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ABSTRACT

The vulnerability and resilience of communities to hazards is a concept that has 

gained traction in the research community in recent decades. Climate change, combined 

with increasing damages from natural hazards, has energized researchers and practitioners 

alike to identify the risks to people and places from future losses. Military communities 

support large military bases and are composed of service members, their families, and 

civilian populations alike. Due to the presence of military installations and military 

populations, the characteristics of the population and influences in military communities 

are unique. However, there is a gap in current research to assess whether the unique 

characteristics of military populations and places extend to the underlying social 

vulnerability and resiliency in the community and what the contributing factors are. 

Additionally, hazard losses in military communities and their relative hazardousness has 

yet to be identified, even though significant disasters have negatively impacted military 

bases and communities in recent years.  

Hazard losses, social vulnerability, and community resilience are the three 

components in the hazardousness of military communities that are explored in this 

research. Hazard losses are quantified using the Spatial Hazard Events and Losses Database 

for the United States (SHELDUS), while social vulnerability and resilience use the Social 

Vulnerability Index (SoVI®) and the Baseline Resilience Indicators for Communities 

(BRIC) as their measures. SoVI and BRIC enable relative comparisons between places and 

are the best available indices designed to measure the multidimensional constructs of social 



v 

vulnerability and resilience, respectively. Descriptive statistics, inferential statistics, and 

spatial statistics were performed to assess differences in the variables.  

Military communities have significantly lower levels of hazard losses and social 

vulnerability than other communities in the United States, while significant differences in 

community resilience were not detected. When exploring the factors of social vulnerability, 

lower age dependency and higher service sector employment are the main contributors to 

those differences regardless of location. Air Force communities are the most socially 

vulnerable to hazards among military communities, while Navy communities, which are 

located along the coasts and have higher amounts of wealth, are the least socially 

vulnerable. For resilience, lower amount of community capital in military communities is 

the dominant factor and is consistent across geographies. Navy communities demonstrate 

the lowest resiliency levels, driven by significantly lower levels of community capital. In 

contrast, Army communities have the highest levels and are mostly located in high 

community capital clusters. Hazard losses in military communities are highest near the 

Gulf of Mexico, Alaska, and the Dakotas. Select military communities in south Texas, New 

Mexico, and southern Alabama have above average levels of social vulnerability and 

hazard losses, and below average levels of resilience. 

The results demonstrate that military communities' hazardousness is different from 

those of other communities in the United States and even within military communities 

based on the type of military base in those communities. Trends were not always consistent 

as unique findings occurred in the Hampton Roads region of Virginia and the Washington 

D.C metropolitan area. Some findings, such as those related to the importance of 

community capital to resilience, support the conclusions of research done at the community 
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level and those at the individual and family level in military homes. The findings enable 

community leaders, state officials, and leaders in the Department of Defense to target 

critical areas that can reduce the hazardousness and improve military communities' 

resilience in the United States.
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CHAPTER 1

INTRODUCTION 

Military installations are unique places in the landscape because they are fenced off 

and restrict access to a small percentage of the population but influence and impact the 

places around them. Military installations are self-governing and operate on many levels 

as independent cities, yet there are strong connections and links to the cities and 

communities outside their fences. Natural hazards do not observe the physical and political 

boundaries between military installations and local communities. Their negative impacts 

are felt on both places, often testing the relationship and connection between them. Military 

installations are sensitive to changes in the local community, and communities are sensitive 

to changes on the military installation. For example, many military installations rely on the 

local community for electric power generation and water treatment and are directly 

influenced by communities' policies regarding local development and land use along the 

borders (GAO, 2020). Local communities are likewise impacted economically and 

environmentally through the jobs and contracts a military installation provides, support for 

local school districts and services provided by DoD programs, and the military’s use of the 

land and environmental pollution (Woodward, 2015). These connections often go 

unrecognized but are especially important to understand during times of crisis.  

Military installations and local communities also face the same threats as other 

places in the United States, such as climate change and the increasing cost of disasters. The 

primary goal of this research is to understand the underlying conditions in “military 
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communities,” or communities heavily influenced by military installations, which may lead 

to different or unique disaster outcomes than other communities. By understanding the 

differences and unique characteristics in military communities' hazardousness, then 

policies and programs designed to reduce disaster risk can be optimized to meet the 

community's needs.  

