. For 

instance, the use of density functional theory for identifying functional groups. 

Without the unique ontology of the topological atom, mapping chemical 

properties to three-dimensional shape, this information about functional groups is 

not available using density functional theory. The charge density it provides only 

has meaning because Bader specifies, in constructing QTAIM, that certain 

regions are topological atoms.  
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6 — Conclusion 

Chemistry faces a generic problem. Quantum mechanics is relevant and 

important for describing chemical phenomena, but the fundamental kinematical 

and dynamical equation, the Schrödinger equation, is intractable for molecules. 

The history of modeling in chemistry is a history of inventing or transferring 

tractable forms of this equation. Concomitant with the invention and deployment 

of tractable quantum chemistry is conceptual work towards making this invention 

or transfer meaningful. In the history of addressing this problem, bonds were the 

dominant ontological notion for constructing target systems. The Quantum 

Theory of Atoms in Molecules is a model that diverges notably from this ontology. 

By transferring the virial theorem it makes possible the replacement of a 

Schrödinger equation with density functionals, thus rendering description of 

chemical phenomena using mathematics from physics tractable. This model fits 

in this history of solving the generic problem not only by transferring a new tool, 

but also by constructing a new thing to which transferable mathematics applies - 

the topological atom. It is this additional factor in model transfer that motivates 

complimenting current analysis with a new notion — the landing zone. 

QTAIM consists of a landing zone — the topological atom — for the use of 

transferable model templates from physics — the virial theorem and density 

functional theory. A landing zone is a target system that functions to make use of 

transferable model templates possible. There are two aspects to this functioning. 

First, a landing zone satisfies conditions for the interpretation of transferable 

templates with respect to approximations, constraints and parameterization. This 
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allows a modeler to answer questions about the ontology of the target system 

that are necessary in deciding how a scientific domain is to use a model 

template. For instance, the topological atom provides QTAIM with a target where 

atoms have spatial definition and sharp boundaries. This then allows Bader to 

construct QTAIM as a model that combines density functional theory and the 

virial theorem as model templates. 

Second, a landing zone functions by providing an ontologically compatible 

target system. Bader designs the topological atom to be ontologically compatible 

with the virial theorem, providing a target system that the virial theorem can 

describe.  

The target systems hypostatized by past chemical modeling practices differ 

significantly from each other. What accounts for these ontologically different 

target systems in the history of transferring physics to chemistry? Bader, in more 

recent work, makes it clear that what accounts for these different ontologies is 

the preparatory activity in applying physics to chemistry. “It is readily 

demonstrated in a few lines beginning with Schrödinger’s equation that to apply 

physics to an atom in a molecule, the atom must be a bounded space-filling 

object” (Bader 2004, pp. 8387). These differences result from landing zone type 

preparation for model transfer. QTAIM’s ontological claims are opposed to a 

perspective on atoms in molecules that predominantly guides molecular orbital 

(MO) and valence bond (VB) approaches. “Most chemists would probably 

describe a molecule as consisting of approximately spherical, overlapping atoms 

or ions” (Haaland et al. 2000, pp. 1079). Contrary to this description of atoms 
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found in VB and MO methods, the landing zone for Bader’s QTAIM functions by 

instantiating a bounded space-filling target for application of the Schrödinger 

equation. With this topological atom as QTAIM’s target system, the model 

enables one to “apply the full predictive power of quantum mechanics to the 

analysis of chemical problems” (Bader 2009, pp.273). Thus, the topological atom 

provides a basis for the extraction of chemical information from mathematics 

transferred from physics, “the predictive power of quantum mechanics”. 

Additionally, the ontological claims that make this use of mathematics possible 

are important conceptual features for QTAIM. Introducing the notion of a landing 

zone identifies the role of ontological claims in model transfer.  

Since the topological atom has well-defined boundaries, the virial theorem 

becomes a usable computational method. Just like how it would not be possible 

to use site-seeing helicopter in a dense forest without preparation, clearing trees 

and leveling the ground, the use of the virial theorem in QTAIM requires 

preparation, the designing of an area for its application. The notion of a landing 

zone allows us to identify this constitutive and preparatory aspect of model 

transfer.
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Chapter 3: Model Transfer and Conceptual Progress  

1 — Introduction 

In the previous chapter, I examine how Richard Bader invented the 

phenomena of a topological atom as a landing zone for the transfer of the virial 

theorem. To perform this examination, I define the notion of a landing zone. A 

landing zone is a target system which scientists prepare for the use of a model 

template. This target system can encompass a phenomenon, or more abstractly, 

encompass multiple phenomena. Part of this preparation includes stipulating the 

sort of things that exist in a domain. Often it is the case that scientists redefine 

these phenomena partially (or even totally in QTAIM’s case), stipulating new 

categories of things to exist in a scientific domain. I call this an ‘ontology’, 

referring to the implicit claims made by scientists in stipulating new types of 

phenomena, like topological atoms. Preparing a landing zone requires scientists 

to plan how to organize information in a domain, often in new ways. Bader 

created a new plan for organizing electron density information by analogy to 

topographic maps of mountains in order to make the virial theorem applicable.  

As was the case with QTAIM’s introduction to chemistry, the preparation 

of landing zones introduces what I will call ‘conceptual progress’. Conceptual 

progress is the introduction of new concepts, or significant redefining of existing 
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concepts, in a scientific domain for the use of a new model template. I use the 

term ‘progress’ because I wish to connect conceptual change that brings about 

the application of novel model templates through model transfer as constituting 

scientific progress. If scientists transfer a model template it means that they have 

successfully made use of it towards solving some problem, or a the very least 

successfully prepared a space for the model template’s use that is meaningful 

enough to be the subject of debate by other community members. Thus, analysis 

of model transfer provides a new vector in characterizing puzzles to do with the 

conceptual differences between scientific domains — intertheoretic reduction and 

interdisciplinarity. Scientists reconceive domain-specific phenomena to make 

possible the use of transferable templates. These new conceptions of 

phenomena introduce conceptual pressure and drive theorizing. To motivate this 

perspective on model transfer, I detail two stories of transfer from chemistry and 

biology that have telling parallels.  

To follow is a brief sketch to reiterate philosophical discussion on model 

transfer that I cover in Chapter 2. Paul Humphreys invents his notion of a 

computational template in Extending Ourselves (2004). A computational template 

is an equation, function, or other computational method that is both generalizable 

and tractable. They are genuinely cross-disciplinary in that they draw together 

computational methods across scientific domains, domains that often have very 

little in common. Additionally, computational templates have a particular syntactic 

form that is invariant through the domains where they find use. Models 

constructed from the same computational template will, for instance, bear similar 
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relationships between variables. However, it is their tractability that ultimately 

accounts for their dissemination. Computational templates promote the useability 

of mathematics in modeling. Thus their transfer to a new domain constitutes 

progress in the mathematical modeling of phenomena of that domain.  

Knuuttila and Loettgers respond that tractability alone is not sufficient to 

account for model transfer. In addition to features like tractability and 

generalizability, they think there are conceptual features belonging to templates 

that explain their dissemination. Depicting these conceptual features prompts 

augmenting Humphreys’ notion of a computational template with that of a model 

template. To put it simply, a model template is mathematics embedded with 

general concepts. For instance, with the Ising model’s transfer to the Hopfield 

model, besides mathematical or syntactic form, a very general conceptual idea of 

the kind of mechanism of interaction was also transferred (Knuuttila and 

Loettgers 2014). 

To depict this dynamic between the thing that is transferred and the thing 

to which it applies, I introduce the notion of a landing zone in the previous 

chapter. The features that are characteristic of landing zones are their function in 

model transfer and their function as a target for mathematical models. This type 

of feature in model transfer functions by providing a scientific domain with a 

target system that is ontologically compatible with concepts embedded in model 

template mathematics. For instance, the binary neuron introduces into 

neuroscience ‘simple cooperating phenomena’. Both the Ising model template 

and this domain then have matching ontology in that they answer the question 
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‘what exists?’ with ‘simple cooperative phenomena’. This matching of ontology is 

a necessary condition for transferable model templates to be useable in a new 

domain. Not only do scientists need the neurons to be binary but they need to 

understand what physical quantities — temperature, energy, and entropy — 

mean in this new context. 

Besides accounting for what makes transfer possible, introducing analysis 

of landing zone target systems provides discussion about model transfer with a 

new vector for approaching questions about conceptual innovation and 

modelling. One of these questions is — where do scientific concepts come from 

(Nersessian 2008)? This is an especially relevant question for a domain like 

physical chemistry, where modelling predominantly uses transferable 

mathematics from physics; however, chemists use these models to study 

phenomena not present in physics — like chemical bonding. These models do 

not target the phenomena of physics. Instead, these models — molecular orbital 

models for instance — represent phenomena that is in some way similar yet 

different from the phenomena of physics. A chemist's conception of this 

phenomena is at the very least not straightforwardly reducible according to 

dominant literature in philosophy of chemistry. There are arguments from the 

‘bottom-up’, that the theoretical peculiarities of quantum mechanics preempt 

representation of molecular structure (Gonzalez, Fortin, Lombardi 2018), from 

the ‘top-down’, that there are dimensions to molecular structure that present day 

quantum mechanics cannot explain (Hendry 2010), or that the relationship 

between the use of mathematics in chemistry and physics is too loose to apply 
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classical notions of reduction (Scerri 2007). Molecular orbitals, valence bonds, 

resonance, Pauli forces are just some examples of notions central to 

mathematical modelling in chemistry that confound inter-theoretic reduction. 

Taking for granted this loose connection, where do these concepts, featured 

center-piece in chemical models that use quantum mechanics, come from?  

My suggestion is that literature on model transfer can aid in answering this 

question by providing a mechanism for the generation of new concepts through 

conceptual pressure. Two features of model transfer indicate this affordance. 

First, model transfer introduces conceptual pressure to a domain. When 

scientists use novel mathematical tools, debates about highly theoretical matters 

follow, including ontological matters. Dissemination of mathematical techniques 

across cultural and domain-specific barriers seems to prompt scientific theorizing 

on the nature of the phenomena these disseminating tools model (Lalli 2015). 

This theorizing, for instance, the drawing up of landing zone target systems, is 

part of the conceptual strategy for resituation of abstract things like model 

templates. Abstract and transferable, model templates require de-abstraction for 

use as a concrete model in a domain. Strategies towards this end may require 

conceiving of phenomena in tension with entrenched modelling practices, thus 

introducing conceptual pressure — tension between notions about the essential 

characteristics of phenomena. Additionally, some model templates have well-

known conditions for their use. The virial theorem is one example, where a model 

using it must include characteristic assumptions. These assumptions require, as 

with the binary neuron, a preparing of phenomena in a particular way. Domains 
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where the virial theorem travels see the introduction of similar modelling 

assumptions, and conceptions of phenomena. Thus, paying attention to model 

transfer provides a way to trace the origin of new scientific concepts to a domain.  

Both cases I present in this paper exemplify the reconceiving of 

phenomena and resulting conceptual pressure that follow from model transfer. 

These new conceptions spark scientific debates that cleave deeply into 

philosophical matters, matters like ontology, and the epistemology and 

methodology of modeling. The first case involves the transfer of the ideal gas law 

to biology by R.A. Fisher. Fisher’s model revolutionized modeling in biology by 

introducing a method to treat population level selection mathematically, in a 

similar way to ideal gases. Fisher makes possible the use of novel statistical 

methods by introducing a novel model target system — populations consisting of 

velocities instead of individual animals. This reconceiving of a population as a 

landing zone plays a vital role in Fisher’s transfer of the ideal gas law as a model 

template, and sparked debates about the constitution of populations that persist 

today. 

The second case of model transfer is Richard Bader’s construction of the 

Quantum Theory of Atoms in Molecules (QTAIM) model. This model allows 

chemists to mathematically describe the state of a molecule and depict its 

structure. Bader uses a model template to construct this model, the virial 

theorem. The virial theorem has well-known conditions for its use in a model. For 

instance, the virial theorem only applies to systems that are in stable equilibrium. 

Bader introduces a new target system — the topological atom — to satisfy this 
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requirement of the virial theorem, making possible its transferability as a tool to 

analyze charge density. The success of the topological atom as a target for 

transferable templates results in debate over the appropriate way to conceive of 

phenomena, like the ‘atom in a molecule’, for the use of mathematics from 

physics in chemistry. By analyzing this landing zone feature, the topological 

atom, we depict the conceptual development to do with modeling in chemistry. 

2 — The Fisher Model of Genetic Fitness 

Starting in 1918, the statistician R.A. Fisher began working on problems in 

genetics. Fisher developed a statistical model of evolution from this work that 

used the ideal gas law to investigate the role of selection in producing variation.  

Before his work, biologists believed that natural selection was incompatible with 

mendelian inheritance. In other words, it was not clear how there can both 

statistical variation in inherited traits and traits that persist because they are 

advantageous; the persistence of advantageous traits and statistical variation 

seemed in tension for mathematical description. Fisher used equations at the 

core of the ideal gas model in physics to make tractable the description of natural 

selection in mendelian populations, thus creating a method for describing both 

natural selection and mendelianism (Fisher 1958). In short, Fisher invented a 

way to statically describe the survival of a mutant gene so that ‘persistence of the 

fittest’ could connect to ‘statistical variation of genes’. Morrison, in her paper, 

“Physical Models and Biological Contexts”, goes into detail on Fisher’s use of the 

ideal gas law (Morrison 1997). As her argument goes, analyzing Fisher’s model 

solely as a representation does not accurately depict its functioning. Instead, we 
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should pay attention to its use as an instrument. Fisher used his model as an 

“instrument for mapping biological concepts into a mathematical framework that 

could enable one to make specific concrete claims about evolutionary dynamics” 

(Morrison 1997, pp. 324). Morrison’s description of the functioning of Fisher’s 

model highlights the aspect of model transfer that I think is particularly relevant to 

analyzing conceptual progress. This is the relation between the domain specific 

concepts and the mathematical structure of transferable templates that Morrison 

characterizes as a mapping.  

