
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

Summer 2021

Regression Methods for Group Testing Data Regression Methods for Group Testing Data

Michael Stutz

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Statistics and Probability Commons

Recommended Citation Recommended Citation
Stutz, M.(2021). Regression Methods for Group Testing Data. (Doctoral dissertation). Retrieved from
https://scholarcommons.sc.edu/etd/6506

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F6506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarcommons.sc.edu%2Fetd%2F6506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/6506?utm_source=scholarcommons.sc.edu%2Fetd%2F6506&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

Regression Methods for Group Testing Data

by

Michael Stutz

Bachelor of Science 2010
Coastal Carolina University

Master of Science 2017
University of South Carolina

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Statistics

College of Arts and Sciences

University of South Carolina

2021

Accepted by:

Joshua M. Tebbs, Major Professor

Dewei Wang, Committee Member

Xianzheng Huang, Committee Member

Minsuk Shin, Committee Member

Stella Self, Committee Member

Tracey L. Weldon, Interim Vice Provost and Dean of the Graduate School

c© Copyright by Michael Stutz, 2021
All Rights Reserved.

ii

Abstract

Group testing is an efficient method of disease screening, whereby individual spec-

imens (e.g., blood, urine, etc.) are pooled together and tested as a whole for the

presence of disease. A common goal is to use data arising from these testing proto-

cols to better understand the relationship between disease status and potential risk

factors (e.g., age, symptom status, etc.). Numerous statistical methodologies have

been developed for this purpose, most of which are built within the framework of

a generalized linear model. Recent authors have suggested the inadequacy of such

regression methods to capture the true functional relationships when nonlinear ef-

fects are present. In this dissertation, we develop new parametric and nonparametric

regression methods for group testing data using the expectation-maximization algo-

rithm. Our methods can be implemented with any group testing algorithm and have

the flexibility to seamlessly account for both linear and nonlinear covariate effects.

In addition, our methods are the first within the group testing literature to integrate

machine learning techniques. A growing number of assays have the ability to de-

tect multiple diseases simultaneously. One such assay is the Aptima Combo 2 Assay

(AC2A), which is able to simultaneously test for the presence of chlamydia and gon-

orrhea. With this as our motivating example, we generalize our regression methods

to allow for a bivariate response. We use simulation to demonstrate the estimation

performance of our algorithms and provide a real data application of our methods

using disease screening data obtained from the University of Iowa.

iii

Table of Contents

Abstract . iii

List of Tables . vi

List of Figures . viii

Chapter 1 Introduction . 1

1.1 Common Group Testing Algorithms 2

1.2 Literature Review . 3

1.3 Contribution . 7

1.4 Structure of the Dissertation . 9

Chapter 2 Generalized Linear Modeling for Group Testing Data 10

2.1 Introduction . 10

2.2 Preliminaries . 10

2.3 Methodology . 11

2.4 Discussion . 13

Chapter 3 Boosting Methods for Group Testing Data 15

3.1 Introduction . 15

3.2 Preliminaries . 15

3.3 Methodology . 18

iv

3.4 Simulation . 21

3.5 Data Application . 25

3.6 Discussion . 27

Chapter 4 Regression Methods for Multiple-Disease Group
Testing Data . 29

4.1 Introduction . 29

4.2 Preliminaries . 29

4.3 Methodology . 30

4.4 Simulation . 38

4.5 Data Application . 41

4.6 Discussion . 43

Chapter 5 Generalized Additive Modeling for Group Testing
Data . 45

5.1 Introduction . 45

5.2 Preliminaries . 45

5.3 Methodology . 48

5.4 Simulation . 50

5.5 Data Application . 54

5.6 Discussion . 57

Bibliography . 58

Appendix A: Algorithms . 67

v

List of Tables

Table 3.1 Simulation study comparing the estimation performances of our
generalized linear model (GLM), boosted generalized linear model
(BGLM), and boosted regression trees model (BTM) under pop-
ulation model M1. The average bias (Bias) and estimated stan-
dard error (ESE) from 500 data sets is shown. The sample size
for each data set is 5000. Dorfman testing and array testing use
master pools of size five. 23

Table 3.2 Higher-dimensional simulation study comparing the estimation
performances of our generalized linear model (GLM) and boosted
generalized linear model (BGLM) under population model M1.
The average bias (Bias) and estimated standard error (ESE)
from 500 data sets is shown. For the 18 random noise variables,
Bias represents the average absolute bias and ESE represents the
average ESE. The sample size for each data set is 5000. Dorfman
testing and array testing use master pools of size five. 24

Table 3.3 Simulation study comparing the estimation performances of our
generalized linear model (GLM), boosted generalized linear model
(BGLM), and boosted regression trees model (BTM) under pop-
ulation model M2. The average bias (Bias) and estimated stan-
dard error (ESE) from 500 data sets is shown. The sample size
for each data set is 5000. Dorfman testing and array testing use
master pools of size five. 25

Table 3.4 Iowa chlamydia data parameter estimates for our generalized
linear model (GLM), boosted generalized linear model (BGLM),
and boosted regression trees model (BTM). 28

Table 4.1 Simulation study comparing the estimation performances of our
generalized linear model (GLM), boosted generalized linear model
(BGLM), and boosted regression trees model (BTM) under pop-
ulation model M1. The average bias (Bias) and estimated stan-
dard error (ESE) from 500 data sets is shown. The sample size
for each data set is 5000. Dorfman testing and array testing use
master pools of size five. 40

vi

Table 4.2 Iowa chlamydia and gonorrhea data parameter estimates for
our generalized linear model (GLM), boosted generalized linear
model (BGLM), and boosted regression trees model (BTM). 42

Table 5.1 Simulation study comparing the estimation performance of our
generalized additive model (GAM) to that of the Bayesian ap-
proach of Liu et al. (2020) (GAMB) under population models
M1 and M2. The average bias (Bias) and estimated standard
error/average posterior standard deviation (ESE) from 500 data
sets is shown. The sample size for each data set is 5000. Dorf-
man testing (DT) and array testing (AT) use master pools of
size five. For our GAM, the link was intentionally misspecified
as logit for model M2. 52

Table 5.2 Iowa chlamydia data parameter estimates for our generalized
additive model. 55

vii

List of Figures

Figure 1.1 Dorfman testing on an example data set of nine specimens. A
blue circle indicates a negative test result, while a red circle
indicates a positive test result. 2

Figure 1.2 Array testing on an example data set of nine specimens. A blue
circle indicates a negative test result, while a red circle indicates
a positive test result. 3

Figure 3.1 Model predicted probability of disease (P̂) against true prob-
ability of disease (P) for a sample data set simulated under
population model M2. Left: GLM. Right: BTM. 26

Figure 5.1 Estimation of nonlinear function g2 under population model M1
using our generalized additive model. The solid curve represents
the true function, the dashed curve represents the mean of 500
estimates of g2, and the dotted curves represent the 0.025 and
0.975 quantiles of 500 estimates of g2. Left: Dorfman testing
(DT). Right: Array testing (AT). 53

Figure 5.2 Effect of model-link misspecification. Our generalized additive
model’s predicted probability of disease (P̂) against the true
probability of disease (P) for a sample data set simulated under
population model M2. Left: Probit link. Right: Logit link. 54

Figure 5.3 Estimation of age effect (x1) for Iowa chlamydia data using
our generalized additive model. The solid curve represents the
estimated smooth function, while the dashed curves represent
the set of approximate 95% pointwise confidence intervals. 56

viii

Chapter 1

Introduction

Group testing, or pooled testing, first proposed by Dorfman (1943) to screen World

War II soldiers for syphilis, is a process whereby individual specimens (e.g., blood,

urine, etc.) are pooled together and tested as a whole for the presence of a character-

istic of interest, such as disease. By testing specimens in pools, fewer tests are needed

to resolve the individual statuses, as multiple specimens are resolved simultaneously

when a pool tests negatively. This often confers substantial cost savings when com-

pared to individual testing alone, which has been group testing’s primary motivation

since its inception (Peeling et al., 1998). However, the recent COVID-19 pandemic

highlights an overlooked but invaluable utility of group testing. If testing supplies

become scarce, such as in a humanitarian crisis situation, group testing allows more

individuals to be screened for life-threatening diseases with the same set of limited

resources. Regarding COVID-19, FDA commissioner Stephen Hahn stated “sample

pooling becomes especially important as infection rates decline and we begin testing

larger portions of the population.” Although group testing applications can be found

in numerous disciplines including molecular biology (Farach et al., 1997) and genetics

(Gastwirth, 2000), its applications in epidemiology are ubiquitous (Kleinman et al.,

2005; Lewis, Lockary, and Kobic, 2012; Krajden et al., 2014). Infectious disease ap-

plications arise naturally due to the inherent ease of specimen pooling. In addition,

the efficiency conferred by group testing is greatest when the characteristic of interest

is rare, as is the case with most sexually transmitted diseases.

1

1.1 Common Group Testing Algorithms

Group testing algorithms come in many forms, from the most basic master pool

testing, to highly complex hierarchical and array-based methods. In this section, we

describe some of the most common algorithms seen in practice.

Master pool testing consists of combining specimens into non-overlapping (master)

pools, such that each specimen belongs to a single pool. All specimens within a given

pool are then declared either disease-positive or disease-negative based upon the test

result of the pool. Master pool testing can be quite efficacious, but only when model

estimation is of central interest, as the individual statuses are not resolved. Dorfman

testing, as the name suggests, is attributed to Dorfman’s seminal work. It is a two-

stage hierarchical procedure and is the most common group testing procedure used

in practice (McMahan, Tebbs, and Bilder, 2012a). The first stage consists of master

pool testing. If a pool tests positively, a separate aliquot of each specimen that

contributed to that pool is then individually tested, while if a pool tests negatively,

each specimen within that pool is declared negative without further retesting. Figure

1.1 illustrates the use of Dorfman testing on an example data set of nine specimens.

1 2 3 4 5 6 7 8 9

1,2,3 4,5,6 7,8,9

87 9

Specimens

Stage I

Stage II

Results 1 2 3 4 5 6 7 8 9

Figure 1.1: Dorfman testing on an example data set of nine specimens. A blue circle
indicates a negative test result, while a red circle indicates a positive test result.

2

Array testing is most commonly a two-stage procedure in which specimens are

placed into a square array, with each column and each row of the array representing

a pool. The first stage consists of testing each pool, after which, individual tests are

performed following the convention of Kim et al. (2007). That is, if a column pool and

a row pool both test positively, a separate aliquot of the specimen which contributed

to both pools is individually tested. In addition, if a column pool tests positively,

but all row pools test negatively, each specimen that contributed to the column pool

is individually tested. Likewise, if a row pool tests positively, but all column pools

test negatively, each specimen that contributed to the row pool is individually tested.

All other specimens are declared negative during the first stage of testing. Figure 1.2

illustrates the use of array testing on an example data set of nine specimens.

4 5 6

1 2 3

7 8 9

Specimens

1,2,3

4,5,6

7,8,9

1,4,7 2,5,8 3,6,9Stage I

Stage II

Results

Stage I

7

1 2 3 4 5 6 7 8 9

Figure 1.2: Array testing on an example data set of nine specimens. A blue circle
indicates a negative test result, while a red circle indicates a positive test result.

1.2 Literature Review

To date, the focus of most statistical research on group testing has been either esti-

mation or case identification. In infectious disease applications, estimation concerns

3

one’s ability to estimate the population prevalence of a disease (i.e., the proportion

of individuals within a population who have the disease), as well as population-level

regression models that relate covariate information (e.g., age, symptom status, etc.)

to disease status. Statistical research on case identification, or classification, exam-

ines the ability of a group testing algorithm to correctly classify individuals as being

either positive or negative for a disease, with a preponderance of the literature ex-

amining the performance of hierarchical and array-based pooling algorithms (Kim et

al., 2007). The primary focus of this dissertation is model estimation.

The so called “estimation problem” in group testing has historically dealt with esti-

mating disease prevalence. The first research in this area was performed by Thompson

(1962), who was interested in estimating the proportion of virus transmitting vectors

within a natural population of insects. Upon exposure to a vector, a plant will dis-

play symptoms of infection. Thus, if a plant were exposed to k insects, it would have

probability (1 − p)k of remaining non-infected, where p (the population prevalence)

is the proportion of virus transmitting insects within the population. By repeating

this process for N plants, one is able to estimate p. Thompson derived the maximum

likelihood estimator (MLE) of p as well as its asymptotic distribution, assuming both

an error-free response and that the vector-statuses of the insects are independent and

identically distributed. Sobel and Elashoff (1975) proposed an alternative approach

which takes into account retesting information. Swallow (1985) showed that the MLE

of p in Thompson (1962) is biased, and Burrows (1987) proposed an estimator of p

which is superior to the MLE in terms of bias and mean square error. Hughes-Oliver

and Swallow (1994) developed an adaptive method to estimate p which uses a priori

knowledge of p to determine optimal pool sizes. Their method is adaptive in that

the pool sizes vary from stage to stage, with the pool size for a given stage being

determined based on information from the previous stage. As a worst case scenario,

individual testing is performed, provided the a priori upper bound for p is not less

4

than the true value of p. Hung and Swallow (1999) developed models to allow for im-

perfect testing and non-independence of specimens. More recently, Nguyen, Bish, and

Aprahamian (2018) studied a sequential procedure for estimating disease prevalence

that uses continuous testing outcomes.

Chaubey and Li (1995) were among the first to approach the estimation prob-

lem from a Bayesian prospective, developing two different Bayes estimators of p.

The first estimator specified a two-parameter beta prior distribution for p, while the

second estimator specified a prior distribution for 1 − (1 − p)k, the proportion of

pools containing an infected specimen. However, both estimators are highly influ-

enced by the choice of hyperparameters. Tebbs, Bilder, and Moser (2003) proposed

a parametric empirical Bayes estimator which eliminated the hyperparameter sub-

jectively in the work of Chaubey and Li (1995). Bilder and Tebbs (2005) developed

empirical Bayesian approaches for estimating the disease transmission probability in

multiple-vector-transfer designs and demonstrated the superiority of their methods

when compared to other frequentist and Bayesian approaches.

Farrington (1992) proposed modeling individual-specific disease probabilities based

on available covariate information. In this seminal work, Farrington used a general-

ized linear model with a complementary log-log link function to model the individual

disease probabilities, assuming error-free testing and that the individuals within each

pool have identical covariate values. The later assumption was also made in the

Bayesian approach of Tu, Kowalski, and Jia (1999). Vansteelandt, Goetghebeur, and

Verstraeten (2000) generalized the work of Farrington (1992) by allowing for any

link function to be used, for testing error, and for heterogeneous pooling (i.e., not

requiring the covariate composition within each pool to be identical, or even sim-

ilar). Huang (2009) extended the work of Vansteelandt et al. (2000) by allowing

for covariate measurement error. Chen, Tebbs, and Bilder (2009) were the first to

propose a mixed effects model within the group testing setting. Bilder and Tebbs

5

(2009) explored the effects of pooling composition on parameter estimation. McMa-

han, Tebbs, and Bilder (2013) proposed incorporating external biomarker information

into the modeling process.

The regression methods of the 20th century all share a common restrictive feature,

that only the initial (master) pool responses are used for estimation. Unless one is only

interested in estimating disease prevalence, group testing protocols involve multiple

stages of testing, the information from which is ignored by these methods (Gastwirth

and Johnson, 1994; Krajden et al., 2014). Xie (2001) developed an EM algorithm

for group testing data capable of incorporating this additional information into the

modeling process, and is credited as the first to do so. Since this seminal work,

many others have forwarded this area of research. Zhang, Bilder, and Tebbs (2013a)

implemented Xie’s (2001) EM algorithm to examine the efficiency of numerous group

testing protocols and showed that some may even yield more efficient estimates than

individual testing when diagnostic tests are imperfect. Wang et al. (2014) proposed

a semi-parametric approach to incorporate decoding information (i.e., information

gained from retesting positive pools). McMahan et al. (2017) proposed a general

Bayesian regression framework for modeling group testing data. Gregory, Wang, and

McMahan (2019) developed an adaptive elastic net estimator capable of both model

estimation and variable selection. Delaigle, Huang, and Lei (2019) studied model

estimation in the presence of missing covariates.

In recent years, there has been a burgeoning interest in semiparametric and non-

parametric modeling extensions, including the works of Delaigle and Meister (2011),

Delaigle and Hall (2012; 2015), Wang, Zhou, and Kulasekera (2013), Delaigle, Hall,

and Wishart (2014), Wang et al. (2014), and Liu et al. (2020). These works, unlike

those previously mentioned, do not assume the relationship between disease status

and potential risk factors is linear in nature; thus, providing a more flexible frame-

work for assessing an individual’s risk for disease. However, the majority of these

6

papers continue to make the rigid assumptions of their predecessors (e.g., requiring

master pool testing), which render them inapplicable in most settings. The Bayesian

generalized additive model of Liu et al. (2020) provides a compromise between the

familiarity and interpretability of a linear model and flexibility of a nonparametric

model, allowing some effects to remain linear while others are modeled with smooth

functions.

Many researchers have shifted to developing methods capable of handling data

arising from the use of multiplex assays, or assays with the ability to detect multiple

diseases simultaneously. Zhang et al. (2013b) were among the first to develop regres-

sion methods for multiple-disease group testing data, using a generalized estimating

equations approach. However, their estimation procedure can only incorporate infor-

mation from single-stage master pool testing. Tebbs, McMahan, and Bilder (2013)

use the expectation-maximization (EM) algorithm to simultaneously estimate the

prevalence of multiple diseases, while allowing for testing error. Warasi et al. (2016)

developed a Bayesian approach which can estimate the prevalence of multiple diseases

as well as the accuracies of the testing assay. Haber and Malinovsky (2017) proposed

random walk designs for selecting pool sizes and applied their methods to estimate

the prevalence of two Australian crop diseases. Li, Liu, and Xiong (2017) proposed

the use of the D-optimal criterion for estimating the prevalence of correlated diseases.

Hyun, Gastwirth, and Graubard (2018) developed a method for estimating the preva-

lence of two traits from complex survey data. Lin, Wang, and Zheng (2019) developed

a method for regression analysis and variable selection for multiple-infection group

testing data which is able to incorporate retesting information.

1.3 Contribution

We first develop a generalized linear model (GLM) which is suitable for data that

arise from any group testing methodology (i.e., regardless of the testing algorithm per-

7

formed, covariate composition within the pools, or number and/or types of diagnostic

assays used). This model can best be seen as a generalization of the expectation-

maximization (EM) algorithm of Xie (2001), in that it allows for unknown assay

accuracy probabilities. This extension enables the algorithm to be applied in more

realistic settings, where the effect of pooling dilution may not be fully understood. In

addition, this model provides the algorithmic framework which we used to integrate

boosting. Boosting is a powerful machine learning technique commonly used for re-

gression and classification (Schapire, 1990; Freund, 1995; Freund and Schapire, 1997).

