
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

Spring 2021 

Multi-Robot Coordination with Environmental Disturbances Multi-Robot Coordination with Environmental Disturbances 

Adem Coskun 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Computer Sciences Commons, and the Engineering Commons 

Recommended Citation Recommended Citation 
Coskun, A.(2021). Multi-Robot Coordination with Environmental Disturbances. (Doctoral dissertation). 
Retrieved from https://scholarcommons.sc.edu/etd/6256 

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in 
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please 
contact digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F6256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F6256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=scholarcommons.sc.edu%2Fetd%2F6256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/6256?utm_source=scholarcommons.sc.edu%2Fetd%2F6256&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


Multi-Robot Coordination with Environmental Disturbances

by

Adem Coskun

Bachelor of Science
Inonu University, 2008

Master of Science
Clemson University, 2013

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2021

Accepted by:

Marco Valtorta, Major Professor

Jason O’Kane, Committee Member

John Rose, Committee Member

Yan Tong, Committee Member

David Hitchcock, Committee Member

Tracey L. Weldon, Interim Vice Provost and Dean of the Graduate School



© Copyright by Adem Coskun, 2021
All Rights Reserved.

ii



Dedication

This dissertation is dedicated to my beloved parents for their endless love.

iii



Acknowledgments

I would like to express my grateful appreciation to my major advisor Prof. Marco

Valtorta for his support.

I also would like to thank to my dissertation committee members, Dr. John Rose,

Dr. Jason O’Kane, Dr. Yan Tong, and Dr. David Hitchcock for their valuable

suggestions.

Last but not the least, I would like to thank my beloved wife for her support and

patience.

iv



Abstract

Multi-robot systems are increasingly deployed in environments where they interact

with humans. From the perspective of a robot, such interaction could be considered a

disturbance that causes a well-planned trajectory to fail. This dissertation addresses

the problem of multi-robot coordination in scenarios where the robots may experience

unexpected delays in their movements.

Prior work by Čáp, Gregoire, and Frazzoli introduced a control law, called RM-

TRACK, which enables robots in such scenarios to execute pre-planned paths in spite

of disturbances that affect the execution speed of each robot while guaranteeing that

each robot can reach its goal without collisions and without deadlocks. We extend

that approach to handle scenarios in which the disturbance probabilities are unknown

when execution starts and are non-uniform across the environment. The key idea is

to ‘repair’ a plan on-the-fly, by swapping the order in which a pair of robots passes

through a mutual collision region (i.e. a coordination space obstacle), when making

such a change is expected to improve the overall performance of the system. We in-

troduce a technique based on Gaussian processes to estimate future disturbances, and

propose two algorithms for testing, at appropriate times, whether a swap of a given

obstacle would be beneficial. Tests in simulation demonstrate that our algorithms

achieve significantly smaller average travel time than RMTRACK at only a modest

computational expense.

However, deadlock may arise when rearranging the order in which robots pass

collision regions and other obstacles. We provide a precise definition of deadlock using

a graphical representation and prove some of its important properties. We show how
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to exploit the representation to detect the possibility of deadlock and to characterize

conditions under which deadlock may not occur. We provide experiments in simulated

environments that illustrate the potential usefulness of our theory of deadlock.
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Chapter 1

Introduction

As multi-robot systems become more reliable and more widespread, it is becoming

increasingly common for them to share their operating environments with humans.

For example, it is more likely that we will have more household cleaning robots in

our houses. Also, it seems that we will have more multi-robot systems in the era of

Industry 4.0 [40], such as, for example, warehouse management systems as pointed

out in [65]. Moreover, the number of autonomous cars is increasing every day on

the roads and coordinating those autonomous cars can help to reduce collisions and

ensure that they reach their destinations faster. Coordinating multi-robot systems

in environments like the ones just described when humans are present can be a chal-

lenging problem for several reasons. One specific issue is that the motions of the

robots may be interrupted or delayed by humans. In such a scenario, the robot may

be prevented from progressing along its path for some period of time, an event we

refer to as a disturbance.

Prior work by Čáp, Gregoire, and Frazzoli [12] showed how to handle these kinds

of unexpected disturbances effectively, by introducing an approach that first generates

a suite of trajectories that is collision free in the absence of disturbances, and then

controls the forward movements of the robots to ensure that the coordinated motions

remain free of both collisions between robots and of deadlocks, even if some or all

of the robot experience disturbances. This control rule is called Robust Multi-Robot

Trajectory Tracking Strategy (RMTRACK).
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The essential idea of the RMTRACK approach is for a robot to stop and wait,

before entering a portion of its path on which a collision with another robot might oc-

cur, if the other robot would have passed through this collision region first, according

to the original (undisturbed) trajectories.

The RMTRACK approach is very effective, especially in scenarios where the ex-

pected amount of disturbance experienced by each robot is approximately equal. The

approach shows its limitations, however, in scenarios where the disturbance proba-

bilities are unknown at the start and non-uniform across the environment.

For example, consider the simple problem illustrated in Figure 1.1. Two robots

attempt cross the room, one from left to right and the other from right to left. The

robots are named R1 and R2 respectively. Without loss of generality, suppose that

the initial planned trajectory instructs R1 to pass through the narrow central region

first.

However, unbeknown to the robots and the trajectory planner, at the time of

plan execution the left side of the room is filled with human workers that interrupt

the motion of that robot. Then, R2 reaches the collision region first. Using the

RMTRACK algorithm, robot R2 would wait at that position until R1 fully navigated

the left side and passed through the collision region. Clearly, robot R2’s wait is a

waste of time.

We propose to resolve this kind of problem by repairing the plan on-the-fly. In

the example of Figure 1.1, when robot R2 arrives the intersection and robot R1 has

not yet cleared the intersection, robot R2 has a choice: Does it wait until the robot

R1 clears the intersection, or does it continue forward, hoping to pass through the

collision region before the robot R1 arrives? We propose a two-phase approach to

answering this question: First we estimate the probability of each robot experiencing

disturbances along the relevant section of its path, based on disturbances observed by

the robots in those regions during the current execution. Then, using those estimated
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R2

R1

Figure 1.1: Two robots, R1 and R2, are attempting to move from one side to another
side of the environment. Dotted lines show the path of the robots, and arrows point
from each robot’s start position to its current position. The probability of having
disturbance in the red zones is 0.8. R2 needs to wait until R1 passed through the
collision region.

probabilities, robot R2 can decide whether it is likely to safely pass through the

collision region before the arrival of robot R1. If so, we ‘flip’ that obstacle and

resume the RMTRACK controller, at which point robot R2 will continue through the

collision region immediately.

1.1 Survey

The problem of coordinating multiple robots in a shared workspace is one of the best

studied problems in the field. Approaches for this problem are generally classified as

either reactive or planning.
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1.1.1 Reactive Approach

Each robot follows its own shortest path, and collisions are resolved locally by observ-

ing the other robots. These algorithms are practicable because of the computational

efficiency. However, they do not guarantee that all robots reach their goal positions.

One of the first proposed reactive techniques is called the cocktail party model

[46]. In this model, each robot knows its own current and goal position, but there is

no communication between robots, and the only information from the other robots

comes from their sensors when they are nearby. Their algorithm is based on maze-

searching techniques. The term, the cocktail party model, is inspired by the behavior

of a guest in a crowded place. When a guest wants to talk to someone from another

table, he dynamically plans his movements by travelling between all tables, chairs,

and other guests with a minimal distance. If the guest senses that one person is

drunk, then the guest increases the distance from that person for safety.

Also, there are other reactive techniques [60, 33, 59] based on the velocity obsta-

cle (VO) approach [25], so the collisions are avoided observing not only the positions

of the robots but also their velocities. Among them, the optimal reciprocal collision

avoidance (ORCA) [59] formulation is used in practice due to its efficiency in calculat-

ing the velocity obstacles. A generalized velocity obstacle approach for non-holonomic

robots is proposed in [1, 5].

The main disadvantage of the reactive approaches is the possibility of having a

deadlock [18, 30]. Figure 1.2 illustrates two deadlock scenarios in multi-robot sys-

tems. Deadlock avoidance [2, 41] is also studied for traffic systems in [49, 50, 51] by

using a resource allocation system (RAS), and in operating systems where a resource

allocation graph is sometimes used, as described in [58].
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Figure 1.2: Two deadlock examples for reactive approaches. In the left environment,
the robots are moving at the same speed and therefore occupy the narrow corridor at
the same time. In the right environment, the reactive behavior of the robots prevents
then from recognizing the need to switch positions in the wider part of the corridor.
Both deadlock cases can be avoided by using a planning approach.

1.1.2 Planning Approach

In the planning approach, all robot trajectories are generated by planning the coor-

dination between each robot before the robots start to execute their paths. These

approaches guarantee that all robots reach their goal positions. However, their com-

plexity increases exponentially with the number of coordinated robots. According to

[55], planning for circular robots moving amidst static polygonal obstacles is strongly

NP-hard. When planning for rectangular robots moving in a rectangle environment,

it is PSPACE-hard [37], which is also the case for square robots [54].

