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Abstract

We produce a family of complexes called trimming complexes and explore applica-

tions. We first study ideals defining type 2 compressed rings with socle minimally

generated in degrees s and 2s − 1 for s > 2. We prove that all such ideals arise

as trimmings of grade 3 Gorenstein ideals and show that trimming complexes yield

an explicit free resolution. In particular, we give bounds on parameters arising in

the Tor-algebra classification and construct explicit ideals attaining all intermediate

values for every s. This partially answers a question of realizability of Tor-algebra

structures posed by Avramov. Next, we study how trimming complexes can be used

to deduce the Betti table for the minimal free resolution of the ideal generated by

subsets of a generating set for an arbitrary ideal I. In particular, explicit Betti ta-

bles are computed for an infinite class of determinantal facet ideals; previously, Betti

numbers for anything more than the linear strand had not been computed explicitly.

Next, we study certain classes of equigenerated monomial ideals with the property

that the so-called complementary ideal has no linear relations on the generators.

We then use iterated trimming complexes to deduce Betti numbers for such ideals.

Furthermore, using a result on splitting mapping cones by Miller and Rahmati, we

construct the minimal free resolutions for all ideals under consideration explicitly and

conclude with questions about extra structure on these complexes. Finally, we con-

sider the iterated trimming complex associated to data yielding a complex of length

3. We compute an explicit algebra structure in this complex in terms of the algebra

structures of the associated input data. Moreover, it is shown that many of these

products become trivial after descending to homology. We apply these results to the
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problem of realizability for Tor-algebras of grade 3 perfect ideals, and show that under

mild hypotheses, the process of “trimming” an ideal preserves Tor-algebra class. In

particular, we construct new classes of ideals in arbitrary regular local rings defining

rings realizing Tor-algebra classes G(r) and H(p, q) for a prescribed set of homological

data.
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Chapter 1

Introduction

Let (R,m, k) be a regular local ring with maximal ideal m. A result of Buchsbaum and

Eisenbud (see [11]) established that any quotientR/I of R with projective dimension 3

admits the structure of an associative commutative differental graded (DG) algebra.

Later, a complete classification of the multiplicative structure of the Tor algebra

TorR• (R/I, k) for such quotients was established by Weyman in [43] and Avramov,

Kustin, and Miller in [4].

One parametrized family arising from the aforementioned classification of Tor

algebras is the class G(r), where r is a parameter arising from the rank of the induced

map

δ : TorR2 (R/I, k)→ Homk(TorR1 (R/I, k),TorR3 (R/I, k)).

If I ⊂ R is such that R/I is Gorenstein, then it is shown by Avramov and Golod in

[3] that the Koszul homology algebra of R/I is a Poincaré duality algebra. Indeed,

an equivalent characterization of the Tor algebra class G(r) is that that there exists

a subalgebra of the Tor algebra minimally exhibiting Poincaré duality, in the sense

that there does not exist any nontrivial multiplication outside of this subalgebra (see

Definition 3.4.5 for a precise statement). It can be shown that if R/I is Gorenstein

(and not a complete intersection) of codimension 3, then R/I has Tor algebra class

G(µ(I)), where µ(I) denotes the minimal number of generators of I. Avramov con-

jectured in [2] that quotients of Tor algebra class G are necessarily Gorenstein rings.

The technique of “trimming” a Gorenstein ideal is used by Christensen, Veliche,

and Weyman (see [16]) to produce codimension 3 non-Gorenstein rings with Tor
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algebra class G. If (R,m) is a regular local ring and I = (φ1, . . . , φn) ⊆ R is an m-

primary ideal with R/I of codimension 3, then an example of this trimming process

is the formation of the ideal (φ1, . . . , φn−1) + mφn.

The classification of perfect codimension 3 ideals has seen significant progress re-

cently, starting with the paper [45] (extending the work started in [43]), which links

this structure theory to the representation theory of Kac-Moody Lie algebras. Reso-

lutions of a given format (sequence of Betti numbers) have an associated graph, and

it is conjectured in [15] that an ideal is in the linkage class of a complete intersection

if and only if this associated graph is a Dynkin diagram.

In [2, Question 3.8], Avramov poses a question of realizability; that is, which Tor

algebra classes of codimension 3 local rings can actually occur? Using techniques of

linkage, this question is explored in [17], refining the classification provided in [4] and

showing that every grade 3 perfect ideal in a regular local ring is in the linkage class

of either a complete intersection or an ideal defining a Golod ring.

The subject of this thesis is a generalization of the resolution introduced in [39,

Theorem 5.4] and the exploration of its utility in a large expanse of topics relating to

homological invariants of modules and ideals, including questions of realizability for

Tor-algebra structures.

We first examine grade 3 homogeneous ideals I ⊂ R := k[x, y, z] (with all variables

having degree 1, and k being a field of arbitrary characteristic) defining an Artinian

compressed ring with socle Soc(R/I) = k(−s)` ⊕ k(−2s + 1) for some ` > 1. The

values s and 2s − 1 are interesting because they provide a boundary case for socle

degrees; more precisely, it is not possible to have a ring with socle k(−s1)` ⊕ k(−s2),

where s2 > 2s1. In particular, we prove that all such ideals arise as iterated trimmings

of a Gorenstein ideal (see Proposition 3.3.9) and are hence resolved by a so-called

iterated trimming complex.
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We then specialize to the case where ` = 1. We use the resolution of Theorem

2.1.5 to produce general resolution for trimmed Gorenstein ideals that is minimal in

some generic cases (see Proposition 3.2.4 for the relevant parameter space and the

corresponding open subset). Even in the cases where this resolution is not minimal,

there is valuable information to be gained from the relatively simple differentials

involved. We give sharp bounds for the graded Betti numbers of ideals defining

compressed rings with socle k(−s)⊕ k(−2s + 1). Furthermore, we produce a family

of ideals attaining all possible intermediate Betti numbers. This family is also used to

show that for any integers r and s with s > 3 and s 6 r 6 2s−1, there exists a grade

3 ideal I defining an Artinian compressed ring with Soc(R/I) = k(−s)⊕ k(−2s+ 1)

of Tor algebra class G(r) (see Corollary 3.5.9), which partially answers Avramov’s

question of realizability mentioned above.

The homogeneous minimal free resolution of ideals generated by all minors of a

given size of some matrix is well understood (see, for instance, [9]). It is less well

understood what the minimal resolution/Betti table of the ideal generated by subsets

of these minors must be. Certain classes of subsets have applications in algebraic

statistics, including the adjacent 2-minors of an arbitrary matrix and arbitrary subsets

of a 2×n matrix are considered (see [29], [31] for the former case). The latter case has

been studied by Herzog et al (see [28]); in particular, such ideals are always radical,

and the primary decomposition and Gröbner basis are known.

In [23], so-called determinantal facet ideals are studied. Every maximal minor has

an associated indexing set consisting of the columns of the associated submatrix, and

a collection of minors can then be indexed by the facets of a certain simplicial complex

∆ on the vertex set {1, . . . , n}, for some n. Properties of the determinantal facet ideal

may be deduced from properties of ∆. A study of the homological properties of these

ideals is conducted in [30]; in particular, the Betti numbers of the linear strand of
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the minimal free resolution of these ideals is computed in terms of the f -vector of the

associated clique complex.

In this thesis, we consider a subset of the cases addressed in [30] (indeed, determi-

nantal facet ideals in general seem be very complicated, with essentially no well-known

structure outside of the binomial edge ideal case); however, we compute Betti num-

bers explicitly in all degrees, instead of just the linear strand, and our formulas do

not depend on any combinatorial machinery. We also deduce that the ideals under

consideration are never linearly presented and hence never have linear resolutions.

Next, we study equigenerated monomial ideals; that is, ideals generated in a single

degree. A naïve method of obtaining such ideals is to start with the ideal generated

by all monomials of degree d, (x1, . . . , xn)d ⊂ k[x1, . . . , xn], and then delete some of

the generators. The graded minimal free resolution of (x1, . . . , xn)d is well known

(see Proposition 5.1.3), and so one would only need machinery for which the Betti

numbers after deleting generators could be deduced. This machinery is provided by

iterated trimming complexes.

Finally, we show that if the complexes associated to the input data of Setup

2.1.1 are length 3 DG-algebras, then the product on the resulting iterated trimming

complex of Theorem 2.2.4 may be computed in terms of the products on the afore-

mentioned complexes. The proof of this fact is a long and rather tedious computation;

moreover, in full generality, the products have certain components that are only de-

fined implicitly. In the case that the complexes involved admit additional module

structures over one another, these products may be made more explicit (see Propo-

sition 6.2.4). However, after descending to homology, many of these products either

vanish completely or become considerably more simple. This fact is made explicit in

the corollaries at the end of this section, and will be taken advantage of in Section

6.3. We focus on ideals defining rings of Tor-algebra G and H, and show that under

very mild assumptions, trimming an ideal preserves these Tor-algebra classes. This
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allows us to construct novel examples of rings of class G(r) and H(p, q) obtained as

quotients of arbitrary regular local rings (R,m, k) of dimension 3, and we further add

to the realizability question posed by Avramov (see Corollary 6.4.8 and 6.4.14).
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Chapter 2

Construction Of Trimming Complexes

This chapter is the basis for the rest of the thesis. Sections 2.1 and 2.2 introduce the

main machinery: the trimming complex and iterated trimming complex. We prove

that these complexes are resolutions that are not necessarily minimal. However, due

to the simple nature of the differentials, one can deduce the ranks appearing in the

minimal free resolution of the ideal of interest. The construction itself is relatively

simple, and can essentially be described as the comparison map of a certain induced

morphism of complexes. The idea of using mapping cones to produce resolutions

of sums of ideals has been known for some time; using a mapping cone to delete

generators is a much newer idea.

2.1 Trimming Complexes

In this section, we introduce the notion of trimming complexes and show that, in

fact, these complexes are resolutions. We begin by defining the quotient rings we aim

to resolve and setting up the notation that we will use throughout the section.

Setup 2.1.1. Let R = k[x1, . . . , xn] be a standard graded polynomial ring over a

field k. Let I ⊆ R be a homogeneous ideal and (F•, d•) denote a homogeneous free

resolution of R/I.

Write F1 = F ′1 ⊕Re0, where e0 generates a free direct summand of F1. Using the

isomorphism

HomR(F2, F1) = HomR(F2, F
′
1)⊕ HomR(F2, Re0)
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write d2 = d′2 + d0, where d′2 ∈ HomR(F2, F
′
1), d0 ∈ HomR(F2, Re0). Let a denote any

homogeneous ideal with

d0(F2) ⊆ ae0,

and (G•,m•) be a homogeneous free resolution of R/a.

Use the notation K ′ := im(d1|F ′1 : F ′1 → R), K0 := im(d1|Re0 : Re0 → R), and let

J := K ′ + a ·K0.

Our goal is to construct a resolution of the quotient ring R/J as in Setup 2.1.1.

Observe that the length of G• does not have to equal the length of F•.

Proposition 2.1.2. Adopt notation and hypotheses as in Setup 2.1.1. Then

(K ′ : K0) ⊆ a.

Proof. Let r ∈ R with rK0 ⊆ K ′. By definition there exists e′ ∈ F ′1 such that

d1(e′ + re0) = 0.

By exactness of F•, there exists f ∈ F2 with d2(f) = e′ + re0. Employing the

decomposition d2 = d′2 + d0, we find

d0(f)− re0 = e′ − d′2(f) ∈ F ′1 ∩Re0 = 0

whence d0(f) = re0. By selection of a, we conclude r ∈ a.

Proposition 2.1.3. Adopt notation and hypotheses as in Setup 2.1.1. Then there

exists a map q1 : F2 → G1 such that the following diagram commutes:

F2
q1

~~

d′0
��

G1 m1
// a,

where d′0 : F2 → R is the composition

F2
d0 // Re0 // R ,

and where the second map sends e0 7→ 1.
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Proof. This follows directly from the fact that F2 is projective.

Proposition 2.1.4. Adopt notation and hypotheses as in Setup 2.1.1. Then there

exist maps qk : Fk+1 → Gk for all k > 2 such that the following diagram commutes:

Fk+1

qk
��

dk+1
// Fk

qk−1
��

Gk mk
// Gk−1

Proof. We build the qk inductively. For k = 2, observe that

m1 ◦ q1 ◦ d3 = d′0 ◦ d3 = 0,

so there exists q2 : F3 → G2 making the desired diagram commute. For k > 2, we

assume that qk−1 has already been constructed. Then

mk−1 ◦ qk−1 ◦ dk+1 = qk−2 ◦ dk ◦ dk+1 = 0,

so the desired map qk exists.

Theorem 2.1.5. Adopt notation and hypotheses as in Setup 2.1.1. Then the mapping

cone of the morphism of complexes

· · ·
dk+1

// Fk

qk−1

��

dk // · · · d3 // F2
d′2 //

q1

��

F ′1

d1
��

· · · mk // Gk−1
mk−1

// · · · m2 // G1
−m1(−)·d1(e0)

// R

(2.1.1)

is acyclic and is a free resolution of R/J .

Proof. We first verify that the maps given in the statement of Theorem 2.1.5 form

a morphism of complexes. To this end, it suffices only to show that the first square

8



commutes. Let f ∈ F2; moving counterclockwise around the first square, we see

f 7→ −m1(q1(f)) · d1(e0)

= −d′0(f) · d1(e0)

= −d1(d′0(f)e0)

= −d1(d0(f)) = d1(d′2(f)).

Thus we have a well defined morphism of complexes. Let q• denote the collection of

vertical maps in 2.1.1, F ′• the top row of 2.1.1, and G′• the bottom row of 2.1.1. There

is a short exact sequence of complexes:

0→ G′• → Cone(q•)→ F ′•[−1]→ 0,

which induces the standard long exact sequence in homology. Using this long exact

sequence of homology, Cone(q•) will be a resolution of R/J if:

1. The complex F ′• is a resolution of K ′/(K ′ ∩K0).

2. The complex G′• is a resolution of R/(aK0).

3. The induced map on 0th homology

K ′

K ′ ∩K0
→ R

aK0

is an injection.

9



To prove (1), observe that the top row of 2.1.1 appears as the bottom row in the

short exact sequence of complexes

0

��

0

��

0 // Re0
d1 //

��

K0

��

// 0

· · · // F2
d2 // F1

��

d1 // I

��

// 0

· · · // F2

��

d′2 // F ′1

��

d1 // K′

K′∩K0

��

// 0

0 0 0

(2.1.2)

The top row of 2.1.2 is exact since R is a domain. The middle row is exact since F• is

a resolution of R/I, so the bottom row must also be exact. Notice that the rightmost

column is exact since I/K0 = (K ′ +K0)/K0 ∼= K ′/(K ′ ∩K0).

Similarly, (2) holds because R is a domain. More precisely, if g ∈ G and m1(g) ·

d1(e0) = 0, then m1(g) = 0. Since G• is exact by assumption, g ∈ im(d2).

Lastly, to prove (3), simply observe that K ′ ∩ aK0 ⊆ K ′ ∩K0.

Definition 2.1.6. The trimming complex associated to the data of Setup 2.1.1 is the

resolution of Theorem 2.1.5.

Remark 2.1.7. Notice that in Definition 2.1.6, the associated trimming complex de-

pends on a chosen generating set for I, not just the ideal itself.

In general, the trimming complex associated to the data of Setup 2.1.1 need not

be minimal. However, the following Corollary allows us to deduce the (graded) Betti

numbers even for a nonminimal resolution.

Corollary 2.1.8. Adopt notation and hypotheses of Setup 2.1.1. Assume furthermore

that the resolutions F• and G• are minimal. Then for i > 2,

dimk TorRi (R/J, k) = rankFi + rankGi − rank(qi−1 ⊗ k)− rank(qi ⊗ k),

10



and

µ(J) = µ(I) + µ(a)− 1− rank(q1 ⊗ k).

Proof. Resolve R/J by the mapping cone of the diagram in Theorem 2.1.5, and let

`i denote the ith differential. Then for i > 2,

dimk TorRi (R/J, k) = dimk Ker(`i ⊗ k)/ im(`i+1 ⊗ k).

Since the resolutions F• and G• are minimal by assumption,

rank(im(`i+1) = rank(qi ⊗ k), and

rank(Ker(`i ⊗ k)) = rankFi + rankGi − rank(qi−1 ⊗ k).

For the latter claim, observe that `1 ⊗ k = 0, so

dimk Tor1(R/J, k) = rankF ′1 + rankG1 − rank(q1 ⊗ k).

Since rankF ′1 = µ(I) − 1 and rankG1 = µ(a), the claim follows after recalling

dimk Tor1(R/J, k) = µ(J).

Remark 2.1.9. Observe that in the setting of Corollary 2.1.8, if the resolutions F• and

G• are also graded, then we may restrict the equalities to homogeneous pieces to find

the graded Betti numbers as well.

2.2 Iterated Trimming Complexes

In this section, we consider an iterated version of the data of Setup 2.1.1, and construct

a similar resolution. We conclude this section with a concrete example illustrating

the construction.

Setup 2.2.1. Let R = k[x1, . . . , xn] be a standard graded polynomial ring over a

field k. Let I ⊆ R be a homogeneous ideal and (F•, d•) denote a homogeneous free

resolution of R/I.

11



Write F1 = F ′1 ⊕
(⊕t

i=1Re
i
0

)
, where, for each i = 1, . . . , t, ei0 generates a free

direct summand of F1. Using the isomorphism

HomR(F2, F1) = HomR(F2, F
′
1)⊕

( t⊕
i=1

HomR(F2, Re
i
0)
)

write d2 = d′2 + d1
0 + · · ·+ dt0, where d′2 ∈ HomR(F2, F

′
1) and di0 ∈ HomR(F2, Re

i
0).

For each i = 1, . . . , t, let ai denote any homogeneous ideal with

di0(F2) ⊆ aie
i
0,

and (Gi
•,m

i
•) be a homogeneous free resolution of R/ai.

Use the notation K ′ := im(d1|F ′1 : F ′1 → R), Ki
0 := im(d1|Rei0 : Rei0 → R), and let

J := K ′ + a1 ·K1
0 + · · ·+ at ·Kt

0.

The next few Propositions are directly analogous to those of the previous section;

the proofs are omitted since they are identical.

Proposition 2.2.2. Adopt notation and hypotheses of Setup 2.2.1. Then for each

i = 1, . . . , t there exist maps qi1 : F2 → Gi
1 such that the following diagram commutes:

F2
qi1

~~

di0
′

��

Gi
1 mi1

// ai,

where di0
′ : F2 → R is the composition

F2
di0 // Rei0 // R ,

and where the second map sends ei0 7→ 1.

Proposition 2.2.3. Adopt notation and hypotheses as in Setup 2.2.1. Then for each

i = 1, . . . , t there exist maps qik : Fk+1 → Gi
k for all k > 2 such that the following

diagram commutes:

Fk+1

qik
��

dk+1
// Fk

qik−1
��

Gi
k mik

// Gi
k−1

12



Theorem 2.2.4. Adopt notation and hypotheses as in Setup 2.2.1. Then the mapping

cone of the morphism of complexes

· · ·
dk+1

// Fk
q1
k−1
...

qtk−1


��

dk // · · · d3 // F2
d′2 //

q1
1
...

qt1


��

F ′1

d1

��

· · ·
⊕

mik //
⊕t
i=1G

i
k−1

⊕
mik−1
// · · ·

⊕
mi2 //
⊕t

i=1G
i
1

−
∑t

i=1 m
i
1(−)·d1(ei0)

// R

(2.2.1)

is a free resolution of R/J .

The proof of Theorem 2.2.4 follows from iterating the construction of Theorem

2.1.5; however, there is some careful bookkeeping needed to deduce that the mapping

cone of 2.2.1 can be obtained by iterating the mapping cone construction of Theorem

2.1.5.

Proof of Theorem 2.2.4. Adopt notation and hypotheses of Setup 2.2.1. Let (F 1
• , d

1
•)

denote the complex of Theorem 2.1.5 applied to the direct summand Re1
0 of F1; that

is, the mapping cone of:

· · ·
d1
k+1

// Fk

q1
k−1
��

d1
k // · · ·

d1
3 // F2

d1
2
′

//

q1
1
��

F 1
1
′

d1
1
��

· · ·
m1
k // G1

k−1
m1
k−1
// · · ·

m1
2 // G1

1
−m1

1(−)·d1(e0)
// R,

(2.2.2)

where F 1
1
′ = F ′1 ⊕

(⊕t
i=2Re

i
0

)
and d1

2
′ = d′2 + d2

0 + · · · + dt0. Proceed by induction

on t. Observe that Theorem 2.1.5 is the base case t = 1. Let t > 1 and recall the

notation of Setup 2.2.1. We may write

d1
2 =

 d′2 0

−q1
1 m1

2

+

d2
0 0

0 0

+ · · ·+

dt0 0

0 0


where for each i = 2, . . . , t, di0 0

0 0

 : F 1
2 → Rei0.
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This means we are in the situation of Setup 2.2.1, only instead trimming t − 1

generators from the ideal K ′ + a1K
1
0 + K2

0 + · · · + Kt
0. Observe that the maps(

qij 0
)

: F 1
j+1 = Fj+1 ⊕ G1

j+1 → Gi
j make the diagram of Proposition 2.2.3 com-

mute. By induction, the mapping cone of

· · ·
d1
k+1

// F 1
k
q2
k−1 0
...

qtk−1 0


��

d1
k // · · ·

d1
3 // F 1

2

 d′2 0

−q1
1 m1

2


//

q2
1 0
...

qt1 0


��

F ′1

d1−m1
1(−)·d1(e1

0)

��

· · ·
⊕

mik //
⊕t

i=2G
i
k−1

⊕
mik−1
// · · ·

⊕
mi2 //
⊕t
i=2G

i
1

−
∑t

i=2 m
i
1(−)·d1(ei0)

// R

forms a resolution of K ′+ a1K
1
0 +

(
a2K

2
0 + · · ·+ atK

t
0

)
(recall that the top row forms

a resolution of K ′ + (K2
0 + · · ·+Kt

0) + a1K
1
0 by Theorem 2.1.5). The differentials of

this mapping cone are the same as the differentials induced by the mapping cone of

diagram 2.2.1 as in the statement of Theorem 2.2.4.

Definition 2.2.5. The iterated trimming complex associated to the data of Setup

2.2.1 is the complex of Theorem 2.2.4.

As an immediate consequence, one obtains the following result (the proof of which

is identical to that of Corollary 2.1.8):

Corollary 2.2.6. Adopt notation and hypotheses of Setup 2.2.1. Assume furthermore

that the complexes F• and G• are minimal. Then for i > 2,

dimk TorRi (R/J, k) = rankFi+
t∑

j=1
rankGj

i − rank


q1
i

...

qti

⊗k
− rank



q1
i−1
...

qti−1

⊗k
,
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and

µ(J) = µ(I)− t+
t∑

j=1
µ(aj)− rank



q1

1
...

qt1

⊗ k
. �

We conclude this chapter with an example illustrating the construction of iterated

trimming complexes.

Example 2.2.7. Let R = k[x, y, z],

X =



0 0 0 −x2 −z2

0 0 −x2 −z2 −y2

0 x2 0 −y2 0

x2 z2 y2 0 0

z2 y2 0 0 0


,

and I = Pf(X), the ideal of submaximal pfaffians of X. Let F• denote the complex

0 // R
d∗1 // Rn X // Rn d1 // R,

with

d1 =
(
y4 −y2z2 −x2y2 + z4 −x2z2 x4

)
.

This is a minimal free resolution of R/I (see [11]). In the notation of Setup 2.2.1, let

K ′ := (−x2y2 + z4,−x2z2, x4), K1
0 := (y4), K2

0 := (−y2z2),

and a1 = a2 := (x, y, z). Let G1
• = G2

• denote the Koszul complex:

0 // R


z

−y

x


// // R3


−y −z 0

x 0 −z

0 x y


// R3

(
x y z

)
// R .
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Then, one computes:

q1
1 =


0 0 0 −x 0

0 0 0 0 0

0 0 0 0 −z

 : R5 → R3,

q1
2 =


0

−x3z

0

 : R→ R3,

q2
1 =


0 0 −x 0 0

0 0 0 0 −y

0 0 0 −z 0

 : R5 → R3,

q2
2 =


−x3y

x z3

0

 : R→ R3.

Then, the mapping cone of Theorem 2.2.4 forms a resolution of R/(K ′+a1K
1
0 +a2K

2
0).

In particular, we deduce that this mapping cone is a minimal free resolution and hence
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the above quotient ring has Betti table

0 1 2 3

total: 1 9 11 3

0: 1 . . .

1: . . . .

2: . . . .

3: . 3 . .

4: . 6 11 2

5: . . . .

6: . . . .

7: . . . 1.
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Chapter 3

Ideals Defining Compressed Rings

The Hilbert scheme of points associated to projective space Pn is a scheme whose

points parametrize 0-dimensional closed subvarieties by their corresponding Hilbert

polynomial. Given such data, it is natural to consider the behavior of the varieties

associated to closed points with maximal Hilbert polynomial. Taking global sections

of such varieties, we obtain an Artinian k-algebra whose Hilbert polynomial is as

large as possible and hence totally determined by its socle degrees; such a k-algebra

is called compressed. Compressed k-algebras arise generically, meaning that they

appear with sufficient ubiquity as to warrant close study. In this chapter, we examine

grade 3 homogeneous ideals I ⊂ R := k[x, y, z] (with all variables having degree 1,

and k being a field of arbitrary characteristic) defining an Artinian compressed ring

with socle Soc(R/I) = k(−s)` ⊕ k(−2s+ 1) for some s > 3, ` > 0.

