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ABSTRACT

Additive Manufacturing (AM) has its proven advantages to unlock the design 

space and manufacturing capabilities for complex geometries with lightweights. 

Distortion is one of the most common defects that occur in Laser Powder Bed Fusion 

Additive Manufacturing (LPBFAM), which is caused by the significant residual stress 

during the printing process. This can lead to numerous process iterations to achieve the 

requisite form and fit tolerances. 

In this study, Finite Element (FE) model that utilizes the element birth approach 

was developed to predict the residual stress and distortion in the LPBFAM process. The 

methodology leverages a simplified approach where the detailed scanning pattern with 

motion of microscale melt is supplanted by slice-by-slice activation. In the model, each 

mesh layer (slice) consists of one or multiple actual build layers (actual powder 

thickness). The model successively activates each mesh layer one at a time with an 

activation time and calculated body heat flux corresponding to the real fabrication 

process. This multiple layer activation approach yields great computational efficiency 

while substantially capturing the transient physics of the process. A benchmark case 

published by NIST, which documented the detailed distortion profile for a bridge 

geometry, was simulated by this model. The predicted residual stress and distortion were 

compared against the published experimental data, where good agreement was achieved. 

In addition, the predictions were also compared with the AM Modeler, an embedded 
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commercial package for AM process modeling in Abaqus. The pros and cons for 

different methodology were discussed. To further utilize the developed FE model, a thin 

plate with multiple mini channels was predicted to understand its distortion during the 

printing process. Lastly, since the methodology is general and it can be applied to other 

materials systems and AM methods that employ similar fabrication procedure, the 

distortion in a dog-bone geometry with PLA plastic in Fused Filament Fabrication 

process was demonstrated to conclude this study. 

This work sets a solid foundation to continuously develop a robust computational 

model to mitigate distortion through the optimization of scanning paths based on critical 

geometry features and the overall thermal characteristics during LPBFAM process. It 

will be a key component in a suite of numerical tools that enable virtually guided 

certification for LPBFAM process. 
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CHAPTER 1   INTRODUCTION

Metal industrial products have been traditionally manufactured using various 

forms of casting and molding in combination with forming that can include forging, 

rolling, and extrusion processes. In most cases these methods are combined with 

machining using subtractive processes and then joining to produce a part or other product. 

Along with traditional and subtractive methods, powder-based processing methods have 

been used for part production especially for geometrically complex structures. Over 

decades, experience and analysis has been combined to formulate codes and standards as 

well as to mature various characterization, testing and evaluation methods that identify 

classes of defects, select alloys for applications, and assess their significance when 

incorporated into advanced computational models. There is now an increasingly diverse 

range of additive manufacturing (AM) process techniques that provide the ability to 

produce parts directly from computer-generated models with little to no additional 

material removal, without additional tooling required. 

         AM is a process of layer-by-layer addition of material of thin slices using different 

joining mechanisms, e.g. cohesive bonding, sintering, and melting obtain the intermediate 

or final design geometry of the part. AM process have been initiated for a quite long time 

ago since 1984 [1] but refinement in the quality of build is currently still ongoing and a 

topic of deep research in the scientific community. The aerospace, automotive and bio-

medical industry has become increasingly interested in the potential use of AM methods 

to produce high-temperature, organic and stable components. Key 
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`drivers for this include the ability to produce complex net shape components without the 

same restrictions imposed by traditional machining and the ability to rapidly produce 

small batches of complex components without the prohibitive setup costs of traditional 

casting techniques [2]. 

Among all the AM process, laser powder bed fusion (LPBF) additive 

manufacturing is one of the most widely used technique to fabricate metallic components 

with fine feature resolutions. In this process, laser selectively melts ultra-thin layers of 

powder to form the desired geometry. However, due to extensive melting and 

solidification, defects like porosity, cracking and distortion are commonly observed in the 

final products. In order to achieve the desired dimensions and materials properties, 

significant process development time, typically based on trial-and-error methods, is 

required for novel designs that utilize the method’s full potential, particularly for high 

value components. For this reason, it is necessary to develop new and to adapt current 

computational tools for the assessment of microstructural features and provide reliable 

detection and characterization of defects. Developing such tools with a good 

understanding of the mechanisms of defect formation like residual stress, distortion effects 

during the manufacturing process should enable AM methods to be more widely adopted 

with significantly reduced process development time for any introduction of new designs 

or new materials. It is also necessary to understand the significance of the various classes 

of defects on part functionality and life under the influence of operational stresses. When 

considering a components life cycle, it is desirable to optimize the manufacturing process 

with ideal scanning strategy and then plan monitoring and replacement of parts before 

they fail. 
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         The development of computational tool to predict the residual stress and distortion 

in LPBFAM are core of this study. The thesis is organized in this following manner: 

Chapter 2 provides a comprehensive literature review starting with classification of AM 

technology, drawing attention mainly onto LPBF process, it identifies and talks about 

various defects during the LPBF, it specifically talks about RS, distortion and effect of 

scanning strategy on RS and distortion. It concludes with drawing focus over prediction 

and mitigation strategies. Chapter 3 describes in detail on Layer-Layer model change 

method and PEA method the two distinct methodologies in process of prediction of RS 

and distortion. It details on parameters and workflow that is to be considered for these 

processes. Chapter 4 validates the results of stress and displacement of Layer-wise model 

and PEA model with benchmark results provided by NIST 2018 AM benchmark results 

and finally, Chapter 5 concludes the current study and provides direction of future 

research. 
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CHAPTER 2   LITERATURE REVIEW 

2.1 ADDITIVE MANUFACTURING 

 AM, which is generally also known as 3D printing, is the process of layer-by- layer 

addition of material of thin slices using different material binding processes [1] to obtain 

the final part as per the designed geometry in the three-dimensional CAD software, AM 

process eliminates the need for tooling, assembly compared to the conventional 

manufacturing processes. 

2.2 CLASSIFICATION OF AM TECHNOLOGIES 

The AM process are diversly classified based on the form of feedstock (Powder, 

Sheets or Wire) the type of power source (Laser, Electron Beam). All metal AM processes 

must consolidate the feedstock into a dense part. The consolidation may be achieved by 

melting or solid-state joining during the AM processes to achieve this. To discuss distinct 

classes of machines, the ASTM F42 Committee on Additive Manufacturing has issued a 

standard on process terminology [1]. Of the seven F42 standard categories, the following 

four pertain to metal AM: 

       Out of these various classifications for the sake of our research work, we focus on 

Laser Powder Bed Fusion, also commonly known as Selective Laser Melting process, and 

study the development of residual stress and distortion during the printing process. 
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Table 2.1: Classification of Additive Manufacturing Processes 

Powder Bed Fusion (PBF) Selective laser Melting (SLM) 

Electron Beam Melting (EBM) 

Direct Energy Deposition (DED) Laser vs. Electron beam 

Wire fed vs. Powder fed 

Binder Jetting Infiltration 

Consolidation 

Sheet Lamination Ultrasonic Additive Manufacturing (UAM) 

 

2.2.1 POWDER-BASED ADDITIVE MANUFACTURING PROCESSES 

LPBF and directed energy deposition (DED) are two AM processes where 

powders are the feedstock. In both these methods, the processing parameters and raw 

material characteristics influence the quality and mechanical properties of the as 

deposited parts. The physical mechanisms by which the various processing parameters 

and powder characteristics influence the parts microstructure, defect populations, and 

attending mechanical properties are topics of multiple ongoing research efforts across 

the AM community. While the mechanisms by which various process parameters 

influence defects and microstructure may not be completely known, several parameters 

associated with PBF and DED powder-based AM technologies have been correlated with 

defects and microstructure. These parameters include the quality of the powder feedstock 

and the power imparted by the heat source. Although there are more parameters that are 

common to PBF and DED than there are differences, the differences are important and 

will impact the thermal gradients of the molten pool and surrounding material. So the 

molten pool size, powder feed rate, and shielding gas flow are all critical process 
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parameters [3] . In the PBF method, pre-heating of the powder bed influences the 

solidification process and thermal gradient in the part. The following process parameters 

and material attributes that affect the final part properties are listed in Table 2.2. 