A configuration space [44] for a robot represents all points that the robot can

reach, so planning for a robot is basically finding a path between its start and goal

positions in the configuration space. A configuration space for a multi robot system

is the Cartesian product of the configuration spaces for each robot. In order to reduce

the complexity of the planning approach, the path-velocity decomposition described

in [38] is used. The decomposition consists of planning the path to avoid collisions

with static obstacles, and planning the velocity to avoid collisions with dynamic

obstacles. Such decomposition leads to the notion of coordination space originally
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proposed in [45], with the geometry-based approach described in [42], and widely

used, as described in [44, 26, 32, 53, 8, 15, 27, 17, 28, 16].

We can differentiate planning globally with a joint configuration space, or sepa-

rately for each robot. In the literature, the two approaches are referred to as coupled

[35, 57, 56, 63, 64, 24, 48] and decoupled [23, 61, 6, 13, 14].

Also, we can define centralized approaches, in which all information is contained

in a central computer that computes plans and distributes them to each robot. Ap-

proaches that are not centralized are called decentralized [62]. Decentralized ap-

proaches can be used within decoupled algorithms, but one disadvantage of the de-

coupled algorithms is that they are incomplete, which means they may fail to find

trajectories even though they exist.

Moreover, there are autonomous intersection management systems for multi agent

systems [22, 20, 21, 36, 3] based on the reservation-based approach. In this approach,

each agent (typically a vehicle) sends a request to a central agent, which is an in-

tersection manager. Then the intersection manager decides to reserve a space-time

region in the intersection. Clearly, this a special kind of centralized approach, in

which coordination is addressed only at special locations (the intersections).

Planning under uncertainty and sequential decision making is also studied as

decision-theoretic planning, and modeled as a Markov decision process (MDP) or

dynamic Bayesian network (DBN) [11, 9, 10, 31]. Bayesian network approaches are

used to predict the movement of the dynamic surroundings for collision avoidance

under uncertainties. In [43], a dynamic Bayesian network, which is a directed graph-

ical model with a conditional probability distribution for each child node, is used

for maneuver prediction. In [39], an object-oriented Bayesian network (OOBN) is

used to predict lane change maneuvers. Similarly, maneuver prediction with traffic

interaction is studied in [29, 52, 4].
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Another planning approach is categorized as Multi-Agent Path Finding (MAPF).

In this approach, the problem is represented with a graph where each vertex cor-

responds to an agent’s location and edges correspond to transitions between two

locations. The agents can stay on their current vertex with a wait action. Other-

wise, they move to their next vertices with a move action. Having a random delay

on the agent’s execution is studied in [47], and more recently an Action Dependency

Graph (ADG) is proposed in [7] for reordering each agent’s execution schedule when

an agent has a large delay.

The most closely related work, that of Čáp, Gregoire, and Frazzoli [12], is specif-

ically targeted to enable the reliable execution of centrally-generated joint plans, in

cases where the robots cannot necessarily follow those paths without temporal disrup-

tion. In our work, we extend from that previous work, considering a similar problem,

but allowing the robots greater freedom to adjust the plan based on conditions ob-

served during the actual execution.

1.2 Summary of Revised Prioritized Planning

This section briefly describes revised prioritized planning, which was proposed and

studied by Čáp in [13]. This planning approach is used to generate trajectories of the

robots for the simulation.

Classical prioritized planning is efficient when used in practical applications be-

cause the trajectories of each robot are planned one after another instead computing

all robots at once. However, classical prioritized planning is incomplete because it

may fail to find trajectories for the robots. For example, a state-space based plan-

ner will find trajectories for the scenario shown on the right part of Figure 1.2, but

classical prioritized planning will fail.

Classical prioritized planning assigns each robot a distinct priority. Then, each

robot’s trajectory is computed in such a way that it avoids the higher priority robots’
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trajectories. The algorithm finds a solution if all robots’ trajectories are generated

successfully. However, the algorithm may fail to find a solution in some cases such

that the robots cannot avoid the trajectory of one or more other robots, so that it

fails even though there exists a solution.

There are two types of scenarios where classical prioritized planning fails. They

are named Type A and Type B in [13]. Type A is illustrated in Figure 1.3 where

robot 1 has the higher priority and blocks robot 2 when it reaches its goal position.

This situation can be avoided, for example, if robot 2 has a trajectory where it can

go around the goal position of robot 1.

Type B is illustrated in Figure 1.4 where the trajectory of robot 2 overlaps that

of robot 1 while robot 1 is moving. This happens mainly because robot 1 is faster

than robot 2 and robot 1 has a higher priority. This situation can be avoided, for

example, if robot 1 has a trajectory where it can go around the start position of robot

2, so robot 2 can wait at its start position and then it can move after robot 1 does

not block robot 2’s trajectory. If robot 2 can go around the goal position of robot 1,

then a scenario of Type A can also be avoided.

According to [13], a valid infrastructure is an environment where the following

conditions can be satisfied: all possible goal positions of higher priority robots can

be avoided by the lower priority robots, and all possible start positions of lower

priority robots can be avoided by the higher priority robots. A valid infrastructure

is illustrated in Figure 1.5. If those conditions are satisfied within an environment,

then revised prioritized planning is guaranteed to find the trajectories for each robot

as proved in [13].

On the other hand, revised prioritized planning has some limitations. Recall the

scenario depicted in Figure 1.4. In this case, assume that two robots have the same

speed. Then, it is obvious that revised prioritized planning algorithm fails because

robot 1 cannot avoid the start position of robot 2, but classical prioritized planning
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s1

s2
g1 g2

Figure 1.3: The first robot, colored green, has a higher priority, and its start and
goal positions are represented as s1 and g1, respectively. Also, s2 and g2 represent
the start and goal positions of the second robot, colored red. The robots travels at
the same speed. Since the first robot has a higher priority, the path of the second
robot is not considered by the first robot. Thus, when the first robot reaches the goal
position, it blocks the second robot. This is a Type A scenario. Figure adapted from
[13].

s1 g2s2 g1

Figure 1.4: The start and goal positions of two robots are depicted in the environment.
The first robot, colored green, travels at twice the speed of the second robot, colored
red. Also, the first robot has a higher priority, so there is no trajectory for the
second robot to avoid the conflict of the first robot’s path. Thus, classical prioritized
planning fails. Figure adapted from [13].

successfully finds the trajectories for both robots by allowing the two robots to move

straight with the same speed. Moreover, classical prioritized planning can find shorter

trajectories than revised prioritized planning. For example, in Figure 1.6, the first

robot has a curved trajectory instead of a straight one. Because of revised prioritized

planning condition, it needs to avoid the start position of the second robot.

Overall, it has been proved in [13] that revised prioritized planning always finds

a solution within a valid infrastructure environment, but we also need to consider

some limitations or disadvantages when comparing revised prioritized planning with

classical prioritized planning.
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e3

e2

e1

e2

e3e1

Figure 1.5: e1, e2, and e3 represent endpoints, which are the possible start or goal
positions of some robots. The environment depicted on the left is an example of a
valid infrastructure. However, the environment depicted on the right is not a valid
infrastructure because e3 blocks a path between e1 and e2. For example, assume that
e1 and e2 are the start and goal positions for the higher priority robot, respectively.
Also, assume that e2 and e3 are the start and goal positions for the other lower priority
robot, respectively. Then, it is not possible that the higher priority robot avoids the
start position of the lower robot, e3. Thus, this environment depicted on the right is
not a valid infrastructure.

g2

s2 g1s1

Figure 1.6: Revised prioritized planning generates a longer trajectory for the first
robot, colored green, than classical prioritized planning, because the first, higher
priority, robot must go over the start position of the second, lower priority, robot.
Figure adapted from [13].
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Chapter 2

Problem Statement

This chapter formalizes the problem we address in this paper. The treatment is

based upon work by Coskun and O’Kane [19] and generalizes the model used by Čáp,

Gregoire, and Frazzoli [12].

2.1 Environment, Robots, and Trajectories

We assume that n identical holonomic robots, indexed 1, . . . , n, operate in a shared

2d environment,W ⊆ R2. The robots are disc-shaped with body radius r. We model

time as a sequence of discrete stages indexed by t ∈ N. Each robot starts at a start

position and travels within W to a goal position. We assume that feasible collision-

free trajectories for each robot, π1, . . . , πn, from their respective start positions to

their goals are generated by a multi-robot trajectory planner, such as one that uses

prioritized planning [13]. Each trajectory πi : {1, . . . , Ki} → W is a function mapping

integers to locations in the environment, in which trajectory πi for robot i has Ki

steps. We model the robots’ execution of these paths in discrete time, writing xi(t) to

denote number of steps of πi executed by robot i up to time t. If robot i experiences

a disturbance or a delay in its execution, we will have xi(t) < t. Thus, the actual

position of robot i at time t is πi(xi(t)) ∈ W .
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R1
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o122

o121

x1

x2

K2

K1

Figure 2.1: Two robots, R1 and R2, in an environment where depicted on the left have
two collision regions. The dotted lines are representing their paths. The coordination
space of these two robots is depicted on the right with two obstacles, o12

1 and o12
2 . The

blue dotted line represent the planned path. The label of `(o12
1 ) is 1, which means

R1 should pass the obstacle o12
1 first. Also, the label of `(o12

2 ) is 2, which means R2
should pass the obstacle o12

2 first.