The chapter is organized as follows. Sections 3.1 and 3.2 consist of preliminary

material and notation. Section 3.3 proves the previously mentioned fact that any

grade 3 ideal I ⊂ k[x, y, z] defining an Artinian compressed ring with Soc(R/I) =

k(s)` ⊕ k(−2s + 1) is obtained as the iterated trimming of some grade 3 Gorenstein

ideal. In particular, all such ideals may be resolved by an iterated trimming complex.

For sufficiently generic ideals, this resolution is minimal.

We explore the initial consequences of the explicit resolution provided by iterated

trimming complexes. In the standard graded case, we find a remarkably simple crite-

rion to deduce whether the trimmed generating set of a Gorenstein ideal is a minimal
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generating set. In particular, questions about minimal generators are translated into

counting degrees of the entries of the presenting matrix of a Gorenstein ideal.

Section 3.4 delves into some more nontrivial consequences of the tools developed

beforehand. In [16], all possible Tor algebra structures of trimmed Gorenstein ideals

are enumerated. As a consequence, all possible Tor algebra structures for the ideals

of interest may be deduced; in particular, these ideals are either class G(r) or Golod.

Section 3.5 specializes to the case that the ideal defines a compressed ring of type

2. Combining given by [16] the bounds on the minimal number of generators, we

show that all such ideals are class G(r) for some s 6 r 6 2s− 1. Furthermore, using

information from the free resolution provided by trimming complexes, we show that

every such r value between s and 2s− 1 may be achieved.

3.1 Compressed Rings and Inverse Systems

Definition 3.1.1. Let A be a local Artinian k-algebra, where k is a field and m

denotes the maximal ideal. The top socle degree is the maximum s with ms 6= 0 and

the socle polynomial of A is the formal polynomial ∑s
i=0 ciz

i, where

ci = dimk
Soc(A) ∩mi

Soc(A) ∩mi+1 .

An Artinian k-algebra is standard graded if it is generated as an algebra in degree 1.

Definition 3.1.2. A standard graded Artinian k-algebra A with embedding dimen-

sion e, top socle degree s, and socle polynomial ∑s
i=0 ciz

i is compressed if

dimkm
i/mi+1 = min

{(
e− 1 + i

i

)
,
s∑
`=0

c`

(
e− 1 + `− i

`− i

)}

for i = 0, . . . , s.

Setup 3.1.3. Let n > 1 be an integer and k denote a field of arbitrary characteristic.

Let V be a vector space of dimension n over k. Give the symmetric algebra S(V ) =: R

and divided power algebra D(V ∗) the standard grading (that is, S1(V ) = V , D1(V ∗) =

19



V ∗). The notation Si := Si(V ) denotes the degree i component of the symmetric

algebra on V . Similarly, the notation Di := Di(V ∗) denotes the degree i component

of the divided power algebra on V ∗.

Given a homogeneous I ⊆ S(V ) defining an Artinian ring, there is an associated

inverse system 0 :D(V ∗) I. Similarly, for any finitely generated graded submodule

N ⊆ D(V ∗) there is a corresponding homogeneous ideal 0 :S(V ) N defining an Artinian

ring.

If I is a homogeneous ideal with associated inverse system minimally generated by

elements φ1, . . . , φk with deg φi = si, then there are induced vector space homomor-

phisms

Φi : Si →
k⊕
j=1

Dsj−i

sending f 7→ (f · φ1, . . . , f · φk).

Observation 3.1.4. Let I ⊆ S(V ) be a homogeneous ideal with associated inverse

system minimally generated by elements φ1, . . . , φk with deg φi = si. If the induced

maps Φi of Setup 3.1.3 have maximal rank for all i, then the ring R/I is compressed,

as in Definition 3.1.2.

Proof. By definition, Ii = Ker Φi; by the rank-nullity theorem,

dimk(R/I)i = dimk im Φi

= min
{

dimk Si, dimk

⊕̀
j=1

Dsj−i

}

where the latter equality follows by the assumption that Φi has maximal rank.

Definition 3.1.5. Let I ⊆ S(V ) be a homogeneous ideal with associated inverse

system minimally generated by elements φ1, . . . , φk with deg φi = si. Let m denote

the first integer for which Φm is a surjection. Then m is called the tipping point
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of I; this is well defined since the rank of the domain and codomain of each Φi is

increasing/decreasing in i, respectively (and the codomain is eventually 0).

Proposition 3.1.6 ([34], Lemma 1.13). Let φ be a homogeneous element of D(V ∗)

of degree s. Then the tipping point of the ideal 0 :S(V ) φ is ds/2e. In addition, the

induced maps Φi satisfy the following properties for every integer i.

(a) Homk(Φi, k) = Φs−i

(b) Φi is surjective if and only if Φs−i is injective.

Definition 3.1.7. Adopt Setup 3.1.3 with R = S(V ) and let ψ : V → R. The Koszul

complex K• on ψ is the complex obtained by setting

Ki :=
i∧
V ⊗R(−i)

with differential

δi :
i∧
V ⊗R(−i)→

i−1∧
V ⊗R(−i+ 1)

defined as multiplication by ψ ∈ V ∗ (where ∧• V is given the standard module struc-

ture over ∧• V ∗).
The following can be found as Proposition 2.5 of [6]:

Proposition 3.1.8. Let I be a homogeneous ideal in R := S(V ) of initial degree t,

and set A = R/I. Then

TorRi (A, k)i+t−1 ∼= Ker(π) ∩Ker(δi−1), i = 2, . . . , n

where δi−1 is the Koszul differential ∧i−1 V ⊗Rt →
∧i−2 V ⊗Rt+1 and π is the quotient

map ∧i−1 V ⊗Rt →
∧i−1 V ⊗ At.

Remark 3.1.9. Adopt notation and hypotheses of Setup 3.1.3. Let ψ : V → R be such

that imψ = R+. Observe that Ker(π)∩Ker(δi−1) as in Proposition 3.1.8 is precisely
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Ker(π)∩ im(δi) by exactness of the Koszul complex. The latter set may be described

as the kernel of the composition of k-vector space homomorphisms

∧i V ⊗ St(V ) δi //
∧i−1 V ⊗ St+1(V )

1⊗Φt+1
//
∧i−1 V ⊗Dc−t−1(V ∗).

Denote the above composition of k-vector space homomorphisms by

Θi(φ) :
i∧
V ⊗ St(V )→

i−1∧
V ⊗Dc−t−1(V ∗).

Proposition 3.1.10. Adopt Setup 3.1.3. Let A = R/I where I = (0 :R φ), φ ∈

Dc(V ∗), and let t denote the initial degree of I, n = pdRR/I. Then,

dimk TorRi (A, k)i+t−1 =
(
t− 1 + i− 1

i− 1

)(
t− 1 + n

n− i

)
− rank Θi(φ)

for all i = 2, . . . , n.

Proof. First observe that the minimal homogeneous free resolution of

im(δi :
i+1∧

V ⊗Rt−1 →
i∧
V ⊗Rt)

is obtained by truncating the Koszul complex:

0→
i+t∧
V ⊗R0 → · · · →

i+1∧
V ⊗Rt−1 → im(δi)→ 0

whence

dim im(δi) =
t∑

j=1
(−1)j+1 dim

( i+j∧
V ⊗Rt−j

)

=
t∑

j=1
(−1)j+1

(
n+ 1
i+ j

)
·
(
n+ t− j
t− j

)
.

By Lemma 1.2 of [12], this sum is equal to
(
i+t−1
i

)
·
(
n+t
i+t

)
. Similarly, by construc-

tion dim Ker(Θi(φ)) = dim
(

Ker(π) ∩ im(δi)
)
. By exactness of the Koszul complex,

im(δi) = Ker(δi−1); combining this with Proposition 3.1.8:

dim TorRi (A, k)i+t−1 = dim Ker(Θi(φ)).
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By the rank-nullity theorem,

dim TorRi (A, k)i+t−1 = dim im(δi)− rankk Θi(φ)

Corollary 3.1.11. Adopt notation and hypotheses as in Setup 3.1.3. Then there is a

nonempty open set U in the Grassmannian parametrizing all 1-dimensional subspaces

of Dc(V ∗) such that the Betti numbers of the k-algebra A = R/(0 :S(V ) φ) are the same

for all [φ] in U (where [φ] denotes the class of the subspace spanned by φ ∈ Dc(V ∗)).

Proof. Take the open subset U to be the set of all 1-dimensional subspaces [φ] of

Dc(V ∗) such that Θi(φ) has maximal rank for each i = 2, . . . , n.

We may identify the Grassmannian Gr(1, Dc(V ∗)) with the projective space P(c+2
2 )−1,

so it suffices to show that the complement of U is the zero set of homogeneous poly-

nomials in the variables p1, . . . , p(c+2
2 ), where [φ] = [p1 : · · · : p(c+2

2 )].

Let εβ denote any standard basis element of ∧i V , so β = (β1, . . . , βi) with β1 <

· · · < βi. Let m ∈ St(V ) be any degree t monomial. We compute

Θi(φ)(m) =
i∑

j=1
(−1)i+1εβ\βj ⊗ (ψ(εβj)m) · φ,

implying that the matrix representation of Θi(φ) has entries of the form ±p`, for

` = 1, . . . ,
(
c+2

2

)
, where the basis chosen for ∧i−1 V ⊗Dc−t−1(V ∗) consists of the tensor

products of the standard basis for ∧i−1 V and the monomial basis for Dc−t−1(V ∗).

The complement of U is the union of the zero sets of the determinant of the above

matrix representation for each i = 2, . . . , n, which is a homogeneous polynomial in

the p`. As a finite union of closed sets, this set is closed. Thus U is an open set, and

by Proposition 3.1.10, any [φ] ∈ U gives rise to an ideal (0 :R φ) whose Betti numbers

are independent of the choice of φ.
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3.2 Generic Betti Numbers for Grade 3 Gorenstein Ideals

Definition 3.2.1. A standard graded Artinian algebra is level if its socle is concen-

trated entirely in a single degree.

Proposition 3.2.2 ([6], Proposition 3.6). Let R/I be a standard graded compressed

level Artinian algebra of embedding dimension r, socle degree c, socle dimension m,

and assume I has initial degree t. Then

dimk TorRi (R/I, k)t+i−1 − dimk TorRi−1(R/I, k)t+i−1 =(
t− 1 + i− 1

i− 1

)
·
(
t− 1 + r

r − i

)
−m

(
c− t+ r − i

r − i

)
·
(
c− t+ r

i− 1

)
for i = 1, . . . , r − 1.

Proposition 3.2.3. Let R = k[x, y, z] be standard graded and I a homogeneous grade

3 Gorenstein ideal with R/I compressed and Soc(R/I) = k(−2s+1) for some integer

s. Then R/I has Betti table of the form

0 1 2 3

0 1 · · ·

s− 1 · s+ 1 b ·

s · b s+ 1 ·

2s− 1 · · · 1

where b is some integer. Moreover, b 6 s.

Proof. Employ Proposition 3.2.2, where r = 3, c = 2s − 1, m = 1, and t = s

(= d(2s− 1)/2e; see Proposition 3.1.6). Using the notation

Ti := TorRi (R/I, k),

we obtain

dim(T1)s = s+ 1

dim(T2)s+1 − dim(T1)s+1 = 0

dim(T2)s+2 = s+ 1.
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Thus define b := dimk(T2)s+1. The final claim that b 6 s follows from the fact that

the Betti table has the following decomposition into standard pure Betti diagrams:

b

2(s+ 1)2 − 2 ·

0 1 2 3

0 s+ 2 · · ·

s− 1 · 2(s+ 1)2 2(s+ 1)2 − 2 ·

s · · · ·

2s− 1 · · · s

+(s+ 1)2 − 1− (s+ 1)b
(s+ 1)2 − 1 ·

0 1 2 3

0 1 · · ·

s− 1 · s+ 1 · ·

s · · s+ 1 ·

2s− 1 · · · 1

+ b

2(s+ 1)2 − 2 ·

0 1 2 3

0 s · · ·

s− 1 · · · ·

s · 2(s+ 1)2 − 2 2(s+ 1)2 ·

2s− 1 · · · s+ 2

If b > s+1, then the middle coefficient of the above decomposition becomes negative,

which is a contradiction to results of Boij-Söderberg theory (see, for instance, [7,

Theorem 2]).

In the following, recall that the notation [φ] ∈ Gr(1, Dc(V ∗)) means the class of

the subspace spanned by the element φ ∈ Dc(V ∗).

Proposition 3.2.4. Let R = S(V ) be standard graded, where V is a 3-dimensional

vector space over a field k. If s is even, then there is a nonempty open set U in the

Grassmannian parametrizing all 1-dimensional subspaces of D2s−1(V ∗) such that for
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all [φ] ∈ U , I := (0 :S(V ) φ) has Betti table

0 1 2 3

0 1 · · ·

s− 1 · s+ 1 · ·

s · · s+ 1 ·

2s− 1 · · · 1

If s is odd, then there is a nonempty open set U in the Grassmannian parametrizing

all 1-dimensional subspaces of D2s−1(V ∗) such that for all [φ] ∈ U , I := (0 :S(V ) φ)

has Betti table
0 1 2 3

0 1 · · ·

s− 1 · s+ 1 1 ·

s · 1 s+ 1 ·

2s− 1 · · · 1

Proof. The goal is to find minimal values for b, where b is as in Proposition 3.2.3,

since b is minimized precisely when the rank of Θi(φ) is maximized by Proposition

3.1.10. To this end, we exhibit an explicit I for each s attaining the Betti table as in

the statement and argue that no smaller values of b can be obtained. The matrices

used below are those from Proposition 6.2 of [11] with minor alterations; in our case,

some of the entries are squared.

Choosing a basis for V , we may view S(V ) as the standard graded polynomial

ring k[x, y, z]. Assume first that s is even. Consider the (s+ 1)× (s+ 1) alternating

matrix 

0 x2 0 · · · 0 z2

−x2 0 y2 · · · z2 0

0 −y2 0 · · · 0
... ...

−z2 0 · · · 0
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To see the pattern more clearly, the first two matrices are

Hev
1 =


0 x2 z2

−x2 0 y2

−z2 −y2 0

 , Hev
2 =



0 x2 0 0 z2

−x2 0 y2 z2 0

0 −y2 0 x2 0

0 −z2 −x2 0 y2

−z2 0 0 −y2 0


The ideal generated by the s×s Pfaffians has grade 3 according to section 6 of [11] (a

much more explicit generating set is exhibited in Proposition 7.6 of [21]), and hence

has minimal free resolution

0→ R(−2s+ 1)→ R(−s− 2)s+1 → R(−s)s+1 → R.

The above gives an ideal for which b = 0, and this is clearly the smallest possible.

Similarly, if s is odd, consider the following (s+ 2)× (s+ 2) matrix:

0 x2 0 · · · 0 z

−x2 0 y2 · · · z2 0

0 −y2 0 · · · 0
... ...

−z 0 · · · 0


The first two matrices in this case are

Hodd
1 =


0 x2 z

−x2 0 y

−z −y 0

 , Hodd
2 =



0 x2 0 0 z

−x2 0 y2 z2 0

0 −y2 0 x2 0

0 −z2 −x2 0 y

−z 0 0 −y 0


Again, the ideal generated by the submaximal Pfaffians is grade 3 Gorenstein with

b = 1. Moreover, no smaller value of b can be achieved since otherwise the ideal

would have an even number of minimal generators, which is impossible by work of

Watanabe in [42] or Corollary 2.2 of [11].
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3.3 Ideals Defining Rings with Socle k(−s)` ⊕ k(−2s+ 1)

Setup 3.3.1. Let k be a field and let R = k[x, y, z] be a standard graded polynomial

ring over a field k. Let I ⊂ R be a grade 3 homogeneous ideal defining a compressed

ring with Soc(R/I) = k(−s)` ⊕ k(−2s+ 1), where s > 3.

Write I = I1∩I2∩· · ·∩I`∩It for I1, . . . , I` homogeneous grade 3 Gorenstein ideals

defining rings with socle degrees s and It a homogeneous grade 3 Gorenstein ideal

defining a ring with socle degree 2s − 1. The notation R+ will denote the irrelevant

ideal (R>0).

Let F• denote the minimal free resolution of R/It and let G• denote the Koszul

complex induced by the map U = Rex ⊕ Rey ⊕ Rez → R sending ex 7→ x, ey 7→

y, ez 7→ z.

Theorem 3.3.2. Adopt notation and hypotheses of Setup 3.3.1. Then the tipping

point of I is equal to s. In particular, ` 6 s+ 1.

The proof of Theorem 3.3.2 will follow easily after a series of Lemmas.

Lemma 3.3.3. Adopt notation and hypotheses of Setup 3.3.1. Then the tipping point

of I is > s.

Proof. Recall the notation of Setup 3.1.3; we may view R as S(V ) for some 3-

dimensional vector space over k. By counting initial degrees, we eliminate all pos-

sibilities except for the case that Φs−1 : Ss−1 → D⊕`1 ⊕ Ds is an isomorphism and I

has initial degree s. Counting ranks, this implies `s = 1 − s 6 0, which is a clear

contradiction.

Lemma 3.3.4. Adopt notation and hypotheses of Setup 3.3.1. Then It defines a

compressed ring.

Proof. Recall the notation of Setup 3.1.3; we may view R as S(V ) for some 3-

dimensional vector space over k. Let φi ∈ Ds denote the inverse system for each
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Ii and φt ∈ D2s−1 denote the inverse system for It. By Lemma 3.3.3, the maps Φi for

i > s are surjective; Proposition 3.1.6 guarantees that the map f 7→ f ·φt is surjective

for f ∈ Ss.

For i > s, the maps Φi : Si → D2s−1−i are identically the maps f 7→ f · φt

for f ∈ Si. By assumption, these are surjections; by Proposition 3.1.6, It defines a

compressed ring.

Lemma 3.3.5. Adopt notation and hypotheses of Setup 3.3.1. Then the tipping point

of I is 6 s+ 1.

Proof. Suppose for sake of contradiction that the tipping point is > s+ 2. Recall the

notation of Setup 3.1.3; we may view R as S(V ) for some 3-dimensional vector space

over k. Let φi ∈ Ds denote the inverse system for each Ii and φt ∈ D2s−1 denote the

inverse system for It.

By Proposition 3.1.6, It has tipping point s. If I has tipping point > s+ 2, then

Φs+1 : Ss+1 → Ds−2 is injective; this is impossible by counting ranks.

Lemma 3.3.6. Adopt notation and hypotheses of Setup 3.3.1. Let φ1, . . . , φs+1, ψ1, . . . , ψb

denote a minimal generating set for It, where deg φi = s, degψi = s + 1. Then the

ideal

(φ1, . . . , φs+1−`, ψ1, . . . , ψb) +R+φs+2−` + · · ·+R+φs+1

defines a ring of type i+ 1. In particular, (It)>s+1 defines a ring of type s+ 2.

Remark 3.3.7. By Proposition 3.2.3 combined with Lemma 3.3.4, It is minimally

generated by homogeneous forms φ1, . . . , φs+1, ψ1, . . . , ψb, where deg φi = s, degψi =

s+ 1 and b < s+ 1, so it makes sense to choose a generating set as in the statement

of Lemma 3.3.6.

Proof. This is a consequence of Corollary 2.2.6. Let J := (φ1, . . . , φs+1−`, ψ1, . . . , ψb)+

R+φs+2−`+ · · ·+R+φs+1. In the notation of Theorem 2.2.4, notice that Gj
• = K•, the
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Koszul complex resolving R+, for all j = 1, . . . , i. Counting degrees on the diagram

of Proposition 2.2.3, we find

deg qj2 > s− 1 > 0

so that qj2 ⊗ k = 0, for all j = 1, . . . , i. Since qj3 = 0 for each j = 1, . . . , i, Corollary

2.2.6 implies that

dimk TorR3 (R/J, k) = rankF3 +
i∑

j=1
rankK3

= i+ 1

Proof of Theorem 3.3.2. By Lemmas 3.3.5 and 3.3.3, we only need to check that the

tipping point cannot equal s + 1. Assume that I has tipping point = s + 1. This

implies that the map

Φs : Ss → D⊕`0 ⊕Ds−1

is an injection. Counting ranks, `+
(
s+1

2

)
>
(
s+2

2

)
. If we have equality, then Φs is an

isomorphism, implying that the tipping point is 6 s. Thus there is strict inequality,

and ` > s+ 2.

This implies I has type > s + 3 and initial degree s + 1. However, Lemma 3.3.4

forces It to be compressed. Counting ranks in each homogeneous component and

using the definition of compressed, we must have I = (It)>s+1. By Lemma 3.3.6, I

has type s+ 2; this contradiction yields the result.

Corollary 3.3.8. Adopt notation and hypotheses of Setup 3.3.1. Then for each i 6 `,

the ideal

Ii ∩ · · · ∩ I` ∩ It

defines a compressed ring with socle k(−s)`−i ⊕ k(−2s+ 1).
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Proof. Recall the notation of Setup 3.1.3; we may view R as S(V ) for some 3-

dimensional vector space over k. Let φi ∈ Ds denote the inverse system for each

Ii and φt ∈ D2s−1 denote the inverse system for It.

For j < s, the map f 7→ f · φt is injective, since It defines a compressed ring by

Lemma 3.3.4. Similarly, for j > s, the map Φj : Sj → D⊕`j ⊕ D2s−1−j associated to

the ideal I is surjective. The map Φ′j associated to the ideal Ii ∩ · · · ∩ I` ∩ It is the

composition of Φj with the canonical projection D⊕`j ⊕D2s−1−j → D⊕`−ij ⊕D2s−1−j.

As a composition of surjections, Φ′j is a surjection for j > s.

Proposition 3.3.9. Adopt notation and hypotheses of Setup 3.3.1. Then there exists

a minimal generating set

φ1, . . . , φs+1, ψ1, . . . , ψb

for It such that

I = (φ1, . . . , φs+1−`, ψ1, . . . , ψb) +R+φs+2−` + · · ·+R+φs+1,

where deg φi = s, degψi = s+ 1, and b < s+ 1.

Proof. Observe that, by definition of compressed,

dimk(I)s = s+ 1− `.

Choose a basis φ1, . . . , φs+1−` for Is; notice that dimk(It)s = s+ 1, so we may extend

this set to a basis

φ1, . . . , φs+1

for (It)s. Since I>s+1 = (It)>s+1, there exist elements ψ1, . . . , ψb ∈ (It)s+1 such that

Is+1 = (R+(φ1, . . . , φs+1))s+1 + Spank{ψ1, . . . , ψb}.

In particular, the assumption that I defines a compressed ring forces every minimal

generating set to be concentrated in two consecutive degrees. This immediately yields

that

I = (φ1, . . . , φs+1−`, ψ1, . . . , ψb) +R+φs+2−` + · · ·+R+φs+1.
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3.4 Tor-Algebra Structure

Definition 3.4.1. Let (R,m, k) be a regular local ring with I ⊂ m2 and ideal such

that pdR(R/I) = 3. Let T• := TorR• (R/I, k). Then R/I has Tor algebra class G(r)

if, for m = µ(I) and t = type(R/I), there exist bases for T1, T2, and T3

e1, . . . , em, f1, . . . , fm+t−1, g1, . . . , gt,

respectively, such that the only nonzero products are given by

eifi = g1 = fiei, 1 6 i 6 r.

Such a Tor algebra structure has

T1 · T1 = 0, rankk(T1 · T2) = 1, rankk(T2 → Homk(T1, T3)) = r,

where r > 2.

Theorem 3.4.2 ([16], Theorem 2.4, Homogeneous version). Let R = k[x, y, z] with

the standard grading and let I ⊆ R2
+ be an R+-primary homogeneous Gorenstein ideal

minimally generated by elements φ1, . . . , φ2m+1. Then the ideal

J = (φ1, . . . , φ2m) +R+φ2m+1

is a homogeneous R+-primary ideal and defines a ring of type 2. Moreover,

(a) If m = 1, then µ(J) = 5 and R/J is class B.

(b) If m = 2, then one of the following holds:

• µ(J) = 4 and R/J is class H(3, 2)

• µ(J) = 5 and R/J is class B

• µ(J) ∈ {6, 7} and R/J is class G(r) with µ(J)− 2 > r > µ(J)− 3
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(c) If m > 3, then R/J is class G(r) with µ(J)− 2 > r > µ(J)− 3.

The proof of Theorem 3.4.3 is essentially that of [16, Theorem 2.4].

Theorem 3.4.3. Adopt the notation and hypotheses of Setup 3.3.1. Then the rank

of the induced map

δI : TorR2 (R/I, k)→ Homk(TorR1 (R/I, k),TorR3 (R/I, k))

is at least µ(I)− 3`.

Proof. Throughout the proof, use the notation

TAi := TorRi (A, k),

where A is any R-module. Notice that by Proposition 3.3.9,

It/I ∼= k`.

Considering the long exact sequence of Tor associated to the short exact sequence

0 // It
I

ι // R
I

p
// R
It

// 0 ,

one counts ranks to find that

rank TorR2 (p, k) = µ(I)− 2`, rank Homk(TorR1 (p, k), TR/It3 ) = µ(It)− `.

Consider the following commutative diagram:

T
R/It
2

δIt // Homk(TR/It1 , T
R/It
3 )

Homk(TorR1 (p,k),TR/It3 )
��

T
R/I
2

Tor2(p,k)

OO

ε // Homk(TR/I1 , T
R/I
3 )

T
R/I
2

δI // Homk(TR/I1 , T
R/I
3 )

Homk(TR/I1 ,TorR3 (p,k))

OO

.

Since It is Gorenstein, δIt is an isomorphism. This implies that rank δI > rank ε >

(µ(I)− 2`)− `, which yields the result.

33



Corollary 3.4.4. Adopt the notation and hypotheses of Setup 3.3.1. If ` 6 s − 1,

then R/I has Tor algebra class G(r) for some r > µ(I)− 3`.

Proof. It suffices to show that, in the notation of the proof of Theorem 3.4.3, the map

δI has rank at least 2 and T1 · T1 = 0. Since s > 3, a degree count shows T1 · T1 = 0.

