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Abstract

This dissertation is focused on the task of multi-label visual recognition, a funda-

mental task of computer vision. It aims to tell the presence of multiple visual classes

from the input image, where the visual classes, such as objects, scenes, attributes,

etc., are usually defined as image labels. Due to the prosperous deep networks, this

task has been widely studied and significantly improved in recent years. However, it

remains a challenging task due to appearance complexity of multiple visual contents

co-occurring in one image. This research explores to regularize the deep network

learning for multi-label visual recognition.

First, an attention concentration method is proposed to refine the deep network

learning for human attribute recognition, i.e., a challenging instance of multi-label

visual recognition. Here the visual attention of deep networks, in terms of attention

maps, is an imitation of human attention in visual recognition. Derived by the deep

network with only label-level supervision, attention maps interpretively highlight ar-

eas indicating the most relevant regions that contribute most to the final network

prediction. Based on the observation that human attributes are usually depicted

by local image regions, the added attention concentration enhances the deep net-

work learning for human attribute recognition by forcing the recognition on compact

attribute-relevant regions.

Second, inspired by the consistent relevance between a visual class and an image

region, an attention consistency strategy is explored and enforced during deep net-

work learning for human attribute recognition. Specifically, two kinds of attention

consistency are studied in this dissertation, including the equivariance under spatial

iv



transforms, such as flipping, scaling and rotation, and the invariance between different

networks for recognizing the same attribute from the same image. These two kinds of

attention consistency are formulated as a unified attention consistency loss and com-

bined with the traditional classification loss for network learning. Experiments on

public datasets verify its effectiveness by achieving new state-of-the-art performance

for human attribute recognition.

Finally, to address the long-tailed category distribution of multi-label visual recog-

nition, the collaborative learning between using uniform and re-balanced samplings

is proposed for regularizing the network training. While the uniform sampling leads

to relatively low performance on tail classes, re-balanced sampling can improve the

performance on tail classes, but may also hurt the performance on head classes in

network training due to label co-occurrence. This research proposes a new approach

to train on both class-biased samplings in a collaborative way, resulting in perfor-

mance improvement for both head and tail classes. Based on a two-branch network

taking the uniform sampling and re-balanced sampling as the inputs, respectively,

a cross-branch loss enforces consistency when the same input goes through the two

branches. The experimental results demonstrate that the proposed method signifi-

cantly outperforms existing state-of-the-art methods on long-tailed multi-label visual

recognition.
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Chapter 1

Introduction

In the past decades, computer vision has been developed to one of the most popular

areas among artificial intelligence researches. By classifying an image into different

categories/classes, visual recognition [70] is an fundamental task of computer vision.

Its goal is to tell whether an image contains certain objects, scenes, attributes, etc.,

each of which can be denoted as an image label. Based on the number of image labels

associated with one image, we usually group the visual recognition as the single-label

visual recognition and the multi-label visual recognition. For the traditional single-

label visual recognition, there is only one category associated with an image, i.e.,

the existence of one category excludes the existence of other categories. As shown in

Fig. 1.1(a), images are recognized as either “cat”, “dog”, “person” or “bicycle”. In this

case, the label annotation for each image is one-hot. However, in many applications,

an image is usually associated with multiple (more than one) categories, as shown in

Fig. 1.1(b). For example, the first image in Fig.1.1(b) contains both a dog and a cat

and therefore is associated with both labels of “dog” and “cat”. This dissertation is

focused on the problem of multi-label visual recognition.

Multi-label visual recognition [149, 169] aims to classify an image into multiple

classes/categories, denoted as multiple labels. Typical topics of multi-label visual

recognition include human/pedestrian attribute recognition [4, 23, 41, 85, 90, 171],

scene understanding [128], multi-object recognition [14], facial attribute recogni-

tion [46], etc. For example, for human attribute recognition (HAR), the goal is

to identify the multiple labels that represent a set of pre-defined human attributes,
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1, 0, 0, 0 0, 1, 0, 0 0, 0, 1, 0 0, 0, 0, 1

1, 1, 0, 0 1, 0, 1, 0 0, 1, 1, 0 0, 0, 1, 1

(a)

(b)

Figure 1.1 An illustration (a) single-label and (b) multi-label visual recognition.
“1” indicates the presence and “0” represents absence of an image label. The four
numbers below each image indicate the categories of “dog”, “cat”, “person” and
“bicycle” sequentially.

e.g., “male”, “sunglasses”, “hat”, “T-shirt” and “short”, as shown in Fig. 1.2(a). As

an important visual concept, human attributes are highly intuitive, semantic and

informative to describe the appearance of a person. Accurate human attribute recog-

nition can benefit a wide variety of computer vision applications, such as person

re-identification [44, 137, 93], person retrieval [33], pedestrian detection [147], pero-

ple search [150], fine-grained recognition [26], object categorization [74], object de-

scription [31], face verification [71] , and attribute-based classification [73], which is

another kind of multi-label vision recognition. Figure 1.2(b) also shows an example

of multi-object recognition, i.e., recognizing the existence of “person” and “car”.

1.1 Challenges

Many advanced deep neural networks have been developed for enhancing the per-

formance of multi-label visual recognition, such as exploring label dependencies [153,

154, 125, 174, 45, 88, 141, 7, 89, 173, 54, 87, 153, 178] and discovering the label-relevant

regions [171, 84, 95, 97, 178, 124, 143, 142] or label-related contexts [90, 154]. How-
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(a) (b)

Figure 1.2 An illustration of multi-label visual recognition: (a) human attribute
recognition; (b) multi-object classification.

ever, it remains as a very challenging task due to multiple image labels associated

with one image, denoted as label co-occurrence. The label co-occurrence can lead

to the challenges of label locality, label occlusion and label imbalance in multi-label

visual recognition.

1.1.1 Label Locality

The label locality of multi-label visual recognition results from samples of multiple

categories sharing the same image space. When an image is associated with multiple

image labels, samples of each associated label should occupy certain image regions,

as illustrated in Fig. 1.1(b). Given the image with a specific dimension, the sample

resolution of a specific label in multi-label visual recognition could be suppressed

by the number of co-occurred image labels. In this case, an image label is usually

depicted by a local image region, defined as label locality in this dissertation. The

remaining regions sometimes can be distractions for recognizing the specific image

label. To be specific, with the human attribute recognition as the example, the

attribute of “short” is only depicted by the local regions around upper legs of the

person, while the attribute of “hat” exists at the head regions of the person, as shown

in Fig. 1.2(a). Besides, even if the original image is in high resolution or high quality,

3



the image information associated to an attribute may be in low resolution and low

quality in practice, e.g., the attribute “sunglasses” in Fig. 1.2(a). Thus, by limiting

label-specific information, the label locality could increase the difficulty of recognizing

the certain image labels/human attributes.

1.1.2 Label Occlusion

When samples of multiple categories exist in the same image, a sample of one cate-

gory could occlude samples from other categories. For example, in human attribute

recognition, the attributes “hat” and “long hair” are both recognized from the head

regions of a person. As shown in Fig. 1.3, when an attribute occludes with another

attribute, it makes the recognition of the occluded attribute more difficult.

Figure 1.3 An illustration of label occlusion in human attribute recognition of
“hat” and “long hair”.

1.1.3 Label Imbalance

Nowadays, deep neural networks are usually trained to address the multi-label vi-

sual recognition, which requires a large-scale dataset containing images with multiple

labels annotated. Practically, efforts required for including images of different cate-

gories are different. Thus, image datasets for multi-label visual recognition are usually

imbalanced, i.e., some categories have more samples than other categories. Deep net-

work training from the imbalanced data normally biases towards the categories with

4



more training samples. For single-label visual recognition, this issue can be addressed

by artificially balancing the categories, such as including equal number of images for

each category in ImageNet [22]. But achieving category balancing is not an triv-

ial work for multi-label visual recognition, since adding or removing an image may

include or delete samples of multiple categories, because of label co-occurrence. Be-

sides, for multi-label visual recognition, recognizing the presence of each image label

is regarded as equally important. Thus, the imbalanced label distribution is also a

challenge for multi-label visual recognition.

1.2 Research Scope

To address the multi-label visual recognition, this dissertation explores and studies

the label locality and label imbalance for deep network regularization. Specifically,

the label locality is studied by regularizing the deep network attention, while the

label imbalance is addressed by handling the long-tailed issue in multi-label visual

recognition.

1.2.1 Label Locality: Deep Network Attention Regularization

To explore label locality for multi-label visual recognition, we address the specific

task of human attribute recognition, since the recognition of human attributes is

usually determined by certain regions of the image. Based on this attribute local-

ity, the attribute-region relevance plays an important role in human attribute recog-

nition. This leads to one of the most important properties of human attributes,

which is denoted as local spatiality in this dissertation, i.e., an attribute is usu-

ally related to particular human-body parts, local image regions, or certain con-

texts [171, 84, 95, 97, 178, 124, 143, 142]. Such attribute-region relevance is frequently

reflected by the attention mechanism. Prior researches in cognitive science [102, 75]

and neuroscience [24] show that our human vision actually recognizes an attribute

5



by discovering and focusing visual attention on such local discriminative regions.

By simulating this attention in human vision [69, 27, 148, 68, 18], many deep net-

works [175, 127, 3] have been designed to generate attention maps by identifying

the local image regions that contribute most to the final recognition. They explain

why the deep network makes certain prediction, no matter if the prediction is cor-

rect or not, i.e., the highlighted areas are discovered by the deep network as the

attribute-relevant regions. In most cases, such attention maps are computationally

estimated as an intermediate result (or a byproduct) of the model prediction with

only image-level supervision, and have been widely used for network interpretation.

In this dissertation, the interpretive attention maps of recognizing human attributes

are leveraged for further enhancing the performance of human attribute recognition.

Ideally, according to the local spatiality of human attributes, if a deep network is

well trained and completely robust for recognizing an attribute, it shall precisely focus

attention on attribute-relevant regions, e.g., face regions for attribute “sunglasses”.

However, in practice, attention maps from existing deep networks can not always

highlight regions semantically relevant to the corresponding attributes. As shown in

Fig. 1.4, when a ResNet50 [49] is used to recognize the attributes (a) “sunglasses”

and (b) “male”, the estimated attention maps highlight irrelevant regions to these

attributes, respectively, and correspond to incorrect predictions. Thus, a basic as-

sumption can be made that the correctness of attention maps reflects the performance

of the trained deep network for attribute recognition. Fig. 1.5 shows an example of

attention map changing during a ResNet50 training for human attribute recognition.

We can see that, with more training iterations, the attention maps of attribute “sun-

glasses” on these two images are getting more focused on the desired face regions, i.e.,

the attribute-relevant regions, and meanwhile, the network is getting better trained

by outputting more accurate prediction scores, i.e., higher score for the attribute

presence in the top image and lower score for the attribute absence in the bottom

6



(a) (b)

Figure 1.4 Illustration of incorrect attention maps for recognizing attributes of (a)
sunglasses and (b) male.

0.180 0.290 0.622 0.839 0.947positive: 1

training iteration increased

 

 

0.0040.0160.085

 

0.2040.223

 

negative: 0

training iteration increased

Figure 1.5 Attention maps for attribute “sunglasses” in different iterations of a
deep network (ResNet50) training, where face is the desired attribute-relevant
region. The number above each attention map represents the predicted presence
score (in [0, 1]) in the corresponding iteration.

image. Motivated by this, this dissertation proposes to incorporate the plausibility

of attention maps into the network to regularize the network training for improving

human attribute recognition. This essentially utilizes the local spatiality of human

attributes and addresses the attribute locality for human attribute recognition.
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The straightforward approach to achieve this goal is to impose implicit supervision

of attribute-relevant regions in deep network learning, which requires the pixel-level

ground-truth of attention maps, which are similar to the ground truth used for seman-

tic segmentation [2]. However, annotating such pixel-level ground truth for large-scale

training images is infeasible due to cognitive ambiguity and intensive labor involved

in manual annotations:

• cognitive ambiguity – attribute-relevant regions are not well defined: (a) It is not

a trivial work to identify regions relevant to certain abstract attributes, such as

“Age Between 18 and 60”; (b) Different from discrete values in pixel-level ground

truth for semantic segmentation, pixel values of attention map annotations are

continuous, leading to the difficulty of quantifying the importance of each pixel

for recognizing an attribute.

• intensive labor – multiple attention maps need to be annotated for each image:

in the same image, different attributes have different attention maps, which

heavily increases the difficulty and workload of manual annotation.

Therefore, to achieve fully supervision on attention maps of attributes, a comprehen-

sive group study is required to define the relevant regions for each attribute and the

annotation consumes a lot of labor and time. Thus, this dissertation explores and

designs methods to improve the plausibility of attention maps for regularizing the

deep network learning without requiring ground-truth attention maps.

1.2.2 Label Imbalance: Distribution Balancing on Long-tailed Multi-label

Image Data

Existing state-of-the-art methods for multi-label visual recognition are usually based

on deep networks, which are data-driven. The quality of training data decides

the robustness of the trained networks. Therefore, many benchmarks, e.g., Ima-
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Figure 1.6 An illustration of long-tailed distribution in a set of images. In this
case, “person” is one of the head classes, while “cow” and “sheep” are two of tail
classes. The class indexes are sorted according to the number of images, in the
descending order.

geNet [22, 121], MS-COCO [92], are usually constructed by artificially balancing

the number of images for each class. However, in practice, the numbers of images

for different classes are more likely imbalanced. As discussed in some single-label

visual recognition works [98, 8, 19, 157, 94, 61, 65, 176], the numbers of training

images for different classes may exhibit a long-tailed distribution in terms of classes

(image labels), as shown in Fig. 1.6. The head classes have many image samples,

while tail classes have very few image samples in training data. Direct training on

such data (with uniform sampling) usually produces relatively low performance on

the tail classes. To address this issue, many re-balancing methods are proposed for

single-label visual recognition. Due to label co-occurrence, i.e., multiple image labels

associated with one image, the long-tailed issue in multi-label visual recognition [166]

is more challenging, and has not been well explored.

For example, re-balanced data sampling [10, 129, 6, 47] is a proven effective ap-

proach for addressing the long-tailed visual recognition. It achieves class-wise bal-

ance by either down-sampling the head-class data or up-sampling the tail-class data,

9



class index

#
 o

f 
im

a
g
e
 s

a
m

p
le

s

head

classes

tail

classes

person

cow

sheep

class index

#
 o

f 
im

a
g
e
 s

a
m

p
le

s

head

classes

tail

classes

person

cow

sheep

(a) (b)

Figure 1.7 The illustration of using re-balanced sampling to address the long-tailed
issue in (a) single-label visual recognition and (b) multi-label visual recognition.
Red curves represent the original long-tailed distribution, while green curves
illustrate the re-balanced distributions.

as shown in Fig. 1.7(a), leading to the performance improvement on tail classes.

However, the re-balanced sampling can not directly achieve class-wise balance for

multi-label visual recognition. Since each image may be associated with multiple

classes/labels, down-sampling an image of a head class or up-sampling an image of

a tail class may simultaneously decrease the images for tail classes or increase the

images for head classes, respectively. Instead of achieving a class-wise balanced dis-

tribution, the re-balanced sampling intends to yield another imbalanced distribution,

as shown in Fig. 1.7(b). Thus, while the re-balanced sampling can improve the recog-

nition performance of tail classes, it may simultaneously suppress the performance of

some head classes due to label co-occurrence in multi-label visual recognition [166].

Since performance of different classes, either head or tail ones, is usually considered

to be equally important in multi-label visual recognition, this dissertation develops a

new method that can combine different data samplings for improving the performance

of both head and tail classes.
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1.3 Proposed Approaches

According to the above discussions, this dissertation proposes visual attention concen-

tration and visual attention consistency to integrate the label locality for multi-label

visual recognition, i.e., attribute locality in human attribute recognition, and collabo-

rative learning on biased distributions to address the label imbalance, i.e., long-tailed

distribution, in multi-label visual recognition.

1.3.1 Visual Attention Concentration

Considering the relevance between attributes and human body parts, prior part-

based methods extract features at human body parts corresponding to each human

attribute and the part-based features are fed to classifiers individually or together

for recognizing human attributes. This verifies that human attribute recognition can

be achieved on certain image regions. However, the performance of these methods

is highly dependent on the accuracy of body-part detection, which is a well known

challenging problem in computer vision. They also require predefined correlation

between attributes and body parts for attribute recognition, while this correlation

sometimes is not well defined for certain attributes, as discussed in Section 1.2.1.

Therefore, this study proposes an indirect method to enforce the deep networks to

recognize human attributes from attribute-relevant regions.

When the ordinary deep network learning minimizes the image classification loss

for attribute recognition, the attention maps estimated by class activation map-

ping [175] highlight image areas regarded as attribute-relevant regions in the net-

work’s opinion. As the deep network could not be well trained with limited training

data, the highlighted regions may be actually irrelevant to certain attributes. Then,

this study introduces an adversarial component to enhance the confidence of the high-

lighted regions by enforcing their concentration. For the highlighted regions relevant

to attributes, enforcing their concentration emphasizes these regions for attribute
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recognition, leading to refined recognition results. For the highlighted regions irrele-

vant to attributes, enforcing their concentration suppresses the regions really relevant

to attribute recognition, which confronts with minimizing the classification loss for

attribute learning, and propels the network to discover another area to highlight, i.e.,

for attribute recognition. Thus, the newly introduced component and the ordinary

classification loss adversarially learn the deep network for better human attribute

recognition. To achieve this goal, this study proposes an exponential loss applied

to each attention maps for each attribute recognition to emphasize the highlighted

regions and suppress the remaining regions.

The proposed method regularizes the deep network learning to focus attention on

a single compact image region for each attribute recognition, which does not requires

the body-part detection and the predefined correlation between attributes and body

parts. Experimental results on two public datasets and two deep networks verify its

effectiveness, by outperforming the results from part-based methods.

1.3.2 Visual Attention Consistency

Based on the assumption that more plausible attention maps indicate better networks

in Fig. 1.5, this study proposes a new approach for human attribute recognition by

exploring and enforcing attention consistency for network regularization. Given an

attribute in an image, the attribute-region relevance is important for the attribute

recognition and should be constant if the perception of the image is not changed.

