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Abstract

Materials exhibiting both elastic and viscous properties have been termed the name

viscoelastic materials and have been modeled using a combination of integer order

derivatives affixed in varying ways called viscoelastic models. This results in highly

complicated numerical procedures necessitating highly expensive computational time

which we will show. To that end the use of fractional derivatives were researched and

determined to be the ideal solution for modeling these materials, of which this paper

is focused on exploring. Such research began as a theoretical study, however over

time the applied benefits were discovered and utilized and have since been expanded

on, allowing the complicated numerical procedures mentioned above to be replaced

with succinct numerical schemes. From these schemes we wished to focus on how to

hone the numerical respect of material property contributions to the results, to which

we focused on three different types of definitions for how to numerically model them,

specifically the Caputo fractional derivative in this paper.

In this thesis we will first give an introduction of viscoelastic materials and the

integer order models that were conceived, along with an exploration of how compli-

cated these models can become. From there we will introduce fractional derivatives

and the different definitions that exist, focusing on the Caputo fractional derivative.

We will then explore the benefits of fractional viscoelastic models compared to integer

order models, and from there we will expand, introduce, and compare three different

definitions of variable order versions of such fractional models.
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Chapter 1

Introduction

1.1 Background

In the physical world matter can typically be described as having either primarily

elastic or viscous properties. The matter that corresponds with elastic properties

can be described under the study of solid mechanics, where materials subjected to

an external stress return to their resting shape after the stress has been removed.

Think of a spring. Matter with viscous properties are described under the study of

fluid mechanics, and these are the class of materials which deform unrecognizably

after an external force has been applied. However matter which can not be distinctly

described as either elastic or viscous due to having properties of both garner the

name viscoelastic materials. An example of such is shape-memory polymers, which

achieves a temporary shape after deformation but then is able to retain its original

shape after some outside stimulus such as a change in temperature. When modeling

this material using standard differential equations the amount of parameters and re-

quirement for precise calculations becomes paramount, which creates quite difficult

numerical procedures. This difficulty creates a problem due to the widespread useful-

ness of the material, such as industrial settings ranging from the building industry to

sports wear, and as medical applications including orthopedic surgery[4, 7]. Another

material that displays viscoelastic properties is concrete, a material which has a high

compressive strength, allowing it to resist cracking under high loads, but low tensile

strength, where it cracks if it is pulled apart. The interesting facet of concrete is how
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it reacts to high temperatures under constant stress, resulting in a time dependent

creep. In [2] this creep is broken up into two categories, that within moderately high

temperatures, and those subjected to more extreme temperatures. For the moderate

temperatures there are two processes that work against each other, one being the

heat which works to break the individual bonds within the solid, accelerating creep.

However the heat also draws out the moisture within the concrete thus ageing it

faster and decreasing the creep. Then at extreme temperatures, the concrete under-

goes many microscopic bond ruptures as well as dehydration, as the moisture that

was previously being drawn out slowly due to lower temperatures is now evaporating

quickly. This creep is a very important subject to study due to the age of nuclear

power and the reactors that are built out of concrete. We need to know how to model

these materials to have a clearer understanding of how to create better equipment for

our future.

1.2 Viscoelastic Models

To model these viscoelastic materials the notion of using springs and dashpots were

introduced and combined in an assortment of ways. Springs model ideal elastic be-

havior dependent on the elastic modulus of the element, while dashpots model ideal

Newtonian (viscous) fluids and depend on the viscosity of the fluid. The particular

relationship that we use to model these materials focuses on the interaction between

stress, σ which measures how much force is applied to an material, and strain, ε which

measures the deformation of the material. However as viscoelastic materials possess

both elastic and viscous properties just a spring or dashpot alone isn’t enough to

measure these unique materials, so as a result a combination of these elements are

used. These building blocks can be connected in many different fashions to create

many different models-all in the effort to more accurately model different types of

materials. The reasoning for the combination of these elements resides in the fact

2



that some models may model stress relaxation resulting from constant strain well,

but it may fail to model the effects of constant stress, otherwise known as creep, of

the material accurately. This issue is seen conversely in other models as well. In

an effort to combat these effects new models are created focusing on the addition of

many different springs, dashpots, etc. until over time the general model for the subse-

quent linear combinations evolves into n ∈ Z different spring elements placed in some

relation to m ∈ Z dashpot elements. This creates the issue of n,m unknowns just

to model these materials, and as such create computationally expensive differential

equations with many different unknowns.

1.3 Fractional Derivatives

There exists a solution to the problem created by the limiting integer order differential

equations-one that includes the utilization of fractional order derivatives. The history

of such derivatives dates back to 1695, where Leibniz pondered the existence of a

half derivative to L’Hôpital in a letter[6]. Since then the study of such derivatives

have been the focus of purely theoretical mathematicians until the last century when

authors found the usefulness when applied to a variety of materials. This particular

usefulness can be visually seen in Fig: 1.1, where the degree α of the fractional

derivative Dαy(x) increases by 0.1 from the zeroth derivative of the function y = x2,

to the first integer order derivative y = 2x.