By Corollary 2.2.6,

µ(I) = µ(It) + 2`− rank


q1

1
...

qm1

⊗ k
.

Since µ(It) > s+ 1 and rank


q1

1
...

qm1

⊗ k
 > 0, we deduce that

rank(δI) > s+ 1− ` > 2.

Proposition 3.4.5. Adopt the notation and hypotheses of Setup 3.3.1. If ` 6 s− 1,

then R/I has Tor algebra class G(µ(I)− 3`).

Proof. In the notation of the proof of Theorem 3.4.3, it suffices to show that

rank δI 6 µ(I)− 3`.

and that T1 · T1 = 0. Since s > 3, a degree count immediately yields that T1 · T1 = 0.

Observe that dimk(TR/I1 )s = s+ 1− `, so that

dimk(TR/I1 )s+1 = µ(I)− s− 1 + `.

Moreover, counting ranks on the degree s+ 1 homogeneous strand of the long exact

sequence of Tor associated to the short exact sequence

0→ It
I
→ R

I
→ R

It
→ 0,
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we obtain

dimk(TR/I1 )s+1 − dimk(TR/I2 )s+1 = 3`

=⇒ dimk(TR/I2 )s+1 = µ(I)− s− 1− 2`.

Similarly, a rank count on the degree s+ 2 strand yields

dimk(TR/I2 )s+2 = s+ 4`.

By counting degrees, the only nontrivial products can occur between (TR/I1 )s, (TR/I2 )s+2

and (TR/I1 )s+1, (TR/I2 )s+1; this implies that

rank δI 6 dimk(TR/I1 )s + dimk(TR/I2 )s+1

= s+ 1− `+ µ(I)− s− 1− 2`

= µ(I)− 3`.

Combining this with Corollary 3.4.4, we find that R/I must be class G(µ(I)−3`).

3.5 Realizability in The Type 2 Case

Adopt Setup 3.3.1 with ` = 1. The ideal It has Betti table arising from Proposition

3.2.3 for some integer b < s+ 1 by Corollary 3.3.8. We may fit I into the short exact

sequence

0→ It/I → R/I → R/It → 0

whence upon counting ranks on the graded strands of the long exact sequence of Tor,

we deduce that dimk TorR1 (R/I, k)s+1 6 b + 3. Since b 6 s, dimk TorR1 (R/I, k)s+1 6

s+ 3. Furthermore:

Proposition 3.5.1. Let I be as in Setup 3.1.3 with ` = 1. Then dimk TorR1 (R/I, k)s+1 6

s+ 2.
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Proof. By counting ranks on the long exact sequence of Tor induced by the short

exact sequence

0→ It/I → R/I → R/It → 0,

we must have dimk TorR1 (R/It, k)s+1 = s, which is the maximum possible. By Propo-

sition 3.3.9, I may be written

I = (φ1, . . . , φs, ψ1, . . . , ψs) +R+φs+1

where φ1, . . . , φs+1, ψ1, . . . , ψs is a minimal generating set for It. Assume for sake of

contradiction that dimk TorR1 (R/I, k)s+1 = s+3; this means that the above generating

set for I is minimal. Thus the resolution of Theorem 2.1.5 is a minimal free resolution

for R/I.

Adopt the notation of Theorem 2.1.5, where F• resolves R/It and G• resolves

k. Let us examine the map q1 : F2 → G1. By counting degrees, one finds that

q1(F2) 6⊂ R+G1 or that q1 is identically the 0 map. Either case is a contradiction, so

that rankk(q1 ⊗ k) > 1.

We now exhibit a class of ideals defining compressed rings with top socle degree

2s−1 and dimk TorR1 (R/I, k)s+1 = s+2, showing that the inequality of 3.5.1 is sharp.

To do this, we first need some notation.

Definition 3.5.2. Let U j
m (for j 6 m) denote the m ×m matrix with entries from

the polynomial ring R = k[x, y, z] defined by:

U j
i,m−i = x2, U j

i,m−i+1 = z2, U ev
i,m−i+2 = y2 for i < j

U j
i,m−i = x, U j

i,m−i+1 = z, U ev
i,m−i+2 = y for i > j

and all other entries are defined to be 0. Define djm := det(U j
m).
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To see the pattern, we have:

U1
2 =

x2 z2

z y

 , U1
3 =


0 x2 z2

x2 z2 y2

z y 0

 , U
2
3 =


0 x2 z2

x z y

z y 0


Definition 3.5.3. Define V j

m (for j < m) to be the (2m+1)×(2m+1) skew symmetric

matrix

V j
m :=


O Ox2 (U j

m)T

−(Ox2)T 0 y2
O

−U j
m −(y2

O)T O


and if j = m, then V m

m is the skew symmetric matrix

V j
m :=


O Ox2 (Um

m )T

−(Ox2)T 0 yO

−Um
m −(yO)T O


Observe that the ideal of pfaffians Pf(V j

m) is a grade 3 Gorenstein ideal with graded

Betti table
0 1 2 3

0 1 · · ·

2m− j − 1 · 2m+ 1− j j ·

2m− j · j 2m+ 1− j ·

4m− 2j − 1 · · · 1

In particular, for any integer s, Pf(V s
s ) has Betti table

0 1 2 3

0 1 · · ·

s− 1 · s+ 1 s ·

s · s s+ 1 ·

2s− 1 · · · 1
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3.5.4. Given an n × n alternating matrix M , the notation Pf(M) will denote the

ideal of submaximal pfaffians of the matrix M . Similarly,

(Pf(M)\Pfi(M))

is shorthand for the ideal

(Pfj(M) | 1 6 j 6 n, j 6= i),

where Pfj(M) denotes the pfaffian of the matrix obtained by deleting the jth row

and column of M .

Setup 3.5.5. In the notation of Definition 3.5.3, the following is a minimal free

resolution of Pf(V j
m):

0 // R
d∗1 // F ∗1

V jm // F1
d1 //// R

where d1 is the row vector whose ith entry is the ith signed submaximal pfaffian of

V j
m. Observe that F1 = ⊕2m+1

i=1 Rei.

Let G• be the Koszul complex on U = Rex ⊕ Rey ⊕ Rez with map X : ex 7→ x,

ey 7→ y, and ez 7→ z.

Proposition 3.5.6. Let s > 1 be an integer and R = k[x, y, z], where k is any field.

The ideal

I := (Pf(V s
s )\Pfs+1(V s

s )) +R+Pfs+1(V s
s )

is minimally generated by 2s+2 elements and defines a compressed ring with Soc(R/I) ∼=

k(−s)⊕ k(−2s+ 1) and Betti table

0 1 2 3

0 1 · · ·

s− 1 · s s− 1 ·

s · s+ 2 s+ 4 1

2s− 1 · · · 1
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Proof. Adopt notation of Theorem 2.1.5 and Setup 3.5.5. Let F• denote the graded

minimal free resolution of R/Pf(V s
s ) as in Setup 3.5.5. Write F1 = F ′1 ⊕ Res+1.

By definition of the matrix V s
s , the induced map d0 : F ∗1 → Res+1 sends e∗s 7→

−x2es+1, e
∗
s+2 7→ yes+1 and all other basis vectors to 0.

Let q1 : F ∗1 → U be the map sending e∗s 7→ −xex, e∗s+2 7→ ey, and all other basis

vectors to 0. Then the following diagram commutes:

F ∗1
q1

||

d′0
��

U X // imX

In particular, rankk(q1⊗k) = 1. We do not have to compute the map q2 : F3 →
∧2 U ,

since a degree count tells us that q2 ⊗ k = 0. Employing Corollary 2.1.8 yields the

result.

Corollary 3.5.7. Adopt Setup 3.3.1 with ` = 1. Then I has Tor algebra class G(r)

for some s 6 r 6 2s− 1.

Proof. Observe that s + 3 6 µ(I) 6 2s + 2, where the upper bound follows from

Proposition 3.5.1. The lower bound follows from Corollary 2.1.8, since

µ(I) = µ(It) + 2− rankk(q1 ⊗ k),

and µ(It) > s+1. A degree count shows that if It has Betti table given by Proposition

3.2.3, then rankk(q1 ⊗ k) 6 min{b, 3}; this immediately yields the lower bound.

Combining these bounds with Proposition 3.4.5, the result follows.

A natural question arising from Corollary 3.5.7 is whether or not every possible r

value may be obtained for a given s > 3, where I is obtained from Setup 3.1.3. The

next proposition will allow us to answer in the affirmative:

Proposition 3.5.8. Let s > 3 be an integer and R = k[x, y, z], where k is any field.
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1. For 1 6 i < s/2, the ideal

I := (Pf(V s−2i
s−i )\Pfs−i+1(V s−2i

s−i )) +R+Pfs−i+1(V s−2i
s−i )

has Tor algebra class G(2s− 2i).

2. For 1 6 i < s/2, the ideal

I := (Pf(V s−2i
s−i )\Pfi+1(V s−2i

s−i )) +R+Pfi+1(V s−2i
s−i )

has Tor algebra class G(2s− 2i− 1).

Proof. Adopt notation and hypotheses as in Setup 3.5.5. In view of Corollary 2.1.8

and Proposition 3.4.5, it suffices to compute the rank of the map q1 : F ∗1 → U as in

Theorem 2.1.5 to find the minimal number of generators.

We compute the map q1 explicitly in each case. Write F1 = F ′1 ⊕ Res−i+1, we

see (recalling that i > 0) that the map d0 : F ∗1 → U is defined by sending e∗s−i 7→

−x2es−i+1, es−i+2 7→ y2es−i+2 and all other basis vectors to 0.

Take q1 : F ∗1 → U to be the map sending e∗s−i 7→ −xex, e∗s−i+2 7→ yey, and all

other basis vectors map to 0. Clearly q1 ⊗ k = 0, whence the resolution of Theorem

2.1.5 is minimal. In particular, µ(I) = 2s+ 3− 2i.

For the second case, retain much of the notation as above. Decompose F1 = F ′1⊕

Rei+1 and observe that d0 : F ∗1 → Rei+1 is the map sending e∗2s−i 7→ x2ei+1, e
∗
2s−i+1 7→

z2ei+1, e
∗
2s−i+2 7→ yei+1, and all other basis vectors to 0.

Take q1 : F ∗1 → U to be the map sending e∗2s−i 7→ xex, e∗2s−i+1 7→ zez, e∗2s−i+2 7→ ey,

and all other basis vectors to 0. In this case rankk(q1 ⊗ k) = 1, whence µ(I) =

2s+ 2− 2i.

Corollary 3.5.9. Let R = k[x, y, z] with the standard grading, where k is any field.

Given any s > 3 and any r with s 6 r 6 2s − 1, there exists an ideal I with

Soc(R/I) = k(−s) ⊕ k(−2s + 1) and defining an Artinian compressed ring of Tor

algebra class G(r).
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Proof. Assume first that r is even and s 6 r < 2s− 1. Employ Proposition 3.5.8 on

the ideal

(Pf(V r−s
r/2 )\Pfr/2+1(V r−s

r/2 )) +R+Pfr/2+1(V r−s
r/2 )

Assume now that r is odd, with s 6 r 6 2s− 1. If r = 2s− 1, use the ideal from

Proposition 3.5.6. If r < 2s− 1, apply Proposition 3.5.8 to the ideal

(Pf(V r+1−s
(r+1)/2)\Pfs−(r+1)/2+1(V r+1−s

(r+1)/2)) +R+Pfs−(r+1)/2+1(V r+1−s
(r+1)/2)
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Chapter 4

Applications to Determinantal Facet Ideals

Let S = k[xij | 1 6 i 6 n, 1 6 j 6 m] where k is any field, and M be a generic n×m

matrix of indeterminates. The study of the ideal generated by all minors of a given size

ofM has a long history, and such ideals are well understood (see, for instance, [9]). In

a similar vein, one can instead consider the ideal generated by some of the minors of

a given size of M ; these are known as determinantal facet ideals and were introduced

by Ene, Herzog, Hibi, and Mohammadi in [23]. The study of determinantal facet

ideals turns out to be much more subtle and has seen comparably less attention, even

though such ideals arise naturally in algebraic statistics (see [18] and [29]). In [30],

the linear strand of determinantal facet ideals is constructed in terms of a generalized

Eagon-Northcott complex. In particular, the linear Betti numbers of such ideals may

be computed in terms of the f -vector of an associated simplicial complex.

Determinantal facet ideals for the case n = 2 were originally introduced as bino-

mial edge ideals independently by Ohtani [36] and Herzog, et. al. [29]; this generalized

work of Diaconis, Eisenbud, and Sturmfels in [18]. To study binomial edge ideals, one

can associate each column of M with a vertex of a graph G, and one can associate

a minor of M involving two columns i and j with an edge (i, j) in the graph. For

example, the ideal generated by all maximal minors of a 2 ×m matrix corresponds

to a complete graph on m vertices. The relationship between homological invari-

ants of ideals generated by some maximal minors of M and combinatorial invariants

of the associated graph G has been widely studied; see the survey paper [32] for a

compilation of such results. determinantal facet ideals naturally extend this idea by
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instead associating a pure simplicial complex ∆ on m vertices to the ideal J∆, where

each (n − 1)-dimensional facet of ∆ corresponds to a maximal minor in the set of

generators of J∆. Mohammadi and Rauh further generalized this notion to that of

a determinantal hypergraph ideal, which associates a minor to each hyperedge of a

graph, allowing for an ideal that is generated by minors of different sizes.

In this chapter, we use trimming complexes to compute Betti tables of certain

ideals of pfaffians and the previously mentioned determinantal facet ideals. The

chapter is organized as follows. In Section 4.1, we show how to use the complex of

Section 2.1 to resolve ideals generated by certain subsets of a minimal generating set

of an arbitrary ideal I. As applications, we compute the Betti tables of the ideals

obtained by removing a single generator from the ideal of submaximal pfaffians (see

Proposition 4.1.4) and from the ideal of maximal minors of a generic n×m matrixM

(see Theorem 4.1.15). In Section 4.2 we use the iterated trimming complex of Section

2.2 to compute the Betti tables of ideals obtained by removing certain additional

generators from the generating set of the ideal of maximal minors of a generic n×m

matrix M . As an application, we are able to deduce pieces of the f -vector of the

simplicial complex associated to certain classes of uniform clutters.

4.1 Betti Tables for Ideals Obtained by Removing a Generator

from Generic Submaximal Pfaffian Ideals and Ideals of Maximal

Minors

In this section, we demonstrate how to use trimming complexes to compute the Betti

table of the ideal generating by removing a single generator from a given generating

set of an ideal I.

Setup 4.1.1. Let R = k[x1, . . . , xn] be a standard graded polynomial ring over a field

k, with R+ := R>0. Let I ⊆ R be a homogeneous R+-primary ideal and (F•, d•)

denote a homogeneous free resolution of R/I.
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Write F1 = F ′1 ⊕Re0, where e0 generates a free direct summand of F1. Using the

isomorphism

HomR(F2, F1) = HomR(F2, F
′
1)⊕ HomR(F2, Re0)

write d2 = d′2 + d0, where d′2 ∈ HomR(F2, F
′
1), d0 ∈ HomR(F2, Re0). Let a denote a

homogeneous ideal with

d0(F2) = ae0,

and (G•,m•) be a homogeneous free resolution of R/a.

Use the notation K ′ := im(d1|F ′1 : F ′1 → R), K0 := im(d1|Re0 : Re0 → R), and let

J := K ′ + a ·K0.

Proposition 4.1.2. Adopt notation and hypotheses as in Setup 4.1.1. Then the

resolution of Theorem 2.1.5 resolves K ′.

Proof. It will be shown that a = K ′ : K0. Observe that K ′ : K0 ⊆ a by Proposition

2.1.2. Let r ∈ a; by assumption, there exists f ∈ F2 such that d0(f) = re0. Since F•

is a complex, d1(re0) = −d1(d′2(f)), so that rK0 ⊆ K ′. This yields that a = K ′ : K0.

In particular, we find that aK0 ⊂ K ′. The resolution of Theorem 2.1.5 resolves

K ′ + aK0 = K ′, so the result follows.

Notation 4.1.3. Given a skew symmetric matrix X ∈ Mn(R), where R is some

commutative ring, the notation Pfj(X) will denote the pfaffian of the matrix obtained

by removing the jth row and column from X.

Proposition 4.1.4. Let R = k[xij | 1 6 i < j 6 n] and let X denote a generic n×n

skew symmetric matrix, with n > 7 odd. Given 1 6 i 6 n, the ideal

J := (Pfj(X) | i 6= j)
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has Betti table

0 1 2 3 · · · k · · · n− 1

0 1 · · · · · · · · · ·
...

(n− 3)/2 · n− 1 1 · · · · · · · ·
...

(n− 1)/2 · ·
(
n−1

2

) (
n−1

3

)
· · ·

(
n−1
k

)
· · · 1

...

n− 3 · · · 1 · · · · · · · ·

In the case where n = 5, the Betti table is

0 1 2 3 4

0 1 · · · ·

1 · 4 1 · ·

2 · · 6 5 1

Proof. In view of Corollary 2.1.8, it suffices to compute the ranks of the maps qi⊗k for

all appropriate i. Let F• denote the minimal free resolution of the ideal of submaximal

pfaffians of X. Observe that F• is of the form

0 // R
d∗1 // Rn X // Rn d1 // R,

where d1 = (Pf1(X),−Pf2(X), . . . , (−1)n+1Pfn(X)) (see, for instance, [11]). Fix an

integer 1 6 ` 6 n and let K ′ := (Pfi(X) | i 6= `), K0 := (Pf`(X)). Observe that `th

row of X generates the ideal

(x12, . . . , x1n) if ` = 1,

(x1`, . . . , x`−1,`, x`,`+1, . . . , x`,n) if 1 < ` < n,

(x1n, . . . , xn−1,n) if ` = n.
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Notice that this ideal is a complete intersection on n− 1 generators; in the notation

of Setup 4.1.1, the ideal a is this complete intersection (so that aK0 ⊆ K ′). Let G•

denote the Koszul complex resolving a.

Observe that for i > 3,

qi : Fi+1 = 0→ Gi,

so qi ⊗ k = 0 for i > 3. By counting degrees, one finds q2 ⊗ k = 0. Finally, the map

q1 is simply the projection

q1 : F2 ∼= Rn → G1 ∼= Rn−1

onto the appropriate summands; this map has rank(q1 ⊗ k) = n− 1. Combining this

information with Corollary 2.1.8 and Remark 2.1.9, for i > 4,

dimk TorRi (R/J, k) =
(
n− 1
i

)
.

For i = 3 and n > 7,

dimk TorR3 (R/J)(n+5)/2 = rankG3

=
(
n− 1

3

)

dimk TorR3 (R/J)n = rankF3

= 1.

For i = 3 and n = 5, observe that n = (n+ 5)/2, so

dimk TorR3 (R/J) = rankF3 + rankG3

= 1 +
(
n− 1

3

)
= 5.

Finally, for i = 2 and n > 5,

dimk TorR2 (R/J)(n+1)/2 = rankF2 − rank(q1 ⊗ k)
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= n− (n− 1) = 1

dimk TorR2 (R/J)(n+3)/2 = rankG2

=
(
n− 1

2

)
.

Observe the difference between the Betti table of Proposition 4.1.4 and the classi-

cal case of the ideal generated by all submaximal pfaffians of a generic skew symmetric

matrix. In the latter case, this ideal is always a grade 3 Gorenstein ideal (in partic-

ular, the projective dimension is 3). After removing a generator, one sees that the

projective dimension can become arbitrarily large based on the size of the matrix X.

Next, we want to compute the graded Betti numbers when removing a generator

from an ideal of maximal minors of a generic n×m matrix. This case requires more

work since the q` maps of Proposition 2.1.4 must be computed explicitly in order to

compute the ranks. For convenience, we recall the definition of the Eagon-Northcott

complex.

Notation 4.1.5. Let V be a k-vector space, where k is any field. The notation ∧i V
denotes the ith exterior power of V and Di(V ) denotes the ith divided power of V

(see [20, Section A2.4] for the definition of Di(V )).

Definition 4.1.6. Let φ : F → G be a homomorphism of free modules of ranks f

and g, respectively, with f > g. Let cφ be the image of φ under the isomorphism

HomR(F,G)
∼=−→ F ∗ ⊗G. The Eagon-Northcott complex is the complex

0→ Df−g(G∗)⊗
f∧
F → Df−g−1(G∗)⊗

f−1∧
F → · · · → G∗ ⊗

g+1∧
F →

g∧
F →

g∧
G

with differentials in homological degree > 2 induced by multiplication by the element

cφ ∈ F ∗ ⊗G, and the map ∧g F → ∧g G is ∧g φ.
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Setup 4.1.7. Let R = k[xij | 1 6 i 6 n, 1 6 j 6 m] and M = (xij)16i6n,16j6m denote

a generic n×m matrix, where n 6 m. View M as a homomorphism M : F → G of

free modules F and G of rank m and n, respectively.

Let fi, i = 1, . . . ,m, gj, j = 1, . . . , n denote the standard bases with respect to

which M has the above matrix representation. Write
n∧
F = F ′ ⊕Rfσ

for some free module F ′, where σ = (σ1 < · · · < σn) is a fixed index set, and

the notation fσ denotes fσ1 ∧ · · · ∧ fσn. Recall that the Eagon-Northcott complex of

Definition 4.1.6 resolves the quotient ring defined by In(M), the ideal of n×n minors

of M .

We will consider the submodule of ∧n+` F generated by all elements of the form

fσ,τ , where τ = (τ1 < · · · < τ`) and σ ∩ τ = ∅. The notation fσ,τ denotes the element

fσ ∧ fτ . If τ = (τ1 < · · · < τn), let ∆τ denote the determinant of the matrix formed

by columns τ1, . . . , τn of M . Then, in the notation of Setup 4.1.1,

K ′ = (∆τ | τ 6= σ)

and K0 = (∆σ).

Observe that the Eagon-Northcott differential d2 : G∗ ⊗∧n+1 F → ∧n F induces a

homomorphism d0 : G∗ ⊗ ∧n+1 F → Rfσ by sending

g∗i ⊗ f{j},σ 7→ xijfσ,

and all other basis elements to 0. In the notation of Setup 4.1.1,

a = (xij | i = 1, . . . , n, j /∈ σ).

This means a is a complete intersection generated by n(m− n) elements, and hence

is resolved by the Koszul complex. Moreover, aK0 ⊆ K ′. Let

U =
⊕

16i6n
j /∈σ

Reij
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with differential induced by the homomorphism m1 : U → R sending eij 7→ xij. If

L = (i, j) is a 2-tuple, then the notation eL will denote eij.

The proof of the following Proposition is a straightforward computation.

Proposition 4.1.8. Adopt notation and hypotheses of Setup 4.1.7. Define q1 : G∗ ⊗∧n+1 F → U by sending g∗i ⊗ f{j},σ 7→ eij and all other basis elements to 0. Then the

following diagram commutes:

G∗ ⊗ ∧n+1 F
q1

yy

d′0

��

U m1
// a,

where d′0 : G∗ ⊗ ∧n+1 F → R is the composition

G∗ ⊗ ∧n+1 F
d0 // Rfσ // R ,

and where the second map sends fσ 7→ 1.

We will need the following definition before introducing the qi maps for i > 2.

Definition 4.1.9. Let τ = (τ1, . . . , τ`) be an indexing set of length ` with τ1 < · · · <

τ`. Let α = (α1, · · · , αn), with αi > 0 for each i. Define Lα,τ to be the subset of size

` subsets of the cartesian product

{i | αi 6= 0} × τ,

where {(r1, τ1), . . . , (r`, τ`)} ∈ Lα,τ if |{i | ri = j}| = αj.

Observe that Lα,τ is empty unless α1 + · · ·+ αn = `.

Example 4.1.10. One easily computes:

L(2,0,1),(1,2,3) = {{(3, 1), (1, 2), (1, 3)}, {(1, 1), (3, 2), (1, 3)}, {(1, 1), (1, 2), (3, 3)}}

L(2,0,2),(1,2,3,4) ={{(3, 1) , (3, 2) , (1, 3) , (1, 4)} , {(3, 1) , (1, 2) , (3, 3) , (1, 4)} ,
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{(1, 1) , (3, 2) , (3, 3) , (1, 4)} , {(3, 1) , (1, 2) , (1, 3) , (3, 4)} ,

{(1, 1) , (3, 2) , (1, 3) , (3, 4)} , {(1, 1) , (1, 2) , (3, 3) , (3, 4)}}

Lemma 4.1.11. Let τ = (τ1, . . . , τ`) be an indexing set of length ` with τ1 < · · · < τ`.

Let α = (α1, · · · , αn), with αi > 0 for each i. Use the notation αi := (α1, . . . , αi −

1, . . . , αn). Then any L′ ∈ Lαi,τ\τk is contained in a unique element L ∈ Lα,τ .

Proof. Given L′, take L := L′ ∪ (i, jk), ordered appropriately. Assume that L′ ⊆ L′′

for some other L′′ ∈ Lα,τ . It is easy to see that L′′\L′ = (a, σk), where a is some

integer. However, since αi differs by α by 1 in the ith spot, a = i, whence L = L′′

and L is unique.

Lemma 4.1.12. Adopt notation and hypotheses of Setup 4.1.7. Define

q` : D`(G∗)⊗
n+`∧

F →
∧̀
U, ` > 2,

by sending

g
∗(α1)
1 · · · g∗(αn)

n ⊗ fτ,Iσ 7→
∑

L∈Lα,τ
eL1 ∧ · · · ∧ eL` ,

where Lα,τ is defined in Definition 4.1.9. All other basis elements are sent to 0. Then

the following diagram commutes:

D`(G∗)⊗
∧n+` F

q`
��

d` // D`−1(G∗)⊗ ∧n+`−1 F

q`−1
��∧` U m`

//
∧`−1 U.