In 2019 the Department of Defense published a list of installations at risk to climate 

change in response to a congressional mandate. However, only recurrent flooding, drought, 

desertification, wildfires, and thawing permafrost were considered in the report (DoD, 

2019a). The report was the first time the military published and recognized the impacts of 

climate-sensitive hazards on military installations. In the past, the DoD focused its efforts 

studying the impacts of climate change on military operations abroad, such as dealing with 

instability from a rising number of climate refugees in places like Africa and in the security 

of new shipping lanes opening in the Artic (Brzoska, 2012; U.S. Army War College, 2019). 

Although the recent identification of risks to hazards on military installations was long 

overdue, it failed to quantify the risk to hazards on these places. It also did not include any 

consideration of the impacts on the surrounding communities. This gap left local leaders 

in military communities, such as installation commanders and city managers, to work 

together to identify and mitigate their risk to hazards (McCollester, 2020). However, the 

current bottom-up approach lacks direction and standardization across the DoD, creating 

inefficiencies and knowledge gaps. Recently, the DoD has named climate change a threat 

to national security, which has accelerated the need to quantify and understand hazard 

impacts in military communities (DoD, 2021).  
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A communities’ ability to respond and recover from hazards is largely dependent 

upon the underlying social vulnerability and resiliency of those places, as well as the 

amount of damage sustained during the event.  Communities that require the most 

assistance in disasters are usually ones with higher social vulnerability, lower community 

resilience, and the most damage. However, these relationships are not linear and uniform 

(Cutter et al., 2014). Many factors in the community contribute to its social vulnerability 

and resilience to hazards, including the underlying socio-economic and demographic 

characteristics, social organizations, built environment, and others. Previous studies in 

hazards research have explored the differences in vulnerability and resiliency across the 

United States (Cutter et al., 2014). However, no research has identified differences in the 

vulnerability or resiliency between military communities and non-military communities, 

or the magnitude of damages as a result of hazards.  Doing so will provide actionable 

evidence for military and community leaders to work together to reduce and mitigate 

negative disaster outcomes.  

The method used to accomplish this will be to quantify and compare any differences 

in the social vulnerability and resiliency of military communities to non-military 

communities, as well as by the type of base that the community supports (Army, Navy, and 

Air Force). Hazard losses are also assessed to identify military communities that have 

sustained significant damage from past hazards, and whether those damages are different 

from other communities. Identifying any differences in these places can help policy and 

decision-makers focus resources and enact policies that benefit those communities. The 

following research questions are asked and used as a guide throughout the research:  
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Research Question (RQ) 1a: How do natural hazard losses compare between 

military communities and non-military communities? 

RQ 1b: How do natural hazard losses compare within military communities by the 

type of military base (Army, Navy, Air Force)? 

RQ 2a: How does the underlying social vulnerability compare between military and 

non-military communities?  

RQ 2b: How does social vulnerability compare within military communities by the 

type of military base?  

RQ 3a: How does the underlying community resiliency compare between military 

and non-military communities? 

RQ 3b: How does community resiliency compare within military communities by 

the type of military base? 

Chapter 2 discusses the existing literature related to military installations, natural 

hazard losses, social vulnerability, and community resiliency. Several gaps exist in the 

understanding of vulnerability and resiliency in military communities. Therefore, research 

is collected across disciplines and related to existing natural hazards research. Chapter 3 

explains the data and methods used to answer the above research questions, including the 

statistical and spatial analysis. Chapter 4 describes and explains the results of the analysis. 

Finally, Chapter 5 discusses the implications of the results, other considerations in military 

communities, and future directions in the research of natural hazards and military 

geography.
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CHAPTER 2 

LITERATURE REVIEW

Researchers in geography, anthropology, economics, psychology, engineering, and 

others have published numerous studies on military bases, communities, natural hazards, 

social vulnerability, and resilience. However, each has a different perspective and focus 

but do relate to the primary themes of the thesis—social vulnerability hazard losses, and 

resilience. The literature is organized as an integrated review of the primary themes as 

follows. First, existing literature is reviewed identifying the traditionally view of militaries 

in civil-military relations and disaster response, and how military bases have been 

identified to influence the disaster cycle. Second, key concepts in social vulnerability are 

reviewed and how those relate to military geographies and military populations. Third, key 

concepts in community resiliency are reviewed and how those are related to military 

geographies and populations. Lastly, the geography of military bases and their 

hazardousness is reviewed, providing necessary background for following sections that 

have studied hazards and related concepts in areas with military bases. 