It is visible that data that may be modeled better in a space between the first and

zeroth derivative of a function can be done in a seamless fashion by a single fractional

derivative, instead of a linear combination of two or more integer order derivatives.

There exists many different definitions for how to compute the fractional derivative,

the first of which is the Riemann-Liouville fractional derivative

RL
a Dα

t f(t) = 1
Γ(1− α)

d

dt

∫ t

a

f(τ)
(t− τ)αdτ (1.1)

3



Figure 1.1: Use of Fractional Derivatives

with advantages resulting from the lack of continuity requirements at the initial time

as well as lack of smoothness for the function, seen in the derivative being taken after

the integration is calculated[1]. The second most widely used fractional derivative is

the Caputo fractional derivative

C
aD

α
t f(t) = 1

Γ(1− α)

∫ t

a

f ′(τ)
(t− τ)αdτ (1.2)

which has the initial conditions and boundary restrictions prebuilt into the definition,

making it particularly useful when attempting to model real world problems[1]. Other

methods to take fractional derivatives include Fourier transform defined fractional

derivatives which require the interval (−∞,∞), the Grünwald-Letnikov fractional

derivatives relying on summation processes, as well as several others. However due

to the advantages of the Caputo fractional derivative combined with the findings

of [9], where it was concluded that a time dependent α with integer limits at the

boundary and initial time allows the fractional derivative to avoid the common case of

singularities exhibited there, we chose the Caputo fractional derivative as the primary

definition used throughout this paper. One interesting thing to note for the Riemann-

Liouville and Caputo fractional derivative is the intersection at the initial condition,

4



where
C
0 D

α
t f(t) = RL

0 Dα
t f(t)− f(0)t−α

Γ(1− α) (1.3)

Here it is visible that the two definitions differ only by a singular boundary term.
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Chapter 2

Mathematical Models

2.1 Integer Order Models

The basic building blocks of viscoelastic materials are seen below in Fig: 2.1

(a) Hooke (b) Newton

(c) Maxwell (d) Voigt

(e) Zener Model (f) Kelvin Model

Figure 2.1: Important components of viscoelastic modeling.

with Fig: 2.1(a) the spring mentioned earlier with elastic modulus E, and Fig:

2.1(b) the dashpot with viscosity η. The Maxwell Model (Fig: 2.1(c)) represents the
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next basic step by placing a spring in series with a dashpot, while the Voigt Model

(Fig: 2.1(d)) instead aligns the two elements in parallel with each other. Here it is

important to note that in series components, the total strain of the system is the

summation of the individual strain of the components, whereas the total stress of the

system is equivalent to the individual stress of each component. The opposite is true

for parallel circuits as the total strain of the system is equal to the strain of each

branch, while the total stress of the system is equal to the summation of the stress

through each branch. With the basic models known along with the rules governing

the equations of how the stress and strain interact with each other, we can now derive

the equations for each of the models presented in Fig: 2.1. The spring in Fig: 2.1(a)

is described by Hooke’s law with the strain and stress linearly depending on each

other with elastic modulus E, seen in Eq (2.1)

σ(t) = Eε(t) (2.1)

while the dashpot in Fig: 2.1(b) is represented in Eq (2.2) by the linear relationship

between stress and the time derivative of strain with viscosity η

σ(t) = η
dε(t)
dt

(2.2)

As stated previously these two elements alone are not enough to model the materials

this paper is focused on, and as such the next building block to create is the Maxwell

model from Fig: 2.1(c). Using Eq (2.1) with σs, εs representing the stress and strain

respectively, and Eq (2.2) using instead σd, εd, we differentiate the equation relating

the total strain εtot to the spring and dashpot element to get

dεtot
dt

= dεs
dt

+ dεd
dt

As we have a series circuit we know that

σtot = σs = σd

7



which is substituted into our Eq (2.1) and Eq (2.2) and rearranged to solve for our

strain derivative to obtain
dεtot
dt

= 1
E

dσtot
dt

+ σtot
η

(2.3)

thus finalizing our Maxwell model equation. Our next fundamental building block is

the Voigt model seen in Fig: 2.1(d). As this is a parallel circuit we know that

σtot = σs + σd

εtot = εs = εd

so substituting in our Eq (2.1) and Eq (2.2), we get our final equation for the Voigt

model seen below.