Proof. We first compute the image of the element

g
∗(α1)
1 · · · g∗(αn)

n ⊗ fτ,σ

going clockwise about the diagram. We obtain:

g
∗(α1)
1 · · · g∗(αn)

n ⊗ fτ,σ 7→
∑

{i|αi 6=0}
16j6`

(−1)j+1xiτjg
∗(α1)
1 · · · g∗(αi−1)

i · · · g∗(αn)
n ⊗ fτ\τj ,σ
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+
∑

{i|αi 6=0}
16j6n

(−1)m−n+j+1xiσjg
∗(α1)
1 · · · g∗(αi−1)

i · · · g∗(αn)
n ⊗ fJ,σ\σj

7→
∑

{i|αi 6=0}
16j6`

∑
L∈Lαi,τ\τj

(−1)j+1xiτjeL1 ∧ · · · ∧ eL`−1

where in the above, denote αi := (α1, . . . , αi − 1, . . . , αn) and Li the ith entry of

L ∈ Lα,τ\τj . According to Lemma 4.1.11,

∑
{i|αi 6=0}
16j6`

∑
L∈Lαi,τ\τj

(−1)j+1xiτjeL1 ∧ · · · ∧ eL`−1

=
∑

16j6`

∑
L∈Lα,τ

(−1)j+1xLjeL1 ∧ · · · ∧ êLj ∧ · · · ∧ eL` .

Moving in the counterclockwise direction, we obtain:

g
∗(α1)
1 · · · g∗(αn)

n ⊗ fτ,σ 7→
∑

L∈Lα,τ
eL1 ∧ · · · ∧ eL`

7→
∑

L∈Lα,τ

∑
16j6`

(−1)j+1xLjeL1 ∧ · · · ∧ êLj ∧ · · · ∧ eL`

Lemma 4.1.13. Adopt notation and hypotheses of Setup 4.1.7. Then the maps

q` : D`(G∗)⊗
n+`∧

F →
∧̀
U

have rank(q`⊗ k) =
(
n+`−1

`

)
·
(
m−n
`

)
for all ` = 1, · · · ,m−n+ 1 and rank(q`⊗ k) = 0

for all ` = m− n+ 2, . . . , n(m− n).

Remark 4.1.14. If we use the convention that
(
r
s

)
= 0 for s > r, then the above says

that rank(q` ⊗ k) =
(
n+`−1

`

)
·
(
m−n
`

)
for all ` > 1.
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Proof. First observe that since the Eagon-Northcott complex is 0 in homological

degrees > m − n + 2, it is immediate that q` = 0 for ` > m − n + 2. For the first

claim, this follows from the fact that for α 6= α′,

Lα,τ ∩ Lα′,τ = ∅,

which implies that the image of each element g∗(α1)
1 · · · g∗(αn)

n ⊗fτ,σ ∈ D`(G∗)⊗
∧n+` F

under q` has maximal rank (recall that these are the only elements with nonzero

image). This rank is computed by counting all such basis elements; it is clear that

there are
(
m−n
`

)
possible elements of the form fτ,σ, since σ is a fixed index set of

length n. The rank of D`(G∗) is
(
n+`−1

`

)
, therefore we conclude that the rank of each

q` is (
n+ `− 1

`

)(
m− n
`

)

Theorem 4.1.15. Adopt notation and hypotheses of Setup 4.1.7. If τ = (τ1 < · · · <

τn), let ∆τ denote the determinant of the matrix formed by columns τ1, . . . , τn of M .

Then the ideal

K ′ := (∆τ | τ 6= σ)

has Betti table

0 1 · · · ` · · · n(m− n)− 1 n(m− n)

0 1 · · · · · · · · · ·
...

n− 1 ·
(
m
n

)
− 1 · · ·

(
n+`−2
`−1

)((
m

n+`−1

)
−
(
m−n
`−1

))
· · · · ·

n · · · · ·
(
n(m−n)

`

)
−
(
n+`−1

`

)(
m−n
`

)
· · · n(m− n) 1

Proof. We employ Corollary 2.1.8 and Remark 2.1.9. By selection, aK0 ⊆ K ′. Let

E• denote the Eagon-Northcott complex as in Setup 4.1.7. For ` > 1,

rankE` =
(
n+ `− 2
`− 1

)(
m

n+ `− 1

)
.

52



Similarly, let K• denote the Koszul complex resolving a as in Setup 4.1.7. Then

rankK` =
(
n(m− n)

`

)
.

Combining the information above with that of Lemma 4.1.13, Corollary 2.1.8, and

Remark 2.1.9, we have:

dimk TorR` (R/K ′, k)n+` = rankE` − rankk(q`−1 ⊗ k)

=
(
n+ `− 2
`− 1

)(
m

n+ `− 1

)
−
(
n+ `− 2
`− 1

)(
m− n
`− 1

)
,

dimk TorR` (R/K ′, k)n+`+1 = rankK` − rankk(q` ⊗ k)

=
(
n(m− n)

`

)
−
(
n+ `− 1

`

)(
m− n
`

)
.

This concludes the proof.

4.2 Betti Tables for a Class of Determinantal Facet Ideals

In this section we consider the case for removing multiple generators from the ideal

of maximal minors of a generic n ×m matrix M . Such ideals belong to the class of

ideals called determinantal facet ideals, which were studied in [23] and [30]. Graded

Betti numbers for these ideals appearing in higher degrees have not been previously

computed, even in simple cases. In Theorem 4.2.6, the graded Betti numbers of an

infinite class of determinantal facet ideals defining quotient rings of regularity n + 1

are computed explicitly in all degrees. In [30] the linear strand for such ideals is

computed in terms of the f -vector of some associated simplicial complex. We use

the linear strand of Theorem 4.2.6 to deduce the f -vector of the simplicial complex

associated to an n-uniform clutter obtained by removing pairwise disjoint subsets

from all n-subsets of [m] (see Corollary 4.2.14).
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Setup 4.2.1. Let R = k[xij | 1 6 i 6 n, 1 6 j 6 m] and M = (xij)16i6n,16j6m denote

a generic n×m matrix, where n 6 m. View M as a homomorphism M : F → G of

free modules F and G of rank m and n, respectively.

Fix indexing sets σj = (σj1 < · · · < σjn) for j = 1, . . . , r pairwise disjoint; that is,

σi ∩ σj = ∅ for i 6= j (this intersection is taken as sets).

Let fi, for i = 1, . . . ,m, and gj, for j = 1, . . . , n denote the standard bases with

respect to which M has the above matrix representation. Write

n∧
F = F ′ ⊕Rfσ1 ⊕ · · · ⊕Rfσr

for some free module F ′, where the notation fσj denotes fσj1 ∧ · · · ∧ fσjn. Recall that

the Eagon-Northcott complex of Definition 4.1.6 resolves the quotient ring defined by

In(M). If τ = (τ1 < · · · < τn), let ∆τ denote the determinant of the matrix formed

by columns τ1, . . . , τn of M . Then, in the iterated version of Setup 4.1.1,

K ′ = (∆τ | τ 6= σj, j = 1, . . . , r)

and Kj
0 = (∆σj).

Observe that the Eagon-Northcott differential d2 : G∗ ⊗ ∧n+1 F → ∧m F induces

homomorphisms d`0 : G∗ ⊗ ∧n+1 F → Rfσj by sending

g∗i ⊗ f{`},σj 7→ xi`fσj ,

and all other basis elements to 0. In the notation of Setup 4.1.1, this means we are

considering the family of ideals

aj = (xi` | i = 1, . . . , n, ` /∈ σj).

For each j = 1, . . . , r, aj is a complete intersection generated by n(m− n) elements,

and hence is resolved by the Koszul complex. Let

Uj =
⊕

16i6n
`/∈σj

Rei`
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with differential induced by the homomorphism mj
1 : Uj → R sending ei` 7→ xi`. If

L = (i, j) is a 2-tuple, then the notation eL will denote eij.

Remark 4.2.2. The assumption σi ∩ σj = ∅ for i 6= j implies that, if we define

K ′ := (∆τ | τ 6= σj, j = 1, . . . , r), each ∆σj satisfies aj∆σj ⊂ K ′. This is significant

since it allows us to use the resolution of Theorem 2.2.4. If the indexing sets were not

pairwise disjoint, then we would have to apply Theorem 2.1.5 iteratively and compute

the minimal presenting matrix at each step explicitly.

Another way of saying that σi ∩ σj = ∅ is that the Alexander dual ∆∨ of ∆ is

totally disconnected.

Proposition 4.2.3. Adopt notation and hypotheses of Setup 4.2.1. Define qj1 : G∗ ⊗∧n+1 F → Uj by sending g∗i ⊗ f{`},σj 7→ ei` and all other basis elements to 0. Then

the following diagram commutes:

G∗ ⊗ ∧n+1 F
qj1

yy

d′0

��

Uj
mj1

// aj,

where d′0 : G∗ ⊗ ∧n+1 F → R is the composition

G∗ ⊗ ∧n+1 F
d0 // Rfσj

// R ,

and where the second map sends fσj 7→ 1.

Proposition 4.2.4. Adopt notation and hypotheses of Setup 4.2.1. Define

qj` : D`(G∗)⊗
n+`∧

F →
∧̀
Uj, ` > 2,

by sending

g
∗(α1)
1 · · · g∗(αn)

n ⊗ fτ,σj 7→ (−1)n
∑

L∈Lα,τ
eL1 ∧ · · · ∧ eL` ,
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where Lα,τ is defined in Definition 4.1.9. All other basis elements are sent to 0. Then

the following diagram commutes:

D`(G∗)⊗
∧n+` F

qj
`
��

d` // D`−1(G∗)⊗ ∧n+`−1 F

qj
`−1
��∧` Uj

mj
`

//
∧`−1 Uj

,

where mj
` is the standard Koszul differential induced by the map mj

1 as in Setup 4.2.1.

Lemma 4.2.5. Adopt notation and hypotheses of Setup 4.2.1. Then

rankk



q1
`

...

qr`

⊗ k
 =

(
n+ `− 1

`

)
·

r∑
i=1

(−1)i+1
(
r

i

)(
m− in

`− (i− 1)n

)

Proof. For convenience, use the notation

rk` := rankk



q1
`

...

qr`

⊗ k
.

As already noted, Lα′,τ ∩ Lα,τ = ∅ for α 6= α′, so rk` 6 r
(
n+`−1

`

)(
m−n
`

)
. We want to

count all elements

g
∗(α1)
1 · · · g∗(αn)

n ⊗ fτ

such that there exists 1 6 j 6 r with

0 6= qj`(g
∗(α1)
1 · · · g∗(αn)

n ⊗ fτ ),

taking into account the fact that some elements will have nonzero image under mul-

tiple qj` . Thus, we count all elements

g
∗(α1)
1 · · · g∗(αn)

n ⊗ fτ

such that the image under at least i distinct qj` is nonzero, then apply the inclusion

exclusion principle.
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It is easy to see that this set is obtained by choosing all indexing sets τ with

|τ | = n + ` such that τ = σj1 ∪ · · · ∪ σji ∪ τ ′ for some i and τ ′ with τ ′ ∩ σjs = ∅ for

each s = 1, . . . , i. Fixing i, there are
(
r
i

)
unique choices for the union σj1 ∪ · · · ∪ σji .

For the indexing set τ ′, there are m − in total choices of indices after removing all

elements of the union σj1 ∪ · · · ∪ σji , and we are choosing ` + n − in = ` − (i − 1)n

elements. Using the inclusion-exclusion principle, the total number of indexing sets

τ as above is
r∑
i=2

(−1)i
(
r

i

)(
m− in

`− (i− 1)n

)
.

Multiplying by rankD`(G) and subtracting from r
(
n+`−1

`

)(
m−n
`

)
, we obtain the result.

Theorem 4.2.6. Adopt notation and hypotheses as in Setup 4.2.1. Define

rk` :=
(
n+ `− 1

`

)
·

r∑
i=1

(−1)i+1
(
r

i

)(
m− in

`− (i− 1)n

)
.

If τ = (τ1 < · · · < τn), let ∆τ denote the determinant of the matrix formed by columns

τ1, . . . , τn of M . Then the ideal

K ′ := (∆τ | τ 6= σj, j = 1, . . . , r)

has Betti table

0 1 · · · ` · · · n(m− n)− 1 n(m− n)

0 1 · · · · · · · · · ·
...

n− 1 ·
(
m
n

)
− r · · ·

(
n+`−2
`−1

)(
m

n+`−1

)
− rk`−1 · · · · ·

n · · · · · r ·
(
n(m−n)

`

)
− rk` · · · r · n(m− n) r

Proof. Let E• denote the Eagon-Northcott complex as in Setup 4.2.1. For ` > 1,

rankE` =
(
n+ `− 2
`− 1

)(
m

n+ `− 1

)
.
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Similarly, let Kj
• denote the Koszul complex resolving aj as in Setup 4.2.1. Then for

each j = 1, . . . , r,

rankKj
` =

(
n(m− n)

`

)
.

Combining the information above with that of Lemma 4.2.5, Corollary 2.2.6, and the

iterated version of Remark 2.1.9, we have:

dimk TorR` (R/K ′, k)n+` = rankE` − rankk



q1
`−1
...

qr`−1

⊗ k


=
(
n+ `− 2
`− 1

)(
m

n+ `− 1

)
− rk`−1,

dimk TorR` (R/K ′, k)n+`+1 =
r∑
j=1

rankKj
` − rankk



q1
`

...

qr`

⊗ k


= r ·
(
n(m− n)

`

)
− rk`.

The following definitions assume familiarity of the reader with the language of

simplicial complexes. For an introduction, see, for instance, Chapter 5 of [8]. Given

a pure (n − 1)-dimensional simplicial complex ∆, the determinantal facet ideal J∆

associated to ∆ is generated by all maximal minors det(Mτ ), where τ = (τ1 < · · · <

τn) ∈ ∆ is a facet of ∆.

Definition 4.2.7. Let ∆ be a simplicial complex. The f -vector (f0(∆), . . . , fdim ∆(∆))

is the sequence of integers with

fi(∆) = |{σ ∈ ∆ | dim σ = i}|.
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Definition 4.2.8. A clutter C on the vertex set [n] := {1, . . . , n} is a collection of

subsets of [n] such that no element of C is contained in another. Any element of C

is called a circuit. If all circuits of C have the same cardinality m, then C is called

an m-uniform clutter.

If C is an m-uniform clutter, then a clique of C is a subset σ of [n] such that each

m-subset τ of σ is a circuit of C.

Definition 4.2.9. Let M be a generic n × m matrix, with n 6 m. Given an n-

uniform clutter C on the vertex set [m], associate to each circuit τ = {j1, . . . , jn}

with j1 < · · · < jn the determinant det(Mτ ) of the submatrix formed by columns

j1, . . . , jn of M .

The ideal JC := {det(Mτ ) | τ ∈ C} is called the determinantal facet ideal associ-

ated to C.

Similarly, define the clique complex ∆(C) as the associated simplicial complex

whose facets are the circuits of C.

The following definition is introduced in [30].

Definition 4.2.10. Let φ : F → G be a homomorphism of free modules of rankm and

n, respectively. Let f1, . . . , fm and g1, . . . , gn denote bases of F and G, respectively.

Let ∆ be a simplicial complex on the vertex set [m]. Then the generalized Eagon-

Northcott complex C•(∆;φ) associated to ∆ is the subcomplex

0→ Cm−n+1 → · · · → C1 → C0

of the Eagon-Northcott complex with C0 = ∧nG and C` ⊆ D`−1(G∗) ⊗ ∧n+`−1 F for

` > 1 the submodule generated by all elements g∗(α1)
1 · · · g∗(αn)

n ⊗ fσ, where σ ∈ ∆ and

dim σ = n+ `− 2.
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Remark 4.2.11. Notice that by definition of the f -vector in Definition 4.2.7 combined

with Definition 4.2.10, for ` > 1,

rankC`(∆;φ) =
(
n+ `− 2
`− 1

)
fn+`−2(∆).

Definition 4.2.12. Let F• be a minimal graded complex of free R-modules. The

linear strand F lin
• of F• is the complex with F lin

i = degree i part of Fi, and differentials

induced by the differentials of F•.

The following result illustrates the connection between the complex of Definition

4.2.10 and resolutions of determinantal facet ideals.

Theorem 4.2.13. [30, Theorem 4.1] Let φ : F → G be a homomorphism of free

modules of rank m and n, respectively. Let C be an n-uniform clutter on the vertex

set [m] with associated simplicial complex ∆(C). Let JC denote determinantal facet

ideal associated to C, with minimal free resolution F•. Then,

F lin
i = Ci(∆(C);φ),

where F lin
• denotes the linear strand of the complex F•.

Corollary 4.2.14. Let C denote the n-uniform clutter on the vertex set [m] obtained

by removing r pairwise disjoint elements from all n-subsets of [m]. Then for ` > 1,

fn+`−2(∆(C)) =
(

m

n+ `− 1

)
−

r∑
i=1

(−1)i+1
(
r

i

)(
m− in

`− (i− 1)n

)

Proof. Let φ : F → G be a generic homomorphism of free modules of rank m and

n, respectively, and let JC denote the determinantal facet ideal associated to C with

minimal free resolution F•. By Theorem 4.2.6 with ` > 1,

rankF lin
` =

(
n+ `− 2
`− 1

)( m

n+ `− 1

)
−

r∑
i=1

(−1)i+1
(
r

i

)(
m− in

`− (i− 1)n

).
Combining this with Theorem 4.2.13 and Remark 4.2.11, the result follows.
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Chapter 5

Minimal Free Resolutions for Certain Classes

of Monomial Ideals

Let (R,m, k) denote a local ring. The computation of minimal free resolutions of

arbitrary ideals I ⊆ R is a problem that remains open, even in relatively simple

cases. In this chapter, we consider instead the class of monomial ideals; that is, ideals

minimally generated by monomials. Such ideals seem to exist at the intersection of

commutative algebra and combinatorics, and are hence the subject of a large body

of research.

In [38], Taylor constructed what is now called the Taylor resolution. This complex,

aside from being a free resolution for any monomial ideal I, also possesses many other

desirable properties. For instance, it always admits the structure of an associative

differential graded (DG) algebra, and is cellular (see [5]). In general, however, this

resolution is highly nonminimal.

Kaplansky posed the problem of describing the minimal free resolution of a mono-

mial ideal in a polynomial ring. In general, this has turned out to be a difficult

problem. A large class of ideals for which an explicit minimal free resolution can

be constructed is for so-called Borel-fixed ideals. This resolution was constructed in

[22] and is now called the Eliahou-Kervaire resolution. This resolution, similar to the

Taylor resolution, admits the structure of a DG algebra (see [37]) and is cellular (see

[33]). Likewise, a squarefree analogue of the Eliahou-Kervaire resolution is considered
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in [1], for which many of the properties of the standard Eliahou-Kervaire resolution

remain valid.

Monomial ideals are a class of ideals for which combinatorial techniques have also

proved very effective for the computation of such minimal free resolutions. One can

reduce the study of arbitrary monomial ideals to the study of squarefree monomial

ideals via polarization; once this reduction is made, there is a standard one-to-one

correspondence between squarefree monomial ideals I ⊆ k[x1, . . . , xn] and simplicial

complexes ∆ on n vertices. This perspective was introduced in [35] and is used to

deduce homological information of a monomial ideal I based on the combinatorial

data of ∆. An excellent survey of this perspective, along with a collection of the

literature on the topic, may be found in [27].

Even more recently, the problem of a general minimal free resolution for all mono-

mial ideals has been attacked in [19]. This fascinating construction relies heavily on

extensive combinatorial machinery; as a result of its generality, the complex itself is

not simple to construct, but has the advantage of being described almost entirely in

a combinatorial fashion.

In this chapter, we restrict ourselves to the case of equigenerated monomial

ideals; that is, ideals generated in a single degree. A naïve method of obtain-

ing such ideals is to start with the ideal generated by all monomials of degree d,

(x1, . . . , xn)d ⊂ k[x1, . . . , xn], and then delete some of the generators. The graded

minimal free resolution of (x1, . . . , xn)d is well known (see Proposition 5.1.3), and so

one would only need machinery for which the Betti numbers after deleting generators

could be deduced. This machinery is provided by iterated trimming complexes.

This chapter is organized as follows. Section 5.1 introduces necessary background,

conventions, and definitions. We then introduce background of Schur and Specht

modules and two standard resolutions for both powers of complete intersections and

the ideal generated by all squarefree monomials of a given degree in some polynomial
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ring. In Section 5.2 we build so-called qi-maps for the aforementioned complexes to

be used in the construction of trimming complexes.

In Sections 5.3 and 5.4, we compute explicit Betti tables for certain classes of

equigenerated monomial ideals. In particular, we produce a large class of (square-

free) equigenerated monomial ideals with linear resolution. The definition of these

ideals is phrased in terms of its so-called complementary ideal (see Definition 5.3.1.

More precisely, we impose the condition that there are no linear syzygies on the com-

plementary ideal; in this case, certain maps associated to the complexes introduced

in Section 5.1 become much simpler.

Finally, in Section 5.5, we use a result of Miller and Rahmati (see [34]) about

splitting mapping cones to compute explicit minimal free resolutions for the ideals of

Section 5.4 (see Theorem 5.5.8). In the case where these complexes are linear, the

minimal free resolution is even simpler to describe: it is constructed as the kernel of

a certain morphism of complexes (see Corollary 5.5.9 and Theorem 5.5.12).

5.1 L-Complexes And Resolutions of Squarefree Monomials

The material up until Proposition 5.1.3, along with proofs, can be found in [10]

or Section 2 of [21]. This first setup will be needed for the construction of the L-

complexes of Buchsbaum and Eisenbud.

Setup 5.1.1. Let F denote a free R-module of rank n, and S = S(F ) the symmetric

algebra on F with the standard grading. Define a complex

· · · //
∧a+1 F ⊗R Sb−1

κa+1,b−1
//
∧a F ⊗R Sb κa,b

// · · ·

where the maps κa,b are defined as the composition

a∧
F ⊗R Sb →

a−1∧
F ⊗R F ⊗R Sb

→
a−1∧

F ⊗R Sb+1
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where the first map is comultiplication in the exterior algebra and the second map is

the standard module action (where we identify F = S1(F )). Define

Lab (F ) := Kerκa,b.

Let ψ : F → R be a morphism of R-modules with im(ψ) an ideal of grade n. Let

Kosψ : ∧i F → ∧i−1 F denote the standard Koszul differential; that is, the composition
i∧
F → F ⊗R

i−1∧
F (comultiplication)

→
i−1∧

F (module action)

Definition 5.1.2. Adopt notation and hypotheses of Setup 5.1.1. Define the complex

L(ψ, b) : 0 // Ln−1
b

Kosψ⊗1
// · · · Kosψ⊗1

// L0
b

Sb(ψ)
// R // 0

where Kosψ⊗1 : Lab (F )→ La−1
b is induced by making the following diagram commute:

∧a F ⊗ Sb(F ) Kosψ⊗1
//
∧a−1 F ⊗ Sb(F )

Lab (F ) Kosψ⊗1
//

OO

La−1
b (F )

OO

Proposition 5.1.3. Let ψ : F → R be a map from a free module F of rank n such

that the image im(ψ) is a grade n ideal. Then the complex L(ψ, b) of Definition 5.1.2

is a minimal free resolution of R/ im(ψ)b

We also have (see Proposition 2.5(c) of [10])

rankR Lab (F ) =
(
n+ b− 1
a+ b

)(
a+ b− 1

a

)
.

Moreover, using the notation and language of Chapter 2 of [44], Lab (F ) is the Schur

module L(a+1,1b−1)(F ). This allows us to identify a standard basis for such modules.

Notation 5.1.4. We use the English convention for partition diagrams. That is, the

partition (3, 2, 2) corresponds to the diagram

.
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A Young tableau is standard if it is strictly increasing in both the columns and rows.

It is semistandard if it is strictly increasing in the columns and nondecreasing in the

rows.

Proposition 5.1.5. Adopt notation and hypotheses as in Setup 5.1.1. Then a basis

for Lab (F ) is represented by all Young tableaux of the form

i0 j1 · · · jb−1

i1
...

ia

with i0 < · · · < ia and i0 6 j1 6 · · · 6 jb−1.

Proof. See Proposition 2.1.4 of [44] for a more general statement.

Remark 5.1.6. Adopt notation and hypotheses of Setup 5.1.1. Let F have basis

f1, . . . , fn. In the statement of Proposition 5.1.5, we think of the tableau as repre-

senting the element

κa+1,b−1(fi1 ∧ · · · ∧ fia+1 ⊗ fj1 · · · fjb−1) ∈
a∧
F ⊗ Sb(F ).

We will often write fi1 ∧ · · · ∧ fia+1 ⊗ fj1 · · · fjb−1 ∈ Lab (F ), with the understanding

that we are identifying Lab (F ) with the cokernel of κa+2,b−2 : ∧a+2 F ⊗ Sb−2(F ) →∧a+1 F ⊗ Sb−1(F ).

Next, we give a brief introduction of Specht modules and define the complex

constructed by Galetto in [25]. The construction of Specht modules used here may

be considered the dual construction, as in 7.4 of [24]. Instead of the more standard

presentation using row tabloids, the Specht modules here are constructed as the

quotient of all column tabloids by the so-called straightening relations.

Definition 5.1.7. Let λ be a partition and k a field. A column tabloid [T ] is an

equivalence class of a tableau T modulo alternating columns.
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Let Mλ denote the formal span of all column tabloids of shape λ. Define the map

πj,k : Mλ →Mλ by sending [T ] 7→ ∑[S], where the sum is over all tableau S obtained

from T by exchanging the top k elements of the (j+ 1)st column with the k elements

in the jth column of T , while preserving the vertical order of each set of k elements.