As a reflection of attribute-region relevance in deep networks, interpretive attention

maps should also be consistent under certain circumstances. Thus, this study pro-

poses to enforce attention consistency for network learning for attribute recognition.

Specifically, two kinds of attention consistency are explored. One kind of consistency

enforces the equivariance of the attention map when the input image undergoes cer-

tain spatial transforms, such as scaling, rotation and flipping. The other kind of
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the consistency is enforced between the attention maps derived from two different

networks when both of them are trained for recognizing the same attribute from the

same image. These two kinds of consistency are formulated as new loss functions and

combined with the traditional classification loss for network training. Experiments on

three datasets of human attribute recognition verify the effectiveness of the proposed

method by achieving new state-of-the-art performance.

1.3.3 Collaborative Learning on Biased Distributions

To address the long-tailed issue of multi-label visual recognition, this study proposes

a new method to train a network from differently biased distributions in a collab-

orative way. Given the long-tailed distributed training data for multi-label visual

recognition, training with the uniform sampling emphasizes the recognition of head

classes, while training with the re-balanced sampling emphasizes the tail classes.

Meanwhile, recognition of tail classes and head classes are underrated by the uniform

sampling and the re-balanced sampling, respectively. Each of these two samplings

make the network training from biased distributions. Therefore, this study designs

a visual recognition network with two branches to leverage both samplings. One

branch takes the uniform sampling from long-tailed training data as input, while

the other branch takes the re-balanced sampling from long-tailed training data as

the input. For each branch, the binary-cross-entropy-based classification loss with

learnable logit compensation is conducted for the visual recognition of each image

label. A new cross-branch loss is defined to enforce the consistency when the same

input image goes through the two branches. As the two branches emphasize the

recognition of head classes and tail classes, respectively, this consistency makes two

branches learn from each other collaboratively. The collaborative training attempts

to compromise between two branches and lead to an effect equivalent to learning

from a more balanced implicit distribution somewhere between the two biased dis-
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tributions serving as the inputs of two branches, respectively. Extensive experiments

are conducted on two public datasets. The results show that the proposed method

significantly outperforms previous state-of-the-art methods on long-tailed multi-label

visual recognition.

1.4 Structure of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 introduces

the deep neural networks and the visual attention mechanism as the basis of this

dissertation. In Chapter 3, a literature review for related works is conducted. Chap-

ter 4 elaborates on the proposed method of enforcing visual attention concentration

for human attribute recognition. Chapter 5 explores and enforces visual attention

consistency for human attribute recognition. Chapter 6 addresses the long-tailed is-

sue of multi-label visual recognition with collaborative learning. Finally, Chapter 7

concludes the dissertation and outlooks the future work.
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Chapter 2

Background

2.1 Brief History of Deep Neural Networks

Deep neural networks are responsible for some greatest advances in computer vision

field in recent years 1. As a specific instance of deep neural network, the Convolutional

Neural Networks (CNNs) originate from the concept of receptive field from study on

cat’s visual cortexes [58] by two Nobel Prize winners, David H. Hubel and Torsten

N. Wiesel in 1950s and 1960s. Inspired by the receptive field, the Neocognitron [35]

was introduced in 1980 and could be regarded as the first consideration of CNN

architecture. It introduced two basic types of layers: convolutional layers and down-

sampling layers.

In 1986, the back-propagation algorithm was proposed [118, 119, 120], which has

been proved to be very effective and is standard in most CNNs today. Then, a great

breakthrough of the CNN was made in 1989, the backpropagation was used to learn

the convolutional kernel coefficients directly from images of hand-written digits [78]

by Yann LeCun et al. This work was further improved in [79]. It is the first real CNN

architecture and initiates the applications of CNN models in computer vision tasks,

such as face detection [116, 117], face recognition [76], and character recognition [133].

As the LeNet-5 [80], which is a pioneering 7-level convolutional network, was

proposed in 1998, the CNN architecture was basically settled. LeNet-5 was applied

by several banks to recognize hand-written numbers digitized in 32×32 pixel images.

1https://amturing.acm.org
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To process higher resolution images, larger and more layers of convolutional neural

networks are required, which is constrained by the availability of computing resources.

Therefore, the development of convolutional neural networks was almost frozen at the

beginning of 2000s.

In 2004, the Graphics Processing Units (GPUs) were used for training neural

networks [106], which proved that GPUs can greatly accelerate the standard neural

networks. In 2006, the GPUs were applied to CNNs [11]. Then, researchers started

to use GPUs to accelerate neural network computing [16, 15] extensively.

With the advances in computation power benefiting from GPUs, the prosper-

ous studies on CNNs are actually started from the AlexNet [70], when the massive

datasets, such as ImageNet [121], became available. In 2012, when AlexNet, a convo-

lutional neural network consisting of convolutional layers, pooling layers, activation

layers (ReLU) and fully connected layers, was proposed, it achieved a top-5 error of

15.3% on ImageNet 2012 Challenge, which is more than 10 percentage points better

than that of the runner up. After this, explorations on CNNs sprung up all over

the computer society. According to The Economist, “Suddenly people started to pay

attention, not just within the AI community but across the technology industry as a

whole.”

Then, a number of outstanding architectures are developed to make CNNs more

robust for a wide variety of tasks, such as VGGNet [135], GoogLeNet [140], ResNet [49],

DenseNet [57] for recognition, R-CNN [37], Fast R-CNN [36], Faster R-CNN [113],

Mask R-CNN [48], SSD [96], YOLO [111] for detection, FCN [99], SegNet [2] for

segmentation, and so on, as shown in Fig. 2.1. In summary, convolutional neural

networks now have been an industry standard in computer vision.
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1962 1980 1986 1989 1998 20122006

Figure 2.1 Some of the landmark events in the CNN history.

2.2 Architecture of CNNs

The deep convolutional neural networks are specific instances of Neural Networks

(NNs), which simulates human brains. NNs are usually made up of relatively simple

computing elements called “neurons”, which loosely resemble the neurons in human

brains. The neurons influence one another via weighted connections. The training

of a neural network learns the weights on the connections, which changes the com-

putation performed by the neural network. Similar to the ordinary neural networks,

convolutional neural networks also consist of neurons that have learnable weights,

i.e., convolutional kernels. Each neuron receives some inputs, performs convolutional

computation and is followed by certain non-linearity operation.

In general, a typical CNN architecture is built from a stack of layers, each of which

take the output of the prior layer and estimate output as the input of the successive

layer, except the beginning input layer and the final output layer [86, 66]. There

are mainly three types of layers to build CNN architectures: Convolutional Layer,

Pooling Layer, and Fully Connected Layer.
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2.2.1 Convolutional Layer

The convolutional layer is the core component to build CNN architectures. It consists

of a certain number of convolutional kernels, a.k.a filters, and is usually followed by a

non-linear function, e.g., Sigmoid, Rectified Linear Unit (ReLU) [104], to bring in non-

linearity. The learnable weights and biases of all filters compose the layer parameters.

Given an input image as the input layer, a convolutional layer transforms the input

with dimension of channel, height and width to a volume of activation maps (or

feature maps) by conducting convolution on each pixel of the image based on each

convolutional filter in this layer. The successive convolutional layers take the volume

from the prior layer and conduct convolutional operations repeatedly. Fig. 2.2 shows

an illustration of the convolution operations based on the filters in a convolutional

layer. Suppose the convolutional layer takes the input in dimension of c1 × h1 × w1,

and has c2 convolutional kernels with kernel size as k × k. Then, each kernel has

parameters in dimension of c2× k× k. The convolution operation between the input

and a convolutional kernel yields a feature map in dimension of h2 × w2. Thus, c2

kernels produce the output volume in dimension of c2 × h2 × w2. Here
h2 = dh1−k+2p

s
e+ 1,

w2 = dw1−k+2p
s
e+ 1,

(2.1)

where p is the spatial padding outside of the boundary of the input, s is the stride

when sliding the same convolutional kernel to location of the input.

The motivation behind the filters are biologically-inspired by receptive field from

Hubel and Wiesel’s work on the cat’s visual cortex [58, 59]. This study reveals that

the animal visual cortex contains neurons, which are sensitive to small-sub-regions of

visual field, called a receptive field. Two of the core properties of the convolutional

layer are local connectivity (a.k.a sparse connectivity) and shared weights.

• Local Connectivity: Instead of connecting each neuron to all regions in the input

volume as in the ordinary Neural Network, the convolutional layers connect each
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Figure 2.2 Each convolutional kernel (filter) convolves the input volume across the
height and width, with extending through its full depth.

neuron only to a local region (kernel size) of the input volume, i.e., the receptive

field of convolutional kernels. The local connectivity can obviously reduce the

number of parameters to learn.

• Shared Weights: The strategy of shared weights in convolutional layers is also

used to reduce the number of parameters. Intuitively, if a filter computes useful

activation at a particular position of the input volume, it should also computes

useful activation at a different position. Therefore, each filter filters the entire

input volume in a sliding manner to produce a single depth slice of the output

volume.

Generally, a non-linear activation function is appended to the convolutional layer

to impose non-linearity to the network. It is applied individually to each element of

the output volume of the convolutional layer. The dimension of feature maps do not

change after activation functions. Several activation functions have been explored,

such as Rectified Linear Unit (ReLU) [104], Sigmoid, TanH, etc. The most frequently
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used one in today’s CNN architectures is the ReLU function:

f(x) =


0 for x < 0,

x for x ≥ 0,
(2.2)

where x is the input of the activation function f .

2.2.2 Pooling Layer

A Pooling Layer is used to down-sample the feature maps. The most common pooling

layer is the MAX Pooling with a kernel size 2× 2 and a stride 2. The maximum of 4

values from a 2× 2 region on each depth of activation maps, is selected to represent

the activation of this region on this depth slice. A simple illustration is shown in

Fig. 2.3. There are also other pooling layers available, such as average pooling using

the average of a region as representation, stochastic pooling randomly selecting a

value in the region as its representation, etc.

Figure 2.3 An illustration of max pooling applied on a single depth slice of feature
maps.

2.2.3 Fully Connected Layer

The Fully Connected Layer is a linear layer widely used in ordinary neural networks.

Each neuron in a fully connected layer is connected to all neurons of its prior layer.

The computation of features from fully connected layers can be formulated as a matrix
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multiplication with a bias offset:

Y = WTX + b, (2.3)

where X and Y are the input and output of the fully connected layer, while W

and b are the weights and biases of the fully connected layer. Actually, the fully

connected layers now may not be mandatory to construct CNN architectures for

certain computer vision tasks, e.g., FCN [99] for semantic segmentation.

6464
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64
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56 256 256
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512 512 512
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1
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Figure 2.4 An illustration of a typical CNN architecture – VGG16.

Finally, an integrated CNN is built by stacking these layers together. For example,

the classical VGG [135] is shown in Fig. 2.4 (drawn from PlotNeuralNet 2). In this

figure, “conv1”, “conv2”, ..., “conv4” are convolutional modules, each of which con-

sists of a stack of convolutional layers and activation layers. The light yellow blocks

represent the feature maps from convolutional layers. After activation function, i.e.,

ReLU, the block color changes to orange. The red blocks at the end of each convolu-

tional module represent the down-sampled feature maps by pooling layers. Similarly,

the light and dark purple blocks of the fully connected layers indicate the features

before and after the activation function, respectively. Besides, “softmax” is a nor-

2https://github.com/HarisIqbal88/PlotNeuralNet
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malization function to convert the network output to the final prediction. Numbers

around blocks specify the dimension of feature maps/vectors at different stages.

2.3 Deep Network for Multi-label Visual Recognition

In this study, training deep networks for multi-label visual recognition is formulated

as a problem of multiple binary image classification, as shown in Fig. 2.5. Given

an image x ∈ X, the task aims to predict the presence of each image label, e.g.,

objects, human attributes, etc. The ground-truth for the image are y ∈ Y, with

y = {y1, y2, ..., yK} where yj = 1 if image label j is present in the image and yj = 0

otherwise. K is the number of considered image labels. X is the set of N training

images and Y is their corresponding set of ground-truth annotations.

For classical CNN architectures, such as AlexNet [70] and VGG16 [135], a CAM

structure, which contains a Global Average Pooling (GAP) and an FC layer after

the last convolutional layer of the CNN (denoted as GAP-FC), replaces the original

stacked FC layers as shown in Fig. 2.4, so that CAM can be used for estimating

the attention maps in network inference, which will be discussed in the following

Section 2.4. Thus, in this study, these networks are denoted as AlexNet-CAM and

VGG16-CAM, respectively. Other classical CNN architectures, such as ResNet [49],

DenseNet [57], are designed with GAP-FC structure for producing the final results

for visual recognition.

The input image x first goes through a sequence of convolutional layers, followed

by certain activation functions and pooling layers. Convolutional feature maps from

the last convolutional layer is fed to the global average pooling for feature aggregation.

Then, an FC layer with multiple sets of linear weights and biases take the aggregated

feature as input and output the final prediction for the presence of each image la-

bel. Usually, the binary cross entropy loss is used as the classification loss to learn

the network for each image label recognition. For example, the cross-entropy-based
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Figure 2.5 The illustration of CNNs with CAM structure, i.e., GAP-FC, being
used for recognizing multiple image labels.

classification loss is widely used for human attribute recognition [83, 85, 97, 42, 141].

Suppose ŷ = [ŷ1, ŷ2, · · · , ŷK ] ∈ RK denote the output of the deep network with x as

the input. The classification loss would be computed as

Lcls(ŷ,y) =− 1
K

K∑
j=1

ωj (yj log(ς(ŷj))

+(1− yj) log(1− ς(ŷj))) ,
(2.4)

where

ς(ŷj) = 1/(1 + e−ŷj ), (2.5)

and ŷj ∈ R indicates the predicted score for image label j being present in image x.

ωj is used for weighting the loss from image label j to alleviate the imbalance among

different labels. Two weighting strategies are considered in the network training. The

exponential strategy [83] produces relatively smooth attribute weights:

ωej =


e1−ρj if yj = 1,

eρj if yj = 0,
(2.6)

where ρj is the ratio of positive samples for image label j. The square root strat-

egy [141] heavily emphasizes the attributes with rare positive samples:

ωsj =


√

1/2ρj if yj = 1,√
1/2(1− ρj) if yj = 0.

(2.7)
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2.4 Class Activation Mapping for Deep Network Attention

Due to its differentiable and efficient computation, Class Activation Mapping (CAM) [175]

is used for estimating visual attention of deep networks in this study. As the input

image x is fed to the deep network (denoted as f) for multi-label recognition, a set

of convolutional feature maps F ∈ RC×H×W is obtained from the last convolutional

layer, where C, H and W are the channel, height and width of the feature maps,

respectively. With the Global Average Pooling (GAP), the feature maps can be ag-

gregated to a feature vector f ∈ RC , which is passed to the linear layer, i.e., FC layer,

for image label attribute recognition. The parameters of the linear layer for recog-

nizing multiple image labels consist of linear weights W ∈ RK×C and bias b ∈ RK .

The prediction for the presence of image label j in image x can be written as

ŷj = wjf + bj, (2.8)

where wj ∈ RC is the j-th row of W and bj is the j-th element of b, and they

represent the linear weights and bias for recognizing image label j, respectively.

As each value in the feature vector f is aggregated from a channel (a visual pattern)

of the feature maps, the learned linear weights wj specify the importance of each

visual pattern for recognizing the image label j. Therefore, as shown in Fig. 2.6,

CAM directly maps the linear weights to the channels of feature maps F to estimate

the H ×W -dimensional attention map

h(x, j, f) =
C∑
c=1

wjcFc (2.9)

for label-j’s presence in image x, where wjc is the c-th value of wj, and Fc ∈ RH×W is

the c-th channel of the feature maps F. Note that wj and F are derived from f and

x, respectively. Therefore, CAM is denoted as a function of both the input image

and the network in Eq. (2.9). Using bi-linear interpolation, the attention map can be

up-sampled to the input image size to indicate pixel-level evidence for or against the
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Figure 2.6 The illustration of estimating attention map based on CAM. j is for the
image label, i.e., human attribute, of “hat”.

image label presence. Thus, the attention maps estimated for the deep network are

actually byproducts of the network prediction.
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Chapter 3

Literature Review

This chapter provides a literature review for the works related to this research, in-

cluding prior works on multi-label visual recognition, visual attention mechanism and

consistency-based regularization.

3.1 Multi-label Visual Recognition

Multi-label visual recognition, a.k.a., multi-label image classification [149, 169], is a

vision-based multi-label learning task and has been widely explored, with progress on

both label-separate and label-correlated methods. Label-separate methods use binary

relevance strategy [5] to convert multi-label visual recognition to multiple binary

image classification problem. With great success of using CNNs [70, 135, 49, 57] for

single-label image classification [22], multi-label visual recognition has been improved

significantly. Besides, deep convolutional ranking [40] optimizes top-k ranking loss

on convolutional architectures to learn a better feature representation. Hypotheses-

CNN-Pooling [161] aggregates object segmentation hypotheses with max pooling to

generate multi-label predictions.

Much progress has been made on label-correlated multi-label visual recognition

in recent years. Many methods, such as matrix completion [7], probabilistic la-

bel enhancement [89], RGNN [173], SINN [54], Conditional Graphical Lasso [87],

CNN-RNN [153], and ML-GCN [12] are proposed to model the semantic correla-

tions between labels for multi-label visual recognition. For example, CNN-RNN [153]

combines RNNs with CNNs to learn the correlations between different labels. ML-
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GCN [12] adopts Graph Convolutional Networks (GCN) to embed the label correla-

tions to the classifier learning.

Furthermore, Spatial Regularization Network [178] captures both semantic and

spatial correlations between labels. Label balancing [46] is also used for improving

multi-label image classification. In recent years, some sub-tasks of multi-label visual

recognition, such as extreme multi-label classification [136] and partial multi-label

learning [30], have attracted many research interests in computer vision field.

3.1.1 Human Attribute Recognition

While human attribute recognition [156] is a specific problem of multi-label visual

recognition, it regards the human attributes as the image label, which depicts the

person, i.e., the visual content, in the image. As the images depicting persons, e.g.,

pedestrians in the wild or surveillance scenarios, are usually with low quality, human

attribute recognition is more challenging than ordinary multi-label image classifica-

tion, and attracting more research interests recently.