Table 2.2: Parameters effecting printed part properties. 

Process Parameters Powder Parameters 

Scanning rate (speed) Grain Size 

Heat Source energy (laser/electron 

beam) 

Specific Heat 

Scanning spot size (radius/ length) Melting Temperature 

Shielding gas flow rate Thermal Conductivity 

Bed Temperature Absorptivity 

Powder flow rate Emissivity 

Scanning hatching pattern  

The physical processes that occur during AM are complex and are just beginning 

to be fully understood and quantified [4]. Indeed, the particles not only move during the 

AM process, but that the fundamental physics of the process (e.g. metal vapor flow) are 

highly variable, and can create, effectively, vortexes which cause the powder to move. 

Once entrained in the liquid, the melt pool dynamics are equally complex, with Marangoni 

convection, evaporation, wetting, and capillarity playing strong roles (among many other 

operating physics). The liquid metal velocity is quite high, and results in features that 

resemble comet tails as melting particles leave molten material behind them as they move 

through the molten pool [4]. These physics present challenges in understanding and 

modelling AM processes, but it is expected that over the next three to five years, several 
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research groups will be able to contribute to the knowledgebase of the heat source/particle 

interactions. [3] 

 

Figure 2. 1: Powder bed fusion additive manufacturing [3] 

2.2.1.1 POWDER BED FUSION  

Powder bed fusion (PBF) systems normally include a heat source, an automatic 

powder layering mechanism, a computer control system and related sensors and 

accessories. Such a system is shown in schematic form as Figure 2.1. LPBF is a specific 

application of PBF technology [3] with laser beam as the heat sources, it is a new kind of 

rapid prototyping (RP) technology. Its biggest advantage is the capability of fabricating. 

nearly 100 percent dense metallic parts, compared to other RP technology such as 

Stereolithography (SLA), Selective Laser Sintering (SLS), etc. SLM is layer-wise material 

addition technique that allows generating complex 3D parts by selectively melting 

successive layers of metal powder on top of each other, using thermal energy supplied by 

a focused and computer-controlled laser beam. It is widely used in the rapid direct 

manufacturing of mold parts and customized medical appliances in complex shape [6]. 
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The LPBF process typically consist of a laser source, vacuum chamber filled with 

shielding gas (Argon), re-coater blade or roller, overflow chamber, powder bed and 

powder delivery chamber as shown in the Figure2.1. The movement of the laser source 

is operated by a computer based on the 3D CAD design of the part that is pre-loaded into 

it. The build chamber is a sealed work space filled with flow of shielding gas and mix of 

oxygen, in the build chamber the powder bed is at center of powder delivery system over 

the left and powder overflow chamber onto the right, initially the base plate is fixed in 

position over the fabrication piston and the top surface is coated with a thin slice of 

powder (SS316) by the movement of re-coater blade from powder delivery system (base 

position) which is filled with powder to the overflow chamber (intermediate position), 

then the laser begins the print of 1st layer from the sliced file, now powder is again spread 

over the previous layer in each step of production using a roller or a blade, the roller 

comes back to the initial position from previous intermediate position and recoats the 

surface of the base plate with another layer of powder that is carried from the powder 

deliver chamber and once again rests at the intermediate position while laser prints the 

2nd layer. After each step of layering, the build platform lowers the part so the process 

can be repeated for subsequent layers till all the sliced layers are printed to form the 

required component. Laser sources typically utilize ans inert gas environment or gas 

shielding to prevent excessive oxidation. Typically, melting processes are faster than 

sintering, but require higher energy expenditure. 

2.3 RESIDUAL STRESS IN LPBF PROCESS 

Residual stress (RS) is common exhibited in metal AM materials and it can 

negatively impact mechanical properties and act as a driving force for changes in grain 
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structure and dimensional accuracy of the final product [7],[8]. The rapid heating-cooling 

thermal cycle of AM process, which is very similar to welding process, together with the 

large thermal gradient, results in residual stresses that are retained within a body when 

there are no external forces are acting on the body and it has reached equilibrium with 

its environment [9]. If this stress exceeds the local yield stress of material, warping or 

plastic deformation occurs. If this stress exceeds the local ultimate tensile strength of the 

material, cracking or other defects may occur. Macroscopic residual stresses can have a 

dramatic effect on the bulk behavior of AM parts, whereas the effects of microscopic 

residual stresses from precipitates or atomic dislocations are more localized[30]. 

         Macroscopic residual stress can be thermally introduced in metal AM by (1) 

differential heating of the solid and (2) differential cooling during and after solidification. 

Residual stresses[31] are generally classified according to the scale at which they occur, 

Type I residual stresses: which vary over large distances, namely the dimensions of the 

part. 

        These macro stresses can result in large deformations of the part. Type II and Type 

III residual stresses: occur due to different phases in the material and due to dislocations 

at atomic scale, are not considered in this study[10], since they are of less importance for 

the geometrical dimensions. Moreover, the measurement resolution of most test methods 

is not small enough to measure type II and type III residual stresses. 

Residual stress is a concern because it can negatively affect the mechanical 

properties of the fabricated parts or lead to geometrical distortions, it may also influence 

recrystallisation. Several techniques have been applied to measure residual stress in AM 

parts they can be categorized as either nondestructive or destructive; both categories have 
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benefits and drawbacks and tend to be application specific. The most used nondestructive 

methods are X-ray and neutron diffraction [11], which can provide near surface and 

volumetric residual stress measurements in crystalline materials, respectively. 

         To predict the residual stress during fabrication, different methods of finite element 

analysis (FEA) have been developed and are proven fast and reliable [12] (Benchmark 

model), offering leverage to optimize the design based on the results from the 

predictions. The magnitude of residual stress and the ways to reduce it are process 

dependent. 

 
Figure 2. 2: Distortion caused in the part due to  

residual stress in a part built by LPBF 

a)No Preheating (b) Preheated to 200 °C [5] 

2.4 MODES OF HEAT TRANSFER 

Since the thermal cycle and thermal gradient drive the residual stress, it is 

important to understand how the modes of heat transfer differ between AM processes 

[7], [13]. After powder is melt, solidification determines the initial phase distribution and 

grain morphology of the metal deposit. The factors which determine the solidification 

kinetics are: 

1. Heat Source 
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2. Speed, Power  

3. Size Determines Melt Pool Geometry. 

After solidification, thermal cycling and cool down path further determine the 

phase growth and grain growth. It is important to understand how the modes of heat 

transfer differ between AM processes. In LPBF processes transfer heat primarily through 

conduction to the substrate, conduction to the build material and convection to the shield 

gas [7]. 

 
Figure 2. 3: Modes of heat transfer [13] 

These modes of heat transfer are the same as those for welding. However, in LPBF 

processes, conduction may be inhibited by powder acting as a thermal insulator 

surrounding the part. Additionally, the fill gas in LPBF has a lower flow rate (argon gas 

consumption of 0·035–0·070 𝑚3/h). LPBF processes may use heaters to increase the 

temperature of the build envelope to 100–200°C. This is intended to reduce residual 

stress and warping but is not high enough to significantly impact the phase and grain 

structure of typical AM alloys. The mode of heat transfer can have important microscopic 

implications. For example, the depth of a melt pool is typically controlled by the 
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conduction of heat from the melt pool to material underneath. However, keyhole mode 

formation of porosity can occur when the depth is controlled by metal evaporation. Being 

able to transition between calculations on this microscopic scale and calculations of bulk 

heat transfer is important and is discussed later along with computational modelling of 

metal AM processes. 

