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ABSTRACT 

Friction stir extrusion is a solid state process that uses a rotating die to perform 

extrusions. This process can be used to directly recycle waste from machining processes 

and has been shown to produce wires with desirable mechanical properties. In order to 

better understand the friction stir extrusion process, the effect of the process parameters on 

the strain distribution in the wires needs to be understood. The process parameters 

evaluated in this work are die advance rate, die rotational seed, and die geometry. A total 

of 16 wires were extruded using different combinations of these process parameters. 

Marker wires were inserted into the billets prior to extrusion to observe material flow 

throughout the process. After the extrusion, transvers cross sections were taken at multiple 

locations along the wires in order to evaluate the strain distribution in each wire. 

Longitudinal, circumferential, and radial strain were calculated using the change in 

dimension of the marker wire.  

 The longitudinal strain was consistent across all wires and was close to the expected 

value in a conventual extrusion with the same reduction ratio, showing it is not dependent 

on the process parameters. The radial and circumferential strain were dependent on the 

process parameters and varied from wire to wire. As the die advance rate per revolution 

increased, the radial and circumferential strain values began to converge on the expected 

value for a conventional extrusion with the same reduction ratio. The samples produced 

with the scroll die had very similar strain distributions when 
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compared to the samples produced with a flat die and the same process parameters. While 

the images of the cross sections showed that the scroll die changed the marker wire shape, 

it did not alter the strain distribution. The sum of the strain components was very close to 

zero for all cross sections, which is expected in a controlled volume plastic deformation 

process. This shows that the method used produced accurate strain results.  

   

  

 

 



vii 

TABLE OF CONTENTS 

Dedication ...................................................................................................................... iii 

Acknowledgements ........................................................................................................ iv 

Abstract ........................................................................................................................... v 

List of Tables ................................................................................................................. ix 

List of Figures ................................................................................................................. x 

List of Symbols ............................................................................................................ xiii 

Chapter 1 Introduction ..................................................................................................... 1 

Chapter 2 Literature Review ............................................................................................ 4 

          2.1 Wire Production via Friction Stir Extrusion...................................................... 4 

          2.2 Mechanical Properties of wires ........................................................................ 6 

          2.3 Strain in Extruded Wires .................................................................................. 7 

          2.4 Marker Insert Technique .................................................................................. 7 

Chapter 3 Experimental Procedures ............................................................................... 10 

          3.1 Extrusion Process ........................................................................................... 10 

          3.2 Sample Preparation ........................................................................................ 11 

          3.3 Strain Analysis ............................................................................................... 12 

Chapter 4 Results and Discussion .................................................................................. 16 

          4.1 Cross Section Images ..................................................................................... 16 

          4.2 Strain Components ......................................................................................... 17 

          4.3 Effect of Parameters on Strain  ....................................................................... 20



viii 

          4.4 Scroll Die ....................................................................................................... 25 

          4.5 Validity of Method ......................................................................................... 32 

Chapter 5 Conclusions ................................................................................................... 33 

References ..................................................................................................................... 34



ix 

LIST OF TABLES

Table 3.1: The process parameters and die used for each extrusion ................................ 12 

Table 4.1: Die advance per revolution for each wire ...................................................... 23 



x 

LIST OF FIGURES

Figure 3.1: Die geometry of (a) scroll die (b) flat die ....................................................10 

 

Figure 3.2: (a) Final area measurement (b) Final length measurement (c) Final 

average thickness measurement .................................................................14 

 

Figure 3.3: (a) Color contrast feature used to measure area of marker wire (b) 

Arc measurement feature used to measure final length (c) Linear 

measurement feature used to make measurements to calculate 

average thickness .......................................................................................15 

 

Figure 4.1: Images taken on optical Microscope of wire cross sections 100mm 

from the start of the extrusion. (a) Cross section from wire 1 

produced at 4 mm/min and 300 rpm (b) Cross section from wire 2 

produced at 8 mm/min and 300 rpm (c) cross section from wire 3 

produced at 12 mm/min and 300 rpm (d) cross section from wire 4 

produced at 8 mm/min and 150 rpm (e) cross section from wire 5 

produced at 8 mm/min and 450 rpm (f) cross section from wire 6 

produced at 16 mm/min and 300 rpm (g) cross section from wire 7 

produced at 40 mm/min and 300 rpm (h) cross section from wire 8 

produced at 40 mm/min and 150 rpm .........................................................16 

 

Figure 4.2: Longitudinal strain in flat die wires as a function of position from 

the start of the extrusion.............................................................................18 

 

Figure 4.3: Radial strain in flat die wires as a function of position from the start 

of the extrusion ..........................................................................................19 

 

Figure 4.4: Theta strain in flat die wires as a function of position from the start 

of the extrusion ..........................................................................................20 

 



xi 

Figure 4.5: The average strain values of wires extruded with a rotational speed 

of 300 rpm plotted against the die advance rate used for each 

extrusion ....................................................................................................21 