2.2 Coordination Spaces

For each pair of distinct robots (i, j), we define the coordination space Cij ⊆ C as

Cij = {(ki, kj) | ||πi(ki)− πj(kj)|| ≥ 2r}. (2.1)

The intuition is that a single point in Cij is determined by the positions of robots

i and j along their paths, and that pairs of positions that would place robot i in

collision with robot j are excluded from the coordination space. See Figure 2.1 for

an example. Within each coordination space Cij, we can identify the obstacle region

Oij = {1, . . . Ki} × {1, . . . , Kj} − Cij. We partition Oij into maximal connected

regions, oij
1 , . . . , o

ij
m, so that Oij = oij

1 ∪ · · · ∪ oij
m. Each oij

k is called a coordination

space obstacle.

Each coordination space obstacle represents a region in the environment that both

robots must pass through, but in which a collision may possibly occur if both robots
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occupy it at the same time. Notice the execution of robots i and j generates a path

through Cij from (1, 1) to (Ki, Kj) and that the main diagonal in coordination space

always corresponds to the planned path. For each obstacle oij
k , this path must pass

either above oij
k or below oij

k . The former case corresponds, in the workspace (i.e., the

real environment), to robot j passing through the collision region before robot i; in

the latter case, robot i passes through the collision region before robot j.

In addition to the trajectories π1, . . . , πn, we also assume that the trajectory plan-

ner assigns to each coordination space obstacle oij
k a label `(oij

k ) ∈ {i, j}, indicating

which of the two robots is planned to pass through the collision region first. Robot

i passes through a collision region first and robot j passes second, if the correspond-

ing obstacle in coordination space is above the main diagonal. Similarly, robot j

passes through the collision region first if the corresponding obstacle is below the

main diagonal.

In one of the examples, depicted in Figure 2.2, two robots are shown in six dif-

ferent positions, located in the environment and coordination space. Robot 1 passes

the collision region first, so the label of the obstacle, `(o12
1 ), is 1, and the correspond-

ing path in coordination space, the blue dashed line, passes below the obstacle. In

Figure 2.2 (a), the robots execute two path steps from their start position so far, and

robot 1 is one step away from the collision region as it approaches it. In Figure 2.2

(b), robot 1 enters the collision region, but robot 2 is still three steps away from the

collision region. In Figure 2.2 (c), robot 1 is almost passed the collision region, and

robot 2 has almost arrived the the collision region. In Figure 2.2 (d), robot 1 has just

passed the collision region, and robot 2 just arrives. In Figure 2.2 (e), robot 1 is two

steps past the collision region, and robot 2 is on the center of the collision region. In

the last frame, Figure 2.2 (f), robot 2 also has passed the collision region.

In one of the another examples, depicted in Figure 2.3, robot 2 follows robot 1 in

a narrow corridor as shown. Robot 1 is one step away from robot 2, so robot 2 may
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Figure 2.2: On the left side of the figures, two robots are shown traveling through
two intersecting narrow corridors, according to trajectories π1 and π2, respectively.
On the right side of the image, the position of the robot pair is a function of the
coordinates (x1, x2) in the coordination space. The axes are indexed by path steps.
It is assumed that the origin is the beginning of the path. The corresponding positions
of the robots in the coordination space is shown by the black point, and the dashed
blue line shows the planned trajectory.

collide with robot 1 when it gets closer more than one step. The corresponding coor-

dination space obstacle and three different positions of the robots in the environment

and coordination space are illustrated in the sub-figures.
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Figure 2.3: On the bottom side of the figures, two robots are shown following each
other in a narrow corridor, according to trajectories π1 and π2, respectively. On the
top of the figures, the corresponding positions of the robots are represented in the
coordination space.

2.3 Commands and Disturbances

At each time step, each robot may decide to attempt to either move forward along

its path, or to voluntarily remain where it is. If the robot decides to move forward,

that movement may be prevented by a disturbance of some kind from within the

environment. We model these options using a control variable ai : N → {0, 1} and

a disturbance variable δi : N → {0, 1} for each robot. Then each robot’s progress

through its path is governed by the transition equation

xi(t+ 1) = xi(t) + ai(t)δi(t). (2.2)

We assume that the robots are subject to a disturbance at each point q ∈ W , which

is modeled by a Bernoulli probability distribution whose parameter is a function of

position, and the probability of any robot experiencing a disturbance at position q is

p(q). The function p is unknown to both the robots and the trajectory planner. For

simplicity, we assume that the same p governs the disturbances for all of the robots,

and that p does not vary as time passes.
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2.4 Objective

The goal is to establish an efficient control strategy for each robot i to select ai(t) at

each time t. The control strategy should ensure that the robots do not collide with

each other, and that all of the robots reach their goals, that is, there exist some time

t such that xi(t) = Ki for all robots i = 1, . . . , n.

In other words, the control strategy decides for each robot i, at each time t,

whether to move or wait (that is, ai(t) = 0 or ai(t) = 1), in such a way that each

robot reaches its goal, without any collisions between robots, in minimal total time.

2.5 Summary of RMTRACK

In this section, we summarize the existing RMTRACK algorithm.

Our description of RMTRACK necessarily differs from that of Čáp, Gregoire, and

Frazzoli because their formulation parameterizes the configuration space in a way that

ensures that its diagonal is collision-free, which implies that the obstacle labels can be

inferred by whether each obstacle is above or below the diagonal. Since we intend to

modify the obstacle labels during execution, we introduce the following functionally

equivalent presentation of RMTRACK.

The control law for RMTRACK, which for robot i at time t selects ai(t), is:

ai(t) =



0 ∃j 6= i, s.t. ∃k : `(oij
k ) = j and

oij
k ∩ ({xi(t) + 1}×{xj(t), ..., Kj} 6= ∅

0 if xi(t) = Ki

1 otherwise

(2.3)

The top portion of Figure 2.4 illustrates the intuition. If there exists at least one

coordination space obstacle oij
k representing a collision region that robot j should

pass through first, that is, for which `(oij
k ) = j, then robot i may need to wait for
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robot j to pass. To determine whether this is the case, we extend a line segment

upward in Cij from the next position along the path for robot i, and check whether

this line segment intersects with oij
k . If so, then robot i should stop and wait for

robot j to make some progress, ensuring that the robots’ path passes above oij
k in

Cij. Naturally, when robot i has completed its path, that is, when xi(t) = Ki, it

should stop. If neither of these two stopping conditions holds, then robot i chooses

ai(t) = 1, attempting to make progress toward its goal.

xj

xi

Kj

Ki

t = t2

t = t1

ℓ(oijm) = j

xj

xiKi

Kj

t = t2

t = t1

ℓ(oijm) = i

Figure 2.4: An illustration of the behavior of RMTRACK. Robot i and robot j share
a collision region in the coordination space Cij. In this example, robot j begins to
experience a lengthy disturbance starting at time t1. The path through this coor-
dination space until time t2 is shown in green; the dotted green lines show possible
future trajectories for the robots. The key question is: What should robot i do at
time t2? [top] If the obstacle oij

k has label l(oij
k ) = j, then robot j is planned to pass

through this collision region first. Equivalently, the coordination space path should
travel over oij

k . Robot i must wait, choosing ai(t2) = 0. This wait, shown in Cij

as upward vertical movement, lasts until robot j has advanced far enough to clear
oij

k . [bottom] If the obstacle oij
k has label l(oij

k ) = j, then robot i is planned to pass
through this collision region first; the coordination space path should travel under oij

k .
Robot i can continue immediately, choosing ai(t) = 1, without regard to the progress
of robot j.
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Chapter 3

TestFlipFast and TestFlipAggressive

Algorithms

This chapter describes our approach. The essential motivation can be seen on the left

side of Figure 2.4. In this example, robot j has experienced a lengthy disturbance,

whereas robot i has been able to progress through its path steadily. Notice that

the original, offline trajectory planner formed a global plan in which robot j should

cross the collision region before robot i. This decision was reasonable in the absence

of disturbances, but disturbance probabilities across the environment are unknown

when the plan is generated. Consequently, as it executes the RMTRACK control law

(Equation 2.3), robot i will reach the start of the collision region within its path, and

then wait until robot j overcomes its disturbances to pass first.

One readily notices, however, that if robot j’s progress has been slowed much

more than that of robot i, then robot i might attempt to pass this collision region

immediately, thereby ‘flipping’ the coordination space obstacle from l(oij
k ) = j to

l(oij
k ) = i. The right part of Figure 2.4 illustrates the result of this change: Robot

i continues to use RMTRACK to govern its movements, but because of the altered

obstacle label, robot i can proceed immediately. By the time robot j finally reaches

this region, it is likely that robot i will be safely out of the way.