Although previous researchers have combined the EM and boosting algorithms to cre-

ate latent variable models (see, e.g., Yasui et al., 2004; Ward et al., 2009), similar

methods have surprisingly never been developed within the group testing literature.

We develop two boosting algorithms; the first is a boosted version of our general-

ized linear model (BGLM). Although the GLM and BGLM provide similar estimates,

boosting can drastically reduce the computation time. Even with as few as twenty

covariates this reduction can be a hundredfold. In fact, when the dimensionality

of the predictor space becomes large (e.g., 20, etc.), traditional maximization algo-

rithms often become numerically unstable and fail to converge altogether. Unfortu-

nately, boosting does not remove the potentially restrictive linearity assumptions of

the GLM. This motivates our second boosting algorithm, a nonparametric boosted

regression trees model (BTM). By changing the base learner of the boosting algorithm

to a regression tree, we can drastically improve estimation performance in cases when

a parametric model fit is in question. In addition, even under linearity conditions,

the performance of the BTM is comparable to that of the linear models.

Many modern assays have the capability to screen for multiple diseases simulta-

neously. One such assay is the Aptima Combo 2 Assay (AC2A), which is able to

simultaneously test for the presence of chlamydia and gonorrhea. With this as our

8

motivating example, we generalize each of the aforementioned regression methods to

allow for a bivariate response.

Lastly, we develop a flexible generalized additive model (GAM) that uses the

expectation-maximization algorithm to resolve the latency of the true disease statuses.

This approach allows linear effects to be identified and retain their interpretability,

while more complex relationships are modeled with smooth functions. In addition, it

offers many benefits over the Bayesian approach of Liu et al. (2020).

1.4 Structure of the Dissertation

The remainder of the dissertation is organized as follows: In Chapter 2, we discuss

our generalized linear model for group testing data. We define notation and describe

modeling assumptions in Section 2.2 and discuss the methodology in Section 2.3. The

chapter ends with a brief discussion. In Chapter 3, we discuss our boosting methods

for group testing data. We define notation and describe modeling assumptions in

Section 3.2; we discuss the methodology in Section 3.3; we use simulation to examine

the estimation performances of our GLM, BGLM, and BTM in Section 3.4; we fit our

models to chlamydia screening data obtained from the State Hygienic Laboratory at

the University of Iowa in Section 3.5, and conclude the chapter with a brief discussion.

In Chapter 4, we extend the methods presented in the previous chapters to allow for

multiple-disease group testing data, and in Chapter 5, we discuss our generalized

additive model, with the structure of each of these chapters being similar to that of

Chapter 3.

9

Chapter 2

Generalized Linear Modeling for Group

Testing Data

2.1 Introduction

In this chapter, we develop a generalized linear model (GLM) which is suitable for

data that arise from any group testing protocol. This model is not only a contribution

in its own right, but provides the foundation upon which further algorithms are

developed; see Chapters 3, 4, and 5.

2.2 Preliminaries

Suppose we have a sample of N individuals that have been tested for a binary char-

acteristic of interest, such as disease status. Let J be the number of pools used to

test these individuals. For j = 1, 2, . . . , J , let Pj be the set of individuals in the

jth pool, where we require ∪jPj = {1, 2, . . . , N}. Individual testing can be seen as

a special case of group testing in which |Pj| = 1 ∀j, where j ∈ {1, 2, . . . , N}. Al-

lowing for imperfect assays, let Zj be the observed test result of the jth pool and

Z̃j ≡ I(∑i∈Pj
Ỹi > 0) be its latent true status, where I(·) is the indicator function and

Ỹi is the true status of the ith individual; thus, a pool is truly positive if and only if it

contains at least one truly positive individual. Further, let Se(l) = pr(Zj = 1|Z̃j = 1)

and Sp(l) = pr(Zj = 0|Z̃j = 0) be the sensitivity and specificity of the lth assay

respectively, where j ∈ M(l), and M(l) is the set of pools such that the lth assay

was used. We do not require these assay accuracy probabilities to be known and they

10

may be estimated along with the other model parameters. Additionally, this notation

allows the accuracy probabilities of an assay to vary based upon the pool size.

We assume the observed testing outcomes are conditionally independent given

the individual true statuses, and the conditional distribution Z|Ỹ does not depend

on the covariates, where Ỹ = (Ỹ1, Ỹ2, . . . , ỸN)′ denotes the latent individual statuses

and Z = (Z1, Z2, . . . , ZJ)′ denotes the testing outcomes. Additionally, we assume the

true statuses follow independent Bernoulli distributions with success probabilities

Pi ≡ pr(Ỹi = 1|xi,β) = H−1(x′iβ), where H(·) is a monotone differentiable link

function, xi = (1, xi1, xi2, . . . , xir)′ is the (r + 1)-dimensional vector of covariates

for the ith individual, and β = (β0, β1, . . . , βr)′ is the (r + 1)-dimensional vector of

regression parameters.

2.3 Methodology

As with a standard GLM, parameter estimates can be obtained via maximum-likelihood

estimation. Using the notation established in the previous section, the complete log-

likelihood function for any group testing protocol can be written as

l(θ|Z, Ỹ,X) =
L∑
l=1

∑
j∈M(l)

{Z̃j log[SZj

e(l)(1−Se(l))
1−Zj]+(1−Z̃j) log[(1−Sp(l))ZjS

1−Zj

p(l)]}

+
N∑
i=1
{Ỹi logPi + (1− Ỹi) log(1− Pi)}, (2.1)

where θ = (S′e,S′p,P′)′, Se = (Se(1), Se(2), . . . , Se(L))′, Sp = (Sp(1), Sp(2), . . . , Sp(L))′,

P = (P1, P2, . . . , PN)′, X = (x1 x2 . . . xN)′, and L is the number of sets of assay

accuracy probabilities. Due to the latency of the true disease statuses, direct max-

imization of the log-likelihood function is not possible. However, the EM algorithm

allows one to calculate maximum-likelihood estimates from incomplete or missing

data (Dempster et al., 1977). To begin, we calculate the conditional expectation of

11

the log-likelihood function in equation (2.1), which is given by

Q(θ|θ(t)) = E[l(θ|Z, Ỹ,X)|Z,X,θ(t)] =
L∑
l=1

∑
j∈M(l)

 pr
∑
i∈Pj

Ỹi > 0

∣∣∣∣∣∣Z,X,θ(t)


︸ ︷︷ ︸

Cj

× log[SZj

e(l)(1− Se(l))
1−Zj]

+
1− pr

∑
i∈Pj

Ỹi > 0

∣∣∣∣∣∣Z,X,θ(t)

× log[(1− Sp(l))ZjS
1−Zj

p(l)]


+

N∑
i=1
{pr(Ỹi = 1|Z,xi,θ(t)) logPi + [1− pr(Ỹi = 1|Z,xi,θ(t))] log(1− Pi)}, (2.2)

where the superscript t denotes an estimate from the tth iteration of the algorithm.

To complete the e-step, we must first derive expressions for pr(Ỹi = 1|·) and Cj,

where Cj is the conditional probability of the jth pool being truly positive. Unfortu-

nately, for most group testing protocols these expectations are intractable. Therefore,

we stochastically approximate these probabilities by repeatedly sampling from the

conditional distributions of the individual true statuses using Markov Chain Monte

Carlo. We have Ỹi|Z, Ỹ−i,X,θ follows a Bernoulli distribution with success proba-

bility p∗i1/(p∗i0 + p∗i1), where

p∗i1 = Pi
∏
j∈Ai

S
Zj

ej (1− Sej)1−Zj ,

p∗i0 = (1−Pi)
∏
j∈Ai

[SZj

ej (1−Sej)1−Zj]I(Σi′∈Pij
Ỹi′>0)×[(1−Spj)ZjS

1−Zj

pj]I(Σi′∈Pij
Ỹi′=0)

, (2.3)

Ỹ−i = {Ỹ1, . . . , Ỹi−1, Ỹi+1, . . . , ỸN}, Ai = {j : i ∈ Pj}, Sej and Spj are the sensitivity

and specificity respectively of the assay used to test the jth pool, and Pij = {i′ ∈

Pj : i′ 6= i}. The estimate of pr(Ỹi = 1|·) is given by the proportion of the imputed

statuses of the ith individual which are positive. Similarly, the estimate of Cj is given

by the proportion of the imputed statuses of the jth pool which are positive.

The m-step consists of maximizing the conditional expectation in equation (2.2)

with respect to θ. Note, the second line of equation (2.2) is a function of only Se,

the third line is a function of only Sp, and the final line is a function of only P. As

12

such, we may separately consider the maximizations of Se, Sp, and P. Maximizing

Q(θ|θ(t)) directly with respect to Se and Sp yields the following closed-form solutions:

S
(t+1)
e(l) =

∑
j∈M(l) C

∗
jZj∑

j∈M(l) C
∗
j

S
(t+1)
p(l) =

∑
j∈M(l)(1− C∗j)(1− Zj)∑

j∈M(l)(1− C∗j) , (2.4)

for l ∈ {1, 2, . . . , L}, where C∗j is the stochastic approximation of Cj.

To complete the m-step, it still remains to maximize Q(θ|θ(t)) with respect to

P. For ease of explication, we assume H(·) is the logit link, that is, P (·) has the

functional form given by Pi =
(
1 + e−x′iβ

)−1
. Thus, we may proceed by maximizing

Q(·) with respect to β. As the double-summation in equation (2.2) is not a function

of β, we may rewrite the equation as

Qβ(β|θ(t)) = −
N∑
i=1

pr(Ỹi = 1|Z,xi,θ(t)) log(1 + e−x′iβ)

+ [1− pr(Ỹi = 1|Z,xi,θ(t))] log(1 + ex′iβ) + c,

where c is constant with respect to β. If pr(Ỹi = 1|·) is intractable, it is approx-

imated according to equation (2.3). The estimate obtained from fitting a logistic

regression model to the observed responses can be used as the initial estimate β(0).

The estimate is then updated via the recursion β(t+1) = arg maxβ Qβ(β|θ(t)), where

the maximization is performed using the Newton-Raphson algorithm.

The entire process is repeated until |Q(θ(t+1)|θ(t)) − Q(θ(t)|θ(t−1))| < ε, for some

small ε > 0. The vector of maximum likelihood estimates is given by (Ŝ′e, Ŝ′p, β̂′)′ ≡

(S(T)′
e ,S(T)′

p ,β(T)′)′, where T is the iteration upon which the algorithm converges. By

invariance, the maximum likelihood estimate of Pi is given by P̂i = (1 + e−x′iβ̂)−1.

2.4 Discussion

In this chapter, we used the framework of the expectation-maximization algorithm to

develop a generalized linear model which is applicable for data arising from any group

testing protocol, and which can be updated on a continual basis using new screening

13

results. This chapter lays the foundation which we continue to build upon in the

coming chapters. Simulation and data analysis are deferred to the next chapter, where

the estimation performance of our GLM is compared to that of boosting alternatives.

14

Chapter 3

Boosting Methods for Group Testing Data

3.1 Introduction

In this chapter, we apply boosting to the algorithmic framework presented in Chapter

2. This is done in two ways: the first is a straightforward extension of our generalized

linear model, while the second is a nonparametric approach which uses a regression

tree base learner.

3.2 Preliminaries

The preliminary notation and assumptions of this chapter are consistent with those

established in the previous chapter; see Section 2.2 for details.

3.2.1 Machine Learning Concepts

Before proceeding with the methodology, we briefly describe a few machine learning

concepts used within the algorithms of this chapter; namely, boosting, regression

trees, and gradient boosting.

Boosting

Boosting is a machine learning algorithm developed in the 1990’s for regression

and classification problems (Schapire, 1990; Freund, 1995; Freund and Schapire,

1997). Friedman, Hastie, and Tibshirani (2000) were the first to illuminate the inner-

workings of the boosting algorithm by drawing parallels to well-known statistical

15

methodologies. Similar to other regression techniques, boosting is inappropriate for

data in which the response variable of interest is latent (e.g., due to testing error).

Boosting produces a prediction model in the form of an ensemble of weak models or

learners, often decision trees (Friedman et al., 2001). It is a form of stage-wise addi-

tive modeling, at each stage building the model in such a way as to focus on correcting

the shortcomings of the model from the previous stage, with model deficiencies being

quantified via a loss function. The model is fit by minimizing the expected loss over a

set of training data. To do this, we begin by initializing the model at F0, a vector of

constants of length N , where N is the sample size. Boosting being a greedy algorithm

will then attempt local optimization at each iteration. For m = 1, 2, . . . ,M , we have

Fm = Fm−1 + arg min
bm∈B

N∑
i=1
L(Yi, Fi(m−1) + ωimbim),

where F ≡ (F1, F2, . . . , FN)′, b ≡ (b1, b2, . . . , bN)′, Fi ≡ F (xi), bi ≡ b(xi), xi is

the vector of covariates for the ith individual, B is a class of weak learners or basis

functions, L is the loss function, Yi is the response variable for the ith individual,

ωi is the weight of the basis function for the ith individual, and M is the number of

iterations. M is often chosen using predictive measures such as cross validation.

Regression Trees

The base learner used in a boosting algorithm is often chosen to be a decision tree, or

more specifically, a regression tree. Trees use recursive binary partitioning to separate

the predictor space, also known as the input or feature space, into disjoint regions.

This is done greedily, at each step choosing the variable x·p and the split value cx·p

that best partitions the space, where xip denotes the ith individual’s value for the pth

predictor variable. The method of least squares is used to determine these optimal

values. At each step, x·p and cx·p are given by

arg min
x·p,cx·p

[∑
i∗1

(yi − y1)2 +
∑
i∗2

(yi − y2)2
]
,

16

where i∗1 = {i : xip ≤ cx·p}, i∗2 = {i : xip > cx·p}, and yd is the mean of {yi : i ∈ i∗d},

for d ∈ {1, 2}.

Once a tree has been fully grown it will have K terminal nodes or leaves, where

K is the number of distinct regions in the predictor space chosen by the model. To

prevent overfitting, the optimal number of leaves is often chosen using cost-complexity

pruning; however, the number of leaves is usually fixed in a boosted tree model. The

predicted value for each observation in a node is equal to the average response value

of observations in that node.

Gradient Boosting

Gradient boosting is a derivative of boosting that incorporates gradient descent, an it-

erative optimization algorithm similar to Newton-Raphson. The goal is again to min-

imize a loss function L(·) using a set of training data. For pedagogical purposes, we

assume the base learner is a regression tree. We begin by initializing the model at F0,

a vector of constants of length N . For i = 1, . . . , N , we compute the pseudo-residual

or negative gradient of the ith individual Gim ≡
[
∂L

(
Yi, Fi(m−1)

)/
∂Fi(m−1)

]
. We

then fit a K-node regression tree to {Gim,xi}Ni=1, viewing G·m as the response vari-

able. This yields a set of disjoint regions {Rkm}Kk=1 that form a partition of the

predictor space. For computational simplicity, the number of terminal nodes is the

same for each iteration. Often four to eight nodes are chosen, although two nodes

may be sufficient or even superior in some applications (Friedman et al., 2000).

Allowing for more terminal nodes allows for more interaction between the covari-

ates, although this does not necessarily result in a better model. Optimal step sizes

γkm are found separately for each of the K regions. For k ∈ {1, ..., K}, we have

γkm = arg minγ
∑
xi∈Rkm

L(Yi, Fi(m−1) + γ), where γ is a constant. The model is then

updated as Fim = Fi(m−1) + τ
∑K
k=1 γkm · I(xi ∈ Rkm), where τ is the learning rate, a

tuning parameter used to aid in convergence.

17

Stochastic gradient boosting, proposed by Friedman (1999), not only improves the

accuracy of the gradient boosting algorithm, but also reduces its computation time.

At each iteration, the regression tree is fit to a random subsample of {Gim,xi}Ni=1

instead of to the set itself, where the sampling is performed without replacement.

Typically, the size of the subsample is chosen using standard predictive measures.

3.3 Methodology

3.3.1 Boosted Generalized Linear Model

The concept of boosting (i.e., stage-wise additive modeling) can be applied to our

generalized linear model (GLM) for group testing data. To allow for a direct com-

parison of the models, we assume the base learner is logistic regression; as such, the

parametric assumptions of our GLM are retained. This alternative approach may

accelerate the convergence of the maximum likelihood estimates depending on the

group testing methodology to which it is applied.

Our goal is to maximize Q(θ|θ(t)) with respect to θ, where Q(·) is given by

equation (2.2). As with our GLM, S(t+1)
e and S(t+1)

p are updated according to equation

(2.4). To maximize Q(·) with respect to P, we model the log-odds of disease F =

(F1, F2, . . . , FN), where Fi = log[Pi/(1− Pi)]. We begin by reparamaterizing Q(·) as

Qα,β(α, β|θ(t)) = −
N∑
i=1

pr(Ỹi = 1|Z,xi,θ(t)) log(1 + e−Fi(m−1)−α−βxip)

+ [1− pr(Ỹi = 1|Z,xi,θ(t))] log(1 + eFi(m−1)+α+βxip) + c, (3.1)

where Fi0 = F
(t)
i and c is constant with respect to (α, β)′; if pr(Ỹi = 1|·) is intractable,

it is approximated according to equation (2.3). To annotate, the superscript t reflects

the cyclical process of the EM algorithm, while the subscript m reflects the iterative

process within each m-step.

The estimate obtained from fitting a logistic regression model to the observed

responses can be used as the initial estimate F(0). At each m-step, we iteratively

18

select the predictor variable x·p, p ∈ {1, 2, . . . , r}, that results in the largest value of

Qα,β(α̂p, β̂p|θ(t)), where (α̂p, β̂p)′ are the values of (α, β)′ that maximize Qα,β(·). Let

x·p∗ denote the selected predictor variable, and (α̂p∗ , β̂p∗)′ denote the corresponding

maximizers. The model is then updated as Fim = Fi(m−1)+τ(α̂p∗+β̂p∗x·p∗), where τ is

the learning rate. The updated log-odds of the ith individual is given by F (t+1)
i = FiM ,

where M is the iteration upon which ||Fm − F(m−1)|| is sufficiently small.

The entire process is repeated until |Q(θ(t+1)|θ(t)) − Q(θ(t)|θ(t−1))| < ε, for some

small ε > 0. The estimate of (S′e,S′p)′ is given by (Ŝ′e, Ŝ′p)′ ≡ (S(T)′
e ,S(T)′

p)′, and the

estimate of β is given by the simple linear regression of F̂ ≡ F(T) on X, where T is

the iteration upon which the algorithm converges. Lastly, the estimate of Pi is given

by P̂i = (1 + e−F̂i)−1. A summary is provided in the description entitled “Algorithm

1” in the Appendix.