σtot = Eεtot + η
dεtot
dt

(2.4)

Setting σ as a constant and solving the resulting differential equations in order to

model creep, we see the Maxwell model results in a linear equation which is bad,

while the Voigt model results in an exponential decay equation which models creep

well. However to achieve stress relaxation we need to set ε as a constant and solve

those resulting differential equations, and we see the opposite is true of the models

here. To combat this the Zener model is introduced see in Fig: 2.1(e) which places

the Maxwel model in a parallel circuit with a spring. For this equation we have

σtot = σ1 + σm

εtot = ε1 = εm

where σtot, εtot is the total stress/strain of the model, σ1, ε1 is the stress/strain through

E1, and σm, εm is the stress/strain through the Maxwell element. The relations of

the Maxwell element are as follows

σm = σ2 = σd

εm = ε2 + εd

with σ2, ε2 representing the stress, strain of the spring in the Maxwell element and

σd, εd the stress, strain of the dashpot. Rearranging these equations and substituting

8



Eq’s (2.1) and (2.2) we arrive at the final equation

E2

η
σtot + dσtot

dt
= E1E2

η
εtot + (E1 + E2)dεtot

dt
(2.5)

While this model provides a good qualitative description, it leaves the quantitative

description lacking[6]. Thus leading to the Kelvin model, where the Voigt element is

placed in series with a spring, seen in Fig: 2.1(f). From this placement we know

σtot = σ1 = σv

εtot = ε1 + εv

where σtot, εtot is the total stress/strain of the model, σ1, ε1 is the stress/strain through

E1, and σv, εv is the stress/strain through the Voigt element. Focusing on the Voigt

element we have

σv = σ2 + σd

with σ2 representing the stress through E2 of the Voigt element, and σd the stress

through the dashpot. Rearranging and substituting in Eq’s (2.1) and (2.2) to solve

for εtot and σtot, we obtain

E1

[
E2

η
εtot + dεtot

dt

]
= (E1 + E2)

η
σtot + dσtot

dt

Similar to the Zener model, this model provides a good description of viscoelastic

models, but is unable to model the materials well[6]. In an effort to fine tune these

models to match the experimental results from different types of viscoelastic materi-

als, it was found that the highest level of accuracy was to keep adding on dashpots

and springs in either parallel or series connections, an example of which can be seen

in the Generalized Maxwell model, Fig: 2.2.

The equations that are known for this model as a whole are

σtot = σeq +
N∑
i=1

σmi

εtot = εeq = εm1 = ... = εmN

9



Figure 2.2: Generalized Maxwell model

with the individual elements of each branch having the relations below

σmi = σei = σωi

εmi = εei + εωi

σei = Eiε
e
i

σωi = Eiωi
dεωi
dt

(2.6)

where σtot, εtot is the total stress/strain for the model as a whole, σeq, εeq the

stress/strain for the first elastic branch, and σmi , εmi , σei , εei , σωi , εωi the stresses/strains

for the i’th Maxwell branches. Rearranging these equations we derive the fractional

damping element found in [3], seen below

Eiωi
dεωi
dt

= σωi = σei = Eiε
e
i

dεωi
dt

= εtot − εωi
ωi

(2.7)

which represents the damping element of the individual Maxwell elements of the

Generalized Maxwell model. To find the value for our σm we take the equations

above and substitute in our εtot for our εmi and we get the equation

εtot = εei + εωi (2.8)

which we take the derivative of to get the equation

Ei
dεtot
dt

= dσmi
dt

+ σmi
ωi

10



From here we just solve the differential equation for σmi assuming εtot is constant,

representing stress relaxation. With the initial condition σmi |t=0 = Eiεtot given from

our relationship found in Eq (2.6), which we plug in our earlier derived relationship

Eq (2.7) we get our final Generalized Maxwell equation,

σtot = εtotEeq +
N∑
i=1

Eiεtote
−t
ωi (2.9)

The procedure for finding the values for the spring modulus Ei seen in Eq (2.9) is

explained in [8], and this is one example of a viscoelastic model with many unknown

parameters. To expand on this even more dashpots and springs are added, until a

generalized model can be represented by the equation below

n∑
k=0

ak
dkσ

dtk
=

m∑
k=0

bk
dkε

dtk

where k, n,m ∈ Z and the highest level of accuracy is achieved when n = m. In spite

of that it became apparent that to more finely tune these models the values of n,m, k

eventually become so high resulting in highly complicated differential equations fea-

turing many unknowns.

2.2 Fractional Models

A solution exists, starting with a simple springpot represented by Eq (2.10)

σ = Eωα
dαε

dtα
(2.10)

as it will act as our primary fractional element in our models with ω representing

the relaxation time of the springpot[8]. When α = 1, we set Eω = η to acquire

our traditional dashpot equation stated above in Eq (2.2), and when α = 0 we have

our traditional spring equation seen in Eq (2.1). For our fractional equivalent to our

Maxwell model we simply substitute Eq (2.10) for our dashpot equation used before

and retain the same relationships of strain and stress for the spring and springpot

11



placed in series

σtot = σs = σω

εtot = εs + εω

We will define σtot, εtot as the total stress and strain through the Maxwell model,

and σs, εs, σω, εω as the stress, strain through the spring and springpot element re-

spectively. With these established, we can derive the fractional Maxwell equation by

substituting and rearranging Eq’s (2.1) and (2.10) to solve εtot in terms of σtot.