The essence of our approach is to detect when opportunities for these kinds of

on-the-fly changes to the coordination space obstacle labels may be beneficial to the

overall performance of the system. We note that the alternative of simply re-executing
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the global trajectory planner in such situations is not generally a feasible option, since

that sort of joint planning scales, as a general rule, quite poorly as the number of

robots increases.

3.1 When to Check for Obstacle Flips

Before we address the question of how to determine if flipping an obstacle might be

helpful, we first consider when during their execution the robots might reasonably

consider this kind of change. Recall that the advantage of an obstacle flip derives

from enabling a robot whose progress might have been delayed because of the first

case in Equation 2.3 to proceed immediately instead of waiting for the other robot to

pass a certain collision region. Thus, robot i performs a flip check at most once for

each obstacle oij
k , specifically the first time that obstacle triggers the first condition

in Equation 2.3.

3.2 Estimating the Disturbance Probabilities

Our goal is to change the label of a coordination space obstacle, allowing a robot to

pass through without waiting, only when doing so is unlikely to delay the other robot.

To make such a decision requires an estimate of the disturbance probability function p,

at positions along each of the two robots’ paths, from their current positions through

to the end of the collision region. We write p̂ : W → [0, 1] to denote this estimate of

the disturbance probability.

The robots use their own observations of the actual disturbances, realized dur-

ing the current execution, to compute p̂. Each robot keeps track of its last s time

steps, in which s is a tunable parameter, and tracks both its position πi and whether

it experienced a disturbance δi, in those time steps. Based on those observations,

robot i can compute a position-probability pair, which estimates the probability of a
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disturbance at the centroid of its positions across the last s time steps:(
πi

(⌊
1
s

s−1∑
i=0

xi(t− i)
⌋)

,
1
s

s−1∑
i=0

δi(t− i)
)

(3.1)

The system then uses these estimates of p at various places within W , to form its

global estimate p̂, using a Gaussian Process regression model. We also use a g-means

clustering approach [34] to reduce the size of the observation set, to ensure that the

Gaussian Process learning is completed efficiently. Figure 3.2 illustrates an example

of this process.

For the Gaussian Process Regression, we also need to tune the regularization

parameter, λ. We calculate the RMSE (root mean squared error) to validate the

model with different values of λ, so that we can estimate the ideal value of λ which

produces a model that generalizes well to new, previously unseen data. Figure 3.3

illustrates the Gaussian Process Regression with different values of the regularization

parameter λ; the value 0.1 was chosen for all our simulations, because it always

resulted in the smallest RMS error.

3.3 Testing Whether Flipping an Obstacle Is Helpful

Finally, we can establish conditions under which we expect the average travel time

for the robots to benefit from changing the label of one of the obstacles on-the-fly.

We propose two methods for this. The first method, TestFlipFast (Section 3.3.2)

is very efficient, but overly conservative for some types of coordination space ob-

stacles; the second, TestFlipAggressive (Section 3.3.3) is more computationally

expensive, but can identify flipping opportunities overlooked by the first method.

Throughout this section, we consider the case in which robot i has begun to wait for

robot j because of obstacle oij
k with label l(oij

k ) = j; the question is whether to change

this label to i. First, in Section 3.3.1 we derive the calculation of the expected travel

time.
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Figure 3.1: The robot moves through two regions, shown in red, in which the proba-
bility of disturbance is elevated. The robot does not know of these regions beforehand,
and must estimate the disturbance probability based on its own experience of distur-
bances.

Figure 3.2: Results of the process of estimating the disturbance probability. Green
points mark the observations, computed via Equation 3.1. The blue curve shows p̂, as
computing via Gaussian Process regression over these observations. For comparison,
the actual disturbance probability p is plotted in red. Note that this illustration
shows only a one-dimensional slice of the estimated disturbance probability function p̂,
along the robot’s actual path. Our approach computes p̂ across the full 2-dimensional
domain.
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Figure 3.3: [top-left] if λ = 0.1, then RMSE = 0.131. [top-right] if λ = 1, then
RMSE = 0.135. [bottom-left] if λ = 10, then RMSE = 0.149. [bottom-right] if
λ = 100, then RMSE = 0.222.

3.3.1 How to Calculate The Expected Travel Time

Let assume robot i is at path step ki, the predicted probability of having a disturbance

at the current path step, ki, be p̂(ki). Then, the predicted probability of not having

a disturbance at the current path step, ki, is 1 − p̂(ki). Also, let t be the unit time

step, and let the random variable X = {t, 2t, 3t, ...} be the set of possible travel times

to reach the next path step, ki+1.
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With probability 1 − p̂(ki), the travel time to reach the next path step is one

t. This means that the robot did not have a disturbance, and it moved at its first

attempt.

P (X = t) = p̂(ki)0(1− p̂(ki))

With probability p̂(ki).(1 − p̂(ki)), the travel time to reach the next path step is

two t. This means that the robot could not move because of a disturbance at first,

and then moved.

P (X = 2t) = p̂(ki)1(1− p̂(ki))

With probability p̂(ki).p̂(ki).(1 − p̂(ki)), the travel time to reach the next path

step is three t. It means the robot had two time disturbances, then reached the next

step.

P (X = 3t) = p̂(ki)2(1− p̂(ki))

In general, we can express the probability of having nt travel times to reach the

next path step as following (the robot has (n− 1) times disturbance before moving):

P (X = nt) = p̂(ki)(n−1)(1− p̂(ki))

Thus, the expected travel time to reach the next path step, ki+1 is:

Ei(ki) = t(1− p̂(ki)) + 2tp̂(ki)(1− p̂(ki)) + 3tp̂(ki)2(1− p̂(ki)) + . . . (3.2)

= t(1− p̂(ki))
∞∑

n=1
np̂(ki)n−1

Then, by using the derivative of the summation of geometric series, which is

∞∑
n=1

n.xn−1 = 1
(1− x)2 , |x| < 1,

the expected travel time is reduced to the following equation:
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Ei(ki) = t(1− p̂(ki))
1

(1− p̂(ki))2 (3.3)

= t

1− p̂(ki)

This formula allows constant-time estimation of travel time.

3.3.2 TestFlipFast - RMTRACK+TFF

Our first method decides to flip a coordination space obstacle if the expected time

for robot i to clear oij
k is less than the expected time for robot j to arrive at oij

k .

The idea to making this approach efficient is to consider only the axis-aligned

bounding box of oij
k , rather than its precise shape. This simplifying assumption

means that we can consider the movements of robot i independently of those of robot

j. Let kclear
i be the path step at which robot i clears the obstacle, and kreach

j be the

path step at which robot j reaches the obstacle. Then the first method decides in

favor of flipping if Equation 3.4 holds.

kclear
i∑

k=ki

Ei(k) <
kreach

j∑
k=kj

Ej(k) (3.4)

Figure 3.4 illustrates the TestFlipFast method.

3.3.3 TestFlipAggressive - RMTRACK+TFA

We also consider an alternative to TestFlipFast, which considers the interactions

between robot i and robot j as they travel near the obstacle. These kinds of inter-

actions are important if, for example, the obstacle is long, narrow, and diagonal in

the coordination space, as would occur if the paths for robot i and robot j travel in

parallel for some distance. See Figure 3.5. Using TestFlipFast would be unlikely

to flip such an obstacle, since the time at which robot i fully clears the obstacle will

be far in the future. Figure 3.6 illustrates this case.
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Figure 3.4: [top-left] Robot 1 moves from the top left corner to top right corner.
Robot 2 moves from bottom left corner to bottom right corner. Also, robot 1 should
pass the intersection first. [top-right] The probability of having disturbances in the
red zones are assigned as 0.7. The disturbance probability everywhere else is 0.02.
[bottom-left] Since robot 1 experienced much disturbance, it did not reach and pass
the intersection yet. Therefore, robot 2 reaches the intersection first and checks if the
expected time to clear the intersection is less than the expected time for robot 1 to
arrive the intersection. [bottom-right] RMTRACK+TFF method allows robot 2 to
pass the intersection first instead of waiting until robot 1 clears the intersection.
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Figure 3.5: [top] Robot 1 moves from the top left corner to top right corner. Robot 2
moves from bottom left corner to bottom right corner. Also, robot 1 should pass the
intersection first. The probability of having disturbances in the red zones are assigned
as 0.7. The disturbance probability everywhere else is 0.02. [bottom] Since robot 1
had many disturbances, it did not reach and pass the intersection yet. Therefore,
robot 2 reaches the intersection first and checks if the expected time to clear the
intersection is less than the expected time for robot 1 to arrive at the intersection.
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Figure 3.6: [top and middle] In this case, RMTRACK+TFF method does not allow
robot 2 to pass the intersection first, so robot 2 waits until robot 0 clears the inter-
section. [bottom] When robot 1 clears the intersection, then robot 2 starts to move
right after robot 0.
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To account for those kinds of interactions, we propose TestFlipAggressive

as an alternative. The core calculation is denoted as Eij(k), which represents the

expected travel time for robot i to clear the obstacle, accounting for the fact that its

motion may be delayed, according to Equation 2.3. Because of the additional states

(since we consider joint positions of both robot i and robot j, rather than robot i

individually) and because of the time needed to evaluate Equation 2.3 at each point,

this approach can be slower than the expected time computation in FlipCheckFast.