3.3.2 Boosted Regression Trees Model

In this section, we develop a flexible, nonparametric alternative to our generalized

linear models (i.e., GLM and BGLM). The proposed model is a boosting algorithm

with a regression tree base learner. More specifically, it is a form of stochastic gradient

boosted regression trees model. Being a nonparametric approach, we no longer place

any assumptions on the parametric form of P (·). Instead, we directly model the

log-odds of disease F = (F1, F2, . . . , FN), where Fi = log[Pi/(1− Pi)].

Our goal is again to maximize Q(θ|θ(t)) with respect to θ, where Q(·) is given

by equation (2.2). Note, this is equivalent to viewing −Q(·) as our loss function.

As before, we update S(t+1)
e and S(t+1)

p according to equation (2.4). However, the

maximization of Q(·) with respect to P is quite different than it was for our previous

models. We begin by initializing the model at F(0) = 0. Then, at each iteration, for

i = 1, . . . , N , we compute the negative gradients Gim ≡ [∂Q(θ|θ(t))/∂Fi], which are

19

given by

Gim = pr(Ỹi = 1|Z,xi,θ(t))− 1
1 + e−Fi(m−1)

, (3.2)

where Fi0 = 0; if pr(Ỹi = 1|·) is intractable, it is approximated according to equa-

tion (2.3). Interestingly, the negative gradients are able to retain their residual-like

structure despite the complex nature of group testing data.

We then fit a K-node regression tree to a random subsample of {Gim,xi}Ni=1 of

size ηN , where η, the desired proportion of individuals to be included in the sub-

sample, is often chosen between 0.40 and 0.80 (Friedman, 2002). For computational

simplicity, the number of terminal nodes chosen is the same for each iteration. Trees

use recursive binary partitioning to separate the predictor space into a set of disjoint

regions {Rkm}Kk=1, where the method of least squares is used to determine the par-

tition. Optimal step sizes are then found separately for each of these K regions. A

one-step Newton-Raphson algorithm yields

γkm =
 ∑
i:xi∈Rkm

Gim

/ ∑
i:xi∈Rkm

1
1 + e−Fi(m−1)

× 1
1 + eFi(m−1)


as the step size for the kth region. The model is then updated as Fim = Fi(m−1) +

τ
∑K
k=1 γkm × I(xi ∈ Rkm), where τ is the learning rate; setting 0 < τ < 1 may aid in

convergence if the step sizes are too large.

Traditionally, the updated log-odds of the ith individual would be given by F (t+1)
i =

FiM , where M is the iteration upon which further partitioning no longer leads to a

significant reduction in the least squares. However, if one sets the complexity pa-

rameter (cp) to 0, the algorithm will continue splitting regardless of the reduction

in the least squares. An alternative update for log-odds of the ith individual could

then be given by the average of FiM , Fi(M+1), . . . , FiM∗ , where M∗ is an arbitrarily

chosen stopping iteration. This latter approach can be shown to markedly improve

the estimation performance of the algorithm.

The entire process is repeated until the empirical sampling distributions become

stationary. The vector of parameter estimates (Ŝ′e, Ŝ′p, F̂′)′ is given by the vector

20

of means of these stationary distributions, and the estimate of Pi is given by P̂i =

(1 + e−F̂i)−1. A summary is provided in the description entitled “Algorithm 2” in the

Appendix.

3.4 Simulation

In this section, we use simulation to demonstrate the estimation performances of

our generalized linear model (GLM), boosted generalized linear model (BGLM), and

boosted regression trees model (BTM). We consider two testing scenarios: Dorfman

testing (DT) and array testing (AT); see Section 1.1 for details. Observations are

simulated from the following population models:

M1 : logit(Pi) = −3 + 2xi1 − xi2 M2 : probit(Pi) = −2.7 + g1(xi3) + g2(xi4),

where xi1 ∼ N (0, 1), xi2 ∼ Bernoulli(0.5), xi3, xi4 ∼ U(−3, 3),

g1(x) = exp{−[1.22I(x > 0) + 1.2−2I(x < 0)]x2/5}, and

g2(x) = 1.5 exp{−(x+ 1.5)2}+ 0.7 exp{−(x− 1.5)2}.

The functions g1(·) and g2(·) were chosen to represent common nonlinear patterns,

being unimodal and bimodal respectively. Both population models yield a prevalence

of approximately 10%. Under each population model, we simulated 500 data sets

for both DT and AT, with each data set containing N = 5,000 individuals. For

i = 1, 2, . . . , N , the true status of the ith individual is simulated according to a

Bernoulli(Pi) distribution, where Pi is given by the corresponding population model.

Each master pool consists of specimens from five randomly selected individuals. The

observed status of the jth pool is simulated according to a Bernoulli[SejZ̃j + (1 −

Spj)(1 − Z̃j)] distribution; to capture a mild dilution effect, we consider the use of

a single screening assay with accuracies Se(1) = 0.95 and Sp(1) = 0.99 for pools, and

Se(2) = Sp(2) = 0.98 for individual specimens. These assay accuracy probabilities are

not assumed to be known for the model building process.

21

For our BTM, the tuning parameters were set as follows: K = 2, η = 0.6, τ = 1,

and cp = 0. In addition, a minimum split criterion was employed to help ensure the

stability of the algorithm; as such, a split was only considered if at least 5% (250) of

observations fell within each of the two terminal nodes. Because of the algorithm’s

design, specifically its stochastic nature and the choice of cp, setting K > 2 is unlikely

to provide substantial improvement in estimation performance, even if the covariate

space is large. The learning rate τ is set to 1 by default, and need only be modified

in the presence of convergence difficulties. In practice, choosing optimal values for

these parameters can be done using tuning methods such as cross validation. The

iteration lengths, T and M , serve only to ensure the convergence of the algorithm

(i.e., that the distributions are stationary and that the log-odds are stable) and can

be chosen by trial-and-error if need be.

In total, we consider three simulations. The first simulates data under population

model M1. This simulation is designed to compare the performances of all three

algorithms under optimal linearity conditions. The second simulation also generates

data from population model M1, but is designed to highlight the computational

efficiency of the BGLM. To do this, the GLM and BGLM are both fit with the

addition of 18 random-noise covariates, each following a standard normal distribution.

The final simulation generates data from population model M2. This simulation is

designed to showcase the performance of the nonparametric BTM. All simulations

were performed on a high-powered computing cluster.

3.4.1 Simulation Results

Table 3.1 displays the empirical bias and standard error estimates for the first simu-

lation under population model M1. The estimates from all three algorithms exhibit

similar variabilities and little to no bias, despite the BTM making no assumptions

about the functional form of P (·). The GLM and BGLM have nearly identical com-

22

Table 3.1: Simulation study comparing the estimation performances of our general-
ized linear model (GLM), boosted generalized linear model (BGLM), and boosted
regression trees model (BTM) under population model M1. The average bias (Bias)
and estimated standard error (ESE) from 500 data sets is shown. The sample size
for each data set is 5000. Dorfman testing and array testing use master pools of size
five.

Dorman Testing GLM BGLM BTM
Parameter Bias ESE Bias ESE Bias ESE
β0 = −3 0.00 0.13 0.00 0.13 - -
β1 = 2 0.02 0.11 0.02 0.11 - -
β2 = −1 −0.01 0.14 −0.01 0.14 - -
Se(1) = 0.95 −0.01 0.03 −0.01 0.03 0.01 0.04
Se(2) = 0.98 0.00 0.01 0.00 0.01 0.00 0.01
Sp(1) = 0.99 0.00 0.01 0.00 0.01 0.00 0.01
Sp(2) = 0.98 0.00 0.01 0.00 0.01 0.00 0.01
Array Testing GLM BGLM BTM
Parameter Bias ESE Bias ESE Bias ESE
β0 = −3 −0.01 0.12 −0.01 0.12 - -
β1 = 2 0.01 0.10 0.01 0.10 - -
β2 = −1 0.00 0.13 0.00 0.13 - -
Se(1) = 0.95 0.00 0.01 0.00 0.01 0.00 0.01
Se(2) = 0.98 0.00 0.01 0.00 0.01 0.00 0.01
Sp(1) = 0.99 0.00 0.01 0.00 0.01 0.00 0.01
Sp(2) = 0.98 0.00 0.01 0.00 0.01 0.00 0.01

putation times, averaging 30 to 50 seconds per data set. However, the BTM is

significantly slower, averaging 20 to 28 minutes per data set.

Table 3.2 displays the empirical bias and standard error estimates for the second

simulation under population model M1. The estimates were again similar for the

GLM and BGLM, and were minimally affected by the addition of the random-noise

variables. However, the computation times were decidedly impacted. For DT, the

GLM had an average runtime of 30 minutes, while the BGLM had an average runtime

of only two minutes. For AT, the GLM averaged 2.5 hours per data set, while the

BGLM averaged less than two minutes. In fact, a number of simulated data sets had

23

Table 3.2: Higher-dimensional simulation study comparing the estimation perfor-
mances of our generalized linear model (GLM) and boosted generalized linear model
(BGLM) under population model M1. The average bias (Bias) and estimated stan-
dard error (ESE) from 500 data sets is shown. For the 18 random noise variables,
Bias represents the average absolute bias and ESE represents the average ESE. The
sample size for each data set is 5000. Dorfman testing and array testing use master
pools of size five.

Dorman Testing GLM BGLM
Parameter Bias ESE Bias ESE
β0 = −3 −0.05 0.13 −0.05 0.13
β1 = 2 0.04 0.11 0.04 0.11
β2 = −1 −0.02 0.14 −0.02 0.14
β3 : β20 = 0 0.00 0.06 0.00 0.06
Se(1) = 0.95 0.00 0.04 −0.01 0.04
Se(2) = 0.98 0.00 0.01 0.00 0.01
Sp(1) = 0.99 0.00 0.01 0.00 0.01
Sp(2) = 0.98 0.00 0.01 0.00 0.01
Array Testing GLM BGLM
Parameter Bias ESE Bias ESE
β0 = −3 −0.05 0.12 −0.05 0.12
β1 = 2 0.03 0.09 0.03 0.09
β2 = −1 −0.02 0.14 −0.02 0.14
β3 : β20 = 0 0.00 0.06 0.00 0.06
Se(1) = 0.95 0.00 0.01 0.00 0.01
Se(2) = 0.98 0.00 0.01 0.00 0.01
Sp(1) = 0.99 0.00 0.01 0.00 0.01
Sp(2) = 0.98 0.00 0.01 0.00 0.01

to be rerun, as the GLM failed to converge. Further increasing the dimensionality of

the predictor space should only heighten the disparity between the models.

Table 3.3 displays the empirical bias and standard error estimates for the simu-

lation under population model M2. Comparing to the first simulation setting (see

Table 3.1), the only noticeable change is the inflated bias and variability of the pool

sensitivity estimates for all three models. Aside from this, the models all displayed

similar variabilities and little to no bias. However, the assay accuracy estimates do

not capture the inadequacy of the parametric models to estimate an individual’s prob-

24

Table 3.3: Simulation study comparing the estimation performances of our general-
ized linear model (GLM), boosted generalized linear model (BGLM), and boosted
regression trees model (BTM) under population model M2. The average bias (Bias)
and estimated standard error (ESE) from 500 data sets is shown. The sample size
for each data set is 5000. Dorfman testing and array testing use master pools of size
five.

Dorman Testing GLM BGLM BTM
Parameter Bias ESE Bias ESE Bias ESE
Se(1) = 0.95 −0.04 0.06 −0.04 0.06 −0.04 0.08
Se(2) = 0.98 0.00 0.01 0.00 0.01 0.00 0.02
Sp(1) = 0.99 0.00 0.01 0.00 0.01 0.00 0.01
Sp(2) = 0.98 0.01 0.01 0.01 0.01 0.01 0.01
Array Testing GLM BGLM BTM
Parameter Bias ESE Bias ESE Bias ESE
Se(1) = 0.95 0.00 0.02 0.00 0.02 0.00 0.01
Se(2) = 0.98 0.00 0.01 0.00 0.01 0.00 0.01
Sp(1) = 0.99 0.00 0.01 0.00 0.01 0.00 0.01
Sp(2) = 0.98 0.00 0.01 0.00 0.01 0.00 0.01

ability of disease. Figure 3.1 displays the predicted probability of disease against the

true probability of disease for a sample data set simulated under population model

M2. On the left side are the estimates of the GLM (the GLM and BGLM provide

nearly identical estimates) and on the right side are the estimates of the BTM. We

clearly see from this figure that a parametric approach is not appropriate for this

data, while the BTM estimates the disease probabilities quite well. The GLM and

BGLM had an average runtime of approximately two minutes per data set, while the

BTM averaged 25 to 30 minutes per data set.

3.5 Data Application

Each business day, the State Hygienic Laboratory (SHL) at the University of Iowa re-

ceives urine specimens and endocervical swab specimens from testing clinics through-

out the state. The SHL tests these specimens for the presence of infection (e.g.,

25

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

P

P

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

P

P
Figure 3.1: Model predicted probability of disease (P̂) against true probability of
disease (P) for a sample data set simulated under population model M2. Left: GLM.
Right: BTM.

gonorrhea, chlamydia, etc.) using the Aptima Combo 2 Assay (AC2A), a second

generation nucleic acid amplification test (Gen-Probe, San Diego). Urine specimens

are individually tested, while swab specimens are tested either using individual testing

or Dorfman testing.

These data, collected in 2014, contain the observed chlamydia status, the observed

gonorrhea status, and the covariate information for 13,862 female subjects (4,315

individual urine specimens, 417 individual swab specimens, 2,273 swab master pools

of size 4, 12 swab master pools of size 3, and one swab master pool of size 2). In this

section, chlamydia status is the sole response variable of interest. The covariates,

which are observed on each individual, include age (x1), whether the individual is

Caucasian (x2 = 1), whether the individual reports having a new sexual partner

within the last 90 days (x3 = 1), whether the individual reports having multiple

partners within the last 90 days (x4 = 1), whether the individual reports having a

26

partner with an STD within the last year (x5 = 1), and whether the individual shows

symptoms of infection (x6 = 1).

We fit each of our models to the data, allowing the accuracies of the AC2A to

depend upon both pool size (pooled vs unpooled) and specimen type (swab vs urine).

This yields three sets of assay accuracy probabilities which our algorithms estimate

along with the other model parameters. The tuning parameters of the BTM were set

as follows: K = 2, η = 0.6, τ = 1, cp = 0, and minsplit = 0.05. The model fitting

process for the GLM, BGLM, and BTM took 35, 20, and 100 minutes respectively.

Table 3.4 displays the model parameter estimates for the Iowa chlamydia data.

Standard error estimates (ESE) were calculated using 500 bootstrap samples; a mod-

ified bootstrap procedure was used to preserve the proportions of the key features

of the data (i.e., positive pools and resulting retests, negative pools, individual swab

specimens, and urine specimens). Louis’ method (1982) is a standard approach for

estimating standard errors in a GLM when using the EM algorithm. However, this

method was not pursued as our primary focus is on the boosting algorithms.

The direction of each covariate effect is consistent with the findings of previous

epidemiological studies of chlamydial infection (see, e.g., Navarro et al., 2002; Ein-

walter et al., 2005). All three models provide similar assay accuracy estimates, aside

from the sensitivity estimate for urine specimens which is markedly higher for the

BTM. However, the precision of all three urine sensitivity estimates is questionable

due to their large standard errors. This lack of precision can be attributed to the

testing structure chosen by the lab, which does not lend itself to precise estimation

of the sensitivity of urine specimens or pooled swab specimens.

3.6 Discussion

In this chapter, we developed the first algorithms within the group testing literature

to integrate machine learning techniques. We used simulation to compare the esti-

27

Table 3.4: Iowa chlamydia data parameter estimates for our generalized linear model
(GLM), boosted generalized linear model (BGLM), and boosted regression trees
model (BTM).

GLM BGLM BTM
Parameter Description Est. ESE Est. ESE Est. ESE
β0 −0.803 0.190 −0.823 0.211 - -
β1 Age −0.072 0.008 −0.071 0.008 - -
β2 Race −0.353 0.082 −0.349 0.086 - -
β3 New partner 0.275 0.071 0.273 0.067 - -
β4 Multiple partners 0.333 0.092 0.332 0.094 - -
β5 Contact with STD 1.408 0.120 1.399 0.117 - -
β6 Symptoms 0.292 0.085 0.287 0.080 - -

Se(1) Swab pool 0.939 0.031 0.938 0.062 0.919 0.077
Se(2) Swab individual 0.999 0.001 0.999 0.001 0.999 0.001
Se(3) Urine individual 0.854 0.067 0.886 0.093 0.994 0.084

Sp(1) Swab pool 0.999 0.001 0.999 0.001 0.999 0.001
Sp(2) Swab individual 0.976 0.006 0.976 0.008 0.978 0.009
Sp(3) Urine individual 0.987 0.007 0.990 0.007 0.999 0.004

mation performances of our generalized linear model, boosted regression trees model,

and boosted generalized linear model. In addition, we estimated population-level

regression models for chlamydia using data obtained from the State Hygienic Labo-

ratory in Iowa. The methods presented in this chapter are only applicable for group

testing protocols which screen for a single disease. Extending our methods for use

with multiplex assays is the topic of the next chapter.

28

Chapter 4

Regression Methods for Multiple-Disease

Group Testing Data

4.1 Introduction

In this chapter, we extend our work in Chapters 2 and 3 to accommodate group

testing protocols which simultaneously test for the presence of two diseases. The

primary motivation behind this extension is the dual screening for chlamydia and

gonorrhea provided by assays such as the Aptima 2 combo assay.

4.2 Preliminaries

Let N be the number of individuals screened for disease, and J be the number of pools

used during the screening process. For j = 1, 2, . . . , J , let Pj be the set of individuals

in the jth pool, where we require ∪jPj = {1, 2, . . . , N}. Let Zj1 and Zj2 be the

observed test results of the jth pool for the first and second diseases respectively, and

Z̃j1 ≡ I(∑i∈Pj
Ỹi1 > 0) and Z̃j2 ≡ I(∑i∈Pj

Ỹi2 > 0) be the corresponding latent true

statuses, where I(·) is the indicator function, Ỹi1 is the true status of the ith individual

for the first disease, and Ỹi2 is the true status of the ith individual for the second

disease. Further, let Se(l)1 = pr(Zj1 = 1|Z̃j1 = 1) and Se(l)2 = pr(Zj2 = 1|Z̃j2 = 1)

be the sensitivities of the lth assay for the first and second diseases respectively, and

Sp(l)1 = pr(Zj1 = 0|Z̃j1 = 0) and Sp(l)2 = pr(Zj2 = 0|Z̃j2 = 0) be its specificities,

where j ∈ M(l), and M(l) is the set of pools such that the lth assay was used.