2.4.1 THERMAL ANALYSIS 

The governing equation for heat transfer energy balance is written as [13]: 

𝛒𝐂𝐩 𝐝𝐓 /𝐝𝐭 =  −𝛁 ·  𝐪(𝐫, 𝐭)  +  𝐐(𝐫, 𝐭)            (𝟐. 𝟏) 
 

         where ρ is the material density, Cpis the temperature dependent specific heat 

capacity, T is the temperature, t is the time, Q is the volumetric internal heat generation 

rate, x is the relative reference coordinate, and q is the heat flux vector. The Fourier heat 

flux constitutive relation is: Conduction (Part to Substrate) 

𝐪 =  −𝐤𝛁𝐓         (𝟐. 𝟐) 

         where k is the temperature dependent thermal conductivity. Thermal radiation 

q(rad) is calculated using the Stefan-Boltzmann law: Radiation. (melt pool to 

shielding gas) 

𝒒(𝒓𝒂𝒅)  =  𝜺𝝈(𝑻𝒔𝟒 −  𝑻∞𝟒)        (𝟐. 𝟑) 

        where ε is the surface emissivity, 𝜎 is the Stefan-Boltzmann constant, and Ts is the 

surface temperature of the workpiece. Newton’s law of cooling calculates convective 

heat loss q(conv): Convection (shielding gas & Part) 

𝐪(𝐜𝐨𝐧𝐯)  =  𝐡(𝐓𝐬 −  𝐓∞)             (𝟐. 𝟒) 

         where h is the convective heat transfer coefficient. From the above Equations (2.1) 

– (2.4) the heat absorbed by the material during the melting, solidification and cooling 
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process can be calculated from the vector. Further this data is used by software like 

ABAQUS to interpolate the stress and part distortions caused by this thermal gradient. 

2.5 DEFECTS IN LPBF PROCESS 

The major defects in LPBF process can be due to Residual stresses and distortion 

[14]. The formation of defects is essentially dependent on process, temperature, and 

process parameters (laser power, layer thickness, porosity) [3], [7]. Cracking of the 

microstructure may occur during solidification or subsequent heating. Macroscopic 

cracks may relate to other defects, including porosity. Delamination leading to interlayer 

cracking is shown in Figure 2.4 If the process temperature is too high, a combination of 

melt pool size and surface tension may lead to swelling or melt balling. If processing 

conditions are tightly controlled, most of these defects can be avoided. Cracking of the 

microstructure is material dependent as well, and there may be some processing cases 

where cracking is unavoidable. There are different material-dependent mechanisms. 

  

Figure 2. 4: Layer delamination and cracking defects in PBF [7] 
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because of which cracks are formed in the AM material [15]. Solidification cracking can 

occur for some materials if too much energy is applied, and this arises from the stress 

induced between solidified areas of the melt pool areas that are yet to solidify. This type 

of cracking is dependent upon the solidification nature of the material (dendritic, cellular, 

planar) and is typically caused by high strain on the melt pool or insufficient flow of liquid 

to inadequate supply or flow obstruction by solidified grains. Higher applied energy leads 

to higher thermal gradients, which can explain the larger thermal stress required for 

solidification cracking. 

Influence of defects: The existence of defects can cause parts to have poor 

mechanical properties under certain loading conditions. It has been found that fatigue 

cracks are usually initiated from stress concentrations associated with pores and Lack of 

Fusion (LOF) defects and that the elimination of these defects would significantly increase 

the fatigue life [16]. These results have also been confirmed for Ti-6Al-4V samples where 

porosity of 5 vol.% of the defects is shown to be a limiting factor for mechanical properties 

acceptance produced with a high energy density. However, it has been found that defect 

occurrence at a rate as low as 1 vol.% has a considerable effect on mechanical properties. 

For LOF defects caused by lower energy density, even 1 vol.% of defects have been shown 

to strongly affect both tensile and fatigue properties [17], most likely due to stress 

concentrators (e.g., small radii of curvatures) in such defects. It was also found that defects 

closer to the surface affected fatigue life more, when compared to the defects that were 

deeper or far from the surfaces due to higher stress concentrations for the near-surface 

defects [16]. 
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2.5.1 FACTORS CAUSING DEFECTS 

Thermal stresses due to the AM process are the main cause of defects like primarily 

cracking and distortion [3], adding to factors stated in Table2.2 other parameters like laser 

power, scanning speed, hatching distance, layer thickness, and spot size also have 

significant effect in modelling the RS [18] literature also suggests on use of shorter scan 

lines [8], reduction of scan vector [9] and island scanning (which can result in a 40 % 

reduction in defects in AM). The mechanical properties of the final part are affected by 

and related to the specific manufacturing method used. Studies have investigated the 

influence of manufacturing methods and process parameters on finished part mechanical 

properties [19]. In addition to microstructural inhomogeneity’s and mechanical property 

variation, the as-deposited density of AM components depends on powder characteristics, 

process parameters, layer thickness and scan line spacing. Laser power in the top range of 

the operational window results in higher density. Increasing the thickness of layers likely 

decreases the final part density unless the energy density is adjusted to account for the 

increase in melt pool depth required. However, several parameters limit the minimum 

layer thickness that can be employed, such as the maximum particle size. The powder 

spreading mechanism can disrupt previous layers when the layer thickness is close to or 

smaller than the maximum particle sizes. By decreasing scan speed and hatch distances 

(i.e., increasing energy density) the volumetric mass density of the resulting material 

increases, and, not surprisingly, has an influence on the mechanical properties. For 

example, the effect of layer thickness and scanning speed on tensile strength of 304L 

stainless steel samples was studied by [19]. Three different layer thicknesses (30, 50 and 

70 μm) at two scanning speeds of 70 and 90 (mm/s) were considered. The samples with 
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higher layer thickness were more brittle in nature due to the occurrence of higher porosity 

[19]. 

In addition to high stresses related defects, other type of defect that can be found is 

un-melted particles formed due to the relation between speed of laser verses power of 

laser [7]. The relationship between speed and power that is needed to avoid defects varies 

depending on several factors: edge effects, scan strategy, part geometry and thickness of 

powder beneath the scan area. All these factors amount to changes in the initial conditions 

or boundary conditions for heat transfer. After a heat source passes near an edge, it may 

return to the edge before the heat from the previous pass has time to dissipate. The scan 

strategy can have a similar impact on heat flow, depending on how the strategy allows for 

cool down between each melting pass. Part geometry effects include those associated with 

a variation in the size of the part. A small part will reach a higher peak temperature during 

melting than a larger part, given constant power and speed. This can lead to more defects 

in smaller parts or features. For PBF, the state of the material underneath the melt area 

(powder vs. solid) can drastically affect heat transfer. A powder (non-sintered or sintered) 

has relatively poor thermal conductivity and can be considered thermally insulating 

compared to the solid part of the substrate. As heat is applied, it flows more slowly through 

the powder, which can lead to overheating of the melt surface located above the powder. 

The influence of all these phenomena means that applied power and speed alone may not 

be a simple factor to adjust. 

As discusses earlier, the existence of defects can change final part material properties 

and quality. In-line monitoring and early detection of these defects will enable subsequent 

process control to modify the AM process, achieve higher deposition quality, and reduce 
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or eliminate avoidable costs. So, the focus of this paper is drawn on studying the various 

scanning patters and suggesting the optimized pattern from the results generated by 

digitally simulating the progressive element activation process in the ABAQUS software, 

further scope can be to physical test the results with actual physical model buildup and 

experimentation applying the scanning strategies. This work benefits from saving 

experimentation and guide the process development. 

2.6 MITIGATING RESIDUAL STRESS AND DISTORTION 

So, in brief two approaches to optimize residual stress is to closely control the process 

parameters defined in Table 2.2 and the second approach is the pre/post process methods 

like preheating substrate, heat treatment of the finished component [7]. Post heat treatment 

process is widely used to homogenize the microstructure and tailoring mechanical 

properties of as-build AM components and to increase the ductility at the expense of 

lowering tensile strength [20]. A post annealing of as-build AM part would reduce 70% 

of residual stress [10]. The maximum principal stress decreases as the powder bed 

preheating temperatures increases. Preheating temperature higher than 570 °C would 

result in zero residual [7] stress or even compressive residual stress which would be 

beneficial for fatigue performance. 