Earlier methods [4, 179, 23] leverage hand-crafted features to recognize each at-

tribute based on human appearance. As deep networks grow prosperous in the

computer-vision field, Convolutional Neural Networks (CNNs) [70, 135, 140, 49, 57]

have become a standard component [138, 83] and achieved great success in human

attribute recognition.

Similar to the methods proposed for ordinary multi-label visual recognition, recent

methods for human attribute recognition can be classified into two main categories:

attribute-correlation methods [153, 154, 174, 45, 88, 141], which explore semantic at-

tribute dependencies to facilitate the attribute recognition, and attribute-localization

methods, which utilize the attribute-relevant image regions for spatially more fo-

cused attribute recognition. Some examples of attribute-correlation methods include

JRL [154] utilizing LSTM [52] to explore attribute context and correlation for at-

27



tribute recognition, GRL [174] establishing grouping recurrent learning to leverage

the attribute dependency of intra-group mutual exclusion and inter-group correlation,

JLAC [141] using GCN to capture the attribute dependency and context correlation

for human attribute recognition, etc. Attribute-localization methods can be further

classified to two sub-categories: part-based and attention-based ones.

Part-based localization [77, 32, 4, 64, 170, 171, 108, 38, 90, 84, 95] usually ex-

ploits the pose estimation, body-part detections or manual annotations to specify the

attribute-relevant image regions. For example, [4] decomposes the image of a person

into a set of poselets with rich appearance and local pose information and human

attributes are then recognized using features extracted from these poselets. In [64],

a feature dictionary is built to describe possible appearance variation at each human

body part, which can be used to improve part detection and human attribute recog-

nition. In [170], following Deformable Part Models (DPM) [32], Deformable Part

Desciptors (DPD) are extracted for part detection and attribute recognition. Based

on CNNs, several deep part models are developed for human attribute recognition.

In [171], a PANDA system leveraging CNNs trained for each poselet is developed for

attribute recognition. [108] proposes an attribute grammar model to jointly represent

both the object parts and their semantic attributes within a unified compositional

hierarchy. [38] suggests the use of deep poselets as a part detector to localize human

body parts under different poses. Deep-Context [90], another part-based method

using deep learning, improves human attribute recognition by using hierarchical con-

texts.

In these methods, attribute recognition is usually accomplished by taking a two-

step procedure. First, a body-part detector or pose estimator is applied to localize

important human body parts, such as head, legs, arms, hands, neck, eyes, etc. Second,

image features are extracted at each body part and then fed to pre-trained classifiers
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for attribute recognition. Typically, one classifier is trained for each attribute and

this classifier usually takes only the features from the corresponding body parts [4, 64,

170, 171, 108]. There is also research work that suggests the combination of features

from different body parts for attribute recognition [38]. There are several issues

in using part-based methods for human attribute recognition. 1) It requires prior

correspondence between body parts and attributes. This may not be trivial for some

attributes. 2) It requires an accurate and reliable body-part detector and/or pose

estimator, both of which are well known challenging tasks in computer vision. Errors

in detecting body parts can seriously hurt the performance of attribute recognition.

3) The training of body-part detector usually requires manual annotations of body

parts in large-scale images and this can be highly laborious. The R*CNN method

[39] does not detect body parts and consider the correspondence between body parts

and attributes. Instead, in R*CNN, contextual cues in larger regions are exploited

and used for facilitating human attribute recognition. The Deep-Context [90] also

combines both part-based and contextual information for attribute recognition.

Attention-based localization [97, 178, 124, 143, 142, 165] applies spatial atten-

tion mechanisms to discover attribute-relevant image regions for improving attribute

recognition. For example, HydraPlus-Net [97] hierarchically discovers the attribute

relevant regions for attribute recognition. VAA [124] aggregates spatial represen-

tations by self-attention to refine the attribute recognition. ALM [143] adaptively

discover discriminative regions for human attribute recognition in multi scales. Da-

HAR [165] uses pre-trained person segmentation as prior knowledge to exclude dis-

tractive image regions for human attribute recognition. The methods proposed in

this study for human attribute recognition fall in the category of attention-based

localization, for which we define and enforces two kinds of regularization, i.e., atten-
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tion concentration and attention consistency, on deep network learning for human

attribute recognition.

3.1.2 Long-tailed Multi-label Visual Recognition

Relying on label localization or label correlation, the above methods for multi-label

visual recognition suffer from long-tailed training data. When the training set is

long-tailed, head classes usually dominate the network training, resulting in inac-

curate label localization and label correlations for tail classes, which severely hurts

the recognition performance on tail classes. To address the long-tailed issue, a lot

of methods are proposed for balancing the deep network training on recognizing

different classes by data re-balancing. Usually, data re-balancing emphasizes tail

classes more in the network learning, and it has achieved improved results on many

long-tailed recognition tasks. Re-balanced sampling [10, 129, 6, 47, 176] and cost

sensitive re-weighting [8, 19, 56, 158, 112, 83, 141] are the two typical kinds of data

re-balancing methods. The former improves the class balance by either up-sampling

the tail classes or down-sampling the head classes, while the latter improves the class

balance by weighting more on tail classes in the loss functions. However, all these

methods are for single-label recognition, i.e., each image only has one label. [166]

extend re-balanced sampling and cost-sensitive re-weighting methods to handle long-

tailed multi-label visual recognition and propose an optimized DB Focal method,

which does improve the recognition performance of tail classes. However, because of

label co-occurrence in multi-label recognition, emphasizing the tail classes may im-

pair the head-class training. The re-balanced sampling may simultaneously decrease

the performance of some head classes [166]. Considering that the original long-tailed

training data and re-balanced training data have the distributions bias towards head

classes and tail classes, respectively, this study expects to enforce the deep network

to learn from a compromise distribution between these two biased distributions. The
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compromising would lead to a more balanced distribution somewhere between two

biased distributions and training on it would result in better multi-label visual recog-

nition performance with long-tailed training set.

3.2 Visual Attention Mechanism

This section introduces the visual attention mechanism in deep networks, which im-

itates the human visual attention.

3.2.1 Human Visual Attention

According to studies on human cognitive [24, 75] and neuroscience [102], humans

mainly rely on only part of an image to recognize a class in it. Intuitively, when a

person wants to recognize a dog from an image, his/her attention should be attracted

to the image region that depicts the dog, while the remaining regions contribute much

less on the recognition process. In cognitive psychology, human visual attention is

elaborated mainly in two stages [63]. In the case of image-based recognition task, the

first stage is to distribute human visual attention uniformly over the entire images,

called visual scene, and process the information in parallel. The second stage is

to concentrate visual attention to a focused region of the image, and process the

information in a serial manner. To further explain the visual attention, researchers

proposed at least two models to describe the operation of visual attention, such as

spotlight [27] and zoom-lens [28]. Even though debates exist between scientists on

the details of human visual attention operation, there is no explicit disagreement that

attended areas are much important for human recognition.

3.2.2 Deep Network Visual Attention

As an imitation of human attention, deep network attention tries to locate the relevant

information and focus attention on it by assigning more weight on it for certain
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predictions, such as the transformer [151] for natural language processing and spatial

visual attention for computer vision. In this dissertation, the spatial visual attention

of deep networks is mainly referred.

The visual attention of deep networks has drawn significant research interest in

recent years. In general, prior works on deep visual attention can be categorized to

either bottom-up attention or top-down attention. The bottom-up attention maps are

learned during network forwarding. They can be used as masks to actively help the

network focus on discriminative regions, such as STN [60], SENet [55], CBAM [162],

and RAN [152]. The saliency [53, 1, 9, 130, 155, 13], which captures image regions

that stands out from its neighbors and attract the observer’s attention, can also be

regarded as a kind of bottom-up visual attention. The top-down attention maps

are usually inferred based on network predictions. Instead of being used for masking,

top-down attention maps are more interpretative, i.e., specifying the influence of each

image region to the network decisions, and therefore they are also called attribution

maps [3]. In this study, the plausibility of attention maps is expected to be improved

for refining the network learning, for which the top-down, interpretative attention

maps are adopted.

Three categories of methods have been used for estimating the top-down atten-

tion maps [3]. Perturbation-based methods [168, 114, 34, 20, 115, 180] usually remove

a portion of an input image before feeding the image through the network to infer

the effect of the removed region to the network prediction. Gradient-based meth-

ods [134, 132, 139, 127] calculate the gradients in the back-propagation to quantize

the contribution of input-image pixels to certain recognition. Structure-based meth-

ods [107, 175] produce attention maps by re-weighting the activation maps on the

basis of certain network architectures, such as global average pooling [175]. This

research uses a structure-based method, i.e., Class Activation Mapping (CAM) [175],

for attention map estimation, since it is differentiable and computationally efficient.
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3.3 Consistency-based Regularization

Consistency is an important property in computer vision field for regularizing the deep

network learning. Different kinds of network consistency have been considered for im-

proving network training in different tasks. Perturbation-based consistency requires

a trained network to produce same prediction after applying a small perturbation to

the input image [131, 123, 101, 163, 159] and it has been widely used for data augmen-

tation [131]. Model-based consistency [72, 167, 172, 109, 105] is usually formulated

and applied between networks. It enforces the two different networks to produce

the same results when the same image is taken as the input. Examples include Π-

model [72] and Mean Teacher [144] used for semi-supervised learning, deep mutual

learning [172] and co-regularization [105] for training two networks collaboratively,

and co-teaching [43] for handling noisy labels. However, by taking the input from

the same distribution, two branches trained in [172, 105] may collapse to each other

if their network parameters are not carefully initialized with substantial difference.

In [109], an adversarial scheme is introduced to address this issue.

To address the label locality in human attribute recognition, two kinds of atten-

tion consistency are adopted in this research: the perturbation-based equivariance

under spatial transforms and the model-based invariance between different networks.

For the long-tailed issue of multi-label visual recognition, the model-based consis-

tency is leveraged to make the proposed network compromise between two biased

distributions.

3.3.1 Deep Equivariance

Equivariance is studied as an important mathematical property [81] of spatial repre-

sentations. It indicates that certain spatial representations of images should follow

the same transform if the image is spatially transformed. Some image representations,

such as HOG [21], have been proved to be adhering to this property [81]. Previous
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works also attempt to construct equivariant representations [51, 67, 126], including

the deep convolutional representations with certain equivariance [81]. Most of ex-

isting works on applying equivariance to deep network learning are focused on the

features at certain convolutional layers [82, 25, 17, 164, 146, 145, 101, 110, 163]. Dif-

ferently, this study proposes the attention equivariance of deep networks at a specific

semantic stage of the networks – the estimated attention maps reflecting the local

spatiality of the considered human attribute.

3.3.2 Deep Invariance Cross Networks

Enforcing consistency between different networks can be regarded as a kind of col-

laborative learning. Following the principle that “Two heads are better than one”,

the training of a network can be regularized by transferring information learned

by another network, as verified in the research on knowledge distillation [50, 167,

144]. Different kinds of collaborative learning, e.g., deep mutual learning [172], co-

regularization [105] and co-training [109], have been studied to transfer information

between two different networks, leading to regularized training of both networks.

Most of them try to minimize the final prediction difference between networks for

the same input. Each network provides smoothed ground truth for the training of

other network, leading to better network performance [103]. Co-teaching [43, 100] also

learns two networks simultaneously, with each network helping the other by excluding

samples with noisy labels, i.e., it uses consistency of predictions for sample selection,

instead of prediction supervision. Since the final prediction is aggregated for the

whole image, all these methods lack consideration of local spatiality in defining the

cross-network consistency. Thus, the attention consistency of invariance between dif-

ferent networks is proposed to explicitly consider local spatiality that is important for

human attribute recognition during collaborative learning. Besides, the collaborative

34



learning is also adopted to compromise the learning between two biased distributions

for addressing the long-tailed issue in multi-label visual recognition.
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Chapter 4

Visual Attention Concentration for Focused

Attribute Recognition

To address the locality of labels (human attributes), it is important to have the deep

network focus attention on attribute regions for human attribute recognition. This

goal is achieved by enforcing the concentration of deep network visual attention in

this study. Compared with part-based methods, the proposed attention concentration

does not require 1) manually annotated human body parts or pre-trained human

body part detector, which is very challenging; and 2) prior correspondence between

attributes and human body parts, which can not be well defined for certain attributes.

The proposed attention concentration uses Class Activation Mapping (CAM) [175]

to estimate attention maps for recognizing each human attribute. Then, a new expo-

nential loss function is proposed to measure the concentration of each attention map.

The deep network is trained in terms of both the original image classification loss and

the proposed exponential loss. To verify the effectiveness of the proposed method,

experiments are conducted on Berkeley Attributes of Human People Dataset [4] and

WIDER Attribute Dataset [90]. The following bullet points convey the core findings

of this study.

• The concentration of attention maps reflects the generalization ability of the

deep network for attribute recognition.

• Deep networks with CAM can be improved for refining the visual attention by

including a new component.
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CAM

Figure 4.1 Motivation illustration of the proposed method. (a) The deep network
and the added component for refining attention maps. (b) and (c) Attention map
before and after the refining for recognizing the same attribute, respectively.

• Exponential loss function is a reasonable choice for measuring the appropriate-

ness of visual attention of deep networks.

4.1 Overview

Even though part-based methods for human attribute recognition are limited by not

well defined correspondence between body parts and human attributes, inaccurate

body-part detector and/or pose estimator, intense labor for manually annotating

body parts in large-scale image dataset, they demonstrate that certain image regions

play the most import role in recognizing a human attribute. This verifies the assump-

tion of focusing on attribute-relevant regions benefits the deep networks for human

attribute recognition. To achieve this focused human attribute recognition, instead

of using body-part detectors, this study proposes to automatically identify attribute-

relevant regions for each attribute and enhances the visual attention concentration of

deep networks for human attribute recognition.
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Specifically, as shown in Fig. 4.1(a), a CNN is trained to recognize a human

attribute from an input image. Meanwhile, the attention map for recognizing this

attribute is estimated during the network inference. Originally, the attention map

could highlight semantically irrelevant image regions for recognizing this attribute,

i.e., clothes and the bicycle tie areas for recognizing the attribute “glass”, as shown in

Fig. 4.1(b). To address this issue, an additional component is introduced to measure

the concentration of the attention map for refinement. As shown in Fig. 4.1(c), after

enhancing the attention concentration, the attention map is highly focused on the

attribute-relevant regions, i.e., face regions.

4.2 Methodology

 weights

CAM

Convs Feature

Maps

FC

Classi�cation

Loss_k

 

Exponential

Loss_k

GAP

AvePool GMP

Features between layers Loss Layer

Softmax

Attention

Map
Probability Map

all attributes share one copy for an attribute

Figure 4.2 An illustration for the framework of the proposed method.

As shown in Fig. 4.2, the proposed method adds an additional component for the

deep network learning when recognizing each human attribute. Modules in the pink

box construct a deep network, e.g., AlexNet-CAM or VGG16-CAM. An input image

first goes though the convolutional module of the networks, denoted by “Convs” in

the figure. The predicted attribute presence score is fed to the cross-entropy-based

classification loss in Eq. (2.4). Meanwhile, the attention map for recognizing each

attribute is estimated by CAM, discussed in Section 2.4.
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In the ideal case, the attention map highlights the most relevant regions for the

considered attribute. However, in practice, overly small size and low image quality

of the actual relevant regions and over-fitting training (mainly due to insufficient

training data) may lead to incorrect attention maps. Examples are shown in Fig. 4.3,

where a set of image and their attention maps are arranged side by side, with the

considered attribute labeled at the bottom left corner of each image. The results show

that the computed attention map may be incorrect by highlighting irrelevant regions.

For example, the highlighted area is not focused on face region when recognizing the

attribute of glasses in the image at the center of Fig. 4.3.

is male?

has long hair?

has glasses

has hat

has t-shirt

has long sleeves

has shorthas jeans has long pants

Figure 4.3 Sample images and the corresponding attention maps, which may not
highlight the correct regions for the considered attribute.
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4.2.1 Attention Concentration Enhancement

This study proposes to enhance the concentration of attention maps for human at-

tribute recognition. As shown in the lower part of the framework in Fig. 4.2, a new

component consisting of several layers is added to the deep network. First, this added

component includes a CAM module to compute the attention map based on the class

activation mapping [175] as described in Section 2.4. Then, an average pooling layer

is included to capture the importance of all the potential relevant regions for recog-

nizing the considered human attribute. A 2D softmax function is used to convert the

pooled attention maps to a probability map: Let z(m,n) be a value of the location

(m,n) in a pooled attention map and the corresponding value in the probability map

is computed as

Softmax2D(zm,n) = ezm,n∑H
p=1

∑H
q=1 e

zp,q
, (4.1)

where the size of the pooled attention map is H × H. Finally, a Global Maximum

Pooling (GMP) layer is included to extract the maximum probability, which reflects

the credibility of the identified relevant region. Based on this maximum probabil-

ity, a loss function is defined to reflect the concentration of current attention maps.

Two key issues need to be addressed in this component: 1) the definition of the loss

function, which measures the concentration of an attention map, based on the max-

imum probability, and 2) the tuning of the deep network to increase the maximum

probability and minimize the loss function.

4.2.2 Exponential Loss

Due to the softmax function, the summation over the probability map is one. Thus,

increasing the maximum probability will automatically suppress the regions with

smaller probability. This will make the attention region (highlighted region) in the

attention map more concentrated, which increases the chance of capturing the region

relevant to the considered attribute. In this study, the exponential loss function is
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developed independent of any supervised information on the attention map, based

on the maximum probability on the probability map. Let pMx,j be the maximum

probability for image x and attribute j. The loss function for jth-attribute is defined

as

Lcon = 1
K

K∑
j=1

eα(pM
x,j+βµ), (4.2)

where α and β are adjustable parameters of the loss function, µ = 1/H2 is the mean

value of the probability map, with H ×H being the size of the attention maps and

the probability maps, and K is the number of human attributes.