 

Figure 4.6: The average strain values of wires extruded with a 8 mm/min feed 

rate plotted against the rotational speed used for each extrusion .................22 

 

Figure 4.7: The average strain values of wires extruded with a 40mm/min feed 

rate plotted against the rotational speed used for each extrusion .................22 

 

Figure 4.8: Average strain values as a function of die advance rate per 

revolution ..................................................................................................24 

 

Figure 4.9: The strain components of extrusion x and extrusion x as a function 

of distance from the start of the extrusion  .................................................25 

 

Figure 4.10: Cross sections from extrusions performed at 300 rpm and 16 

mm/min. (a) flat die extrusion. (b) scroll die extrusion .............................26 

 

Figure 4.11: Cross sections from extrusions performed at 300 rpm and 40 

mm/min. (a) flat die extrusion. (b) scroll die extrusion .............................26 

 

Figure 4.12: Cross sections from extrusions performed at 150 rpm and 40 

mm/min. (a) flat die extrusion. (b) scroll die extrusion .............................27 

 

Figure 4.13: Longitudinal strain in the scroll die samples as a function of 

distance from the start of the extrusion .....................................................28 

 

Figure 4.14: Theta strain in the scroll die samples as a function of distance from 

the start of the extrusion ...........................................................................28 

 

Figure 4.15: Radial strain in the scroll die samples as a function of distance 

from the start of the extrusion ...................................................................29 

 

Figure 4.16: Strain Components of wires extruded at 150 rpm and 40 mm/min 

with both a flat die and scroll die as a function of distance from 

the start of the extrusion ...........................................................................29 



xii 

 

Figure 4.17: Strain Components of wires extruded at 150 rpm and 40 mm/min 

with both a flat die and scroll die as a function of distance from 

the start of the extrusion ...........................................................................30 

 

Figure 4.18: Strain Components of wires extruded at 300 rpm and 12 mm/min 

with both a flat die and scroll die as a function of distance from 

the start of the extrusion ...........................................................................31 

 

Figure 4.19: Strain Components of wires extruded at 150 rpm and 8 mm/min 

with both a flat die and scroll die as a function of distance from 

the start of the extrusion ...........................................................................31 

 

Figure 4.20: The sum of the strain components plotted against the distance from 

the start of wire for all extrusions .............................................................32



xiii 

LIST OF SYMBOLS 

𝜀𝑙 Longitudinal Strain  

 

𝜀𝜃 Circumferential Strain  

 

𝜀𝑟 Radial Strain  

 

𝐴𝑜 Initial area of marker wire before the extrusion process  

 

𝐴𝑓 Final area of marker wire post extrusion process   

 

𝐷𝑜 Initial diameter of marker wire before the extrusion process   

 

𝑐 Average cord length of marker wire before the extrusion process   

 

𝐿 Final length of marker wire in the circumferential direction post extrusion   

 

𝑡 Average thickness of marker wire in radial direction post extrusion   

 

 

 

 

 

 

 

 



1 

CHAPTER 1 

INTRODUCTION 

Friction stir extrusion was first developed at The Welding Institute in the 1990’s. It 

was developed from friction processing, a group of operations that utilize friction as a 

thermal mechanical energy source for the welding and reprocessing of metals by 

plasticizing a specific region [1]. Friction stir extrusion was derived from friction stir 

welding, which was invented in 1991 by Wayne Thomas at The Welding Institute [2]. 

Friction stir welding is a solid-state process that joins metals through intense plastic 

deformation. Friction stir wielding is ideal for joining lightweight metals such as 

Aluminum, magnesium and titanium, as well as for joining dissimilar metals [3]. These 

principals were applied to extrusion to create friction stir extrusion, which was patented by 

the Welding Institute in 1993 [4]. 

Similar to traditional extrusion, FSE changes the shape of the extrusion charge by 

forcing the material through a die. In FSE the die rotates as it plunges into the chamber of 

material, producing friction between die surface and the material to be extruded. This 

creates intense plastic deformation and as the temperature increases the material begins to 

flow through the die. Friction stir extrusion can be used to produce wire, rods with circular 

and square cross sections, and hollow tubes.  

Friction stir extrusions are either rate controlled or force controlled. In rate 

controlled extrusion, the die advance rate is held constant and the extrusion force varies 

throughout the extrusion. As the extrusion progresses and the process temperature
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increases, the force required to maintain the controlled extrusion rate decreases. In force 

controlled extrusion, the extrusion force is held constant throughout the extrusion and the 

rate changes. As the extrusion temperature increases throughout the extrusion, the 

extrusion rate also increases. In addition to either extrusion rate or extrusion force, the 

rotational speed of the die and the geometry of the die are also controlled variables. The 

response parameters during the process are the extrusion temperature, the power required, 

and the torque required to perform the extrusion.  