2.1 TRADITIONAL APPROACH TO MILITARIES AND HAZARDS 

The number of disasters, costs from damages, and deaths from climate-sensitive 

hazards have increased each decade since the 1970s (Smith and Katz, 2013). The military 

has played an increasing role in disaster response in the last few decades to assist 

overwhelmed local and state authorities. Known as “Defense to Civil Authorities” or 

DSCA, military response to hazards typically involves the states activating the National 
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Guard and occasionally active-duty troops for larger scale disasters. Local military bases 

and communities also sign local mutual aid agreements to assist one another during 

emergency response. The military has a plethora of resources on hand to aid local 

communities in response, such as high ground clearance vehicles, bulldozers, dump trucks, 

tents, cots, medical supplies, as well as doctors, power supply specialists, and soldiers 

(FEMA, 2011).   

Most of the research on the military’s role in disasters has been in political science, 

analyzing the civil-military relations and how state and local agencies work and interact 

with the military during disasters. Banks (2006) argues that disaster management in the 

United States has become more militarized, especially after Hurricane Katrina, due to the 

military’s increased responsibilities in disaster response and FEMA’s placement in the 

Department of Homeland Security. Malešič (2015) takes that argument further and urges 

caution on the military’s increasing role in DSCA operations and the potential to degrade 

the separation of civil-military responsibilities and relations. He and others such as Ferris 

(2012) argue that militaries, civilian authorities, and humanitarian agencies should focus 

their efforts on planning and coordination in preparing for disasters so that civilian and 

military resources are efficient and reach their full potential. Others advocate for a more 

robust and flexible response from the military in disasters. Another critique in the military’s 

response is that the traditional “respond to request” approach in DSCA operations is too 

slow and bureaucratic and should be a more flexible “sense-and-respond” approach, one 

that is approached from the bottom up (Embrey et al. 2010).  

However, traditional civil-military research has left out how military bases work 

with and assist the local community from responding and recovering from disasters. 
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Ashcroft and Mason (2006) detailed the recovery of Keesler Air Force Base (AFB) after 

Hurricane Katrina. However, they did little to advance the understanding of how Keesler 

contributed to or diminished the response and recovery of nearby Biloxi, MS. Trivedi 

(2020) mentioned how local military units helped clear debris from schools in Biloxi but 

did not identify how Keesler AFB influenced the longer-term recovery of the area or the 

existing vulnerability and resiliency in the community. Because of their resources and 

funding sources, military bases are some of the first communities to recover after a natural 

hazard. They are used as staging grounds for FEMA, the Red Cross, and other government 

and non-government organizations (NGOs) (Navy Installations Command, 2021). Other 

research aimed at identifying the impacts of military bases on local communities has 

focused on the environmental damage and pollution that stems from military bases or left 

behind at closed sites (Davis et al., 2007). Economists have studied the impacts of military 

base closures through the Base Closure and Realignment Commission (BRAC) on local 

economies, which occurred after significant disasters in some situations (Hultquiest and 

Petras, 2012). There is a gap in research on how local military bases influence all aspects 

of the disaster cycle (preparedness, response, recovery, mitigation) in local communities. 

One aspect in which this research will address this gap is by advancing the understanding 

of how military bases and populations influence the community's underlying social 

vulnerability and resiliency to hazards.   

2.2 VULNERABILITY TO NATURAL HAZARDS IN MILITARY COMMUNITIES 

Vulnerability is a word that holds many different meanings depending on the 

context and discipline that is defining, measuring, and assessing it (Wisner, 2016). 

Vulnerability to natural hazards has two main dimensions, the human and physical 
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dimensions (Fekete and Montz, 2017). Fekete and Montz describe the human dimension 

as being composed of susceptibilities and coping and adaptive capacities of people and 

social systems to hazards. This research investigates the human dimension of vulnerability, 

which is referred to as social vulnerability, and whether military communities possess 

unique susceptibilities and coping and adaptive capabilities. .  