2.6.1 SCANNING STRATEGY: (PROCESS PARAMETER) 

Scanning strategy means any specific scan pattern or exposure method that is used 

to influence a dependent variable during the LPBF process. This includes, but is not 

limited to, different vector, segment, or layer scanning methods. The scanning strategy 

play a vital role in deciding the residual stresses as it is the major factor in accumulation 

of energy or heat distribution, it also has influence on surface quality and density of the 
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prints, if not designed properly it would lead to distortion, delamination, and balling 

defects [21], [22]. To deeply understand the effect of scanning strategy on SLM parts 

number of parameters associated with scanning strategy are to be keenly studied. Varying 

the size of the scan vector length, the orientation of the scan vectors, the order of scanning 

and the rotation of each subsequent layer can result in a significant combinations of 

scanning strategies [18] , [23]. 

         In [18] the residual stress and distortion caused by 5 different scanning strategies are 

compared to pick the ideal strategy. The four strategies considered are a) 45° Alternating 

Scanning Pattern b) 90° Alternating c) Schematic of Chessboard Scanning d) Chessboard 

Scanning with Adjacent Chessboard block Scanned in 45° rotated direction. e) 

Chessboard Scanning with Adjacent Chessboard block Scanned in 90° rotated direction. 

These studies have concluded that samples built with 90° Alternating strategy proved to 

be the best for achieving minimum residual stress and resulted in 107 MPa as shown in 

Figure2.5. Chessboard scanning strategy showed a trend of increasing Residual Stress 

with increasing Chessboard blocks size Figure 2.6 
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Figure 2. 5: Alternating scan pattern:  

a) 45° Alternating (b) 90° Alternating (c) Schematic of Chessboard Scanning (d) 

Chessboard Scanning with Adjacent Chessboard block Scanned in 45° rotated 

direction. (e) Chessboard Scanning with Adjacent Chessboard block Scanned in 90° 

rotated direction [18] 
 

  

Figure 2.6: Effect of scanning strategy on residual stress 
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Figure 2.7: Effect of Scan vector  

Figure 2.7: a) on Temperature 

 

Figure 2.7:b) on cooling rate 

         The effect of scanning strategy on residual stress is complex and published literature 

shows varying effect of scan vector length and rotation on residual stress. The cooling 
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rates estimated from FEA simulation shown in Figure 2.7 also confirm the complexity of 

the relationship between scanning strategy and material behavior. 

To understand the effect of scan vector length on the temperature of the powder bed FEA 

simulation with varying scan vector length was run to simulate six scan vectors. The 

temperature history of a point in the center of the surface of the first melt-pool was 

extracted from the FEA simulation. Figure 2.7(a) shows the temperature variation of a 

single point on the top center of the first melt-pool. It can be seen from Figure 2.7(a) that 

residual heat in already scanned region decreases with increasing scan vector length. 

When the laser comes back to scan a region adjacent with the already sintered material it 

reheats the previously solidified material (re-scanning varying exposure). As the laser 

moves further from the sintered region of interest the effect of the laser on the temperature 

decreases. To better understand the effect of scan vector length on SLM parts cooling rates 

were calculated for the same spot based on the reheating effect from next scan vectors. 

Fig. 2.7(b) shows the effect of scan vector length on the cooling rate of the top center of 

the first melt-pool. It can be seen from Fig. 2.7(b) that the initial cooling rate of the melt-

pool is independent of the scan vector length. When the laser comes back adjacent to the 

point of interest in the second scan vector it reheats the already sintered material as shown 

by the temperature history shown in Fig. 2.7(b). Increasing the scan vector length 

increases the cooling rate of the reheated sintered material. The laser comes back adjacent 

to the point of interest in the fourth scan vector and reheats the point of interest as can be 

seen in Fig. 2.7(b). It can also be seen that the cooling curve becomes less steep for the 

reheated sintered material with increasing scan vector length. Fig. 2.7(b) also shows that 

the sintered material reheated because of fourth scan vector adjacent to it cools slowly 
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with increasing scan vector length showing a complicated cooling behavior with varying 

scan vector length. 

2.7 PREDICTION OF RESIDUAL STRESS 

A right prediction saves lot of time and of resources, it gives a chance to optimize 

design before it is set for printing, it offers a chance to set the right parameters and 

scanning strategies based on the results from predictions of residual stress. Inherent Strain 

Prediction Method [24] is predominantly used in literature:  

2.7.1 INHERENT STRAIN PREDICTION METHOD:  

Main assumption of this methodology is that the main driving force for distortion is 

the linear thermal contraction of the melted metal on cooling. In welding applications, it is 

assumed that the material that is melted (weld bead) undergoes an equivalent thermal strain 

whose magnitude can be calculated by multiplying the material’s thermal expansion 

coefficient and the temperature gap between surrounding material and melt pool. The 

inherent shrinkage methodology considers that this equivalent thermal strain must be 

accommodated by the part leading to a redistribution of stresses and strains. The 

mathematical equation of this approach is included in Figure 2.8 

 
Figure 2.8: Inherent strain 

         where 𝜀𝑡ℎ  is the equivalent thermal strain, α is the thermal expansion coefficient 

and 𝚫𝐓is the temperature gradient, such method then is adopted in the LPBF widely. 

2.7.1.1 RESIDUAL STRESSES: MECHANICS BACKGROUND 

         The fundamental governing equation for elasticity (i.e., reversible deformation) is 

Hooke’s Law. 
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𝝈𝒊𝒋 =  𝑪𝒊𝒋 𝒌𝒍 𝜺𝒌𝒍      (𝟐. 𝟓) 

         where σ is the applied stress, C is the material’s stiffness matrix, ε is strain, and i, 

j, and k denote 1, 2, and 3, independently. In the 3D Cartesian coordinate system, 1 

corresponds to the x-axis, 2 is the y-axis, and 3 is the z-axis. In addition to mechanical 

loads, thermal loads can be related to strains in a body [24]. In this case, a change in 

temperature can cause a material to expand or contract, governed by the following 

equation: 

 𝜺𝒕𝒉  =  𝛂𝚫𝐓                (𝟐. 𝟔) 

where α is the material coefficient of thermal expansion, ΔT is the change in 

temperature, and 𝜀𝑡ℎ  is the thermal strain. The principle of strain superposition dictates 

that the mechanical strains (𝜀𝝈) and thermal strains (𝜀𝑡ℎ) are summed to a total strain 

value. 

𝛆 =  𝜺𝝈 + 𝜺𝒕𝒉             (𝟐. 𝟕) 

The total strain, given in the above equation, can used to obtain the stress in a part 

through the constitutive equation: 

𝝈 𝒊𝒋 =  
𝑬

(𝟏+𝝂)(𝟏−𝟐𝝂)
[ 𝝂𝜹𝒊𝒋 𝜺𝒌𝒌  +  (𝟏 − 𝟐𝝂) 𝜺𝒋𝒋 – (𝟏 + 𝝂) 𝜶𝜟𝑻𝜹𝒊𝒋 ]    (2.8) 

where E is the modulus of elasticity, is ν Poisson’s ratio, and δ𝑖𝑗is the Kronecker 

delta, taking values of 0 for i , j and 1 for i = j. 

After determining and mapping equivalent thermal strains in welded structures, a 

pure mechanical elastoplastic analysis is performed leading to the final distortion. Due 

to the layer-by-layer nature of PBF processes, the following assumption has been done 

in this work for the transference of inherent shrinkage methodology to AM: elements 
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included in one layer will undergo a shrinkage related to their thermal expansion when 

the metal is heated up to its melting temperature. Therefore, a full layer activation 

strategy [24] has been adopted which can greatly reduce FE-model complexity and 

computational costs in comparison with discrete shrinking elements. This methodology 

requires the FE-model with a sequential activation of layers or birth and death or model 

change technique [24]. In welding process modeling, the concept of applied plastic 

inherent strain has originally been proposed by [25]. It has then been largely used to 

reduce the computational time of the mechanical analysis in welding distortion 

prediction [26]. The principal steps can be summarized as follows: 

1) High-resolution model of the transient thermo-mechanical analysis—this is 

usually performed on a smaller specimen of the workpiece. 