Given that the attention map size H×H is fixed if the input image size is fixed, µ

is also a constant. Since the loss function Lcon is negatively related to the maximum

probability pMx,j, α is a negative parameter. Furthermore, β also takes a negative

value, making |βµ| a threshold: If the probability pMx,j is less than this threshold, the

loss value is large, indicating that the attention map is not concentrated.

Figure 4.4 Curves of the proposed exponential loss function – the loss decreases
with the increase of the maximum probability.

Figure 4.4 shows the curves of this loss function over an attention map. Curves

1, 2, and 3 share a same α but different β. Curves 1, 4, and 5 share a same β, but
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different α. It can be noticed that α controls the descent rate of the loss value, while

β adjusts the impact of the maximum probability by a threshold – the maximum

probability pMx,j takes value in the range [µ, 1]. Based on the empirical observation,

given µ = 1/(14× 14), the attention region is highly concentrated when pMx,j is above

0.2. Therefore, it is desired that the loss Lcon becomes very small when pMx,j ≥ 0.2.

This is used to guide the selection of α and β in the experiments.

4.2.3 Network Tuning

As described above, on the proposed network illustrated in Fig. 4.2, two loss func-

tions exist – the original classification loss function aiming at reducing the attribute

recognition error rate and the added exponential loss function aiming at enhancing

the attention maps. The proposed network is trained in two steps: 1) Pre-training.

In this step, without considering the added component and the exponential loss func-

tion, i.e. the modules included in the pink box in Fig. 4.2, the original deep network

is trained by minimizing classification loss function. 2) Fine-tuning. In this step, this

study fine-tunes the network parameters by minimizing both loss functions. Note

that all the layers in the added component outside the pink box in Fig. 4.2 do not

have free parameters to tune. The exponential loss is back propagated through the

added component to fine-tune the parameters of the convolutional layers in the CAM

network. In the meantime, the classification loss function is also back propagated

through the fully connected layer and then convolutional layers (in the pink box in

Fig. 4.2) to fine-tune their parameters. This way, the parameters of convolutional

layers are actually fine-tuned by minimizing a loss function that combines the expo-

nential loss function and the classification loss function through back propagation.
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4.3 Experiment

The proposed network is built on the Caffe [62] platform, by customizing a weighted

average layer and an exponential loss layer. The customization of the weighted av-

erage layer is used to achieve CAM and embed the attention map into the network

training. The Berkeley Attributes of Human People Dataset [4] and the WIDER

Attribute Dataset [90] are used to train the proposed networks and evaluate the

proposed method, individually.

The Berkeley Attributes of Human People Dataset contains 8,035 images, each

of which is centered at a full body of a person. Nine human attributes are referred

in this dataset, including “is male”, “long hair”, “glasses”, “has hat”, “has t-shirt”,

“long sleeves”, “has shorts”, “has jeans” and “long pants”. This dataset is divided

into two subsets: the training subset with 4,013 images and the testing subset with

4,022 images.

The WIDER Attribute Dataset contains 13,789 images with 57,524 annotated

persons, each labeled with 14 human attributes, including “male”, “long hair”, “sun-

glasses”, “hat”, “t-shirt”, “long sleeves”, “formal”, “shorts”, “jeans”, “long pants”,

“skirt”, “face mask”, “logo” and “stripe”. It is divided into 5,509 training, 1,362 vali-

dation and 6,918 testing images (13,789 in total). The training and validation subsets

is used for training and the testing subset for testing.

Pre-Training: In the experiment, networks are constructed from classical AlexNet

and VGG16, with replacing the final FC stack with GAP-FC structure and denoted

as AlexNet-CAM and VGG16-CAM, respectively, as discussed in Section 2.3. This

study pre-trains the networks using the following three steps. 1) Taking the existing

AlexNet and VGG16 models pre-trained on ImageNet/ILSVRC [121]. 2) Further

training AlexNet and VGG16 using training samples in Berkeley Attributes of Human

People Dataset or WIDER Attribute Dataset, separately. 3) Training AlexNet-CAM
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and VGG16-CAM (with the pink box in Fig. 4.2) using training samples in Berkeley

Attributes of Human People Dataset or WIDER Attribute Dataset, separately. In

Step 2), as shown in Fig. 2.5, all attributes share the same convolutional moduls from

either AlexNet or VGG16 network, but use distinct linear operations, i.e., FC1, FC2,

..., FCK . In the training, each classifier in such an FC layer is updated independently

from other classifiers, by simply using the standard back-propagation algorithm. In

Step 3), base learning rate 0.0001 is used for both networks and the iterative training

ends when the classification loss function decreases to an order of magnitude of 10−4.

Attention Concentration Fine-tuning: After the pre-training, the classification

loss is usually low, e.g., 10−4. At this stage, the exponential loss is much higher, e.g.,

10−1. It is necessary to adjust the control parameters α and β in Eq. (4.2) such

that the combined loss is not dominated by any one of them. Empirically, this study

set α = −23 and β = −18 for all the experiments. In fine-tuning with the added

component, gradients resulting from the back propagation of the two loss functions

are simply added to update the parameters of the convolutional layers. The trained

models are denoted as AlexNet-CAM-AC and VGG16-CAM-AC when using AlexNet-

CAM and VGG16-CAM, respectively. After average pooling, each pooled attention

map is a square matrix, while the Softmax layer requires an input of vector. To

address this issue, the square matrix are flattened to a vector by concatenating all

the rows. After the probabilities are computed, the resulting vector is converted back

to a square matrix to form a probability map.

In addition, for each attribute from each image, there are three possible status:

“positive”, “negative” and “non-specified”. “Positive” indicates the presence of the

attribute in the considered image, while “negative” indicates the non-presence. “Non-

specified” indicates that it is unknown whether the attribute is present or not in the

image. In the experiments, if an attribute is “non-specified” for an image, this image
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will not be included to train the network for this particular attribute. Besides, the

added component for enhancing attention concentration is only used in training the

networks. In the testing stage, only the network shown in the pink box in Fig. 4.2 is

used to determine whether an attribute is present in a testing image or not.

4.3.1 Quantitative Results

This study first tests the effectiveness of the proposed method on the Berkeley At-

tributes of Human People Dataset. Table 4.1 shows the mean Average Precision

(mAP) of the proposed methods, AlexNet-CAM-AC and VGG16-CAM-AC, by adapt-

ing CAM with the added attention concentration enforcement. The mAPs of AlexNet

and VGG16 (mAP of VGG16 is cited from [38]), trained using Steps 1) and 2) in the

above-mentioned network pre-training and mAPs of the AlexNet-CAM and VGG16-

CAM, trained using all three steps in the above-mentioned pre-training are also re-

ported. Notice that VGG16 performs much better than AlexNet, especially on the

attributes of “glasses” and “hat”. Using either AlexNet or VGG16, the constructed

CAMs always lead to improved mAPs and the proposed added component for enforc-

ing attention concentration can further improve the mAP performance. Figure 4.5

compares the original attention maps and the ones with concentration enforced by the

proposed method for several sample images. All of them are based on VGG16 net-

works. It can be found that using the proposed method, the obtained attention maps

are more concentrated on the desired relevant region when recognizing an attribute.

An experiment is also conducted to justify the steps in the added attention con-

centration component, which consists of 1) CAM module, 2) average pooling, 3)

softmax, 4) global max pooling and 5) exponential loss, as shown in Fig. 4.2. Among

them, step 1) calculates the attention maps from the network. Step 3) converts the

attention map to the probability maps to emphasize relevant regions while automat-

ically suppressing the irrelevant regions. Step 4) and 5) specify the loss, which is
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Figure 4.5 Sample results of attention map concentration. Left column: input
images and the considered human attribute. Middle column: the original attention
maps from VGG16-CAM. Right column: the concentrated attention maps from
VGG16-CAM-AC.
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Table 4.1 Attribute recognition performance of AlexNet, VGG16, AlexNet-CAM,
VGG16-CAM and the proposed methods on Berkeley Attributes of Human People
Dataset.
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mAP
AlexNet 84.9 76.0 46.1 76.1 60.3 86.7 86.9 87.5 97.1 78.0
AlexNet-CAM 88.6 82.4 55.6 83.1 65.7 89.0 88.4 90.0 98.0 82.3
AlexNet-CAM-AC 88.7 83.0 56.9 83.8 67.7 89.2 89.7 89.5 98.3 83.0
AlexNet-CAM-AC w/o
AvePool

88.3 82.6 57.1 83.5 67.6 89.1 89.5 89.8 98.0 82.8

VGG16 93.4 88.7 72.5 91.9 72.1 94.1 92.3 91.9 98.8 88.4
VGG16-CAM 93.5 90.7 76.7 93.8 75.3 92.7 92.1 92.5 98.3 89.5
VGG16-CAM-AC 94.1 90.8 79.6 93.3 77.2 93.2 92.1 92.8 98.6 90.2
VGG16-CAM-AC w/o
AvePool

93.6 90.7 77.2 93.2 76.6 93.4 92.8 92.5 98.8 89.9

required for any learning framework. These four steps cannot be removed. When

step 2) is removed in the proposed method, the performance is shown in Table 4.1 as

‘AlexNet-CAM-AC w/o AvePool’ and ‘VGG16-CAM-AC w/o AvePool’. The results

show that the inclusion of average pooling in the attention concentration component

does improve the attribute recognition performance.

To further justify the effectiveness of the proposed method, this study also com-

pares the performance of the proposed method against part-based methods for hu-

man attribute recognition. Specifically, Poselet [4], Deformable Part Descriptors

(DPD) [170], Joo et al. [64], PANDA (Pose Aligned Networks for Deep Attribute) [171],

Park et al. [108], Gkioxari et al. [38], Gkioxari et al. [39] and Deep-Context [90] are

chosen for comparison. Among these eight comparison methods, the first six meth-

ods are part based and the seventh one, i.e., Gkioxari et al. [39], is a contextual

cues based, while the eighth one, i.e., Deep-Context [90], is both part and context

based approach for human attribute recognition. Table 4.2 summarizes the mAPs

of these methods and the proposed method (VGG16-CAM-AC) on the testing data
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of the Berkeley Attributes of Human People Dataset. For all the comparison meth-

ods, their mAP performance are directly copied from their respective papers. The

comparison results show that, VGG16-CAM-AC achieves second best mAP of 90.2%,

while the best mAP is 92.2% from Deep-Context [90].

Table 4.2 mAP performance of the proposed method and eight comparison
methods on Berkeley Attribute of Human People Dataset.
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mAP
Poselet [4] 82.4 72.5 55.6 60.1 51.2 74.2 45.5 54.7 90.3 65.2
DPD [170] 83.7 70.0 38.1 73.4 49.8 78.1 64.1 78.1 93.5 69.9
Joo et al. [64] 88.0 80.1 56.0 75.4 53.5 75.2 47.6 69.3 91.1 70.7
PANDA [171] 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4 79.0
Park et al. [108] 92.1 85.2 69.4 76.2 69.1 84.4 68.2 82.4 94.9 80.2
Gkioxari et al. [38] 92.9 90.1 77.7 93.6 72.6 93.2 93.9 92.1 98.8 89.5
Gkioxari et al. [39] 92.8 88.9 82.4 92.2 74.8 91.2 92.9 89.4 97.9 89.2
Deep-Context [90] 95.0 92.4 89.3 95.8 79.1 94.3 93.7 91.0 99.2 92.2
VGG16-CAM-AC 94.1 90.8 79.6 93.3 77.2 93.2 92.1 92.8 98.6 90.2

The proposed method is also tested on the WIDER Attribute Dataset introduced

by Deep-Context [90]. The results are reported in Tables 4.3 and 4.4. The ex-

periments results show that the proposed methods achieve better performance than

Deep-Context [90] on the WIDER Attribute Dataset. Besides, different from the pro-

posed method, Deep-Context [90] considers the contextual information besides the

relevant regions considered in the proposed method. It is reasonable to believe that

the proposed method can be enhanced by further considering contextual information

as in Deep-Context.

4.3.2 Qualitative Analysis

Figure 4.6 illustrates enforcing attention concentration changes an attention map. It

verifies the effectiveness of using both loss functions, i.e., the classification loss func-
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Table 4.3 Comparing mAP performance on the test set of WIDER Attribute
Dataset.

Methods mAP(%)
R-CNN [36] 80.0
R*CNN [39] 80.5
Deep-Context [90] 81.3
VGG16 81.7
VGG16-CAM 82.5
VGG16-CAM-AC 82.9

Table 4.4 AP performance for each attribute on the test set of WIDER Attribute
Dataset

AP(%) VGG16 VGG16-CAM VGG16-CAM-AC
male 94.9 95.0 95.3
long hair 83.8 84.7 85.2
sunglasses 70.1 69.7 71.3
hat 92.5 93.5 93.6
tshirt 77.8 77.3 77.7
long sleeves 95.0 95.3 95.5
formal 78.5 80.6 80.7
short 89.3 88.3 88.9
jeans 72.5 74.1 74.9
long pants 96.2 96.2 96.3
skirt 79.2 80.2 80.7
face mask 70.1 72.3 72.6
logo 87.6 88.0 87.5
stripe 56.4 60.0 60.0
mAP 81.7 82.5 82.9

tion and the exponential loss function, in the proposed method. Figure 4.6(a) shows

an image where we want to recognize the attribute of “has glasses”. Figure 4.6(b)

shows the attention map from VGG16-CAM and this attention map contains mul-

tiple highlighted regions, among which there is only one, indicated by a red circle,

is the real relevant region for the considered human attribute. This is actually the

result from minimizing the classification loss function. If the network only uses the

exponential loss function, the fine-tuning is totally unsupervised – the resulting at-
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tention map will be highly concentrated on one small region, but this region may not

be relevant to the considered human attribute. By using both loss function, the con-

centrated attention map, as shown in Fig. 4.6(c), can get not only more concentrated

but also more attribute relevant. The process can be explained as emphasizing the

attention on the relevant regions while suppressing the attention on the irrelevant

regions.

Additionally, in some examples in Fig. 4.5, the most highlighted area completely

“moves” from one region to another region by enforcing attention concentration. This

is achieved by changing the values of of the attention map. As shown in Fig. 4.6(b),

both regions A and B are highlighted, although A has the highest map values, before

the attention concentration. With the proposed attention concentration, the values

in region B increase to make region B the most highlighted region, while the values in

region A are decreased by the suppression. This leads to a visual effect of the moving

the highlighted area, Fig. 4.6(c).

increase

decrease

decrease

decrease
re ned attention area

enforcing concentration

has glasses?

 (a) (b) (c)

A

B

A

B

Figure 4.6 An example for illustrating the effectiveness of the two loss functions in
the proposed method. (a) An image for recognizing the attribute of “has glasses”;
(b) Attention map extracted by VGG16-CAM; (c) Concentrated attention map
extracted from VGG16-CAM-AC.
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4.4 Chapter Summary

To summarize, this study proposed to integrate class activation mapping for human

attribute recognition, without requiring prior correspondence between the human

body parts and the attributes. Based on the CAM, it further introduced a new com-

ponent to extract and enhance the attention maps for each training image. A new

exponential loss function was defined to measure the concentration of the attention

maps. Considering this new loss function and the original classification loss func-

tion, the proposed method can highlight the attribute-relevant regions with higher

concentration in the network training. This study also compared the performance of

the proposed method with previous part-based attribute recognition methods on the

Berkeley Attributes of Human People Dataset and WIDER Attribute Dataset. The

results verified that enforcing visual attention concentration in deep network learning

outperforms the part-based methods for human attribute recognition.
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Chapter 5

Visual Attention Consistency for Consistent

Attribute-Region Relevance

Since attention maps reflect the attribute-region relevance in the view of deep net-

works, the plausibility of attention maps indicate the attribute locality addressed by

deep network learning. In this research, another method to address the attribute

locality for human attribute recognition is to enforce the visual attention consistency

when deep networks are learned for recognizing attributes. Consistency is an im-

portant property for robust vision systems. For example, human visual perception

shows good consistency for visual recognition from images, i.e., when an image goes

through certain image transforms, such as flipping, scaling and rotation, the hu-

man perception for attribute “sunglasses” appearing in the image remains consistent.

This consistency has motivated the data augmentation strategy [70], which has been

widely used in training deep networks – for each original image with ground-truth

annotations, a new training image could be constructed by transforming this image

and assigning the same ground-truth annotations. Data augmentation regularizes the

deep network models by reducing the over-fitting problem for recognition tasks with

perceptual consistency under spatial transforms.

To be specific, this study explores and enforces two kinds of attention consistency

in network learning for human attribute recognition. One kind of consistency enforces

the equivariance of the attention map when the input image undergoes certain spatial

transforms, such as scaling, rotation and flipping. The other kind of the consistency is
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enforced between the attention maps derived from two different networks when both

of them are trained for recognizing the same attribute from the same image. These

two kinds of consistency are formulated as new loss functions and combined with

the traditional classification loss for attribute recognition learning. The proposed

methods are evaluated on three representative datasets for human attribute recogni-

tion: WIDER Attribute [90], PA-100K [97], and RAP [85]. The experimental results

verify the effectiveness of each of the two kinds of proposed attention consistency as

well as the combination of them. The proposed methods achieve new state-of-the-art

performances on these datasets.

5.1 Overview

As mentioned above, straightforward supervision on attention maps is not viable,

since the manual annotation for ground-truth attention maps specifying attribute

relevant regions is infeasible. To improve the plausibility of attention maps without

using the ground-truth attention maps, this dissertation studies the consistency of the

attention maps when recognizing an attribute in an image. Specifically, two kinds

of attention consistency are considered: equivariance under spatial transforms and

invariance between different networks. For the former, from a well trained network,

the attention map of the same attribute in the same image shall be equivariant to

certain spatial image transforms, i.e., if the input image undergoes a rotation, flipping

or scaling transform, the attention maps derived from the network shall show the

same transform to capture the consistency of attribute-relevant regions. For the

latter, when two different networks are well trained for human attribute recognition,

they shall produce identical attention maps when recognizing the same attribute

in the same image, since the underlying attribute-relevant regions, even if difficult

to manually annotate sometimes, is a visual perception concept independent of the

adopted network. However, neither of these two kinds of consistency is well preserved
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(a)

ResNet101

T-shirt?