Social vulnerability to natural hazards is a topic thoroughly studied in recent years 

by social scientists. Social vulnerability is a concept that “identifies sensitive populations 

that may be less likely to respond to, cope with, and recover from a natural disaster” (Cutter 

and Finch, 2008, p. 2301). It is clear from past case studies and literature that hazards 

impact people differently, as people have different capacities to adapt from the physical, 

economic, and psychological impacts of hazards. Many of these differences have been 

identified through the socioeconomic and sociodemographic characteristics in 

communities (Cutter, 2003). Some of the characteristics that increase social vulnerability 

to hazards are a lack of wealth, dependency on care givers, less educated populations, 

renters, temporary and lower wage employment, female headed households, minority 

populations such as African American race and Hispanic ethnicity, and many others 

(Cutter, 2003).  

The sociodemographic and socioeconomic characteristics are not determinants of 

vulnerability, but indicators for potential vulnerability. Hispanic populations, for example, 

are vulnerable to hazards because they may not speak English. This reduces their ability to 

understand and respond to potential hazards if the information is only delivered in English. 

However, this does not indicate that all Hispanic populations are vulnerable or that every 

Hispanic person is vulnerable. Some places with a majority of Spanish speakers, such as 
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Yuma, AZ, have emergency management programs and information readily available in 

English and Spanish. Other places, such as Grand Forks, ND, do not, potentially making 

the same information more difficult to access for Spanish speakers. Other characteristics, 

such as age (elderly and young children), are dependent on others for care and resources 

when responding to natural hazards and is valid across geographies. Many other indicators 

of social vulnerability have been identified by researchers (Appendix A).  

The demographic characteristics of military families, which are slightly different 

from civilian counterparts, also contribute to military communities' social vulnerability. 

Military families are slightly more African American and have slightly less Hispanic 

ethnicity than the general population (Clever and Segal, 2013). They also have more 

educational attainment (at least high school diploma) than the general population due to 

enlistment requirements and benefits to service members (ibid.). Clever and Segal (2013) 

and Harrel (2000) noted several challenges unique to military families: frequent moves, 

prolonged and unpredictable working hours, deployments, and the prevalence of mental 

and physical health ailments in veterans. Some of these challenges increase the social 

vulnerability in military communities. Frequent moves, for example, lead to higher 

percentages of renters in military communities. Renters are considered more socially 

vulnerable because they have little control over repairs to damaged properties (Morrow, 

1999). An outcome of mental and physical health ailments is homelessness, which is an 

indicator for vulnerability. Veteran homelessness has been identified as a growing problem 

in the United States, especially in communities with military bases (Villafan, 2016). Others 

characteristics in military families decrease their social vulnerability to hazards. These 

include higher levels of educational attainment, stable federal employment opportunities, 
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higher incomes of service members, and healthcare availability through Tricare insurance 

(Clever and Segal, 2013). 

Qualitative studies that identify socially vulnerable characteristics through 

interviews, surveys, and field work form the basis for many quantitative social 

vulnerability measures. While most case studies with qualitative findings are neither 

comparable across geographies nor by hazard type, quantitative measures of vulnerability 

can be compared to different places. Quantitative variables are identified and used as 

proxies to measure the indicators of vulnerability. Variables that are selected are scaled 

using various normalization techniques, such as z-score and linear min-max so that are 

relative to each other. The variables are then separated into like factors of vulnerability 

using a hierarchical, deductive, or inductive approach (Tate, 2012). Inductive methods 

involve using principal component analysis or similar statistical techniques to reduce the 

number of variables into factors that explain the most variance in the data. Deductive or 

hierarchical methods involve delineating variables into predetermined factors based on the 

similarity of the variables (ibid.). Regardless of the method, factors of vulnerability are 

then combined using an additive or weighted approach to form a composite index of 

vulnerability which can be compared across geographies.  