As a model template, the gas law sees use in a preponderance of models 

across various domains. The core equation expresses a simple relation between 

pressure (P), temperature (T) and volume (V) (𝑃𝑉 = 𝑛𝑅𝑇) — where n is the 

number of moles in the gas and R is a constant. The ideal gas law takes different 

forms depending, but the ‘pure’ form there are classic assumptions that 

physicists make. These assumptions are that molecules are infinitesimal 

compared to the gas itself and that the intermolecular forces are negligible. As 

Morrison puts it, physicists must “specify a model of the molecular system” that 

meets these requirements in order for the ideal gas law to be useable (Morrison 

2002). Evolutionary biology, however, does not deal in molecules or gases. How 

was the preparation for the use of this model even conceivable by Fisher? 

According to Morrison, Fisher invents a new ‘model’ that treats populations as 

gases. For Morrison in this context, a model is “a particular way of conceiving of 

how a population should be structured and theorized, conceptions that are 

presupposed in both Fisher and Pearson’s application of statistical techniques” 
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(Morrison 2002, pp.60). This model is a particular conception of a biological 

population that functions to make possible the application of a further model, the 

model that includes statistical techniques. One such statistical technique had 

Fisher using the velocity distribution law (maxwell-boltzman) for calculating the 

distribution of the frequency ratio for different Mendelian factors (genes). What 

Morrison calls ‘model’, a particular way of conceiving of a population, is also what 

I call a landing zone. It functions as the target of the Fisher’s statistical 

techniques, his use of the ideal gas law, by providing the appropriate description 

of phenomena (populations and genes). 

Morrison’s first sense of model, as an ontological conception and 

presupposition for mathematical description, is a landing zone. It is these target 

models that are of particular interest in analyzing model transfer. Attending to 

these features in accounts of scientific modelling allow us to explain idealizations 

as a something useful (for transfer) even though they misrepresent real 

phenomena (because they do not function as representations). Fisher’s “model 

provided the instrument for investigating the role of selection in human 

populations by replacing actual populations with idealized ones” (Morrison 1996, 

pp. 320). These idealized populations made possible the application of a 

statistical model by mapping biological concepts (i.e. population) to ontology that 

would satisfy requirements for the use of the Ideal Gas model template. What I 

call the ideal gas law model template could also be called the ‘kinetic theory of 

gasses’ template since the mathematical core of what Fisher uses is the velocity 

distribution law. In short, Fishers used a maxwell boltzman-like function to assign 
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fitness to genes in a population undergoing natural selection by replacing velocity 

with a variable expressing ‘fitness’ in this equation. An important factor was the 

separation of gene fitness from mendelian allele variation. This was 

accomplished by assuming ideal-gas-like conditions (that roughly PV = T) 

Fisher’s model uses a different equilibrium condition, specifying that there are no 

external forces acting on fitness — i.e., predation, enough animals for statistical 

analysis to be meaningful etc. Morrison calls the reasoning Fisher uses to make 

this connection a ‘mapping’ because it ‘maps’, defines a connection, from 

conditions for the use of mathematics (ideal gas criteria) to descriptions of 

phenomena. Such reasoning makes the interpretation of a distribution ratio as 

being about a mutant gene’s propagation through a population meaningful. As 

Fisher’s justification for this transfer of the ideal gas law goes, the “distribution of 

the frequency ratio for different factors may be calculated from the condition that 

this distribution is stable, as is that of velocities in the Theory of Gases” (Fisher 

1918). By ‘factors’, Fisher means genes. Inventing a target that is analogous to 

both the velocities in the theory of gases and evolutionary populations satisfies 

the condition for stable distribution, while at the same time making the model 

congruent conceptually with evolutionary biology.  

This invention of a velocity-like population was in tension with existing 

notions about the constitution of populations, resulting in conceptual pressure 

and scientific debate. Morrison covers this controversy in her 2002 paper, 

“Modeling Populations: Pearson and Fisher on Mendelism and Biometry”. As 

Morrison points out, Pearson disagreed not only with Fisher’s statistical 
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methodology, but more importantly, his conception of a population. “Pearson had 

a very specific notion of how populations could be described or constituted, one 

that was presupposed in his application of statistical techniques and one that 

Fisher did not subscribe” (Morrison 2002, pp. 61). One example of how these 

notions diverged is that Fisher’s idea of a population included indefinite 

mendelian factors (genes). There are a limited number of genes that determine a 

phenotype. Similarly, any real population of animals is going to include a number 

of animals, animals that mate to pass on their genes and animals that die. 

Fisher’s model idealizes these details, assuming that numbers of individuals are 

indefinite and assuming that genes get passed on by chance. Fisher’s adoption 

of the ideal gas law model template assumptions, that the number of things 

modeled (molecules or animals) was assumed to be ‘large enough’ for biologists 

to treat the group statistically; like with molecules in ideal gasses, Fisher’s model 

treats things (animals) as indistinguishable. “We may imagine, in respect of any 

pair of alternative genes, the population divided into two portions, each 

comprising one homozygous type together with half the heterozygotes, which 

must be divided equally between the two proportions. The difference in average 

statures between these two groups may then be termed the average excess (in 

stature) associated with the gene substitution in question” (Fisher, 1930a, p. 30). 

Fisher’s model categorized populations of animals by their genes in order to 

describe fitness (stature) as a statical property (‘average excess’ in the case of 

this quote) of a particular gene.  
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Pearson thought this too abstract and unrealistic. Generally, the 

disagreement “centered on how populations should be characterized with respect 

to the individuals they comprise” (Morrison 2002, pp. 62). For Pearson, 

populations ought to be characterized as non-homogenous classes where each 

individual of a population is distinguishable. This came from a perspective on 

ontology wherein no two physical entities are exactly alike; instead they form a 

class with variation about a mean (Pearson 1930). However, knowledge of 

individuals was simply not important for Fisher. His model made it so one could 

describe successful genes statistically, glossing over details like actual 

inheritance — which, because of mendelian variation, was not a tractable way to 

describe the persistence of traits in a population. Fisher’s model made it possible 

to avoid variation between individuals in a population, like how the treatment of 

the properties of individual molecules in the modelling of ideal gases allows for 

tractable description of microstates like kinetic energy. Thus, the introduction of 

Fisher’s new landing zone, and its successful use in transfer of the ideal gas for 

statistical description of the distribution of traits, challenged the use of 

conceptions of a population as a target for mathematical modeling in biology. 

This debate over the target of statistical techniques cleaved deeply into ideas 

about general ontology. As Morrison ultimately argues, Pearson’s objections 

were not just methodological, but philosophical. 

Morrison concludes this paper remarking that viewing the construction of 

Fisher’s model outside of the lens of typical questions to do with representation 

affords a rich and interesting story about conceptual development in evolutionary 
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biology.  I draw a complementary lesson from Morrison’s story. There is a feature 

discussed in this story that plays a fundamental role in affording use of the ideal 

gas law and one that becomes the subject of debate; thus it is taken as 

introducing serious challenges to conceptions about ontology of biology.  

According to Morrison, it is the construction of a certain sort of model that affords 

Fisher’s use of the ideal gas law, one that underlies the conceiving and 

structuring of his evolutionary notion population as a population of vectors. This 

sort of conceiving of a population is an idealization, but this was not just a debate 

over the presence of idealizations. The debate between Fisher and Pearson was 

over what kinds of idealizations to use in preparation for mathematical modeling 

(Morrison 2002). 

Model templates like the ideal gas law are simply not possible to use 

unless the phenomena are conceived a certain way. Thus a model template’s 

transfer to a new domain requires reconception of phenomena. Idealizations like 

a vector populations for instance make possible mathematical representation by 

a model built from the ideal gas equation and associated mathematical tools — 

i.e. the variety of equations of state derivable from the ideal gas law. The ideal 

gas law requires phenomena conceived as ideal gases for its use. Populations of 

animals in biology require some stretch of imagination to render them applicable 

for this model template, resulting in a notion of a population in deep tension with 

existing conceptions — thus also in tension with biological theory to do with 

populations. Conceptual pressure results. This development is mirrored in 

chemistry with the case of Bader’s transfer of the virial theorem. 
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Morrison’s description of a target-model, some thing that maps domain-

specific concepts to a piece of transferable mathematics is an apt 

characterization of the sort of landing zones I looked at in Chapter 2 for the virial 

theorem. The transferability of the virial theorem necessitates the reconceiving of 

phenomena in a domain that wishes to use it, and this target must instantiate 

certain qualities for the virial theorem to be applicable. This means that whatever 

the new target system is, it is likely going to conflict with previous conceptions of 

the same phenomena, like the conflict between Fisher’s conception of a 

population and Pearson’s conception. In order to make the ideal gas law 

useable, populations needed to be reconceived, a certain way, like gasses. This 

reconception for Fisher’s model meant that a population now was a homogenous 

class of things. Model templates, the transferable units in model transfer, are not 

simply applicable. The activity of model transfer come concomitant with 

conceptual pressure as the reconception of existing phenomena meets the 

needs of mathematical application and result in tension with other notions of 

phenomena. 

3 — The Topological Atom as a Landing Zone 

The quantum theory of atoms in molecule (QTAIM) is a model built using 

the virial theorem template that chemists can use towards several different ends. 

An established method for making quantum chemistry less complicated is the 

replacing of the Schrödinger equation with density functionals. Roughly, this 

involves the assumption that a three dimensional electron cloud approximates 

the state of electrons in a molecule. One of QTAIM’s uses is to give chemical 
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meaning to this electron cloud. The virial theorem is a fundamental part of this 

use. It constitutes the basis for identifying atoms in molecules, and then 

distributing properties to these atoms. However, the virial theorem’s resituation 

depends on a specific conceptual strategy at the heart of QTAIM. QTAIM 

represents atoms as closed, hard-shelled things that additively contribute to the 

total energy of the electron cloud. This general notion about mereology, how 

parts relate to wholes, along with the associated topological method for carving 

up electron density makes possible the use of the virial theorem in this context. 

QTAIM is not unique either as a model that represents atoms as bounded, hard-

shelled things or a model that uses the virial theorem in chemistry. However, the 

relationship between this representation of atoms and QTAIM’s resituation of the 

virial theorem bears novelty and significance. 

Richard Bader used the virial theorem as a model template in constructing 

QTAIM. In order to meet the requirements discussed in Chapter 2 for the use of 

the virial theorem, instead of the ‘molecular virial system’ of Slater and Hellman, 

Bader prepares a reconception of the atom to act as a target. One key difference 

between these uses of the virial theorem is the data that the models analyze. 

Bader developed his model to use empirical data from electron density. Slater 

and Hellman’s use of the virial theorem corroborated with empirical data but did 

have as direct of a connection; one had to plug in known bond lengths and 

angles for isntance. Bader designed QTAIM to not only simulate molecular 

structure but to overlay this structure in the form of topology onto observations 

about electron density. 
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 Bader discovered that he could partition charge density — electron 

density — into spatial regions that are in virial equilibrium, regions where the 

virial theorem equation is true of the relation between potential and kinetic energy 

(Bader and Beddall 1972). This partitioning of charge density allowed him to 

invent a new method for using the virial theorem in chemistry as a tool for 

analyzing charge density data. This new method is attached to a reconception of 

the atom — called virial fragments in Bader’s earlier work (Bader 1975). Later, he 

refers to these partitioned units of charge density as the topological atom; it is a 

similar thing to atoms of other chemistry modelling practices in that they are the 

parts of molecules. However, Bader’s conception of the atom conflicts sharply 

with other notions of an atom that underlie, for instance, molecular orbital 

models. Bader’s topological atom has spatial boundaries consistent with a notion 

of the atom that goes back to Dalton — the idea of bonding atoms being touching 

spheres that do not overlap — and they relate additively to the whole molecule, 

consistent with other methods that relate sum properties. Because of these 

features, the topological atom affords the use of the virial theorem, and at the 

same time constitutes the source of conceptual pressure within the QTAIM 

model.  

The general affordance of the virial theorem at the methodological level is 

a more tractable mathematical representation of the forces within a molecule. 

Steps towards this simpler representation of the forces relevant to chemists 

require assumptions about the interactions in a molecule. With QTAIM, this 

involves the interpretation of the assumption about interactions: boundedness; 
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the target is bounded so that the only interactions are between entities in the 

target system — no ‘outside’ interactions. These conditions are difficult to meet in 

chemistry where modelling practices conceive of intra-molecule parts — 

electrons — essentially ‘roaming’ the entire molecule.  From the perspective of 

modelling practices where the molecule is conceived of as consisting of 

overlapping orbitals, these conditions are problematic to define.  

For Bader’s QTAIM, the ‘outside’ forces condition is met by the zero-flux 

boundary of the topological atom. The surface of this region of charge density is 

bounded such that the interactions being targeted by QTAIMs mathematical tools 

are internal to the subsystem. Of course, ‘realistically’, all nuclei in a molecule 

exert force on each region of charge density. It just so happens that Bader’s 

partitioning allows one to ignore this because the nuclear potentials all equal out 

within nuclear basins partitioned by QTAIM’s zero-flux boundaries. A property of 

the surfaces partitioning charge density in QTAIM is the neutralization of nuclear 

potentials. Thus, topological atoms come built in with a feature that licenses the 

assumption that there are no outside forces, outside with respect to the target, 

and the virial theorem becomes useable. Among the affordances of this 

assumption and the resulting applicability of the virial theorem, it unlocks the 

ability to bundle description of multiple potentials (nuclear-electron, electron- 

electron, nuclear-nuclear) into one expression, increasing tractability in 

describing the state of an atom in a molecule. 

This tractable feature in the mathematical methods of QTAIM requires the 

meeting of virial theorem conditions. Bader had to reconceive the atom to meet 
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the boundedness condition. Entwined with this reconception is the meeting of 

conditions for new methods in mathematical modelling. The applicability of the 

virial theorem allows Bader to construct QTAIM as a tool for representing regions 

in charge/electron density as atoms in a molecule. Because one can use 

functions derivable from the virial theorem to integrate over a three-dimensional 

region of charge density, QTAIM affords a relation between the three-

dimensional shape of an atom and some quantity — kinetic energy. Each atom 

has quantities that depend on its shape. Bader calls this dependance on shape 

‘transferability’ because the model identifies functional groups (Chapter 2) and 

atoms with their shape in electron density meaning that the same atom is 

transferred when a molecular change happens rather than destroyed by having 

some essential part stripped away (electrons). The ideal of QTAIM is such that, 

for instance, a hydrogen (topological) atom in water would have the same 

properties, shape and kinetic energy, in another molecule. The possibility of 

approaching this ideal depends on both the conception of the topological atom 

and the transferable mathematics it makes possible.  