Finally, we can use these sorts of expected time computations to decide whether

to flip obstacle oij
k . Because we want to consider the effects of this obstacle’s label,

we compute four different expected times:

• The expected time for robot i to clear oij
k , using the current label:

kclear
i∑

k=ki

Eij(k)

• The expected time for robot i to clear oij
k , using the opposite label, which it

would acquire if it were flipped:

kclear
i∑

k=ki

E

ij(k)

• The expected time for robot j to clear oij
k , using the current label.

kclear
j∑

k=kj

Eji(k)

• The expected time for robot j to clear oij
k , using the opposite label, which it

would acquire if it were flipped.

kclear
j∑

k=kj

E

ji(k)

Using these estimates of the consequences of an obstacle flip, we choose to carry out

that flip if the anticipated benefit (that is, the anticipated reduction in travel time)
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for robot i outweighs the anticipated cost to robot j. That is, if

kclear
i∑

k=ki

Eij(k)−
kclear

i∑
k=ki

E

ij(k) >
kclear

j∑
k=kj

E

ji(k)−
kclear

j∑
k=kj

Eji(k)

or
kclear

i∑
k=ki

E

ij(k) +
kclear

j∑
k=kj

E

ji(k) <
kclear

i∑
k=ki

Eij(k) +
kclear

j∑
k=kj

Eji(k) (3.5)

then we change the label of oij
k . Figure 3.7 and Figure 3.8 illustrates the TestFlipAg-

gressive method.

That completes our discussion of the approach. In summary, as the robots execute

RMTRACK, the system attempts to identify times at which it can opportunistically

modify the label of an obstacle, to repair the initial trajectory, to recover from large,

unexpected disturbances with full replanning.

3.4 Experimental Results

We have implemented these algorithms in Java, building upon the original RM-

TRACK implementation.1 For Gaussian Process regression, we use the Statistical

Machine Intelligence and Learning Engine (SMILE).2 The experiments were con-

ducted on an Ubuntu 20.04 computer with a 2.9GHz processor.

We conducted experiments in two distinct environments, each with certain large

regions designated as high-disturbance zones. The environments are shown in Fig-

ure 3.9; the high disturbance zones are shown in red. The disturbance probability in

these red zones are 0.85. Outside the red zones, the disturbance probability is 0.05.

For each environment, we varied the number n of robots in increments of 5 and

selected random starting and goal positions for each robot. For each n, we con-

ducted twenty trials, executing three algorithms for each configuration of state and

1https://github.com/mcapino/rmtrack

2https://haifengl.github.io/
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Figure 3.7: RMTRACK+TFA method allows robot 2 to pass the intersection first
because the anticipated benefit is bigger than anticipated cost.

goal positions: (1) vanilla RMTRACK, (2) RMTRACK with obstacle flipping via

TestFlipFast (RMTRACK+TFF), and (3) RMTRACK with obstacle flipping via

TestFlipAggressive (RMTRACK+TFA).

For each algorithm, we measured the average completion time for the robots that

completed each trial successfully, i.e., without having deadlock. These results ap-

pear in Figure 3.10. We observe that, for these problem instances, both obstacle

flipping approaches can generate sizable decreases to the average travel time for the

robots. We also computed the standard deviation for the same (environment, algo-

rithm) pairs. We observe that in almost all cases the standard deviation, shown in
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Figure 3.8: Because of the flip, when robot 2 clears the intersection first, then robot
1 enters the intersection.

Figure 3.11, is smaller for the modified algorithms than for vanilla RMTRACK and

that it is no more than 10% of the average travel time. We report these results in a

different way in Figure 3.12 and Figure 3.13.

For the obstacle flipping algorithms, we also measured the amount of computation

time consumed by the TestFlip algorithms in calculating the expected travel time.

From these results, which are in Figure 3.14, we conclude that this computation is

nearly negligible, in comparison to the savings in robot travel time.
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We also counted the number of flips executed by each approach, as shown in Fig-

ure 3.15. These results confirm that the extra computation time invested in Test-

FlipAggressive does indeed identify more opportunities to flip the obstacle labels.

We report the percentage of successful trials in Figure 3.16, where a trial is suc-

cessful if all robots reach their goal position without encountering deadlock.

In all cases, for a sufficiently large number of robots, deadlock took place. For the

environment with a short passage, both TestFlip algorithms perform similarly. As

expected (see section 3.3.3), the RMTRACK+TFA algorithm performs better in the

environment with a long passage.
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(a) An environment with a short passage

(b) An environment with a long passage

Figure 3.9: Environments
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(b) An environment with a long passage

Figure 3.10: Average Travel Times
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Figure 3.11: Standard Deviation of Travel Times
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Figure 3.12: Mean and Standard Deviation of Travel Times for RMTRACK and
RMTRACK+TFF
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Figure 3.13: Mean and Standard Deviation of Travel Times for RMTRACK and
RMTRACK+TFA
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Figure 3.14: Computational Times for Flipping
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Figure 3.15: Number Of Flips Executed
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Figure 3.16: Success Rate
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Chapter 4

Deadlock

Though RMTRACK+TFF and RMTRACK+TFA can effectively modify the coordi-

nation plan (by judiciously changing obstacle labels) to improve overall efficiency,

there are circumstances in which those changes can lead to deadlock conditions,

wherein none of the robots can make progress. In this chapter, we provide a pre-

cise definition of deadlock in this context, and prove that, under certain reasonable

but not universal conditions, deadlock does not occur. These results then form the

foundation for the deadlock-free coordination scheme.

Let’s recall the control law for RMTRACK, which for robot i at time t selects

ai(t), is:

ai(t) =



0 ∃j 6= i, s.t. ∃k : `(oij
k ) = j and

oij
k ∩ ({xi(t) + 1}×{xj(t), ..., Kj} 6= ∅

0 if xi(t) = Ki

1 otherwise

(2.3 revisited)

The three cases of Equation 2.3 correspond to three distinct states for each robot:

• Waiting (first case in Eq. 2.3): If there exists a coordination space obstacle, oij
k

for robot i and j with label j, so that `(oij
k ) = j, then we check whether there

is an intersection between the obstacle and the line from (xi(t) + 1, xj(t)) to

(xi(t)+1, Kj). The intersection indicates that robot j did not pass the obstacle

yet, and robot i should therefore wait; thus the action variable is 0.
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• Finished (second case in Eq. 2.3): When robot i reaches its destination, it

should not move any further. The action variable then becomes 0.

• Moving State (third case in Eq. 2.3): If neither of the first two cases applies,

then robot i is free to move, taking the action variable as 1.

We begin with a definition of deadlock. The three different states —waiting, mov-

ing, and finished— for each robot defined in Eq. 2.3 form the basis of the definition.

Definition 4.1 (deadlock). The system has a deadlock if at least one robot is in the

waiting state and no robots are in the moving state.

Our concern is to understand the conditions under which deadlocks can occur, so

that we can ensure that those conditions do not arise. To that end, we first introduce

collision segments in coordination spaces.

Definition 4.2 (collision segment). For a given coordination space obstacle oij
k , the

collision segment cij
k for that obstacle is the set of indices in {1, . . . , Ki} along the

path for robot i between the path step at which robot i reaches that obstacle, denoted

s(cij
k ), and the path step at which robot i clears that obstacle, denoted f(cij

k ). That

is, cij
k = {s(cij

k ), . . . , f(cij
k )− 1}.

Figure 4.1 shows an example environment with the coordination spaces and col-

lision segments. Such segments are important because they capture the structure of

how the movements of the various robots affect each other. Notice in particular that

the s and f functions induce a partition of the path of robot i into segments delimited

by the start and end points of all of its collision segments with all other robots. Using

this partition, we can express the relationship between paths of the robots and labels

of the obstacles.

Definition 4.3 (segment graph). The segment graph is a directed graph containing:
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x1
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c211

c311

x1

o231

c121

c321

o121

c231

K1

K2

K2K1

K3

c131

K3

x3

Figure 4.1: Three robots that have pairwise collisions in the environment are depicted
on the top left. The coordination spaces, C12, C13, and C23, are depicted on the
top right, on the bottom left, and on the bottom right, respectively. The collision
segments correspond to the obstacles shown in the coordination spaces.

1. vertices corresponding to the maximal path segments for each robot delimited

by the start and the finish of its collision segments with all other robots, denoted

v
(i)
1 , v

(i)
2 , . . . , v(i)

mi
for each robot i;

2. edges called path sequence edges between each successive pair of vertices v(i)
k

and v(i)
k+1; and

3. for each coordination space obstacle oij
k with label i, an edge called an obstacle-

label edge from the vertex for robot i corresponding to the final path segment

overlapping oij
k to the vertex for robot j corresponding to the first path segment

overlapping oji
k .
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It will be convenient later to refer to the starting and ending points of the path

segment for each vertex. We (re-)use the letters s and f for this purpose, so that

vertex v(i)
k in the segment graph corresponds to the range of steps s(v(i)

k ), . . . , f(v(i)
k )

within the path for robot i. Notice that, in general, the finish of one vertex is

immediately before the start of another: f(v(i)
k ) = s(v(i)

k+1).