2.3 COMMUNITY RESILIENCE OF MILITARY COMMUNITIES 

Resiliency is another term where the meaning and context of the word are often 

ambiguous or conflated. Common descriptions of resilience in hazards research and other 

fields include bounce-back, absorbing, preparing and planning, recovering from, and 

adapting to adverse events (Emrich and Tobin, 2017). Vulnerability and resilience are 

sometimes confused as the same concept or opposing concepts, but as shown in Cutter et 
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al. (2014) they are not the same. The term resilience in this research is identified more as 

absorbing, recovering, and adapting to natural hazards. Vulnerability is viewed more as the 

susceptibility to experiencing the negative impacts of natural hazards.  

Resilience in communities is composed of the capacity of both individuals and the 

greater community to bounce back and forward after disasters. These capacities are 

separated into distinct concepts, known as capitals or domains of resilience. Nguyen and 

Akerkar (2020) identified six capitals most likely to represent resilience in existing 

literature covering the subject. The six capitals they identify are social, physical, 

community, individual, economic, and ecological, while other authors replace individual 

with others like institutional, and include individual capacities within the social domain 

(Cutter, 2014). While the names of the domain may differ, many of the indicators and 

characteristics within those domains are the same.  

Indicators for resilience within these domains includes both socioeconomic 

characteristics such as wealth and income equality, and place based characteristics such as 

the transportation access in the community. Other examples of indicators that are within 

the six domains of resilience include how prepared and experienced the community is 

responding to hazards, the healthcare and hospital capacities relative to the population size, 

the political and religious engagement in the community, the diversification of the local 

economy, and many others (Cutter et al. 2010). Engagement in community level 

organizations, such as religious or civic groups, is identified in several case studies as 

increasing resilience (Murphy, 2007). Other studies have shown that a diversified economy 

is important for communities, so that if one employer or sector leaves the community, other 

sectors and employers are available to meet demand (Adger, 2000). Appendix B identifies 
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other characteristics that were found in case studies to be indicators of resilience and 

separates them by domain.  

There are unique characteristics in military communities that may influence their 

overall resilience. Community capital in military communities is one of the domains that 

may be influenced negatively by military populations. Military families are transplants 

from other communities in the U.S, which decreases their attachment to places and the 

number of networks and connections in the community. Although research has yet to 

identify the relationship between military populations and lower levels of resilience at the 

community level, studies conducted by psychologists, family life practitioners, and others 

in the behavioral sciences have studied the importance of engagement in local communities 

at the individual and family level. Mancini et al. (2018) identified a positive relationship 

between military families' resilience and the number of connections made to organizations 

in local communities outside military installations. Likewise, Huebner et al. (2009) 

identified positive impacts to military families that built and maintained relationships in 

the community.  

Other domains, such as environmental, may have both positive and negative 

influences on resilience in military communities. Military bases have large areas of natural 

vegetation that are used as training areas for unit training and weapon testing. On one hand, 

training areas act as natural buffers and are preserved as undeveloped areas. Undeveloped 

areas generally improve the flood capacity of watersheds because the water is absorbed by 

the soil and natural vegetation, and wetlands and riparian areas act as buffers. On the other 

hand, training areas may have dangerous unexploded ordinance or areas of heavy metal 

contamination, which can leach into the water supply (Davis et al. 2007). Military bases 
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also store and keep large quantities of fuel, chemicals, and other toxic chemicals that can 

spill and negatively impact the environment and community.   

Community resilience is measured using similar methods as those mentioned for 

social vulnerability. Proxy variables are identified as quantitative measures for capitals of 

resilience, and then normalized to like scales. The variables are placed into capitals of 

resilience, mostly using a hierarchical or deductive approach, where they attempt to 

measure that concept of resilience (economic variables fit into economic capital, for 

example). The final composite index is the additive or weighted combination of those 

capitals. Community leaders, state level organizations, and others can then use the final 

values or the individual capitals to compare the resilience between places, and use it as a 

tool to aid in decision making and for allocating resources.    

2.4 HAZARDOUSNESS OF MILITARY COMMUNITIES 

In the late 1700s and early 1800s, bases were established along the Gulf and 

Atlantic coasts to protect ports and cities from bombardment and blockades from foreign 

navies (Floyd, 1997). In the 1800s, bases such as Fort Riley, KS and Fort Bliss, TX were 

established along transportation corridors in the western frontier and southern border to 

protect pioneers and settlers moving into those areas (Doe III, 2010). Further expansion of 

bases before and during the World Wars led to the military establishing large military bases 

in the West to test new equipment and weaponry, such as tanks and nuclear bombs 

(Balbach, 2014). Land in the west was cheap, and small towns sprung up in primarily rural 

areas outside of the base to support it. This pattern was replicated throughout the west.  