After it was patented in 1993, the technology was not explored further for many 

years. It began to receive attention again due to its potential as a recycling method for waste 

produced from machining processes. Recycling the waste from these processes prevents 

valuable material from being discarded, in turn reducing the need for new raw 

material.  Currently, 25% of the worlds CO2 emissions come from material production, 

and the demand for materials continues to increase each year [5]. In order to meet material 

demands and reduce negative environmental impact of the material industry, there has been 

increased interest in recycling as a solution. Traditional recycling methods involve re-

melting and re-casting materials. This process is highly energy intensive and results in 

material loss. In addition, this method requires additional manufacturing processes in order 

to produce a final product. While these traditional recycling process offer environmental 

benefits and economic savings over primary production, a more energy efficient recycling 

process would offer further benefits.  

Friction Stir Extrusion is a solid state process that does not require the material to 

reach its bulk melting point. Fully melting materials is a very energy intensive process, so 

by allowing the extrusion to occur at a solid state the overall energy consumption of the 
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recycling process can be greatly reduced.  FSE has been shown to produce a 53% reduction 

in primary energy demand compared to recycling through re melting [6].  FSE is able to 

produce wire directly from machining chips or a solid billet, simplifying the multi-step 

traditional recycling process into one convenient process. FSE saves material and energy 

compared to traditional extrusion, producing cost savings as well as a reduced 

environmental impact. While FSE shows promising benefits, the process needs to be better 

understood. Specifically, the effect of the chosen process parameters needs to be better 

understood. This work explores the effect of the process parameter on the resultant strain 

distribution in friction stir extruded wires.
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CHAPTER 2 

LITERATURE REVIEW 

2.1 WIRE PRODUCTION VIA FRICTION STIR EXTRUSION  

 Many manufacturing processes produce material waste, and there is high economic 

incentive to recycle and reuse this material. Machining chips have traditionally been 

difficult to recycle due to their high surface to volume ratio. Friction stir extrusion has been 

utilized to extrude wire directly from these machine chips left over from other 

manufacturing processes. Magnesium alloys are popular in many industries due to their 

high specific strength and great machinability [7]. Due to its common use, there are large 

volumes of magnesium alloy chips produced that need to be recycled. Wires have been 

extruded directly from mg alloy machining chips using FSE [8]. Using rate controlled 

extrusion with a die advance rate of 14mm/min and a die rotation rate of 250 rpm, Ansari 

et al. were able to produce wires 15 - 20 mm in length with no visible surface defects. The 

wires had a higher mechanical strength than the parent material. Wires have also been 

successfully extruded from AZ31 Mg machining chips [9]. Buffa et al. produced wires with 

rate controlled extrusion with a feed rate of 30 mm/min and varied die ration rate. The best 

results were obtained with a rational speed of 700 rpm, which produced a defect free wire 

with a tensile strength 80% of the parent material.   

Aluminum is another material with high strength to density ratio, making it an 

important material in the aerospace and automotive industries. Due to its common use in 

these industries, considerable amounts of aluminum chips are produced. FSE had been
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successfully applied to the direct recycling of aluminum alloy chips. Tang and Reynolds 

extruded wires from both AA2050 and AA2195 aluminum chips [10]. The wires produced 

from these alloys were intended to be used as a welding consumable and in wire arc 

additive manufacturing. They were extruded with a constant extrusion force of 17.8 kN 

and rotational speeds ranging from 100 rpm to 400 rpm. Low rotational speeds generated 

the lowest amount of heat and cold cracking was present along the length of the wire 

produced at 100 rpm. High rotational speeds were shown to produce excessive heat and 

the wire produced at 400 rpm had hot cracks on the surface. The intermediate rotational 

speeds ranging from 150 rpm to 350 rpm were proven to produce defect free wires for both 

of the tested alloys. FSE has also been applied to AA7277 aluminum chips [11]. Behnagh 

et al. utilized a constant extrusion force of 1.8 kN with the die rotation speed ranging from 

90 rpm to 250 rpm. They also found that wires produced with intermittent rotational speeds 

were the most successful due to the fact that their surface were not impacted by cold tearing 

or hot cracking. Tensile tests performed on the defect free wires showed they had 

mechanical properties very close to the parent material.  

Friction stir extrusion has also been proven as an effective method to produce wire 

directly from powder. Whalen et al. produced aluminum rods from Al-12.4TM powder 

[12]. The friction stir extrusion method was able to consolidate the power and extrude the 

rods all in one process. They were able to produce 5 mm diameter rods that had a higher 

elongation than rods of the same material that were conventionally extruded. Bafarri et al. 

mixed a silicon carbide micro powder into AA2024 aluminum chips and were able to 

successfully extrude defect free wires from the mixture [13]. This work showed that 

friction stir extrusion can be used as a fabrication method for metal matrix composites.  
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Friction stir extrusion has also been proven as a successful method to produce wires 

from solid billets. Wires were able to be produced form a 2050 aluminum billet using a 

scrolled die and force controlled extrusion [14]. Baffari et al. were able to produce sound 

wires 300mm in length, to be used as base material for wire arc additive manufacturing. 