In addition, we write V (oij
k ) = {v(i)

p , v
(i)
p+1, . . . v

(i)
p+q} ⊂ V for the set of robot i

vertices containing obstacle oij
k .

As the robots execute their paths, they move in sequence through the segments

of their paths. Thus, we can refer to the present vertex in the segment graph for each

robot. Any vertex corresponding to a path segment that the robot has not yet begun

to execute is a called a future vertex for that robot. The subgraph of the segment

graph induced by the present and future vertices is called the active subgraph.

The intuition is that each edge in segment describes a constraint wherein one

segment of some robot’s path must be completed before another segment can begin.

Path sequence edges encode the constraint that each robot must execute its path

sequentially; obstacle label edges encode the waiting behaviour required by the first

case in Equation 2.3.

For the scenario depicted in Figure 4.1, Figure 4.2 shows the vertices for each

robot, Figure 4.3 shows the path sequence edges, and Figure 4.4, Figure 4.5, Figure 4.6

shows each obstacle-label edge.

The next definition is needed to connect segment graphs to the possibility of

deadlocks in the future.

Definition 4.4. A set of trajectories is non-conflicting if, for every pair of i, j of

distinct robots, for all 1 ≤ k ≤ Ki, we have

||πi(k)− πj(1)|| ≥ 2r,
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1 K1s(c131 ) f(c121 )− 1 f(c131 )− 1s(c121 )

c131

c121

v
(1)
2 v

(1)
3v

(1)
1 v

(1)
4 v

(1)
5

(a) There are five vertices for robot 1 as the path steps are
delimited by the start and the finish of the collision segment
with robot 2 and the collision segment with robot 3.

1 K2s(c211 ) f(c231 )− 1 f(c211 )− 1s(c231 )

c211

c231

v
(2)
2 v

(2)
3v

(2)
1 v

(2)
4 v

(2)
5

(b) There are five vertices for robot 2 as the path steps are
delimited by the start and the finish of the collision segment
with robot 1 and the collision segment with robot 3.

1 K3s(c321 ) f(c311 )− 1 f(c321 )− 1s(c311 )

c321

c311

v
(3)
2 v

(3)
3v

(3)
1 v

(3)
4 v

(3)
5

(c) There are five vertices for robot 3 as the path steps are
delimited by the start and the finish of the collision segment
with robot 1 and the collision segment with robot 2.

Figure 4.2: The collision segments for the robots in Figure 4.1 are depicted above.
Each robot has two different collision segments, and the collision segments are not
disjoint, so they contain two vertices. For example, c13

1 contains v(1)
3 and v(1)

4 .

and

||πi(k)− πj(Kj)|| ≥ 2r.
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Figure 4.3: All horizontal edges represent the path sequence edges for each robot.
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Figure 4.4: The coordination space obstacle o12
1 has label `(o12

1 ) = 2. V (o12
1 ) =

{v(1)
2 , v

(1)
3 } and V (o21

1 ) = {v(2)
3 , v

(2)
4 }. The obstacle-label edge is from the last vertex

containing o21
1 , which is v(2)

4 , to the first vertex containing o12
1 , which is v(1)

2 .

That is, when we have non-conflicting trajectories, the path for each robot is

disjoint from the start and goal positions of all other robots. Figure 4.7 shows an

example of conflicting trajectories and the corresponding segment graph.
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Figure 4.5: The coordination space obstacle o13
1 has label `(o13

1 ) = 3. V (o13
1 ) =

{v(1)
3 , v

(1)
4 } and V (o31

1 ) = {v(3)
2 , v

(3)
3 }. There is an obstacle-label edge from the last

vertex containing o31
1 , which is v(3)

3 , to the first vertex containing o13
1 , which is v(1)

3 .
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Figure 4.6: The coordination space obstacle o23
1 has label `(o23

1 ) = 2. V (o23
1 ) =

{v(2)
2 , v

(2)
3 } and V (o32

1 ) = {v(3)
3 , v

(3)
4 }. There is an obstacle-label edge from the last

vertex containing o23
1 , which is v(2)

3 , to the first vertex containing o32
1 , which is v(3)

3 .

4.1 Deadlock Conditions

Now we will show that cycles in the segment graph correspond to potential deadlocks.
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s1
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(a) The green dotted line shows the path of robot 1, from the start posi-
tion, s1, to the goal position, g1, and the red dotted line shows the path
of robot 2, from the start position, s2, to the goal position, g2.
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1 v
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v
(2)
1 v

(2)
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(2)
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(b) The segment graph with the label, `(o12
1 ) = 1.

Figure 4.7: If robot 1 reaches its goal position, g1, before robot 2 clears the intersec-
tion, then the system has a deadlock. Even though the environment has a deadlock,
the corresponding segment graph does not have a cycle.

Theorem 4.1. If the system has non-conflicting trajectories and is in a deadlock,

then the active subgraph has a cycle.

Proof. Definition 4.1 ensures that at least one robot is in the waiting state. Let i

denote the index of this robot, and let v(i)
p denote its present vertex. Because of

Definition 4.3, there must therefore be at least one edge incoming to v(i)
p+1, i.e. the

vertex corresponding to the next segment for robot i from a future vertex of some

other robot. Let j denote the index of this other robot. Robot j cannot be in
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the moving state because the system is in a deadlock. Moreover, robot j cannot

be in the finished state because being in the finished state, in a system with non-

conflicting trajectories, does not prevent any other robots —robot i in particular—

from moving. Thus, robot j is in the waiting state. Because robot j is waiting, there

must be another incoming obstacle-label edge from another robot’s future vertex to

a future vertex of the robot j, and so on. This produces an infinite sequence of

vertices in the graph, each connected by a directed edge to its predecessor in the

sequence. Since the number of robots is finite, the vertices in this sequence cannot

all be distinct. Therefore, the sequence must eventually repeat, forming a cycle in

the active subgraph.

Theorem 4.2. If the active subgraph of a system has a cycle, and the labels of the

obstacles of the robots in the cycle do not change, then the system will eventually be

in deadlock.

Proof. It is obvious that if the system has one robot, then the segment graph has

only path sequence edges, so a cycle cannot exist. Also, a cycle cannot exist when

there are only two robots. Note that there must be only one incoming or one outgoing

obstacle-label edge between two robots’ vertices for each coordination space obstacle,

so those obstacle-label edges do not lead to a cycle.

Now, assume that there are at least three robots in the system and that the

active subgraph has a cycle between robot i, robot j, . . . , and robot k, whose present

vertices are v(i)
p , v(j)

q , . . . , v(k)
r , respectively.

Consider a cycle between future vertices of the robots in the segment graph:

v
(i)
p+1 → v

(j)
q+1 → . . .→ v

(k)
r+1 → v

(i)
p+1

Since there is an obstacle-label edge from robot k to robot i, robot i cannot start

the future vertex, v(i)
p+1 before robot k finishes its future vertex, v(k)

r+1.

Similarly, there is also an obstacle-label edge from robot i to robot j, so robot j

cannot start the future vertex, v(j)
q+1 before robot i finishes its future vertex, v(i)

p+1.
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Therefore, no robots in the cycle start their future vertex and stay in the waiting

state, so the system has a deadlock.

The main contribution of the proposed algorithm is that it allows testing to de-

termine whether changing an obstacle label leads to a deadlock. The algorithm first

generates the segment graph by using a Java library, JGraphT1. Then, if the segment

graph detects a cycle with the updated label, the algorithm does not change that

label. For example, let us recall the example depicted in Figure 4.1. Also, Figure 4.9

shows the initial positions of the robots with the segment graph by indicating their

present vertices. There are three robots, and there are three pairwise obstacles be-

tween each robot. According to the label of the obstacles, robot 2 should pass the

obstacle before robot 1 passes, as shown in C12, on the top right of Figure 4.1. How-

ever, robot 2 is subject to more disturbance than the others, and robot 1 reaches

the obstacle before robot 2 as depicted on Figure 4.9. There are two scenarios for

Robot 1, staying in the waiting state until robot 2 clears the obstacle, or flipping the

label of obstacle and continuing to execute its path. If robot 1 changes the label,

then it can move, but it needs to stop to avoid collision with robot 3, which is in the

waiting state by waiting for robot 2, as depicted on Figure 4.10. Then, when robot

2 reaches the obstacle, a deadlock ensues as shown in Figure 4.11. In order to avoid

this deadlock, when robot 1 needs to change the label between robot 2, the segment

graph is updated, and checked for the occurrence of a cycle. If a cycle occurs as

shown on the right of Figure 4.10, then the algorithm does not change the label, and

robot 1 stays in the waiting state by waiting for robot 2 so that the system does not

have a deadlock.

Corollary 4.1. If, in a system with non-conflicting trajectories, the active subgraph

contains no cycles, then the system is not in a deadlock.