We do not require these assay accuracy probabilities to be known and they may be

29

estimated along with the other model parameters. Additionally, this notation allows

the accuracy probabilities of an assay to vary based upon the pool size.

We assume the observed testing outcomes Z are conditionally independent given

the individual true statuses Ỹ, and the conditional distribution Z|Ỹ does not depend

on the covariates, where Z = (Z1 Z2)′, Ỹ = (Ỹ1 Ỹ2)′, Z1 = (Z11, Z21, . . . , ZJ1)′,

Z2 = (Z12, Z22, . . . , ZJ2)′, Ỹ1 = (Ỹ11, Ỹ21, . . . , ỸN1)′, and Ỹ2 = (Ỹ12, Ỹ22, . . . , ỸN2)′.

Additionally, we assume that the assay accuracies for one disease are independent of

the true status of the other disease.

With respect to their true disease statuses, we can imagine individuals falling

into one of four categories: individuals who are positive for both diseases (Ỹi(1) = 1),

individuals who are positive for the first disease but not the second (Ỹi(2) = 1), in-

dividuals who are positive for the second disease but not the first (Ỹi(3) = 1), and

lastly, individuals who are negative for both diseases (Ỹi(4) = 1); the parentheses

around the second subscript are intended to differentiate this categorical response

from the binary responses Ỹi1 and Ỹi2. For our generalized linear models, we further

assume the true statuses follow independent categorical distributions with probabili-

ties Pid ≡ pr(Ỹi(d) = 1|xi,β) = H−1(x′iβd), for d = 1, 2, 3, where H(·) is a monotone

differentiable link function, xi = (1, xi1, xi2, . . . , xir)′ is the (r+ 1)-dimensional vector

of covariates for the ith individual, βd = (β0d, β1d, . . . , βrd)′ is an (r + 1)-dimensional

vector of regression parameters which enables the comparison of the dth category to

the fourth (reference) category, and β = (β′1,β′2,β′3)′. The probability of an individ-

ual falling into the fourth category is given by Pi4 = 1− Pi1 − Pi2 − Pi3.

4.3 Methodology

4.3.1 Generalized Linear Model

The complete log-likelihood function for any group testing protocol in which indi-

viduals are simultaneously tested for the presence of two diseases can be written

30

as

l
(

θ
∣∣∣∣Z, Ỹ,X) =

L∑
l=1

∑
j∈M(l)

Z̃j1Z̃j2 log
[
(Se(l)1Se(l)2)Zj1Zj2 [Se(l)1(1− Se(l)2)]Zj1(1−Zj2)

× [(1− Se(l)1)Se(l)2](1−Zj1)Zj2 [(1− Se(l)1)(1− Se(l)2)](1−Zj1)(1−Zj2)
]

+ Z̃j1(1− Z̃j2) log
[
[Se(l)1(1− Sp(l)2)]Zj1Zj2(Se(l)1Sp(l)2)Zj1(1−Zj2)

× [(1− Se(l)1)(1− Sp(l)2)](1−Zj1)Zj2 [(1− Se(l)1)Sp(l)2](1−Zj1)(1−Zj2)
]

+ (1− Z̃j1)Z̃j2 log
[
[(1− Sp(l)1)Se(l)2]Zj1Zj2 [(1− Sp(l)1)(1− Se(l)2)]Zj1(1−Zj2)

× (Sp(l)1Se(l)2)(1−Zj1)Zj2 [Sp(l)1(1− Se(l)2)](1−Zj1)(1−Zj2)
]

+ (1− Z̃j1)(1− Z̃j2) log
[
[(1− Sp(l)1)(1− Sp(l)2)]Zj1Zj2 [(1− Sp(l)1)Sp(l)2]Zj1(1−Zj2)

× [Sp(l)1(1− Sp(l)2)](1−Zj1)Zj2(Sp(l)1Sp(l)2)(1−Zj1)(1−Zj2)
]

+
N∑
i=1

{
Ỹi1Ỹi2 logPi1+Ỹi1(1−Ỹi2) logPi2+(1−Ỹi1)Ỹi2 logPi3+(1−Ỹi1)(1−Ỹi2) logPi4

}
,

(4.1)

where θ = (S′e,S′p,P′)′, Se = (S′e1,S′e2)′, Se1 = (Se(1)1, Se(2)1, . . . , Se(L)1)′, Se2 =

(Se(1)2, Se(2)2, . . . , Se(L)2)′, Sp = (S′p1,S′p2)′, Sp1 = (Sp(1)1, Sp(2)1, . . . , Sp(L)1)′, Sp2 =

(Sp(1)2, Sp(2)2, . . . , Sp(L)2)′, P = (P′1,P′2,P′3)′, P1 = (P11, P21, . . . , PN1)′, P2 = (P12,

P22, . . . , PN2)′, P3 = (P13, P23, . . . , PN3)′, X = (x1 x2 . . . xN)′, and L is the number

of sets of assay accuracy probabilities. As in Chapter 2, we use the EM algorithm to

calculate maximum-likelihood estimates due to the latency of the response variables.

To begin, we calculate the conditional expectation of the log-likelihood function

in equation (4.1), which is given by

31

Q
(

θ
∣∣∣∣θ(t)

)
= E

[
l
(

θ
∣∣∣∣Z, Ỹ,X) ∣∣∣∣Z,X,θ(t)

]
=

L∑
l=1

∑
j∈M(l)

 pr
∑
i∈Pj

Ỹi1 > 0
⋂ ∑

i∈Pj

Ỹi2 > 0

∣∣∣∣∣∣Z,X,θ(t)


︸ ︷︷ ︸

Cj1

log
[
(Se(l)1Se(l)2)Zj1Zj2

×[Se(l)1(1−Se(l)2)]Zj1(1−Zj2)[(1−Se(l)1)Se(l)2](1−Zj1)Zj2 [(1−Se(l)1)(1−Se(l)2)](1−Zj1)(1−Zj2)
]

+ pr
∑
i∈Pj

Ỹi1 > 0
⋂ ∑

i∈Pj

Ỹi2 = 0

∣∣∣∣∣∣Z,X,θ(t)


︸ ︷︷ ︸

Cj2

log
[
[Se(l)1(1− Sp(l)2)]Zj1Zj2

× (Se(l)1Sp(l)2)Zj1(1−Zj2)[(1− Se(l)1)(1− Sp(l)2)](1−Zj1)Zj2 [(1− Se(l)1)Sp(l)2](1−Zj1)(1−Zj2)
]

+ pr
∑
i∈Pj

Ỹi1 = 0
⋂ ∑

i∈Pj

Ỹi2 > 0

∣∣∣∣∣∣Z,X,θ(t)


︸ ︷︷ ︸

Cj3

log
[
[(1− Sp(l)1)Se(l)2]Zj1Zj2

× [(1− Sp(l)1)(1− Se(l)2)]Zj1(1−Zj2)(Sp(l)1Se(l)2)(1−Zj1)Zj2 [Sp(l)1(1− Se(l)2)](1−Zj1)(1−Zj2)
]

+ pr
∑
i∈Pj

Ỹi1 = 0
⋂ ∑

i∈Pj

Ỹi2 = 0

∣∣∣∣∣∣Z,X,θ(t)


︸ ︷︷ ︸

Cj4

log
[
[(1− Sp(l)1)(1− Sp(l)2)]Zj1Zj2

× [(1− Sp(l)1)Sp(l)2]Zj1(1−Zj2)[Sp(l)1(1− Sp(l)2)](1−Zj1)Zj2(Sp(l)1Sp(l)2)(1−Zj1)(1−Zj2)
]

+
N∑
i=1

{
pr
(
Ỹi1 = 1

⋂
Ỹi2 = 1

∣∣∣∣Z,xi,θ(t)
)

︸ ︷︷ ︸
Ci1

logPi1 + pr
(
Ỹi1 = 1

⋂
Ỹi2 = 0

∣∣∣∣Z,xi,θ(t)
)

︸ ︷︷ ︸
Ci2

× logPi2 + pr
(
Ỹi1 = 0

⋂
Ỹi2 = 1

∣∣∣∣Z,xi,θ(t)
)

︸ ︷︷ ︸
Ci3

logPi3

+ pr
(
Ỹi1 = 0

⋂
Ỹi2 = 0

∣∣∣∣Z,xi,θ(t)
)

︸ ︷︷ ︸
Ci4

logPi4
}
, (4.2)

where the superscript t denotes an estimate from the tth iteration of the algorithm.

To complete the e-step, we must first derive expressions for the Ci’s and the Cj’s,

where, for d = 1, 2, 3, 4, Cid is the conditional probability of the ith individual falling

into the dth category, and similarly, Cjd is the conditional probability of the jth pool

32

falling into the dth category. Unfortunately, for most group testing protocols these

expectations are intractable. Therefore, we stochastically approximate these proba-

bilities by repeatedly sampling from the conditional distributions of the individual

true statuses using Markov Chain Monte Carlo. We have Ỹi1, Ỹi2|Z, Ỹ−i,X,θ follows

a categorical distribution with success probabilities p∗i1/p∗i·, p∗i2/p∗i·, p∗i3/p∗i·, and p∗i4/p∗i·,

where

p∗i1 = Pi1
∏
j∈Ai

(Sej1Sej2)Zj1Zj2 [Sej1(1− Sej2)]Zj1(1−Zj2)

× [(1− Sej1)Sej2](1−Zj1)Zj2 [(1− Sej1)(1− Sej2)](1−Zj1)(1−Zj2),

p∗i2 = Pi2
∏
j∈Ai

[
(Sej1Sej2)Zj1Zj2 [Sej1(1− Sej2)]Zj1(1−Zj2)

× [(1− Sej1)Sej2](1−Zj1)Zj2 [(1− Sej1)(1− Sej2)](1−Zj1)(1−Zj2)
]I(Σi′∈Pij

Ỹi′2>0)

×
[
[Se(l)1(1− Sp(l)2)]Zj1Zj2(Sej1Spj2)Zj1(1−Zj2)

× [(1− Sej1)(1− Spj2)](1−Zj1)Zj2 [(1− Sej1)Spj2](1−Zj1)(1−Zj2)
]I(Σi′∈Pij

Ỹi′2=0)
,

p∗i3 = Pi3
∏
j∈Ai

[
(Sej1Sej2)Zj1Zj2 [Sej1(1− Sej2)]Zj1(1−Zj2)

× [(1− Sej1)Sej2](1−Zj1)Zj2 [(1− Sej1)(1− Sej2)](1−Zj1)(1−Zj2)
]I(Σi′∈Pij

Ỹi′1>0)

×
[
[(1− Spj1)Sej2]Zj1Zj2 [(1− Spj1)(1− Sej2)]Zj1(1−Zj2)

× (Spj1Sej2)(1−Zj1)Zj2 [Spj1(1− Sej2)](1−Zj1)(1−Zj2)
]I(Σi′∈Pij

Ỹi′1=0)
,

33

p∗i4 = Pi4
∏
j∈Ai

[
(Sej1Sej2)Zj1Zj2 [Sej1(1− Sej2)]Zj1(1−Zj2)

× [(1−Sej1)Sej2](1−Zj1)Zj2 [(1−Sej1)(1−Sej2)](1−Zj1)(1−Zj2)
]I(Σi′∈Pij

Ỹi′1>0
⋂

Σi′∈Pij
Ỹi′2>0)

×
[
[Sej1(1− Spj2)]Zj1Zj2(Sej1Spj2)Zj1(1−Zj2)

× [(1−Sej1)(1−Spj2)](1−Zj1)Zj2 [(1−Sej1)Spj2](1−Zj1)(1−Zj2)
]I(Σi′∈Pij

Ỹi′1>0
⋂

Σi′∈Pij
Ỹi′2=0)

×
[
[(1− Spj1)Sej2]Zj1Zj2 [(1− Spj1)(1− Sej2)]Zj1(1−Zj2)

× (Spj1Sej2)(1−Zj1)Zj2 [Spj1(1− Sej2)](1−Zj1)(1−Zj2)
]I(Σi′∈Pij

Ỹi′1=0
⋂

Σi′∈Pij
Ỹi′2>0)

×
[
[(1− Spj1)(1− Spj2)]Zj1Zj2 [(1− Spj1)Spj2]Zj1(1−Zj2)

× [Spj1(1− Spj2)](1−Zj1)Zj2(Spj1Spj2)(1−Zj1)(1−Zj2)
]I(Σi′∈Pij

Ỹi′1=0
⋂

Σi′∈Pij
Ỹi′2=0)

, (4.3)

p∗i· = p∗i1 + p∗i2 + p∗i3 + p∗i4, Ỹ−i = {Ỹ11, Ỹ12, . . . , Ỹ(i−1)1, Ỹ(i−1)2, Ỹ(i+1)1, Ỹ(i+1)2, . . . ,

ỸN1, ỸN2}, Ai = {j : i ∈ Pj}, Sej1 and Sej2 are the sensitivities for the first and

second disease respectively of the assay used to test the jth pool, Spj1 and Spj1 are

the specificities for the first and second disease respectively of the assay used to test

the jth pool, and Pij = {i′ ∈ Pj : i′ 6= i}. The estimate of Cid is given by the pro-

portion of the imputed statuses of the ith individual which fall into the dth category.

Similarly, the estimate of Cjd is given by the proportion of the imputed statuses of

the jth pool which fall into the dth category.

The m-step consists of maximizing the conditional expectation in equation (4.2)

with respect to θ. Maximizing Q(θ|θ(t)) directly with respect to Se and Sp yields the

following closed-form solutions:

S
(t+1)
e(l)1 =

∑
j∈M(l)(C∗j1 + C∗j2)Zj1∑

j∈M(l) C
∗
j1 + C∗j2

S
(t+1)
p(l)1 =

∑
j∈M(l)(C∗j3 + C∗j4)(1− Zj1)∑

j∈M(l) C
∗
j3 + C∗j4

S
(t+1)
e(l)2 =

∑
j∈M(l)(C∗j1 + C∗j3)Zj2∑

j∈M(l) C
∗
j1 + C∗j3

S
(t+1)
p(l)2 =

∑
j∈M(l)(C∗j2 + C∗j4)(1− Zj2)∑

j∈M(l) C
∗
j2 + C∗j4

, (4.4)

for l ∈ {1, 2, . . . , L}, where C∗jd is the stochastic approximation of Cjd, for d = 1, 2, 3, 4.

34

To complete the m-step, it still remains to maximize Q(θ|θ(t)) with respect to P.

For ease of explication, we proceed using a polytomous, or multi-category, logistic

regression model, that is, for d = 1, 2, 3, H(P·d) is the logit which compares the dth

category to the reference category. Thus, we may proceed by maximizing Q(·) with

respect to the logistic parameter vector β. As the double-summation in equation

(4.2) is not a function of β, we may rewrite the equation as

Qβ(β|θ(t)) =
N∑
i=1

C∗i1

[
x′iβ1 − log

(
1 +

3∑
d=1

ex′iβd

)]
+C∗i2

[
x′iβ2 − log

(
1 +

3∑
d=1

ex′iβd

)]

+ C∗i3

[
x′iβ3 − log

(
1 +

3∑
d=1

ex′iβd

)]
− C∗i4 log

(
1 +

3∑
d=1

ex′iβd

)
+ c,

where c is constant with respect to β and C∗id is the stochastic approximation of

Cid, for d = 1, 2, 3, 4. The estimate obtained from fitting a polytomous logistic

regression model to the observed responses can be used as the initial estimate β(0).

The estimate is then updated via the recursion β(t+1) = arg maxβ Qβ(β|θ(t)), where

the maximization is performed using the Newton-Raphson algorithm.

The entire process is repeated until |Q(θ(t+1)|θ(t)) − Q(θ(t)|θ(t−1))| < ε, for some

small ε > 0. The vector of maximum likelihood estimates is given by (Ŝ′e, Ŝ′p, β̂′)′ ≡

(S(T)′
e ,S(T)′

p ,β(T)′)′, and for d = 1, 2, 3, the estimate of Pid is given by P̂id = ex′iβ̂d/(1+∑3
b=1 e

x′iβ̂b), where T is the iteration upon which the algorithm converges.

4.3.2 Boosted Generalized Linear Model

The concept of boosting can be applied to our generalized linear model through

the use of a polytomous logistic regression base learner. This base learner implies

that the parametric assumptions of our generalized linear model are retained. Our

goal is again to maximize Q(θ|θ(t)) with respect to θ, where Q(·) is given by equa-

tion (4.2). As before, we update S(t+1)
e and S(t+1)

p according to equation (4.4). To

maximize Q(·) with respect to P, we model the log-odds F = (F1,F2,F3), where

35

Fd = (F1d, F2d, . . . , FNd)′, and Fid = log[Pid/Pi4] is the log-odds between the dth

disease category and the reference category, for d = 1, 2, 3, and for i = 1, 2, . . . , N .

We begin by reparamaterizing Q(·) as

Qα,λ(α,λ|θ(t)) =
N∑
i=1

C∗i1

[
Fi(m−1)1 + α1 + λ1xip − log

(
1 +

3∑
b=1

eFi(m−1)b+αb+λbxip

)]

+ C∗i2

[
Fi(m−1)2 + α2 + λ2xip − log

(
1 +

3∑
b=1

eFi(m−1)b+αb+λbxip

)]

+ C∗i3

[
Fi(m−1)3 + α3 + λ3xip − log

(
1 +

3∑
b=1

eFi(m−1)b+αb+λbxip

)]

− C∗i4 log
(

1 +
3∑
b=1

eFi(m−1)b+αb+λbxip

)
+ c, (4.5)

where α = (α1, α2, α3)′, λ = (λ1, λ2, λ3)′, Fi0d = F
(t)
id , C∗id is the stochastic approx-

imation of Cid, and c is constant with respect to (α′,λ′)′. The estimate obtained

from fitting a polytomous logistic regression model to the observed responses can be

used as the initial estimate F(0). At each iteration, we iteratively select the predictor

variable x·p, p ∈ {1, 2, . . . , r}, that results in the largest value of Qα,λ(α̂p, λ̂p|θ(t)),

where (α̂′p, λ̂′p)′ are the values of (α′,λ′)′ that maximize Qα,λ(·). Let x·p∗ denote the

selected predictor variable, and (α̂′p∗ , λ̂′p∗)′ denote the corresponding maximizers. The

model for the dth log-odds is then updated as Fimd = Fi(m−1)d + τ(α̂p∗d + λ̂p∗dx·p∗),

where τ is the learning rate. The updated log-odds of the ith individual is given by

F
(t+1)
id = FiMd, where M is the iteration upon which ||Fm − F(m−1)|| is sufficiently

small.