σtot = Eωα
dαεω
dtα

σtot = Eωα
dα(εtot − εs)

dtα

σtot = Eωα
[
dαεtot
dtα

− 1
E

dασtot
dtα

]
dαεtot
dtα

= 1
E

dασtot
dtα

+ σtot
Eωα

(2.11)

It is clear that Eq (2.11) is equivalent to Eq (2.3) under the same restrictions of

the equivalency of Eq (2.10) to Eq (2.2). For our fractional Voigt model the same

holds true from our Eq (2.4) for our relations of our stress, strain in parallel

σtot = σs + σd

εtot = εs = εd

Substituting in our Eq (2.1) and Eq (2.10), we get our fractional equation for the

Voigt model seen below.

σtot = Eεtot + Eωα
dαεtot
dtα

(2.12)

As the Caputo fractional derivative is a linear operator our fractional equations for

our models look nearly identical, with the exception of our springpot replacing the

traditional dashpot. For our more complex models there is a little more work to do,

starting with the Kelvin model we have

σtot = σ1 = σv

εtot = ε1 + εv

12



where σtot, εtot is the total stress/strain of the model, σ1, ε1 is the stress/strain through

E1, and σv, εv is the stress/strain through the Voigt element the spring is in series

with. Looking closer at the Voigt element we have

σv = σ2 + σω

with σ2 representing the stress through E2 of the Voigt element, and σω the stress

through the springpot. Rearranging and substituting in Eq’s (2.1) and (2.10) using

our viscosity constant η to solve for εtot and σtot, we get

E1

[
E2

η
εtot + dαεtot

dtα

]
= (E1 + E2)

η
σtot + dασtot

dtα

The model we will use quite a bit in our paper will be the Fractional Zener model,

seen in Fig: 2.3. The main difference to note between Fig: 2.1(e) and Fig: 2.3 is that

the springpot has the relaxation time constant ω represented, with η = Eneqω
α.

Figure 2.3: Fractional Zener model

Here we need to derive an equation to model how the total stress (σtot) responds

to different types of strain (εtot). We know for the Elastic branch Eq (2.1) with σe

the stress response of the elastic spring, Eeq the equilibrium elastic modulus, and εe

the strain. The equations that are known for the Zener model as a whole and the

13



Maxwell element are

σtot = σm + σe

εtot = εm = εe

σm = σn = σω

εm = εn + εω

(2.13)

Here σm, εm, σn, εn, σω, εω are the stress responses and strain for the Maxwell ele-

ment, the non-equilibrium elastic response, and the springpot respectively. For the

fractional version of our damping element derived in Eq (2.7), we have

dαεω
dtα

= εtot − εω
ωα

(2.14)

Rearranging our known equations along with Eq (2.13) and Eq (2.14), we found Eq

(2.15) for σtot in terms of εtot

σtot + ωα
dασtot
dtα

= Eeqεtot + ωα(Eneq + Eeq)
dαεtot
dtα

(2.15)

In [8] they conducted many different experiments comparing this Fractional Zener

model to the Generalized Maxwell model seen in Fig: 2.2 and it was shown that these

two models have near identical results. It is clear that the inclusion of fractional

derivatives into these viscoelastic models create a clear advantage to the previous

integer ordered models, in part due to the fact that while Eq (2.9) exhibits decay

based on the exponential factor in the summation thus requiring many parameters,

Eq (2.15) decays according to power law decay with very few parameters.

2.3 Variable Order Fractional Models

While constant order viscoelastic models suffice for the purpose of verifying the equiv-

alence of the Fractional Zener model and the Generalized Maxwell model, in [2] it

is shown that concrete subjected to constant stress exhibit varying creep behavior

14



Table 2.1: Parameters used for our Eq’s (3.4), (3.6), and (3.8) with
η = x104MPa*minα

Calcareous Siliceous Aggregate

f’c 23.2Mpa 22.2Mpa

Temp(◦F): α η α η

71.6 0.450 80.0 0.250 40.0
399.2 0.385 24.5 0.377 15.5
600.8 0.410 15.5 — —
800.6 0.460 10.5 0.345 4.9
1000.4 0.420 7.8 0.260 1.9
1200.2 0.373 2.8 — —

based on the external temperature of its surroundings, with both α and η exhibiting

temperature dependency seen in Table 2.1. As such equations were constructed for T ,

α, and η to model this dependency on time and temperature for calcareous aggregate

as seen in Eq (2.16)

T = 71.6 + 3.51t

T < 600◦F

α = −5.36x10−10(T − 759.6741)3 − 7.849x10−11T 2 + 2.53x10−4T + 0.257

η = 2.3382(T − 596.2261)2 + 1.55x105

T ≥ 600◦F

α = 1.73x10−9(T + 931.86)3 − 1.01x10−5T 2 + 5.7883x10−4T − 2.5093

η = 9.3568x10−4(T − 900)3 − 127.43333T + 204600

(2.16)
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with those for siliceous aggregate found in Eq (2.17)[2].