(b)

ResNet101

ResNet50

Long Sleeves?

Figure 5.1 An illustration of visual attention inconsistency in the current networks
for human attribute recognition. (a) In recognizing the attribute “T-shirt” using a
ResNet101 [49], the flipping of the input image does not lead to the flipping of the
attention map. (b) In recognizing the attribute “Long Sleeves” in an image, two
networks, ResNet50 and ResNet101, produce different attention maps.

in the current deep neural networks learned for human attribute recognition, as shown

in Fig. 5.1. Thus, this study develops a new approach to enforce these two kinds of

attention consistency in the network training for better human attribute recognition.

To achieve these two kinds of attention consistency, a two-branch framework is

proposed, where both branches are deep networks learned to recognize the same

set of human attributes by minimizing cross-entropy-based image classification loss.

Meanwhile, Class Activation Mapping (CAM) [175] is used to estimate attention

maps for each branch. For the attention consistency of equivariance under spatial

transforms, the same network with shared parameters is trained for the two branches,

while the input image of one branch is spatially transformed as the input of the

other branch. Then, a new attention consistency loss is defined to measure the

difference between the attention maps of two branches after applying the inverse

spatial transform to the attention maps of the transformed image. For the attention

consistency of invariance between two networks, different networks are learned for

two branches, which take the same image as input. The new attention consistency

loss is also used to measure the difference of the two attention maps for recognizing

the same attribute. Finally, the combination of two kinds of consistency is considered

54



by using two different networks for the two branches, and spatially transforming the

input of one branch as the input of the other branch. In each case, the defined new

consistency loss is added to the original classification losses for training the respective

networks for human attribute recognition.

5.2 Methodology

5.2.1 Overview

As defined in Section 2.3, the human attribute recognition tells the presence of each

human attribute from an input image x ∈ X of a person. The ground-truth attribute

annotations for the image are denoted as y ∈ Y, with y = {y1, y2, ..., yK} where

yj = 1 if attribute j is present in the image and yj = 0 otherwise. K is the number of

considered attributes. X is the set of N training images and Y is their corresponding

set of ground-truth annotations.

...GAP

CAM

FC

...GAP

CAM

FC

Figure 5.2 An illustration of the proposed two-branch framework.

Generally, as shown in Fig. 5.2, the proposed framework consists of two branches.

Both of them are deep networks starting with convolutional layers and ending with

GAP-FC (fully connected layer after global average pooling) structure, e.g., ResNet,
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DenseNet [57]. The traditional binary cross entropy loss is used as the classifica-

tion loss Lcls to learn each branch for recognizing the same set of human attributes.

Based on the structure-based attention mechanism, CAM [175] is adopted to estimate

attribute-specific attention maps for each branch. To enforce the attention consis-

tency between two branches, a new attention consistency loss Lcon is introduced based

on pixel-level distance between attention maps for recognizing the same attribute in

an image.

Let x and x′ be the inputs, f and f ′ be the networks of the two branches, respec-

tively. By defining them in different ways, this two-branch framework can be used to

enforce the proposed two different kinds of consistency, respectively:

(a) To enforce the attention consistency of equivariance under spatial transforms,

x and x′ are set as the original and transformed images, respectively, i.e., x′ =

T (x), where T is a spatial transform, such as flipping, scaling and rotation.

Besides, the networks in two branches are identical, sharing the architecture

and parameters, i.e., f ′ = f . The attention map estimated on x′ goes through

the inverse transform T−1 before being compared to the attention map of x for

the calculation of attention consistency loss Lcon.

(b) To enforce the attention consistency of invariance between different networks,

the same input is fed to two branches, i.e., x′ = x, and different networks with

varied architecture and/or parameters, i.e., f ′ 6= f , are adopted for the two

branches. In this case, the attention maps derived from the two branches are

directly compared for the calculation of attention consistency loss Lcon.

These two kinds of attention consistency can also be combined by setting x′ =

T (x) and f ′ 6= f , with a unified attention consistency loss Lcon, in this two-branch

framework. In each case, the classification loss Lcls and the attention consistency loss

Lcon are combined for the whole network training. During the testing, only one of
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the branches is used for attribute recognition for computational efficiency and fair

evaluation against existing methods.

5.2.2 Attribute Recognition and Visual Attention

Since human attribute recognition is an instance of multi-label visual recognition, the

same cross entropy loss in Eq. (2.4) is adopted as the classification loss to train the

network for attribute recognition. Meanwhile, the CAM-based interpretive attention

maps are estimated according to Eq. (2.9).

Specially, let ŷ = f(x) and ŷ′ = f ′(x′) denote the output of two branches of

the proposed framework, respectively. Accordingly, their classification losses can be

defined as Lcls(ŷ,y) and Lcls(ŷ′,y), respectively. For the same attribute j, the visual

attention maps estimated from two branches can also be denoted as h(x, j, f) and

h(x′, j, f ′), respectively.

5.2.3 Visual Attention Consistency

To enforce the attention consistency, the comparing attention maps should first be

aligned, i.e., elements of the same location in aligned attention maps correspond

to the same location of the input image. Given an attribute j, let Zj ∈ RH×W

and Z′j ∈ RH×W be the aligned attention maps computed from the two branches,

respectively, the attention consistency loss is defined by

Lcon(Zj,Z′j) = 1
HW

H∑
h=1

W∑
w=1
|zjhw − z′jhw|p, (5.1)

where zjhw and z′jhw are the elements of the aligned attention maps Zj and Z′j at

the location (h,w), respectively, and p > 0 refers to a power term. Accordingly, the

consistency loss on attention maps yields gradients for each attention pixel zjhw as

∂Lcon(Zj,Z′j)
∂zjhw

= p

HW
|zjhw − z′jhw|p−1. (5.2)
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Similarly, the gradients for the other branch can be calculated for each attention

pixels z′jhw. Equation (5.2) indicates the pixel-level local spatiality of the attributes

is well considered by optimizing the proposed attention consistency loss. In the

following, the construction of the aligned attention maps Zj and Z′j from the estimated

CAM attention maps h(x, j, f) and h(x′, j, f ′), respectively, is discussed to enforce

the proposed two kinds of attention consistency.

Attention Consistency 1 – Equivariance under Spatial Image Transforms:

When attention consistency of equivariance under spatial transforms is enforced, the

inputs of two branches are the original image x and its transformed image x′ = T (x),

respectively, and the two branches use the same network, i.e, f = f ′. The inverse

transform T−1 is conducted on the attention map estimated from the branch with

the transformed image as input to make it spatially aligned with the attention map

estimated from the branch with the original image as input, i.e.,
Zj = h(x, j, f),

Z′j = T−1(h(T(x), j, f)).
(5.3)

Here T is an image transform that does not change the visual perception, especially

attention objects/contents for each attribute, in this image, such as image flipping,

scaling, and rotation. While translation is also a typical spatial transform, its equiv-

ariance in both attention maps and final prediction has been well preserved in most

existing deep networks, as verified in the later experiments.

Attention Consistency 2 – Invariance between Different Networks: When

enforcing attention consistency of invariance between different networks, the same

input, i.e., x′ = x, is fed to two branches with different networks, i.e., f ′ 6= f , and the

CAM attention maps estimated from two branches are already aligned and directly
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comparable, i.e., 
Zj = h(x, j, f),

Z′j = h(x, j, f ′).
(5.4)

This way, two networks individually learn to recognize the same set of attributes and

collaboratively learn attention maps for the same attribute from each other. Such a

collaborative learning enables one network to learn missed knowledge that may be

learned by the other network and vice versa, leading to enhanced learnings of both

networks.

Note that the proposed method for attention consistency between networks is dif-

ferent from model ensemble [177], which trains multiple networks separately and then

combines the predictions. In model ensemble, all the networks must be kept in both

training and testing, resulting in significantly more parameters and computational

consumption. Differently, the proposed method trains two networks simultaneously

by achieving consistent attention maps and in the testing stage, we only deploy one

individual network. This way, the proposed method for attention consistency of in-

variance between two different networks has increased computation consumption in

training, but uses the same number of parameters and similar computation consump-

tion as a single network in testing. In practice, a relatively shallower network can

also be used for one of two branches to avoid introducing too many new parameters

in training, with the goal of only deploying the other branch in testing.

Combined Attention Consistency: The combined attention consistency is also

considered by enforcing both the equivariance under spatial transforms and the invari-

ance between different networks. In this case, x′ = T (x) and f ′ 6= f are configured,

i.e., the input of one branch is spatially transformed as the input of the other branch

and two branches use different networks. As in Eq. (5.3), the inverse transform T−1

need to be conducted on the attention map estimated from the branch with the trans-
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formed image as input to make it spatially aligned with the attention map estimated

from the branch with the original image as input, i.e.,
Zj = h(x, j, f),

Z′j = T−1(h(T(x), j, f ′)).
(5.5)

This way, the unified loss Eq. (5.1) reflects a combination of the two kinds of consis-

tency.

5.2.4 Consistency at Different Levels

This study proposes to apply consistency at the level of attention maps. Actually,

consistency at other levels, such as the final prediction layer and certain feature lay-

ers, have been used in many previous works for improving deep network learning.

For example, the widely used data augmentation strategy [70] assumes that a trans-

formed image shares the same ground-truth classification as the original image and

this can be regarded as enforcing the consistency of transform equivariance at the

final step of recognition. Previous collaborative learning [172, 105, 109] also consid-

ers to enforce consistency between the final predictions of two different networks, as

shown in Fig. 5.3(a). One previous work [167] considers the aggregated activations

for information transfer between networks, which can be regarded as a feature-level

consistency as shown in Fig. 5.3(c). The attention consistency proposed in this study

is more attribute-specific on local regions, reflecting the local spatiality of attributes,

as shown in Fig. 5.3(b).

More specifically, let’s consider the use of prediction consistency loss of the p-th

order in the previous collaborative learning, i.e.,

Lcon(ŷj, ŷ′j) = |ŷj − ŷ′j|p. (5.6)

Following Eqs. (2.8) and (2.9), we have

ŷj = 1
HW

H∑
h=1

W∑
w=1

zjhw + bj,
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Figure 5.3 An illustration of consistency at different levels: (a) final prediction, (b)
attention maps, and (c) feature aggregation.

and ŷ′j in a similar form. The produced gradients for an attention pixel would be

∂Lcon(ŷj, ŷ′j)
∂zjhw

=
∂Lcon(ŷj, ŷ′j)

∂ŷj

∂ŷj
∂zjhw

= p

HW
|ŷj − ŷ′j|p−1

. (5.7)

The similar calculation can be applied to get the gradients at the pixel z′jhw. Equa-

tion (5.7) clearly shows that, when using the prediction consistency, the gradients at

different locations, i.e. with varying (h,w), are the same for both networks and the

local spatiality of each attribute is not well reflected in optimizing this loss. Besides,

from Eq. (5.2) and Eq. (5.7), it can also be noticed that when setting p = 1, the

proposed attention consistency degrades to the prediction consistency. Therefore, in

the experiments, p > 1 is always configured. In the later Section 5.3, comparison

experiments will be conducted by enforcing consistency at different levels to verify

the effectiveness of the proposed methods.

5.2.5 End-to-end Training

Finally, the proposed two-branch network is learned in the end-to-end manner. The

classification losses and the consistency loss are linearly combined by

Ltotal = Lcls(ŷ,y) + Lcls(ŷ′,y) + λLcon, (5.8)
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where λ is a hyper-parameter to balance the two kinds of losses for each network

learning. Classification losses Lcls(ŷ,y) and Lcls(ŷ′,y) supervise the training of two

branches, respectively, while the consistency loss is involved in the training of both

branches.

5.3 Experiment

5.3.1 Datasets and Configurations

Experiments for this research is conducted on three representative human attribute

datasets. WIDER Attribute [90] consists of images with complex scene contexts

and 14 human attributes. The train-val set includes 28,345 samples (22,962 images

in training set for model learning), while the test set includes 29,179 samples. PA-

100K [97] contains 100,000 human bounding boxes in total, and has the largest

number of training samples in the existing attribute datasets. 26 human attributes

are annotated, and the training, validation and test sets are split with the ratio of

8:1:1. RAP [85] has a total number of 41,585 cropped human bounding boxes, with

69 attributes annotated, of which 51 attributes are usually recognized for evaluation.

Among the existing human attribute datasets, RAP is the one with the largest number

of attributes.

To be consistent with prior literatures, the experiments use the metric of mean

Average Precision (mAP) on WIDER dataset, and the metrics of mean Accuracy

(mA), instance Accuracy (Acc.), Precision (P), Recall (R) and F-1 score (F1)1 on

PA-100K and RAP datasets. Compared with mA, Acc., P, R, and F1, which rely

on a specific threshold, e.g., 0.5, to produce binary prediction results, mAP reflects

the model performance over all possible thresholds, leading to a more comprehensive

evaluation on multiple attribute recognition.

1Detailed definitions can be found in [85].
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On WIDER dataset, the exponential attribute loss weights of Eq. (2.6), initial

learning rate of 0.001 (divided by 10 every 5 epochs), SGD optimizer and p = 2 in

Eq. (5.1) are adopted. On PA-100K and RAP, input image size of 256 × 128, the

attribute loss weights of Eq. (2.7), initial learning rate of 0.0001, p = 3 in Eq. (5.1),

and Adam optimizer are adopted. The parameter λ in Eq. (5.8) is set to 1 in our

experiments. These configurations are mostly aligned with the following comparison

methods.

Table 5.1 Performance comparison in terms of mean Average Precision (mAP, %)
between the proposed methods and existing state-of-the-art methods on WIDER
dataset. The baseline method is reproduced from the baseline of Da-HAR [165].
Attributes: 1 – Male, 2 – Long Hair, 3 – Sunglasses, 4 – Hat, 5 – T-shirt, 6 – Long
Sleeves, 7 – Formal, 8 – Shorts, 9 – Jeans, 10 – Long Pants, 11 – Skirts, 12 – Face
Mask, 13 – Logo, 14 – Plaid.

Method Backbone Input size 1 2 3 4 5 6 7 8
R*CNN ICCV’15 VGG16 224× 224 94 82 62 91 76 95 79 89
DHC ECCV’16 VGG16 224× 224 94 82 64 92 78 95 80 90
SRN CVPR’17 ResNet101 224× 224 95 87 72 92 82 95 84 92
DIAA ECCV’18 ResNet101 224× 224 96 88 74 93 83 96 85 93
Da-HAR AAAI’20 ResNet101 256× 256 97 89 76 96 85 97 86 92
baseline ResNet101 224× 224 95 86 73 94 79 96 82 92
VAC-TE (Ours) ResNet101 224× 224 96 89 76 96 83 97 85 94
VAC-NI-A (Ours) ResNet50 224× 224 97 89 77 96 84 97 86 93
VAC-NI-M (Ours) ResNet101 224× 224 97 90 78 96 84 97 86 93
VAC-Combine (Ours) ResNet101 224× 224 97 90 79 96 85 98 86 94
Method Backbone Input size 9 10 11 12 13 14 mAP
R*CNN ICCV’15 VGG16 224× 224 68 96 80 73 87 56 80.5
DHC ECCV’16 VGG16 224× 224 69 96 81 76 88 55 81.3
SRN CVPR’17 ResNet101 224× 224 80 96 84 76 90 66 85.1
DIAA ECCV’18 ResNet101 224× 224 81 96 85 78 90 68 86.4
Da-HAR AAAI’20 ResNet101 256× 256 81 97 87 79 91 70 87.3
baseline ResNet101 224× 224 79 95 83 76 90 67 85.2
VAC-TE (Ours) ResNet101 224× 224 83 96 87 79 92 69 87.5
VAC-NI-A (Ours) ResNet50 224× 224 82 98 87 79 91 70 87.6
VAC-NI-M (Ours) ResNet101 224× 224 83 98 88 80 92 71 88.1
VAC-Combine (Ours) ResNet101 224× 224 84 98 88 80 92 71 88.4
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5.3.2 Comparison with Existing Arts

Performance Comparison on WIDER Dataset

Firstly, experiments are conducted to compare the proposed methods with existing

state-of-the-art approaches. On WIDER dataset, we compare with R*CNN [39],

DHC [90], SRN [178], DIAA [124] and Da-HAR [165]. We can denote the proposed

visual attention consistency of equivariance under spatial transforms and invaraince

between differnt networks as VAC-TE (Transform Equivariant attention consistency)

and VAC-NI (Network Invariant attention consistency), respectively. On WIDER

dataset, we train VAC-TE by enforcing attention consistency of equivariance under a

spatial transform randomly selected from scaling and horizontal flipping, with equal

probability. For its scaling transform, we bi-linearly down-sample the image size from

224 × 224 to 192 × 192. Since many prior arts use ResNet101 as the backbone, we

also adopt ResNet101 as the backbone of our methods for fair comparisons. In VAC-

TE, both branches is constructed by an identical ResNet101 with shared parameters.

In VAC-NI, one branch is constructed by ResNet101, which we regard as the main

branch, denoted as VAC-NI-M, to learn for attribute recognition, and the other branch

is constructed by ResNet50, which we regard as the auxiliary branch, denoted as

VAC-NI-A. As mentioned above, for VAC-NI we mainly deploy/evaluate the main

branch VAC-NI-M in the testing for computational efficiency and fair comparison

with other single-network method. Using the relatively shallower auxiliary branch

can help alleviate the increase of computation load in the training.

The performance comparison is reported in Table 5.1. Prior Da-HAR with ResNet101

as backbone achieves mAP of 87.3% over 14 human attributes. Our method VAC-TE

achieves the mAP of 87.5%, while VAC-NI-M achieves the mAP of 88.1%. The com-

parison shows that considering attention consistency can improve the performance

of human attribute recognition. Moreover, if we use the VAC-NI-A with ResNet50

for testing, the achieved performance is 87.6%, also outperforming the prior arts. As
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discussed in Section 5.2.3, we can combine these two kinds of attention consistency

into a unified consistency loss, where transform T is randomly selected from scaling

and flipping as mentioned above. As shown in Table 5.1, such combined consistency

(VAC-Combine) can further improve the mAP of attribute recognition to 88.4%.