The identification [between kinetic and potential energy in the virial 
theorem] satisfies in a single stroke the two essential requirements of the 
atoms of ‘conceptual chemistry’ — additivity and transferability of 
properties. It is common sense that two identical pieces of matter must 
possess identical properties and consequently, two atoms possessing 
identical charge distributions, that is, atoms indistinguishable in real 
space, must exhibit identical properties.” (Bader 2009, p.10) 

 

As Bader’s argument goes, the successful functioning of the topological atom as 

a target for the virial theorem prompts some chemists to treat this conception of 
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this atom seriously. One can use this notion of an atom as foundation for 

interesting and successful models of chemical phenomena.  

The topological atom became a vehicle for model transfer. Thus, 

properties of this target system became a point of contention in Bader’s following 

discourse. As he argues, the success the topological atom as a new sort 

idealized target system motivated taking the conception of this target system 

seriously - that atoms ought to be thought of as spatially bounded subunits of a 

molecule.  

“Not only do the theorems of physics such as the virial theorem not apply 
to the model of overlapping atoms, such a model does not recover the 
essential chemical observation regarding the characteristic properties 
exhibited by functional groups. Overlapping atoms have no individual 
identities but are merged with the densities of all of the atoms in the 
system. A chemical atom on the other hand can exhibit near transferable 
behaviour even when the neighbouring atoms are radically different” 
(Bader and Matta 2013, p. 263)  

 

Fundamental to Bader’s position are concerns about what makes possible an 

ideal suite of mathematical tools from physics. Certain tools only apply to certain 

conceptions of phenomena that meet the general requirements of a model 

template — bounded equilibrium for the virial theorem. Bader’s modelling 

strategy is to meet these requirements by reconceiving them in domain-specific 

terms. For chemistry, the interactions in bounded equilibrium are nuclear-electron 

potentials. The topological atom’s zero-flux surface makes ignoring the effects of 

other nuclei on a region of charge density possible. Concomitant with this 

domain-specific reconception is a conceptual framework — the topological atom 

as space-filling, bounded by a non-penetrating hard shell, mereologically distinct 
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parts of a whole molecule. Since this framework conflicts with conceptions of the 

atom underlying other chemistry modelling practices and also makes possible the 

application of the virial theorem, the topological atom presents conceptual 

pressure in chemistry modelling. 

4 — Conceptual Pressure and Model Transfer 

The lesson of this chapter is that the source of conceptual progress ought 

to be what theorists pay attention to in characterizing intertheoretic connections 

between domains — i.e. the connection between physics and chemistry. This is 

the sort of characterization that is in the background of attempts to reduce 

chemistry to physics, for isntance. As chapter 2 highlights, model templates 

require scientists prepare phenomena in a way that results in new concepts or 

the alteration of old concepts. Accounts of reduction will miss the connection that 

these concepts in chemistry have to the pragmatic dimension to landing zone 

type conceptualization — at least as theorists classically model reduction, on a 

deductive, or some other truth preserving relationship, between theoretical terms 

across domains. As I highlighted in this chapter, scientific preparation for model 

transfer has connections to the theoretical-level of a domain — remaining 

agnostic to a domain having a theory — the level of scientific activity where 

scientists determine the meaning of the categories in which they use to discuss 

and frame their investigation of phenomena. This section motivates that the 

pragmatic dimension to the introduction of these concepts also impacts this 

theoretical-level by examining the source of disagreement between Bader and 

his interlocutors in chemistry. This debate takes a form that indicates the impact 
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that introduction of concepts like the topological atom or Fisher’s population has 

is not just due to theoretic ideals — like simplicity — but due to the sort of landing 

zone type activity looked at last chapter. Thus, I argue, there exists in model 

transfer and important mechanism for understanding where scientific domain-

specific concepts ‘come from’ in the sense of giving reason for why scientists 

think of phenomena the way that they do. 

Fisher’s transfer of the Ideal gas resulted in impactful debates that lasted 

for decades. Bader’s transfer of the virial theorem also resulted in subsequent 

debates that lasted for decades, but were less impactful in his domain. Instead of 

only being about the methodology of scientific modelling, both debates covered 

philosophical topics like mereology, how to conceive of the constituent parts of 

molecules. For instance, the methodology side of the debates had to do with the 

sort of topics that a philosopher of science would discuss, like what sort 

epistemic achievements modeling ought to accomplish. Bader’s opinion was that 

mathematical modelling in chemistry ought to be centered on a concept of the 

atom that was ‘reducible’ to physics instead of the tricky to reduce chemical 

bond. At the same time, Bader desired what he thought of as intuitive 

mathematical representations in three dimensions instead of Hilbert space. Part 

of his epistemic strategy was to explain the structure of functional groups, a 

major link between theoretical chemistry and other branches of chemistry. These 

methodological and epistemic strategies required a concomitant conceptual 

strategy for the use of the model templates he transferred, identifying parcels of 

electron density as the phenomena that the virial theorem was to be used to 
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model — topological atoms. It is this conceptual strategy that plays a key role in 

the debates introduced with QTAIM. More than, for instance, just QTAIM’s use of 

the virial theorem to analyze electron density, or just the notion of reducibility or 

intuitive representations, it is the conceptual framework that includes ideas of 

how whole relate to parts for the use of the virial theorem that is the source of 

conflict. In short, the source of disagreement is the dynamic between the 

theoretic level and the methodological level in this case of model transfer.  

In the following paragraphs I describe the pragmatic dimension to molecular 

orbital theory’s conceptual strategy. The essence of molecular orbital theory 

modelling is an understanding of electrons as delocalized over the whole 

molecule instead of localized between atoms. This understanding of electrons 

licenses the way MO models make the use of wave functions tractable for 

describing bonds. However, as discussed by Harré and Llored in “Mereologies as 

the grammars of chemical discourses”, this understanding of electronic structure 

comes with a particular mereology of the molecule. “Constituent atoms of 

molecules are not parts of those molecules when we look at the total entity in the 

light of molecular orbitals” (Harré and Llored, 2011, pp. 73). This is because, if 

the criterion for the identity of atoms is the composition of the electron shell, then 

the criterion cannot be met by the constituents of molecules within MO theory 

(Harré and Llored, 2011). MO theory approaches modelling the properties of 

molecular orbitals and bond orders, abstract bonding relations, properties that 

cannot be instantiated by any one atom. Thus, the concept of an ‘atom’ plays a 

particularly ‘background’ role in MO theory’s strategy. 
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As Llored highlights in his later 2014 paper, this feature of MO-modelling 

results from its “whole-part methodology”. For instance, early MO-modelling uses 

the linear combination of atomic orbitals approach, where a molecular wave 

function is made by adding together the wave functions for atomic orbitals. 

However, atomic orbitals do not contribute ‘additively’ to the molecular wave 

function because they come associated with a coefficient in the LCAO 

expression of a molecular wave function. Llored points out these coefficients are 

determined by two integrals:  

(1) the Coulomb integral which is related to the electron energy in a 
unique atomic orbital φ1 or φ2 , and (2) the exchange integral which deals 
with the energetic coupling between the two atoms inside the molecule. As 
this type of coupling exists once the molecule is created, we can conclude 
that each coefficient depends upon the whole molecule, and not solely 
upon its corresponding atom or nucleus! (Llored 2014, 146) 

The representation of repulsion and coupling interactions between, for instance, 

two electron orbitals depend first on the whole molecule, not any property of 

individual atoms. Bader complains of the arbitrariness of overlapping atom 

models like molecular orbital models for the following reason. It does not really 

matter what nuclei either of the orbitals belong to, they are essentially 

interchangeable depending on the aims of the MO-modeler. Whereas, with 

QTAIM, the conceptual strategy constrains the methods for distributing molecular 

properties to parts, narrowing the possible mathematical tools for analysis. Either 

modelling method for assigning properties to parts has its virtues, but their 

attached notions about mereology conflict, thus these notions serve as props for 

debate in chemistry. 
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As Llored depicts Bader’s debates in his 2014 paper, Bader’s conflict with 

MO modelling methodology is due to differences in an approach to mereology 

that is about how this mereology makes possible a method for using the virial 

theorem. Bader’s approach to modelling molecules fundamentally represents 

molecules as constituted by additive parts. Each topological atom, because of 

the applicability of the virial theorem, additively contributes to the properties of a 

molecule. For instance, knowing the potential and kinetic energies of each atom 

in a QTAIM molecule, a chemist knows the energy of the whole. This is not true 

of MO-theory models, where no property of any individual atom maps, additively, 

to properties of a molecule. The transferability of the virial theorem towards this 

sort of mathematical representation depends on QTAIM’s partitioning scheme. 

Since QTAIM partitions charge density into regions of space that meet the 

requirements for virial equilibrium, conceiving of molecules as constituted by 

additive parts is possible. The applicability of the virial theorem depends wholly 

on this conception of a molecule as consisting of spatially well-defined subunits. 

This also happens to constitute the core of Bader’s conflict with MO modelling. 

The notion that atoms overlap one another stems from the use of atomic-
like functions (improperly termed atomic orbitals) in the expansion of a 
molecular orbital or in expressing a valence bond wave function. The 
overlap integral for example, forms the core of Coulson’s book on valence 
(Coulson 1961). The point of the present paper is simple: to demonstrate 
that a return to Dalton’s notion of an atom as a bounded space-filling 
object frees chemistry from the yoke of arbitrary models and definitions 
and places it in realm of physics (Bader and Matta 2012, p. 256). 

Bader emphasizes that his disagreement is not only with MO methods (the use of 

atomic orbital functions) but also the sort of idealizations that make the use of 

these functions possible. The introduction of Fisher’s model featured similar 
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debates that are telling of the reasoning behind introducing new concepts. 

Debates were not that these conceptions are simply ‘right’, — i.e. atoms simply 

are ‘bounded and space filling’ thus other descriptions are false — but that there 

was an epistemic value tied to their use in strategizing the use of transferrable 

models. 

The orbital model has been extended beyond its intended use of predicting 
and providing electronic structure of a system, by associating the forms of 
individual orbitals with the assumed spatially localized pairs of bonded or 
non-bonded electrons, and by attempting to define atomic properties in 
terms of coefficients of atomic-centered basis functions appearing in the 
expansion of molecular orbitals. (Bader 1990, pp. 131) 

 

The orbital model Bader refers to here, the target of molecular orbital 

mathematics, does not license definite assignment of properties to atoms in 

molecules. There exists no one-to-one mapping between features of a molecular 

orbital model and the parts of the molecule as there is with QTAIM. Llored calls 

this molecular orbital’s whole-part strategy. It is a strategy insofar as it involves a 

particular conception of the mereology of molecules that then guides 

approximating quantum mechanics (physics) to make it possible to use in 

chemistry. Ignoring some particularities of electron interactions and three-

dimensional position in the linear combination of atomic orbitals using coefficients 

is one example. MO-theory’s conception of the molecule works as a strategy 

because it limits what sort of mathematical methods are possible to use, while 

affording others.  

Strategies like the one that MO’s conception of the molecule makes 

available for ignoring some particularities of electron interaction while focusing on 
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others particularities impact the meaning of domain specific concepts. Scientists 

take seriously a new conception even if it is ‘just’ useful for making calculations 

easier, or transferring a model. Thus, we ought to understand the meaning of 

these conceptions — the molecular orbital molecule, the topological atom — by 

their connection to transferable mathematics like model templates and the 

strategies that the combination of computational methods and embedded 

concepts license — MO models are widely used because the strategy looked at 

in this section is incredibly useful and easy to apply for describing bond energies. 

A new concept that plays such a role constitutes conceptual progress. The 

lesson here is that an understanding of supposedly emergent concepts — 

molecular orbitals, topological atoms — that pays attention to conceptual 

progress better captures scientific reasoning in these domains than an analysis 

of whether these concepts can be ‘reduced’ to physics.  

Bader spent decades debating chemists on the proper use of physics in 

chemistry for modelling. These debates centered on how certain sorts of target 

systems were not conducive to an ideal use of mathematics from physics. This 

includes the existence of bond related phenomena like resonance and molecular 

orbitals (Bader 1985, 1990, 2009). Bader’s debates reach topics besides 

mereology. For instance, a common criticism of QTAIM is that it promotes a 

conception of molecular structure that dismisses ‘the chemically relevant 

differences between ‘ionic, polar, covalent, H-bonding and van der Waals 

nonbonding and other interactions’’ (Wang et al. 2010). Bader argues that these 

interactions only “differ one from another in the manner in which the electron 
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density is distributed” (Bader 2011). Bader argues that chemists ought to not 

think of ionic, polar and covalent bonds as chemical kinds because QTAIM’s 

conception of electronic structure makes an alternative tractable use of 

description of molecule energy. Another recent debate is whether chemists ought 

to consider Pauli repulsion a force. From the lens of QTAIM’s conception of the 

atom, ‘Pauli forces’ do not exist (Bader 2006). This makes bond methods for 

modeling the structure of molecules using physics incoherent (Poater, Solà, and 

Bickelhaupt, 2006). Whether to conceive of the structure of molecules as due to 

Pauli forces or not depends on notions about the constitution of molecules. 

Conceptions about what sort of thing transferable mathematics should target is a 

sticking point in these debates about ontology and the methodology of model 

transfer.  