T = 71.6 + 3.006t

α = 5.7323x10−11(T − 677.8124)3 − 5.9015x10−7T 2 + 6.3136x10−4T

+ 0.2201

T < 800◦F

η = 495020e−0.0029T

T ≥ 800◦F

η = 0.1985(T − 1270)2 + 5000

(2.17)

Due to T varying in time we rewrite the springpot from Eq (2.10) as

dα(T (t))ε(t)
dtα(T (t)) = σ

η(T (t)) (2.18)

From this springpot definition we wanted to explore three different definitions of

how to incorporate the variable α into the formulation process[5]. Here we will set

α(T (t)) = α(T (t, τ)), with t representing what we are taking the fractional derivative

with respect to and τ being our integration variable. We wish to explore how altering

the α’s t, τ dependency transforms our final resulting graph, which is visually explored

in Chapter 4 by focusing on how this change in our α equation redefines our Eq (1.2),

with us defining the impulse function h(t, τ) as

h(t, τ) = 1
Γ(1− α(T (t, τ)))(t− τ)α(T (t,τ)) (2.19)

2.3.1 Definition 1: α(T (t, τ))⇒ α(T (t))

We will define our standard Caputo fractional derivative with respect to the temper-

ature dependent α as Eq (2.20), with our impulse function as well.

1
0D

α(T (t))
t ε(t) = 1

Γ(1− α(T (t)))

∫ t

0

ε′(τ)
(t− τ)α(T (t))dτ

h(t, τ) = 1
Γ(1− α(T (t)))(t− τ)α(T (t))

(2.20)
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Here our α(T (t)) is seen as a constant function as the integration within the derivative

is with respect to τ .

2.3.2 Definition 2: α(T (t, τ))⇒ α(T (τ))

Due to the dependence of our α function on τ , the derivative as a whole is able

to retain the memory of the function as it evolves over time. As such the second

definition for our Caputo fractional derivative is seen in Eq (2.21)

2
0D

α(T (t))
t ε(t) =

∫ t

0

ε′(τ)
Γ(1− α(T (τ)))(t− τ)α(T (τ))dτ

h(t, τ) = 1
Γ(1− α(T (τ)))(t− τ)α(T (τ))

(2.21)

Immediately it is seen that this definition will produce different results, however

to fine tune the addition of the memory aspect that our α function can now store,

we will look at our next definition by incorporating t, τ to interact with each other.

2.3.3 Definition 3: α(T (t, τ))⇒ α(T (t− τ))

Our third definition relies on taking the difference between the integration variable

and the t value

3
0D

α(T (t))
t ε(t) =

∫ t

0

ε′(τ)
Γ(1− α(T (t− τ)))(t− τ)α(T (t−τ))dτ

h(t, τ) = 1
Γ(1− α(T (t− τ)))(t− τ)α(T (t−τ))

(2.22)

creating a reliant relationship of our α function to both our t and our τ . In Chapter

4 we will look further into how this affects the impulse functions, proving that Eq’s

(2.21) and (2.22) create a system that evolves with time, so that the derivative is

weighted by the material properties in our α function, producing a smoother graph.
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Chapter 3

Numerical Schemes

3.1 Constant Order Problem

To begin coding these models, we must first use the numerical scheme found in [10]

which defines the Caputo fractional derivative of a function f(t). We discretize our

domain on a uniform mesh across [0, T ] from n = 1, ..., N , ∆t = T
N
, tn = t0 + n∆t,

allowing f(tn) to be the discretized form of our continuous function f(t). Letting

f(tn) = fn, we have
C
0 D

α
t f(t)|t=tn = δα∆t fn +Rn

where Rn represents the local truncation error

Rn = 1
Γ(1− α)

n∑
k=1

∫ tk

tk−1

ft − (fk − fk−1)
∆t(tn − τ)α dτ (3.1)

and

δα∆t fn = 1
Γ(1− α)

n∑
k=1

∫ tk

tk−1

fk − fk−1

∆t(tn − τ)αdτ

= 1
Γ(1− α)

n∑
k=1

fk − fk−1

∆t

∫ tk

tk−1

1
(tn − τ)αdτ

= 1
Γ(2− α)

n∑
k=1

[(tn − tk−1)1−α − (tn − tk)1−α]
∆t (fk − fk−1)

(3.2)

Then by incorporating Eq (3.2) into our Eq (2.15) we get Eq (3.3) for our σtot in

terms of our εtot for our constant order Zener Fractional model. Using this discretiza-

tion with a uniform mesh across [0, T ], T our max time and n = 1, ..., N , we found

the results matched that of the equivalent Generalized Maxwell model based on the

results found in [8], the results of which are seen in Chapter 4.
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σn+1 = β

1 + ∆t−αβ

[
σn∆t−α −

n∑
k=2

bn,k(σk − σk−1)
]

+ β

1 + ∆t−αβ

[
Eeqεn+1

β
+ (Eeq + Eneq)

n+1∑
k=2

bn,k(εk − εk−1)
]

β = τα

Γ(2− α)

bn,k = (tn+1 − tk−1)1−α − (tn+1 − tk)1−α

∆t
σ1 =0

(3.3)

3.2 Concrete-Variable Order Problem

When modeling the two different aggregate types of concrete based on the experimen-

tal data from [2], the values of the α, η clearly change due to different temperatures,

which was seen in Table 2.1. Previously Eq’s (2.20), (2.21), (2.22) were introduced,

and it is with these three different definitions that we will model the creep behavior

of the concrete. The discretization process for each along with the numerical scheme

are derived in the following subsections.