The entire process is repeated until |Q(θ(t+1)|θ(t)) − Q(θ(t)|θ(t−1))| < ε, for some

small ε > 0. The estimate of (S′e,S′p)′ is given by (Ŝ′e, Ŝ′p)′ ≡ (S(T)′
e ,S(T)′

p)′, and the

estimate of β is given by the multivariate linear regression of F̂1 ≡ F(T)
1 , F̂2 ≡ F(T)

2 ,

and F̂3 ≡ F(T)
3 on X, where T is the iteration upon which the algorithm converges.

Lastly, the estimate of Pid is given by P̂id = eF̂id/(1 + ∑3
b=1 e

F̂ib). A summary is

provided in the description entitled “Algorithm 3” in the Appendix.

36

4.3.3 Boosted Regression Trees Model

In this section, we generalize our boosted regression trees algorithm to accommodate

group testing protocols which simultaneously test for the presence of two diseases.

Boosting is a nonparametric approach and thus places no assumptions on the para-

metric form of P (·). Rather, the log-odds F = (F1,F2,F3) is modeled directly, where

Fd = (F1d, F2d, . . . , FNd)′, and Fid = log[Pid/Pi4] is the log-odds between the dth

disease category and the reference category, for d = 1, 2, 3, and for i = 1, 2, . . . , N .

We again seek to maximize Q(θ|θ(t)) with respect to θ, where Q(·) is given by

equation (4.2). As before, we update S(t+1)
e and S(t+1)

p according to equation (4.4).

To maximize Q(·) with respect to P, we begin by initializing the model at F(0) = 0.

Then, at each iteration, for d = 1, 2, 3, and for i = 1, 2, . . . , N , we compute the

negative gradients Gimd ≡ [∂Q(θ|θ(t))/∂Fid], which are given by

Gimd = C∗id −
eFi(m−1)d

1 +∑3
b=1 e

Fi(m−1)b
, (4.6)

where Fi0d = 0 and C∗id is the stochastic approximation of Cid. For each set of nega-

tive gradients we fit a K-node regression tree to a random subsample of {Gimd,xi}Ni=1

of size ηN , where η is the desired proportion of individuals to be included in the

subsample; the same set of individuals is used for each subsample. Trees use recur-

sive binary partitioning to separate the predictor space into a set of disjoint regions

{Rkmd}Kk=1, where the method of least squares is used to determine the partition.

Optimal step sizes are then found separately for each of these K regions. A one-step

Newton-Raphson algorithm yields

γkmd =
 ∑
i:xi∈Rkmd

Gimd

/ ∑
i:xi∈Rkmd

eFi(m−1)d

1 +∑3
b=1 e

Fi(m−1)b
×
(

1− eFi(m−1)d

1 +∑3
b=1 e

Fi(m−1)b

)
as the step size for the kth region of the dth log-odds. The model is then updated as

Fimd = Fi(m−1)d+τ
∑K
k=1 γkmd×I(xi ∈ Rkmd), where τ is the learning rate. Setting the

complexity parameter (cp) to 0 allows the algorithm to continue splitting regardless

37

of the reduction in the least squares. The updated log-odds of the ith individual is

then given by the average of FiMd, Fi(M+1)d, . . . , FiM∗d, where M∗ is an arbitrarily

chosen stopping iteration.

The entire process is repeated until the empirical sampling distributions become

stationary. The vector of parameter estimates (Ŝ′e, Ŝ′p, F̂′)′ is given by the vector of

means of these stationary distributions, and the estimate of Pid is given by P̂id =

eF̂id/(1 + ∑3
b=1 e

F̂ib). A summary is provided in the description entitled “Algorithm

4” in the Appendix.

4.4 Simulation

In this section, we present simulation evidence of the estimation performances of

our generalized linear model (GLM), boosted generalized linear model (BGLM), and

boosted regression trees model (BTM). We consider both Dorfman testing (DT) and

array testing (AT) baseline protocols; see Section 1.1 for details. However, as we are

testing for two diseases, further discussion of these protocols is required. For DT,

if a master pool tests positively for either of the two diseases, individual retests are

performed on its contributing specimens during the second stage of testing. For AT,

if a column pool and a row pool both test positively for the same disease, a separate

aliquot of the specimen which contributed to both pools is individually tested. In

addition, if a column pool tests positively for a specific disease, but all row pools test

negatively for that same disease, each specimen that contributed to the column pool

is individually tested. Likewise, if a row pool tests positively for a specific disease, but

all column pools test negatively for that same disease, each specimen that contributed

to the row pool is individually tested.

Observations are simulated from the following population model:

M1 : logit(Pid) = x′iβd,

38

where, for d = 1, 2, 3, logit(Pid) is the logit of the dth category to the fourth (reference)

category, xi = (1, xi1, xi2)′, xi1 ∼ N (0, 1), xi2 ∼ Bernoulli(0.5), β1 = (−3.5, 2,−1)′,

β2 = (−4, 1,−0.5)′, and β3 = (−4.5, 1,−0.5)′.

This population model yields prevalences of approximately 8.5% and 7.5% for the

first and second diseases respectively. To reflect a high rate of co-infection, both

diseases are present within approximately 6.5% of the population (i.e., P·4 ≈ 0.065);

that is, when one disease is present, it is more likely for the other disease to be

present as well. We simulated 500 data sets for both DT and AT, with each data

set containing N = 5,000 individuals. For i = 1, 2, . . . , N , the true statuses of the

ith individual are simulated according to a categorical(Pid) distribution, where Pid

is given by the population model. Each master pool consists of specimens from five

randomly selected individuals. The observed status of the jth pool for the qth disease

is simulated according to a Bernoulli[SejqZ̃jq +(1−Spjq)(1− Z̃jq)] distribution, where

we consider the use of a single screening assay with accuracies Se(1)1 = Se(1)2 = 0.95

and Sp(1)1 = Sp(1)2 = 0.99 for pools, and Se(2)1 = Se(2)2 = Sp(2)1 = Sp(2)2 = 0.98

for individual specimens. These assay accuracy probabilities are not assumed to be

known for the model building process. The tuning parameters of the BTM were set

as follows: K = 2, η = 0.6, τ = 1, cp = 0, and minsplit = 0.05.

4.4.1 Simulation Results

Table 4.1 displays the empirical bias and standard error estimates for the simulation

study under population model M1. The BGLM displays slightly higher bias in its

regression coefficient estimates as compared to the GLM. For DT, the assay accuracy

estimates of the BTM are both less accurate and less precise than those of the para-

metric models. However, for AT, the discrepancy between the models is negligible,

as all three models exhibit similar variabilities and little to no bias. Although the

models perform equally well, the parametric models are perfectly specified (i.e., a

39

Table 4.1: Simulation study comparing the estimation performances of our generalized linear model (GLM), boosted generalized
linear model (BGLM), and boosted regression trees model (BTM) under population model M1. The average bias (Bias) and
estimated standard error (ESE) from 500 data sets is shown. The sample size for each data set is 5000. Dorfman testing and
array testing use master pools of size five.

Dorfman Testing Array Testing
GLM BGLM BTM GLM BGLM BTM

Parameter Description Bias ESE Bias ESE Bias ESE Bias ESE Bias ESE Bias ESE
β01 = −3.5 - −0.01 0.12 0.04 0.12 - - −0.02 0.13 0.02 0.12 - -
β11 = 2 - 0.00 0.09 −0.05 0.09 - - 0.02 0.09 −0.03 0.09 - -
β21 = −1 - 0.00 0.13 0.01 0.13 - - 0.00 0.14 0.01 0.14 - -
β02 = −4 - −0.04 0.20 0.10 0.17 - - −0.02 0.17 0.03 0.16 - -
β12 = 1 - 0.01 0.15 −0.24 0.12 - - 0.00 0.13 −0.08 0.12 - -
β22 = −0.5 - 0.01 0.25 0.05 0.25 - - −0.01 0.25 0.01 0.24 - -
β03 = −4.5 - −0.05 0.27 0.13 0.22 - - −0.04 0.24 0.02 0.22 - -
β13 = 1 - 0.00 0.21 −0.32 0.14 - - 0.01 0.18 −0.10 0.16 - -
β23 = −0.5 - 0.01 0.34 0.05 0.34 - - 0.00 0.33 0.02 0.33 - -
Se(1)1 = 0.95 Pool1 0.00 0.01 0.00 0.01 −0.17 0.10 0.00 0.01 0.00 0.01 −0.02 0.01
Se(2)1 = 0.98 Individual1 0.00 0.01 0.00 0.01 −0.02 0.03 0.00 0.01 0.00 0.01 0.00 0.01
Sp(1)1 = 0.99 Pool1 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01
Sp(2)1 = 0.98 Individual1 0.00 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.01 0.01
Se(1)2 = 0.95 Pool2 0.00 0.01 0.00 0.01 −0.19 0.12 0.00 0.01 0.00 0.01 −0.01 0.01
Se(2)2 = 0.98 Individual2 0.00 0.01 0.00 0.01 −0.03 0.03 0.00 0.01 0.00 0.01 0.00 0.01
Sp(1)2 = 0.99 Pool2 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01
Sp(2)2 = 0.98 Individual2 0.00 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.01 0.01

40

logistic model fit to a logistic population), whereas the BTM makes no assumptions

about the functional form of P (·). The GLM and BGLM had an average runtime of

between one and two minutes per data set, while the BTM averaged 13 to 14 minutes

per data set.

4.5 Data Application

In this section, we analyze the clinical screening data provided by the State Hygienic

Laboratory at the University of Iowa. These data contain the observed chlamydia

status, the observed gonorrhea status, and the covariate information for 13,862 female

subjects. The covariates, which are observed on each individual, include age (x1),

whether the individual is Caucasian (x2 = 1), whether the individual reports having

a new sexual partner within the last 90 days (x3 = 1), whether the individual reports

having multiple partners within the last 90 days (x4 = 1), whether the individual

reports having a partner with an STD within the last year (x5 = 1), and whether the

individual shows symptoms of infection (x6 = 1); see Section 3.5 for more details.

We fit each of our models to the data, allowing the assay accuracies to depend

upon both pool size (pooled vs unpooled) and specimen type (swab vs urine). This

yields three sets of assay accuracy probabilities which our algorithms estimate along

with the other model parameters. The tuning parameters of the BTM were set as

follows: K = 2, η = 0.6, τ = 1, cp = 0, and minsplit = 0.05. The model fitting

process for the GLM, BGLM, and BTM took 49, 28, and 138 minutes respectively.

Table 4.2 displays the model parameter estimates for the Iowa screening data.

Standard error estimates (ESE) were calculated using 500 bootstrap samples; a mod-

ified bootstrap procedure was used to preserve the proportions of the key features

of the data (i.e., positive pools and resulting retests, negative pools, individual swab

specimens, and urine specimens). The first block in the table contains the regression-

coefficient estimates for comparing the log-odds of an individual having both diseases

41

Table 4.2: Iowa chlamydia and gonorrhea data parameter estimates for our gener-
alized linear model (GLM), boosted generalized linear model (BGLM), and boosted
regression trees model (BTM).

GLM BGLM BTM
Parameter Description Est. ESE Est. ESE Est. ESE
β01 −4.227 0.624 −4.253 0.590 - -
β11 Age −0.033 0.021 −0.033 0.020 - -
β21 Race −1.056 0.265 −1.044 0.269 - -
β31 New partner 0.006 0.267 0.010 0.277 - -
β41 Multiple partners 0.805 0.308 0.802 0.328 - -
β51 Contact with STD 1.823 0.349 1.909 0.345 - -
β61 Symptoms 0.567 0.280 0.563 0.275 - -

β02 −0.928 0.185 −1.112 0.162 - -
β12 Age −0.073 0.007 −0.066 0.006 - -
β22 Race −0.296 0.087 −0.275 0.079 - -
β32 New partner 0.281 0.066 0.311 0.063 - -
β42 Multiple partners 0.297 0.097 0.286 0.091 - -
β52 Contact with STD 1.385 0.112 1.495 0.125 - -
β62 Symptoms 0.259 0.082 0.246 0.073 - -

β03 −4.849 0.522 −4.888 0.482 - -
β13 Age −0.012 0.016 −0.012 0.015 - -
β23 Race −0.611 0.290 −0.623 0.277 - -
β33 New partner 0.038 0.308 0.117 0.293 - -
β43 Multiple partners 0.304 0.399 0.290 0.367 - -
β53 Contact with STD 2.414 0.330 2.453 0.291 - -
β63 Symptoms 0.322 0.278 0.324 0.262 - -

Se(1)1 Swab pool 0.999 0.003 0.998 0.003 0.999 0.001
Se(2)1 Swab individual 0.999 0.001 0.999 0.001 0.999 0.001
Se(3)1 Urine individual 0.959 0.065 0.943 0.053 0.999 0.059

Sp(1)1 Swab pool 0.999 0.001 0.999 0.001 0.999 0.001
Sp(2)1 Swab individual 0.978 0.005 0.980 0.005 0.980 0.005
Sp(3)1 Urine individual 0.993 0.006 0.991 0.005 0.998 0.004

Se(1)2 Swab pool 0.999 0.001 0.999 0.001 0.999 0.001
Se(2)2 Swab individual 0.999 0.001 0.999 0.001 0.999 0.001
Se(3)2 Urine individual 0.999 0.111 0.997 0.092 0.999 0.139

Sp(1)2 Swab pool 0.999 0.001 0.999 0.001 0.999 0.001
Sp(2)2 Swab individual 0.999 0.001 0.999 0.001 0.999 0.001
Sp(3)2 Urine individual 0.999 0.001 0.999 0.001 0.999 0.001

42

to having neither disease, the second block contains the regression-coefficient esti-

mates for comparing the log-odds of an individual having chlamydia but not gonorrhea

to having neither disease, and the third block contains the regression-coefficient esti-

mates for comparing the log-odds of an individual having gonorrhea but not chlamydia

to having neither disease. The fourth and fifth blocks contain the assay accuracy es-

timates for detecting chlamydia, and the final two blocks contain the assay accuracy

estimates for detecting gonorrhea.

We can see from the table, that the estimates in the first and third blocks have

relatively high standard errors. This is due to a sparsity of individuals falling into

these categories. The estimates from the second block (i.e., chl. = 1, gon. = 0 vs

chl. = 0, gon. = 0) are quite similar to the estimates in Chapter 3, where chlamydia

was the sole response variable of interest. The inclusion of gonorrhea seems to have

stabilized the chlamydia sensitivity estimates for pooled swab specimens, which are

now higher for all three models than they were in Chapter 3. However, the chlamydia

sensitivity estimates for urine specimens remain highly imprecise. The standard errors

of the assay accuracy estimates for detecting gonorrhea are all quite low, with the

exception of the sensitivity estimates for urine specimens, which are even less precise

than those for chlamydia.

4.6 Discussion

In this chapter, we extended the regression methods presented in Chapters 2 and 3

to accommodate multiple-disease group testing data. These methods are the first

within this setting to implement machine learning techniques. We demonstrated the

estimation performance of our models using simulation, and used our algorithms to

estimate population-level regression models for chlamydia and gonorrhea using data

obtained from the State Hygienic Laboratory in Iowa. Although we focused on the

43

two-disease case, generalizing our methods to account for any number of diseases

would not be theoretically difficult, but more an arduous exercise in combinatorics.

44

Chapter 5

Generalized Additive Modeling for Group

Testing Data

5.1 Introduction

In this chapter, we advance the methods presented in Chapter 2 by implementing a

generalized additive modeling framework.

5.2 Preliminaries

For our generalized additive model, we continue to assume the observed testing out-

comes are conditionally independent given the individual true statuses, and the con-

ditional distribution Z|Ỹ does not depend on the covariates. However, we relax the

linearity assumptions of Chapter 2, and instead assume the relationship between Ỹi

and xi, for i = 1, 2, . . . , N, is of the form

H{pr(Ỹi = 1|xi)} = β0 +
r1∑
q=1

gq(xiq) +
r2∑
q=1

βqxi(r1+q), (5.1)

where H(·) is a known binary link function, gq(·), q = 1, 2, . . . , r1, are unspecified

smooth functions, βq, q = 1, 2, . . . , r2, are regression coefficients, and r1 + r2 = r.

This generalized additive form allows for the presence of both linear and nonlinear

effects. In addition, nothing prevents r1 = r or r2 = r, the latter of which would result

in a standard generalized linear model. See Section 2.2 for a review of preliminary

notation.

45

5.2.1 Generalized Additive Models

Before proceeding with the methodology, we provide a brief exposition of the standard

generalized additive model (GAM). Fathered by Hastie and Tibshirani (1986; 1987)

in the 1980s, GAMs remain one of the most recognized regression methods of today.

Their flexibility simultaneously allows for both parametric and nonparametric model

fits to be utilized within the same modeling structure. Linear components are fit

parametrically using weighted linear least squares, while nonlinear components are

fit using unspecified smooth functions. This is done by iteratively smoothing partial

residuals and re-weighting the additive components accordingly, a process which can

be seen as a Gauss-Seidel algorithm for fitting additive models.

For a large class of GAMs, including those for binary regression, the objective

function which we seek to maximize is a penalized log-likelihood. One may at first

consider the approach of fitting a single scatterplot smoother to the data; however,

it has been well established that such procedures suffer greatly from the so called

curse of dimensionality (Friedman and Stuetzle, 1981). This is the primary motiva-

tion for additive modeling, which instead fits a smooth function using each covariate

individually. In addition, this additive form allows one to glean information on the

contribution of each individual covariate. Within the general regression setting, a

GAM has the form

η(X) = f(µ) = β0 +
r∑
q=1

gq(Xq),

where µ = E(Y |X), Y is the response variable, X is the N × r covariate matrix, and

gq(·), q = 1, 2, . . . , r, are unknown smooth functions. Here, η(·) is analogous to the

linear predictor within the context of a generalized linear model.

The process by which the objective function is maximized is referred to as local

scoring, its name stemming from the use of local score estimates within the Fisher

scoring updates. Broadly speaking, the method works by repeatedly smoothing a

transformed dependent variable on Xq, q = 1, 2, . . . , r, and adjusting each smooth in

46

turn, a process which is analogous to a weighted backfitting algorithm. For identifia-

bility reasons, it is standard convention to assume the functions average to zero over

the data, that is, ∑N
i=1 gq(xiq) = 0 ∀q. It is easily seen that β̂0 = f{E(Y)} under this

assumption, and this value remains constant throughout the iterative process. We

initialize the model at gq(0) = 0 ∀q. We then define our adjusted response variable

Y ∗ = ηm−1 +(Y −µm−1)(∂η/∂µm−1), where ηm−1 = f(µm−1) = β̂0 +∑r
q=1 gq(m−1)(Xq),

and where the subscript m denotes an estimate obtained from the mth iteration of

the algorithm. The data is then transformed using weights W = (∂µ/∂ηm−1)2V −1,

where V is the variance of Y at the fitted values µ̂. The update gqm, q = 1, 2, . . . , r,

is obtained by fitting a smoother to the partial residuals Rq which are given by

Rq = Y ∗ − β̂0 −
q−1∑
k=1

gkm(X∗k)−
r∑

k=q+1
gk(m−1)(X∗k),

where X∗k , k = 1, 2, . . . , q−1, q+1, . . . , r, are the weighted covariates. These updated

functions then yield new working responses and weights. This process is repeated un-

til the change in the objective function becomes sufficiently small. Although we have

referred to the gq(·)’s as nonparametric smooth functions, nothing prevents one or

more of these functions from being replaced by a simple regression on the corre-

sponding covariate. In fact, if each smoother is replaced in this way, the local scoring

algorithm converges to the standard (weighted) multiple regression (e.g., weighted

generalized linear model).