These works show the feasibility of creating good quality wire through friction stir 

extrusion.  

2.2 MECHANICAL PROPERTIES OF WIRES 

 Friction stir extrusion has been shown to produce wires with improved 

mechanical properties when compared to traditionally extruded wires. During FSE, the 

material undergoes high shear deformation, which leads to grain refinement in the final 

product. In aluminum wires, this refined grain structure leads to an increase in mechanical 

strength [15]. Ahmadkhanbeigi et al. produced hollow tubes via FSE that showed 23% 

increase in yield strength when compared to the base material. The refined grain structure 

of these tubes also produced an increase in microhardness.   

The properties of magnesium wires have also been shown to improve through FSE. 

Behnagh et al. observed dynamic recrystallized grain structure in friction extruded wires 

produced from Mg chips [16]. All wires produced showed improved mechanical strength 

and ductility, with the largest improvements occurring in the wire with the most refined 

grain structure. Sharifzadeh et al. produced wires from Mg chips via FSE and found that 

the wires had a fine homogeneous grain structure [17]. This grain refinement caused the 

wires to have improved hardness, strength and corrosion resistance. These improved 

physical properties show that friction stir extrusion is a valuable manufacturing process 

that has the ability to produce wires with desirable mechanical properties.  
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2.3 STRAIN IN EXTRUDED WIRES  

 In conventional extrusion, strain is governed by the reduction ration (𝑟).  

𝑟 =  
𝐴𝑜

𝐴𝑓
    (Eq. 1) 

 𝐴𝑜 is the initial cross sectional area of the billet and 𝐴𝑓 is the final cross sectional 

area of the extruded part. The true strain (𝜀) can be calculated by taking the natural 

logarithm of the reduction ratio.  

𝜀 =  ln
𝐴𝑜

𝐴𝑓
     (Eq. 2) 

FSE shares many similarities with conventional extrusion, with the significant 

difference being the rotating die in friction extrusion. This rotating die changes the material 

flow pattern and changes the strain pattern experienced in the wire. To better understand 

the FSE extrusion process, the difference in strain between conventionally extruded wires 

and friction stir extruded wires needs to be understood.  

 In order to better utilize the friction stir extrusion process to achieve specific results, 

the effect of the process parameters also needs to be better understood. Process parameters 

include die rotation rate, extrusion rate, and extrusion force. One property of the wire 

directly impacted by the process control parameters is the strain pattern. Gaining an 

understanding of the strain patterns in wires with different combinations of process 

parameters will allow the optimal parameters to be chosen for wires for specific 

applications.  

2.4 MARKER INSERT TECHNIQUE  

In order to measure strain, the marker insert technique is utilized. This technique 

involves drilling a hole in the billet and inserting a marker wire of a different material prior 
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to the manufacturing process. By observing the marker wire in the final product, the 

material flow pattern can be determined.  

The marker insert technique was first used to analyze conventional extrusion [18].  

Henry Valberg utilized a grid pattern technique to observe material flow in direct 

axisymmetric extrusion. In order to create the grid pattern, radial and axial holes were 

drilled in the billet. Indicator wire pins were then inserted into the drilled holes, creating a 

stripe pattern. After the extrusion, both the wire and the extrusion butt were sectioned in 

order to observe the transverse and longitudinal marker pins. This grid pattern technique 

was successful and Valberg was able to develop a model of material flow. Notably, it was 

successful even in areas with high deformation, which were a shortcoming of previous 

techniques used.  

The marker insert technique has been used to observe material flow friction stir 

welding [19]. Seidel and Reynolds placed 6 marker inserts in the weld path at varying 

heights on both sides of the weld centerline. After the friction stir welding process, 0.025 

mm thick slices were cut from the top of the weld. The slices were etched in order to create 

contrast between the AA5454 marker material and the AA 2195 base material. The marker 

insert technique was successful, and the marker material in these sections was both 

continuous and distinguishable from the base material. This allowed the material flow in 

the longitudinal, transverse and vertical directions to be observed and correlated to welding 

parameters and tool geometry.  

Marker wire inserts have also been used in friction stir extrusions [20]. Baffari et 

al. utilized the marker wire technique and inserted a copper maker wire into the center of a 

AZ31 Magnesium billet that was compacted from machining chips. The marker wire was 
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able to successfully show that a helical material flow pattern occurred during the extrusion. 

Li et al. used an AA2195 marker wire inserted into an AA6061 billet to show that material 

moved gradually to the center of the extrusion following a spiral path [21]. In addition to 

mapping material flow, the marker wire technique has also been used to estimate strain in 

friction stir extrusions. Li et al. used an AA2195 marker wire in an AA6061 billet and 

tested 2 different rotational speeds and 2 different extrusion forces for a total of 4 tests [22]. 