3.2.1 C
0 D

α
t f(t)⇒1

0 D
α(T (t))
t f(t)

It is clear that the standard constant order definition of the fractional derivative

cannot model these, however Eq (3.2) can be easily altered to accommodate this.

We do so by discretizing our springpot model chosen for concrete assuming constant

stress and our temperature dependent α, setting α(T (tn)) = αn for simplicity

1
0D

α(T (t))
t f(t)|t=tn ≈

1
Γ(1− αn)

n∑
k=1

∫ tk

tk−1

fk − fk−1

∆t(tn − τ)αn
dτ

= 1
Γ(1− αn)

n∑
k=1

fk − fk−1

∆t

∫ tk

tk−1

1
(tn − τ)αn

dτ

= 1
Γ(2− αn)

n∑
k=1

[(tn − tk−1)1−αn − (tn − tk)1−αn ]
∆t (fk − fk−1)
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Incorporating this scheme into our Eq (2.18) we get

εn =εn−1 + ∆tαnΓ(2− αn) σ
ηn

−
n−1∑
k=2

[(n− k + 1)1−αn − (n− k)1−αn ](εk − εk−1)

ε1 =0

(3.4)

Here we specifically know what the η values are from Table 2.1 and as such do not

need to use our previous definition η = Eτα. This discretization was based on our

initially known definition of our Caputo fractional derivative found in Eq (2.20), with

the only difference being the reliance of how the temperature changes in time, creating

an accurate picture of how the model evolves. The coefficient matrix is seen below



ε2

ε3

ε4
...

εn


=



β2
σ
η2

0 . . . · · · · · · 0

β3
σ
η3

1− c3,2 0 . . . · · · 0

β3
σ
η4

c4,3 − c4,2 1− c4,3 0 . . . 0
... ... ... . . . . . . 0

βn
σ
ηn

cn,3 − cn,2 cn,4 − cn,3 · · · 1− cn,n−1 0





1

ε2

ε3

ε4
...

εn


where βn, cn,k are defined as

βn = ∆tαnΓ(2− αn)

cn,k = (n− k + 1)1−αn − (n− k)1−αn

(3.5)
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3.2.2 C
0 D

α
t f(t)⇒2

0 D
α(T (t))
t f(t)

Here we are interested in the discretization of our Eq (2.21), the first step to incor-

porating memory into our scheme.

2
0D

α(T (t))
t f(t)|t=tn ≈

n∑
k=2

∫ tk

tk−1

fk − fk−1

∆tΓ(1− α(T (τ)))(tn − τ)α(T (τ))dτ

=
n∑
k=2

fk − fk−1

Γ(1− αk−1)∆t

∫ tk

tk−1

1
(tn − τ)αk−1

dτ

=
n∑
k=2

fk − fk−1

Γ(2− αk−1)∆tαk−1
[(n− k + 1)1−αk−1 − (n− k)1−αk−1 ]

From this discretization process of our Eq (2.21) we have our ε in terms of our

parameters below

εn =εn−1 + ∆tαn−1Γ(2− αn−1)
[
σ

ηn
−

n−1∑
k=2

εk − εk−1

Γ(2− αk−1)∆tαk−1
γn,k

]

γn,k =(n− k + 1)1−αk−1 − (n− k)1−αk−1

ε1 =0

(3.6)

with the coefficient matrix



ε2

ε3

ε4
...

εn


=



β2
σ
η2

0 . . . · · · · · · 0

β3
σ
η3

1− c3,2 0 . . . · · · 0

β4
σ
η4

c4,3 − c4,2 1− c4,3 0 . . . 0
... ... ... . . . . . . 0

βn
σ
ηn

cn,3 − cn,2 cn,4 − cn,3 · · · 1− cn,n−1 0





1

ε2

ε3

ε4
...

εn


and our βn, cn,k defined as

βn = ∆tαn−1Γ(2− αn−1)

cn,k = ∆tαn−1Γ(2− αn−1)
∆tαk−1Γ(2− αk−1) [(n− k + 1)1−αk−1 − (n− k)1−αk−1 ]

(3.7)
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3.2.3 C
0 D

α
t f(t)⇒3

0 D
α(T (t))
t f(t)

Our final discretization is of Eq (2.22), the final step towards fully integrating memory

into our numerical scheme.