Performance Comparison on PA-100K Dataset

Because prior arts use ResNet50 as the backbone on PA-100K evaluation, we fol-

low the same protocol by taking ResNet50 as the backbone in the proposed meth-

ods. On PA-100K dataset, we train VAC-TE by enforcing attention consistency of

equivariance under horizontal flipping. Table 5.2 shows the performance compar-

ison between our method and prior methods, such as DeepMar [83], HPNet [97],

VeSPA [125], PGDM [84], LGNet [95], ALM [143], JLPLS [142], and JLAC [141].

Based on ResNet50, we train a baseline model with an FC–BN (Batch Normaliza-

tion) structure beside the FC layer for prediction regularization. Given the input size

of 256 × 128, the baseline model achieves F1 score of 86.60%. When attention con-

sistency of transform equivariance is enforced, VAC-TE achieves F1 score of 87.74%.

Considering the attention consistency of invariance between networks, VAC-NI-M

based on ResNet50 as the backbone achieves new state-of-the-art performance on F1

score of 88.23%, by using ResNet34 as the auxiliary branch. Furthermore, enforcing

both kinds of attention consistency, VAC-Combine further improves the performance

of F1 score to 88.41%, a new state-of-the-art performance on PA-100K dataset.

Performance Comparison on RAP Dataset

On RAP dataset, the experiments use the same configurations as those applied to

the experiments on PA-100K dataset. We also train VAC-TE by enforcing atten-

tion consistency of equivariance under horizontal flipping. The involved comparison

methods include HPNet, VeSPA, PGDM, LGNet, JLPLS, CoCNN [45], JLAC, and
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Table 5.2 Performance (%) comparison between our methods and prior methods
on PA-100K.

Method mA Acc. P R F1
DeepMar ACPR’15 72.70 70.39 82.24 80.42 81.32
HPNet ICCV’17 74.21 72.19 82.97 82.09 82.53
VeSPA BMVC’17 76.32 73.00 84.99 81.49 83.20
PGDM ICME’18 74.95 73.08 84.36 82.24 83.29
LGNet BMVC’18 76.96 75.55 86.99 83.17 85.04
ALM ICCV’19 80.68 77.08 84.21 88.84 86.46
JLPLS TIP’19 81.61 78.89 86.83 87.73 87.27
JLAC AAAI’20 82.31 79.47 87.45 87.77 87.61
baseline-ResNet50 81.58 78.97 86.32 86.89 86.60

Ours
VAC-TE 80.85 79.68 88.20 87.28 87.74
VAC-NI-M 82.23 80.39 88.24 88.23 88.23
VAC-Combine 82.19 80.66 88.72 88.10 88.41

Da-HAR. Similar to these methods, we conduct experiments on the five different

train/test splits [85] and report the mean performance. As shown in Table 5.3,

JLAC (ResNet50 backbone) and Da-HAR (ResNet101 backbone) achieve F1 scores

of 80.82% and 80.72%, respectively. For fair comparison, we use the ResNet50 as our

backbone. VAC-TE achieves F1 score of 80.79%, while VAC-NI-M with ResNet50

as the backbone achieves F1 score of 81.44%, of which the auxiliary branch adopts

ResNet34 as the backbone. Also, when we enforce both kinds of attention consistency,

VAC-Combine further improves the F1 score to 81.54%. While the mA performance

of our proposed VAC-TE method is lower than that of JLAC, previous researches

have pointed out that mean accuracy (mA) may not reflect the intrinsic dependency

among multiple attributes and suffer from the imbalance issue between positive and

negative samples of each human attribute.
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Table 5.3 Performance (%) comparison between our methods and prior methods
on RAP dataset.

Method mA Acc. P R F1
HPNet ICCV’17 76.12 65.39 77.53 78.79 78.05
VeSPA BMVC’17 77.70 67.35 79.51 79.67 79.59
PGDM ICME’18 74.31 64.57 78.86 75.90 77.35
LGNet BMVC’18 78.68 68.00 80.36 79.82 80.09
JLPLS TIP’19 81.25 67.91 78.56 81.45 79.98
CoCNN IJCAI’19 81.42 68.37 81.04 80.27 80.65
JLAC AAAI’20 83.69 69.15 79.31 82.40 80.82
Da-HAR AAAI’20 79.44 68.86 80.14 81.30 80.72
baseline 80.67 67.79 79.06 80.32 79.69
VAC-TE (Ours) 79.41 69.22 81.50 80.09 80.79
VAC-NI-M (Ours) 81.10 70.01 81.51 81.37 81.44
VAC-Combine (Ours) 81.30 70.12 81.56 81.51 81.54

5.3.3 Ablation Studies

In the following, we conduct ablations studies to further justify the detailed settings

of the proposed methods, mainly on the WIDER dataset with input image size of

224× 224.

Equivariance under Different Spatial Transforms

Different spatial transforms can be considered as T of Eq. (5.3). Specifically, we

focus on a set of frequently used transforms, including translation, rotation, scaling

and flipping, for the ablation studies, since they do not change the visual perception

of an image, i.e., the presence of human attributes. Certainly, in some extreme cases,

e.g., down-sampling the input image to a very small size, the visual perception of

an attribute may totally change. In this study, we choose appropriate parameters

for these transforms to avoid such extreme cases. The four specific transforms we

involve in this ablation study are 32-pixel translation to the right with zero-padding,

90◦ counter-clockwise rotation, bi-linear down-scaling from 224 × 224 to 192 × 192,

and horizontal flipping.
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As shown in Table 5.4, when there is no consideration of the attention consis-

tency of transform equivariance in the network training for attribute recognition,

the achieved mAP is 84.8% – it is slightly lower than the baseline performance of

85.2% in Table 5.1, because the latter also applies random horizontal flipping as data

augmentation. When attention consistency of equivariance under either rotation,

scaling or flipping is adopted for network regularization, the mAP performance for

attribute recognition is improved. The combination of scaling and flipping (last row

of Table 5.4), each with a random selection probability of 50%, leads to a further

improved mAP performance of 87.5% and we chose this setting of transforms in the

above comparison experiments against the state of the arts on the WIDER dataset.

Since deep networks are inherently equivariant to translation, by using convolution

and pooling operations, further enforcement of attention consistency of equivariance

under translation does not introduce more performance improvement, as shown in

Table 5.4.

Table 5.4 Performance (%) on WIDER Attribute dataset considering attention
equivariance under different transforms, with ResNet101 as backbone. F1-C and
F1-O [178] represent the macro and micro F1 scores evaluated by averaging per
attribute results and on all images over all attributes, respectively.

Transforms mAP F1-C F1-O
Without 84.8 75.5 80.6
Translation 84.6 75.3 80.1
Rotation 86.0 76.2 81.2
Scaling 86.5 76.5 81.6
Flipping 87.1 77.4 82.1
Scaling & Flipping 87.5 77.6 82.4

We also conduct an experiment to compare the attention consistency of equivari-

ance under a spatial transform with using the same transform for data augmentation

only. As shown in Table 5.5, enforcing attention consistency of equivariance under
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certain transform achieve much better performance than using the same transform

for data augmentation for network learning, except for the translation.

Table 5.5 Performance (%) on WIDER Attribute dataset using certain transform
for data augmentation and attention consistency of equivariance, respectively. The
backbone is ResNet50.

Transform Data Augmentation Attention Consistency
mAP F1-C F1-O mAP F1-C F1-O

Without 83.4 73.9 79.4 – – –
Translation 83.7 74.1 79.5 83.9 74.2 79.2
Rotation 83.2 73.2 78.5 85.0 75.1 80.2
Scaling 83.9 74.4 79.4 85.6 75.3 80.6
Flipping 84.2 74.6 80.0 86.3 76.4 81.2

Consistency between Different Networks

In this section, we study the influence of using different auxiliary branches when

enforcing the attention consistency between two networks. For this study, we take

ResNet101 as the main branch in the proposed method, and consider ResNet50,

ResNet152, DenseNet121, and DenseNet161 as the candidate backbone of the aux-

iliary branch. The comparison result in Table 5.6 shows that, even if the auxiliary

branch itself, e.g. ResNet50 and DenseNet121, cannot achieve as good performance

as the main branch, the main branch can still benefit from the proposed method

by enforcing the attention consistency between the two branches. Moreover, when

deeper networks, e.g., ResNet152 and DenseNet161, are used as the auxiliary branch,

the attribute recognition performance of the main branch can be further improved,

since deeper networks may provide more robust attention maps for collaborative at-

tention learning. Table 5.6 also shows that our best performance of the main branch

(ResNet101) on WIDER dataset is achieved by using ResNet152 as the auxiliary

branch.
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Table 5.6 Performance (mAP, %) of the main branch ResNet101 when the
auxiliary branch using different backbones. Experiments are conducted on WIDER
dataset with input size of 224× 224.

Auxiliary VAC-NI-A VAC-NI-M
Without – 85.2
ResNet50 87.6 88.1
ResNet152 88.6 88.4
DenseNet121 87.5 88.3
DenseNet161 88.4 88.3

Quantitative Attention-Map Refinement

In this section, we conduct experiments to quantitatively examine whether the pro-

posed attention consistency does improve the attention maps of the network. As

mentioned earlier, constructing the ground-truth attention maps on a large-set of

training images is very difficult for many attributes. Some attributes, such as “Age

Between 18 and 60”, may be related to ambiguous image regions and constructing

its ground-truth attention map on an image may require a vision study involving a

group of subjects following rigorous protocols. To quantitatively evaluate the qual-

ity of estimated attention maps, i.e., CAM, we select two attributes, “Long Hair”

and “Shorts” in the WIDER dataset, with relatively unambiguous relevant regions,

and manually annotate these regions. More specifically, we randomly select 200 test

images for each of attributes “Long Hair” and “Shorts”, and annotate the bounding

boxes around the hair and shorts, respectively. By normalizing CAM attention maps

to the value range of [0, 1], we define an attention response ratio as the total attention

values inside the bounding box over the area of bounding box. A higher attention

response ratio indicates that the obtained attention map is more aligned with the

annotated attention region and therefore, shows higher quality. Table 5.7 shows the

results of two baseline methods, where ResNet50 and ResNet101 are trained with-

out considering attention consistency, and the proposed methods enforcing attention
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consistencies. For VAC-TE, we use ResNet101 with randomly selected scaling and

flipping transforms as discussed above. For VAC-NI, we use ResNet101 as the main

branch and ResNet50 as the auxiliary branch. Compared with the baselines, the pro-

posed methods produce better attention maps by enforcing either type of attention

consistency when recognizing these two attributes.

Table 5.7 Quantitative evaluation of the attention maps against the manually
annotated attention regions for two attributes on selected test images in WIDER
dataset. ‘Baselines’ indicates that networks are trained without considering
attention consistency.

Consistency Nets Attention Response Ratio (%)
Long Hair Shorts

Baselines ResNet50 46.77 48.14
ResNet101 47.74 48.48

VAC-TE ResNet101 57.51 61.17
VAC-NI-A ResNet50 59.55 58.86
VAC-NI-M ResNet101 62.62 60.72

Consistency at Different Levels

In this section, we conduct experiments on WIDER dataset to compare the use of

consistency at different representation levels, including feature level, attention-map

level and prediction level, as discussed in Section 5.2.4.

The result by enforcing the consistency of transform equivariance at different levels

are reported in Table 5.8. The image transform adopted is horizontal flipping, and

the backbone is ResNet50. Since the prediction for each attribute is a scalar without

spatial information, we actually enforce flipping invariance of the prediction score

for the prediction-level consistency. It can be regarded as an extension of the data

augmentation, where the invariance is directly applied to the recognition result. For

feature-level consistency, we enforce the feature equivariance of the last convolutional

layer. For transform equivariance at each level, we use similar consistency loss by

calculating element-wise difference, as in Eq. (5.1). As shown in Table 5.8, enforcing
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Table 5.8 Performance (%) of enforcing flipping equivariance at different levels.

Levels w/o Feature Attention Prediction
mAP(%) 83.4 85.1 86.3 85.4

transform equivariance at the attention-map level achieves the best results, since the

local spatiality of attribute recognition is well embedded. Also, compared with feature

equivariance under transforms, attention equivariance under the same transforms

encodes attribute specific spatial information in the network learning, leading to

better performance.

For the consistency between networks, we also compare the performance by en-

forcing attention consistency against the feature/prediction-level consistency, as dis-

cussed in Section 5.2.4. As shown in Table 5.9, both the considerations of feature-level

consistency (Fig. 5.3(c)) and prediction-level consistency (Fig. 5.3(a)) can improve

the attribute recognition performance. But the proposed method achieves the largest

improvement by considering the attention-level consistency between two networks.

Both experiments in Table 5.8 and Table 5.9 demonstrate that attention-level con-

sistency is superior to feature- and prediction-level consistency for human attribute

recognition.

Table 5.9 Performance comparison (mAP(%)) of using different-level consistency
for collaborative learning on WIDER dataset. Two networks are ResNet50 and
ResNet101, and the input size is 224× 224.

Levels ResNet50 ResNet101
w/o 84.3 85.2
Feature ICLR’17 85.7 86.5
Prediction CVPR’18 86.8 87.6
Attention (Ours) 87.6 88.1
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Comparison to Network Ensemble

In the above Section 5.2.3, we discuss the difference between the proposed method

by enforcing attention consistency between networks and prior works on model en-

semble [177], which integrate predictions from multiple networks in the testing. Since

our proposed method only deploys one branch, it has much fewer parameters and

takes much less computation time than model-ensemble methods in the testing. In

this section, we conduct an experiment to compare the performance of the proposed

method and the model-ensemble method. For simplicity, we average the predictions

from two networks for model ensemble. As shown in Table 5.10, when two net-

works, e.g., ResNet50 and ResNet101, are trained separately, i.e., “w/o VAC”, the

model ensemble achieves better performance than each of them. When two networks

are collaboratively learned by enforcing attention consistency by using our proposed

method, either branch of our collaboratively trained networks performs better than

the direct model ensemble. Moreover, we can also average the predictions from the

trained two branches of the proposed method, which leads to further performance im-

provement. These results verify not only the effectiveness of the proposed attention

consistency between networks, but also its complementarity to ensemble methods.

Hyper-parameter Influence

Based on the consistency loss between two networks, we conduct experiments to

investigate the influence of the power term p and show the recognition performance

on two datasets in Fig. 5.4. Specifically, on WIDER dataset, we use ResNet101 as the

main branch and ResNet50 as the auxiliary branch, while on PA-100K dataset, we

use ResNet50 as the main branch and ResNet34 as the auxiliary branch. As shown

in Fig. 5.4(a), the best mAP performance on WIDER dataset (88.1%) is achieved

by using p = 2, while an overly large power, e.g., p = 4, makes the consistency loss

dominate the network learning, leading to reduced mAP performance. On PA-100K,
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Table 5.10 Performance comparison between the proposed method and model
ensemble. ‘VAC’ indicates attention consistency between networks.

Datasets Networks w/o
VAC

with
VAC

WIDER
(mAP, %)

ResNet50 84.3 87.6
ResNet101 85.2 88.1
Ensemble (50 & 101) 86.6 88.3

PA-100K
(mAP, %)

ResNet34 70.91 74.07
ResNet50 71.03 74.32
Ensemble (34 & 50) 73.46 74.97

PA-100K
(F1, %)

ResNet34 86.10 88.12
ResNet50 86.60 88.23
Ensemble (34 & 50) 87.83 88.35

RAP
(F1, %)

ResNet34 78.98 81.02
ResNet50 79.69 81.44
Ensemble (34 & 50) 80.71 81.65

(a) (b)

Figure 5.4 Performance of attribute recognition by setting different values for p in
the attention consistency between two networks.

there exists more severe data imbalance. A larger power term p in the attention

consistency loss is desired to emphasize the pixel-wise difference between attention

maps for the same attribute. As shown in Fig. 5.4(b), the best F1 performance of

attribute recognition on PA-100K is achieved by setting p = 3.
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Figure 5.5 Attribute recognition performance (mAP, %) by using different
attribute weights in the classification loss on WIDER dataset, and mA, Acc. P, R,
and F1 are reported on PA-100K.

Attribute Weights in Classification Loss

We adopt two attribute weighting strategies, as shown in Eq. (2.6) and Eq. (2.7),

respectively, on different datasets to fairly compare our method with prior works. We

further compare the strategies on the same dataset in Fig. 5.5. The experiment results

further demonstrate that the proposed method is actually robust to both weighting

strategies.

5.3.4 Qualitative Analysis

To qualitatively analyze the proposed method for attribute recognition, we visually

compare the attention maps from the baseline ResNet101 without using attention

consistency, and those enhanced with two kinds of attention consistency. As shown in

Fig. 5.6, each row illustrates the attention maps for recognizing an attribute from the

same image by different methods. Attention maps estimated by the baseline method

without enforcing attention consistency may highlight visually irrelevant regions for

certain attribute recognition, e.g., leg regions in recognizing the attribute “T-shirts” in

the second column of row (a). When attention consistency of transform equivariance

is adopted, the attention map is refined in the third column of row (a) by paying
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more attention on upper body. Furthermore, enforcing attention consistency between

networks can also refine the attention maps by focusing attention on upper body as

shown in the fourth and fifth columns of row (a) with ResNet50 and ResNet101 as

backbones, respectively.

image w/o VAC VAC-TE VAC-NI-A

ResNet50

VAC-NI-M

ResNet101

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.6 Qualitative comparison of attention maps estimated in recognizing the
same attribute (each row) by using different methods. The attributes to be
recognized in each row are (a) T-shirt, (b)Jeans, (c) Hat (d) Long Pants, (e) Long
Hair and (f) Skirt.
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Moreover, for recognizing attributes “T-shirt”, “Jeans” and “Hat”, VAC-TE re-

fines the corresponding attention maps, but may still miss/highlight some relevant

regions/irrelevant regions for the attribute, e.g., highlighted leg regions for “T-shirt”,

missed left-leg regions for “Jeans” and highlighted waist regions for “Hat” in the

third column of rows (a), (b) and (c), respectively. By contrast, VAC-NI-A and

VAC-NI-M better highlight upper body, two legs and head regions for recognizing

“T-shirt”, “Jeans” and “Hat”, respectively. This is aligned with the quantitative re-

sults which also show that VAC-NI achieves better performance than VAC-TE. For

recognizing attributes “Long Pants”, “Long Hair” and “Skirt” in rows (d), (e) and

(f), respectively, enforcing either kind of attention consistency makes the correspond-

ing attention maps to better highlight the correct image regions, e.g., leg, head and

lower body. These qualitative results verify that the proposed two kinds of attention

consistency can refine the visual attention map of networks in recognizing human

attributes.