It was observed that the spiral pattern of the marker wire decreased along the length of the 

extrusion, showing that as the extrusion progresses and the extrusion rate increases, it 

becomes more similar to a traditional extrusion. These tests used force controlled extrusion, 

which produced varying extrusion rates throughout the extrusion. This made it difficult to 

correspond strain to specific parameters, and it was determined that in order to produce 

consistent strain levels the rate of the extrusion needed to be controlled. 



10 

CHAPTER 3 

EXPIREMENTAL PROCEDURES 

3.1 EXTRUSION PROCESS 

Wires were extruded using a Shear Assisted Processing and Extrusion (ShAPE) 

machine at Pacific Northwest National Laboratories. The wires were extruded with rate-

controlled extrusion, with a constant feed rate throughout the extrusion. During the 

extrusions the process temperature, force, power, pressure and torque were recorded. The 

wires were produced with MP159 (cobalt nickel alloy) dies. The first die was a flat faced 

die and the second was a scrolled face die. The die geometry can be seen in fig. 3.1 

  

                            (a)                 (b) 

Figure 3.1: Die geometry of (a) scroll die (b) flat die  

The wires were extruded from AA1100 aluminum billets with an initial diameter 

of 25.4 mm and an initial length of 12.7 mm. A 10:1 reduction ratio was used, creating 

wires with a final diameter of 2.54 mm. The final length of the extruded wires ranged from 

413 mm to 723 mm. In order to measure the strain components, a marker wire was inserted 

into the billet to track material flow. AA2050 aluminum wire was inserted a distance 
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equivalent to ⅓ the radius of the billet away from the center of the billet. Some samples 

also had a marker wire inserted in the center of the billet.  

The two extrusion parameters that changed from extrusion to extrusion were die 

advance rate and die rotation rate. Five die advance rates were tested ranging from 4 

mm/min to 40 mm/min. Four die rotation speeds were tested ranging from 150 rpm to 450 

rpm. These parameters were combined to create eight different combinations. In addition, 

two different die were used. Each of the eight conditions was run with both a flat die and a 

scroll die. The parameters and dies used for each extrusion are detailed in table 3.1.  

3.2 SAMPLE PREPARATION 

In order to observe transverse cross sections along the extrusion, 2 mm segments 

were cut from the wires. These segments were cut from the wires at distances ranging from 

2 mm to 500 mm from the start of the wire. These segments were mounted in epoxy and 

ground with silicon carbide paper starting with 120 grit and ending with 1200 grit. The 

samples were then polished with 5 and 3 micron diameter alumina powder and then finally 

with colloidal silica. In order to distinguish the AA2050 marker wire from the AA1100 

wire, a Keller's etch was used. The Keller's etch was prepared with 190 mL water, 5 mL 

nitric acid, 3 mL hydrochloric acid, and 2 mL hydrofluoric acid. Keller etch was chosen 

because it produced good contrast between the AA1100 base material and the AA2050 

marker wire, which allowed the marker wire to be observed and measured. The samples 

were submerged for 15 seconds in the Keller’s etch. Images were then taken of each cross 

section at 500x magnification with an optical microscope.  
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Table 3.1: The process parameters and die used for each extrusion 

 

Extrusion Die Advance Rate Die Rotation Rate Die 

1  4 mm/min 300 rpm Flat 

2  8 mm/min 300 rpm Flat 

3  12 mm/min 300 rpm Flat 

4  8 mm/min 150 rpm Flat 

5  8 mm/min 450 rpm Flat 

6  16 mm/min 300 rpm Flat 

7  40 mm/min 300 rpm Flat 

8  40 mm/min 150 rpm Flat 

9  4 mm/min 300 rpm Scroll 

10  12 mm/min 300 rpm Scroll 

11  8 mm/min 150 rpm Scroll 

12  8 mm/min 450 rpm Scroll 

13  8 mm/min 300 rpm Scroll 

14  16 mm/min 300 rpm Scroll 

15  40 mm/min 300 rpm Scroll 

16  40 mm/min 150 rpm Scroll 

  

3.3 STRAIN CALCUALTIONS  

  The strain in the wire can be broken down into three orthogonal strain components 

in cylindrical coordinates: longitudinal strain in the direction of the extrusion, 

circumferential strain in the direction of the die rotation, and radial strain in the radial 

direction. The three components of strain were calculated based on the change in dimension 
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of the ⅓ radius marker wire in cylindrical coordinates. The three components of strain are 

calculated with the following equations:  

𝜀𝑙 = ln (
𝐴𝑜

𝐴𝑓
)     (Eq. 3) 

𝜀𝜃 = ln (
𝐿

𝐷𝑜
)    (Eq. 4) 

𝜀𝑟 = ln (
𝑡

𝑐
)     (Eq. 5) 

 𝐴𝑜 is the initial area of the marker wire, 5.06 mm2, and 𝐴𝑓 is the final measured 

area. 𝐿 is the length of the marker wire in the theta direction and 𝑡 is the average thickness 

in the radial direction. 𝐷𝑜 is the initial diameter of the marker wire, 2.54 mm. 𝑐 is the 

average cord of the initial marker wire. These measurements can be seen on a wire cross 

section cross section in fig. 3.2.   