3
0D

α(T (t))
t f(t)|t=tn ≈

n∑
k=2

∫ tk

tk−1

fk − fk−1

∆tΓ(1− α(T (tn − τ)))(tn − τ)α(T (tn−τ))dτ

=
n∑
k=2

fk − fk−1

Γ(1− αn−k+1)∆t

∫ tk

tk−1

1
(tn − τ)αn−k+1

dτ

=
n∑
k=2

fk − fk−1

Γ(2− αn−k+1)∆tαn−k+1
[(n− k + 1)1−αn−k+1 − (n− k)1−αn−k+1 ]

With this final numerical scheme for our Eq (2.22), we can find our ε in terms of

our parameters below

εn =εn−1 + ∆tα1Γ(2− α1)
[
σ

ηn
−

n−1∑
k=2

εk − εk−1

Γ(2− αn−k+1)∆tαn−k+1
γn,k

]

γn,k =(n− k + 1)1−αn−k+1 − (n− k)1−αn−k+1

ε1 =0

(3.8)

and our coefficient matrix



ε2

ε3

ε4
...

εn


=



β σ
η2

0 . . . · · · · · · 0

β σ
η3

1− c3,2 0 . . . · · · 0

β σ
η4

c4,3 − c4,2 1− c4,3 0 . . . 0
... ... ... . . . . . . 0

β σ
ηn

cn,3 − cn,2 cn,4 − cn,3 · · · 1− cn,n−1 0





1

ε2

ε3

ε4
...

εn


with our β, cn,k defined as

β = ∆tα1Γ(2− α1)

cn,k = ∆tα1Γ(2− α1)
∆tαn−k+1Γ(2− αn−k+1) [(n− k + 1)1−αn−k+1 − (n− k)1−αn−k+1 ]

(3.9)
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3.2.4 Difference in Coefficient Matrices

While the process for each case resulted in similar coefficient matrices, the clear

difference lies in the coefficients themselves. For Eq (3.5), for each n step, the αn

was only evaluated at n for each summation step, essentially acting as a constant for

each iteration. However for Eq (3.7), α is distinctly dependent upon either the k’th

or n’th iteration, seen in αk−1 or αn−1. While this allows the α values to mature

throughout the iterative process providing that sense of memory, it is only dependent

upon which iteration it is being processed as, and as such has no dependence upon

the tn value in which it is being derived with respect to except at k = n. Finally in

Eq (3.9) we see the α evaluated based upon an interactive relationship between both

the k’th and n’th value. This allows the scheme as a whole to preserve the memory

of the α function with respect to both the iterative process as well as the tn values.
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Chapter 4

Numerical Experiments

4.1 Convergence Behavior

To check the accuracy of our numerical scheme from Eq (3.2) we discretized the

differential equation (1 + t2)f ′(t) +C
0 D0.1+0.2

√
t

t f(t) = f(t) against its true solution

f(t) = 1 + t1.7, seen below

Figure 4.1: Equivalence between our numerical scheme and the true solution

In Fig: 4.1 it can be seen that the code written using the numerical scheme

aligns closely to the true solution. The error and Newton Convergence Order were

then calculated and the results can be seen in Table 4.1, with en = ||f − fn||L∞ , βn

representing the convergence order, and N the iterations. With these results we were

able to move forward confidently with incorporating the numerical scheme to model

viscoelastic materials.
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Table 4.1: Error and Newton Convergence Order of Eq (3.2)

N ∆t en βn

32 1
32 0.0187 99.08%

64 1
64 0.0094 99.46%

128 1
128 0.0047 99.68%

256 1
256 0.0024 99.81%

512 1
512 0.0012 99.88%

1024 1
1024 0.0006 99.93%

4.2 Numerical Investigation of Fractional Zener model compared

to Generalized Maxwell model

With our Eq (3.3), we can now verify it against known results. In [8] they compare the

equivalence of a Fractional Zener model (Fig: 2.3) against the Generalized Maxwell

model (Fig: 2.2). Using the values in the paper with Eeq set to 1MPa, Eneq set to

999MPa, we ran the code through a series of tests seen in Fig: 4.2 to see if we could

replicate the results.

The first test we ran was a stress response-we set the strain to increase at a

constant rate of 0.01/s, 0.001/s, and 0.0001/s with results seen in Fig: 4.2(a). The

second test we ran was stress relaxation, where the strain was increased to either

0.01, 0.03, or 0.05 and then held at that level for 60s, as seen in Fig: 4.2(b). The

third and final test we conducted was under cyclic loading conditions, where the

strain over time can be seen in Fig: 4.2(c) with resulting stress response Fig: 4.2(d).

Comparing these results to those found in [8], we were able to confirm the validity

of Eq (3.3) and also prove that while modeling viscoelastic materials is possible

using integer order derivatives as seen in our Generalized Maxwell model in Eq

(2.6), it is much simpler to use a fractional model such as our Fractional Zener model.
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(a) Stress Response (b) Stress Relaxation

(c) Cyclic Loading-Strain (d) Cyclic Loading-Stress

Figure 4.2: The results of our Fractional Zener model subject to three different loading
conditions with ω=0.1, α=0.7

Comparing the two equations it is quite clear that Eq (3.3) is advantageous

due to its minimal unknowns, while Eq (2.6) require many unknowns making the

computation lengthier.
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4.3 Exploring our Impulse Function

To discover how the different definitions from Eq’s (3.4), (3.8), and (3.6) differ from

each other, a closer look at the impulse function of each provides clarity. Here we

graphed the impulse function for each with τ our integration variable, and t the value

the derivative is being taken with respect to. Our t values start at 35 minutes and

increment by 35 until 350 minutes, represented by the separate graphs seen in Fig:’s

4.4, 4.5, 4.6. This is in the effort to show how the discretization of the function is

affected as our tn increases. For reference Fig: 4.3 displays the temperature dependent

α values.