Paying attention to what I have called conceptual progress offers a 

perspective where we can better understand Bader’s debates. These debates 

are not simply about the meaning of concepts and/or what concepts more closely 

align with epistemic standards like ‘truth’. For instance, the debate surrounding 

molecular orbital models was not simply conceptual, having to do only with how a 

chemist ought to think of mereology, or purely methodological, what sort of 

mathematical methods a chemist ought to use in modelling, but an entwinement 

of the two. The entwinement I think is captured by the idea that transference of 

mathematics — model templates — requires conceptualizing to make its 

application possible. It is not any conceptualization but a conceptualization that 

makes a particular model template possible to use. This activity introduces 
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complexity into model transfer. Bader’s QTAIM consists in not just a use of new 

mathematical methods for modelling the state of molecules but a novel ‘whole-

part strategy’ in chemistry. QTAIM’s whole-part strategy depends on a certain 

mereology of molecules. The target for its use of transferable mathematics — the 

topological atom — must be conceived of as having an additive relation between 

parts of the molecule and the whole molecule. Understanding the dynamic 

between certain targets, and the associated conceptualization of phenomena, 

and model template transfer extends to an understanding of conceptual 

innovation. 

5 — Conclusion 

Characteristic of both cases of model transfer examined in this paper is 

the preparation of domain specific phenomena. Scientists invent a new kind of 

thing for application of a model template. Epistemological and methodological 

debates result from the conceptualizing of this thing. These debates involve 

discussion about what sort of things mathematical modeling ought to target — for 

instance, whether it is the spatially overlapping molecular orbitals or the spatially 

bounded topological atom. Each choice entails a suite of idealizations and 

assumptions. Are the phenomena of chemistry mereologically additive or not? 

Are atoms transferrable subunits of a molecule? These questions are implicit in 

the preparation done to make transferrable mathematics useable because of the 

aligning done by scientists between phenomena and model template concepts. 

Model transfer instigates conceptual pressure. The concept of conceptual 

pressure has a slightly metaphorical use; I wish to characterize through using it 
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that the increase in tension amongst scientific concepts in a domain with the 

addition of new conceptualizations of phenomena is similar to the changes that 

take place in an enclosed gaseous system when one adds new molecules. At 

least in the cases I have covered so far, and I suggest this can cover much of 

modeling in chemistry, the reconception of domain-specific phenomena in order 

to make possible the application of a transferable model template is the driving 

force behind conceptual pressure. The reconception in order to make sense of 

the new sort of target (model/system/phenomena) comes entangled in a rich web 

of assumptions. This motivates analysis of conceptual developments in chemistry 

through the lens of model transfer.  

In QTAIM’s case of model transfer, Bader introduces an alternative 

conception of the constitution of molecules embedded in the topological atom as 

a target for transferable mathematics. This new conception becomes the 

centerpiece of debate about ontology and methodology like the case of Fisher’s 

model  

Philosophical discussion on model transfer identifies these features as 

landing zones. They are a feature in modeling that functions to make possible the 

transfer of a model template. They also function as a target for a model 

constructed from a transferable template. These two functions are related. A 

model template’s use in a new domain requires a target that is ontologically 

compatible. A landing zone is the result of reconceiving domain specific 

phenomena in a way that makes phenomena ontologically compatible with the 

conceptual framework embedded in a particular model template. For instance, 
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embedded in the virial theorem model template is a conceptual framework that 

makes the mathematics meaningful only for things in stable equilibrium. As a tool 

for analyzing charge density in chemistry, these conditions are met by Bader’s 

atoms. Both the topological atom and the virial theorem answer ‘what sorts of 

things exist?’ with ‘things that are in stable equilibrium’. Thus, they are 

ontologically compatible. In the case of QTAIM, the topological atom is the 

feature that functions to make possible the application of the virial theorem in a 

density functional theory framework. 

Analysis of landing zone features like the topological atom tells a story of 

conceptual progress by model transfer in the Fisher model and QTAIM cases. A 

significant source of mathematical modelling in chemistry is the transfer of 

mathematics from physics. Existing theory on model transfer provides a 

framework for analyzing the thing that is transferred — model templates — and 

the thing to which transferrable templates apply — landing zones. The latter 

becomes a source of new scientific concepts. This is an account that still needs 

refinement, but, as I have argued in this chapter, there exists promise in applying 

the framework in characterizing conceptual pressure in chemistry. For instance, 

how do contrasting mereologies of the molecule arise? They are the result of 

model transfer, the reconceiving of domain-specific phenomena in making 

transferable mathematical tools applicable. 

The sort of analysis performed in this chapter provides an avenue for 

understanding conceptual innovation that does not rely on an account of 

‘scientific theory’ or models of reduction. In the case I look at in this chapter, 
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model transfer imparts conceptual change at a smaller scale. Models of 

intertheoretic-reduction like Nagel’s are now widely rejected as overly 

simplistic by philosophers. My chapter 3 suggests a source of difficulty for 

reduction is that, at least with chemistry, the intertheoretic connection is 

complicated by the sort of conceptualization required for model transfer. To 

elaborate, consider Nagel’s model of reduction. It requires postulating scientific 

theories as syntactic objects. Such models of reduction also require 

postulating that domains then have logical relation between laws (Nagel 1949, 

1961, 1970). This is a problematic conception for sciences like chemistry that 

do not have general scientific laws in the way that physics does — by general, 

I mean full coverage in the sense of Hendry (2012). Chemistry laws are of 

limited scope. Hence, Nagelian type models of reduction need a notion of 

bridge laws to justify ‘a reduction’. Derivability of laws and connectability 

through bridge laws are the two necessary conditions for reduction. However, 

as I show in Chapter 2 and 3, the concepts that a reductionist would like to 

explain through a reductionist model — the chemical bond is such and such 

phenomena from physics — have an inexorably pragmatic dimension. The 

meaning of concepts like the chemical bond are complicated by the reason for 

which the concept is invented, to make model transfer possible. 

The connection between scientific domains examined in this chapter 

consists of a transfer of a model template and the introduction of new notions 

that make the model template useable. Scientists react to the concepts 
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embedded in model templates, preparing phenomena so it makes sense to 

use the template to model in their domain. Fisher did this with the introduction 

of the ideal gas law. Using the ideal gas law’s distribution of velocities method 

to model the inheritance of traits within a species required Fisher to prepare 

the domain of evolutionary biology for seeing species as homogenous kinds 

and not composed of individuals. Thus, through model transfer, the spread of 

computational methods like that seen from statistical mechanics to biology in 

the ideal gas law case influence biologists’ conception of species. 

In Chapter 3, I also mention how methodological advantages further 

motivate scientists to accept the new concepts introduced through model 

transfer as legitimate. With QTAIM, the methodological strategy afforded 

through transferring the virial theorem was the ‘whole-part’ relationship 

between atoms and molecules. Scientists using QTAIM could identify 

molecular properties from information about electron density (or ‘simply’ from 

the volume a topological atom takes up within a molecule). Molecular orbital 

and valence bond models promote different strategies; these strategies allow 

organization of ‘electronic’ information based around bonds. In the next 

chapter, I examine in more detail how scientists use things like model 

templates, or models, to organize information, or how a model could bring 

about a ‘strategy’. Bringing about a new strategy or way of organizing 

information is a major epistemic achievement. 
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In the next chapter, I create an account to characterize more 

specifically the epistemic achievement to do with model transfer. This account 

uses problem solving in order to explain the epistemic value of model transfer. 

Scientists use models to frame investigations. And, in Fisher’s case, scientists 

also use models to reframe an investigation that was spinning its wheels — 

biologists at the time were considering getting rid of the notion of natural 

selection because of the difficulty in characterizing it statistically. Scientific 

investigations are a sort of problem-solving, and framing is a type of activity 

necessary for problem solving. How scientists frame an investigation makes 

possible the use of different problem-solving strategies. Problem solving 

literature refers to these problem-solving strategies as heuristics. Thus, my 

account ties a models’ epistemic value to its affordance of heuristics when 

used by a scientist to frame an investigation. For example, suppose a chemist 

wanted to investigate into why certain molecular geometries were prolific. 

Bader’s QTAIM model would allow a rather efficient strategy for predicting 

bond angles and bond lengths from electron density. Thus, scientists could 

frame, using QTAIM, the investigation around electron density information 

whereas this is not such an efficient strategy coming from a valence bond or 

molecular orbital model. My next chapter elaborates in more detail what I 

mean by framing and its relationship to information. 
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Chapter 4: Problem Solving and Epistemic Value 

1 — Introduction 

There has been some history of focusing on problem-solving in the 

sciences in attempts to understand scientific progress. I wish to take the strategy 

of shifting focus onto problem-solving from the accounts of progress to use in 

accounting for the epistemic value of modelling. Among the well-known attempts 

regarding progress are Kuhn and Laudan (Kuhn 1962, Laudan 1977). Both used 

the solved problem instead of the established truth as the unit of scientific 

achievement for their accounts of scientific progress. For Kuhn, the scientific 

community spends most its time pursuing a sort of puzzle solving (Kuhn 1962, 

pp. 35). Roughly, scientists take in the exemplar puzzles in their field, develop a 

know-how for solving similar puzzles to these exemplars, and go about adding to 

their discipline's stock of solved puzzles — an intra-discipline measure of 

success. Kuhn’s conception of scientific activity was in opposition to the depiction 

of science at the time of the empiricist tradition. Again, roughly, this tradition 

depicts science as operating by making predictions (in the form of hypotheses), 

designing experiments based on those predictions, and inferring from the 

veracity of predictions the truth of theories (Hempel and Oppenheim 1948, 

Hempel 1965). Within this image of science, the community of scientists were 
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either chipping away at the discipline's previously thought to be true theoretical 

generalizations or adding to them on the basis of confirmed hypotheses. However, 

this special epistemic authority to access and modify what the discipline held to be 

core 'truths' was unrealistic according to Kuhn, who compared this image of science 

to learning about national culture from a tourist brochure (Kuhn 1962). This access is 

only available in times of unprecedented epistemic turmoil. Most scientists work to 

solve problems, puzzles deemed pursuitworthy by their similarity to paradigmatic 

cases instead of determined to be pursuitworthy in virtue of explicable rules. 

Laudan's account of scientific inquiry similarly prioritizes problem-solving in 

analyzing the reasoning for the pursuitworthiness of theories (Laudan 1977). Laudan 

thinks this reasoning is about the capacity of a research tradition to solve empirical 

problems rather than about justification from empirically verifiable truths. By shifting 

focus from justification of discoveries to promise of problem-solving, his proposed 

epistemology of science offers an account of scientific rationality that prioritizes the 

aspect of scientific reasoning that is ‘forward-looking’ in the sense that it is reasoning 

about how to proceed forward with an investigation despite great uncertainty. The 

upshot of accounts like Laudan’s and Kuhn’s is that they afford the characterizing of 

scientific reasoning in cases where there is not enough evidence to justify a theory’s 

choice but perhaps there is good reason as far as promise for problem-solving or 

heuristics.  

The virtue of Kuhn’s and Laudan’s accounts is that they bring into perspective 

everyday scientific inquiry. I wish to use a similar reprioritization of problem-solving 

for describing what models do. Seeing scientific inquiry from the perspective of 
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prioritizing problem-solving is accounting for the epistemic goodness of scientific 

activities — experimenting, modelling, hypothesizing, theorizing — by their 

contribution towards either solving problems or framing problems so that they are 

easier to solve. By pursuing reprioritization of the value of problem-solving in 

accounting for the goodness of modelling, I do not wish to deny that scientists ‘seek 

the truth’ in inquiry. Instead, developing such an account shifts the focus of 

philosophical analysis from justification and verification to the reasoning that 

scientists often use to work, the use of heuristics to decide on pursuitworthy 

activities in spite of uncertainties. Taking this shift in perspective from general 

rationality of science to the epistemology of modelling can be helpful in illuminating 

what models do in science. Broadly, models make problem-solving easier. They 

simplify computational tasks, help the setup of experiments, provide reason to 

pursue a path through a problem space and make the oceans of data navigable. 

First and foremost, scientists use models to solve problems. The lens of truth-

first epistemology offers cognitive achievements as the scientific reason for 

modelling — learning about the world, understanding, explanation. However, it is a 

fairly uncontroversial view on models themselves that they are essentially distorting 

of the world. Models distort by consisting of assumptions about the world that 

simplify complex systems, postulate entities and mechanisms for the sake of 

computational ease, or otherwise constrain the representation of phenomena. To 

represent usefully, a model must be dissimilar to its target — a fullscale map of 

Britain would be useless for navigation — and this way in which a model becomes 

useful is the real trick to a model’s value to scientific inquiry. Truth-first epistemology 
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sees model distortion as either an obstacle to epistemic value — a Galilean 

Idealization waiting for computational power to catch up to demand (Weisberg 2007) 

— or a side-effect of value — i.e. irrelevant features to the explanatory task 

(Strevens 2008, McMullin 1968). I use a problem-solving lens on the epistemic value 

of modeling to offer an alternative account, placing the distorting features of 

modeling closer to the positive practical goals of scientific inquirers. 

In this Chapter, I use an information processing framework for characterizing 

problem-solving borrowed from cognitive science and develop this framework to 

analyze a major achievement in science, the discovery of Neptune. The upshot is a 

truth agnostic depiction of modelling that captures the creative, intellectual activities 

of scientists. Scientists are inventors, of worlds, mechanisms, models, where realism 

or realistic-ness is left for debate after scientific action has been taken, for the 

purpose of solving the problems at hand. Science is mostly a forward-looking 

intellectual endeavor. An approach that paints such a picture of scientific modeling 

gets at the epistemic standards of scientists. 

The epistemic achievements resulting in the discovery of Neptune were borne 

out by the use of rather inaccurate models. Therefore, the achievements are poorly 

characterized if one looks mostly at the model-world relationship — how scientists 

learned, understood or explained something about Neptune through these models. 

Instead, what models of Neptune allowed scientists to do is understand with greater 

certainty how to frame the problem of Uranus’ anomalous orbit. There exists a 

connection between epistemically successful problem solving and having a well-
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framed problem in the sciences. Well-framed problems allow for the use of heuristics 

and community-borne wisdom. 

To characterize having a well-framed problem as an epistemic achievement 

to which models contribute, I will be borrowing some conceptual tools from cognitive 

science accounts of problem-solving. These accounts formalize the cognitive 

process of problem-solving towards characterizing the activity as a search of a 

problem space. I will be using their terms to elaborate on scientific problem-solving. 