1https://jgrapht.org/
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Figure 4.8: All robots are in their start positions. The present vertices of the robots
are v(1)

1 , v(2)
1 , and v(3)

1 , respectively.
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Figure 4.9: Robot 1 reaches the intersection before robot 2, but needs to wait for
robot 2 to clear the intersection because of the label, `(o12

1 ) = 2. Robot 2 is delayed
because of the disturbances. Robot 3 enters the intersection before robot 1, but
cannot clear the intersection with robot 2 because of the label, `(o23

1 ) = 2.

This last result is of particular interest because, since the initial trajectories are

collision free, the only way a cycle can be introduced in the segment graph is by

modifying one of the obstacle labels, which in turn rewires one of the obstacle label

edges. This idea underlies the deadlock free coordination approach.
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Figure 4.10: Robot 1 flips the label of the obstacle it shares with robot 2, so the
label `(o12

1 ) becomes 1, and we need to update the obstacle-label edge between robot
1 and robot 2. The updated obstacle-label edge is from the last vertex containing o12

1 ,
which is v(1)

3 , to the first vertex containing o21
1 , which is v(2)

3 . Now, robot 1 starts the
intersection between robot 2, but needs to wait until robot 3 clears the intersection
because of the label, `(o13

1 ) = 3. Note that the updated obstacle-label edge results in
a cycle in the segment graph.
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Figure 4.11: When robot 2 starts the intersection with robot 3, it needs to stop
because of the updated label, `(o12

1 ) = 2. All robots are in the waiting state. Thus,
the system has a deadlock.

Moving beyond that observation, we now also provide a sufficient condition, which

results a deadlock-free system, even in cases were the obstacle labels can be freely

modified.
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4.2 Deadlock-Free Coordination

We first examine the disjointedness of collision segments.

Theorem 4.3. If the collision segments are disjoint, then each set V (oij
k ) contains

only a single vertex.

Proof. Suppose |V (oij
k )| 6= 1. The existence of more than one vertex in the set V (oij

k )

indicates there exists at least one more collision segment reached or cleared by robot

i before robot i clears oij
k . This contradicts the assumption that collision segments

do not intersect, so |V (oij
k )| = 1.

The existence of these singleton vertex-segment sets is of interest because it allows

us to demonstrate that the corresponding segment graph does not have a cycle.

Theorem 4.4. If the collision segments are disjoint, then the segment graph does

not contain a cycle.

Proof. Suppose the segment graph has a cycle such that v(i)
p →v(j)

q →· · ·→v(k)
r →v(i)

p

with V (oij
l )={v(i)

p }, V (oji
l )={v(j)

q }, . . . , V (oki
m)={v(k)

r }, and V (oik
m)={v(i)

p }.

Since V (oij
l ) = {v(i)

p }, s(v(i)
p ) must be the number of path steps to reach obstacle

oij
l . However, since V (oik

m) contains only a single vertex, s(v(i)
p ) is also the number of

path steps to reach the obstacle oik
m. This contradicts the assumption that the collision

segments are disjoint. Therefore the segment graph does not have a cycle.

Finally, viewing Theorem 4.4 in light of Corollary 4.1, one sees conditions which,

though not directly leveraged in the framework of this chapter, may nonetheless be

useful when designing multi-robot trajectory planners. If the planner generates paths

that meet that condition — in this context, the requirement is that intersection points

between paths must be at least distance 2r apart from each other, then deadlocks

can be avoided, even if a method such as RMTRACK+TFF or RMTRACK+TFA

modifies obstacle labels.
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A deadlock-free environment is illustrated in Figure 4.12. Figure 4.13 shows the

vertices for each robot. Note that collision segments are disjoint in this environment.

Figure 4.14 shows the path sequence edges, and Figure 4.15, Figure 4.16, and Fig-

ure 4.17 shows each obstacle-label edge. Figure 4.18 and Figure 4.19 show the robots’

positions with their current vertices in the segment graph, and all robots are in the

moving state. However, robot 1 needs to wait robot 2 because of the label `(o12
1 ) = 2

when it reaches the intersection as shown in Figure 4.20. If robot 1 decides to flip

the label of the obstacle, then the obstacle label edge between robot 1 and robot 2

is updated as shown in Figure 4.21. Notice that the segment graph still does not

have a cycle, and robot 1 continues to execute its path as shown in Figure 4.22.

The robot 1 and robot 2 keeps moving, but robot 3 still waits robot 2 as shown in

Figure 4.23. After robot 2 clears the intersection between robot 3, robot 3 starts to

move as shown in Figure 4.24. All robots keep moving as shown in Figure 4.25 and

Figure 4.26. Eventually, all robots reach their goal position as shown in Figure 4.27.

2

1

3

Figure 4.12: Three robots have pairwise collisions in the environment. Dotted lines
show the path of the robots.
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1 K1f(c121 )− 1 s(c131 ) f(c131 )− 1s(c121 )
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c121 c131
(a) There are five vertices for robot 1 as the path steps are delimited by the start and the
finish of the collision segment with robot 2 and the collision segment with robot 3.

1 K2f(c231 )− 1 s(c211 ) f(c211 )− 1s(c231 )
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c231 c211
(b) There are five vertices for robot 2 as the path steps are delimited by the start and the
finish of the collision segment with robot 1 and the collision segment with robot 3.

1 K3f(c311 )− 1 s(c321 ) f(c321 )− 1s(c311 )
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c311 c321
(c) There are five vertices for robot 3 as the path steps are delimited by the start and the
finish of the collision segment with robot 1 and the collision segment with robot 2.

Figure 4.13: The collision segments for the robots in Figure 4.12 are depicted above.
Each robot has two different collision segments, and the collision segments are disjoint,
so each collision segment contains only one vertex.
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Figure 4.14: All horizontal edges represent the path sequence edges for each robot
depicted in Figure 4.12.
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Figure 4.15: The coordination space obstacle o12
1 which has label `(o12

1 ) = 2. V (o12
1 ) =

{v(1)
2 } and V (o21

1 ) = {v(2)
4 }. Then, we have the obstacle-label edge from v

(2)
4 to v(1)

2 .

56



v
(1)
1 v

(1)
2 v

(1)
3 v

(1)
4 v

(1)
5

v
(2)
1 v

(2)
2 v

(2)
3 v

(2)
4 v

(2)
5

v
(3)
1 v

(3)
2 v

(3)
3 v

(3)
4 v

(3)
5

Figure 4.16: The coordination space obstacle o13
1 has label `(o13

1 ) = 3. V (o13
1 ) = {v(1)

4 }
and V (o31

1 ) = {v(3)
2 }. There is an obstacle-label edge from v

(3)
2 to v(1)

4 .
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Figure 4.17: The coordination space obstacle o23
1 has label `(o23

1 ) = 2. V (o23
1 ) = {v(2)

2 }
and V (o32

1 ) = {v(3)
4 }. There is an obstacle-label edge from v

(2)
2 to v(3)

4 .
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Figure 4.18: All robots are in their start positions. The present vertices of the robots
are v(1)

1 , v(2)
1 , and v(3)

1 , respectively.
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Figure 4.19: All robots are in the moving state. The present vertex of robot 1 is
still v(1)

1 . The present vertex of robot 2 is also still v(2)
1 , and robot 2 has some delay

because of the disturbances. Robot 3 starts the intersection with robot 1, so the
present vertex of robot 3 is v(3)

2 .
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Figure 4.20: Robot 1 reaches the intersection with robot 2, but needs to wait for
robot 2 because of the label, `(o12

1 ) = 2. Robot 2 has disturbances, so it is delayed
before clearing the intersection. Robot 3 also reaches the intersection with robot 2,
but needs to wait for robot 2 because of the label, `(o23

1 ) = 2. Robot
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Figure 4.21: Robot 1 flips the label of the obstacle it shares with robot 2, so the
obstacle label `(o12

1 ) becomes 1, and we need to update the obstacle-label edge between
robot 1 and robot 2. The updated obstacle-label edge is from v

(1)
2 to v(2)

4 . Note that
the updated obstacle-label edge does not result a cycle in the segment graph.
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Figure 4.22: Robot 1 starts the intersection with robot 2, so the present vertex of
robot 1 is v(1)

2 . Robot 2 is still having disturbances, and robot 3 still waits for robot
2.
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Figure 4.23: Robot 1 clears the intersection with robot 2, so the present vertex of
robot 1 is v(1)

3 . Robot 2 starts the intersection with robot 3, so the present vertex of
robot 2 is v(2)

2 . Robot 2 does not clear the intersection yet, so robot 3 stays in the
waiting state.
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Figure 4.24: Robot 1 starts the intersection with robot 3, so the present vertex of
robot 1 is v(1)

4 . Robot 2 clears the intersection with robot 3, so the present vertex
of robot 2 is v(2)

3 . Robot 3 now starts the intersection with robot 2, so the present
vertex of robot 3 is v(3)

4 .
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Figure 4.25: Robot 1 clears the intersection with robot 3, so the present vertex of
robot 1 is v(1)

5 . Robot 2 starts the intersection with robot 1, so the present vertex of
robot 2 is v(2)

4 . Robot 3 clears the intersection with robot 2, so the present vertex of
robot 3 is v(3)

5 .
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Figure 4.26: Robot 1 and robot 3 reach the goal position, so they are in the finished
state. Robot 2 clears the intersection with robot 1, so the present vertex of robot 2
is v(2)
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Figure 4.27: Robot 2 also reaches the goal position, so all robots are in the finished
state.
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4.3 Experimental Results

We have extended the original code for RMTRACK simulation2 by adding flipping

algorithms and our new deadlock detection method, and implemented it in Java with

an Ubuntu 20.04 computer and a 2.9GHz processor.