A Keyence optical microscope was used to obtain the necessary measurements. The 

total area of the marker wire was measured using the color contrast between the AA2050 

and the AA1100 created by the Keller's etch. The arc measurement function on the 

microscope was used to measure the length of the ⅓ radius marker wire since the marker 

wires showed a spiral pattern. The linear measurement function was used to measure the 

thickness of the ⅓ radius marker wire spiral at increments along the spiral to determine the 

average thickness in the radial direction. Figure 3.3 details how each measurement was 

taken.  

 



14 

  
(a) (b) 

 

 
(c) 

 

 

Figure 3.2: (a) Final area measurement (b) Final length measurement (c) Final average 

thickness measurement 
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(a) (b) 

 

 
(c) 

 

 

Figure 3.3: (a) Color contrast feature used to measure area of marker wire (b) Arc 

measurement feature used to measure final length (c) Linear measurement feature used to 

make measurements to calculate average thickness 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 IMAGES  

The marker wire technique that was utilized proved to be successful. A clearly 

defined marker wire was visible throughout the wires extruded with a flat die. After 

etching, the AA2050 marker was clearly distinguished from the AA100 wire. Images of 

the cross section taken 100 mm from the start of each flat die wire can be seen in fig. 4.1.  

  
(a) (b)  

  
(c)  (d)  
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(e)  (f)  

  
(g) (h) 

 

Figure 4.1: Images taken on optical Microscope of wire cross sections 100mm from the 

start of the extrusion. (a) Cross section from wire 1 produced at 4 mm/min and 300 rpm (b) 

Cross section from wire 2 produced at 8 mm/min and 300 rpm (c) cross section from wire 

3 produced at 12 mm/min and 300 rpm (d) cross section from wire 4 produced at 8 mm/min 

and 150 rpm (e) cross section from wire 5 produced at 8 mm/min and 450 rpm (f) cross 

section from wire 6 produced at 16 mm/min and 300 rpm (g) cross section from wire 7 

produced at 40 mm/min and 300 rpm (h) cross section from wire 8 produced at 40 mm/min 

and 150 rpm 

 

 The pattern of the marker wire varies from sample to sample, showing that the 

different extrusion parameters created different strain patterns in the wires.  

4.2 STRAIN COMPONENTS 

The three strain components were calculated for each cross section taken from the 

wires. 
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Figure 4.2: Longitudinal strain in flat die wires as a function of position from the start of 

the extrusion.   

 

Figure 4.2 displays the longitudinal strain observed in the samples extruded with a 

flat die as a function of position along the wire, measured from the start of the extrusion. 

The longitudinal strain was lower very close to the start of the extrusion. There was a region 

corresponding to the beginning of the extrusion where the longitudinal strain increased 

rapidly. After approximately 100 mm into the wires, the longitudinal strain leveled off and 

remained constant throughout the rest of the extrusion. This initial region with a rapid 

change in longitudinal strain could be attributed to the dead metal zone forming at the 

beginning of the extrusion. Dead metal zones in extrusions can lead to decreased strain 

[23]. This occurs when material flows only from the center portion of the billet rather than 

the entire billet feeding onto the extrusion. All the wires with the exception of extrusion 1 

experienced similar longitudinal strain values, showing that the extrusion parameters do 

not affect the longitudinal strain. In a conventional extrusion with a 10:1 reduction ratio, 
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the expected value of longitudinal strain is 4.6. The longitudinal strain observed in the flat 

die extrusions was close to this value.  

Figure 4.3 displays the radial strain in the samples extruded with a flat die as a 

function of position along the wire.  

 

Figure 4.3: Radial strain in flat die wires as a function of position from the start of the 

extrusion.   

 

The radial strain shows a transient region near the start of the wires, similar to the 

longitudinal strain. After approximately 100 mm the values of radial strain remain constant 

throughout the extrusion. The radial strain varied from wire to wire, showing that it is 

affected by the selected extrusion parameters. The expected radial strain value for a 10:1 

conventional extrusion is -2.3. The radial strain in all the friction stir extruded wires was 

significantly lower than this expected value.  

Figure 4.4 displays the circumferential strain in the flat die samples as a function 

of position along the wire.  
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Figure 4.4: Theta strain in flat die wires as a function of position from the start of the 

extrusion. 

 

The circumferential strain results show a similar transient region at the beginning 

of the extrusion. After this region the circumferential strain remained steady for the rest of 

the length of the wire. Similar to the radial strain results, the different extrusion parameters 

did produce different circumferential strain values. While the circumferential strain varied 

from wire to wire, all recorded values were significantly higher than -2.3, the 

circumferential strain expected in conventional extrusion with a 10:1 reduction ratio.  