This elaboration involves first a brief detailing of Simon and Newell’s information 

processing account of everyday problem-solving (Simon and Newell 1972), a 

philosophical retooling of their concepts towards the purpose of analyzing scientific 

decision-making to do with modelling, and then an application of these concepts to 

the historical case of the discovery of Neptune. 

2 — Problem-solving as Information Processing  

In this section I will introduce the information processing (IPS) account of 

problem-solving and indicate its affordance in accounting for the problem-solving 

value of scientific modelling. In their seminal work Human Problem-solving, Allen 

Newell and Herbert Simon (1972) introduce an information processing account of 

what they call “human problem-solving”. Their account provides a mathematical and 

computational depiction of problem-solving. They define a problem as any instance 

when “someone wants something and does not know immediately which series of 

actions they can perform to get it” (Newell and Simon 1972). To solve a problem, a 

problem solver engages in a mental search of a problem space for the state 

changes to the task environment they can bring about leading to the desired result. 



82 
 

The task environment is the problem-solving situation. It consists of the object(s) of 

interest to the problem solver and their properties, properties including the capacities 

of these objects to change with a manipulation of the enviroment. Problem solvers 

represent the task environment using a representation similar to network graphs, a 

problem space, where nodes represent possible states of the task environment and 

edges represent possible state changes (i.e. transition between possible states). 

Therefore, the problem space represents possibilities as well as the thing in itself 

and since the problem space is a representation there is a possibility of failure. 

Problem spaces reflect what the problem solver believes about the possible changes 

to the task enviroment. The problem space consists of an initial state, states that the 

problem solver could practically bring about by manipulating the task enviroment and 

a (or several) goal state(s). The problem space is a representation in that it contains 

information encoded in states that is about something — for example, the 

information encoded in a state in the problem of navigating a mall could be given by 

a series of questions with yes or no answers about the position of the navigator in 

the mall. 

A problem-solving state is a complete description of the features of the task 

environment the problem solver can manipulate. It is complete in that it encodes all 

the information relevant to the problem-solving. Relevance is determined by the 

problem-solving agent’s framing (in the sense of interpretation) of the constraints 

that define the problem; more on constraints later. The state is a description in that 

the information consists of answers to yes/no questions about the thing(s) being 

manipulated by the problem solver. The state encodes the properties of the thing(s) 
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that the problem solver is manipulating to solve the problem — e.g., in navigating the 

mall the state is the position of the navigator with respect to the mall described by 

the set of questions, for example, "Am I at gamestop? Yes/no, Am I at the flower 

shop? Yes/no, etc." The goal state is the state of the problem-solving enviroment 

that meets the constraints on the solution to the problem. The problem solver does 

not have the solution to the problem if they just comprehend the goal state. A 

solution to a problem is a path through the states in a problem space that begins at 

the initial state and ends at a goal state. 

The assumption for this branch of cognitive science is that when problem-

solving, humans search this problem space for solutions similar to a Turing machine. 

To make such search possible, the information processing theorists argue, problem 

solvers must find ways to limit their search to a computable amount of detail. This 

literature calls such limiting framing. I will go into greater detail on framing later in 

this paper. But, in short, framing is the grappling with ‘conceptual’ issues with the 

problem. An example is changing what information the problem space states encode 

so that a particular sort of heuristic is useable. 

Simon later uses IPS accounts to understand the psychology of scientific 

discoveries (Simon 1999). I wish to borrow upon this line of thinking for depicting the 

non-truth-related epistemic affordance of modelling in science. Heuristics are 

strategies for searching a problem space. A classic example is ‘backup avoidance’, 

where a problem solver chooses the next node of a problem space (next state to 

bring about) based on whether their path has led them through this node before. As 

a heuristic, backup avoidance is a rule of thumb; like all heuristics, the rule directs 
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the agent’s preference in searching but does not act as a hard constraint. With back-

up avoidance, the agent is to prefer state changes that do not bring about nodes 

already visited in the problem space, but such choice is always possible while still 

following the heuristic. To make backup avoidance useful, the problem space ought 

to encode information that makes the preference conceivable to the agent. Whether 

or not a strategy is useful depends on framing as much as it depends on the 

problem at hand. A poorly framed problem can make an otherwise useful strategy, 

useless. With backup avoidance one can imagine an agent who is just not paying 

attention to enough detail in framing the problem space states to distinguish 

between already visited states and novel states — this may an unrealistic example 

since it would require an agent to have a single node problem space, more detailed 

examples explored later. 

Beyond psychology, heurists play a key positive epistemic role in making 

scientific epistemic achievement through problem-solving possible. In order to be 

useful though, a problem needs to be framed well enough that for the solver to 

deploy these strategies. In a way, having a well-framed problem is an epistemic 

achievement because it affords the use of strategies and community born wisdom 

for handling problems. Much of community born wisdom is in the form of tacit rules 

on how to approach problems that parents (for instance) teach children by doing. 

Most people were never were taught explicitly to use something like backup 

avoidance. 

 The person who knows more precisely what they need to know (but do not 

yet know) is able to use framing more successfully. The mall navigator in the 



85 
 

previous paragraph knew that they needed to know the stores they were passing 

instead of the smell of the air or a trillion other details our senses can discern in an 

enviroment, turning a time-consuming impractical meandering into a decisive hunt. 

After all, if one spends their time clothes shopping spending three hours 

meticulously wandering the parking lot looking for their store, they may as well not 

even go. Similarly, if their problem space encodes the details of every tile and every 

footstep they take in the mall, they would find themselves quickly overwhelmed. One 

way to think of good framing is that it is finding the successful compromise between 

too much information and not enough information to make the strategies we have 

inherited through generations of learning to be human useable. 

There is a scientific equivalent to this imperative that is epistemic. We do not 

have eternity to inquire. In this sense, formulating a well framed scientific problem is 

a major epistemic achievement, one that is often borne out by a new application of a 

model through model transfer. This chapter will form a basis for explicating what is 

especially epistemically valuable about activities like model transfer. To have a well 

framed problem implies one knows to a significant extent what one needs to know. A 

difficulty in this framework borrowing is that scientific problem-solving involves 

complexities usually not found in the everyday variety studied by cognitive scientists. 

Scientific problems are often ill-defined; e.g. there may exist no algorithm for 

determining whether something is a solution (Reitman, 1964, Simon, 1973.) Goal 

states are uncertain until a solution has been found. For example, that Uranus’ 

peculiar orbit was due to another planet was not known until well into the scientific 

investigation.  
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With this complexity in mind, at its most general, a scientific problem is a 

demand for something and constraints on what counts as fulfilling the demand 

(Nickels 1988). The solution is a path through problem space states that begins at 

an initial state and ends at a goal state. The goal state encodes information about 

the constraints on the problem. One can understand the constraints as formulable in 

terms as a set of questions that have yes or no answers. — Is the store a clothing 

store? Is it named Belks? Does it have great deals? Is the Belks in the mall I am in? 

This set of questions are the constraints on the solution. These constraints are part 

of what a problem-solver uses to define the problem space that they search — ie. 

restricting the nodes of the space to ones that encode information about location 

relative to stores instead of floor tiles or smells. A problem space typically consists of 

nodes that encode the states of affairs that the agent can practically bring about in 

the task enviroment — e.g. navigating a mall. A human problem-solving agent 

cannot teleport to the store, so the problem space would likely not have node where 

the agent is at the entrance directly connected to the node encoding the state of the 

mall where the agent is at the store.  

For everyday problem-solving, there is usually more certainty about the goal 

state. For scientific problem-solving, the goal state is usually less ‘fully’ 

characterized, and the agent’s problem space often is more often shared by a 

community of inquirers. Some everyday problem-solving involves community inquiry. 

Science just happens to be a complex enough of an activity with a great deal of 

uncertainty about the goal state of problem-solving. This results in heuristics being 

trickier to use. Understanding the way in which scientific problems make possible 
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community inquiry is one of the side goals my proposed account can shed light on. 

The focus in this paper is on how scientific problem solvers frame problems so that 

heuristics are useable. 

3 — Problem-Solving With a Derivation 

To help illustrate the relation between framing and heuristic use, consider an 

example of problem-solving most philosophy students are quite familiar with, doing 

derivations in formal logic. A student will be given an argument in a formal language 

and asked to use a proof system, rules of inference, to derive the conclusion from 

the premises. With a derivation the goal state is more certain for the solver than I 

suggest a scientific problem would be. They know what the last line needs to be and 

that it has to be licensed by a rule of inference. There is some uncertainty about 

what rule but not the syntax of the line. A typical derivation problem will tell the 

student exactly what the final line must look like. However, just writing the conclusion 

down does not count as a solved problem. This is because a derivation only counts 

as a solved derivation if the operation follows the constraints given by the rules for 

symbol manipulation by the proof system and the particular problem at hand. A 

solved derivation must include a path from the premises to the conclusion consisting 

of a series of formal sentences where each sentence is licensed according to a rule 

of inference applied to some sentence in the series before it. 

At first glance it would seem there is not much similarity to navigating a mall. 

A derivation is done typically on paper. Navigating a mall takes place in physical 

space. The constraints on a derivation are a set of rules for symbol manipulation. 

The constraints on finding a store are physical. However, typically, people do not 
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perform the task of navigation by physically trying out all options until one works. We 

think through the problem. 

Cognitive scientists would rightly point out that there is a similarity between 

these two seemingly different activities when viewed as searches of a problem 

space. In navigating a mall, one is mentally trying out different paths through the 

various places one can find oneself in the mall. If in this particular mall a hallway 

contains, in sequence, a gamestop (G) between the flower shop (F) and the Nike 

store (N), and we are at the flower shop then a valid path would be F -> G -> N. G -> 

F -> N is not a valid path from any navigation state of this mall hallway. If the 

navigator thinks it is a valid path then they need to update their conception of what 

stores are where or face likely future difficulties in solving navigation problems. This 

is an issue of a problem solver struggling to map constraints onto their problem 

space. Even though this is a problem about navigating a physical space, the activity 

of the good problem solver is mostly occurring in a 'mentally' searchable space. A 

good problem solver is setting up this space with the right constraints or discovering 

the paths leading to a solution efficiently. 

Still, only having the right idea of valid paths is not going to make one a 

successful navigator. Consider the situation where a mall is a figure eight with two 

loops. In this case we could navigate all day long around valid paths through the 

bottom loop while our store remains unfound in the top loop. This seems easily 

solvable from the perspective of our experience navigating but from a perspective of 

nowhere there is no in principle reason to navigate away from places that we have 

already been. 
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Cognitive problem-solving accounts suggest that what makes a good problem 

solver then is the ability to use heuristics to narrow down the set of valid paths when 

searching a problem space — a valid path through the problem space is simply a 

path that uses the space’s existing nodes and edges. To experienced mall 

navigators, if we found ourselves coming across the same stores again and again, 

we would probably try a different path. This would be to apply a more sensitive 

version of backup avoidance where we avoid states like the ones we have already 

been through — similarity avoidance. A heuristic is a suggestive as opposed to 

demonstrative rule on how to search a problem space — a ‘rule of thumb’. It is 

suggestive in that, unlike a demonstrative rule, like a logical rule, heuristics point 

more ambiguously to a conclusion. Heuristics are also suggestive in that they do not 

guarantee something about the problem state change (that for instance the path is 

going to be a solution path); this is unlike how a rule of inference guarantees that the 

next line is entailed by the ones that the rule is used on. Using similarity avoidance 

requires one to frame the problem in a way that encodes information that would 

enable one to assess the similarity of each location visit in the problem space. 

Backing up is not prohibited by this heuristic. So, one can think of heuristics as 

applying desirability weights to the edges of the problem space graph. To have the 

similarity avoidance weighting be useful there needs to be the right framing, one that 

allows the recognition of the similarity of states with the right amount of detail. There 

are two ways of seeing this framing. The first is a setting up of the agent problem-

solving space to include only paths that take one through each store once. Or, more 

realistically to our typical non-optimal mall navigation, finding ones' navigation is 
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taking one past the same stores and reframing the problem space to encode 

information that would allow for a strategy like similarity avoidance. 

Likewise, a derivation solver is also searching for paths through the possible 

sentences one can create by manipulating symbols through application of rules of 

inference. Each new sentence must be licensed by a rule. For any derivation 

problem, the paths are constrained by sentences one starts with and the rules of 

inference for the language one uses. Take for example a relatively simple derivation 

where a beginner logic student will be asked to demonstrate through the use of a 

proof system that it is a valid argument. If one is given the argument: [premise 1] Fa 

-> Gb, [premise 2] Fa & Gb, [conclusion] Gb, then the premises and the rules of 

inference combined define the complete problem space for this derivation problem. 

One can write down an infinite series of sentences (and still solve the problem 

eventually) exploring all possible valid conclusions from these two sentences. No 

one has the time for that. A slightly practiced derivation solver is going to rightly 

constrain their search of paths to ones that involve using rules that have to do with 

the (->) and (&) symbol. A competent derivation solver will have a problem space 

that prioritizes rules that eliminate connective symbols. In the case of a derivation, 

each node of the problem space represents a unique series of formal sentences and 

each edge connecting a node represents an additional line brought about by a rule 

of inference usage. 

Derivation 1  
 
 Nodes: derivations in which the first two lines are premises 1 and 2 (justified 
by the rule ‘P’), following by N many lines (for any N—this space is infinite) 
each of which is a wff with a correct justification. 
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Goal states: any node in the space whose last line is Gb 
 
Edges: for each node in the space with N lines, there is an edge to every 
node in the space with N+1 lines such that the two nodes match on their first 
N lines. 
 