Let µ = λt denote the transpose partition. Then the maps πj,k are defined for

1 6 j 6 λ1 − 1, 1 6 k 6 µj+1. Define the submodule Qλ ⊂ Mλ to be the subspace

spanned by all elements of the form

[T ]− πj,k([T ]),

where j, k vary as above.

Then, with notation as above, define the Specht module Sλ to be the quotient

Mλ/Qλ.

Definition 5.1.8. Let d 6 n be integers. Define

Ud,n
i = IndSnSd+i×Sn−d−i

(
S(d,1i) ⊗ S(n−d−i)

)
=
⊕
σ

σ
(
S(d,1i) ⊗ S(n−d−i)

)
where the direct sum is taken over all coset representatives for Sd+i × Sn−d−i.

Definition 5.1.9. Let R = k[x1, . . . , xn] where k is a field. Let 1 6 d 6 n and

1 6 i 6 n− d+ 1. Define

F d,n
i := Ud,n

i−1 ⊗k R(−d− i+ 1),

where Ud,n
i is as in Definition 5.1.8. Given any Tableau T , define the differential

∂d,ni ([T ]) :=
i∑

j=0
(−1)i−jxaj [T\aj],

where

T :=
a1 b1 · · · bd−1

a2

...

ai

,
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and i > 1. When i = 1, define

∂d,n1

 a1 b1 · · · bd−1
 = xa1xb1 · · · xbd−1 .

Let F d,n
• denote the complex

0 // F d,n
n−d+1

∂d,n
n−d+1

// · · ·
∂d,n2 // F d,n

1
∂d,n1 // R .

Theorem 5.1.10 ([25], Theorem 4.11). Let n and d be integers with 1 6 d 6 n.

Then the complex F d,n
• of Definition 5.1.9 is a Sn-equivariant minimal free resolution

of quotient ring defined by the ideal generated by all squarefree monomials of degree

d in R.

Notation 5.1.11. Adopt notation as in Definition 5.1.9. To the tabloid [T ] we will

associate a formal basis element

[T ]←→ fa1 ∧ fa2 ∧ · · · ∧ fai ⊗ fb1 · fb2 · · · fbd−1 ,

where the notation is meant to mimic the notation used for the modules Lid. This

should cause no confusion, since the straightening relations/tabloid properties are

directly compatible with the straightening relations for Lid and the exterior/symmetric

algebra relations.

5.2 qi Maps for Certain Schur and Specht Modules

In this section, we construct the maps of Proposition 2.2.3 in the case where the

relevant modules are Schur and Specht modules, and they are being mapped to a

Koszul complex. These maps are essential for the rest of the chapter, as they are the

building blocks employed for the iterated trimming complex construction. At the end

of this section, we also take the opportunity to compute certain colon ideals; these

colons will be used in later sections in order to count rank and deduce higher strands

appearing in the minimal free resolutions of the ideals of interest.

67



Notation 5.2.1. Let R be a commutative ring. Let F be a free R-module of rank n

with basis f1, . . . , fn and let `, b be integers. Fix indexing sets J = (j1, . . . , j`) with

j1 < · · · < j` and α = (α1, . . . , αn) with αi > 0 for each i = 1, . . . , n, |α| = b.

The notation fJ denotes fj1 ∧· · ·∧fj` ∈
∧` F , the notation fJ denotes fj1 · · · fj` ∈

S`(F ), and the notation fα denotes fα1
1 · · · fαnn ∈ Sb(F ).

Definition 5.2.2. Let R be a commutative ring. Let F be a free R-module of rank

n with basis f1, . . . , fn and let `, b be integers. Fix indexing sets J = (j1, . . . , j`) with

j1 < · · · < j` and α = (α1, . . . , αn) with αi > 0 for each i = 1, . . . , n, |α| = b. Define

the maps φJ,αi : ∧i F ⊗ Sb(F )→ ∧i F via

φJ,αi (fI ⊗ fβ) =


fI if I ⊆ J and β = α

0 otherwise

Observation 5.2.3. Adopt notation and hypotheses as in Definition 5.2.2. Let ψ :

F → R be a homomorphism of R-modules, and Kosψ : ∧i F → ∧i−1 F the induced

Koszul differential. Then the following diagram commutes:

∧i F ⊗ Sb(F )
φJ,αi
��

Kosψ⊗1
//
∧i−1 F ⊗ Sb(F )

φJ,αi−1
��∧i F Kosψ //

∧i−1 F.

Moreover, for all i > 1, φJ,αi induces the commutative diagram

Lib(F )
φJ,αi
��

Kosψ⊗1
// Li−1
b (F )

φJ,αi−1
��∧i F Kosψ // ∧i−1 F,

where Lib(F ) is as in Setup 5.1.1. More precisely, this map is realized as:

φJ,αi (κi+1,b−1(fI ⊗ fβ)) =


sgn(i)fI\i if i ∈ I, β + εi = α

0 otherwise

68



Definition 5.2.4. Let R be a commutative ring. Let F be a free R-module of rank

m with basis f1, . . . , fm and let `, d be integers. Fix indexing sets J = (j1, . . . , j`)

with j1 < · · · < j` and I = (i1, . . . , id) with i1 < · · · < id. Let ψ : F → R be an

R-module homomorphism and

T :=
a0 b1 · · · bd−1

a1

...

a`

a standard tableau with a0 < · · · < a` and b1 < · · · < bd−1. Define maps

ψJ,I` : S(d,1`) →
∧̀
F

on the equivalence class of the column tabloid [T ] ∈ S(d,1`) by setting

ψJ,I`
(
[T ]
)

:=



sgn(ai)f{a0,...,âi,...,a`} if I = {b1, . . . , bd−1} ∪ {ai} for some 0 6 i 6 `

and {a0, . . . , âi, . . . , a`} ⊆ J,

0 otherwise.

Observe that this is well defined since the above definition is compatible with the

shuffling relations on S(d,1`). Moreover, extending by linearity, this induces a map

φJ,I` : F d,n
` →

∧̀
U

making the following diagram commute:

F d,n
`

φJ,α
`
��

∂d,n
` // F d,n

`−1

φJ,α
`−1
��∧` F Kosψ // ∧`−1 F,

where F d,n
` and ∂d,n` are as in Definition 5.1.9 and Kosψ denotes the induced Koszul

differential.
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Proposition 5.2.5. Adopt notation and hypotheses as in Setup 2.2.1, and assume

that di0(F2) = aie
i
0. Then the ideals ai ⊆ R do not depend on the choice of differential

d2.

Proof. Assume for simplicity that m = 1. Then we will prove a slightly stronger

statement; namely, a1 = (K ′ : K1
0). The containment a1 ⊆ (K ′ : K1

0) is trivial, so let

r ∈ (K ′ : K1
0). Assume rankF ′1 = f ′ and let e1, . . . , ef ′ denote a basis for F ′1.

By definition, there exist elements ri ∈ R such that

r1d1(e1) + · · ·+ rf ′d1(ef ′) = rd1(e1
0),

=⇒ d1(r1e1 + · · ·+ rf ′ef ′ − re1
0) = 0.

However, by the assumption on a1, this implies r ∈ a1 as desired.

Notation 5.2.6. Let R = k[x1, . . . , xn], where k is any field. If α = (α1, . . . , αn),

then the notation xα denotes xα1
1 · · ·xαnn . Given such an α, define |α| := α1 + · · ·+αn.

If J = {j1 < · · · < jn}, then the notation xJ will denote xj1 · · · xjn. Given such a J ,

define |J | = n, the cardinality of J .

The notation εi will denote the vector with a 1 in the ith entry and 0’s elsewhere.

The following Propositions are immediate.

Proposition 5.2.7. Let R = k[x1, . . . , xn] where k is any field and let α = (α1, . . . , αn)

be an exponent vector with |α| = d. If K ′ := (xβ | |β| = d, β 6= α), then

(K ′ : xα) =


(x1, . . . , x̂i, . . . , xn) if α = dεi for some 1 6 i 6 n

(x1, . . . , xn) otherwise.

Proposition 5.2.8. Let R = k[x1, . . . , xn] where k is any field and let J = {j1 <

· · · < jd}. If K ′ := (xI | |I| = d, I 6= J), then

(K ′ : xJ) = (xi | i /∈ J).
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5.3 qi Maps for the Complexes L(ψ, b) and F n,m
•

We can now use the maps constructed in Section 5.2 to find the Betti tables for

resolving certain subsets of the standard generating sets for powers of the maximal

ideal and all squarefree monomials of a given degree. Our first goal is to compute

the ranks of the maps φJ,α` of Definition 5.2.2 and ψJ,I` of Definition 5.1.7. We begin

with some definitions and notation related to monomial ideals which will be in play

for the rest of the chapter.

Definition 5.3.1. Let R = k[x1, . . . , xn] be a standard graded polynomial ring over

a field k. Let K denote an equigenerated monomial ideal with generators in degree

d. Define

G(K) := unique minimal generating set of K consisting of monic monomials.

Given a monomial ideal K, define the (squarefree) complementary ideal K to be the

ideal with minimal generating set:

G(K) =


{degree d squarefree monomials}\G(K) if K squarefree,

{degree d monomials}\G(K) otherwise.

The following setup will be used for constructing the Betti table/minimal free

resolution when the monomial ideals of interest are not squarefree.

Setup 5.3.2. Let R = k[x1, . . . , xn] where k is a field and let F = ⊕n
i=1Rei be a free

module of rank n with map ψ : F → R sending ei 7→ xi. Let d > 1 denote any integer

and L(ψ, d) the complex of Definition 5.1.2. Fix an exponent vector α = (α1, . . . , αn)

with |α| = d. Let

U =


⊕

j 6=iRej if α = dεi

F otherwise,

with map ψ : U → R defined by sending ej 7→ xj.

71



Let φI,α` : L`d(F )→ ∧` U for 1 6 ` 6 n be the maps of Definition 5.2.2, where

I =


[n]\{i} if α = dεi

[n] otherwise.

The following notation will be convenient in many of the ensuing computations:

Notation 5.3.3. Adopt notation and hypotheses of Setup 5.3.2. Let Supp(α) = {i |

αi > 0} and define

nα := | Supp(α)|

Proposition 5.3.4. Adopt notation and hypotheses of Setup 5.3.2 with α = dεi for

some 1 6 i 6 n. The maps φI,α` : L`d(F )→ ∧` U are surjective for all 1 6 ` 6 n− 1.

In particular,

rank(φI,α` ⊗ k) =
(
n− 1
`

)

Proof. Let J ⊂ I with J = (j1, . . . , j`). It suffices to show that eJ is in the image of

φI,dεi` for any choice of J . Order the set J ∪ {i} so that

j1 < · · · < jk < i < jk+1 < · · · < j`.

This is possible since i /∈ J by construction of the free module U . Then, by definition,

φI,dεi` (eJ∪{i} ⊗ ed−1
i ) = sgn(i)eJ .

Corollary 5.3.5. Adopt notation and hypotheses of Setup 5.3.2 with α = dεi for

some 1 6 i 6 n. Let K ′ be an equigenerated momomial ideal with K ′ = (xdi ). Then,

R/K ′ has Betti table

0 1 · · · ` · · · n

0 1 · · · · · · · · ·
... · · · · · · · · · ·

d− 1 ·
(
n+d−1

d

)
− 1 · · ·

(
n+d−1
`+d

)(
d+`−2
`−1

)
−
(
n−1
`−1

)
· · ·

(
n+d−2
n−1

)
− 1
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In particular, R/K ′ has projective dimension n with linear resolution and defines a

ring of type
(
n+d−2
n−1

)
− 1.

Proposition 5.3.6. Adopt notation and hypotheses of Setup 5.3.2. Then the maps

φI,α` : L`d(F )→ ∧` U are such that

rank(φI,α` ⊗ k) =
(
n

`

)
−
(
n− nα
`− nα

)
,

for all 1 6 ` 6 n.

Proof. We shall enumerate a subset of bases whose images under φI,α` form a linearly

independent set, then show that the image of any other standard basis element lies in

the image spanned by this set. Counting the size of this set will then yield the rank.

To this end, enumerate the set {i | αi > 0} = {k1, . . . , knα}, where k1 < · · · < knα .

Consider the set S consisting of all standard basis elements of the form

e{k1,...,ks}∪J ′ ⊗ eα−εks ,

in Ld` (F ) with s 6 nα, |J ′| = `− s+ 1. By definition,

φI,α` (e{k1,...,ks}∪J ′ ⊗ eα−εks ) =


sgn(ks)eJ ′ if s = 1

sgn(ks)e{k1,...,ks−1}∪J ′ otherwise.

The collection of all basis elements as above, where 1 6 s 6 nα, is evidently a linearly

independent set since it is an irredundant subset of a basis for ∧` U .
Let 1 6 r 6 nα and consider any standard basis element of the form e{kr}∪J ′ ⊗

eα−εkr . Let t := min{s | ks /∈ J}. Assume first that t > 1; by definition of t,

{k1, . . . , kt−1} ⊆ J ′, so we may write J ′ = {k1, . . . , kt−1} ∪ J ′′ for some J ′′. Then,

φI,α` (sgn(kr)e{kr}∪J ′ ⊗ eα−εkr ) = φI,α` (− sgn(kt)e{k1,...,kt}∪J ′′ ⊗ eα−εkt ),

and the element on the right is the image of an element of S. Likewise, if t = 1, then

φI,α` (sgn(kr)e{kr}∪J ′ ⊗ eα−εkr ) = φI,α` (− sgn(k1)e{k1}∪J ′ ⊗ eα−εk1 ),
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and again the element on the right is the image of an element of S. Thus, counting

the cardinality of S, we see that this is counting all possible indexing sets J ′ with

|J ′| = ` − s + 1 and J ′ ∩ {k1, . . . , ks} = ∅, for 1 6 s 6 nα. It is a trivial counting

exercise to see

|S| =
nα∑
i=1

(
n− i

`− i+ 1

)
=

nα∑
i=1

(
n− i

n− `− 1

)
,

and one can moreover check that
nα∑
i=1

(
n− i

n− `− 1

)
=
(
n

`

)
−
(
n− nα
`− nα

)
.

The following is an immediate result of Proposition 5.3.6 combined with Corollary

2.2.6.

Corollary 5.3.7. Adopt notation and hypotheses as in Setup 5.3.2. Let K ′ be an

equigenerated momomial ideal with K ′ = (xα). Then, R/K ′ has Betti table

0 1 · · · ` · · · n

0 1 · · · · · · · · ·
... · · · · · · · · · ·

d− 1 ·
(
n+d−1

d

)
− 1 · · ·

(
n+d−1
`+d

)(
d+`−2
`−1

)
−
(
n
`−1

)
+
(
n−nα
`−1−nα

)
· · ·

(
n+d−2
n−1

)
− nα

d · · · · ·
(
n−nα
`−nα

)
· · · 1

The following result in the case of an Artinian ideal is a statement about the

non-cyclicity of the associated inverse system; this behavior is highly dependent on

the chosen generating set. For instance, choosing instead the generating set to be the

maximal minors of the associated Sylvester matrix for (x1, . . . , xn)2, it is not hard

to see that removing the generator x1xn will yield a grade n Gorenstein ideal for all

n > 2.

Corollary 5.3.8. Adopt notation and hypotheses of Setup 5.3.2. Let K ′ be an

equigenerated momomial ideal generated in degree d > 2 with K ′ = (xα). Then,

R/K ′ is Gorenstein if and only if n = d = 2, in which case K ′ = (x2
1, x

2
2).
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Proof. By Gorenstein duality, it is immediate that if K ′ is Gorenstein, then d = 2.

This implies that for any choice of α, nα 6 2. Moreover, using the Betti table of

Corollary 5.3.7, K ′ defines a ring of type n− nα + 1 > n− 1, whence n = 2.

Next, we adopt the following setup. This setup is the squarefree analog of Setup

5.3.2, and will instead be used to compute the Betti table/minimal free resolution

when the ideals of interest are squarefree.

Setup 5.3.9. Let R = k[x1, . . . , xn] where k is a field and let F d,n
• denote the complex

of Definition 5.1.9. Fix an indexing set I = (i1, . . . , id) and let U = ⊕
j /∈I Rej with

map ψ : U → R defined by sending ej 7→ xj.

Let ψI,I
c

` : F d,n
` → ∧` U for 1 6 ` 6 n− d be the maps of Definition 5.2.4, where

Ic = [n]\I.

Proposition 5.3.10. Adopt notation and hypotheses as in Setup 5.3.9. The maps

ψI,I
c

` : F d,n
` → ∧` U are surjective for all 1 6 ` 6 n− d. In particular,

rank(ψI,I
c

` ⊗ k) =
(
n− d
`

)

Proof. Let J ⊂ Ic be any indexing set with J = (j1, . . . , j`). It suffices to show that

the basis element eJ ∈
∧` U is in the image of ψI,I

c

` .

Order the set J ∪ {i1}, so that

j1 < · · · < jk < i1 < jk+1 < · · · < j`

for some k < `. Then, observe that the hook tableau with J ∪{i1} ordered appropri-

ately in the first column and (i2, . . . , id) along the first row has image sgn(i1)eJ .
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Corollary 5.3.11. Adopt notation and hypotheses as in Setup 5.3.9. Let K ′ be a

squarefree equigenerated momomial ideal with K ′ = (xI). Then, R/K ′

0 1 · · · ` · · · n− d+ 1

0 1 · · · · · · · · ·
... · · · · · · · · · ·

d− 1 ·
(
n
d

)
− 1 · · ·

(
d+`−2
`−1

)(
n

d+`−1

)
−
(
n−d
`−1

)
· · ·

(
n−1
n−d

)
− 1

In particular, R/K ′ has projective dimension n − d + 1 with linear resolution and

defines a ring of type
(
n−1
n−d

)
− 1.

5.4 Betti Tables for Certain Classes of Equigenerated Monomial

Ideals

This section is an iterated version of Section 5.3; that is, we consider the iterated

trimming complex associated to the maps constructed in the previous section. It turns

out that under sufficient hypotheses, these maps stay well-behvaed when removing

multiple generators at a time. The following setup is similar to Setup 5.3.2, but with

more data to keep track of:

Setup 5.4.1. Let R = k[x1, . . . , xn] where k is a field and let F = ⊕n
i=1Rei be a free

module of rank n with map ψ : F → R sending ei 7→ xi. Let d > 1 denote any integer

and L(ψ, d) the complex of Definition 5.1.2. Fix exponent vectors αs = (αs1, . . . , αsn)

with |αs| = d for 1 6 s 6 r. Assume that for all s 6= t, deg lcm(xαs , xαt) > d+ 2. Let

Us =


⊕

j 6=iRej if αs = dεi

F otherwise,

with map ψ : Us → R induced by sending ej 7→ xj.

Let φIs,α
s

` : L`d(F )→ ∧` U for 1 6 ` 6 n be the maps of Definition 5.2.2, where

Is =


[n]\{i} if αs = dεi

[n] otherwise.
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Observation 5.4.2. Adopt notation and hypotheses as in Setup 5.4.1. Let K ′ be an

equigenerated momomial ideal with K ′ = (xα1
, . . . , xα

r) and let

as :=


(x1, . . . , x̂i, . . . , xn) if αs = dεi

(x1, . . . , xn) otherwise
.

Then asx
αs ⊆ K ′ for all 1 6 s 6 r.

Proof. Suppose for sake of contradiction that the containment atxα
t 6⊂ K ′ for some

1 6 t 6 r. Let

Kt := (xβ | |β| = d, β 6= αt},

and observe that (Kt : xαt) = at by Proposition 5.2.7. This means that for some

s 6= t, xi · xα
s = xj · xα

t , contradicting the LCM hypothesis on each αs.

Remark 5.4.3. In the notation of the statement of Observation 5.4.2, this is saying

that the construction of Theorem 2.2.4 applied to the ideals as, for 1 6 s 6 r, yields

a resolution of R/K ′.

The following Proposition makes precise the previously mentioned fact that the

maps of Definition 5.2.2 are “well-behaved" when removing multiple generators.

Proposition 5.4.4. Adopt notation and hypotheses as in Setup 5.4.1. Enumerate the

set Supp(α) = {ks1, . . . , ksnαs} with k
s
1 < · · · < ksnαs . Then for all t 6= s and p 6 nαs,

φI
t,αt(e{ks1,...,ksp}∪J ′ ⊗ e

αs−εksp ) = 0.

Proof. Suppose for sake of contradiction that there exists some t 6= s and 1 6 p 6 nαs

such that

φI
t,αt(e{ks1,...,ksp}∪J ′ ⊗ e

αs−εksp ) 6= 0.

This is possible if and only if there exists q ∈ {ks1, . . . , ksp} ∪ J ′ such that αt =

αs − εksp + εq. This implies that αt − αs = εq − εksp , which is a clear contradiction to

the LCM hypothesis on each αs.
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Corollary 5.4.5. Adopt notation and hypotheses as in Setup 5.4.1. Then,

rank




φI1,α1

`

φI2,α2

`

...

φIr,α
r

`


⊗ k

 =
r∑
s=1

rank(φIs,α
s

` ⊗ k).

Corollary 5.4.6. Adopt notation and hypotheses as in Setup 5.4.1. Define rk` :=∑r
s=1 rank(φIs,α

s

` ⊗k). LetK ′ be an equigenerated momomial ideal with K ′ = (xα1
, . . . , xα

r).

Then R/K ′ has Betti table

0 1 · · · ` · · · n

0 1 · · · · · · · · ·
... · · · · · · · · · ·

d− 1 ·
(
n+d−1

d

)
− r · · ·

(
n+d−1
`+d

)(
d+`−2
`−1

)
− rk`−1 · · ·

(
n+d−2
n−1

)
−∑r

s=1 nαs

d · · · · · ∑r
s=1 rank∧` Us − rk` · · · r

As a special case of the above, we can compute the Betti table of an equigenerated

monomial ideal whose complementary ideal consists only of pure powers.

Corollary 5.4.7. Adopt notation and hypotheses as in Setup 5.4.1 and let B = {k1 <

· · · < kr}. Let K ′ be an equigenerated momomial ideal with K ′ = (xdk1 , . . . , x
d
kr). Then

R/K ′ has Betti table

0 1 · · · ` · · · n− d+ 1

0 1 · · · · · · · · ·

. . . · · · · · · · · · ·

d− 1 ·
(
n+d−1

d

)
− r · · ·

(
n+d−1
`+d

)(
d+`−2
`−1

)
− r

(
n−1
`−1

)
· · ·

(
n+d−2
n−1

)
− r

In particular, R/K ′ has projective dimension n with linear resolution and defines a

ring of type
(
n+d−2
n−1

)
− r.

The rest of this section is just the squarefree analog of the first half of this section.

It turns out that the squarefree case is, in some sense, much simpler than the non-

squarefree case. We will see that these ideals always have a linear minimal free
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resolution. We will first need to adopt the following setup, which the reader should

take as the squarefree analog of Setup 5.4.1.

Setup 5.4.8. Let R = k[x1, . . . , xn] where k is a field and let F d,n
• denote the complex

of Definition 5.1.9. Fix indexing sets Ij = (ij1, . . . , ijd) for 1 6 j 6 r with the property

that |Ij ∩ Ii| 6 d− 2 for all i 6= j. Let Uj = ⊕
`/∈Ij Re` with map ψ : Uj → R defined

by sending e` 7→ x`.

Let ψIj ,I
c
j

` : F d,n
` → ∧` Uj for 1 6 ` 6 n− d be the maps of Definition 5.2.4, where

Icj = [n]\Ij.

Observe that the proof of the following is essentially identical to that of Observa-

tion 5.4.2, where we employ Proposition 5.2.8 instead.

Observation 5.4.9. Adopt notation and hypotheses as in Setup 5.4.8. Let K ′ be a

squarefree equigenerated momomial ideal with K ′ = (xI1 , . . . , xIr) and let

as := (xj | j /∈ Is) (1 6 s 6 r).

Then asx
Is ⊆ K ′ for all 1 6 s 6 r.

In a similar manner, the proof of the following Proposition is essentially identical

to that of Proposition 5.4.4.

Proposition 5.4.10. Adopt notation and hypotheses as in Setup 5.4.8. Then for all

t 6= s and p 6 d,

ψIt,I
c
t (e{i1s,...,ips}∪J ′ ⊗ eIs−εips ) = 0.

Corollary 5.4.11. Adopt notation and hypotheses as in Setup 5.4.8. Then,

rank




ψ
I1,Ic1
`

ψ
I2,Ic2
`

...

ψ
Ir,Icr
`


⊗ k

 =
r∑
s=1

rank(ψIs,I
c
s

` ⊗ k).
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Corollary 5.4.12. Adopt notation and hypotheses as in Setup 5.4.8. Let K ′ be a

squarefree equigenerated momomial ideal with K ′ = (xI1 , . . . , xIr). Then R/K ′ has

Betti table

0 1 · · · ` · · · n− d+ 1

0 1 · · · · · · · · ·
... · · · · · · · · · ·

d− 1 ·
(
n
d

)
− r · · ·

(
d+`−2
`−1

)(
n

d+`−1

)
− r

(
n−d
`−1

)
· · ·

(
n−1
n−d

)
− r

In particular, R/K ′ has projective dimension n − d + 1 with linear resolution and

defines a ring of type
(
n−1
n−d

)
− r.

5.5 Explicit Minimal Free Resolutions

In this section we produce the explicit minimal free resolutions of all of the ideals

considered in Section 5.4. In particular, for the cases where the resolutions were lin-

ear, these resolutions may be obtained by simply taking the kernel of the morphisms

of complexes constructed in the previous sections. The proofs of these results are

based on the following more general theorem, which describes how to extract “min-

imal" summands of mapping cones of complexes when the associated morphism of

complexes is split. This first result is a specialized version of a result by Miller and

Rahmati (see [34, Proposition 2.1])

Theorem 5.5.1. Consider the morphism of complexes

· · ·
dk+1

// Fk

qk
��

dk // · · · d2 // F1

q1
��

d1 // F0

d0
��

· · ·
mk+1

// Gk
mk // · · · m2 // G1

m1 // R.