Figure 4.3: MATLAB spline function of α parameters found in Table 2.1

4.3.1 Eq (2.20) Impulse Function

As described earlier the α function acts as a constant, and this is represented in the

initial values of each tn impulse function graph seen in Fig: 4.4. Each behaves as an

independent graph regardless of how α changes in time according to our Fig: 4.3.
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Figure 4.4: Our impulse function using α(T (t, τ))⇒ α(T (t))

4.3.2 Eq (2.21) Impulse Function

However here we have the α dependent upon each value within the k’th iteration,

seen in how the beginning of the tn graphs in Fig: 4.5 behaves compared to Fig: 4.4.

There is simultaneous oscillation reflecting our α values as our τ increments from 0

min to 350 min, similar to the α behavior in Fig: 4.3.

Figure 4.5: Our impulse function using α(T (t, τ))⇒ α(T (τ))
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4.3.3 Eq (2.22) Impulse Function

Finally we have our impulse function from our third definition. From Eq (3.9) we

could clearly see an interactive relationship between our tn, τ values and this is re-

flected in the distinct oscillations at the beginning of each tn graph found in Fig: 4.6.

The distinct behavior of these graphs clearly show that our Eq (2.22) allows much

greater respect to how the α function evolves as tn increases respective to Fig: 4.3.

Figure 4.6: Our impulse function using α(T (t, τ))⇒ α(T (t− τ))

4.4 Numerical Investigation of Concrete

Here we wanted to compare our three equations defined in Eq’s (2.20), (2.21), and

(2.22). We focused on calcareous and siliceous aggregate which behaved quite differ-

ently when subjected to different temperatures. To model calcareous aggregate using

Eq’s (3.4), (3.6), and (3.8), we used Eq (2.16), however as seen in Fig: 4.7(a), it

was clear that there was an issue with the equations around the time 150min, which

correlates to 600◦F as seen in Fig: 4.7(b) where there is jump discontinuity in the α

equation.
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(a) Calcareous aggregate creep

(b) Calcareous α(T(t)) values

Figure 4.7: Calcareous aggregate creep and α(T (t)) based on Eq (2.16)

Seeing how the α function jumps at tn = 150min we chose to graph the values

from Table 2.1 directly using the MATLAB spline function, seen in Fig: 4.8. Here

it is plain that the discretization in Eq’s (3.6) and (3.8) produces a smoother graph-

consistent with the notion that it takes the history of the evolution of α into account

in the direct calculations of the fractional derivative of the springpot.
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Figure 4.8: Calcareous aggregate creep using MATLAB spline function for parameters
found in Table 2.1

Conversely comparing the graphs that result from using the equations for α, η

found in Eq (2.17) to those found using a direct MATLAB spline function from the

parameters for siliceous aggregate found in Table 2.1, there was little difference to

note except a slight scaling factor due to slightly enlarged values of the α, η graphs

from Eq (2.17).

Figure 4.9: Siliceous aggregate creep based on Eq (2.17)
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Figure 4.10: Siliceous aggregate creep using MATLAB spline function for parameters
found in Table 2.1

Some things to note include how the first definition of our Caputo derivative

produces graphs that rely heavily on the α function calculated at tn, seen in the

initial increase in values followed by a tail end of decreasing values compared to our

other definitions. However looking at our second and third definitions we can see a

clearer evolution with respect to the α functions given the smoother increase in our

function as time progresses forward.
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Chapter 5

Conclusion and Future Work

In this thesis we have successfully shown that fractional order viscoelastic models have

a clear advantage to modeling such materials specifically in contrasting the numerical

schemes required for a Generalized Maxwell model and the Fractional Zener model.

From this we verified the numerical scheme initially introduced, providing a 99%+

convergence order for minimal iterations, to which we applied to a variable order

α function definition to different types of concrete aggregate. To discover how the

implementation of varying the relationship between our integration variable τ to our t

with which we took the derivative with respect to within the α function, we introduced

our three different definitions 1
0D

α(T (t))
t f(t), 2

0D
α(T (t))
t f(t), and 3

0D
α(T (t))
t f(t) which we

applied to the concrete aggregates. By focusing on the impulse functions defined

from our different definitions we discussed how each differed in respect to another,

specifically how the numerical scheme of each allowed more or less contribution from

our α function dependent upon which time stamp in the iterative process.

From here more work can be done exploring these different types of definitions,

including the acquirement of raw data that can be modeled using these definitions to

create better approximations of how viscoelastic materials behave, allowing them to

be used in broader fields of industry with more confidence.
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