5.4 Chapter Summary

This study proposed new methods to improve the plausibility of deep network atten-

tion maps to improve the performance of human attribute recognition. Specifically,

we designed a two-branch framework to enforce the attention consistency during net-

work learning for attribute recognition. In this framework, we formulated two kinds

of attention consistency, i.e., equivariance under spatial transforms and invariance

between different networks, and defined corresponding attention consistency losses,

which are combined with the initial classification loss for network learning. We con-

ducted comprehensive experiments on three representative datasets for human at-

tribute recognition and verified the effectiveness of enforcing attention consistency

for attribute recognition by achieving new state-of-the-art performances on all these

datasets.
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Chapter 6

Collaborative Learning on Biased Distributions

for Long-tailed Label Distribution

Long-tailed data distribution is a common label imbalance issue in many practical

multi-label visual recognition tasks and the direct use of these data, i.e., uniform

sampling, for training usually leads to relatively low performance on tail classes.

While re-balanced data sampling can improve the performance on tail classes, it may

also hurt the performance on head classes in training due to label co-occurrence.

Thus, deep network training from either uniform sampling or re-balanced sampling

of the long-tailed data for multi-label visual recognition is actually learning from a

biased distribution. Improving the performance of recognizing a sub-group classes

is at the expense of decreasing the performance of recognizing another sub-group of

classes.

This study proposes a new approach to train on both uniform and re-balanced

samplings in a collaborative way, resulting in performance improvement on both

head and tail classes. More specifically, we design a visual recognition network with

two branches: one takes the uniform sampling as input while the other takes the

re-balanced sampling as the input. For each branch, we conduct visual recognition

using a binary-cross-entropy-based classification loss with learnable logit compensa-

tion. We further define a new cross-branch loss to enforce the consistency when the

same input image goes through the two branches. We conduct extensive experiments

on VOC-LT and COCO-LT datasets. The results show that the proposed method

78



significantly outperforms previous state-of-the-art methods on long-tailed multi-label

visual recognition.

To summarize, the main contributions of this work are:

1 We propose the use of both uniform and re-balanced samplings of the same

training set for long-tailed multi-label visual recognition.

2 We develop a two-branch network, as well as a cross-branch loss to enforce the

consistency between two branches, for collaborative learning on both uniform

and re-balanced samplings.

3 We conduct extensive experiments on VOC-LT and COCO-LT datasets to verify

that the proposed method can simultaneously improve the performance of both

head and tail classes.

6.1 Overview

Re-balanced data sampling [10, 129, 6, 47] is a proven effective approach for ad-

dressing the long-tailed visual recognition. It achieves class-wise balance by either

down-sampling the head-class data or up-sampling the tail-class data. However,

while re-balanced sampling can improve the recognition performance of tail classes,

it may simultaneously decrease the performance of some head classes due to label

co-occurrence in multi-label recognition [166]. Since performance of different classes,

either head or tail ones, is usually considered to be equally important in multi-label

visual recognition, this study develops a new method that can combine different data

samplings for improving the performance of both head and tail classes.

We consider the uniform and re-balanced samplings yielding two biased data dis-

tributions for long-tailed multi-label visual recognition. Given a long-tailed training

set for multi-label recognition, the uniform sampling leads to the original long-tailed

distribution bias towards head classes, while the re-balanced sampling yields another
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distribution bias towards tail classes. Our basic idea is to use each of them to train

a branch of a two-branch network, where two branches follow the same architecture.

We further define a loss that enforces the consistency across the two branches for

the same input to achieve a collaborative training, inspired by the previous mutual

learning [172] and co-regularization [105]. The cross-branch consistency can compro-

mise two branches to make the deep network learn from a relatively more balanced

distribution somewhere between these two biased distributions, so that recognition

performance of all classes is improved.

More specifically, as shown in Fig. 6.1(b), the two branches have the same archi-

tecture but different parameters to reflect the different distributions of their respective

inputs. For each branch, the binary-cross-entropy-based multi-label classification loss

with learnable logit compensation is defined for multi-label visual recognition. For

combining two branches, we introduce another loss to collaboratively enforce the pre-

diction consistency across the two branches when the same input image is fed to the

two branches. Finally, this two-branch network is trained in an end-to-end manner

by minimizing both classification and consistency losses. During the test phase, each

test image is fed to both branches without considering cross-branch paths and the

average of predictions from the two branches is taken as the final prediction.

Different from previous mutual learning methods [172, 105], where the two branches

always take the input from a single distribution, as shown in Fig. 6.1(a), the proposed

method learns two branches from different inputs generated by different samplings

and the same input for two branches is only used for computing the consistency loss.

6.2 Methodology

Similar to notations denoted as in Section 2.3, let the training set for the long-tailed

multi-label visual recognition (LTML) be (X,Y), where X = {x1,x2, · · · ,xN} are

the N training images and Y = {y1,y2, · · · ,yN} are their respective ground-truth
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Figure 6.1 An illustration of the difference between (a) the previous mutual
learning [172]/co-regularization [105] networks, where the input from the same
distribution is always fed to the two branches, and (b) the proposed network where
different inputs, from different samplings, are fed to the two branches. We only use
the same input for the two branches for computing the consistency loss. I and J are
mini-batch images, ∼ indicates the consistency measurement, and L is the
classification loss.

class labels. Specifically, each yi = [yi1, yi2, · · · , yiK ], i = 1, 2, · · · , N is a binary K-

dimensional vector where yik = 1 indicates the presence of label k in image i and

yik = 0 otherwise, with k = 1, 2, · · · , K. K is the total number of labels for the visual

recognition. There may be multiple elements of value 1 in each yi for multi-label

visual recognition.

6.2.1 Framework Overview

Given that (X,Y) follows a long-tail distribution in terms of class labels, we use

both uniform and re-balanced samplings in preparing the inputs for network training.

For the uniform sampling, each image xi ∈ X is sampled with an instance-level

probability of 1/N . For the re-balanced sampling [129, 65, 166], images of each class

are sampled with a class-level probability of 1
K
, and thus, each image xi is sampled

with a probability of 1
K

∑K
k=1

yik

Nk
, where Nk is the number of images with class label

k in the training set. By sampling the original training set M times, the re-balanced

sampling actually provides us a new relatively class-balanced training set (X′,Y′),

with M samples.

81



As shown in Fig. 6.2, the two branches of the proposed network share the same

bottom network ϕ, followed by another CNN module, denoted as ‘Subnet-U’ in the

branch for the uniform sampling and ‘Subnet-R’ in the branch for the re-balanced

sampling. Subnet-U and Subnet-R have the same architecture but trained with dif-

ferent parameters, as shown in Fig. 6.2. To be specific, the shared bottom network is

the conventional ResNet [49] excluding the last stage. For Subnet-U and Subnet-R,

we first include an identical copy of the last stage of ResNet, as shown by f1 and

g1 in Fig. 6.2. After that, a linear classifier in the form of a fully connected layer is

added to each branch, as shown by f2 and g2 in Fig. 6.2 for multi-label recognition.

When feeding images xui ∈ X and xrj ∈ X′ to the two branches respectively, we obtain

K-dimensional logits for the two branches as
ui = f2(f1(ϕ(xui ))),

rj = g2(g1(ϕ(xrj))).
(6.1)

By formulating the task as multiple binary image classifications, we apply logistic

linear regression on logits ui ∈ RK and rj ∈ RK to learn the two branches, respec-

tively. The solid arrows in blue and red in Fig. 6.2 indicate the classification paths for

the two branches, respectively. The binary-cross-entropy-based classification losses

Lcls(ui,yui ) and Lcls(rj,yrj) are adopted for respective branch optimization, where

(ui,yui ) and (rj,yrj) represent the pair of predicted logits and ground-truth labels for

the i-th image in X and the j-th image in X′, respectively.

We further cross the inputs of two branches and estimate the logits, indicated by

the blue/red dashed arrows in Fig. 6.2 and obtain
ûi = g2(g1(ϕ(xui ))),

r̂j = f2(f1(ϕ(xrj))).
(6.2)

To enforce the two branches to make consistent predictions from the same input,

we introduce a mean-square-error based consistency loss Lcon(ui, ûi) and Lcon(rj, r̂j)
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Figure 6.2 An illustration of the proposed network for long-tailed multi-label
visual recognition. GAP denotes the global average pooling.

between the logits from different branches, indicate by the same color arrows (one

dashed and one solid) in Fig. 6.2.

Finally, the network is learned by jointly minimizing the loss function

L(xui ,xrj ; yui ,yrj) =Lcls(ui,yui ) + Lcls(rj,yrj)+

λ(Lcon(ui, ûi) + Lcon(rj, r̂j)),
(6.3)

where (xui ,yui ) ∈ (X,Y), (xrj ,yrj) ∈ (X′,Y′), and λ is a hyper-parameter to balance

the two kinds of loss functions.

6.2.2 Conventional Classification Loss

Conventionally, the weighted sigmoid cross entropy loss [83, 42, 141] is used for multi-

label visual recognition, in the form of multiple binary image classifications, as dis-

cussed in Eq. (2.4) in Section 2.3. Taking the branch for the uniform sampling as an

example, this loss is

Lcls(ui,yui ) = − 1
K

K∑
k=1

ωk (yuik log(ς(uik))+

(1− yuik) log(1− ς(uik))) ,
(6.4)

where uik and yuik are the k-th elements of the predicted logits ui and the ground-truth

label yuik, respectively, corresponding to the k-th label. Besides, ωk = yuike
1−ρ + (1−

yuik)eρ is the loss weight for the k-th label, depending on its ratio of positive samples

83



ρ = Nk/N , and ς is the sigmoid function converting logits in R to probabilities in the

range of [0, 1] by

ς(uik) = 1/(1 + e−uik). (6.5)

The classification loss Lcls(rj,yrj) for the other branch can be defined in the same

way.

6.2.3 Logit Compensation

As discussed in [8, 166], when using the weighted sigmoid cross entropy loss for

classification, the imbalance between the numbers of positive and negative samples

in each class could push their unbounded logit values away from zero with different

distances, leading to class-specific over-fitting. In this section, we address this issue

by further compensating the logits of positive and negative samples, respectively.

For simplicity, we assume that logit output of the network for each label recogni-

tion conforms to a normal distribution. Suppose the logit for positive samples of the

k-th label conforms to a normal distribution with mean µpk and standard deviation σpk,

and the logit for negative samples of the same label conforms to a normal distribution

with mean µnk and standard deviation σnk . The mean logit values {µp1, µp2, · · · , µpK} and

{µn1 , µn2 , · · · , µnK}, and standard deviations {σp1, σp2, · · · , σpK} and {σn1 , σn2 , · · · , σnK} are

then used to compensate the logits before feeding to the classification loss in Eq. (6.4).

Thus, the classification loss (6.4) is upgraded to

Lcls(ui,yui ) = − 1
K

K∑
k=1

ωk (yuik log(ς(uik · σpk + µpk))

+(1− yuik) log(1− ς(uik · σnk + µnk))) .
(6.6)

The classification loss Lcls(rj,yrj) is upgraded with logit compensation in the same

way. All the above means and standard deviations are learnable parameters. Com-

pared with previous logit-adjustment methods [8, 166], this simple compensation does

not introduce additional empirical hyper-parameters that require manually tuning.
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6.2.4 Logit Consistency between Branches

In the ideal case, when we feed the same input image to the two branches, the output

predictions shall approximate the ground-truth labels with the network optimizations.

However, since the two branches attempt to fit the differently biased distributions of

input data, they may produce different prediction results with the same input, e.g.,

the two branches may show different recognition performance. As mentioned above,

we define a cross-branch consistency loss based on the mean square error of logits

computed from the same input image but through different branches. Taking the

input from the uniform sampling as an example, this loss is

Lcon(ui, ûi) = 1
K

K∑
k=1

(uik − ûik)2, (6.7)

where uik and ûik are the k-th elements of ui and ûi, respectively. For the input from

the re-balanced sampling, the consistency loss Lcon(rj, r̂j) can be defined in the same

way.

Different from existing works on collaborative training [172, 105], which define

consistency on probabilities, e.g., softmax/sigmoid outputs, for visual recognition,

here we measure the consistency between logits of different branches from the same

input. In training multi-label classifiers, due to the sigmoid normalization in Eq. (6.5),

gradients could vanish on highly confident probabilities. For example, when the

consistency loss is applied to probabilities, we have loss Lcon(ς(ui), ς(ûi)) and the

gradients propagated to the logits ui would be:

∂Lcon(ς(ui), ς(ûi))
∂ui

= ∂Lcon(ς(ui), ς(ûi))
∂ς(ui)

∂ς(ui)
∂ui

= ∂Lcon(ς(ui), ς(ûi))
∂ς(ui)

ς(ui)(1− ς(ui)).
(6.8)

If the predicted probabilities are highly confident, e.g. ς(ui) ' 1 or ς(ui) ' 0, the

gradients from consistency loss are close to zero. Differently, we define the consistency
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loss based on logits, with which the gradients propagated to the logits ui would be:

∂Lcon(ui, ûi)
∂ui

= 2
K

(ui − ûi). (6.9)

We can see that these gradients do not have the above gradient vanishing issue under

high-confident predictions.

6.2.5 Model Inference

To conduct model inference on test images, we simply feed all the test images to both

branches of the trained network one by one. The paths following the dashed arrows

in Fig. 6.2 are not used. For each input test image, the predictions of two branches

are averaged as the final prediction result.

6.3 Experiment

6.3.1 Datasets and Configurations

As in [166], we conduct experiments on two datasets for long-tailed multi-label vi-

sual recognition: VOC-LT and COCO-LT. They are artificially constructed from two

multi-label visual recognition benchmarks, VOC [29] and MS-COCO [92], respec-

tively.

VOC-LT is sampled from the 2012 train-val set of VOC [29] based on a Pareto

distribution as described in [98]. The training set contains 1,142 images and 20 class

labels, and the number of images per class ranges from 4 to 775. The 20 classes are

split into three groups according to the number of training samples per class: a head

class has more than 100 samples, a medium class has 20 to 100 samples, and a tail

class has less than 20 samples. The ratio of head, medium and tail classes after such

splitting is 6:6:8. The testing set is constructed on the 2007 test set of VOC, with

4,952 images.
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COCO-LT is created from the 2017 version of MS-COCO [92] by following a

similar way. The training set of this long-tailed dataset contains 1,909 images and

80 class labels, and the number of images per class ranges from 6 to 1,128. The ratio

of head, medium and tail classes is 22:33:25, following a similar split as in VOC-LT.

The test set consists of all 5,000 images in the test set of MS-COCO-2017.

Configurations: Following [166] and the conventional multi-label visual recogni-

tion [178, 160, 42], we use the mean Average Precision (mAP) to evaluate the perfor-

mance of long-tailed multi-label visual recognition. We use the similar configurations

as in [166] in our experiments for a fair comparison with this prior state-of-the-art

method. Specifically, we use the ResNet50 [47] pre-trained on ImageNet [70, 122] as

the backbone and input images are resized to the spatial dimension of 224×224. The

standard data augmentations are applied as in [166]. The SGD with momentum of

0.9 and weight decay of 0.0001 is adopted as the optimizer. The hyper-parameter λ

in Eq. (6.3) is set to 0.1 constantly. In the classification loss with logit compensation

in Eq. (6.6), the mean values are initialized to 0, while the standard deviations are

initialized to 1. The initial learning rate is set to 0.01. All experiments are conducted

on PyTorch 1.4.0.

6.3.2 Comparison with Prior Arts

First of all, to verify the effectiveness of the proposed method, we compare the mAP

performance between our method and previous methods on both long-tailed datasets.

The comparison methods include Empirical Risk Minimization (ERM), conventional

Re-Weighting (RW) using the inverse proportion to the square root of class frequency,

Re-Sampling (RS) [129], Focal Loss [91], ML-GCN [12], OLTR [98], LDAM [8], CB

Focal [19], BBN [176] and DB Focal [166]. The mAP performance of different methods

are shown in Table 6.1. The prior best performance is achieved by DB Focal [166] –

mAP of 78.94% over all classes on VOC-LT and 53.55% over all classes on COCO-LT.
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Table 6.1 mAP performance of the proposed method and comparison methods.
The notation * indicates the reproduced results based on our experiment
environment. Other comparison results are taken from [166].

Datasets VOC-LT COCO-LT
Methods total head medium tail total head medium tail
ERM 70.86 68.91 80.20 65.31 41.27 48.48 49.06 24.25
RW 74.70 67.58 82.81 73.96 42.27 48.62 45.80 32.02
Focal Loss [91] 73.88 69.41 81.43 71.56 49.46 49.80 54.77 42.14
RS [129] 75.38 70.95 82.94 73.05 46.97 47.58 50.55 41.70
ML-GCN [12] 68.92 70.14 76.41 62.39 44.24 44.04 48.36 38.96
OLTR [98] 71.02 70.31 79.80 64.95 45.83 47.45 50.63 38.05
LDAM [8] 70.73 68.73 80.38 69.09 40.53 48.77 48.38 22.92
CB Focal [19] 75.24 70.30 83.53 72.74 49.06 47.91 53.01 44.85
BBN* [176] 73.37 71.31 81.76 68.62 50.00 49.79 53.99 44.91
DB Focal [166] 78.94 73.22 84.18 79.30 53.55 51.13 57.05 51.06
DB Focal* [166] 78.42 74.13 83.19 78.06 54.33 50.06 57.22 54.27
baseline-uniform 77.15 73.14 83.49 75.41 53.15 51.61 57.17 49.21
baseline-re-balanced 78.36 71.72 83.58 79.41 52.76 48.67 56.87 50.94
Ours 81.44 75.68 85.53 82.69 56.90 54.13 60.59 54.47

We further reproduce DB Focal, denoted as DB Focal* in Table 6.1, on our platform

based on its implementation 1 and achieve similar mAP performances as the ones

reported in [166].