4.3 EFFECT OF PARAMTERES ON STRAIN  

In order to analyze the effect of the die advance rate, wires that were extruded with 

the same rotational speed but different die advance rates are compared. The only factor 

changing between these wires is the die advance rate used, so the difference in strain results 

can be attributed to this change in die advance rate. Figure 4.5 displays strain data from the 

5 wires extruded with a rotational speed of 300 rpm and die advance rates varying from 4 
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mm/min to 40 mm/min. The average value of each of the 3 strain components is plotted 

against the die advance rate used for each extrusion.  

 

Figure 4.5: The average strain values of wires extruded with a rotational speed of 300 rpm 

plotted against the die advance rate used for each extrusion.  

 

As expected, the longitudinal strain remains constant and is not affected by the 

different feed rates. As the feed rate increases, the circumferential strain decreases and the 

radial strain increases. An increase in feed rate causes both the circumferential and radial 

strain to move closer to -2.6, the expected value in a conventual extrusion. 

In order to analyze the effect of rotational speed, wires with the same feed rate and 

different rotational speeds are compared. There are two groups of wires produced at the 

same feed rate and different rotational speeds. First, fig. 4.6 displays the average strain data 

from three wires extruded with a constant feed rate of 8 mm/min plotted against the 

rotational speed each wire was extruded with. The rotational speeds used to extrude these 

wires are 150 rpm, 300 rpm, and 450 rpm.  Second, fig. 4.7 displays the average strain data 
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from the two wires extruded with a feed rate of 40 mm/min. These wires were extruded 

with rotational speeds of 150 rpm and 300 rpm.  

 

Figure 4.6: The average strain values of wires extruded with an 8 mm/min feed rate plotted 

against the rotational speed used for each extrusion. 

 

 

Figure 4.7: The average strain values of wires extruded with a 40mm/min feed rate plotted 

against the rotational speed used for each extrusion. 
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The extrusions at 8 mm/min and 40 mm/min show similar trends when it comes to 

the effect of rotational speed. Higher rotational speeds lead to a decrease in radial strain 

and an increase in circumferential strain. As rotational speed is decreased, the values of 

radial strain and circumferential strain move closer to the expected value in a conventional 

10:1 extrusion.   

 In order to evaluate the overall effects of the extrusion parameters, the strain results 

for each wire are correlated to the die advance per revolution of the wire. The die advance 

per revolution takes into account both the feed rate and the rotational speed used. The die 

advance per revolution for each wire are displayed in table 4.1. 

Table 4.1: Die advance per revolution for each wire 

 

Wire Die Advance Rate Die Rotation Rate 
Die Advance per 

Revolution 

1 4 mm/min 300 rpm 0.0133 mm/rev 

2 8 mm/min 300 rpm 0.0266 mm/rev 

3 12 mm/min 300 rpm 0.04 mm/rev 

4 8 mm/min 150 rpm 0.0533 mm/rev 

5 8 mm/min 450 rpm 0.0177 mm/rev 

6 16 mm/min 300 rpm 0.0533 mm/rev 

7 40 mm/min 300 rpm 0.1333 mm/rev 

8 40 mm/min 150 rpm 0.2667 mm/rev 

 

Figure 4.8 shows the average value for each component of strain as a function of 

DAPR.  
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Figure 4.8: Average strain values as a function of die advance per revolution 

As seen previously, longitudinal strain remains relatively constant and is not 

affected by the changing extrusion parameters. As the die advance per revolution becomes 

larger, the theta strain decreases and the radial strain increases. These strain values are 

furthest from each other and furthest from the expected value in conventional extrusion 

with lower DAPR. As the DAPR is increases, the radial and theta strains begin to converge 

on the expected conventional extrusion values. In a conventual extrusion the die does not 

rotate, causing the DAPR for a conventual extrusion to be infinite. Therefore, as the DAPR 

of a friction stir extrusion increases, it becomes more similar to conventional extrusion. 

This is supported by the strain results because as the DAPR increases and the extrusion 

become more like a conventional extrusion, the strain values converge on the strain values 

of the conventional extrusion.  

Extrusions 4 and 6 have the same die advance per revolution but have different 

process parameters. Wire 6 was extruded with a rotational speed of 300 rpm and a feed rate 
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of 16 mm/min while wire 4 was extruded with a rotational speed of 150 rpm and a feed 

rate of 8 mm/min. While these process parameters are significantly different, the DAPR 

for both extrusions was 0.0533 mm/revolution. The strain components for both wires are 

displayed in fig. 4.9 as a function of the position from the start of the extrusion.  

Despite the fact that these two wires were produced at different rotational speeds 

and feed rates, the strain results are very similar. This shows the strain response is 

controlled by the ratio of the feed rate to the rotational speed rather than the individual 

values of each parameter.  