(5.5.1)

For each k > 0, let

Ak := Ker qk, Ck := Coker qk, and Bn := im qk,
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and assume that the short exact sequences

0→ Ak → Fk → Bk → 0, and

0→ Bk → Gk → Ck → 0

are split, with C1 = 0. Then the mapping cone of 5.5.1 is the direct sum of a split

exact complex and the following complex:

· · · →

Ak−1

⊕

Ck

`k−→

Ak−2

⊕

Ck−1

`k−1−−→ · · · `3−−→

A1

⊕

C2

`2−−→ F0
d0−−→ R,

where

`k :=

dk−1 Θk

0 −mk

 , (k > 3),

`2 :=
(
d1 Θ2

)
,

and Θk : Ck → Ak−2 is the composition

Ck
inclusion−−−−−→ Gk

mk−−→ Gk−1

projection−−−−−→ Bk−1

inclusion−−−−−→ Fk−1

dk−1−−→ Fk−2

projection−−−−−→ Ak−2

Remark 5.5.2. In the statement of Theorem 5.5.1, it is understood that the differen-

tials dk andmk appearing in the matrix form of `k are the maps induced by restricting

to the subcomplex/quotient complex A• and C•, respectively.

In the next few definitions/results, we will be constructing the constituent building

blocks of the minimal free resolution of the ideals of interest in Theorem 5.5.8.

81



Definition 5.5.3. Adopt notation and hypotheses as in Setup 5.4.1, and let B =

{α1, . . . , αr}. For each s, write Supp(αs) = {ks1 < · · · < ksnαs}. For each i > 0, define

the free submodule Li,Bd (F ) ⊆ Lid(F ) to be generated by the following collection of

basis elements, denoted S (all terms appearing are assumed to be standard basis

elements as in Remark 5.1.6):

eJ ⊗ eβ if β 6= αs − εksi for some i,

eJ ⊗ e
α−εksp if ksp /∈ J,

sgn(ksp)eJ∪{ksp} ⊗ e
α−εksp + sgn(kst )e{ks1,...,kst }∪J ′ ⊗ e

α−εks
t if J = {ks1, . . . , kst−1} ∪ J ′

for some J ′, kst /∈ J

for all 1 6 s 6 r, 1 6 p 6 nαs , where J = (j0 < · · · < ji).

Remark 5.5.4. In the case that αs = dεis for some indicies i1 < · · · < ir, the sub-

modules Li,Bd as in Definition 5.5.3 are obtained by simply deleting all standard basis

elements of the form

e{is}∪J ⊗ ed−1
is (is /∈ J).

Observation 5.5.5. Let Li,Bd (F ) denote the submodule of Definition 5.5.3. Then

the Koszul differential induces a map

Li,Bd (F )→ Li−1,B
d (F ).

Moreover, if rki is as in the statement of Corollary 5.4.6, then

rankLi,Bd (F ) = rankLid(F )− rki

=
(
n+ d− 1
i+ d

)(
d+ i− 1

i

)
− rki.
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Proof. The first observation is clear by noticing that S as in Definition 5.5.3 generates

Ker



φI1,α1

i

φI2,α2

i

...

φIr,α
r

i


, where each φIs,α

s

i is as in Definition 5.2.2. The fact that this generates

the kernel follows by the proof of Proposition 5.3.6. For the rank count, observe that

the count for each omitted basis element is precisely the count done in the proof

of Proposition 5.3.6. Indeed, the basis elements omitted are precisely the elements

whose images form a basis for the image of the qsi maps, for each 1 6 s 6 r.

Definition 5.5.6. Let α := (α1, . . . , αn) be an exponent vector. Define Supp(α) :=

{i | αi > 0}. If nα > 1, define Kαc

• to be the complex induced by the map

ψ : Kα
1 :=

⊕
i/∈Supp(α)

Rei → R

ei 7→ xi.

If nα = 1, then Kα
• is defined to be the 0 complex.

It turns out that the following result tells us that the top linear strand of the

minimal free resolution quotient defined by the ideals of Theorem 5.5.8 will always

be a direct sum of shifted Koszul complexes.

Proposition 5.5.7. Adopt notation and hypotheses as in Setup 5.3.2. Then there is

an isomorphism of complexes

Φ• : CokerφI,α• → Kα
• [−nα]

Proof. If nα = 1, then the claim is true. Assume that nα > 1. Observe that CokerφI,αi

is free on all basis elements of the form

{eSupp(α)∪J | Supp(α) ∩ J = ∅, |J | = i− nα}.
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Consider the map

Φi : Cokerφαi → Kα
i−nα

e{k1,...,knα}∪J 7→ sgn(J)eJ .

This map is clearly an isomorphism, whence it remains to show that Φ• is a morphism

of complexes. For i > 1, consider the diagram

Cokerφαi
Φi
��

di // Cokerφαi−1

Φi−1
��

Kα
i−nα

Kos // Kα
i−1−nα

(5.5.1)

Going clockwise around 5.5.1, one has:

e{k1,...,knα}∪J
di7−→

nα∑
i=1

sgn(ki)xkie{k1,...,k̂i,...knα}∪J

+
∑
j∈J

sgn(j ∈ Supp(α) ∪ J)xje{k1,...,knα}∪J\j

=
∑
j∈J

sgn(j ∈ Supp(α) ∪ J)xje{k1,...,knα}∪J\j

Φi−17−−−→
∑
j∈J

sgn(j ∈ Supp(α) ∪ J) sgn(J\j ⊆ Supp(α))xjeJ\j.

where the equality in the penultimate line follows by noticing that imφI,αi is free on

basis elements of the form

{eJ | Supp(α) 6⊂ J, |J | = i}.

Moving counterclockwise around 5.5.1:

e{k1,...,knα}∪J
Φi7−→ sgn(J)eJ
Kos7−−→

∑
j∈J

sgn(J ⊂ Supp(α)) sgn(j ∈ J)xjeJ\j.

To conclude, observe that

sgn(j ∈ Supp(α) ∪ J) sgn(J\j ⊆ Supp(α)) = sgn(J ⊂ Supp(α)) sgn(j ∈ J).
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Combining these building blocks with Theorem 5.5.1, one obtains:

Theorem 5.5.8. Adopt notation and hypotheses as in Setup 5.4.1. Let K ′ be an

equigenerated momomial ideal with K ′ = (xα1
, . . . , xα

r). Then the minimal free reso-

lution of R/K ′ is given by the complex

Fi := Li−1,B
d ⊕

( |B|⊕
j=1

Kαj

i−n
αj

)
(i > 0),

F0 = R,

with differentials

`i :=

Kos
ψ ⊗ 1 Θi

0 −⊕|B|j=1 Kosψ

 , (i > 2),

`2 :=
(
Kosψ ⊗ 1 Θi

)
,

`1 := S(ψ)|L0,B
d

where Θp restricted to each direct summand Kαs,c

p−nαs is the map:

Θi : Kαj,c

p−nαs → Lp−2,B
d

eα
j

J 7→ sgn(J)
nαs∑
i=1

sgn(ksi )x2
ksi
e{ks1,...,k̂si ,...,ksnαs }∪J

⊗ eα
s−εks

i

+ sgn(J)
∑
i<j

xksi xksj

(
sgn(ksj )e{ks1,...,k̂sj ,...,ksnαs }∪J

⊗ eα
s−εks

i

+ sgn(ksi )e{ks1,...,k̂si ,...,ksnαs }∪J
⊗ eα

s−εks
j

)

Proof. Using Theorem 5.5.1, the proof comes down to computing the map Θi explic-

itly. For ease of notation/computation, assume that |B| = 1. It will be understood

that in the case |B| > 1, this computation yields the restriction of Θp to each direct

summand.

Let p > 2; one computes the image of an arbitrary eJ ∈ Kαc

p−nα under Θp:

eJ
Prop 5.5.77−−−−−−→ sgn(J)e{k1,...,knα}∪J
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Kosψ7−−−→ sgn(J)
∑
j∈J

sgn(j)xje{k1,...,kt}∪J

+ sgn(J)
nα∑
i=1

sgn(ki)xkie{k1,...,k̂i,...,knα}∪J

projection7−−−−−→ sgn(J)
nα∑
i=1

sgn(ki)xkie{k1,...,k̂i,...,knα}∪J

inclusion7−−−−−→ sgn(J)
nα∑
i=1

xkie{k1,...,knα}∪J ⊗ e
α−εki

Kosψ⊗17−−−−→ sgn(J)
nα∑
i=1

sgn(j ∈ J)xkixje{k1,...,knα}∪J\j ⊗ e
α−εki

+ sgn(J)
nα∑
i,j=1

sgn(kj)xkixkje{k1,...,k̂j ,...,knα}∪J
⊗ eα−εki

projection7−−−−−→ sgn(J)
nα∑
i,j=1

sgn(kj)xkixkje{k1,...,k̂j ,...,knα}∪J
⊗ eα−εki

= sgn(J)
nα∑
i=1

sgn(ki)x2
ki
e{k1,...,k̂i,...,knα}∪J

⊗ eα−εki

+ sgn(J)
∑
i<j

xkixkj
(

sgn(kj)e{k1,...,k̂j ,...,knα}∪J
⊗ eα−εki

+ sgn(ki)e{k1,...,k̂i,...,knα}∪J
⊗ eα−εkj

)
.

The final equality of the above is written in terms of the basis elements of Lp−2,B
d

As a Corollary, we obtain the previously mentioned fact that the minimal free

resolution in the case that the complementary ideal consists of pure powers is obtained

by simply restricting to the subcomplex A• (with notation as in Theorem 5.5.1).

Corollary 5.5.9. Adopt notation and hypotheses as in Setup 5.4.1, with αs = dεks

for 1 6 s 6 r 6 n, where B = {dεk1 < · · · < dεkr}. Let K ′ be an equigenerated

momomial ideal with K ′ = (xdk1 , . . . , x
d
kr). Then the minimal free resolution of R/K ′

is given by the complex

LB(ψ, d) : 0 // Ln−1,B
d

Kosψ⊗1
// · · · Kosψ⊗1

// L0,B
d

Sd(ψ)
// R // 0.
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Proof. This follows immediately by Theorem 5.5.1, since Ck = 0 for all k by Propo-

sition 5.3.4.

Next, we define the necessary building blocks in the squarefree case. This reso-

lution will be much simpler to describe, since we have already seen that these ideals

have linear minimal free resolutions. This implies that, as in Corollary 5.5.9, the

minimal free resolution is obtained by taking the kernel of an appropriate morphism

of complexes.

Definition 5.5.10. Adopt notation and hypotheses as in Setup 5.4.8, with i =

{I1, . . . , Ir}. For each i, define the free submodule F d,n,i
i ⊆ F d,n

i to be generated

by the following collections of basis elements, denoted T (all terms appearing are as-

sumed to be standard tableau with strictly increasing columns and rows; recall that

Notation 5.1.11 is in play here):

fJ ⊗ fL if J 6= Is\{ips} for any p, s,

fJ ⊗ f Is−εips if ips /∈ J for any p, s,

sgn(ips)fJ∪{ips} ⊗ f
Is−εips + sgn(i1s)fJ∪i1s ⊗ f Is−εi1s where Is ∩ J = ∅,

where J = (j0 < . . . < ji−1), 1 6 s 6 r, and 1 < p 6 d.

Observation 5.5.11. Adopt notation and hypotheses as in Setup 5.4.8, with i =

{I1, . . . , Ir}. Let F d,n,i
i denote the submodule of Definition 5.5.10. Then the differen-

tial ∂d,ni : F d,n
i → F d,n

i−1 induces a differential

∂d,ni : F d,n,i
i → F d,n,i

i−1 .
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Moreover,

rankF d,n,i
i = rankF d,n

i − r ·
(
n− d
i− 1

)

=
(

n

d+ i− 1

)(
d+ i− 2
i− 1

)
− r

(
n− d
i− 1

)
.

Proof. The first claim follows after noting that F d,n,I
i generates Ker



ψ
I1,Ic1
`

ψ
I2,Ic2
`

...

ψ
Ir,Icr
`


, where

each ψ
Is,Ics
` is as in Definition 5.2.4. For the second claim, fix an indexing set Is =

(i1s < · · · < ids). The module F d,n,I
i omits precisely all standard basis elements of

the form ... i2s · · · ids

J ′

...

,

where J ′ = (j′0 < · · · < j′i−1) and J ′ ∩ Is = {i1s}; there are
(
n−d
i−1

)
such choices for J ′

and r choices of s, so the result follows.

Theorem 5.5.12. Adopt notation and hypotheses as in Setup 5.4.8, with i = {I1, . . . , Ir}.

Let K ′ be a squarefree equigenerated momomial ideal with K ′ = (xI1 , . . . , xIr). Then

the minimal free resolution of R/K ′ is given by the complex

F d,n,i
• : 0 // F d,n,i

n−d+1
∂d,n
n−d

// · · ·
∂d,n1 // F d,n,i

1
// R // 0.

Proof. This follows immediately by combining Theorem 5.5.1 with Proposition 5.3.10.

We conclude with some questions about additional structure on the complexes

above. Firstly, it is well known the the L-complexes admit the structure of an asso-

ciative DG-algebra. Likewise, the complex constructed by Galetto will also admit the
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structure of an associative DG-algebra, since the squarefree Elihou-Kervaire complex

admits such a structure by work of Peeva (see [37]). One is then tempted to ask:

Question 5.5.13. Do the complexes of Theorem 5.5.8 or Theorem 5.5.12 admit the

structure of an associative DG-algebra?

Similarly, it is well known that the (squarefree) Eliahou-Kervaire resolution is

cellular by work of Mermin (see [33]). Since one can reformat the above constructions

of this section in terms of taking kernels/cokernels of the Eliahou-Kervaire resolution,

we also pose:

Question 5.5.14. Are the complexes of Theorem 5.5.8 or Theorem 5.5.12 cellular?
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Chapter 6

DG-Algebra Structure on Length 3 Trimming

Complexes and Applications to Tor-Algebras

Let (R,m, k) be a regular local ring with maximal ideal m and residue field k with

R/I a quotient ring of projective dimension 3. Recall that a complete classification

of the multiplicative structure of the Tor algebra TorR• (R/I, k) for such quotients was

established by Weyman in [43] and Avramov, Kustin, and Miller in [4].

Absent from this classification was a complete description of which Tor-algebra

structures actually arise as the Tor-algebra of some quotient R/I with some prescribed

homological data. More precisely, let R/I have a length 3 DG-algebra minimal free

resolution:

F• : 0→ F3 → F2 → F1 → R,

with m = rank(F1), n = rank(F3). Let · := · ⊗ k, and define

p = rank(F1
2), q = rank(F1 · F2),

r = rank
(
F2 → Homk(F1, F3)

)
.

Then, Avramov posed the question (see [2, Question 3.8]):

Which tuples (m,n, p, q, r) are realized by some quotient ring R/I?

This is often referred to as the realizability question, and Avramov gives bounds on

the possible tuples that can occur in this same paper along with some conjectures on

the tuples associated to certain Tor-algebra classes. One such conjecture was related

to the Tor-algebra class G, where Avramov had posed:
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Question 6.0.1. If R/I is class G(r) for some r > 2, then is R/I Gorenstein?

The counterexamples to Question 6.0.1 were originally constructed by Christensen

and Veliche in [14] and produced on a much larger scale by Christensen, Veliche,

and Weyman using a remarkably simple construction. Given an m-primary ideal

I = (φ1, . . . , φn) ⊆ R, one can “trim" the ideal I by, for instance, forming the ideal

(φ1, . . . , φn−1) + mφn. It turns out that this will yield an ideal that defines a non-

Gorenstein quotient ring which is also of class G(r) (see [16]).

More generally, computational evidence suggests that the process of trimming an

ideal tends to preserve Tor-algebra class. In this chapter, we set out to answer why

this is true. In practice, there are two ways of computing multiplication in the Tor-

algebra Tor•(R/I, k) for a given ideal I. First, let K• denote the Koszul complex

resolving R/m. Then, one can descend to the homology algebra H•(K•⊗R/I), with

multiplication induced by the exterior algebra K•. Alternatively, one can produce

an explicit DG-algebra free resolution F• of R/I, tensor with R/m, and descend to

homology with product induced by the algebra structure on F•.

We take the latter approach in this chapter. Luckily, an explicit free resolution

of trimmed ideals is constructed in [41]. More generally, we construct an explicit

algebra structure on arbitrary iterated trimming complexes of length 3 (see Theorem

6.2.3). In the case that the ambient ring is local, we are then able to show that

the possible nontrivial multiplications in the Tor-algebra are rather restricted (see

Corollary 6.2.7).

This algebra structure is then applied to the previously mentioned case where the

ideal I is obtained by trimming. We focus on ideals defining rings of Tor-algebra

G and H, and show that under very mild assumptions, trimming an ideal preserves

these Tor-algebra classes. This allows us to construct novel examples of rings of class

G(r) and H(p, q) obtained as quotients of arbitrary regular local rings (R,m, k) of
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dimension 3, and we further add to the realizability question posed by Avramov (see

Corollary 6.4.8 and 6.4.14).

This chapter is organized as follows. In Section 6.1, we set the stage with con-

ventions and notation to be used throughout the rest of the chapter along with some

background. In Section 6.2, an explicit product on the length 3 iterated trimming

complex is constructed. In the case that the complexes involved further admit the

structure of DG-modules over each other, then this product may be made even more

explicit (see Proposition 6.2.4). As corollaries, we find that only a subset of the prod-

ucts on the iterated trimming complex are nontrivial after descending to homology.

In Section 6.3, we focus on the case of trimming an ideal (in the sense of Chris-

tensen, Veliche, and Weyman [16]). Assuming that certain products on the minimal

free resolution of an ideal sit in sufficiently high powers of the maximal ideal, we show

that trimming an ideal will either preserve the Tor-algebra class or yield a Golod ring

(see Lemma 6.3.10 and 6.3.13). In the case that the minimal presenting matrix for

these quotient rings has entries in m2, the restrictions become even tighter and we

can say precisely which Tor-algebra class these new ideals will occupy (see Corollary

6.3.11 and 6.3.14).

Finally, in Section 6.4, we begin to construct explicit quotient rings realizing tuples

of the form (m,n, p, q, r). In particular, we construct an infinite class of new examples

of class G(r), and can say in general that there are rings of arbitrarily large type with

Tor-algebra class G(r), for any r > 2 (this was previously known in the case that the

ambient ring was k[x, y, z], see [39]). Likewise, we construct an infinite class of rings

of Tor-algebra class H(p, q) that are not hyperplane sections, which, combined with

the process of linkage, can be used to conclusively show the existence of rings realizing

many of the tuples falling within the bounds imposed by Christensen, Veliche, and

Weyman in [17].
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6.1 Background, Notation, and Conventions

In this section, we first introduce some of the notation and conventions that will be

in play throughout the chapter. We will introduce iterated trimming complexes (see

Definition 2.2.5), the algebra structure on which is the main subject of Section 6.2.

We also discuss the realizability question posed originally by Avramov, and discuss

the progress on this question due to Christensen, Veliche, and Weyman in [17].

Throughout the chapter, all complexes will be assumed to have nontrivial terms

appearing only in nonnegative homological degrees.

Notation 6.1.1. The notation (F•, d•) will denote a complex F• with differentials

d•. When no confusion may occur, F or F• may be written instead.

Given a complex F• as above, elements of Fn will often be denoted fn, without

specifying that fn ∈ Fn.

Definition 6.1.2. A differential graded algebra (F•, d•) (DG-algebra) over a com-

mutative Noetherian ring R is a complex of finitely generated free R-modules with

differential d and with a unitary, associative multiplication F ⊗R F → F satisfying

(a) Fi · Fj ⊆ Fi+j,

(b) di+j(xixj) = di(xi)xj + (−1)ixidj(xj),

(c) xixj = (−1)ijxjxi, and

(d) x2
i = 0 if i is odd,

where xk ∈ Fk.

The following setup will be used for the rest of this section, and will be used to

discuss results related to Question 6.1.4.
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Setup 6.1.3. Let (R,m, k) denote a local ring. Let R/I have a length 3 DG-algebra

minimal free resolution:

F• : 0→ F3 → F2 → F1 → R,

with m = rank(F1), n = rank(F3). Let · := · ⊗ k, and define

p = rank(F1
2), q = rank(F1 · F2),

r = rank
(
F2 → Homk(F1, F3)

)
.

Question 6.1.4. Which tuples (m,n, p, q, r) are realized by the data of Setup 6.1.3 for

some quotient ring R/I?

For the definition of the Tor-algebra class H(p, q) appearing in the following The-

orem, see Theorem 6.3.1.

Theorem 6.1.5 ([17], Theorem 1.1). Adopt notation and hypotheses as in Setup

6.1.3. Let Q = R/I be a Cohen-Macaulay local ring of codimension 3 and class

H(p, q). Then the following inequalities hold:

p 6 m− 1 and q 6 n.

Moreover, the following are equivalent:

(i) p = n+ 1.

(ii) q = m− 2.

(iii) p = m− 1 and q = n.

If the conditions (i)− (iii) are not satisfied, then there are inequalities

p 6 n− 1 and q 6 m− 4

with

p = n− 1 ⇐⇒ q ≡2 m− 2 and q = m− 4 ⇐⇒ p ≡2 n− 1.
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Christensen, Veliche, and Weyman further conjecture that within the bounds

supplied by Theorem 6.1.5, there are ideals defining rings of class H(p, q) realizing

the tuples (m,n, p, q) (that is, these bounds are sharp; see the conjectures of 7.4 in

[17]).

Next, recall that an ideal J ⊆ R is directly linked to the ideal I if there exists

a grade 3 complete intersection a ⊆ I such that J = (a : I). Two ideals I and J

are linked if there exists a sequence of direct links connecting I and J . In [17], it is

carefully studied how the Tor-algebra of an ideal relates to that of any directly linked

ideal. In particular, one has the following Proposition.

Proposition 6.1.6 ([17]). Adopt notation and hypotheses as in Setup 6.1.3. Assume

I ⊆ R is a grade 3 perfect ideal.

(a) If I defines a ring of Tor-algebra class G(r), then it is directly linked to a grade

3 perfect ideal J defining a ring of Tor-algebra class H(p′, q′) realizing the tuple

(n+ 3,m− 3, p′, q′),

where p′ > min{r, 3}.

(b) If I defines a ring of Tor-algebra class H(p, q) with p > 2, q > 3, and m−3 > p,

then it is directly linked to a grade 3 perfect ideal J of class H(q, p) realizing

the tuple

(n+ 3,m− 3, q, p).

(c) If I defines a ring of Tor-algebra class H(p, q) with p > 3, q > 3, and m− 2 >

p > 1, then it is directly linked to a grade 3 perfect ideal J of class H(q, p− 1)

realizing the tuple

(n+ 2,m− 3, q, p− 1).

(d) If I defines a ring of Tor-algebra class H(p, q) with p > 4, q > 3, and m− 1 >

p > 1, then it is directly linked to a grade 3 perfect ideal J of class H(q, p− 2)
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realizing the tuple

(n+ 1,m− 3, q, p− 2),

where m > 5 or n > 3.

Combining Proposition 6.1.6 with the explicit examples given in Section 6.4 will

allow us to combine the processes of linkage and trimming to compute explicit exam-

ples realizing the tuples falling within the bounds of Theorem 6.1.5.

6.2 Algebra Structure on Length 3 Iterated Trimming Complexes

In this section, we show that if the complexes associated to the input data of Setup

2.1.1 are length 3 DG-algebras, then the product on the resulting iterated trimming

complex of Theorem 2.2.4 may be computed in terms of the products on the afore-

mentioned complexes. The proof of this fact is a long and rather tedious computation;

moreover, in full generality, the products have certain components that are only de-

fined implicitly. In the case that the complexes involved admit additional module

structures over one another, these products may be made more explicit (see Propo-

sition 6.2.4). However, after descending to homology, many of these products either

vanish completely or become considerably more simple. This fact is made explicit in

the corollaries at the end of this section, and will be taken advantage of in Section

6.3.

The following is essentially the proof of Proposition 1.3 of [11]; for convenience,

the proof is reproduced here.

Proposition 6.2.1. Let (F•, d•) denote a length 3 resolution of a cyclic module M

admitting a product satisfying axioms (a)− (d) of Definition 6.1.2. Then, the product

is associative.
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Proof. Since F• has length 3, the only nontrivial triple product can occur between 3

elements e1, e2, and e3 of homological degree 1. One computes:

d3
(
(e1 · e2) · e3 − e1 · (e2 · e3)

)
= d2(e1 · e2) · e3 + d1(e3)e1 · e2

− d1(e1)e2 · e3 + e1 · d2(e2 · e3)

= d1(e1)e2 · e3 − d1(e2)e1 · e3 + d1(e3)e1 · e2

− d1(e1)e2 · e3 + d1(e2)e1 · e3 − d1(e3)e1 · e2

= 0.

Since d3 is injective, the result follows.

Notation 6.2.2. Given a DG-algebra F•, the notation ·F denotes the product on F•.

Given two free modules F and G, elements of the direct sum F ⊕ G will be denoted

f + g ∈ F ⊕G.