So far, we have yet to address the choice of scatterplot smoother. Although a

number of smoothers are available to choose from, most modern GAM algorithms

rely on reduced rank smoothing approaches to reduce computational costs. These

approaches represent the unknown smooth functions in terms of basis expansions

gq(Xq) =
B∑
b=1

αqbBqb(Xq), q = 1, 2, . . . , r,

where the αqb’s are model coefficients, the Bqb(·)’s are known basis functions, com-

monly radial basis functions (thin-plate splines) or B-spline basis functions (smooth-

47

ing splines), and B is the basis dimension, which provides an upper limit on the

degrees of freedom associated with gq(·). In practice, the exact choice of B is gen-

erally not critical. It should be large enough such that the degrees of freedom are

sufficient to represent the underlying function reasonably well (to some degree of con-

fidence), but small enough to maintain computational efficiency. However, the actual

effective degrees of freedom associated with a smooth are affected by the degree of

penalization selected during fitting (i.e., the estimation of the penalty (smoothness)

parameter), which is commonly estimated using generalized cross validation, Akaike

information criterion (AIC), or restricted maximum likelihood.

5.3 Methodology

Our goal in this section is to extend the standard generalized additive model, which

is classically used for supervised individual-level data, to handle the complexities of

partially-supervised pooled data. Much of the methodology follows directly from

Chapter 2, but we present it again here for completeness. We begin by formulating

the complete log-likelihood function for any group testing protocol, which can be

written as

l(θ|Z, Ỹ,X) =
L∑
l=1

∑
j∈M(l)

{Z̃j log[SZj

e(l)(1−Se(l))
1−Zj]+(1−Z̃j) log[(1−Sp(l))ZjS

1−Zj

p(l)]}

+
N∑
i=1
{Ỹi logPi + (1− Ỹi) log(1− Pi)}, (5.2)

where θ = (S′e,S′p,P′)′, Se = (Se(1), Se(2), . . . , Se(L))′, Sp = (Sp(1), Sp(2), . . . , Sp(L))′,

P = (P1, P2, . . . , PN)′, X = (x1 x2 · · · xN)′, Pi = pr(Ỹi = 1|xi), i = i, . . . , N , and L

is the number of sets of assay accuracy probabilities. Due to the latency of the true

disease statuses, direct maximization of the log-likelihood function is not possible. To

implement the EM algorithm, we begin by calculating the conditional expectation of

48

the log-likelihood function in equation (5.2), which is given by

Q(θ|θ(t)) = E[l(θ|Z, Ỹ,X)|Z,X,θ(t)] =
L∑
l=1

∑
j∈M(l)

 pr
∑
i∈Pj

Ỹi > 0

∣∣∣∣∣∣Z,X,θ(t)


︸ ︷︷ ︸

Cj

× log[SZj

e(l)(1− Se(l))
1−Zj]

+
1− pr

∑
i∈Pj

Ỹi > 0

∣∣∣∣∣∣Z,X,θ(t)

× log[(1− Sp(l))ZjS
1−Zj

p(l)]


+

N∑
i=1
{pr(Ỹi = 1|Z,xi,θ(t)) logPi + [1− pr(Ỹi = 1|Z,xi,θ(t))] log(1− Pi)}, (5.3)

where the superscript t denotes an estimate from the tth iteration of the algorithm.

To complete the e-step, we must first derive expressions for pr(Ỹi = 1|·) and Cj,

where Cj is the conditional probability of the jth pool being truly positive. Unfortu-

nately, for most group testing protocols these expectations are intractable. Therefore,

we stochastically approximate these probabilities by repeatedly sampling from the

conditional distributions of the individual true statuses using Markov Chain Monte

Carlo. We have Ỹi|Z, Ỹ−i,X,θ follows a Bernoulli distribution with success proba-

bility p∗i1/(p∗i0 + p∗i1), where

p∗i1 = Pi
∏
j∈Ai

S
Zj

ej (1− Sej)1−Zj ,

p∗i0 = (1−Pi)
∏
j∈Ai

[SZj

ej (1−Sej)1−Zj]I(Σi′∈Pij
Ỹi′>0)×[(1−Spj)ZjS

1−Zj

pj]I(Σi′∈Pij
Ỹi′=0)

, (5.4)

Ỹ−i = {Ỹ1, . . . , Ỹi−1, Ỹi+1, . . . , ỸN}, Ai = {j : i ∈ Pj}, Sej and Spj are the sensitivity

and specificity respectively of the assay used to test the jth pool, and Pij = {i′ ∈

Pj : i′ 6= i}. The estimate of pr(Ỹi = 1|·) is given by the proportion of the imputed

statuses of the ith individual which are positive. Similarly, the estimate of Cj is given

by the proportion of the imputed statuses of the jth pool which are positive.

The m-step consists of maximizing the conditional expectation in equation (5.3)

with respect to θ, which may at first seem daunting, but notice only the final line is

49

a function of P (and only P). As such, we need only focus our attention on

QP(P|P(t)) =
N∑
i=1
{pr(Ỹi = 1|Z,xi,θ(t)) logPi + [1− pr(Ỹi = 1|Z,xi,θ(t))] log(1− Pi)}

(5.5)

when maximizing with respect to P. It is easily seen that equation (5.5) has the

standard form of a log-likelihood for individual-level binary data. Thus, all of the

GAM methodology outlined in the previous section can be integrated within our EM

algorithm for group testing data by simply viewing the conditional success probabil-

ities at each m-step as weighted binary responses. To adapt the general notation of

the previous section to our algorithm, we can see that Y ≡ pr(Ỹi = 1|Z,xi,θ(t)) is

the response variable, µ ≡ pr(Ỹi = 1|xi) ≡ Pi is the mean of the binary response, and

η(·) ≡ H(·) is the binary link function.

To complete the m-step, we maximize Q(θ|θ(t)) directly with respect to Se and

Sp, which yields the closed form solutions

S
(t+1)
e(l) =

∑
j∈M(l) C

∗
jZj∑

j∈M(l) C
∗
j

and S(t+1)
p(l) =

∑
j∈M(l)(1− C∗j)(1− Zj)∑

j∈M(l)(1− C∗j) , l = 1, 2, . . . , L, (5.6)

where C∗j is the stochastic approximation of Cj. The entire process is iterated until

the change in Q(θ|θ(t)) becomes sufficiently small. A summary is provided in the

description entitled “Algorithm 5” in the Appendix.

5.4 Simulation

In this section, we use simulation to demonstrate the computational advantages of

our procedure over the Bayesian approach of Liu et al. (2020). Their competing

methodology uses both Gaussian process and predictive process priors, the estimation

performances of which are nearly identical, with the Gaussian predictive process

priors having greater computational efficiency. Thus, all comparisons made between

our models are made with respect to their more efficient method. We consider two

testing scenarios: Dorfman testing (DT) and array testing (AT); see Section 1.1 for

50

details. Observations are simulated from two population models, both of which are

of the form

probit(Pi) = β0 + g1(xi1) + g2(xi2) + β1xi3 + β2xi4,

where β = (β0, β1, β2)′ = (−1.8, 0.5, 0.5)′, xi1, xi2 ∼ U(−3, 3), xi3 ∼ N (0, 1), and

xi4 ∼ Bernoulli(0.5). For the first population model (M1), the nonlinear functions

are given by

g1(x1) = 0.7 exp{−[1.22I(x > 0) + 1.2−2I(x < 0)]x2
1/6.25} − 0.468, and

g2(x2) = 0.6 exp
{
−(x2 + 1.5)2

0.72

}
+ 0.4 exp

{
−(x2 − 1.5)2

1.28

}
− 0.279,

while in the second model (M2),

g1(x1) = 0.2 sin{π(x1 + 0.2)/2.5}+ 0.4
exp{[x1 + (x1 − 0.3)2I(x1 > 0.3)]/6} − 0.351, and

g2(x2) = 4 exp(1 + 1.5x2)
6 + 6 exp(1 + 1.5x2)

− 0.406.

The functions g1(·) and g2(·) were chosen to represent a wide array of nonlinear

patterns. Both population models yield a prevalence of approximately 9%, which

is consistent with the data application presented in Section 5.5. Under each popu-

lation model, we simulated 500 data sets for both DT and AT, with each data set

containing N = 5,000 individuals. For i = 1, 2, . . . , N , the true status of the ith

individual is simulated according to a Bernoulli(Pi) distribution, where Pi is given by

the corresponding population model. Each master pool consists of specimens from

five randomly selected individuals. The observed status of the jth pool is simulated

according to a Bernoulli[SejZ̃j+(1−Spj)(1−Z̃j)] distribution; to capture a mild dilu-

tion effect, we consider the use of a single screening assay with accuracies Se(1) = 0.95

and Sp(1) = 0.98 for pools, and Se(2) = 0.98 and Sp(2) = 0.99 for individual speci-

mens. These assay accuracy probabilities are not assumed to be known for the model

building process.

To fit our model, we integrated Trevor Hastie’s gam function from the mgcv

R package into our algorithm. For both population models, preliminary graphical

51

Table 5.1: Simulation study comparing the estimation performance of our generalized
additive model (GAM) to that of the Bayesian approach of Liu et al. (2020) (GAMB)
under population models M1 and M2. The average bias (Bias) and estimated standard
error/average posterior standard deviation (ESE) from 500 data sets is shown. The
sample size for each data set is 5000. Dorfman testing (DT) and array testing (AT)
use master pools of size five. For our GAM, the link was intentionally misspecified
as logit for model M2.

Dorman Testing M1/GAM M1/GAMB M2/GAM M2/GAMB

Parameter Bias ESE Bias ESE Bias ESE Bias ESE
β1 = 2 0.00 0.03 0.02 0.04 - - 0.02 0.04
β2 = −1 0.00 0.06 0.02 0.06 - - 0.02 0.06
Se(1) = 0.95 −0.01 0.04 −0.05 0.06 −0.03 0.05 −0.05 0.05
Se(2) = 0.98 0.00 0.02 0.00 0.01 −0.01 0.02 0.00 0.01
Sp(1) = 0.98 0.00 0.01 −0.01 0.02 0.00 0.01 −0.01 0.02
Sp(2) = 0.99 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01
Array Testing M1/GAM M1/GAMB M2/GAM M2/GAMB

Parameter Bias ESE Bias ESE Bias ESE Bias ESE
β1 = 2 0.00 0.03 0.01 0.03 - - 0.01 0.03
β2 = −1 0.00 0.06 0.01 0.06 - - 0.01 0.06
Se(1) = 0.95 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01
Se(2) = 0.98 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01
Sp(1) = 0.98 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01
Sp(2) = 0.99 0.00 0.01 0.00 0.01 0.00 0.01 −0.01 0.01

analysis easily revealed the presence of nonlinear effects for the first two covariates.

As such, thin-plate splines were used to model these effects, while the remaining

two effects were modeled linearly. The probit link was used for model M1, while for

model M2, the link was intentionally misspecified as the logit link to investigate the

method’s robustness to link misspecification.

5.4.1 Simulation Results

Table 5.1 displays the model estimates for the simulations under population models

M1 and M2. The empirical bias and estimated standard error/average posterior stan-

dard deviation are displayed for our model (GAM) and for the competing Bayesian

methodology (GAMB). In both simulation settings, the methods perform similarly,

52

although the GAM displays slightly lower bias for many of the parameter estimates.

In addition, our method is much more efficient in terms of computational speed. For

population model M1, our method had an average runtime of 4.3 minutes, while the

Bayesian method averaged 47 minutes per data set; for population model M2, our

method had an average runtime of 2.4 minutes for Dorfman testing and 3.3 minutes

for array testing, while the Bayesian method had an average runtime of 48 to 49

minutes for both testing protocols.1

−3 −2 −1 0 1 2 3

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

DT

x2

g
2

−3 −2 −1 0 1 2 3

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

AT

x2

g
2

Figure 5.1: Estimation of nonlinear function g2 under population model M1 using our
generalized additive model. The solid curve represents the true function, the dashed
curve represents the mean of 500 estimates of g2, and the dotted curves represent the
0.025 and 0.975 quantiles of 500 estimates of g2. Left: Dorfman testing (DT). Right:
Array testing (AT).

Figure 5.1 displays our model’s estimation of nonlinear function g2 under popula-

tion model M1. The average of the model estimates captures the nonlinear pattern

quite well, and the true function lies entirely within each of the 95% empirical credible

intervals. Figure 5.2 displays our model’s predicted probability of disease against the

1The computation times for the approach of Liu et al. (2020) are for an equivalent simulation,
but with known assay accuracies. Thus, the Bayesian method may actually take longer to converge
than indicated here.

53

true probability of disease for a sample data set simulated under population model

M2. Although there is a mild departure between the correspondence of the predicted

and true disease probabilities for a handful of observations (those having the high-

est true probability of disease), the method overall appears quite resistant to the

potential adverse effects of link misspecification.

●

●●●
●

●

●
●●●

●

●

●

●

●

●●
●

●

●●

●

●●●●
●

●
●●●●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●●●●

●●

●

●

●

●

●
●

●

●●●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●●●●

●

●●

●

●

●●●

●

●●
●●●

●●

●

●●●

●

●

●
●●

●

●

●
●●

●

●
●

●
●

●

● ●

●●
●

●

●●●

●

●

●●

●

●●

●

●●
●

●

●

●●

●
●

●

●

●

●

●●●● ●●
●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●●

●

●
●● ●

●●
●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●●
●

●
●●

●

●

●

●●

●●
●

●
●

●

●
●●●

●●

●

●

●

●●●
●

●●

●

●

●

●
●
●

●●●●

●
● ●

●

●

●

●

●

●

●

●

●
●
●

●● ●●

●

●

●●●
●

●
●●●

●

●●
●

●

●

●

●●

●

●
●

●

●

●●
●

●
●

●

●●●

●

●
●●●

●
●●

●●
●
●

●●

●

●
● ●

●

●●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●●

●

●●

●

●

●
●

●●

●

●●
●●
●

●

●●●●
●

●

●

●●●

●

●
●●●

●

●

●
●

●
●

●
●

●●
●

●●●

●

●

●●●
●
●●●
●

●

●●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●●
●

●
●

●●

●●
●

●

●
●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●●
●●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●

●●
●

●●●●

●
●●
●●

●
●

●

●●

●

●

●

●
●

●

●●

●

●●●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●●●●
● ●

●

●

●

●
●

●
●

●

●●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●●
●●●●

●

●

●

●

●

●

●●●●

●

●
●●●●

●

●

●

●

●

●

●●●●
●●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●
●●

●

●●●

●

●●●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●
●●
●

●●

●

●●

●

●

● ●

●●●●

●

● ●●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●●

●

●●●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●●
●

● ●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●●●

●

●

●

●

● ●

●
●
●●

●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●
●

●●●
●

●

●●
●

●●
●

●

●●
●

●●
●●

●

●
●

●●

●

●
●
●●●

● ●

●

●

●

●●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●●
●

●●

●●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●●●●

●

●

●

●
●

●
●

●

●
●●●●

●

●●

●

●

●

●●

●

●
●

●

●
●
●

●
●

●●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●●
●●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●●
●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●
●

●

●

●

●

●

●
●

●●●

●

●

●
●

●●●

●

●

●

●

●●
●

●
● ●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●●
● ●

●

●●●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●
●●

●●

●●●

●●●●
●

●

●
●●

●

●●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●
●

●
●

●

●●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

●
●

●

●●●●
●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●●●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●●

●
●●

●

●●

●

● ●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●●
●

●

●●
●

●

●●●

●●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●●●●●● ●●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●
●

● ●

●●

●

●
●

●●●

●

●

●

●

●●
●

●

●
●

●

●

●
●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

● ●
●

●
●

●●
●

●●
●

●

●●●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

● ●●
●●●●

●

●

●●
●

●

● ●

●

●

●

●●

●

●

●

●●●●●●●●●●
●

●

●

●

●●●●
●

●●●●●

●

●●

●●●

●

●

●●●

●

●●

●

●

●

●

●● ●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
● ●
●
●

●

●

●●
●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●
●●

●

●
●

●

●●●●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

● ●

●

●●●

●

●●

●

●●
●

●

●●

● ●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●●●●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●
●●●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●
●

●

●●●

●

●●

●

●

●

●

●

● ●
●●

●

●

●

●●
●

●

●
●●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●
●

●
●●

●

●
●

●●

●●

●
●

●

●●
●

●
●

●

●

●●
●

●

●
●

●●
●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●●●

●

●●
●●

●

●

●

●
●

●●●
●

●●

●

●●
●● ●
●●●●
●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●●

●

●●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●
●

●●
●●●

●

●

●●
●

●

●●●●

●

●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●
●

●●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●●
●

●

●●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●●●
●

●

●

● ●

●

●

●

●●●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
● ●●● ●

●

●
●

●
●

●●
●

●●●
●
●
●

●

●
●●

●●
●

●

●

●●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●●
●

●●
●

●●

●●
●

●●

●

●●●●●●●●
●

●●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●●
●

●
●●

●●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●
●

● ●
● ● ●●

●

●

●

●● ●

●

●

●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●●

●

●●
●

●

●
●

●

●

●

●

● ●
●

●
●●

●

●●●●
●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

● ●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●●

●
●●

●
●●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●●
●

●

●
●●●

●

●
●

●

●●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●●●

● ●
●●

● ●

●

●

●

●●

●

●

●

●
●●

●

●●●●●

●

●

●●

●

●

●

●

●

●●

●●
●●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

● ●

●

●

●

●●
●●

●

●

●

●

● ●

● ●
●

●●●

●

●

●

●

●
●●

●●
●

●

●
●

●

●●●●●

●

●●●●
●●●●

●

●

●
●

●● ●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●●

●

●
●●●

●

●

●

●●
●

●
●●

●

●

●

●
●

●

●●
●

●●●

●

●
●

●●

●
●

●

●

●

●● ●

●

●

●

●

●
●●
●●

●

●

●

●

●

●●●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●●●●●

●
●

●

●

●●
●

●

●

●

●
●

●

●●

●

●●
●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●●●●

●

●
●

●

●

●●●●
●
●●

● ●

●●●

●
●

●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●

●●
●

●

●

●
●●●

●

●●●●

●

●

●

●

●

●

●

●●
●

●
●

●●
●

●
●

●

●●●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●●

●

●
●●●●●

●●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●●
●

●

●

●

●

●●

●

●●
●●

●
●

●

●

●
●●

●

●●

●

●

●●●●●●

●
●

●●

●

●

●
●

●●

●

●●

●

●

●

● ●

● ●

●
●●●●●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●●

●
●

●

●

●

●

●●

●
●

● ●

●●
●●●

●●●

●

●

●

●

●
●

●

●

●●●

●

●
●
●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●●
●● ●●
●

●
●

●

●

●

●●●
●

●
●

●

● ●
●
●

●

●
●

●●

●
●

●●

●

●
● ●

●●
●

●

●

●●●

●

●

●
●

●
●

●

●●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●
●

●
●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●
●
● ●

●
●

●●

● ●

●

●●

●●●●●●

●

●
●

●

●●

●

●

●
●●

●

●●

●●●

●
●
●

●
●

●●●
●

●

●
●●

●

●

●●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●
●●

●

●●
●
●

●

●●

●

● ●
●●

●

●

●●

●

●

●
●●

●●
●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●●●
●

●
●

●

●
●●

●

●●●●●
●

●●●●●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●●●●●

●

●●●
●●●●●

●
●

●

●
●

●

●●●●

●

●

●

●

●●

●

●●●●
●

●
●

●●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●●

●●●

●

●

●●●

●

●●●

●

●

●

●

●
●

●

●

●●●

●
●●

●●

●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●●
●●

●
●

●●

●
●

●

●

●
●●
●●●

●●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●
●●

●
●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●●●●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