2) Calculation of the plastic strain tensor components and the equivalent plastic strain 

once the whole domain has cooled down to the ambient temperature. 

3) Transfer of the plastic strains obtained on the high-resolution model to the 

complete workpiece. 

4) Elastic computation with the macro model to estimate the final distortions. 

The main advantage of this method is the drastic reduction of computational time 

required for the mechanical analysis. Only a linear elastic solution is required for each 

time step. This method is not compatible with the local/global approach (see the 

“Thermal boundary conditions” section) since a very fine and accurate model is needed 

to determine the plastic strains. A thermal load applied on a coarse mesh would not be 

sufficient for this approach. Consequently, large modeling efforts must be accounted for 

during the initial transient thermo-mechanical analysis and for developing an efficient 
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field transfer tool. Moreover, it is compulsory to wait for the complete cooling of the 

domain before extracting the plastic strains; otherwise, the results will be inaccurate. This 

method was applied for the modeling of a cantilever build process and could analyze the 

effects of the laser scan strategy on the final distortions of the workpiece. Numerical 

results are in good agreements with the experiment. They also discuss a new accelerated 

mechanical simulation based on the assumption that thermal strains only affect the 

topmost layer allowing a reduction of distortion prediction computational effort to a few 

hours. 

In this study, a coupled thermal-stress model that directly calculates thermal strain 

due to the thermal gradient was developed. This method, as an alternative to the inherent 

strain method, eliminates the inaccuracy of temperature-dependent non-linear strain 

values, but may yield high computational cost. The methodology of the development 

method is discussed in Chapter 3. 
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CHAPTER 3   MODELING METHODOLOGY 

         In this chapter, two modeling methods for the prediction of residual stress are 

detailed: one is based on layer-by-layer activation, which developed in this thesis; and 

another method is based on progressive element activation, which is provided in 

ABAQUS. In this way, we can predict, optimize and design efficient processes and 

strategies to effectively foreseen the residual stress and compensate the distortion. 

Table 3.1: Types of FEA simulation approaches 

Methodology; FEA- RS 

Simulation 

Layer -Layer Activation (Model 

Change) 

Progressive Elemental Activation 

 

3.1. MODEL CHANGE METHOD (LAYER- WISE ACTIVATION): 

         Layer-Layer Activation [27] is carried out using a commercial finite element 

package ABAQUS 2020 was used to setup and solve the thermal-displacement coupled 

analysis. A model change method allows to deactivate and reactivate elements to 

simulate removal of part of the model, either temporarily or for rest of the analysis. The 

model must be meshed and divided into multiple print layers based on the thickness of 

the part and the grain size. The layers are then grouped together based on the order of 

De-activation or activation procedure. Then the assigned layers are activated/De-

activated in specific Steps as defined by the process. The activation and De-activation 

are controlled by the Model Interaction definition.
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3.1.1 THERMAL-MECHANICAL COUPLED ANALYSIS 

The macroscale part model is a thermal-mechanical coupled analysis which has 

two analysis steps. Step one is to conduct the thermal analysis from which the 

temperature field for the whole process was captured. Step two is to perform the 

mechanical analysis which is used to calculate the stress distribution of the model. The 

temperature calculated from step one was applied as the thermal load for step two. The 

mechanical response including part distortion of the model to the thermal load was 

obtained in this step. For the mechanical analysis in step two, the governing equation for 

Gaussian heat [28] source is given by Eq. (3.1), the equivalent body heat flux is applied 

over the entire layer:

𝐪 =
𝐀𝐩

𝐝𝐬𝐝𝐦𝐇
 (3.1) 

         where 𝑑𝑠 is the laser spot diameter, 𝑑𝑚 is the melt pool depth, and 𝐻 is the hatch 

spacing stress. Stress can be calculated from the data of Eq. 3.1 at various nodes. 

 

Figure 3.1: Body heat flux [28] 
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3.1.2 PARAMETERS CONSIDERED FOR LAYER - LAYER ANALYSIS 

To maintain consistency and accuracy, the following parameters are required to be 

defined: 

1) Laser Power, Speed, 

2) Layer Thickness, Hatching Distance, Angle of Rotation, 

3) Material Properties of Powder 

4) Mesh Size, Element Type 

5) Boundary Conditions 

In this analysis laser power of 190 W, with Scanning speed of 1 m/s is used. The 

materials used is of IN625, a Nickel-based superalloy with density 8840 kg/m3 and layer 

thickness of 30µm, the substrate is of SS-304. Table 3.2 discusses properties in detail, 

Figures 3.2 depict temperature dependent properties of IN625. A tetrahedron element 

C3D4T temperature-coupled displacement element is used for the analysis. 

Table 3.2: Process parameters and simulation conditions 

Part material IN 625 

Build plate material SS 304 

Laser Scan speed (mm/S) 500 

Laser Power (W) 125 

Laser Spot diameter (mm) 0.08 

Laser absorption 0.35 

Ambient temperature (*C) 20 
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Hatch Spacing (mm) 0.10 

Layer Thickness (mm) 0.03 

Powder spread time (s) 5 

Re-coater time between layers (s) (cooling time) 15 

Build plate temperature (*C) 100 

Heat transfer Coefficient (metal/powder) W/𝐦𝟐K 10 

Heat transfer coefficient (build plate/ environment),  

W/m2/K 

15 

 

 

 

Figure 3.2: Material properties of IN-625 [30]  

Figure 3.2:a) Thermal Conductivity 
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Figure 3.2:b) Youngs Modulus 
 

 

Figure 3.2:c) Expansion Coefficient 

 

0

50000

100000

150000

200000

250000

0 200 400 600 800 1000 1200

Yo
u

n
g'

s 
M

o
d

u
lu

s 
in

 M
P

a

Temperature in K

Elastic Modulus Vs Temperature

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

1.60E-05

1.80E-05

0 200 400 600 800 1000 1200 1400

Ex
p

an
si

o
n

 C
o

ef
f

Temperature in K

Expansion Coeff Vs Temperature



31  

 
Figure 3.2: d) Specific Heat 

 

3.1.3 LAYER -LAYER PROCESS WORKFLOW 

 
Figure 3.3: Workflow model change 
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The process begins from 1 as in Figure 3.3. importing a designed CAD model, 2. 

material properties are then defined respectively for Part and Substrate. 3.Then two 

respective sections are created and assigned to the part and the substrate to link the 

material properties with the part and substrate. Now by dividing the total height of the 

part and the powder thickness we get total number of physical actual layer involved, to 

optimize the computational efficiency we consider 10actaul layer as to 1 simulation 

layer, based on this we divide the and 4. create partitions of the part using reference 

planes. Once partitions are created 5. we mesh the part and substrate using Tetrahedron 

mesh and C3D4T thermo-coupled element type.  

 

Figure 3.4: Part and substrate meshed 

 

 
Figure 3.5: Substrate boundary condition 
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In step 6. We create en-caster (U1=U2=U3=0) boundary conditions as shown in Figure 

3.5, in 7. input file is written for the model and file is exported in ‘.inp’ format. The model 

change interaction, which is explained in Chapter2, section 2.7.1 [24] is primary for 

simulation of AM build process in 8. Using a Python tool sequential steps and loads are 

defined and attached to the model, the step time is calculated by the tool based on the 

speed of laser scans and the recoating time, during the odd steps (Step1, Step3...Step51) 

laser prints (power imparted to the system) and during even steps (Step2, Step4...Step52) 

are for recoating time and cooling time before laser scans next. Python tools creates the 

required sequential steps as above. Similarly loads are also created based on Gaussian heat 

[28] source is given by Eq. (3.1). The model change process is operated by setting the 

interactions sequence, as in LPBF AM process part is constructed from powder by layer-

by-layer melting and solidification, so the model change interactions activate respective 

layer only when they are printed during the odd steps. Finally, in flowline at 11. python 

tool gives two output files HT.obd and ST.obd containing the NT11(Temperature profile) 

and S, U (Max/Min Stress, Displacement) which can be further loaded into ABAQUS for 

Post-processing various simulation results. 