Theorem 6.2.3. Adopt notation and hypotheses as in Setup 2.1.1, and assume that

the complexes F• and Gi
• (1 6 i 6 t) are length 3 DG-algebras. Then the length 3

iterated trimming complex of Theorem 2.2.4 admits the structure of an associative

DG-algebra with a product of the form:

F ′1 ⊗ F ′1 → F2 ⊕
( t⊕
i=1

Gi
2

)

f1 ·T f ′1 := f1 ·F f ′1 +
t∑
i=1

gi2, where mi
2(gi2) = qi1(f1 ·F f ′1),

F ′1 ⊗Gi
1 → F2 ⊕

( t⊕
j=1

Gj
2

)

f1 ·T gi1 := mi
1(gi1)ei0 ·F f1 +

t∑
j=1

gj2,

where mi
2(gi2) = d1(f1)gi1 +mi

1(gi1)qi1(ei0 ·F f1),

mj
2(gj2) = mi

1(gi1)qj1(ei0 ·F f1) for j 6= i
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Gi
1 ⊗Gi

1 → F2 ⊕
( t⊕
j=1

Gj
2

)

gi1 ·T g′
i
1 := −gi1 ·Gi g′

i
1d1(ei0),

Gi
1 ⊗G

j
1 → F2 ⊕

( t⊕
k=1

Gk
2

)
i 6= j

gi1 ·T g
j
1 := mi

1(gi1)mj
1(gj1)ei0 ·F e

j
0 +

t∑
k=1

gk2 ,

where mi
2(gi2) = mi

1(gi1)mj
1(gj1)qi1(ei0 ·F e

j
0) +mj

1(gj1)d1(ej0)gi1,

mj
2(gj2) = mi

1(gi1)mj
1(gj1)qj1(ei0 ·F e

j
0)−mi

1(gi1)d1(ei0)gj1,

mk
1(gk2) = mi

1(gi1)mj
1(gj1)qk1(ei0 ·F e

j
0) for k 6= i, j,

F ′1 ⊗ F2 → F3 ⊕
( t⊕
i=1

Gi
3

)

f1 ·T f2 := f1 ·F f2 +
t∑
i=1

gi3, for some gi3 ∈ Gi
3,

F ′1 ⊗Gi
2 → F3 ⊕

( t⊕
j=1

Gj
3

)

f1 ·T gi2 :=
t∑

j=1
gj3, for some gj3 ∈ G

j
3

Gi
1 ⊗Gi

2 → F3 ⊕
( t⊕
j=1

Gj
3

)

gi1 ·T gi2 = −gi1 ·Gi gi2d1(ei0),

Gi
1 ⊗G

j
2 → F3 ⊕

( t⊕
k=1

Gk
3

)

gi1 ·T g
j
2 :=

t∑
k=1

gk3 , i 6= j, for some gk3 ∈ Gk
3,

Gi
1 ⊗ F2 → F3 ⊕

( t⊕
j=1

Gj
3

)

gi1 ·T f2 := −mi
1(gi1)ei0 ·F f2 +

t∑
j=1

gj3, for some gj3 ∈ G
j
3.

Proof. Observe that, by Proposition 6.2.1, it suffices to show that the contended

products satisfy axiom (b) of Definition 6.1.2. The proof thus becomes a straightfor-
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ward verification of this identity, and will be split accordingly into all of the cases.

For convenience, let πi : F1 → R denote the composition

F1
projection−−−−−→ Rei0 → R,

where the second map sends ei0 7→ 1. Observe that mi
1 ◦ qi1 = πi ◦ d2 =: d′0

i. Likewise,

let p : F1 → F ′1 denote the natural projection. Observe that d′2 = p ◦ d2.

Case 1: F ′1 ⊗ F ′1 → F2 ⊕
(⊕t

i=1G
i
2

)
. We first need to verify the existence of

each gi2; by exactness of each Gi
•, it suffices to show that qi1(f1 ·F f ′1) is a cycle. One

computes:

mi
1 ◦ qi1(f1 ·F f ′1) = πi

(
d2(f1 ·F f ′1)

)
= πi

(
d1(f1)f ′1 − d1(f ′1)f1

)
= 0, since πi(F ′1) = 0 for all i.

Thus the desired gi2 exists for all i. It remains to verify the DG axiom:

`2(f1 ·T f ′1) = d′2(f1 ·F f ′1) +
t∑
i=1

(
− qi1(f1 ·F f ′1) +mi

2(gi2)
)

= d1(f1)f ′1 − d1(f ′1)f1

= `1(f1)f ′1 − `1(f ′1)f1.

Case 2: F ′1⊗Gi
1 → F2⊕

(⊕t
j=1G

j
2

)
. We first verify the existence of the desired gj2.

One computes:

mi
1

(
d1(f1)gi1 +mi

1(gi1)qi1(ei0 ·F f1)
)

= d1(f1)mi
1(gi1) +mi

1(gi1)πi(d2(ei0 ·F f1))

= d1(f1)mi
1(gi1)−mi

1(gi1)d1(f1)

= 0,

mj
1

(
mi

1(gi1)qj1(ei0 ·F f1)
)

= mi
1(gi1)πj(d2(ei0 ·F f1))
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= 0.

It remains to verify the DG axioms:

`2(f1 ·T gi1) = mi
1(gi1)d′2(ei0 ·F f1)−

t∑
j=1

mi
1(gi1)qj1(ei0 ·F f1) +

t∑
j=1

mi
2(gi2)

= mi
1(gi1)d1(e0)f1 + d1(f1)gi1

= `1(f1)gi1 − `1(gi1)f1.

The above uses that d′2 = p ◦ d2, implying d′2(ei0 ·F f1) = d1(ei0)f1.

Case 3: Gi
1 ⊗Gi

1 → F2 ⊕
(⊕t

j=1G
j
2

)
. One computes directly:

`2(gi1 ·T g′
i
1) = mi

2(−gi1 ·Gi g′
i
1d1(ei0))

= −m1(gi1)g′i1d1(ei0) +m1(g′i1)gi1d1(ei0)

= `1(gi1)g′i1 − `1(g′i1)gi1

Case 4: Gi
1 ⊗ G

j
1 → F2 ⊕

(⊕t
k=1G

k
2

)
, i 6= j. We verify the existence of gi2; the

proof of the existence of gj2 is identical. One computes:

mi
2

(
mi

1(gi1)mj
1(gj1)qi1(ei0 ·F e

j
0) +mj

1(gj1)d1(ej0)gi1
)

=mi
1(gi1)mj

1(gj1)πi ◦ d2(ei0 ·F e
j
0) +mj

1(gj1)d1(ej0)mi
1(gi1)

=−mi
1(gi1)mj

1(gj1)d1(ej0) +mj
1(gj1)d1(ej0)mi

1(gi1)

=0.

It remains to show the DG axiom:

`2(gi1 ·T g
j
1) = mi

1(gi1)mj
1(gj1)d′2(ei0 ·F e

j
0)

+
t∑

k=1

(
−mi

1(gi1)mj
1(gj1)qi1(ei0 ·F e

j
0) +mk

2(gk2)
)
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= mj
1(gj1)d1(ej0)gi1 −mi

1(gi1)d1(ei0)gj1

= `1(gi1)gj1 − `1(gj1)gi1.

In the above, notice that d′2(ei0 ·F e
j
0) = p(d1(ei0)ej0 − d1(ej0)ei0) = 0.

Case 5: F ′1 ⊗ F2 → F3 ⊕
(⊕t

i=1G
i
3

)
. Observe that

f1 ·T (d′2(f2)−
t∑
i=1

qi1(f2)) = f1 ·F d′2(f2) +
t∑
i=1

gi2

−
t∑
i=1

(
mi

1 ◦ qi1(f2)e0 ·F f1 +
t∑

j=1
gi,j2

)
,

where mi
2

(
gi2 −

t∑
j=1

gj,i2

)

=qi1(f1 ·F d′2(f2))− d1(f1)qi1(f2)−
t∑

j=1
qi1(dj0(f2) ·F f1)

=qi1(f1 ·F d2(f2)− d1(f1)f2)

=−mi
2 ◦ qi2(f1 ·F f2), for each i = 1, . . . , t.

This implies that gi2 −
∑t
j=1 g

j,i
2 + qi2(f1 ·F f2) is a cycle, so that there exist gi3 ∈ Gi

3

such that

mi
3(gi3) = gi2 −

t∑
j=1

gj,i2 + qi2(f1 ·F f2).

Using this along with the fact that

t∑
i=1

(
gi2 −

t∑
j=1

gi,j2

)
=

t∑
i=1

(
gi2 −

t∑
j=1

gj,i2

)
,

one obtains:

f1 ·T (d′2(f2)−
t∑
i=1

qi1(f2)) = f1 ·F d2(f2)−
t∑
i=1

qi2(f1 ·F f2) +
t∑
i=1

gi3,
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whence upon choosing

f1 ·T f2 := f1 ·F f2 +
t∑
i=1

gi3,

one immediately obtains

`3(f1 ·T f2) = d1(f1)f2 − f1 ·F d2(f2) +
t∑
i=1

qi2(f1 ·F f2) +
t∑
i=1

gi3

= d1(f1)f2 − f1 ·T (d′2(f2)−
t∑
i=1

qi1(f2))

= `1(f1)f2 − f1 ·T `2(f2).

Case 6: F ′1 ⊗Gi
2 → F3 ⊕

(⊕t
j=1G

j
3

)
. One computes:

`1(f1)gi2 − f1 ·T mi
2(gi2) = d1(f1)gi2 −

t∑
j=1

g′
j
2,

where mj
2(g′j2) =


d1(f1)mi

2(gi2) if i = j,

0 otherwise.

This implies that 
d1(f1)gi2 − g′2

i if i = j, and

g′2
j otherwise

are cycles. By exactness of each Gj
•, there exist gj3 ∈ Gj

3 such that

mj
3(gj3) =


d1(f1)gi2 − g′2

i if i = j,

−g′2
j otherwise.

(6.2.1)

Case 7: Gi
1 ⊗Gi

2 → F3 ⊕
(⊕t

j=1G
j
3

)
. One computes:

`3(gi1 ·T gi2) = mi
3(−gi1 ·Gi gi2d1(ei0))

= −mi
1(gi1)gi2d1(ei0) + gi1 ·Gi mi

2(gi2)d1(ei0)
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= `1(gi1)gi2 − gi1 ·T `2(gi2).

Case 8: Gi
1 ⊗G

j
2 → F3 ⊕

(⊕t
k=1G

k
3

)
, i 6= j. One computes:

`1(gi1)gj2 − gi1 ·T `2(gj2) = −mi
1(gi1)d1(ei0)gj2 −

t∑
k=1

g′
k
2

where mk
2(g′k2) =


−mi

1(gi1)d1(ei0)mj
2(gj2) if k = j

0 otherwise,

whence 
g′2
i +mi

1(gi1)d1(ei0)gj2 if k = j

g′2
k otherwise,

are cycles, implying there exists gk3 ∈ Gk
3 such that

mk
3(gk3) =


g′2
i +mi

1(gi1)d1(ei0)gj2 if k = j

g′2
k otherwise.

(6.2.2)

Thus, one may define

gi1 ·T g
j
2 :=

t∑
k=1

gk3 ,

and this product will satisfy the Leibniz rule.

Case 9: Gi
1 ⊗ F2 → F3 ⊕

(⊕t
j=1G

j
3

)
. One computes:

`1(gi1)f2 − gi1 ·T `2(f2)

= −mi
1(gi1)d1(ei0)f2 − gi1 ·T (d′2(f2)−

t∑
j=1

qj1(f2))

= −mi
1(gi1)d1(ei0)f2 + d′2(f2) ·T gi1 +

t∑
j=1

gi1 ·T q
j
1(f2)
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= −mi
1(gi1)d1(ei0)f2 +mi

1(gi1)ei0 ·F d′2(f2) +
t∑

j=1
gj2 − gi1 ·Gi qi1(f2)d1(ei0)

+
t∑
j 6=i

(
mi

1(gi1)mj
1(qj1(f2))ei0 ·F e

j
0 +

t∑
k=1

g′2
j,k
)

= −mi
1(gi1)d3(e0 ·F f2)− gi1 ·Gi qi1(f2)d1(ei0) + gi2 +

t∑
j 6=i

(
gj2 +

t∑
k=1

g′2
j,k
)
.

Observe that ∑t
j 6=i

(
gj2 +∑t

k=1 g
′
2
j,k
)

= ∑t
j 6=i

(
gj2 +∑t

k 6=i g
′
2
k,j
)

+∑t
k 6=i g

′
2
k,i, and

mj
2

(
gj2 +

t∑
k 6=i

g′2
k,j
)

= mi
1(gi1)qj1(ei0 ·F d′2(f2))

+
∑
k 6=i

mi
1(gi1)d′0

k(f2)qj1(ei0 ·F ek0)

−mi
1(gi1)d1(ei0)qj1(f2)

= m1(gi1)qj1(ei0 ·F d2(f2))−mi
1(gi1)d1(ei0)qj1(f2)

= −mi
1(gi1)mj

2(qj2(ei0 ·F f2)),

mi
2

(
− gi1 · qi1(f2)d1(ei0) + gi2 +

t∑
k 6=i

g′2
k,i
)

= −mi
1(gi1)qi1(f2)d1(ei0)

+ d′0
i(f2)d1(ei0) + d1(d′2(f2))gi1

+mi
1(gi1)qi1(ei0 ·F d′2(f2))

+
∑
k 6=i

(
mi

1(gi1)d′0
k(f2)qi1(ei0 ·F ek0) + d′0

k(f2)d1(ek0)gi1
)

= d1(d2(f2))gi1 −mi
1(gi1)qi1(f2)d1(ei0)

+mi
1(gi1)qi1(ei0 ·F d2(f2))

= −mi
1(gi1)mi

2(qi2(ei0 ·F f2)).

Thus,

gj2 +
t∑
k 6=i

g′2
k,j +mi

1(gi1)qj2(ei0 ·F f2), and (6.2.3)
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− gi1 · qi1(f2)d1(ei0) + gi2 +
t∑
k 6=i

g′2
k,i +mi

1(gi1)qi2(ei0 ·F f2) (6.2.4)

are both cycles, implying there exist gj3 ∈ Gj
3 such that

mj
3(gj3) =


−gi1 · qi1(f2)d1(ei0) + gi2 +∑t

k 6=i g
′
2
k,i + qi2(ei0 ·F f2) if i = j,

gj2 +∑t
k 6=i g

′
2
k,j + qj2(ei0 ·F f2) otherwise.

Defining

gi1 ·T f2 := −mi
1(gi1)ei0 ·F f2 +

t∑
j=1

gj3,

one combines this with the first computation of this case to find:

`3(gi1 ·T f2) = `3(−mi
1(gi1)ei0 ·F f2 +

t∑
j=1

gj3)

= −mi
1(gi1)d3(ei0 ·F f2) +

t∑
j=1
−mi

1(gi1)qj2(ei0 ·F f2) +
t∑

j=1
mj

3(gj3)

= `1(gi1)f2 − gi1 ·T `2(f2).

As previously mentioned, in the case that each Gi
• has an additional DG-module

structure, some of the products of Theorem 6.2.3 may be made more explicit.

Proposition 6.2.4. Adopt notation and hypotheses as in the statement of Theorem

6.2.3, and assume that Gi
• admits the structure of a DG-module over each Gj

• for all

1 6 j 6 t. Then, the following products can be extended to a DG-algebra structure

on T•:

F ′1 ⊗Gi
1 → F2 ⊕

( t⊕
j=1

Gj
2

)

f1 ·T gi1 := mi
1(gi1)ei0 ·F f1 +

t∑
j=1

gi1 ·Gj q
j
1(ei0 ·F f1),

Gi
1 ⊗G

j
1 → F2 ⊕

( t⊕
k=1

Gk
2

)
i < j
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gi1 ·T g
j
1 := mi

1(gi1)mj
1(gj1)ei0 ·F e

j
0 +

t∑
k=1

gk2 ,

where gk2 =



mj
1(gj1)gi1 ·Gi qi1(ei0 ·F e

j
0) if k = i

mi
1(gi1)gj1 ·Gj qj1(ei0 ·F e

j
0) if k = j

mi
1(gi1)gj1 ·Gk qk1(ei0 ·F e

j
0) otherwise,

F ′1 ⊗Gi
2 → F3 ⊕

( t⊕
j=1

Gj
3

)

f1 ·T gi2 := −
t∑

j=1
gi2 ·Gj q

j
1(ei0 ·F f1),

Gi
1 ⊗G

j
2 → F3 ⊕

( t⊕
k=1

Gk
3

)

gi1 ·T g
j
2 :=


−∑k 6=im

i
1(gi1)gj2 ·Gk qk1(ei0 ·F e

j
0) if i < j

−mi
1(gi1)gj2 ·Gj qj1(ei0 ·F e

j
0) if j < i,

Remark 6.2.5. Observe that the assumption that G• is a DG-module over each Gj
• is

satisfied if Gi
• = Gj

• for all 1 6 i, j 6 t.

Proof. In order to show that the products in the statement of the Proposition are

well-defined and may be extended to a product on all of T•, one only needs to verify

the identities in the statement and proof of Theorem 6.2.3. The verification is split

into all 4 cases:

Case 1: F ′1 ⊗Gi
1 → F2 ⊕

(⊕t
j=1G

j
2

)
. One has:

mj
2(gi1 ·Gj q

j
1(ei0 ·F f1)) = mi

1(gi1)qj1(ei0 ·F f1)− gi1 · πj(d2(e0 ·F f1))

= mi
1(gi1)qj1(ei0 ·F f1) +


d1(f1)gi1 if i = j

0 otherwise.
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Case 2: Gi
1 ⊗G

j
1 → F2 ⊕

(⊕t
k=1G

k
2

)
. One computes:

mi
2(gi2) = mj

1(gj1)mi
1(gi1)qi1(ei0 ·F e

j
0)−mj

1(gj1)gi1 · πi(d2(ei0 ·F e
j
0))

= mj
1(gj1)mi

1(gi1)qi1(ei0 ·F e
j
0) +mj

1(gj1)d1(ej0)gi1,

mj
2(gj2) = mi

1(gi1)mj
1(gj1)qj1(ei0 ·F e

j
0)−mi

1(gi1)gj1 · πj(d2(ei0 ·F e
j
0))

= mi
1(gi1)mj

1(gj1)qj1(ei0 ·F e
j
0)−mi

1(gi1)d1(ei0)gj1,

mk
2(gk2) = mi

1(gi1)mj
1(gj1)qk1(ei0 ·F e

j
0)−mi

1(gi1)gj1 · πk(d2(ei0 ·F e
j
0))

= mi
1(gi1)mj

1(gj1)qj1(ei0 ·F e
j
0).

Case 3: F ′1 ⊗ Gi
2 → F3 ⊕

(⊕t
j=1G

j
3

)
. The identity 6.2.1 must be verified. One

computes:

mj
3(−gj3) = −mi

2(gi2) ·Gj qj1(ei0 ·F f1)− gi2 · πj(d2(ei0 ·F f1))

= d1(f1)gi2 −mi
2(gi2) ·Gj qj1(ei0 ·F f1) if i = j,

= −mi
2(gi2) ·Gj qj1(ei0 ·F f1), otherwise.

Case 4: Gi
1 ⊗ G

j
2 → F3 ⊕

(⊕t
k=1G

k
3

)
. The identities of 6.2.2 must be verified.

One computes:

mk
3(mi

1(gi1)gj2 ·Gk qk1(ei0 ·F e
j
0)) = mi

1(gi1)mj
2(gj2) ·Gk qk1(ei0 ·F e

j
0)

+


mi

1(gi1)d1(ei0)gj2 if k = j

0 otherwise
if i < j

mj
3(mi

1(gi1)gj2 ·Gj qj1(ei0 ·F e
j
0)) = mi

1(gi1)mj
2(gj2) ·Gj qj1(ei0 ·F e

j
0)

+mi
1(gi1)d1(ej0)gj2

= gi1 ·T m
j
2(gj2) +mi

1(gi1)d1(ej0)gj2 if j < i.
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This completes the proof.

Notation 6.2.6. Let (R,m, k) denote a regular local ring. Let · denote the functor

· ⊗R k.

The following corollaries are immediate consequences of the statement and proof

of Theorem 6.2.3.

Corollary 6.2.7. Let (R,m, k) denote a regular local ring. Assume that the complexes

F• and Gi
• (for 1 6 i 6 t) are minimal. Then the only possible nontrivial products in

the algebra T• are

F ′1 ·T F ′1, F ′1 ·T F2, Gi
1 ·T F2, and F ′1 ·T Gi

2.

Corollary 6.2.8. Let (R,m, k) denote a regular local ring. Assume that the complexes

F• and Gi
• (for 1 6 i 6 t) are minimal. Then the map

T• → F•

fi 7→ fi, (fi ∈ Fi),

gji 7→ 0, (gji ∈ G
j
i ),

is a homomorphism of k-algebras.

6.3 Consequences for Tor Algebra Structures

In this section, we take advantage of Corollary 6.2.7 and study how the process of

trimming an ideal affects the Tor-algebra class. As in turns out, if the multiplication

between certain homological degrees has coefficients appearing in sufficiently high

powers of the maximal ideal, then the Tor-algebra class will be preserved. We also

give explicit examples showing that if this assumption is not satisfied, then it is

possible to obtain new nontrivial multiplication in the associated trimming complex.

We begin with the Tor-algebra classification provided by Avramov, Kustin, and

Miller in [4].
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Theorem 6.3.1 ([4], Theorem 2.1). There are nonnegative integers p, q, and r and

bases {f i1}, {f i2}, and {f i3} for TorR1 (R/I, k), TorR2 (R/I, k), and TorR3 (R/I, k), respec-

tively, such that the multiplication in TorR+(R/I, k) is given by one of the following:

CI : f 1
2 = f 2

1 f
3
1 , f

2
2 = f 3

1 f
1
1 , f

3
2 = f 1

1 f
2
1

f i1f
j
2 = δijf

1
3 for 1 6 i, j 6 3

TE : f 1
2 = f 2

1 f
3
1 , f

2
2 = f 3

1 f
1
1 , f

3
2 = f 1

1 f
2
1

B : f 1
1 f

2
1 = f 3

2 , f
1
1 f

1
2 = f 1

3 , f
2
1 f

2
2 = f 1

3

G(r) : f i1f
i
2 = f 1

3 , 1 6 i 6 r

H(p, q) : fp+1
1 f i1 = f i2, 1 6 i 6 p

fp+1
1 fp+i2 = f i3, 1 6 i 6 q

Remark 6.3.2. In terms of the tuples presented in the Realizability Question 6.1.4,

the classes G(r) and H(p, q) have:

G(r) : (m,n, 0, 1, r)

H(p, q) : (m,n, p, q, q).

For this reason, a tuple coming from a class G(r) ring will often be shortened to

(m,n, r), and a tuple coming from a class H(p, q) ring will be shortened to (m,n, p, q).

These tuples will be referred to as the associated tuple.

The following definition is introduced out of convenience for stating the results

appearing later in this section.

Definition 6.3.3. A Tor-algebra is in standard form if the basis elements have been

chosen such that the multiplication is given by one of the possibilities of Theorem

6.3.1. A DG-algebra free resolution F• is in standard form if the multiplication

descends to a Tor-algebra in standard form after applying −⊗R k.
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Example 6.3.4. Let R = k[xij | i < j] and X = (xij) be a generic n × n skew

symmetric matrix, with n odd. Given an indexing set I = (i1 < · · · < ik), let

PfI(X) := pfaffian of X with rows and columns from I removed.

Define

d1 := (Pf1(X),−Pf2(X), . . . , (−1)i+1Pfi(X), . . . ,Pfn(X)),

and consider the complex

F• : 0 // R
d∗1 // Rn X // Rn d1 // R // 0 .

Then F• admits the structure of an associative DG-algebra with the following prod-

ucts:

f i1 ·F f
j
1 =

n∑
k=1

(−1)i+j+kPfijk(X)fk2 ,

f i1 ·F f
j
2 = δijf

1
3 .

If n > 5, then F• is in standard form since it descends to a Tor-algebra of class G(n)

in standard form.

Notation 6.3.5. If A = A3⊕A2⊕A1⊕k is a finite dimensional graded-commutative

k-algebra, then

A⊥2 := {a ∈ A1 | a · A2 = 0}.

The following Lemma is a coordinate free characterization for length 3 k-algebras

realizing certain types of algebra classes.

Lemma 6.3.6 ([4], Lemma 2.3). Suppose A = A3⊕A2⊕A1⊕k is a finite dimensional

graded-commutative k-algebra with A2
1 = 0. Then:

(a) A has form H(0, 0) if and only if A1 · A2 = 0.

(b) A has form H(0, q) for some q > 1 if and only if codimA⊥2 = 1 and dimA1·A2 =

q.
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(c) A has form G(r) for some r > 2 if and only if dimA1·A2 = 1 and codimA⊥2 = r.

Notation 6.3.7. Let I = (φ1, . . . , φn) ⊆ R be an m-primary ideal and F• a DG-

algebra free resolution of R/I in standard form. Given an indexing set σ = {1 6

σ1 < · · · < σt 6 n}, define

tmσ(I) := (φi | i /∈ σ) + m(φj | j ∈ σ).

The transformation I 7→ tmσ(I) will be referred as trimming the ideal I.

The following setup will be in effect for the remainder of this section.

Setup 6.3.8. Let (R,m, k) denote a regular local ring of dimension 3. Let I =

(φ1, . . . , φn) ⊆ R be an ideal and σ = (1 6 σ1 < · · · < σt 6 n) be an indexing set.

Let (F•, d•) and (K•,m•) be minimal DG-algebra free resolutions and R/I and k,

respectively. By Theorem 2.2.4, a free resolution of R/ tmσ(I) may be obtained as the

mapping cone of a morphism of complexes of the form:

0 // F3

Q2
��

d3 // F2

Q1
��

d′2 // F ′1

d1
��⊕t

i=1K3

⊕t

i=1 m3
//
⊕t
i=1 K2

⊕t

i=1 m2
//
⊕t
i=1K1

−
∑t

i=1 m1(−)d1(eσi0 )
// R,

(6.3.1)

where

F ′1 :=
⊕
j /∈σ

Rej0 and d′2 : F2
d2−→ F1

proj−−→ F ′1.

Let T• denote the mapping cone of 6.3.1.

The following Lemma says that in the context of Setup 6.3.8, the possible non-

trivial multiplications in the homology algebra are even more restricted than that of

Corollary 6.2.7.