● ●●
●

●

●
●
●

●

●
●
●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●●

●
●

●

●

● ●

●
●

●
●●

●●

●

●●

●

●

●●
●

● ●

●
●

●●●

●

●

●●

●

●

●

●

●

●●
●

●

●●●

●
●

●●●

●

●

●

●●●
●●

●

●

●●

●

●

●
●

●●
●

●●●

●

●

●

●●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●
●
●

●
●

●●●

●

●●
●

●

●●

●

●

●

●
●

●●●●●

●
●

●

●

●

●
●

●

●

●

●●
●

●
●

●●●●●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●●

●

●

●
●

●
●●

●

●●●

●

●

●

●●

●

●

●●

●

●

●●●

●

●
●

●
●

●

●

●

●●●●

●

●

●
●

●

●

●

●●

●●●●●

●

●● ●●●
●

●

●

●
● ●●

●●●

●

●
●

●

●

●●

●

●●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●
●

●
●●

●

●

●●●●●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●●●

●

●●

●●

●

●

●

● ●
●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●

●
●

●

●

●

●●
●●●

●●●

●●

●●

●

●●●
●● ●

●
●

●●
● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●●

● ●
●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●
●

●●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●●●
●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●●
●●

●●

●

●

●

● ●●●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●
●●●

●●

●●
●●●●

●
●

●

●
●

●
●

●
●

●●●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●

● ●

●

●●●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●
●●

●●

●

●●●●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●
●●●●

●
●

●●

●

●●
●●●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●●

●

●

●●●●

●

●●

●

●

●

●●
●●

●●
●●●●

●

●

●

●
●●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●
● ●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●
●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●
●

●●●

●

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Probit

P

P̂

●

●●●
●

●

●
●●●

●

●

●

●

●

●●
●

●

●●

●

●●●●
●

●
●●●●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●●●●

●●

●

●

●

●

●
●

●

●●●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●●
●

●●●●

●

●●

●

●

●●●

●

●●
●●●

●●

●

●●●

●

●

●
●●

●

●

●
●●

●

●
●

●
●

●

● ●

●●
●

●

●●●

●

●

●●

●

●●

●

●●
●

●

●

●●

●
●

●

●

●

●

●●●●●●
●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●●

●

●
●●●

●●
●

●

●

●

●

●

●

●●
●●
●

●

●
●

●

●●
●

●
●●

●

●

●

●●

●●
●

●
●

●

●
●●●

●●

●

●

●

●●●
●

●●

●

●

●

●
●
●

●●●●

●
● ●

●

●

●

●

●

●

●

●

●
●
●

●●●●

●

●

●●●
●

●
●●●

●

●●
●

●

●

●

●●

●

●
●

●

●

●●
●

●
●

●

●●●

●

●
●●●

●
●●

●●
●
●

●●

●

●
●●

●

●●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●●

●

●●

●

●

●
●

●●

●

●●
●●
●

●

●●●●
●

●

●

●●●

●

●
●●●

●

●

●
●

●
●

●
●

●●
●

●●●

●

●

●●●
●
●●●●

●

●●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●●
●

●
●

●●

●●
●

●

●
●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●●
●●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●

●●
●

●●●●

●
●●
●●

●
●

●

●●

●

●

●

●
●

●

●●

●

●●●

●

●●
●
●

●

●

●

●
●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●●●
●

●●
●

●

●

●
●

●
●

●

●●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●●
●●●●

●

●

●

●

●

●

●●●●

●

●
●●●●

●

●

●

●

●

●

●●●●
●●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●
●●

●

●●●

●

●●●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●
●●
●

●●

●

●●

●

●

●●

●●●●

●

●●●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●●

●

●●●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●●
●

●●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●●●

●

●

●

●

● ●

●
●
●●

●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●
●

●●●
●

●

●●
●

●●
●

●

●●
●

●●
●●

●

●
●

●●

●

●
●
●●●

● ●

●

●

●

●●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●●
●

●●

●●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●●●●

●

●

●

●
●

●
●

●

●
●●●●

●

●●

●

●

●

●●

●

●
●

●

●
●
●

●
●

●●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●●
●●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●●
●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●
●

●

●

●

●

●

●
●

●●●

●

●

●
●

●●●

●

●

●

●

●●
●

●
● ●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●●
● ●

●

●●●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●●
●●●●

●●●

●●●
●

●

●

●
●●

●

●●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●
●

●
●

●

●●●

●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●●●●
●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●●●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●●

●
●●

●

●●

●

● ●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●●
●

●

●●
●

●

●●●

●●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●●●●●●

●●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●
●

● ●

●●

●

●
●

●●●

●

●

●

●

●●
●

●

●
●

●

●

●
●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●
●

●●
●

●●
●

●

●●●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

● ●●
●●●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●●●
●

●

●

●

●●●●
●

●●●●●

●

●●

●●●

●

●

●●●

●

●●

●

●

●

●

●●●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●●
●
●

●

●

●●
●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●
●●

●

●
●

●

●●●●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

● ●

●

●●●

●

●●

●

●●
●
●

●●

● ●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●●●●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●
●●●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●
●

●

●●●

●

●●

●

●

●

●

●

● ●
●●

●

●

●

●●
●

●

●
●●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●
●

●
●●

●

●
●

●●

●●

●
●

●

●●
●

●
●

●

●

●●
●

●

●
●

●●
●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●●●

●

●●
●●

●

●

●

●
●

●●●
●

●●

●

●●
●● ●
●●●
●●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●●

●

●●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●
●

●●
●●●

●

●

●●
●

●

●●●●

●

●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●
●

●●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●●
●

●

●●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●●●
●

●

●

● ●

●

●

●

●●●

●●
●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●●●●●

●

●
●

●
●

●●
●

●●●
●
●
●

●

●
●●

●●
●
●

●

●●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●
●

●●
●

●●

●●
●

●●

●

●●●●●●●●
●

●●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●●
●

●
●●

●●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●
●

● ●
●● ●●

●

●

●

●●●

●

●

●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●●

●

●●
●

●

●
●

●

●

●

●

● ●
●

●
●●

●

●●●●
●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●●

●
●●

●
●●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●●
●

●

●
●●●

●

●
●

●

●●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●●●
● ●
●●

● ●

●

●

●

●●

●

●

●

●
●●
●

●●●●●

●

●

●●

●

●

●

●

●

●●

●●
●●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

● ●

●

●

●

●●
●●

●

●

●

●

● ●

●●
●

●●●

●

●

●

●

●
●●

●●
●

●

●
●

●

●●●●●

●

●●●●
●●●●

●

●

●
●
●● ●

●

●

●
●
●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●●

●

●
●●●

●

●

●

●●
●

●
●●

●

●

●

●
●

●

●●
●

●●●

●

●
●

●●

●
●

●

●

●

●● ●

●

●

●

●

●
●●
●●

●

●

●

●

●

●●●

●
●

●●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●●●●●

●
●

●

●

●●
●

●

●

●

●
●

●

●●

●

●●
●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●●●●

●

●
●

●

●

●●●●
●
●●

● ●

●●●

●
●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●

●●
●

●

●

●
●●●

●

●●●●

●

●

●

●

●

●

●

●●
●

●
●

●●
●

●
●

●

●●●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●●

●

●
●●●●●

●●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●●
●

●

●

●

●

●●

●

●●
●●

●
●

●

●

●
●●

●

●●

●

●

●●●●●●

●
●

●●

●

●

●
●

●●

●

●●

●

●

●

●●

●●

●
●●●●●

●
●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●

●
●

●

●

●

●

●●

●
●

● ●

●●
●●●
●●●

●

●

●

●

●
●

●

●

●●●

●

●
●
●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●●
●●●●
●

●
●

●

●

●

●●●
●

●
●

●

● ●
●
●

●

●
●

●●

●
●

●●

●

●
●●

●●
●

●

●

●●●

●

●

●
●

●
●

●

●●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●
●

●
●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●
●
●●

●
●

●●

● ●

●

●●

●●●●●●

●

●
●

●

●●

●

●

●
●●

●

●●

●●●

●
●
●

●
●

●●●
●

●

●
●●

●

●

●●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●
●●

●

●●
●
●

●

●●

●

● ●
●●

●

●

●●

●

●

●
●●
●●
●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●●●
●

●
●

●

●
●●

●

●●●●●
●

●●●●●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●●●●●

●

●●●
●●●●●
●
●

●

●
●

●

●●●●

●

●

●

●

●●

●

●●●●
●

●
●

●●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●●

●●●

●

●

●●●

●

●●●

●

●

●

●

●
●

●

●

●●●

●
●●

●●

●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●●
●●

●
●

●●

●
●

●

●

●
●●
●●●

●●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●
●●

●
●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●●●●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

● ●●
●

●

●
●
●

●

●
●
●

●

●

●

●●

●

●

●
●●

●
●
●

●

●

●

●

●●

●
●

●
●
●
●

●

●

●●

●
●

●

●

● ●

●
●

●
●●

●●

●

●●

●

●

●●
●

●●

●
●

●●●

●

●

●●

●

●

●

●

●

●●
●

●

●●●

●
●

●●●

●

●

●

●●●
●●

●

●

●●

●

●

●
●

●●
●

●●●

●

●

●

●●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●
●
●

●
●

●●●

●

●●
●

●

●●

●

●

●

●
●

●●●●●

●
●

●

●

●

●
●

●

●

●

●●
●

●
●

●●●●●

●

●

●
●

●

●

●

●

●

●●
●●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●●

●

●

●
●

●
●●

●

●●●

●

●

●

●●

●

●

● ●

●

●

●●●

●

●
●
●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●●

●●●●●

●

●●
●●●

●

●

●

●
● ●●

●●●

●

●
●

●

●

●●

●

●●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●
●

●
●●

●

●

●●●●●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●●●

●

●●

●●

●

●

●

● ●
●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●

●
●

●

●

●

●●
●●●
●●●

●●

●●

●

●●●
●●●

●
●

●●
● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●●

● ●
●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●
●

●
●

●

●
●●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●
●

●●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●●●
●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●●
●●

●●

●

●

●

● ●●●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●
●●●

●●

●●
●●●●

●
●

●

●
●
●

●
●

●
●●●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●●●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●
●●

●●

●

●●●●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●
●●●●

●
●

●●

●

●●
●●●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●●

●

●

●●●●

●

●●

●

●

●

●●
●●

●●
●●●●

●

●

●

●
●●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●
●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●
●

●●●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

Logit

P

P̂

Figure 5.2: Effect of model-link misspecification. Our generalized additive model’s
predicted probability of disease (P̂) against the true probability of disease (P) for
a sample data set simulated under population model M2. Left: Probit link. Right:
Logit link.

5.5 Data Application

We apply our generalized additive model (GAM) to the chlamydia screening data

provided by the State Hygienic Laboratory at the University of Iowa. These data

contain the observed chlamydia status and the covariate information for 13,862 female

subjects. The covariates, which are observed on each individual, include age (x1),

whether the individual is Caucasian (x2 = 1), whether the individual reports having

a new sexual partner within the last 90 days (x3 = 1), whether the individual reports

having multiple partners within the last 90 days (x4 = 1), whether the individual

54

Table 5.2: Iowa chlamydia data parameter estimates for our generalized additive
model.

Parameter Description Est. ESE
β0 −1.459 0.327
β1 Race −0.174 0.043
β2 New partner 0.142 0.034
β3 Multiple partners 0.175 0.050
β4 Contact with STD 0.752 0.063
β5 Symptoms 0.146 0.040

Se(1) Swab pool 0.949 0.049
Se(2) Swab individual 0.999 0.001
Se(3) Urine individual 0.923 0.081

Sp(1) Swab pool 0.999 0.001
Sp(2) Swab individual 0.975 0.007
Sp(3) Urine individual 0.991 0.007

reports having a partner with an STD within the last year (x5 = 1), and whether the

individual shows symptoms of infection (x6 = 1); see Section 3.5 for more details.

Of primary interest is the relationship between age and disease status. Age is the

only quantitative covariate within the data set, and thus provides the only relationship

which can be modeled with a smooth function. The GAM was fit using the logit and

probit link functions, with both links producing similar model fits. As such, the probit

link function was chosen to provide a more direct comparison to the approach of Liu

et al. (2020). We allow the assay accuracies to depend upon both pool size (pooled

vs unpooled) and specimen type (swab vs urine). This yields three sets of assay

accuracy probabilities which are estimated along with the other model parameters.

The model fitting process took approximately 30 minutes to complete.

Table 5.2 displays the model parameter estimates for the Iowa chlamydia data.

Standard error estimates (ESE) were calculated using 500 bootstrap samples; a mod-

ified bootstrap procedure was used to preserve the proportions of the key features

of the data (i.e., positive pools and resulting retests, negative pools, individual swab

specimens, and urine specimens). With the exception of the sensitivity estimates for

55

urine specimens and pooled swab specimens, the parameter estimates provided by our

GAM closely match those from Liu et al. (2020). The lack of congruency between the

sensitivity estimates can be attributed to their large standard errors. These findings

are also consistent with our analyses in Chapter 3.

10 20 30 40 50 60 70

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

g
1

Figure 5.3: Estimation of age effect (x1) for Iowa chlamydia data using our generalized
additive model. The solid curve represents the estimated smooth function, while the
dashed curves represent the set of approximate 95% pointwise confidence intervals.

Figure 5.3 displays the model-estimated effect of age on chlamydia status. The

solid curve represents the estimated smooth function, while the dashed curves repre-

sent the set of approximate 95% pointwise confidence intervals. Our model suggests

that there may be a slight nonlinear trend in the tails, but that the age effect is

largely linear. This is in opposition to the results of Liu et al. (2020), who found a

strong nonlinear trend for the age effect. However, this is not all that surprising if

one considers the variability of these estimates. We can clearly see from the figure

that the estimates in the tails of the smooth function are highly imprecise, especially

56

in the upper-tail. This is due to an inadequacy of data in these regions. Thus, it

would be prudent to obtain more data, especially from individuals 50 years of age or

older, before rendering conclusions on the linearity of the relationship between age

and chlamydia status.

5.6 Discussion

In this chapter, we developed a generalized additive model for group testing data

which allows linear effects to be identified and retain their interpretability, while

more complex relationships are modeled with smooth functions. We addressed many

of the shortcomings present in the competing methodology of Liu et al. (2020).

Their method relies on complex Gaussian process and predictive process priors, which

in addition can lead to model misspecification when not formulated properly. Our

approach has no need for prior information and so avoids this problem altogether.

Also, by taking a more simplistic approach, our method is substantially more efficient

in terms of computational speed. Without further augmentation, their model is

capable of running only the probit link function. Our model can accommodate both

the probit and logit link functions, the latter of which is by and far the most common

link function used in practice. We demonstrated the robustness of our method to

link misspecification and provided simulation evidence that our method may further

be preferred on the basis of estimation accuracy. Lastly, we applied our method to

disease screening data obtained from the University of Iowa.

57

Bibliography

Amemiya, C., Algeria-Hartman, M., Aslanidis, C., Chen, C., Nikolic, J., Gingrich,

J., and De Jong, P. (1992). A two-dimensional YAC pooling strategy for library

screening via STS and Alu-PCR methods. Nucleic Acids Research 25, 2559–

2563.

Barillot, E., Lacroix, B., and Cohen, D. (1991). Theoretical analysis of library

screening using a N-dimensional pooling strategy. Nucleic Acids Research 19,

6241–6247.

Berger, T., Mandell, J., and Subrahmanya, P. (2000). Maximally efficient two-stage

screening. Biometrics 56, 833–840.

Bilder, C. and Tebbs, J. (2005). Empirical Bayesian estimation of the disease trans-

mission probability in multiple-vector-transfer designs. Biometrical Journal 47,

502–516.

Bilder, C. and Tebbs, J. (2009). Bias, efficiency, and agreement for group-testing

regression models. Journal of Statistical Computation and Simulation 79, 67–

80.

Bilder, C. and Tebbs, J. (2012). Pooled testing procedures for screening high volume

clinical specimens in heterogeneous populations. Statistics in Medicine 31,

3261–3268.

Bilder, C., Tebbs, J., and Chen, P. (2010). Informative retesting. Journal of the

American Statistical Association 105, 942–955.

58

Black, M., Bilder, C., and Tebbs, J. (2012). Group testing in heterogeneous pop-

ulations by using halving algorithms. Journal of the Royal Statistical Society.

Series C 61, 277–290.

Brennan, T. (1991). Just Doctoring: Medical Ethics in the Liberal State. Berkeley:

University of California Press.

Bruno, W., Knill, E., Balding, D., Bruce, D., Doggett, N., Sawhill, W., Stallings,

R., Whittaker, C., and Torney, D. (1995).Efficient pooling designs for library

screening. Genomics 26, 21–30.

Burrows, P. (1987). Improved estimation of pathogen transmission rates by group

testing. Phytopathology 77, 363–365.

Chatterjee, A. and Bandyopadhyay, T. (2020). Regression models for group testing:

Identifiability and asymptotics. Journal of Statistical Planning and Inference

204, 141–152.

Chaubey, Y. and Li, W. (1995). Comparison between maximum likelihood and

Bayes methods for estimation of binomial probability with samples composition.

Journal of Official Statistics 11, 379–390.