In this problem space  
Node 1a: 
 

1. Fa → Gb P 
2. Fa & Gb P 
3. Fa 2, &E 
… 
#. Gb ??,??, →E 

would have an edge to the Node 1b (part of a suboptimal path): 
 

1. Fa → Gb P 
2. Fa & Gb P 
3. Fa 2, &E 
4. Gb & Fa 3, &I 
… 
#. Gb ??,??, →E 

 

For navigating the mall, a state could be a position that the navigator is in with 

respect to the mall. Typically, a navigator represents this state as proximity to stores, 

or other landmarks, so this information is typically encoded as questions about which 

landmarks are nearby. For both these instances of problem-solving, a solution is a 

path through these states that end in a goal state. Hence there is a distinction 

between ‘the goal state’ and ‘the solution’. A derivation is not counted as solved by 

writing down the conclusion just the same as navigating a mall is not solved by 

finding oneself at the store one is looking for — it would be more accurate to say that 

the problem has gone away. The goodness of the solution is connected to the 

efficiency of the path. A fifty-line proof for the derivation mentioned above counts but 

it is not a 'good' derivation even though it counts as solved. 
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What makes the difference between a good derivation solver and a bad one 

is determined by their ability to use heuristics. One heuristic mentioned is the one 

that prescribes preferring one type of rule when navigating the problem space 

possibilities — preferring elimination rules if the conclusion has fewer connectives 

than the premises. So, this heuristic would suggest to the competent problem solver 

of Derivation 1: ‘do not follow the edge from 1a to 1b’. This heuristic does not count 

as a constraint though. Rule preference does not determine what counts as a goal 

state and does not otherwise determine which paths count as valid. One would not 

be a good deriver if one followed this rule without thinking carefully. Some problems 

can only be solved by introducing negations or more connectives as part of the path 

to the goal state for isntance. 

To use the rule preference heuristic, however, does require certain framing. 

The deriver has to encode information about not just what rule is useable on a 

sentence but also what type of rule (elimination or introduction). This is a relatively 

easy distinction to make once one knows a little bit about the proof system. Framing 

a scientific problem so that the problem solver encodes the right information for 

heuristic use is a much more complex task because the problem spaces are usually 

much more complex and the problems themselves are not as well defined as a 

derivation. There is not a formal language with its own rule system for scientific 

investigations (yet!), and I would suggest such a language would be undesirable. 

4 — Framing and Constraints 

Framing is an activity where an agent characterizes a problem space using 

constraints. There are two ways constraints characterize a problem space. First, a 
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bit about the verb characterize. In the sense I use it here, characterize means to 

describe the important features of a thing. So, constraints characterize in the sense 

they are descriptions of the information encoded by the problem space states. For 

instance, the states of a logic derivation are about sentences in a formal language. 

There are explicit rules to doing derivations; some are symbolic such as the rules of 

inference for a proof system, some are expressed in a natural language — e.g. “a 

line must be licensed by a rule of inference". These rules determine the edges of the 

problem space. No valid path can consist of edges that are not a rule of inference. 

There is also an implicit dimension to such constraints, and this is the dimension 

where framing is an intellectual and creative activity is required. Such explicable 

rules or constraints provide guidelines for human problem solvers on what 

information is more or less relevant to solving the problem. In the derivation 

example, the problem solver most likely will interpret the “a line must be licensed by 

a rule of inference" rule that the states to attend to have to do with line information 

and rule information. This agent’s problem space nodes are about 'lines' of symbols 

and 'rules of inference'. So, constraints are explicable descriptions on valid solutions 

to a problem. But constraints also have an implicit dimension in that they tell a 

problem solver what information to represent — i.e. locations in a mall, rules of 

inference used etc. They tell a problem solver this but this implicit dimension to 

constraints also underdetermine the information encoded by the agent’s problem 

space.  

There are two senses of framing corresponding to these two dimensions to 

constraints. To reframe a problem an agent can change (drop, add, or amend) the 
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nodes of their problem space by changing the description of the problem. This sort 

of reframing is a change in the description of the problem — i.e. "I am searching for 

the store in the top half of the Mall instead of the whole Mall". The other sort of 

framing involves changing the sort of information that nodes encode. With this type 

of framing, an agent changes the interpretation of the constraints to a problem. So, 

for instance, with the rule "All lines must be licensed by a rule of inference" one 

might keep track of just individual rules or if one is having a hard time deploying 

certain heuristics, one can include a rougher grained categorization of the sort of 

rule used (elimination or introduction rules). Even though it is somewhat obvious to a 

human derivation solver that these two classes of inference rule exist, for a machine 

search there would have to be two classes explicitly defined as containing the five 

elimination rules and five introduction rules — or perhaps the derivation solver is 

using a proof system where the rules go by their latin names and thus there exists 

the extra conceptual work of recognizing some rules as eliminating connective and 

some rules as introducing connectives. Another way to put this implicit dimension to 

constraints is that it consists of the entities and properties implied to exist in the task 

enviroment by the explicit description. 

Finally, another important action from work on problem solving to translate to 

this philosophical framework is registration. Registration in this literature is a sort of 

framing. It is a sort of framing that falls under the second sense I discuss in the 

previous paragraph, when a problem solver changes the information that a problem 

space’s nodes encode. Registration is the making of a connection between some 

node in the problem space to an empirical fact in the task enviroment. This 
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connection then counts as framing because it requires the problem solver to refresh 

the problem space, either adding the empirical fact as a sort of information encoded 

by nodes, or if this sort of information was already encoded, updating the information 

encoded in nodes. The classic example of this activity in cognitive science literature 

is the use of the “you are here arrow” in a mall map to connect the problem solver’s 

problem space to their actual location; often registration involves the use of 

representations like maps in order to accomplish this sort of connection. In this 

instance, registration encodes a node in the problem space with information about 

the location of the problem solver — “Is the problem solver here? Yes” — and all 

other nodes with ““Is the problem solver here? No”. A general way to look at 

registration is that it is a framing that problem solvers often use to ‘refresh’ the 

problem space information with respect to new empirical facts made available to the 

problem solver or changes made by the agent to the task enviroment. To contrast 

registration with framing in general, problem solvers will change the information 

encoded by the problem space by interpreting rules for a game or instructions. This 

is not a registration because there is no problem-space node to empirical fact within 

the task enviroment connection. As a sort of framing, problem solvers also use 

registration to give structure to a problem space so that heuristics are useable. This 

paper will explicate such an instance of registration in the next section. 

5 — How Framing Matters 

For some detail on how framing matter for heuristic use, consider a 

comparison between two games well studied by cognitive science literature, tic-tac-

toe and number scrabble. An agent’s framing is impactful of the agent’s ability to 
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problem solve. Tic Tac Toe is a simple to understand game; for the majority of game 

players, agents are usually searching through the same problem spaces. For 

instance, the goal state is commonly grasped amongst game players, three of the 

player’s symbols exist in a row in the game play area.  

Testing whether the constraint of three-in-a-row is satisfied involves 

answering the following set of questions {“Are my (Xs or Os) in a row across the top 

three cells?”, “Are my (Xs or Os) in a row across the middle three cells?”, … etc.}. A 

problem space according to this win condition constraint would be the game tree of 

tic tac toe, a directed graph that ‘begins’ with the more limited number of initial game 

moves and branches off to include all end states. Thus, the nodes encode answers 

to yes/no questions about the state: “Is there an X on the top left cell and an O on 

the middle cell?” along with answers to yes/no questions about potential states “If 

agent 1 put an X on the top left cell will the game state consist of an X on the top left 

cell and an O on the middle cell?”. Nodes of this problem space represent the state 

of the game and edges represent the moves to potential states; a player is not 

allowed to erase their moves so edges leading back to the initial states do not exist. 

Framing matters for even simple games like tic tac toe. This becomes 

apparent in the attempt of cognitive scientists to understand how problem solvers 

transfer problem-solving methods to new problems. One such case is the transfer of 

a strategy known as the ‘corner move’ from tic tac toe to a similar game, number 

scrabble. The game play area of number scrabble consists of a list of 9 numbers and 

the game play consists of each player taking a turn picking a number. Once a 

number is picked it is crossed from the list. The game ends when a player has 
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chosen three numbers that add up to 15. To most players who are familiar only with 

tic tac toe, there will appear to be not much similarity between the two games. 

However, their game trees are isomorphic, thus there exists a ‘complete’ problem 

space that is shared by both games. It is complete in that it comprises all possible 

game states and moves.  

Corner move strategies require the player to recognize that a particular state 

counts as a ‘corner’. One way number scrabbles players come to this recognition is 

the ‘magic square’ setup number scrabble. One can think of this setup as the use of 

a simple model to interpret information about the task enviroment. (Figure 4.1) 

 

Figure 4.1 A magic square is a grid where each cell is filled with a different positive 
integer and the sum of integers in the rows, columns and diagonals of the square 
are equal. 

A game player using this magic square model can register certain branches of the tic 

tac toe game tree (problem space) to the task enviroment of number scrabble. This 

registration encodes the empirical facts of ‘2’, ‘6’, ‘4’, and ‘8’ written as symbols in a 

game play area as ‘corner states’ in a problem space — in the problem space these 

states would have the information “Is this a corner? Yes” encoded. This makes it so 

the player can frame the problem space for use of the corner move heuristic in the 

same way our derivation solver must recognize certain states as involving a type of 
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rule in order to use more advanced derivation solving heuristic. However, in this 

case, the categorizing of states is a mentally difficult task that would require not 

insignificant mental math while simultaneously doing the problem-solving task. The 

magic square offloads this cognition allowing for simpler identification of corner 

states so that the problem solver can correctly encode this information and then use 

the corner move heuristic. Framing matters and models like the magic square can 

aide by giving reasons for encoding information into problem spaces. Scientists use 

models similarly to frame their inquiries. 

6 — How Framing Matters in Science and How Models Help 

For an illustration of how scientists use models to solve problems, I will be 

using the example of the problem with Uranus’ perturbed orbit. This problem 

resulted in the discovery of Neptune in the 1800s, a significant scientific 

achievement at the time, brought about by the use of mathematical models of the 

planet developed by John Adams and Urbain Le Verrier. These models were quite 

inaccurate. None of the predicted values would result in a scientist learning about 

the planet. They were significantly far from predicting the real mass and orbital 

characteristics of the actual planet. One might therefore wonder how such models 

could have enabled the discovery of Neptune, or indeed whether they should be 

credited with providing such help. But, when their use is understood within the 

framework of problem-solving, we can see that these models provided a tool 

scientists used to reframe an intractable problem into one to which they could apply 

heuristics to make a successful search feasible. 
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Uranus was discovered in 1781. A slow-moving planet, it orbits the sun every 

83 years. Because of this slow orbit, it was not until several decades after Uranus’ 

discovery that astronomers noticed that Uranus did not follow an orbit predicted by 

laws of planetary motion (Bamford 1996).  Uranus’ strange orbit posed a problem for 

scientists studying the motion of planets. Either the scientific laws that they used to 

model Uranus’ orbit needed revising, or there needed to be special rules or 

assumptions made for Uranus. There were a number of conflicting candidate 

solutions. Some proposed that a comet had hit Uranus before its discovery, some 

hypothesized that there was a physical medium that affected the movement of 

Uranus, some correctly thought that there was an undiscovered body interacting 

gravitationally (Smart 1947). It seemed an intractable problem to astronomers since 

they had fairly well catalogued the visible objects in the sky by this point. In fact, the 

solution to this problem—the undiscovered influencing body, Neptune—was 

observed several times and recorded as a star (Bamford 1996) 

Scientists’ understanding of the problem of Uranus’ perturbed orbit changed 

significantly over the course of the problem’s existence. At first the problem was not 

well understood, prompting divergent investigations that did not have much in 

common. Questions like “Did a comet hit Uranus?”, “Is there an intra-solar system 

ether?” guided investigation. In the language of my framework so far, the scientific 

community were investigating a not well framed problem. The goal states encoded 

different information, and so did the states of the problem space — for example, 

information about possible comet locations as well as information about the distance 

of an ether from the sun. In short, they did not know well what they did not know yet 
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resulting in an agent problem space characterized by questions like “Did the comet 

hit Uranus in 1788?... 1789… etc.)”, “Does the ether extend past 9 AU? … 10 au? 

Etc.” This results in a richer problem space, with many more nodes and where each 

edge taken constitutes less progress in the search for a solution.  

Similar to the case of what I call the ‘magic square’ model of number 

scrabble, modeling here gave the scientific community reasons for reframing the 

problem and changing how they characterized the problem space, dropping nodes 

about ether and comets. The development of models of a perturbing planet provided 

the scientific community not with knowledge of Uranus, Neptune, or any object, or 

property, in the solar system, but knowledge of what they did not know. Having well 

framed, and interpreted, constraints involve knowing for instance that the solution to 

the problem would include an answer to “is my instrument pointing at Neptune?”, 

and encoding the right information to make a search of the sky by reference to a star 

chart efficient.  

7 — Case of the Discovery of Neptune 

The discovery of Neptune is taken as an exemplar achievement of the 

scientific method.  There was the established theory of Newtonian gravity, a 

discrepancy with Uranus’ orbit, an attempt to ‘refine’ the theory by adding laws or 

entities — in Uranus’ case, models - , a prediction using the refined theory, and then 

verification. However, it is commonly known that the prediction leading to the 

discovery of Neptune was a failure. The problem has its origins in 1821 when French 

astronomer Alexis Bouvard published tables describing Uranus’ orbit, forty years 

after the planet’s approximate orbit had been calculated. By 1837, British Royal 
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Astronomer George Airy, declared Uranus’ half a degree difference in longitude with 

respect to predictions of its orbit the most puzzling problem in contemporary 

astronomy (Smart 1947). Airy suggested that the laws of gravity might not be exactly 

according to the inverse square of distance, comprising one of the competing ways 

in which the problem was framed. John Adams and Urbain Le Verrier began work 

contemporaneously in 1843, having the idea that Uranus’ anomalous orbit was due 

to gravitational interaction with an unseen planet, on seeking to refine the ideal orbit 

model of Uranus. To do this, they based a model of Uranus orbit on corrections to 

Bouvard’s tables of Uranus’ orbital data; it was a model of what Uranus’ orbit ought 

to be according to the laws of gravitation. By comparing this ideal model of Uranus 

to Uranus’ actual orbit both Le Verrier and Adams were able to estimate the mass 

and distance of the ‘perturbing body’, which of course turned out to be Neptune. 