 

Figure 4.9: The strain components of extrusion 4 and extrusion 6 as a function of distance 

from the start of the extrusion.  

 

4.4 SCROLL FACE DIE 

 In order to see the effect of die geometry, extrusions were performed with a scroll 

die with the same parameter combinations used for the flat die extrusions. Figures 4.10 

through 4.12 compare cross sections from wires extruded with the same rotational speed 
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and feed rate but with different dies. All the images in figures 4.10 through 4.12 are from 

cross sections taken 300 mm from the start of the extrusion.  

 

 

(a) (b) 

Figure 4.10: Cross sections from extrusions performed at 300 rpm and 16 mm/min. 

(a) flat die extrusion. (b) scroll die extrusion  

 

 

 

 

(a) (b) 

Figure 4.11: Cross sections from extrusions performed at 300 rpm and 40 

mm/min. (a) flat die extrusion. (b) scroll die extrusion 

 

 



27 

  

(a) (b) 

Figure 4.12: Cross sections from extrusions performed at 150 rpm and 40 mm/min.         

(a) flat die extrusion. (b) scroll die extrusion 

 

The marker wire in the flat die samples remained circular while the center and 1/3r 

marker wires showed an oval pattern in multiple scroll die samples. This oval pattern was 

consistent across all the cross sections from these scroll die samples. This shows that the 

die geometry did influence the pattern of material flow throughout the process. To 

determine the influence of die geometry on strain, the three strain components were 

calculated for the scroll die samples, and the results are displayed in figures 4.13 through 

4.15.  

In order to determine the effect of die geometry, the strains of the flat die wires 

were directly compared to the strains in the scroll die wires extruded under the same 

conditions. Figure 4.16 compares the strain components of the 2 wires extruded with a 

rotational speed of 300 rpm and a feed rate of 40 mm/min.  
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Figure 4.13: Longitudinal strain in the scroll die samples as a function of distance from the 

start of the extrusion.  

 

 

Figure 4.14: Theta strain in the scroll die samples as a function of distance from the start 

of the extrusion.  
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Figure 4.15: Radial strain in the scroll die samples as a function of distance from the start 

of the extrusion.  

 

 

Figure 4.16: Strain Components of wires extruded at 300 rpm and 40 mm/min with both a 

flat die and scroll die as a function of distance from the start of the extrusion.  
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Figure 4.17 compares the strain components of the 2 wires extruded with a 

rotational speed of 150 rpm and a feed rate of 40 mm/min. Figure 4.18 compares the strain 

components of the 2 wires extruded with a rotational speed of 300 rpm and a feed rate of 

12 mm/min. Figure 4.19 compares the strain components of the 2 wires extruded with a 

rotational speed of 150 rpm and a feed rate of 8 mm/min.  

Figures 4.16 through 4.19 show that the longitudinal, circumferential, and radial 

strains were very similar between the flat die and scrolled die wires. While the die geometry 

did change the material flow pattern it did not have significant impact on the strain 

components. 

 

Figure 4.17: Strain Components of wires extruded at 150 rpm and 40 mm/min with both a 

flat die and scroll die as a function of distance from the start of the extrusion. 
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Figure 4.18: Strain Components of wires extruded at 300 rpm and 12 mm/min with both a 

flat die and scroll die as a function of distance from the start of the extrusion. 

 

 

 

 

Figure 4.19: Strain Components of wires extruded at 150 rpm and 8 mm/min with both a 

flat die and scroll die as a function of distance from the start of the extrusion. 
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4.5 VALIDITY OF METHOD   

In order to verify the accuracy of the method used to calculate strain, the sum of 

the strain components was analyzed. Friction extrusion is a plastic deformation process 

with a constant volume, and therefore the sum of any three mutually perpendicular strain 

components should be zero [24]. The sum of the strain values are displayed in fig. 4.20.  

 

Figure 4.20: The sum of the strain components plotted against the distance from the start 

of wire for all extrusions.  

 With the exception of extrusion 3, the sum of the strain components were very close 

to zero. This shows that the method used to calculate the strain components produced 

reliable results. 
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CHAPTER 5 

CONCLUSIONS   

1. The sum of the strain components was very close to zero for all wires, which is 

expected in a controlled volume plastic deformation process. This shows that the 

method used produced accurate strain results. 

 

2. The longitudinal strain is not dependent on the extrusion parameters and is similar 

to the longitudinal strain expected in a conventional extrusion with the same 

reduction ratio.  

 

3. The radial and circumferential strains are dependent on the extrusion parameters. 

As the DAPR increases, the extrusion becomes more similar to conventual 

extrusion and the radial and circumneutral strain components converge on the 

expected value in a conventional extrusion.  

 

4. The strain response is controlled by the ratio of the die advance rate to the rotational 

speed rather than the individual values of each parameter.  

 

5. While the die geometry affected the pattern of the marker wire, the scroll die 

samples showed very similar strain values to the flat die samples produced with 

equivalent process parameters. 
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