Chen, P., Tebbs, J., and Bilder, C. (2009). Group testing regression models with

fixed and random effects. Biometrics 65, 1270–1278.

Delaigle, A. and Hall, P. (2012). Nonparametric regression with homogeneous group

testing data. Annals of Statistics 40, 131–158.

Delaigle, A. and Hall, P. (2015). Nonparametric methods for group testing data,

taking dilution into account. Biometrika 102, 871–887.

Delaigle, A., Hall, P., and Wishart, J. (2014). New approaches to non- and semi-

parametric regression for univariate and multivariate group testing data. Biometrika

101, 567–585.

59

Delaigle, A., Huang, W., and Lei, S. (2019). Estimation of conditional prevalence

from group testing data with missing covariates. Journal of the American Sta-

tistical Association 00, 1–14.

Delaigle, A. and Meister, A. (2011). Nonparametric regression analysis for group

testing data. Journal of the American Statistical Association 106, 640–650.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood for incomplete

data via the EM algorithm. Journal of the Royal Statistical Society. Series B

39, 1–38.

Dorfman, R. (1943). The detection of defective members of large populations. An-

nals of Mathematical Statistics 14, 436–440.

Einwalter, L., Ritchie, J., Ault, K., and Smith, E. (2005). Gonorrhea and chlamydia

infection among women visiting family planning clinics: Racial variation in

prevalence and predictors. Perspectives on Sexual and Reproductive Health 37,

135–140.

Evans, G. and Lewis, K. (1989). Physical mapping of complex genomes by cosmid

multiplex analysis. Genetics 86, 5030–5034.

Farach, M., Kannan, S., Knill, E., and Muthukrishnan, S. (1997). Group testing

problems with sequences in experimental molecular biology. Proceedings. Com-

pression and Complexity of SEQUENCES, 357–367. IEEE Press.

Farrington, C. (1992). Estimating prevalence by group testing using generalized

linear models. Statistics in Medicine 11, 1591–1597.

Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information

and Computation 121, 256–285.

Freund Y. and Schapire, R. (1997). A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System

Sciences 55, 119–139.

60

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A

statistical view of boosting. Annals of Statistics 28, 337–407.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). Elements of Statistical Learning.

Springer, New York.

Friedman, J. (2002). Stochastic gradient boosting. Computational Statistics and

Data Analysis 38, 367–378.

Friedman, J. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the

American Statistical Association 76, 817–823.

Gastwirth, J. (2000). The efficiency of pooling in the detection of rare mutations.

American Journal of Human Genetics 67, 1036–1039.

Gastwirth, J. and Johnson, W. (1994). Screening with cost effective quality con-

trol: Potential applications to HIV and drug testing. Journal of the American

Statistical Association 89, 972–981.

Gregory, K., Wang, D., and McMahan, C. (2019). Adaptive elastic net for group

testing. Biometrics 75, 13–23.

Haber, G. and Malinovsky, Y. (2017). Random walk designs for selecting pool sizes

in group testing estimation with small samples. Biometrical Journal 59, 1382–

1398.

Hastie, T. and Tibshirani, R. (1986). Generalized additive models (with discussion).

Statistical Science 1, 297–318.

Hou, P., Tebbs, J., Bilder, C., and McMahan, C. (2017). Hierarchical group testing

for multiple infections. Biometrics 73, 656–665.

Huang, X. (2009). An improved test of latent-variable model misspecification in

structural measurement error models for group testing data. Statistics in Medicine

28, 3316–3327.

61

Huang, X. and Warasi, M. (2017). Maximum likelihood estimators in regression

models for error-prone group testing data. Scandinavian Journal of Statistics

44, 918–931.

Hughes-Oliver, J. and Swallow, W. (1994). A two-stage adaptive group-testing

procedure for estimating small proportions. Journal of the American Statistical

Association 89, 982–993.

Hung, M. and Swallow, W. (1999). Robustness of group testing in the estimation

of proportions. Biometrics 55, 231–237.

Hyun, N., Gastwirth, J., Graubard, B. (2018). Grouping methods for estimating

prevalences of rare traits for complex survey data that preserve confidentiality

of respondents. Statistics in Medicine 37, 2174–2186.

Johnson, R., Newhall, W., Papp, J., et al. (2002). Screening tests to detect Chlamy-

dia trachomatis and Neisseria gonorrhoeae infections. MMWR Recommenda-

tions and Reports 51, 1–38.

Kim, H. and Hudgens, M. (2009). Three-dimensional array-based group testing

algorithms. Biometrics 65, 903–910.

Kim, H., Hudgens, M., Dreyfuss, J., Westreich, D., and Pilcher, C. (2007). Compar-

ison of group testing algorithms for case identification in the presence of testing

error. Biometrics 63, 1152–1163.

Kleinman, S., Strong, D., Tegtmeier, G., Holland, P., Gorlin, J., Cousins, C., Chiac-

chierini, R., and Pietrelli, L. (2005). Hepatitis B virus (HBV) DNA screening of

blood donations in minipools with the COBAS AmpliScreen HBV test. Trans-

fusion 45, 1247–1257.

Krajden, M., Cook, D., Mak, A., Chu, K., Chahil, N., Steinberg, M., Rekart, M.,

and Gilbert, M. (2014). Pooled nucleic acid testing increases the diagnostic

yield of acute HIV infections in a high-risk population compared to 3rd and

62

4th generation HIV enzyme immunoassays. Journal of Clinical Virology 61,

132–137.

Lewis, J., Lockary, V., and Kobic, S. (2012). Cost savings and increased efficiency

using a stratified specimen pooling strategy for Chlamydia trachomatis and

Neisseria gonorrhoeae. Sexually Transmitted Diseases 39, 46–48.

Li, Q., Liu, A., and Xiong, W. (2017). D-optimality of group testing for joint

estimation of correlated rare diseases with misclassification. Statistica Sinica

27, 823–838.

Lin, J., Wang, D., and Zheng, Q. (2019). Regression analysis and variable selection

for two-stage multiple-infection group testing data. Statistics in Medicine 38,

4519–4533.

Litvak, E., Tu, X., and Pagano, M. (1994). Screening for the presence of a disease

by pooling sera samples. Journal of the American Statistical Association 89,

424–434.

Liu, Y., McMahan, C., and Gallagher, C. (2017). A general framework for the

regression analysis of pooled biomarker assessments. Statistics in Medicine 36,

2363–2377

Liu, Y., McMahan, C., Tebbs, J., Gallagher, C., and Bilder, C. (2020). Generalized

additive regression for group testing data. Biostatistics 0, 1–17

Louis, T. (1982). Finding the observed information matrix when using the EM

algorithm. Journal of the Royal Statistical Society. Series B 44, 226–233

McMahan, C., Tebbs, J., and Bilder, C. (2012a). Informative Dorfman screening.

Biometrics 68, 287–296.

McMahan, C., Tebbs, J., and Bilder, C. (2012b). Two-dimensional informative array

testing. Biometrics 68, 793–804.

McMahan, C., Tebbs, J., and Bilder, C. (2013). Regression models for group testing

data with pool dilution effects. Biostatistics 14, 284–298.

63

McMahan, C., Tebbs, J., Hanson, T., and Bilder, C. (2017). Bayesian regression for

group testing data. Biometrics 73, 1443–1452.

Navarro, C., Jolly, A., Nair, R., and Chen, Y. (2002). Risk factors for genital

chlamydial infection. Canadian Journal of Infectious Diseases 13, 195–207.

Nguyen, N., Bish, E., and Aprahamian, H. (2018). Sequential prevalence estimation

with pooling and continuous test outcomes. Statistics in Medicine 37, 2391–

2426.

Nwokolo, N., Dragovic, B., Patel, S., Tong, C., Barker, G., and Radcliffe, K. (2016).

2015 UK national guideline for the management of infection with Chlamydia

trachomatis. International Journal of STD and AIDS 27, 251–267.

Papp, J., Schachter, J., Gaydos, C., and Van Der Pol, B. (2014). Recommendations

for the laboratory-based detection of Chlamydia trachomatis and Neisseria gon-

orrhoeae. MMWR Recommendations and Reports 63, 1–19.

Peeling, R., Toye, B., Jessamine, P., and Gemmill, I. (1998). Pooling of urine

specimens for PCR testing: A cost saving strategy for Chlamydia trachomatis

control programmes. Sexually Transmitted Infections 74, 66–70.

Phatarfod, R. and Sudbury, A. (1994). The use of a square array scheme in blood

testing. Statistics in Medicine 13, 2337–2343.

Schapire, R. (1990). The strength of weak learnability. Machine Learning 5, 197–

227.

Sobel, M. and Elashoff, R. (1975). Group testing with a new goal, estimation.

Biometrika 62, 182–193.

Sterrett, A. (1957). On the detection of defective members of large populations.

Annals of Mathematical Statistics 28, 1033–1036.

Swallow, W. (1985). Group testing for estimating infection rates and probabilities

of disease transmission. Phytopathology 75, 882–889.

64

Tebbs, J., Bilder, C., and Moser, B. (2003). An empirical Bayes group-testing ap-

proach to estimating small proportions. Communications in Statistics: Theory

and Methods 32, 983–995.

Tebbs, J., McMahan, C., and Bilder, C. (2013). Two-stage hierarchical group testing

for multiple infections with application to the Infertility Prevention Project.

Biometrics 69, 1064–1073.

Thompson, K. (1962). Estimation of the proportion of vectors in a natural popula-

tion of insects. Biometrics 18, 568–578.

Tibshirani, R. and Hastie, T. (1987). Local likelihood estimation. Journal of the

American Statistical Association 82, 559–568.

Tu, X., Kowalski, J., and Jia, G. (1999). Bayesian analysis of prevalence with

covariates using simulation-based techniques: Applications to HIV screening.

Statistics in Medicine 18, 3059–3073.

Vansteelandt, S., Goetghebeur, E., and Verstraeten, T. (2000). Regression models

for disease prevalence with diagnostic tests on pools of serum samples. Biomet-

rics 56, 1126–1133.

Wang, D., McMahan, C., Gallagher, C., and Kulasekera, K. (2014). Semiparametric

group testing regression models. Biometrika 101, 587–598.

Wang, D., McMahan, C., Tebbs, J., and Bilder, C. (2018). Group testing case

identification with biomarker information. Computational Statistics and Data

Analysis 122, 156–166.

Wang, D., Zhou, H., and Kulasekera, K. (2013). A semi-local likelihood regression

estimator of the proportion based on group testing data. Journal of Nonpara-

metric Statistics 25, 209–221.

Warasi, M., Tebbs, J., McMahan, C., and Bilder, C. (2016). Estimating the preva-

lence of multiple diseases from two-stage hierarchical pooling. Statistics in

Medicine 35, 3851–3864.

65

Ward, G., Hastie, T., Barry, S., Elith, J., and Leathwick, J. (2009). Presence-only

data and the EM algorithm. Biometrics 65, 554–563.

Wein, L. and Zenios, S. (1996). Pooled testing for HIV screening: Capturing the

dilution effect. Operations Research 44, 543–569.

Xie, M. (2001). Regression analysis of group testing samples. Statistics in Medicine

20, 1957–1969.

Yasui, Y., Pepe, M., Hsu, L., Adam, B., and Feng, Z. (2004). Partially supervised

learning using an EM-boosting algorithm. Biometrics 60, 199–206.

Zhang, B., Bilder, C., and Tebbs, J. (2013a). Group testing regression model esti-

mation when case identification is a goal. Biometrical Journal 55, 173–189.

Zhang, B., Bilder, C., and Tebbs, J. (2013b). Regression analysis for multiple-disease

group testing data. Statistics in Medicine 32, 4954–4966.

66

Appendix A: Algorithms

Algorithm 1: Boosted Logistic Regression Model for Group Testing Data
input : Z, X, S(0)

e , S(0)
p , F(0)

1 repeat
2 For i = 1, 2, . . . , N , and for j = 1, 2, . . . , J , estimate pr(Ỹi = 1|Z,xi,θ(t))

and Cj according to equation (2.3);
3 Update S(t+1)

e and S(t+1)
p according to equation (2.4);

4 repeat
5 For p = 1, 2, . . . , r, compute (α̂p, β̂p) ≡ arg maxα,β Qα,β(α, β|θ(t)),

where Qα,β(·) is given by equation (3.1);
6 Update Fim = Fi(m−1) + τ(α̂p∗ + β̂p∗x·p∗), where τ is the learning rate

and p∗ is the value of p that results in the largest value of
Qα,β(α̂p, β̂p|θ(t));

7 until ||Fm − F(m−1)|| < ε;
8 Update F (t+1)

i = FiM , where M is the iteration upon which
||Fm − F(m−1)|| < ε;

9 until |Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t−1))| < ε;
output: (S(T)′

e ,S(T)′
p ,F(T)′)′ where T is the iteration upon which the

algorithm converges.

67

Algorithm 2: Boosted Regression Trees Model for Group Testing Data
input : Z, X, S(0)

e , S(0)
p , F(0)

1 for t = 0 to T do
2 For i = 1, 2, . . . , N , and for j = 1, 2, . . . , J , estimate pr(Ỹi = 1|Z,xi,θ(t))

and Cj according to equation (2.3);
3 Update S(t+1)

e and S(t+1)
p according to equation (2.4);

4 for m = 1 to M do
5 For i = 1, 2, . . . , N , compute the negative gradient Gim according to

equation (3.2);
6 Fit a K-node regression tree to a random subsample of {Gim,xi}Ni=1 of

size ηN , where η is the desired proportion of individuals to be
included in the subsample. Output {Rkm}Kk=1, which form a partition
of the predictor space;

7 For k = 1, 2, ..., K, compute the step size γkm via

γkm =
 ∑
i:xi∈Rkm

Gim

/ ∑
i:xi∈Rkm

1
1 + e−Fi(m−1)

× 1
1 + eFi(m−1)


;

8 Update Fim = Fi(m−1) + τ
∑K
k=1 γkm × I(xi ∈ Rkm), where τ is the

learning rate;
9 end

10 Update F (t+1)
i = ∑M

m=M−B+1 FiM/B, where B is the desired number of
iterations over which to average;

11 end
output: (Ŝ′e, Ŝ′p, F̂′)′ where these quantities are defined to be the averages of

the corresponding stationary distributions.

68

Algorithm 3: Boosted Logistic Regression Model for Multiplex Group Test-
ing Data

input : Z, X, S(0)
e , S(0)

p , F(0)

1 repeat
2 For i = 1, 2, . . . , N , for j = 1, 2, . . . , J , and for d = 1, 2, 3, estimate Cid

and Cjd according to equation (4.3);
3 Update S(t+1)

e and S(t+1)
p according to equation (4.4);

4 repeat
5 For p = 1, 2, . . . , r, compute (α̂′p, λ̂′p)′ ≡ arg max(α′,λ′)′ Qα,λ(α,λ|θ(t)),

where Qα,λ(·) is given by equation (4.5);
6 For d = 1, 2, 3, update Fimd = Fi(m−1)d + τ(α̂p∗d + λ̂p∗dx·p∗), where τ is

the learning rate and p∗ is the value of p that results in the largest
value of Qα,λ(α̂p, λ̂p|θ(t));

7 until ||Fm − F(m−1)|| < ε;
8 For d = 1, 2, 3, update F (t+1)

id = FiMd, where M is the iteration upon
which ||Fm − F(m−1)|| < ε;

9 until |Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t−1))| < ε;
output: (S(T)′

e ,S(T)′
p ,F(T)′)′ where T is the iteration upon which the

algorithm converges.

69

Algorithm 4: Boosted Regression Trees Model for Multiplex Group Testing
Data

input : Z, X, S(0)
e , S(0)

p , F(0)

1 for t = 0 to T do
2 For i = 1, 2, . . . , N , for j = 1, 2, . . . , J , and for d = 1, 2, 3, estimate Cid

and Cjd according to equation (4.3);
3 Update S(t+1)

e and S(t+1)
p according to equation (4.4);

4 for m = 1 to M do
5 for d = 1 to 3 do
6 For i = 1, 2, . . . , N , compute the negative gradient Gimd according

to equation (4.6);
7 Fit a K-node regression tree to a random subsample of

{Gimd,xi}Ni=1 of size ηN , where η is the desired proportion of
individuals to be included in the subsample. Output {Rkmd}Kk=1,
which form a partition of the predictor space;

8 For k = 1, 2, ..., K, compute the step size γkmd via

γkmd =
∑
i:xi∈Rkmd

Gimd∑
i:xi∈Rkmd

e
Fi(m−1)d

1+
∑3

b=1 e
Fi(m−1)b

×
(

1− e
Fi(m−1)d

1+
∑3

b=1 e
Fi(m−1)b

)

;
9 Update Fimd = Fi(m−1)d + τ

∑K
k=1 γkmd × I(xi ∈ Rkmd), where τ is

the learning rate;
10 end
11 end
12 Update F (t+1)

id = ∑M
m=M−B+1 FiMd/B, where B is the desired number of

iterations over which to average;
13 end

output: (Ŝ′e, Ŝ′p, F̂′)′ where these quantities are defined to be the averages of
the corresponding stationary distributions.

70

Algorithm 5: Generalized Additive Model for Group Testing Data
input : Z, X, S(0)

e , S(0)
p , F(0)

1 repeat
2 For i = 1, 2, . . . , N , and for j = 1, 2, . . . , J , estimate pr(Ỹi = 1|Z,xi,θ(t))

and Cj according to equation (2.3);
3 Update S(t+1)

e and S(t+1)
p according to equation (2.4);

4 repeat
5 For i = 1, 2, . . . , N , form the adjusted response variable

Y ∗i = Fi(m−1) +
(
pr(Ỹi = 1|Z,xi,θ(t))− Pi(m−1)

)(∂Fi
∂Pi(m−1)

)
,

6 where Fi ≡ H{Pi} is given by equation 5.1;

7 For i = 1, 2, . . . , N , form the weights Wi =
(

∂Pi

∂Fi(m−1)

)2
V −1, where V

is the variance of the response at the fitted values;
8 For q = 1, 2, . . . , r, update gqm by fitting a smooth function to the

partial residuals Rq, which are given by

Rq = Y∗ − β̂0 −
q−1∑
k=1

gkm(X∗k)−
r∑

k=q+1
gk(m−1)(X∗k),

where X∗k, k = 1, 2, . . . , q−1, q+ 1, . . . , r, are the weighted covariates;
9 Update Fim = β̂0 +∑r

q=1 gqm(Xq)
10 until ||Fm − F(m−1)|| < ε;
11 Update F (t+1)

i = FiM , where M is the iteration upon which
||Fm − F(m−1)|| < ε;

12 until |Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t−1))| < ε;
output: (S(T)′

e ,S(T)′
p ,F(T)′)′ where T is the iteration upon which the

algorithm converges.

71

	Regression Methods for Group Testing Data
	Recommended Citation

	tmp.1637689800.pdf.nfg2V