We train two baselines for the proposed method with the conventional classifica-

tion loss and different samplings. Specifically, we train the proposed network only

with one branch using the uniform sampling and re-balanced sampling, respectively,

with the weighted classification loss in Eq. (6.4). This way, we obtain two baselines:

baseline-uniform and baseline-re-balanced, respectively. From Table 6.1, we can see

that both baselines achieve lower mAP performance than DB Focal (or DB Focal*)

– mAP performances of two baselines on VOC-LT are 77.15% and 78.36%, respec-

tively, and those on COCO-LT are 53.15% and 52.76%, respectively. The proposed

method can significantly increase the mAP performance on both datasets: mAP per-

formance is improved to 81.44% on VOC-LT (increased by 3.02% from DB Focal*)

1https://github.com/wutong16/DistributionBalancedLoss
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and to 56.90% on COCO-LT (increased by 2.63% from DB Focal*). Besides, the

proposed method also achieves the new state-of-the-art mAP performance for both

head, medium and tail classes on both datasets.

6.3.3 Quantitative Analysis

Ablation Analysis

To further analyze how the proposed method improves mAP performance for long-

tailed multi-label recognition, we conduct a set of ablation studies and report the

results in Table 6.2. We first conduct an experiment by using a simple branch-

ensemble method which averages the predictions from the two branches as the final

prediction, without considering the consistency and compensation. The achieved

mAP performances are 79.42% on VOC-LT and 54.71% on COCO-LT, which are

better than the two baselines. One possible reason is that the two branches learned

from different label distributions exploit complementary information for recognizing

the same label. By considering the proposed cross-branch consistency but not logit

compensation, the mAP performance is improved to 81.22% on VOC-LT and 56.62%

on COCO-LT, with 1.80% and 1.91% increments, respectively. Finally, we add the

logit compensation to the classification loss, the mAP performance is further improved

to 81.44% and 56.90%, respectively. This verifies that each component in the proposed

method contributes to the mAP performance improvement.

Besides, we also show that incorporating an augmented testing (aug-test) strategy

can further improve the mAP performance. In this strategy, the average of the

predictions estimated from the original image and its horizontally flipped image is

computed as the final prediction. Since this strategy is not widely used in the previous

works, we do not consider it when comparing the performance of the proposed method

against the previous methods.

89



Table 6.2 Ablation analysis on different components of the proposed network.

uniform branch
√ √ √ √ √

re-sampled branch
√ √ √ √ √

logit consistency
√ √ √

logit compensation
√ √

aug-test
√

VOC-LT

head 73.14 71.72 73.98 75.42 75.68 76.04
medium 83.49 83.58 84.67 85.50 85.53 85.92
tail 75.41 79.41 79.56 82.37 82.69 83.01
total 77.15 78.36 79.42 81.22 81.44 81.79

COCO-LT

head 51.61 48.67 51.81 54.30 54.13 54.54
medium 57.17 56.87 58.62 60.27 60.59 61.10
tail 49.21 50.94 52.06 53.86 54.47 54.64
total 53.15 52.76 54.71 56.62 56.90 57.28

Consistency Analysis

We also compare the proposed logit consistency across different training-data distribu-

tions with perturbation-based consistency and model-based consistency, as discussed

in Sec. 3.3. The mAP performance from different logit consistency is reported in Ta-

ble 6.3. Given a single data sampling, we add the perturbations of horizontal flipping

as in Chapter 5 on the input images and feed both original and perturbed images to

the ResNet50 for model learning. The consistency of the estimated logits for the origi-

nal and perturbed images is considered for multi-label recognition. The perturbation-

based consistency based on uniform sampling and re-balanced sampling leads to mAP

performance of 78.18% and 79.39% respectively on VOC-LT, and 55.32% and 55.49%

respectively on COCO-LT. While the different data distributions are merged directly,

i.e. “uniform ∪ re-balanced”, to train the network without enforcing the logit con-

sistency, the achieved mAP performance is much lower. This is equivalent to learn

the model based on another distribution that combines the uniform and re-balanced

samplings.
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For model-based consistency, we train the two branches with the same sampling,

either the uniform sampling or the re-balanced sampling, as well as considering the

consistency of logits across two branches, e.g. [172, 105]. The model-based consistency

from the uniform and re-balanced samplings yields the mAP performance of 80.13%

and 80.18% respectively on VOC-LT, and 55.70% and 55.44% respectively on COCO-

LT. We can see that the use of the proposed consistency in our method achieves much

better mAP performance than both the uses of perturbation-based and model-based

consistencies on both long-tailed datasets.

Table 6.3 mAP performance by using different kinds of consistency.

number of
branches

consistency
based on sampling VOC-LT

total head medium tail

single
data

perturbations
uniform 78.18 74.09 83.99 76.90

re-balanced 79.39 73.35 84.71 79.94

N/A uniform ∪
re-balanced 77.85 72.48 82.68 78.26

dual models uniform×2 80.13 74.71 85.12 80.46
re-balanced×2 80.18 74.54 84.99 80.81

distributions uniform;
re-balanced 81.22 75.42 85.50 82.37

number of
branches

consistency
based on sampling COCO-LT

total head medium tail

single
data

perturbations
uniform 55.32 52.39 59.60 52.26

re-balanced 55.49 52.01 59.32 53.50

N/A uniform ∪
re-balanced 53.12 50.14 57.18 50.38

dual models uniform×2 55.70 52.40 59.28 53.89
re-balanced×2 55.44 52.01 59.26 53.43

distributions uniform;
re-balanced 56.62 54.30 60.27 53.86

Finally, we conduct an experiment to justify the proposed logit consistency against

the use of the probability consistency after the sigmod normalization in the proposed

network. As shown in Table 6.4, the logit consistency yields better performance than

the probability consistency, by avoiding gradient vanishing as discussed in Eq. (6.8).
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Table 6.4 mAP performance of the proposed network by using the logit
consistency and the probability consistency, respectively.

VOC-LT total head medium tail
logit 81.44 75.68 85.53 82.69
probability 80.32 74.00 85.84 80.92
COCO-LT total head medium tail
logit 56.90 54.13 60.59 54.47
probability 56.03 53.11 59.85 53.55

Class-wise Analysis

In Fig.6.3, we show the class-wise average precision (AP) increment made by the re-

balanced branch, the branch ensemble and the proposed network, respectively, when

compared to solely using the uniform branch. As shown in the top row of Fig. 6.3,

compared with uniform sampling for model training, re-balanced sampling leads to

AP increment on tail classes (the right portion of each curve), since it increase the

sampling rate of tail-class instances. Meanwhile, it also reduces the sampling rate

of some head-class images, resulting in underfitting on head-class recognition and

decreased AP performance on head classes, as shown in the left portion of each

increment curve in the top row of Fig. 6.3. We can see that branch ensemble can

alleviate the head-class performance decrease, while keeping the AP increment in

tail classes, as shown in the middle row of Fig. 6.3. The proposed method further

improve the AP performance of most head, medium and tail classes by considering

logit consistency between two branches and the logit compensation, as shown in the

bottom row of Fig. 6.3.

To further understand the proposed logit compensation, we visualize the learned

distribution parameters of Eq. (6.6) in Fig. 6.4. From the top row of Fig. 6.4, we

can see that the mean values for positive and negative logit compensation are almost

opposite to each other. The absolute mean value for each class largely follows a

positive correlation with the sample number in this class. Since the mean values
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Figure 6.3 Class-wise AP increment of re-balanced branch, the branch ensemble
and the proposed network over the uniform branch. Class labels are sorted from
head to tail classes left-right.

for compensating logits of positive samples and negative samples are positive and

negative, respectively, the absolute values of logits increases for correct predictions.

This helps decrease the loss values and prevents the logit values from being away from

0 quickly. The standard deviations also approximately follow a positive correlation

with the sample number in each class, as shown in the bottom row of Fig. 6.4. Besides,

we can also notice that the standard deviations learned for positive logits are usually

smaller than 1 and those learned for negative logits are usually larger than 1. For

most classes, positive samples are usually the minority, while the negative samples are

the majority. A standard deviation lower than 1 inclines to increase the classification

loss from the logits, while a standard deviation greater than 1 tends to decrease the

classification loss from the logits. Therefore, the loss from positive samples, along

with the tail classes, are relatively emphasized to address the imbalance issue.
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Figure 6.4 The visualization of learned logit compensation parameters for positive
and negative logits, on VOC-LT and COCO-LT. Class labels are sorted from head
to tail classes left-right.

Group-wise Analysis

For all the compared methods in Table 6.1, we can notice an interesting phenomenon

that mAP performance on medium classes is usually higher than those on head classes

and on tail classes. The prior work [166] gives a conjecture that sample numbers of

medium classes (10 to 100 samples per class) may be more suitable for the specific

multi-label learning. We agree with this conjecture. With a simplified assumption

that there is only one label associated to each image, a class is balanced if its number

of samples is N
K
. On VOC-LT, N

K
= 1142

20 = 57 and on COCO-LT, N
K

= 1909
80 = 23.9,

both of which are in the range of [10, 100] used for defining medium classes. Therefore,

the sample numbers of medium classes are already more balanced than those of the

head and tail classes.
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Figure 6.5 Number of co-occurred classes on the same image in term of class labels
sorted from head classes to tail classes on the two datasets.

In addition, the use of re-balanced sampling, such as DB Focal, baseline-re-

balanced, or the proposed method, usually leads to better performance on tail classes

than on head classes, as shown in Table 6.1. One possible reason is that images with

head class labels are usually associated with more classes and show more diverse and

complex appearance features. As shown in Fig. 6.5, it is clear that head classes have

more co-occurred classes than tail classes. In this case, without sufficient samples,

the image diversity and complexity for head classes are more difficult to learn than

simpler tail-class images.

6.3.4 Effect of Hyper-parameter λ

Besides the conventional hyper-parameters for deep network learning, the proposed

method introduces one more hyper-parameter to tune, i.e. λ in Eq. (6.3), which is end-

to-end training friendly. We further conduct a set of experiments to study the effect

of different configurations of λ to the recognition performance. As shown in Fig. 6.6,

when λ = 0.2, the proposed method achieves the best mAP performance of 81.49% on

VOC-LT. When λ = 0.1, the proposed method achieves the best mAP performance of

56.90% on COCO-LT. An overly small λ may not give sufficient consideration for the
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consistency, while an overly large λ may make the consistency dominate the training,

leading to decreased performance on the original task of multi-label recognition.

Figure 6.6 The effect of hyper-parameter λ to the mAP performance.

6.4 Chapter Summary

This study tackled the task of long-tailed multi-label visual recognition by learning

a model using both uniform and re-balanced samplings from the same training set.

We proposed a network consisting of two branches for two samplings, respectively.

Meanwhile, we incorporated the logit consistency across two branches for the same

input to achieve collaborative learning. With extensive experiments on two long-tailed

datasets for multi-label visual recognition, we demonstrated the effectiveness of the

proposed method by achieving the new state-of-the-art performance, with significant

margins over prior works.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Generally, this dissertation tackled two challenges of multi-label visual recognition,

including label locality and label imbalance. To address these two issues, three novel

methods were proposed in this dissertation. For label locality in human attribute

recognition, the attention concentration was designed and proposed to enforce the

deep network to focus on a single compact image region for recognizing each human

attribute. Considering the important consistency property in computer vision, the

visual attention consistency is further proposed to regularize the deep network learn-

ing, so that the estimated attention maps for human attribute recognition are more

plausible. For label imbalance, this dissertation explored the collaborative learning

between different samplings of the long-tailed data distribution for multi-label vi-

sual recognition, which leads to a compromise between distributions biased towards

different classes and improves the recognition performance on both head and tail

classes.

In the first work, we added an extra component to the deep network learning for

human attribute recognition to achieve attention concentration. While minimizing

the ordinary classification loss discovered image regions as evidence, in terms of atten-

tion maps, for attribute recognition, the proposed attention concentration emphasized

the highlighted image regions in attention maps and suppressed the remaining im-

age regions. Thus, minimizing the proposed attention concentration loss coincided
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with minimizing classification loss when attention maps highlighted attribute-relevant

regions, but confronted with minimizing classification loss when attention maps high-

lighted attribute-irrelevant regions. The proposed attention concentration regular-

ized the deep network learning in an adversarial way by propelling the deep network

to discover only the attribute relevant regions as the evidence for attribute recog-

nition. The proposed method addressed an issue of part-based methods requiring

accurate location of human body parts and well predefined attribute-part correlation

to leverage local spatiality of human attributes. In experiments, the proposed atten-

tion concentration achieved better performance than part-based methods for human

attribute recognition. Experimental results also verified that the attention concen-

tration forced the deep network focusing attention on attribute relevant regions for

human attribute recognition.

Motivated by the property of consistency in robust vision systems, this disserta-

tion also defined and enforced the visual attention consistency to achieve consistent

attribute-region relevance for human attribute recognition. Specifically, two kinds of

attention consistency are defined and enforced, i.e., the attention equivariance un-

der spatial image transforms and attention invariance between different networks. To

achieve these two kinds of consistency, we designed and proposed a two-branch frame-

work, where the ordinary classification loss for attribute learning and a new attention

consistency loss were minimized simultaneously. The proposed attention consistency

regularized the deep network learning by enhancing the plausibility of the attention

maps for human attribute recognition. Extensive experimental results verified the

effectiveness of the proposed attention consistency by achieving new state-of-the-art

performance of human attribute recognition on three representative datasets. Also,

experiments demonstrated that enforcing attention consistency could improve the

plausibility of attention maps, which leads to recognition performance improvement.
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The third work of this dissertation handled the recently arisen long-tailed issue

for multi-label visual recognition. Due to label co-occurrence, existing re-balanced

sampling for addressing long-tailed issue in single-label visual recognition can not

achieve expected balance directly for multi-label visual recognition. Since the uniform

sampling and the re-balanced sampling yielded distributions bias towards head-class

and tail-class recognition, respectively, this work proposed a new two-branch network

to learn from two distributions and enforced two branches to learn from each other

by achieving cross-branch consistency. The proposed method regularized the deep

network learning by compromising between two biased distributions and led to an

effect equivalent to learning from a more balanced distribution somewhere between

these two biased distributions. We conducted comprehensive experiments to verify

that the proposed method improved recognition performance on both head and tail

classes with substantial margins over prior works.

To summarize, this dissertation utilized two kinds of important prior knowledge

in computer vision field, i.e., the visual attention mechanism and the consistency

property. By addressing label locality and label imbalance of the multi-label visual

recognition, we revisited these knowledge and demonstrated that deep network learn-

ing for multi-label visual recognition can be regularized with these cues.

7.2 Future Work

Based on the above study on multi-label visual recognition, we can outlook some

of the future works. As a fundamental vision task, multi-label visual recognition

is important and worth devoting effort to study. Even though several aspects of

this task have been widely studied, such as label dependencies, label locality and

label imbalance, there still exist a lot of issues to be addressed for multi-label visual

recognition.
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7.2.1 New Directions

Partial Annotations for Multi-label Visual Recognition: Existing state-of-

the-art methods for multi-label visual recognition usually rely on training deep net-

works on large-scale image datasets, with each image annotated with multiple image

labels. However, when the number of image labels associated with one image gets

large, e.g., at the magnitude higher than 103, it is very expensive (time and labor

consumption) to annotate each image in a large-scale training set for deep network

learning. Considering thousands of categories in natural scenes, this is a practical

challenge for a comprehensive vision system. Based on an assumption that the num-

ber of categories in a single image is limited, label annotations for each image can be

very sparse. Thus, we can explore the feasibility of using partially annotated images

to learn deep networks for multi-label visual recognition. Under this circumstance,

a subset of positive categories in an image is annotated as presence, while the pres-

ence of all other categories, including the negative categories and remaining positive

categories, are denoted as “non-specified”. Addressing this issue could marginally in-

crease the scalability of multi-label visual recognition. For example, an extreme case

is that only one of the positive categories in the image is annotated, even the image

contains multiple categories. We may study the feasibility to unify the single-label

visual recognition and multi-label visual recognition into the same framework, which

heavily reduces the cost of annotations for multi-label visual recognition, i.e., from

the number of image labels times the number of images to the number of images.

Extremely Large-scale Multi-Label Visual Recognition with Noisy Anno-

tations: Also, considering the high consumption for image annotation in multi-

label visual recognition, another potential solution could be using searching engines

or social media for training data collection and annotation. The collected images are

usually associated with certain descriptions, which can serve as the annotations for

100



these images. In this way, an extremely large-scale image dataset can be conveniently

constructed for multi-label visual recognition. However, image descriptions can not

always be trusted, leading to certain inaccurate annotations. To utilize these noisy

annotations, it is necessary to design a method for deep network learning based on

inaccurate annotations for multi-label visual recognition.

7.2.2 New Methods

There are also some aspects to explore for the original multi-label visual recognition.

As discussed in this dissertation, recognizing multiple image labels can be regarded

as multiple tasks of recognizing each single image label. The label co-occurring spec-

ifies the dependency between recognizing different image labels, which has been well

studied in recent years. However, the independent property of each image label has

not been well explored. Specifically, given different appearance complexities of dif-

ferent image labels, the levels of difficulties for recognizing the different image labels

are usually different. During the same deep network learning for simultaneously rec-

ognizing all defined image labels, this difference has not been well curated. Several

re-weighting strategies have been proposed for balancing the learning speed of differ-

ent image labels based on the number of image samples for each category, without

considering the intrinsic complexity of each image labels. In the experiment of this

dissertation, we observed that when an image label co-occurs with more other image

labels, it requires more training efforts for achieving robust recognition. This could

be a cue that can be used for further improving multi-label visual recognition.

Besides, as multiple labels are learned by the same deep network, there may also

exists bias competition between labels, i.e., the promising performance of recognizing

one label is at the cost of low performance of recognizing some other labels, due to the

different recognition difficulties and imbalanced image samples. The future work may
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be still necessary to discover the optimum of compromising the recognition between

different labels.
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