 

Figure 3.6: Steps: step-1(odd Steps) time periods 
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Figure 3.6: Steps step-2(even steps) time periods 

3.1.4 LAYER ACTIVATION INTERACTION PROCESSES 

At the beginning all elements representing the powder layer are deactivated [29], 

i.e. they cannot physically interact with other elements. When the heat source starts its 

movement, elements at the current heat source position are activated. As far as integration 

points in powder material elements reach melting temperature, the properties are changed 

to those of the bulk material (like in the heat source model). The mechanical properties of 

the powder are as follows: the yield stress is zero (representing an inelastic behavior), the 

thermal expansion is zero (powder is loose), and the Young’s modulus is something above 

zero (it cannot be exactly zero due to back-stress calculations for plasticity). 
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Figure: 3.7: Layer-wise partitioning 

a) elemental set of 2nd layer b) 6th layer c) 23rd layer d) 24th layer 

Furthermore, standard convection and radiation boundary conditions are also 

considered. A fixed displacement boundary condition is applied on the bottom of the 

substrate plate. In theory an entire powder layer must be activated at once and partially 

consolidated by the heat source. Since the thermal strains lead to high deformation of the 

deactivated elements, this activation procedure is not feasible due to numerical problems. 

However, the heat conductivity of the surrounding powder is neglected in this model, 

but mechanical consolidation is considered. The missing thermal expansion of powder 

material until the melting temperature is reached results in higher strains which represent 

the difference between the processes of “pure” welding (as re-melting process) and 

deposition welding. 
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Figure 3.8: Layer wise activation 

a) activation of 2nd layer, b) 6th layer, and c) 24th layer 

Here commercial finite element package Abaqus 2020 was used to setup and solve 

the thermal-displacement coupled analysis. Four-node, coupled-temperature 

displacement, reduced-integration elements (C3D4T) was used. The process parameters 

and the boundary conditions in Table 3.2 and Figure 3.2 were applied to simulate the build 

process of the thin structure. The detailed temperature-dependent materials properties for 

as-build samples are discussed in Chapter 4. The predicted temperatures at various stages 

are shown in Figure 3.8 (c). The model started with the build plate with a predefined initial 

temperature at 100 °C. Each element layer was set to consist of 10 actual build layers. 

These were activated with zero-stress and zero-strain and with an initial temperature 

condition at predefined times corresponding to the actual build process. Figure 3.7 (a)-(c) 

show the activation of the layers. Due to the heat flux applied to the top layer body, high 

temperature is exhibited at the top layer and then heat is conducted away gradually. High 

stress levels were predicted at the interface region between the part and the build plate due 
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to the dissimilar joint between materials. The build-up and distribution of the stress 

reaches equilibrium in the main body of the part, while the stress gradients are profound 

near the side and top of the part due to the large thermal gradients in these regions. Once 

the part was completely activated, the part and build plate were naturally cooled down to 

room temperature, and the final residual stresses in the as-built geometry were predicted. 

3.2. PROGRESSIVE ELEMENT ACTIVATION METHOD: 

In this method the elements are activated in each increment of a step. Elements to 

be activated during an analysis are to be defined before they can be activated and then 

refer to them in each analysis step in which they can be activated. Event-Series created 

from the G-code operates the elemental activation and de-activation. 

3.2.1 PROGRESSIVE ELEMENT ACTIVATION PROCESS 

PEA process is split into Three steps: 1) Setting up the Thermal and Mechanical 

‘.cae’ model 2) Slicing part and generating Event-Series data for laser path and material 

deposition path 3) Linking step1 model with step2 data using AM modeler plug-in. 

3.2.1.1 SETTING UP THE THERMAL AND MECHANICAL 

         Initially part is loaded into ABAQUS2020, and the process as defined in the Figure 

3.4 step 1-3 are similarly carried out till assigning the material and properties to the part 

and substrate. In Progressive Elemental Activation (PEA) the elements used for mesh are 

DC3D4 for Thermal analysis and C3D4 for Stress analysis we need to create two separate 

models unlike Layer-Layer method where we use only Thermo-coupled displacement. For 

both the models (Thermal, Mechanical), steps (Heat Transfer, Static General) and 

substrate encaster(U1=U2=U3=0) boundary conditions are to be defined. Two job one for 

Thermal model and one for Stress model are created and submitted. 
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3.2.1.2 CREATING EVENT-SERIES 

A part is initially designed using CAD software and then it is loaded into NETFAB 

for slicing and designing the scanning strategy. Various parameters like 

1) Laser Power 

2) Scan Strategy 

3) Hatching Distance/ Angle 

4) Orientation 

Which influence the temperature profile during the printing are set here and ‘.lsr’ file 

format is exported to create Event-Series. A Python scrip is used to generate two G-code 

files for Event- Series files of material addition path and laser scanning path. Thus these 

two files are used by AM-modeler Plug-in. 

3.2.1.3 SETTING-UP AM-PLUGIN 

These two files are fed to ABAQUS AM-Plugin as ‘.inp’ files at step 1 in Figure 

3.9. further at steps 2, 3 this data is linked to the laser and material deposition tables and 

the model is setup. The absorptivity and radiation coefficient are collected at step 4-6 and 

the AM-model is set. 

         Now, the Thermal and Mechanical models can be submitted and run to get the .odb 

files which gives the NT11 (Temperature Profiles) S,U (Stress and Displacement) are 

obtained from the results. 
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Figure 3.9: AM modelling plug-in 

 

3.2.2 MATERIAL AND LASER ACTIVATION STRATEGY 

         In the Layer-wise activation strategy, the entire layer is activated at a particular 

step, but in PEA activation of elements is more controlled and precise. This is achieved 

by the generated Event-Series. In the G-code files Figure 3.10 T1- time step in s, x1,y1,z1 

are the co-ordinates of the re-coater, 1,0 represents activation, deactivation, P stands for 

power of laser. So, the elemental activation depends on 1 and 0.  

         For full activation, the material volume fraction added must be equal to 0 or 1 (that 

is, the status of an element can change only from inactive to fully active). For partial 

activation, the material volume fraction added can be arbitrary; however, in practice the 

volume fraction in an element should not be too small to prevent numerical singularity 
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problems. In stress-displacement analyses it is assumed that the material added to an  

Figure 3.10: G-code material, laser 

element is stress free. Therefore, for full activation the configuration at which an element 

is activated is the stress-free configuration from which the strains used to compute the 

material response are measured. For partial activation, the newly added material, and the 

material already present are at different states.  To obtain the material response, 

Abaqus/Standard uses the rule of mixtures to compute homogenized state variables. 

      Elements for which the activation feature is turned on in a step can be activated by 

assigning a volume fraction of material to an element at the beginning of each increment. 

The element can be both fully and partially activated. Elemental activation is dependent 

on the event series files generated by the G-code depending on the laser scanning strategy. 

Elements can be activated in each increment of a step. Elements must first be defined then 

they can be activated during an analysis and then refer to them in each analysis step in 

which they can be activated. Elements for which the activation feature is turned on in a 
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step can be activated by assigning a volume fraction of material in the  

Figure 3.11: Elemental activation from event series data 

element at the beginning of each increment. Elements cannot be partially activated; 

therefore, the material volume fraction added that you specify must be equal to zero or 

one, which means that the status of the element can change only from inactive to fully 

active.
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CHAPTER 4   MODEL VALIDATION VIA BENCHMARK CASE 

A cantilever structure of dimensions 75 mm, 5 mm, and 12.5 mm in length, width, 

and height, respectively is selected for this study. Supporting literature [30] studies and 

benchmark data can be found at NIST website[32]. In this Chapter 4 the analysis focuses 

to predict residual stress and distortion (displacement) in the part model. 