Lemma 6.3.9. Adopt notation and hypotheses as in Setup 6.3.8 and assume that

I ⊆ m2. Then,

F1 ·F F1 ⊆ Ker(Q1 ⊗ k)
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F1 ·F F2 ⊆ Ker(Q2 ⊗ k)

In particular, the only possible nontrivial products in the algebra T• are given by

F ′1 ·T F ′1 and F ′1 ·T F2.

Proof. One has:

d2(F1 ·F F1) ⊆ m2F1

=⇒ mi
1 ◦ q1(F1 ·F F1) = d′0

i(F1 ·F F1) ⊆ m2

=⇒ qi1(F1 ·F F1) ⊆ mK1 for all i.

Likewise,

qi1(d3(F1 ·F F2)) ⊆ m · q1(F1 ·F F1)

⊆ m2Gi
1

=⇒ m2(qi2(F1 ·F F2)) = q1(d3(F1 ·F F2)) ⊆ m2Gi
1

=⇒ qi2(F1 ·F F2) ⊆ mK2 for all i.

The latter claim about the triviality of the products K1 ·T F2 and F ′1 ·T K2 follows

immediately from the definition of the products given in Theorem 6.2.3 along with

the identities 6.2.1 and 6.2.3.

The following lemma makes precise the previously mentioned fact that, under

mild hypotheses, the Tor-algebra class G(r) is preserved by trimming.

Lemma 6.3.10. Adopt notation and hypotheses as in Setup 6.3.8 and assume that

F• is in standard form with F1 ·F F1 ⊆ m2F2. If R/I defines a ring of class G(r),

then for all indexing sets σ, the ideal tmσ(I) defines either a Golod ring or a ring of

Tor algebra class G(r′), for some r − |σ ∩ [r]| − rank(Q1 ⊗ k) 6 r′ 6 r − |σ ∩ [r]|.
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Proof. By Lemma 6.3.9, f 1
3 may be chosen as part of a basis for Ker(Q2 ⊗ k); the

parameter r′ arises from counting the rank of the induced map

Ker(Q1 ⊗ k)→ Homk(F ′1, F3).

By definition of the product on T•, the assumption F1 ·F F1 ⊆ m2F2 implies that

f1 ·T f ′1 = f1 ·F f ′1 = 0 for all f1, f
′
1 ∈ F ′1.

Thus, the induced map F2 → Homk(F ′1, F3) has rank r− |σ ∩ [r]|. But this map may

be written as the composition

Ker(Q1 ⊗ k) ↪→ F2 → Homk(F ′1, F3),

whence one finds that r − |σ ∩ [r]| − rank(Q1 ⊗ k) 6 r′ 6 r − |σ ∩ [r]|.

Corollary 6.3.11. Adopt notation and hypotheses as in the statement of Lemma

6.3.10. If d2(F2) ⊆ m2F1, then tmσ(I) defines a ring of Tor-algebra class G(r − |σ ∩

[r]|).

Proof. The assumption d2(F2) ⊆ m2F1 implies that Q1 ⊗ k = 0.

The following example shows that the assumption F1 ·F F1 ⊆ m2F2 in Lemma

6.3.10 is necessary.

Example 6.3.12. Let R = k[x1, x2, x3] and

X :=



0 0 0 x1 x2

0 0 x1 x2 x3

0 −x1 0 x3 0

−x1 −x2 −x3 0 0

−x2 −x3 0 0 0


.

Let I = Pf(X) = (x2
3, −x2x3, x

2
2− x1x3, −x1x2, x

2
1), the ideal of 4× 4 pfaffians of X.

The ring R/I has Tor-algebra class G(5) and the multiplication satisfies F1 ·F1 ⊆ mF2
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and F1 · F1 6⊆ m2F2. It may be shown using Macaulay2 [26] that tm1(I) defines a

ring of Tor-algebra class B and tm2(I) defines a ring of Tor-algebra class H(3, 2).

Both of these Tor-algebras have nontrivial multiplication of elements in homological

degree 1, which shows that the multiplication on T• cannot possibly agree with the

multiplication on F•.

It turns out that trimming also tends to preserve the Tor-algebra class H(p, q):

Lemma 6.3.13. Adopt notation and hypotheses as in Setup 6.3.8 and assume that

F• is in standard form of class H(p, q) with the property that

f i1 ·F f
j
1 ∈ m2F2 for all i, j 6= p+ 1.

Then,

(i) if p+ 1 ∈ σ, tmσ(I) defines a Golod ring, and

(ii) if p + 1 /∈ σ, then tmσ(I) defines either a Golod ring or a ring of class H(p −

|σ ∩ [p]|, q′), where q − rank(Q1 ⊗ k) 6 q′ 6 q.

Proof. In an identical manner to the proof of Lemma 6.3.10, the assumption f i1 ·F f
j
1 ∈

m2F2 implies

f i1 ·T f
j
1 = f i1 ·F f

j
1 = 0 for all i, j 6= p+ 1.

Case 1: p + 1 ∈ σ. Since fp+1
1 /∈ F ′1, it follows that F ′1 ·T F ′1 = 0. For identical

reasons, F ′1 ·T F2 = 0. Thus, the multiplication in the Tor-algebra is trivial, so R/I is

a Golod ring.

Case 2: p+ 1 /∈ σ. By Lemma 6.3.9, f 1
2 , . . . , f

p
2 may be chosen as part of a basis

of Ker(Q1⊗ k). This immediately implies that the only nontrivial products in T• are

of the form

f i1 ·T f
p+1
1 = f i2 for 1 6 i 6 p, i /∈ σ.
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Thus, dimk F ′1 ·T F ′1 = p− |σ ∩ [p]|. Likewise, fp+1
3 , . . . , fp+q3 may be chosen as part of

a basis for Ker(Q2 ⊗ k). Moreover, the rank of the induced map

Ker(Q1 ⊗ k)→ Homk(F ′1, F3)

is at least q − rank(Q1 ⊗ k), and it is evidently at most q.

Corollary 6.3.14. Adopt notation and hypotheses as in the statement of Lemma

6.3.13. If d2(F2) ⊆ m2F2, then tmσ(I) is either Golod or defines a ring of Tor-algebra

class H(p− |σ ∩ [p]|, q).

Again, the assumption that f i1 ·F f
j
1 ∈ m2F2 for i, j 6= p + 1 in Lemma 6.3.13 is

necessary, as the following example shows.

Example 6.3.15. Let R = k[x1, x2, x3] and I = (x2
2 − x1x3, −x1x2, x

2
1, x

2
3). The

ring R/I has Tor-algebra class H(3, 2), and the multiplication on the minimal free

resolution F• of R/I satisfies f i1 · f
j
1 ∈ mF2, f i1 · f

j
2 /∈ m2F2, where i, j 6= 5. However,

it can be shown using Macaulay2 [26] that tm2(I) has Tor-algebra class TE.

6.4 Examples

In this section, we employ the theory developed in Section 6.3 for the construction of

explicit examples of rings realizing Tor-algebra classes G(r) and H(p, q) for a given set

of parameters (m,n, p, q, r) (as in Setup 6.1.3 and Question 6.1.4). These examples

are constructed in an arbitrary regular local ring (R,m, k); in particular, we will

construct explicit novel examples of ideals defining rings of Tor-algebra class G(r)

(and arbitrarily large type). One can combine the examples of this section with the

results of Proposition 6.1.6 and Section 6.3 to obtain an even larger class of tuples.

We begin by first adopting the following simple setup.

Setup 6.4.1. Let (R,m, k) denote a regular local ring of dimension 3 (or a standard

graded polynomial ring over a field). Let m = (x1, x2, x3), where x1, x2, x3 is a regular
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sequence. Let K1 := Re1 ⊕ Re2 ⊕ Re3 and K• denote the Koszul complex induced by

the map sending ei 7→ xi.

The matrices appearing in the following two definitions were inspired by matrices

constructed in [16] and further generalized in [39]. Here, we extend this definition to

arbitrary local rings for the construction of our examples.

Definition 6.4.2. Adopt notation and hypotheses as in Setup 6.4.1. Let U j
m (for

j 6 m) denote the m×m matrix with entries from R defined by:

(U j
m)i,m−i = x2

1, (U j
m)i,m−i+1 = x2

3, (U j
m)i,m−i+2 = x2

2 for i 6 m− j

(U j
m)i,m−i = x1, (U j

m)i,m−i+1 = x3, (U j
m)i,m−i+2 = x2 for i > m− j

and all other entries are defined to be 0.

To see the pattern, observe that:

U1
2 =

x2
1 x2

3

x3 x2

 , U1
3 =


0 x2

1 x2
3

x2
1 x2

3 x2
2

x3 x2 0

 , U
2
3 =


0 x2

1 x2
3

x1 x3 x2

x3 x2 0


Definition 6.4.3. Define V j

m (for j < m) to be the (2m+1)×(2m+1) skew symmetric

matrix

V j
m :=


O Ox2

1
(U j

m)T

−(Ox2
1
)T 0 x2

2O

−U j
m −(x2

2O)T O

 .

If j = m, then V m
m is the skew symmetric matrix

V m
m :=


O Ox2

1
(Um

m )T

−(Ox2
1
)T 0 x2O

−Um
m −(x2O)T O

 .
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Lastly, if j = m+ 1, then V m+1
m is the skew symmetric matrix

V m+1
m :=


O Ox1 (Um

m )T

−(Ox1)T 0 x2O

−Um
m −(x2O)T O

 .

Definition 6.4.4. Let m > 2 be an integer. Define the ideal Ijm (for 0 6 j 6 m+ 1)

by

Ijm := Pf(V j
m),

where Pf(V j
m) denotes the ideal of 2m× 2m pfaffians of V j

m.

Setup 6.4.5. Adopt notation and hypotheses as in Setup 6.4.1. Define

d1 := (Pf1(V j
m),−Pf2(V j

m), . . . , (−1)i+1Pfi(V j
m), . . . ,Pfn(V j

m)),

(for m > 2 and 0 6 j 6 m+ 1) and consider the complex

F• : 0 // R
d∗1 // Rn V jm // Rn d1 // R // 0 .

Recall that F• is a minimal free resolution of R/Ijm in standard form of class G(2m+1)

with product as in Example 6.3.4.

Proposition 6.4.6. Adopt notation and hypotheses as in Setup 6.4.5. Define qi1 :

F2 → K1 by sending:

f 2m+3−i
2 7→



e2 if 1 < i 6 j + 1 6 m+ 1

x2e2 if j + 1 < i 6 m+ 1

−x2e2 if m+ 1 < i 6 2m+ 1− j

−e2 if 2m+ 1− j < i 6 2m+ 1,
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f 2m+2−i
2 7→



e3 if 1 6 i 6 j, i < m+ 1

x3e3 if j < i < m+ 1

0 if i = m+ 1

−x3e3 if m+ 1 < i 6 2m+ 1− j

−e3 if 2m+ 1− j < i 6 2m+ 1,

f 2m+1−i
2 7→



e1 if 1 6 i 6 j − 1

x1e1 if j − 1 < i < m+ 1

−x1e1 if i = m+ 1, j < m+ 1

−e1 if i = m+ 1, j = m+ 1

−x1e1 if m+ 1 < i 6 2m+ 1− j

−e1 if 2m+ 1− j < i < 2m+ 1,

and all other basis elements are sent to 0. Then the following diagram commutes:

F2
d′0
i

  

qi1
��

K1
m1 // m.

Notation 6.4.7. Let a and b be positive integers with a < b. The notation [a] will

denote the set {1, 2, . . . , a − 1, a} and the notation [a, b] will denote the set {a, a +

1, . . . , b− 1, b}.

Corollary 6.4.8. Adopt notation and hypotheses as in Setup 6.4.5. Let σ = (1 6

σ1 < · · · < σt 6 2m+ 1) denote an indexing and assume:

(a) m > 3, or

(b) m = 2 and j = 0.
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Then:

1. The ideal tmi(Ijm) defines either a Golod ring or a ring of Tor algebra class

G(2m+ 1− t− rank(qi1 ⊗ k)).

2. If t 6 2m+ 1− j, then the ideal tm[t](Ijm) defines either a Golod ring or a ring

of Tor-algebra class G(2m+ 1− t−min{1 + t, j}).

3. More generally, the ideal tmσ(Ijm) defines either a Golod ring or a ring of Tor-

algebra class

G(2m+ 1− t− rank(Q1 ⊗ k) + |σ ∩ {j | Q1(f j2 ) 6= 0}|)

Proof. The assumptions (a) and (b) ensure that F1 · F1 ⊆ m2F2, so that by Lemma

6.3.10, tmσ(Ijm) defines either a Golod ring or a ring of class G(r′), where 2m −

rank(qi1 ⊗ k) 6 r′ 6 2m. By construction, Ker(Q1 ⊗ k) for each i has basis given by

{f j2 ∈ F2 | Q1(f j2 ) = 0}.

Case 1: By the above, one immediately has that rank
(

Ker(Q1⊗k)→ Homk(F ′1, F3)
)

=

2m− rank(qi1 ⊗ k). This is because (by Proposition 6.4.6)

i /∈ {j | Q1(f j2 ) 6= 0}.

Case 2: Using Proposition 6.4.6, one finds that rank(Q1 ⊗ k) = min{1 + r, j}.

Moreover, since t < 2m+ 1− j,

[t] ∩ {j | Q1(f j2 ) 6= 0} = ∅,

whence rank
(

Ker(Q1⊗k)→ Homk(F ′1, F3)
)
6 2m+1−t−min{1+t, j}. By Lemma

6.3.10, one has equality.

Case 3: Define S := σ ∩ {j | Q1(f j2 ) 6= 0}. If j ∈ S, then in T•, the direct

summand Rf j1 has been omitted from F1. Thus, removal of the direct summand

generated by f j2 has no effect on the rank of the induced map

δ : Ker(Q1 ⊗ k)→ Homk(F ′1, F3).
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By inclusion-exclusion, this implies that δ has rank

2m+ 1− t− rank(Q1 ⊗ k) + |S|.

Remark 6.4.9. Let S := σ ∩ {j | Q1(f j2 ) 6= 0}. Then, in terms of the associated

tuple (see Remark 6.3.2), the transformation Ijm 7→ tmσ(Ijm) transforms the tuple

(2m+ 1, 1, 2m+ 1) as so:

Ijm 7→ tmσ(Ijm)

(2m+ 1, 1, 2m+ 1)

7→(2m+ 2t+ 1− rank(Q1 ⊗ k), 1 + t, 2m+ 1− t− rank(Q1 ⊗ k) + |S|)

Corollary 6.4.8 immediately allows us to fill in a large class of tuples:

Corollary 6.4.10. Adopt notation and hypotheses as in Setup 6.3.8. Let (m,n, r) be

a tuple of positive integers satisfying either:

1. m− r = 3(n− 1), n > 2, and n+ r > 6,

2. m− r = 3(n− 1)− 2, n > 3, and n+ r > 6,

3. m− r = 3(n− 2), n > 4, and n+ r > 7.

Then there exists an ideal J defining a ring of Tor-algebra class G(r) realizing this

tuple.

Proof. Case 1(a): n + r is even. Write n + r = 2k + 2 for some integer k > 2.

Consider the ideal tm[n−1](I0
k). By Corollary 6.4.8, this has the effect of transforming

the associated tuple in the following way:

(2k + 1, 1, 2k + 1) 7→ (2k + 1 + 2(n− 1), 1 + n− 1, 2k + 1− (n− 1))
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= (n+ r + 2n− 3, n, n+ r − 1− n+ 1)

= (m,n, r).

Case 1(b): n+ r is odd. Write n+ r = 2k+ 1 for some integer k > 3. Consider the

ideal tm[n−1](I1
k). By Corollary 6.4.8, this has the effect of transforming the associated

tuple in the following way:

(2k + 1, 1, 2k + 1) 7→ (2k + 1 + 2(n− 1)− 1, 1 + n− 1, 2k + 1− (n− 1)− 1)

= (n+ r + 2n− 3, n, n+ r − n+ 1− 1)

= (m,n, r).

Case 2(a): n+ r is even. Write n+ r = 2k for some k > 3. Consider the ideal
tm1,2k+1(I2

k) if n = 3,

tm{1,2k+1}∪[3,n−1](I2
k) if n > 4.

By Proposition 6.4.6, rank(Q1 ⊗ k) = 4 and

σ ∩ {j | Q1(f j2 ) 6= 0} = {1, 2k + 1}

so |σ ∩ {j | Q1(f j2 ) 6= 0}| = 2. By Corollary 6.4.8, this has the effect of transforming

the associated tuple as so:

(2k + 1, 1, 2k + 1) 7→ (2k + 1 + 2(n− 1)− 4, n, 2k + 1− (n− 1)− 4 + 2)

= (n+ r + 2n− 5, n, n+ r − 1− (n− 1))

= (m,n, r).

Case 2(b): n+ r is odd. Write n+ r = 2k + 1 for some k > 3. Consider the ideal
tm1,2k+1(I1

k) if n = 3,

tm{1,2k1}∪[3,n−1](I1
k) if n > 4.
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By Proposition 6.4.6, rank(Q1 ⊗ k) = 3, and exactly as in Case 2(a),

|σ ∩ {j | Q1(f j2 ) 6= 0}| = |{1, 2k + 1}| = 2.

By Corollary 6.4.8, this has the effect of transforming the associated tuple as so:

(2k + 1, 1, 2k + 1) 7→ (2k + 1 + 2(n− 1)− 3, n, 2k + 1− (n− 1)− 3 + 2)

= (n+ r + 2n− 5, n, n+ r − 1− (n− 1))

= (m,n, r).

Case 3(a): n + r is odd. Write n + r = 2k + 1 for some k > 3. Consider the ideal

tm[n−2],2k+1(I2
k). By Proposition 6.4.6, rank(Q1 ⊗ k) = 4, and (recalling that n > 4)

σ ∩ {j | Q1(f j2 ) 6= 0} = {1, 2, 2k + 1},

so |σ ∩ {j | Q1(f j2 ) 6= 0}| = 3. By Corollary 6.4.8, this has the effect of transforming

the associated tuple as so:

(2k + 1, 1, 2k + 1) 7→ (2k + 1 + 2(n− 1)− 4, n, 2k + 1− (n− 1)− 4 + 3)

= (n+ r + 2n− 6, n, n+ r − 1− (n− 1))

= (m,n, r).

Case 3(b): n + r is even. Write n + r = 2k + 2 for some k > 3. Consider the

ideal tm[n−2],2k+1(I1
k). By Proposition 6.4.6, rank(Q1 ⊗ k) = 3, and (recalling that

n > 4)

|σ ∩ {j | Q1(f j2 ) 6= 0}| = |{1, 2, 2k + 1}| = 3

By Corollary 6.4.8, this has the effect of transforming the associated tuple as so:

(2k + 1, 1, 2k + 1) 7→ (2k + 1 + 2(n− 1)− 3, n, 2k + 1− (n− 1)− 3 + 3)

= (n+ r + 2n− 6, n, n+ r − 1− (n− 1))

= (m,n, r).
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Example 6.4.11. Corollary 6.4.10 is far from being an exhaustive list of the possible

tuples (m,n, r). For example, let R = k[x1, x2, x3] and consider the ideal

J := (x2
1x3, x

2
1x2 − x3

3, x
2
2x

2
3, x1x

2
2x3, x

4
2, x1x

3
2, x

4
1).

One may verify using the TorAlgebras package in Macaulay2 that J defines a ring of

Tor-algebra class G(2) and realizes the tuple (7, 2, 2), which does not fall into any of

the cases of Corollary 6.4.10.

As of yet, there is no standardized method for producing non-Gorenstein rings

of Tor-algebra class G(r) en masse besides trimming; because of this, the realizable

classes covered by Corollary 6.4.10 are bound to be rather restricted. Next, we

consider rings of class H(p, q).

Setup 6.4.12. Adopt notation and hypotheses as in Setup 6.4.1. Let Xp denote the

p× (p− 1) matrix

Xp :=



x1 0 0 · · · 0

x2 x1 0 · · · 0

x3 x2 x1 · · · 0

0 x3 x2 · · · 0
... . . . . . . . . . 0

0 0 · · · · · · x1

0 0 · · · · · · x2


and define

Jp := Ip−1(Xp) + (xp−1
3 ) = (∆1, . . . ,∆p, x

p−1
3 ).

Let H• denote the Hilbert-Burch resolution of R/Ip−1(Xp) and G• := 0→ R
xp−1

3−−→ R.

The minimal free resolution of Jp may be obtained as the tensor product F• := (H ⊗

G)•:

F• : 0 // H2 ⊗G1 //

(
H1 ⊗G1

)
⊕H2 // H1 ⊕G1 // R.
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The following multiplication makes F• into an algebra resolution in standard form of

Tor-algebra class H(p, p− 1):

h1 ·F h′1 = h1 ·H h′1,

h1 ·F g1 = h1 ⊗ g1,

h2 ·F g1 = h2 ⊗ g1,

where h1, h
′
1 ∈ H1, h2 ∈ H2, g1 ∈ G1.

In an identical manner, let F ′• be a minimal algebra resolution of J ′p := Ip−1(X ′p) +

(x2n−2
2 ) in standard from of Tor-algebra class H(p, p− 1), where

X ′p :=



x2
1 0 0 · · · 0

x2
2 x2

1 0 · · · 0

x2
3 x2

2 x2
1 · · · 0

0 x2
3 x2

2 · · · 0
... . . . . . . . . . 0

0 0 · · · · · · x2
1

0 0 · · · · · · x2
2



.

Proposition 6.4.13. Adopt notation and hypotheses as in Setup 6.4.12. Assume

H1 = ⊕p
i=1Rh

i
1, where hi1 7→ ∆i. Define qi1 : F2 → K1 for i < p by sending:

hi−2
2 7→ e3 (i > 2),

hi−1
2 7→ e2 (i > 1),

hi2 7→ e1 (i < p),

hi1 ⊗ g1 7→ −xp−2
3 e3,
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and all other basis elements to 0. If i = p+1, write each ∆j = x1∆1,j+x2∆2,j+x3∆3,j.

Define qp+1
1 : F2 → K1 by sending:

hj1 ⊗ g1 7→ ∆1,je1 + ∆2,je2 + ∆3,je3, (1 6 j 6 p)

and all other basis elements to 0. Then the following diagram commutes:

F2
d′0
i

  

qi1
��

K1
m1 // m.

Corollary 6.4.14. Adopt notation and hypotheses as in Setup 6.4.12 with p > 4.

Then

1. if p + 1 /∈ σ, the ideal tmσ(Jp) defines either a Golod ring or a ring of Tor-

algebra class H(p − t, p − 1 − rank(Q1 ⊗ k). In particular, if σ = [t] for some

t < p, the ideal tm[t](Jp) defines a ring of Tor-algebra class H(p− t, p− 1− t).

2. if p+ 1 ∈ σ, the ideal tmσ(I) defines a Golod ring.

3. if p+1 /∈ σ, the ideal tmσ(J ′p) defines a ring of Tor-algebra class H(p− t, p−1).

4. if p+ 1 ∈ σ, the ideal tmσ(J ′p) defines a Golod ring.

Proof. As in the proof of Corollary 6.4.8, one has

Ker(Q1 ⊗ k) = Spank{f
j
2 ∈ F2 | Q1(f j2 ) = 0}.

Moreover, the assumption that p > 4 implies that the hypotheses of Lemma 6.3.13

are satisfied.

Case 1: Since Ker(Q1 ⊗ k) is obtained by simply deleting basis elements with

nonzero image under Q1 ⊗ k, it follows that rank(Ker(Q1 ⊗ k) → Homk(F ′1, F3) 6

r − rank(Q1 ⊗ k). By Lemma 6.3.13, the result follows.
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Case 2: This is simply case (i) of Lemma 6.3.13.

Cases 3 and 4: Observe that F ′• has the property that d2(F2) ⊆ m2F1. Thus the

conclusion follows by Corollary 6.3.11.

Remark 6.4.15. In terms of the tuples of the associated tuple (see Remark 6.3.2), the

transformation Jp 7→ tmσ(Jp) transforms the tuple (p+ 1, p− 1, p, p− 1) as so:

Jp 7→ tmσ(Jp)

(p+ 1, p− 1, p, p− 1) 7→ (p+ 1 + 2t− rank(Q1 ⊗ k), p− 1 + t, p− t, p− 1− rank(Q1 ⊗ k)),

J ′p 7→ tmσ(J ′p)

(p+ 1, p− 1, p, p− 1) 7→ (p+ 1 + 2t, p− 1 + t, p− t, p− 1).

We conclude with some discussion on the problem of realizability. The results

of Section 6.3 are stated for arbitrary rings of a given Tor-algebra class. However,

one must start with a ring of a given Tor-algebra class and then apply the trim-

ming process to obtain a new ideal with some new set of parameters. The only

simple candidates for “initial" ideals of Tor-algebra class G(r) and H(p, q) are grade

3 Gorenstein ideals and grade 3 hyperplane sections, respectively. Even though using

a combination of linkage and trimming can obtain many of the tuples falling within

the bounds of Theorem 6.1.5, one is tempted to ask:

Question 6.4.16. Are there other “canonical" sources of rings of Tor-algebra class G(r)

and H(p, q), distinct from grade 3 Gorenstein ideals or hyperplane sections?

Enlarging the set of starting ideals from which one can begin the process of link-

age/trimming would immediately allow one to add to the question of realizability.

As it turns out, rings of Tor-algebra class G(r) arise generically when working in a

polynomial ring. The examples arising in [40] are already obtained by trimming a

Gorenstein ideal, but it is shown more generally in [13] that generically obtained rings

of type 2 are of class G(r) under appropriate hypotheses. To the author’s knowledge,
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there are fewer results of this flavor for rings of Tor-algebra class H(p, q), even though

these rings seem to be ubiquitous.
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