Using these estimates as parameters, they created a model of the planet that they 

were supposing caused Uranus’ anomalous behavior. However, these models 

produced by Le Verrier and Adams were inaccurate regarding predictions of the 

actual planet’s orbit. The main orbital parameters their models predicted — distance 

from the sun, period of orbit and eccentricity — were in some cases several factors 

removed from the true values. See figure 4.2 for a two-dimensional plot of these 

orbits.  

Despite these inaccuracies, it was these mathematical models that guided 

Galle and d'Arrest towards an observation confirming the existence of Neptune in 

1847. John Adam’s model did not result directly in discovery, but the timing of his 
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model’s construction and documentation about the models’ use for the unsuccessful, 

British search justified awarding the discovery to Adams as well as Le Verrier.  

 

 
Figure 4.2 Two dimensional plot of Le Verrier’s and Adams’ models orbits.  Neptune 
was observed 1846. At that time, the model orbit predictions lined up with Neptune’s 
position well enough to guide a search from astronomers. 

 

Some controversy resulted soon after the discovery of Neptune, as post-

discovery observations revealed these inaccuracies. American astronomer, Sean 

Walker, investigated into Neptune’s true orbit soon after the discovery by Galle, 

finding that Le Verrier and Adams’ models predicted a planetary orbit with much 

different properties than Neptune’s actual orbit. (See table 4.1). Benjamin Pierce, a 
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Harvard astronomer at the time, claimed: "the planet Neptune is not the planet to 

which geometrical analysis had directed the telescope; and that its discovery by 

Galle must be regarded as a happy accident" (Smith and Hubbel 1992) The criticism 

by the scientific community that Peirce exemplifies called into question the extent to 

which Le Verrier and Adams deserved credit for the observation of Neptune because 

of the models that they constructed.  

Table 4.1 — Table of Values Predicted by Modeling Compared to Actual Orbit 
 

orbit Le Verrier Adams Walker Neptune 

Semi-major 
axis (AU) 

36.15 37.25 30.25 30.11 

Discovery 
distance 

33 32   

eccentricity 0.10761 0.12062 0.00884 0.009456 

Orbital 
period (yr) 

217.4 227.3 166.4 164.8 

Mass 
(mSun) 

0.00011 0.00015 0.000067 0.000515 

 
 

A perspective of modelling using the problem-solving framework I presented 

earlier in this chapter provides a defense of giving epistemic credit to Adams and La 

Verrier for the discovery of Neptune. Le Verrier’s model gave astronomers a way to 

frame the search for a hidden body such that heuristics were useful. The use of 

Adam’s model provides a contrast case for the successful framing of a problem for 

the use of heuristics since it led to an unsuccessful search. The model was the same 

as Le Verrier’s as far as predictions about Neptune. It was the use of Adam’s model 

specifically for problem solving that was different, and different in a way that 

emphasizes the epistemic value of model use towards problem solving. The goal of 
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this section is to show that what accounts for the epistemic value of these models is 

their contribution to problem-solving instead of the aspects in which they are ‘true’ of 

the world.  

The role their models of Neptune played in its discovery was not one of 

providing a prediction that was later verified by observation, or learning about the 

world. Instead, the role of their models in the discovery of Neptune is best 

understood as framing the problem of Uranus’ perturbed orbit in a way that reduced 

the complexity of searching a problem space in two ways. The first is that the 

framing allows for the dropping of many nodes associated with the comet hypothesis 

or altering the inverse square law. The second way is by encoding information into 

the problem space about model predictions for Neptune allowing for astronomers to 

use heuristics — like the role of the magic square in number scrabble which allowed 

for the encoding of certain nodes with ‘corner’ making the ‘prefer taking a corner’ 

heuristic useable. 

An adept player of tic tac toe most likely would know of corner moves since 

the strategy’s availability is more obvious given the game’s task enviroment. But 

when confronted with the list from 1 to 9 of number scrabble, the availability of the 

corner move strategy is not going to be obvious simply from the rules and task 

enviroment. The typical player would require the magic square model to help them 

frame the game in a way that makes this game play strategy accessible. One way to 

understand the availability of this heuristic to the game player is through registration. 

Suppose a master tic tac toe player was to play number scrabble for the first time. 

No doubt this player is familiar with the corner move. Most likely this familiarity is not 
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with a path through the game's directed graph game tree — as experiments showing 

the different performance profiles between number scrabble and tic tac toe suggest 

(Kirsh 2009). The familiarity is with the 3 by 3 grid with corner squares. It is the 

familiarity of the corner as seen by the game player with the magic squares framing 

that attunes the player to availability of a search heuristic. In order to understand the 

accomplishment of this task, like with the person navigating a mall, the crucial step is 

to map the problem space onto the task environment, thereby encoding the problem 

space with new information. This is the action of registration.  

Similarly, the astronomers searching for Neptune needed a 'magic number' to 

aide in framing the problem for a successful search. Consider the hypothesis that a 

comet hit Uranus. If astronomers were trying to find a planet OR (inclusive) a comet, 

and the problem space nodes represent states of ‘searching the night sky’ (pointing 

a telescope at a bright object), then the disjunctive framing of a planet and comet 

adds extra information to each node. Such framing expands the area of the night sky 

— task enviroment — the astronomers would need to search since comets do not 

orbit on the same plane as planets. Additionally, Le Verrier and Adam’s models 

encoded, with greater precision, information about which nodes would provide a 

likely observation, allowing for the use of heuristics. The model orbits of Neptune 

failed to trace the true orbit, but when the model orbits were used to register 

Neptune’s position for a search of a problem space representing the two-

dimensional star chart/night sky, these models afforded the use of heuristics like 

backup avoidance and hill climbing to achieve discovery. To illustrate how 

astronomers used these heuristics, this chapter will later contrast a competing 
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search for Neptune that did not make use of these models for framing or heuristics 

(nor of other potentially useful heuristics), resulting in failure.  

What ended up aiding the astronomer Johanne Galle was that the orbital 

model of Le Verrier provided structure to his search using star charts. Just as magic 

square registration encodes the number scrabble player’s problem space with 

information about corners, registration using the inaccurate Neptune models 

encoded information about Neptune likelihood-of-observation to the scientific 

problem space, connecting nodes in this problem space to certain bright objects in 

the sky. Astronomers use maps called ‘star charts’ to catalogue these bright objects. 

Le Verrier and Adams’ models provided an invaluable tool for guiding an observation 

of Neptune because the method that astronomers use to discover new things 

includes a mapping of observations to these two-dimensional star charts; such 

representations are close in structure to the problem space scientists were operating 

within. In the case of Neptune, astronomers accomplished the registration of the 

problem space onto the task environment using star charts along with the models 

predicting Neptune’s location — see Figure 4.5 for the star chart that Galle used. 

First, these models afforded the framing of the problem of a search for a planet by 

limiting the nodes that astronomers searched (see figure 4.4 for an illustration of this 

reasoning). They were inaccurate models but accurate enough to allow for the 

dropping of nodes associated with celestial objects recorded in other star charts.  
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Figure 4.4 shows the Berlin star chart used to discover Neptune 
superimposed over the region of the globe that Astronomer’s were searching 
for Neptune in. This superimposing is analogous to the registration used to 
make the problem space searchable: astronomers connected the Berlin chart 
(a representation) to the searched enviroment to guide their actions. 
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Figure 4.5 is the Berlin star chart that Galle used to guide his search for Neptune. 
The problem space he framed his search had nodes in a one to one correspondence 
to the stars on this chart, with information about the closeness to the model 
prediction encoded in each node.  
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Dissimilarly from the number scrabble example, problem spaces in scientific 

problem-solving are typically less defined than the game tree of games like number 

scrabble, consisting of constraints more open to interpretation in framing the 

problem; the allowable moves in tic-tac-toe are very much not open to interpretation. 

And often there is more uncertainty regarding the goal state. It is these 

characteristics of scientific problems that requires great and increasing division of 

labor, specialization and interdisciplinary activities (like modeling) in order to solve. 

The problem space in operation for Neptune’s discovery was the space of possible 

locations an astronomer could observe. There were practical limits on these 

observations. Astronomers could not, and still cannot, travel about freely in space to 

find a planet like one may navigate a mall. One can think of the limit son observation 

of the sky similar to how physical walls limit one’s navigation however. There are 

certain lengths of time needed for a trained eye to observe through a telescope in 

order to distinguish a planet like Neptune from background stars. The limits on 

observation imposed by instruments at the time meant that a practically successful 

search required a well framed problem. Astronomers needed a problem space that 

included fewer nodes, but also more information that could direct a search only to a 

much smaller region.  

Both Adams and La Verrier were considered co-discoverers of Neptune 

because of the similarity of their models. However, Adam’s orbit model did not see 

use in successful observation. The astronomer tasked with using Adam's model, 

James Challis used a strategy that provides an example of a failure to appropriately 
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frame a search resulting in suboptimal heuristic selection. Challis’ plan was to: 

"Sweep over, three times at least, the zodiac belt 30 degrees long and 10 degrees 

broad, having the theoretical place of the planet at its center" (Grosser 1962 p.108). 

This plan however explicitly avoided information provided by modeling. Additionally, 

this search area was much larger than it needed to be, containing many celestial 

objects far from the modeled locations of Neptune — it was a problem space that 

encompassed many more nodes than Galle’s.  

Challis' sweeping was enormously labor intensive, each sweep estimated to 

take 300 observatory hours. One historian describes this strategy as “searching for a 

particular bright pebble on a beach by removing one by one thousands of other 

pebbles from a large area where one had been told the desired object was lying“ 

(Grosser 1962 p.108). This description of Challis’ strategy describes a strategy that 

was undirected. While this framing uses the model prediction of Neptune to frame 

the problem space — in the first sense of determine which nodes and edges exist — 

it does not do so in the second sense — encoding. Challis did not encode 

closeness-to-modeled-Neptune into the nodes of his problem space. In the words of 

my problem-solving framework, he framed the problem space (but not very 

precisely) in the first sense by using Adam’s Neptune model to limit the nodes 

searched, but did not use the second sense of framing, the sense in which 

registration applies, to encode the information needed to direct the use of heuristics. 

Galle’s strategy, in contrast, used closeness-to-model-Neptune information to direct 

the search operation inwards towards the predicted location — whether that edge 

lead more ‘inwardly’ to the modelled location influenced Galle’s choice of edges for 
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each observation. When pressed on his choice of strategy, Challis asserted that 

organizing the search for a new planet with a mathematical (theoretical) model to 

"undertake observations in reliance upon merely theoretic deductions" was unusual, 

and that he "thought the probability of discovery was small until a much larger 

portion of the heavens was scrutinized" (Grosser 1962 p. 135). One way to 

understand Challis’ failure is that it resulted from not using the mathematical model 

to encode information into his problem space. There was no connection made from 

problem space node to bright objects in the task enviroment as far as “Is this near 

the predicted location of Neptune? Yes/no”. This failure manifested in a bad search 

strategy, one that took into consideration too many possibilities, many of which 

would likely have been avoided with better framing. Adams’ model of Neptune did 

not have any ‘pull’ or weighting on Challis’ use of a star chart.  

One way to describe the missing ingredient in Challis’ search is in terms of 

heuristics. One such heuristic would involve something like "hill-climbing" — call it 

‘model-directed searching’ — where the search operation involves moves with 

respect to a rule of thumb about making the current observation state closer to an 

ideal state — ideal state in this case is the model-predicted location of Neptune on 

the star charts. Instead of orienting the sweep vaguely around the predicted area, 

Challis’ search likely would have been more successful had he used a heuristic like 

model-directed searching. His actual sweeping strategy included many changes of 

states in the problem space that went along edges away from the predicted location 

leading to a search too inefficient to achieve discovery. 
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Galle, instead, encoded in his problem space what the model’s predicted 

location of Neptune. As a result, his search could use heuristics like ‘model directed 

searching’. I suggest this is analogous to how a mall navigator uses a ‘you are here 

arrow’, to encode the problem space with information about the navigator’s current 

position. This sort of encoding is what I call registration. Galle used registration to 

encode problem space nodes and edges with information about whether a node was 

‘nearer’ or ‘farther’ from the Le Verrier’s model prediction. Starting from stars closer 

to the predicted location, he prioritized the next observation in a vaguely orbit like 

pattern around where Le Verrier’s model projected Neptune onto his chart. The 

actual prediction (O on Figure 4.2) was not where Neptune was found. Nevertheless, 

this tighter focus allowed Galle to spend an appropriate amount of search time 

comparing the relative movements of the objects to then make an observation and 

verify that observation. This search was one we can understand as done in a 

problem space encoded with different information from the one in which Challis 

worked. Galle’s problem space had nodes that not only encoded the information 

about a stars’ previous observation but also how close it was La Verrier’s model 

prediction.  

 Galle registered the Neptune model in a way that gave his problem space 

structure that made the use of a heuristics like hill climbing possible. Galle observed 

closely around the projected spot of Neptune and as he moved closer, he made the 

discovery. Challis on the other hand swept a very large area, ignoring the shadow 

cast by Adam's Neptune model on his charts, directing his search as a line-by-line 

sweep. Successful framing looks like Galle's use of Le Verrier's model. The ‘truth’ in 
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this situation was that Neptune was observable in both astronomer’s problem 

spaces. The epistemic standard that makes the important difference here, however, 

is not truth but effective framing for problem solving. 

  Galle framed the problem effectively in two senses. First, he successfully 

framed the constraints on the problem to limit nodes representing the stars found on 

“21st hour” star chart (Figure 4.5). This framing dropped a significant number of 

nodes from the search. Secondly, Galle interpreted the constraints on the problem 

so that his problem space encoded information about closeness to model prediction. 

This second aspect of framing involves registration. There existed some prediction 

of Neptune’s position based on La Verrier’s model. This prediction by itself, like 

one’s location in the mall, is useless without it being contextualizing done through 

registration. In the mall case, registration connects your current location to the 

overall navigation by recognizing ‘you are here’ on the map and connecting your 

problem space to the empirical fact of your location. In this scientific analogy of the 

mall navigation, Galle marked the star chart with Neptune's location as predicted by 

La Verrier's model, and connected his problem space to an empirical fact about the 

location of an object in the sky marked by the chart (one located at x, y degrees at z 

time). This registration gave weight to directions in Galle's search pattern. He valued 

moves that would bring him closer to Neptune's projected position on the star chart. 