A 2-D and 3-D depiction of the geometry can be seen in Figure 4.1 and Figure 4.2. 

Within the benchmark, the part was built with IN625 and substrate with SS-304 Stainless 

Steel. Temperature dependent material properties are used in the model, which are 

collected based on the data from literature[33]. The material properties used within the 

model has been described in section 3.1.2, Figure 3.2. 

 

Figure 4.1: 2-D model of bridge profile
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Figure 4.2: 3-D model of bridge profile with substrate 

 

4.1 PART DEFLECTION: BENCHMARK NIST-AMB2018-01 

For these benchmark comparisons, the part distortion is defined by the vertical 

deflections of all measured ridge edges (1-11) Figure 4.2. Thus, 

𝛅𝐢 =  𝒁𝒊(𝐚𝐟𝐭𝐞𝐫) − 𝒁𝒊(𝐛𝐞𝐟𝐨𝐫𝐞) ,     (𝟒. 𝟏) 

 

         where Zi is the vertical deflection of edge i. 

As shown in the Figure 4.1 the width of the ridge is 5mm and length is 1mm, the center 

of these ridge profiles is considered for study, points are marked exactly at the center of 

the ridge profile at 2.5mm, 0.5mm along the width and length, respectively. 

Thus, deflection is calculated at these 11 points represented in Figure 4.2 using Eq. 4.1. 
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before and after the EDM cut simulation to get values of 𝑍𝑖 before and after and compared 

with benchmark results. The deflections results are plotted on a graph as in Figure 4.3. 

 
Figure 4.3 Deflection comparison benchmark results Vs  

model change prediction, PEA 
 

Table 4.1: Error ratio benchmark Vs model change, PEA 

X (mm) LWMC PEA 

0.41 0.3 0.56 

7.49 0.34 0.68 

14.47 0.32 0.71 

21.5 0.47 0.69 

28.42 0.55 0.65 

35.45 0.17 0.81 

42.49 0.39 0.77 

49.3 0.54 0.42 

56.33 0.68 0.94 

63.42 0.55 0.77 
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Figure 4.3 specifies the deflection results of Benchmark model as red curve, Model 

Change prediction as blue curve and PEA as green curve. The maximum deflection 

obtained in benchmark model is 1.27mm at point 1 where X=0, with following consequent 

deflections as 1mm, 0.75mm, 0.55mm, 0.38mm, 0.24mm, 0.14mm, 0.06mm, 0.008mm, 

0.002mm, 0mm at points 2 -11 respectively. While maximum deflection for the Model 

change prediction being 1.66mm at point 1 where X=0mm, with consequent values being 

1.34mm, 0.99mm, 0.81mm, 0.6mm, 0.28mm, 0.2mm, 0.09mm, 0.02mm, 0mm, 0mm at 

points 2-11 respectively. So, from the above graph both the benchmark model and the 

model change prediction method both follow similar trend of deflection with the maximum 

offset of 0.39mm at point 1. The deflection profile of model change method is shown in 

Figure 4.4. 

Observing the values of PEA from the green curve a maximum deflection of 

0.55mm is at starting point 1 where X=0, following 0.31mm, 0.21mm, 0.17mm, 0.13mm, 

0.04mm, 0.032mm, 0.035, 0mm, 0mm, 0mm at points 2-11 respectively. Comparing these 

values with benchmark values we see similar trend in the graph, but the deflection is 

underpredicted by highest offset of 0.7mm. The deflection profile of model change method 

is shown in Figure 4.5 and the error ratio between benchmark model and Layer-wise model 

change (LWMC) method and PEA are tabulated as in Table 4.1. 
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Figure 4.4 Deflection profile in model change method (detailed) 

 

 

Figure 4.4 Deflection profile in model change method (overall) 

 

 
Figure 4.5: PEA method deflection 
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4.2 STRESS PREDICTIONS 

Figure 4.6 represents the stress profile of the cantilever beam after that is cut off 

from the substrate. The gradients of red shaded regions represent the zone of high stress, 

from the Figures 4.6 a-b the maximum von Mises stress for model change predictions was 

990Mpa and that of PEA was 784Mpa. Observing the overall trend, the high stress regions 

are observed at the surface’s contacts between the 1st layer and the substrate, at the 

intersection of pillars with the beam, and at the topmost surface of the bridge model. 

Results are thus validating with the literature that entrapped thermal gradient causing 

residual stress [9], [10]. 

 
 

Figure 4.6: Stress profile - model change method 
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Figure 4.6: Stress profile - PEA method 

 

Primarily the deflection or displacement results are converging with the 

benchmark results, the von Mises stress profiles are extracted to represent the stress 

distribution. The factors causing stress were briefly discussed in literature [14] were 

validated in this model, coming to deflections, a small offset of 0.4mm which is a 

reasonable variation considering approximation error in temperature dependent material 

properties, mesh size and refinement, laser scan pattern design. If this stress exceeds the 

local yield stress of material, warping or plastic deformation occurs. 

However, there is a need for further investigation to check the reasons why there 

is an offset of 0.7mm or 55% under prediction between the benchmark and PEA results.   

            For printing of same cantilever design with same parameters by layer wise model 

activation method and PEA methods there was variation in prediction of deflection and 

stresses (Section 4.1,4.2), which should ideally not occur, but the accuracy of predictions 

and repeatability depends on accuracy in selection of: refinement of the mesh, size of the 

elements and temperature dependent specific material properties. 
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CHAPTER 5   APPLICATIONS 

In this chapter we discuss about the application of layer-wise model change 

method to two other models to find out the deflection due to residual stress, stress 

distribution and temperature distribution profile. The models considered are: 1) Al10SiMg 

printed Channel Plate and 2) PLA printed dog-bone structure using fused filament 

fabrication. 

5.1 CHANNEL PLATE ANALYSIS 

A Channel Plate of 91.14mm ,40mm,2mm length, width, and height was 

considered as the base, upon which 19 thin bars of dimensions 59.75mm,1mm,1mm in 

length, width, and height, are respectively selected for this study. The Channel Plate is 

printed using LPBF manufacturing process. The Layer wise model change method as 

described in the methodology is used for analysis here. The material properties, boundary 

conditions considered are described here. 

5.1.1 DEFINING MATERIAL PROPERTIES 

The Channel Plate and Bars are built with Al10SiMg material, the temperature 

dependent material properties are defined below in Table 5.1 -5.2 
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Table 5.1 General Material Properties 

Temp 

in K 

Thermal 

Conductivity 

(W/mK) 

Young’s 

Modulus 

MPa 

Poisson’s 

Ratio 

Expansion 

Coefficient 

Specific heat 

(J/kgK) 

293 113 7.76E+4 0.33 2.00E-05 739 

373 155 7.28E+4 0.33 2E-5 754 

473 159 - - 2E-5 796 

573 159 - - 2E-5 837 

673 155 - - 2E-5 921 

323 
 

7.55E+4 0.33 
  

 

 

 
Figure 5.1: Plasticity 
 

 

Table 5.2: Density Latent Heat, solidus and liquidous temperature 

Density Kg/𝒎𝟑 Latent Heat J Solidus Temp K Liquidus Temp K 

2680 500000 830.15 870.15 

 

5.1.2 DEFINING INITIAL, BOUNDARY CONDITIONS  

Defining right initial and boundary conditions play a significant role in accurate 

simulation of stress and deflection in the digital model as they define the thermal and 
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mechanical constrains in specific to the physical print scenario. Initial conditions 

pertaining to this simulation are that initially the substrate is at room temperature of 300K 

or 26℃ and finally the substrate will be left to cool down to same temperature as initial. 