The environment for the experiments in this chapter is shown in Figure 4.28.

The probability of having disturbance in the red area is 0.85, and for the rest of the

environment, it is 0.05. For each number of robots (5, 10, 15, and 20), we have 10

different randomly generated start and goal positions.

The average travel times of RMTRACK and two flipping algorithms are shown in

Figure 4.29. The flipping algorithms reduced the travel times and avoided deadlock,

so that all robots reached their goal positions as shown in Figure 4.32.

The average computation time for RMTRACK+TFA is longer than the aver-

age computation time for RMTRACK+TFF as shown in Figure 4.30 because RM-

TRACK+TFA calculates the expected travel times by considering the movements

of both robots with or without flipping the label of the obstacle. Also, note that

computation time in general is small when compared with travel time.

The number of flips is almost the same for two flipping algorithms in Figure 4.31

because the collisions between two robots may happen only in a small area of their

trajectories. On the other hand, if two robots travels in a long and narrow passage,

then collisions may happen in a large area of their trajectories, and RMTRACK+TFA

performs better than RMTRACK+TFF as shown in Chapter 3.

Simulation videos are provided in the link.3

2https://github.com/mcapino/rmtrack

3https://www.dropbox.com/sh/n3wk1wuxn875nw2/AAA3fmOdM41zPTJTXMOgZzAQa?dl=0
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Figure 4.28: An environment with 20 robots. The dotted lines represent the planned
trajectories of the robots. The robots in the red area are subject to a disturbance,
which may be caused by interaction with humans or other objects and results in a
delay in their progress.
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Figure 4.29: Average travel time for the number of robots (5, 10, 15, 20)
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Figure 4.30: Average computational time for the flipping algorithms
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Chapter 5

Conclusion and Future Work

This dissertation presented a technique for online repair of multiple-robot coordina-

tion plans. The idea is to start from a planned joint trajectory for the robots, but to

adjust the path of each robot by ’flipping’ the order in which pairs of robots should

pass through their shared collision regions. These decisions are made on-the-fly, with-

out full replanning, in response to unexpected disturbances that result in changes of

the execution speed of some of the robots along their paths.

We also provided a theoretical analysis of the conditions under which flipping

algorithms lead to deadlock and conditions for deadlock-free environments even in

the presence of flips. Our simulation results complement the theoretical ones by

showing that flipping algorithms significantly reduce robot travel times when the

difference in disturbance probability between different areas is large. However, since

flipping algorithms may lead to deadlock in some situation, we have proposed an

algorithm based on the segment graph data structure to detect and avoid deadlocks

before flipping, thus combining the efficiency of flipping algorithms with a theoretical

guarantee of deadlock avoidance.

We provide an appendix with the documentation of the simulation software and

a link to its source code.

In future work, we plan to consider a decentralized version of this problem, in

which robots have limited information about the progress made by the other robots

but must nevertheless decide how to proceed. We intend to use segment graphs

to detect and avoid deadlocks in such decentralized approaches to multi-robot co-
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ordination. We plan to implement and test the flipping algorithms in a real-world

environment with real robots, exploit their available sensors, and compare relative ad-

vantages and disadvantages. On the theoretical side, we conjecture that our flipping

algorithms are Pareto optimal and plan to investigate this conjecture.
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Appendix A

Simulation

This appendix contains the documentation for the simulation software, used for the

experiments described in Section 3.4 and Section 4.3, and available at https://

github.com/acoskunUSC/flipping.git.

A.1 Creating an Instance

Problem instances are described in an XML (eXtensible Markup Language) file. Fig-

ure A.1 shows an example XML file.

Figure A.1: An example XML file. Only the first several vertices and edges are shown.

The root element, multiagentproblem, must have three child elements, which are

environment, graph, and agents. One other child element, docks, is optional. The
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docks element in Figure A.1 is empty, which means it has no content, so this is

represented as <docks/>.

A.1.1 Environment

Environment element needs to have three child elements, boundary, obstacles, and

disturbances.

Boundary

Boundaries are polygons. The coordinates of the corners of a boundary are specified

as an (x, y) pairs, separated by spaces. Note that boundary is drawn counterclockwise,

starting at any corner. Figure A.2 shows the environment, whose boundary points

are listed in Figure A.1.

Figure A.2: The environment with the boundary points.
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Obstacles

Obstacles are represented as a polygon. Note that obstacles are drawn clockwise,

starting at any corner. Even when no obstacles are specified, an empty obstacles

element, denoted <obstacles/>, needs to be included. Figure A.3 illustrates two

obstacles.

Figure A.3: The environment with two obstacles.

Disturbances

Disturbances can be represented as a polygon or a circle. Each shape needs to take

a probability attribute. Circle is a void element, but has two additional attributes,

center and radius. Figure A.4 illustrates two different disturbances.
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Figure A.4: The environment with disturbances.

A.1.2 Graph

To generate the graph element, which consists of vertices and edges elements, you

need to run the TriangulationGenerator method with the following parameters:

• -problemfile: an XML file that contains the environment element

• -bodyradius: radius of the agent

• -dispersion: density of the points, which is
√

2 ∗ gridstep

• -connectionradius: distance between two vertices

• -generateinfrastructure: generates non-conflicting trajectories

• -outfile: an XML file that contains the environment and graph elements

Figure A.5 shows the generated vertices and edges of the example environment.
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Figure A.5: The environment with the graph.

A.1.3 Agents

Each agent elemtent contains maximum speed, radius, start position, and target

position as attributes. Each start and goal position must be a vertex. You can

also generate a random start and target position by calling the GenerateEAInstance1

method with the following methods:

• -env: an XML file that contains the environment and graph elements.

• -nagents: number of agents

• -radius: radius of the agent

• -maxspeed: maximum speed of the agent

1EA stands for Earliest Arrival.
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• -seed: a number to initialize a pseudorandom number generator

• -sgnooverlap: start and goals can overlap

• -sgavoiding: start and goals are separated

• -outfile: an XML file that contains the environment, graph, and agents elements.

Figure A.6 shows two agents with their start and goal positions.

Figure A.6: The environment with two agents.

A.1.4 Problem Instance Designer

Instead of specifying obstacles and agents pixel by pixel, one can draw them by calling

ProblemInstanceDesigner method with the -outfile parameter. Figure A.7 shows the

interface of the application.
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Figure A.7: Problem Instance Designer

A.2 Running the Instance

After you create the problem instance, one can generate the trajectories of each

robot and run the flipping algorithms by calling the ScenarioCreator method with

the following methods:

• -problemfile: an XML file that contains the environment, graph, and agents

elements. Figure A.1 shows a complete example.

• -method: a parameter that specifies one of five available methods for controlling

the actions.

– ORCA: One of the most practicable reactive method, the optimal recipro-

cal collision avoidance.
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– ALLSTOPS: Stops all robots whenever any robot has a disturbance.

– RMTRACK: Described in Section 2.5

– RMTRACK_TFF: Described in Section 3.3.2

– RMTRACK_TFA: Described in Section 3.3.3

• -maxtime: the maximum time (in milliseconds) for trajectory planning

• -timestep: the timeout time (in milliseconds) when the simulation will be ter-

minated after absence of progress

• -dprob: the disturbance probability for the part of the environment that does

not belong to any specified disturbance elements

• -avoidDeadlock: for RMTRACK_TFF and RMTRACK_TFA methods

• -showvis: toggles for the following visualization options

– m: shows the missions of agents with an arrow from start position to target

position

– t: shows the trajectories of the agents

– g: shows the planned graph

– p: shows the polygons for obstacles

– d: shows the areas for disturbances

Figure A.8 shows the generated trajectories for two agents.
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Figure A.8: Trajectories for two robots generated using ScenarioCreator.

84


	Multi-Robot Coordination with Environmental Disturbances
	Recommended Citation

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	Introduction
	Survey
	Summary of Revised Prioritized Planning

	Problem Statement
	Environment, Robots, and Trajectories
	Coordination Spaces
	Commands and Disturbances
	Objective
	Summary of RMTRACK

	TestFlipFast and TestFlipAggressive Algorithms
	When to Check for Obstacle Flips
	Estimating the Disturbance Probabilities
	Testing Whether Flipping an Obstacle Is Helpful
	Experimental Results

	Deadlock
	Deadlock Conditions
	Deadlock-Free Coordination
	Experimental Results

	Conclusion and Future Work
	Bibliography
	Simulation
	Creating an Instance
	Running the Instance