Thus, returning to Benjamin Pierce's 'happy accident' claim, the mathematical model 

of Neptune's orbit may have been inaccurate but was indispensable in directing a 

successful search. 
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8 — Conclusion 

Registration in the discovery of Neptune case of problem-solving identifies 

how a model may successfully contribute to the growth of scientific knowledge, and 

it also fits in a more general scientific activity (one not necessarily involved in 

problem-solving). This is the previously mentioned activity of de-idealizing or 

concretizing. The actual space containing Neptune is quite vast and far removed 

from the experiences of astronomers. The two-dimensional star chart is a more 

concrete representation. It saw use by astronomers to keep track of observations 

they already made to utilize backup avoidance heuristics, and included detail 

depicting observations made by astronomers, detail that is similar to the experience 

of one observing a region of the sky. Adams and La Verrier's models ‘live’ in the 

three-dimensional problem space with terms describing Neptune's change in 

position with respect to time. The activity of registration takes the path traced in the 

actual world by model Neptune’s orbit and connects this path to an empirical fact 

about observable objects in the astronomer’s world (the world of night skys and star 

charts). Another way to put this is that registration is an activity performed between 

two representations, one typically more abstract to one that is typically more 

concrete. For instance, a clear way to understand the transfer of corner moves from 

tic tac toe to number scrabble is that the game player is registering a branch of the 

game tree (problem space) shared by both games to the play area of number 

scrabble. Play areas, like charts, are closer to our lived-in world of work and human 

problem-solving, but in order to use more generic things to help us solve problems 



115 
 

like heuristics, and community borne wisdom, we must make a successful 

connection from the abstract to the concrete. 

Thus, looking into registration provides insight into how models become 

useful, and thus epistemically valuable. Models become useful when scientists use 

them to register a problem space to empirical facts in a task enviroment. An 

astronomer mapping observations with a star chart makes ‘backup avoidance’ 

applicable just like a number scrabble player using the magic square frame makes 

‘corner moves’ applicable, by connecting the problem space to the world through the 

intermediary of a model (star chart or ‘magic square’). Broadly speaking, using 

learning about the world as an epistemic standard is not sufficient as a standard to 

capture this reasoning because it is reasoning about using rules of thumb to 

navigate uncertainty instead of deducing true conclusions from assumptions. Galle’s 

search could have failed; maybe the telescope got bumped at the crucial 

observation. However, in comparison to Challis’ strategy, Galle was better geared 

for success given the information his problem space encoded, information that had 

almost nothing to do with ‘truth’ given the Neptune model’s inaccuracies.  

Models help us think more efficiently through possibilities. Since problem 

solving is a search through possible transformations in an environment that will bring 

about the desired state, problem solving provides an apt framework to understand 

the value of models in science. I have argued for the usefulness of this framework 

through a case study on the discovery of Neptune. This discovery was one of the 

crowning achievements of the use of models in science. The achievement in using 

models however was not the result of scientific reasoning following the epistemic 
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standard of ‘truth’. Models of Neptune were inaccurate. The reasoning leading up to 

discovery had to do with efficiency, time needed to make observations and how best 

to manage limited resources and uncertainties. Considering these factors in 

Neptune’s discovery, I make the case that using a problem-solving framework for 

understanding the value of models in science provides the advantage of accounting 

for the role models play in scientific inquiry. 

The framework developed in this chapter helps to account for the epistemic 

value of model transfer to the sciences. The search for dark matter is an 

investigation in science that provides fertile ground for analysis of the connection 

between model transfer and scientific inquiry. Before the 1930s, the virial theorem 

saw use in modelling thermodynamic systems. Following its introduction to 

astrophysics, the virial theorem comprised a key method for scientists to frame the 

search for dark matter by giving scientists an idea of the amount of missing matter 

that could be ‘dark’. In the language of my framework, astrophysicists used the virial 

theorem to encode problem space nodes with the masses that scientists used to 

search for beginning dark matter candidates. To follow is a short history on this use 

of the virial theorem. 

I would suggest the search for dark matter has much more to do with the use 

of models for framing than even the Neptune case. It was the transfer of the virial 

theorem that allowed astrophysicist to identify a discrepancy with the mass 

estimates of phenomena in their domain. The first type of models that were used to 

estimate mass were luminosity models. Luminosity models provide estimates of 

mass from the total observed flux of radiation. The other sort of models are 
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dynamical models. The ability for a scientist to construct these models was brought 

about by several changes to physics in the 1920 and 30s at the practical level: the 

availability of spectroscopy data from nearby systems and our sun, the availability of 

more powerful telescopes, and long exposure photographing techniques 

(Vanderburgh 2001). With these factors it was possible for scientists to observe the 

apparent motions of distant galaxies by comparing red-shift or blue-shift to 

spectrograms. Having access to the relative velocities of distant galaxies and 

clusters of galaxies allowed scientists to construct dynamical models. Scientists 

soon noticed a discrepancy from already empirically established luminosity models 

(Oort 1933, Babcock 1939, Smith1936, Zwicky 1937). Oort and Babcock invented 

dynamical models targeting our own Milky Way galaxy and the nearby Andromeda 

galaxy. Smith and Zwicky instead modeled nearby clusters of galaxies using the 

virial theorem (Vandeburgh 2001, Trimble 2013). 

In 1933, Zwicky first published on the possibility of using the virial theorem to 

model the dynamics of galactic clusters (Zwicky 1933). This paper compared various 

methods for measuring of the distance of extra-galactic nebulae from earth, 

comparing the new methods of measuring distance using red shift to methods using 

luminosity. He found that redshift data allowed for more precise estimates of 

distance. Greater precision in distance measurements allowed for more precise 

measurement of galaxy velocity since part of what astrophysicists’ used to estimate 

velocity was the galaxy’s distance from earth. 

With greater precision in velocity data, Zwicky noticed the beginnings of a 

promising area of scientific inquiry. Red shift data showed curious measurements for 
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velocity distributions in dense galaxy clusters. As Zwicky puts it, “the great 

dispersion of velocities in the Coma system (and in other dense nebular clusters) 

harbors a problem that is not yet understood" (Zwicky 1933, pp. 223). Found at the 

end of this paper is his use of the virial theorem as a first step towards framing this 

problem. Zwicky makes use of the virial theorem similar to how the Le Verrier’s and 

Adams’ models framed the anomalous Uranus orbit problem as a search for 

Neptune. By using the virial theorem to model the distribution of velocities in the 

Coma cluster, Zwicky was able to describe an estimate of missing mass in the Coma 

cluster. This use of the virial theorem turns a puzzling observation— “the velocities 

of these things are unusual!”— into  a problem, “there is significant a missing factor 

in the mechanics of this system”. For models of the orbit of Uranus, this missing 

factor turned out to be a new planet. Zwicky’s use of the virial theorem frames a 

problem “not yet understood” into one that is a scientific investigation into a missing 

factor in the mechanics of a sort of astrophysical system. 

The virial theorem let him proceed on uncertainty of the 'actual' characteristics 

of the Coma cluster to some measurement of mass — knowing only the velocities of 

these galaxies relative to the Milky way. The mass estimates using the virial theorem 

have a large margin of error, so astrophysicists often rule out its use as a predictive 

tool (Trimble 1987). However, the mass estimate error is significantly smaller than 

the factor of 200-400 predicted by Zwicky’s mass discrepancy. Thus, Zwicky’s use of 

this model template constitutes another instance in science where the value of 

modelling is not sufficiently characterized by epistemic standards of accuracy, but by 

looking at how these models are useful for problem solving. Like the original model 



119 
 

of Uranus’ ideal orbit, Zwicky’s virial theorem mass model provides a way to set up a 

problem space to search for solutions. For the Neptune problem, this framing led to 

the dropping of various nodes associated with the hypotheses about ether, comets 

and laws of gravity changes, vast simplifying the problem space.  

As the investigation into dark matter continues, scientists propose candidate 

types of dark matter particles (e.g. WIMPs) or alterations to the laws of gravity at 

large scales (e.g. modified Newtonian dynamics) that end up being considered or 

eliminated ultimately based on whether they close the gap in compared to newer 

models of mass discrepancy. Thus there exists much room for understanding the 

scientific use of models to frame problems, and how this framing promotes the use 

of heuristics, in the search for dark matter. I suggest that using the framework I 

develop in this dissertation would reveal a connection between scientific reasoning 

in the current investigation into dark matter and instances of model transfer. This 

connection is not just as far as conceptual innovation goes, but towards the practical 

level at which models see use — justifying the construction of a new detector for 

instance. The investigation of dark matter is especially hard to conceptualize 

because it seems like the search is not just for a type of thing we already know 

about but for possibly a new type of fundamental particle. Such great uncertainty 

requires an enormous effort in coordination between scientists, and the use of 

mathematical models to organize information so that this search can use 

generations of community borne-wisdom.
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Chapter 5: Conclusion 

In Chapter 1, I raise an issue with accounts of model transfer, that they do 

not sufficiently account for what makes a transferrable model useable in a new 

domain. I argue that by paying attention to what scientists do to make such 

models useable offers insight into how modeling in general connects to a 

scientific domain’s theoretical level — the level where scientists determine the 

meaning of their concepts and categories — and the practical level — the level at 

which scientists experiment, discover and observe. In Chapter 2, I propose a 

concept to identify the thing to which scientists apply transferrable models — the 

landing zone. I argue scientists create landing zones in order to meet the 

requirements of a transferrable model template by preparing phenomena so that 

it is modellable. In Chapter 3, I argue that paying attention to this landing zone 

type preparation gives us a new direction for understanding conceptual 

innovation in the sciences, and a depiction of the conceptual machinery that 

confounds analysis of the intertheoretical connection between domains like 

physics and chemistry. In Chapter 4, I illustrated the affordance of a problem-

solving account of the epistemic value of modelling using the Neptune case. 

Such an account allows us to understand the epistemic value of inaccurate, or 
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otherwise ‘untruthful’, models in scientific inquiry. These models allow scientists 

to frame investigations to make problem solving easier. However, the discovery 

of Neptune is not a case of model transfer, so it does not fit the motif for the 

cases I examined in the first three chapters of this dissertation; Adams and Le 

Verrier developed their models using methods from within the domain of physics 

for describing orbital characteristics. 

The connection that the case of Neptune’s discovery, examined in 

Chapter 4, has to the rest of the dissertation is that it is a particularly striking 

example of the use of models for inquiry. The discovery of Neptune is an 

exemplar scientific achievement in the use of (inaccurate) models at the practical 

level to frame a problem. Thus, a case study of it reveals what successful model 

use, in general, looks like — successful framing for the use of heuristics. This 

standard then provides us with a way to characterize when scientists render a 

transferrable model useful to the practical level of their domain — towards 

successful problem solving. Generally, models are ‘useful’ to a domain if scientist 

can use them to frame an investigation for the deployment of heuristics. Framing 

either involves a dropping or altering of information in problem space nodes. One 

way scientists frame, or reframe, problems is through registration, an activity 

where models are an invaluable tool. Since registration involves processing 

empirical facts in the task enviroment as information to be encoded in the 

problem space, the connection between problem space and task enviroment 

must be conceivable to the scientists — there is a congruence between the 

categories the scientists recognize in the task enviroment and the categories 
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scientist use to conceptualize their overall investigation. In the Neptune case, it 

would be difficult to imagine a successful use of Le Verrier’s model for framing if 

astronomers did not recognize bright objects in the sky as potential planets. 

The landing zone type activity — conceptual progress — I examine in 

Chapter 3 is what establishes a model’s connection with the level of scientific 

theorizing and the level of scientific practice that makes models useful for 

problem solving. Fisher reconceived the biological category of a population in 

order to make his use of a model template from statistical physics meaningful in 

connection to other methods in biology. His debates with biologists at the time 

are evidence of the impact this conceptualization had at the level of theorizing in 

this domain. The problem that Fisher sought to solve was a more ‘theoretical’ 

one than the Neptune case. His problem had to do with making mathematical 

description of mendelianism compatible with description of natural selection. I 

suggest that taking the framework I develop in Chapter 4 back to this case would 

characterize the work Fisher does as problem solving — this however would 

require quite a bit more work as Fisher’s use of modeling did was not as focused 

on community inquiry as with the Neptune case, nor was it as straightforwardly a 

‘search’ for something missing.  

Conceptual innovation like the invention of a new notion of atom —

topological atom — or a new conception of biological populations — what I call 

velocity populations — is a response to the requirements of making a 

transferrable model template useable in a new domain, what I identify as the 

‘landing zone’ in Chapter 2. The virial theorem, for instance, has well-known 
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conditions for its use that partially determined Bader’s conception of the atom in 

preparation for modeling phenomena such as functional groups. An area of 

future application of the research in this dissertation is characterizing precisely 

the way in which Bader’s (and other chemist’s) transfer of models became useful 

for framing various problems. Generally, I suggest Bader saw that the transfer of 

the virial theorem would accomplish framing within chemical problems of 

reduction, where the problem space is set up to search for paths to ‘bring back’ 

phenomena like functional groups to physical chemistry. It is more apt to see 

Bader’s reductive goal with QTAIM as sort of Kuhnian puzzle solving than the 

hard-line reduction Bader himself suggests, that attempts to justify the elimination 

of chemical concepts because of epistemic standards associated with truth. 

Chapter 4 depicts the epistemic upshot of conceptual innovation brought 

about by preparation for model transfer. Landing zones are what make a model 

useful for framing scientific investigations. A useful model is one which may be 

used to frame a problem by encoding information from the task enviroment into a 

problem space. I suggest that for such encoding to be feasible, there must be 

some congruence between conceptualization of phenomena in the task 

enviroment and the model. My proposal for future research is analyzing the 

epistemic value of model transfer along this dimension — how conceptual 

innovation affords landing zone congruence, and further, how this innovation 

then results in successful framing and reframing scientific investigations for the 

use of heuristics. There is opportunity to use this research in understanding the 

use of models in the search for dark matter.
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