The mechanical boundary conditions used in this model are: 

Step1: During printing process, the entire base plate is constrained, its movement along 

U1, U2, U3 is restrained in other words en-casterd(U1=U2=U3=0) as shown in Figure 

5.2, physical model as in Figure 5.1 surface underneath the ears on either side are 

restrained with U3 movement or in ither words boundary condition of U3=0. 

Step2; After the print is complete, the encaster constraints defined during Step1 are 

deactivated, only the selected nodes at the center as shown in Figure 5.3 and the defined. 

 

Figure5.2: Physical Model: Ears on rights and left U3=0 

 

Figure5.3: Base nodes (U1=U2=U3=0) 
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Figure: 5.4: Central nodes (U3=0) 
 

5.1.3 PREDICTED DEFLECTION AND STRESS RESULTS 

From the post processing of the successfully submitted model, we can extract U 

(deflection) and S (Stress) as shown in Figures 5.4, 5.5 respectively. The maximum 

deflection of 0.08mm is observed at the ears, the deflection is in the U-shaped bending 

inwards due to the compressive action of residual forces once the edge and bottom 

constrains are freed. The gradient of deflection is maximum at the edges and moving 

inwards it starts to fade and almost reaching to zero at the center of the plate. 

 
Figure 5.5: Deflection of Channel Plate 
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Figure 5.6 Stress profile a) Von Mises  

 

  
Figure5.6 b) Von Mises profile (detailed view) 

 

         The maximum stress of 227Mpa is seen at the starting and ending of the bars 

where their surface of contact with the substrate comes to an end. If this stress exceeds the 

local yield stress of material, warping or plastic deformation occurs. In Figure 5.5 we observe 

that the maximum stress is at the bottom most surface of the part, which is in contact with the 

substrate, obvious reason for the accumulated stress being the huge thermal gradient. The 

substrate is having larger surface area and can continuously dissipate heat and cool down, while 

with addition of every new layer, through conduction from the consecutive layers from above 

heat reaches the bottom most surface or 0th layer of the part. Thus, once the part is let to cool 

down and detached from the substrate this accumulated stress leads to cracking. 
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 5.2 DOG-BONE 

         A Dog-bone structure of dimensions 115 mm, 20 mm, and 3 mm in length, width, 

and height, respectively is selected for this study. It is manufactured by Fused Filament 

Fabrication (FFF) method. The part was built with PLA (Poly Lactic Acid; Plastic) as the 

filament, and for generating scanning strategy for printing NETFABB is used to generate 

the tool path and Python tool to generate Event Series form input G-codes. 

 

Figure 5.7:  2D view of dog-bone profile in NATFAB. 

 

 
Figure: 5.8 Fused filament fabrication [34] 

Material extrusion (ME) or also known as fused filament fabrication (FFF), is an 

additive manufacturing strategy whereby polymer filament is fed through a heated 

liquefier, is extruded through a nozzle, and is deposited on a build surface or previously 

printed layers where it quickly cools. Structural integrity of these AM parts is derived 

from bonding between adjacent and stacked extruded roads. Bonding forms via a polymer 

coalescence mechanism and is a function of thermal history at road interfaces. Which is 
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of a similar process as in metal AM process through LPBF if nozzle is replaced with a 

scanning laser of. 

So, the Layer-wise model change method which is developed for LPBF can be widely 

applied to any process with similar mechanism of bonding between the stacked adjacent 

layers. 

5.2.1 DEFINING MATERIAL PROPERTIES 

The Dogbone is built with PLA material, the material properties are defined below 

in Table 5.3 

Table 5.3: Material properties of PLA [35] 

Density (kg/𝒎𝟑) 1240 

Specific Heat (J/kgK) 1800 

Thermal Expansion (𝑲−𝟏) 4.1E-05 

Conductivity (W/mK) 0.13 

Tensile Modulus (MPa) 2.3E3 

Ultimate Tensile Strength (MPa) 26.4 

Tensile Strength at Yield (MPa) 35.9 

 

5.2.2 DEFINING INITIAL, BOUNDARY CONDITIONS  

Initial and boundary conditions they define the thermal and mechanical constrains 

in specific to the physical print scenario. Initial conditions pertaining to this simulation 

initially the substrate is at room temperature of 300K or 26℃ and finally the substrate will 

be left to cool down to same temperature. The mechanical boundary conditions used in 

this model are: 

• During printing process, the entire base plate is constrained, its movement along 

U1,U2,U3 is restrained in other words encaster (U1=U2=U3=0), or in ither words 

boundary condition of U3=0. 
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5.2.3 TEMPERATURE PROFILES 

In this case study one simulation result was derived from Model Chang method 

(Figure 5.9) and another is from PEA method (Figure5.10). To get the trend of temperature 

profile during printing, a specific node is selected at the center of the dog-bone marked 

with red node (in the Figures 5.9,5.10) and data of temperature Vs varying time and 

accumulating layer one on top of other, are plotted as in Figure5.11 

 

 
Figure 5.9: NT11 Model change method 

 

 
Figure 5.10: NT11  PEA method 
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Figure 5.11: Temperature Vs Time Model change, PEA methods 

         AM process induces heat during the layer-by-layer addition process and Figure 5.11 

represents the heat induced in printing. The time taken to complete the print by two 

different processes differ, as different activation strategies were followed in Layer-wise 

model change took 996 s and Progressive element activation method took 822 s for 

activation of 13 layers. The heat accumulation in Layer-Wise model change(LWMC) 

method is higher compared to PEA, since in LWMC the heat applied to each layer is 

calculated by Gaussian model[28] as discussed in section 3.1.1, while for PEA the heat is 

applied only at specific intersection that is selected from data in the Event-series files which 

are generated based on tool path and G-code files. 
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CHAPTER 6: CONCLUSION & FUTURE SCOPE

         Firstly, two multiscale modeling approaches, Layer-wise model change method and 

Progressive elemental activation method have been tested against benchmark model. The 

Layer-wise model change method have been developed for efficient prediction of part 

distortion in LPBF. Simulation methodology and results for the two approaches have been 

compared. The key findings are as follows: 

• Using the Layer-wise model change method, the thermo-coupled displacement model 

is used to calculate the deflections and the residual stress to predict part distortion. 

Using the Progressive elemental activation method separate thermal and mechanical 

analysis models were incorporated to predict part distortion. 

• Similar deflection trends were found for both methods which also matched with the 

deflection trend of benchmark model. The progressive elemental activation method 

underestimated part deflection compared to the layer-wise model change method. 

•  The highest residual stress with a magnitude near the yield point of the work material 

was found on the top surface of the part. A typical residual stress profile along the 

depth direction for a LPBF part was predicted. 

         Secondly, a PBF printed channel plate of material Al10SiMg and a FFF printed dog-

bone with PLA as material used design cases were studied with extended application of 

developed methodology for prediction of deflection and general temperature profile to 

predict and identify the possible regions where cracking might arise. The high stress 
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regions were found to be the top surface of the substrate and the bottom surface of the part. 

Thermal simulations also align with thermal gradient between the surfaces, thus the 

preheating the substate at the beginning of the process would reduce the thermal gradient 

and there by reduces the entrapped stress in the part. 

However, there are further opportunities to develop the work as follows: 

• Though the general trend of PEA matched with benchmark model, possible reasons 

for underprediction must be investigated. Possible factors for variation in results 

are suspected to be from accuracy of selection in the refinement of the mesh, size 

of the elements and temperature dependent specific material properties. 

• To expand the capabilities of the residual stress prediction process through Model 

change method, future studies will focus on integrating scan patterns to Layer-wise 

activation to get more refined heat addition calculations which might reduce any 

over predictions. Which would also give closely accurate results with less 

computational resources. 

• As we already can reasonably predict the residual stress and deflection from the in 

house developed layer-wise activation method, efficiency of this tool can further 

be optimized if it can integrate this data to predict the post-processing parameters 

like heating temperature, time and final unavoidable distortion in the printed part. 
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