Other bases built or expanded during the World Wars were established in more 

populated coastal areas, along intercoastal waterways, and directly on the shoreline and 
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barrier islands, such as Coronado Naval Air Station, CA and Eglin Air Force Base, FL. 

The coastal locations gave them easy access to ports and the ocean, where they can project 

power to other parts of the world. However, bases located in coastal areas leave them in 

extremely vulnerable locations to natural hazards, where tidal flooding, storm surge, and 

hurricanes cause billions of dollars in damage to military equipment and infrastructure 

(NDAA, 2020). Yet, even continental bases experience damage from other hazards like 

annual flooding events, wildfires, tornadoes, or severe storms.  Significant damage at 

military bases in the last three years has occurred from a diverse range of hazards such as 

Hurricane Michael, Hurricane Florence, the Platte and Missouri River floods of 2019, the 

2018 hailstorms in Colorado, and an EF-3 tornado at Naval Submarine Base Kings Bay 

(NOAA, 2019). 

Losses from hazards on military bases are not always visible to the public. Only 

thorough the annual National Defense Authorization Act (NDAA) and supplemental 

disaster appropriations are military construction spending from hazard damages available 

to the public. For example, additional appropriations to the Disaster Relief Act in 2019 

allocated over $1.1 billion in military construction to rebuild Tyndall Air Force Base after 

Hurricane Michael, and the 2020 NDAA allocated an additional $1.5 billion in military 

construction required to rebuild the hangars and facilities that were destroyed (NDAA, 

2020). However, hazard losses in the surrounding communities of Bay County, FL and 

Panama City are available from public sources, such as the National Weather Service and 

U.S. Geological Survey. Other databases, such as the Spatial Hazard Events and Losses 

Database in the United States (SHELDUS) aggregates loss data from those sources to form 

a more complete picture of the total damages from hazards (CEMHS, 2020).  
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Increasing losses and the vulnerability of many coastal military bases to climate 

sensitive hazards has not gone unnoticed by military departments in the DoD. The DoD 

conducted site specific studies related to infrastructure vulnerability at Naval Base Norfolk, 

VA and Coronado Naval Base, CA to sea level rise (SERDP, 2017). However, most of the 

research done by the DoD has been hazard specific and focused on the physical 

vulnerability of existing infrastructure to hazards. Although this research doesn’t attempt 

to replace site specific hazard assessments, it does advocate for a wider approach in 

understanding the hazardousness of military communities. This can be accomplished by 

incorporating not only the military base but local community. Hazard losses from sources 

such as SHELDUS can be combined with indices of vulnerability and resilience to explore 

the hazardousness of places (Tate et al. 2010; Emrich and Cutter, 2011; Borden and Cutter, 

2008). 

2.5 CONCLUSION 

Hazard losses, social vulnerability, and resilience are explored to understand the 

hazardousness of military communities. Quantitative measures of social vulnerability, 

community resilience, and hazard losses in military communities are compared to non-

military communities, including the components that create the overall indices of 

vulnerability and resilience.  The research questions are relatively broad in scope and 

approach the problem from the top down. This approach is not an attempt to replace local 

hazard assessments in military communities that identify the specific hazard threats and 

vulnerabilities in detail. However, this thesis will help bridge the gap in understanding how 

military populations and military bases influence local communities' existing vulnerability 

and resiliency to hazards, which is missing in existing literature.  
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CHAPTER 3 

DATA AND METHODOLOGIES 

           The study area includes all 50 states to account for all hazard types and a vast 

geographic extent. Analyses were conducted at the county level to mirror the scale of the 

input data. Any level higher than the county, such as the state, does not provide the 

necessary detail to perform the analysis required to differentiate between the factors driving 

the vulnerability and resiliency of military communities. Any level below the county is 

outside the scope of this research and better suited when analyzing smaller geographic 

regions, individual states, or when the data is available at those levels. Also, emergency 

management and decision makers that influence hazard mitigation funds and other 

resources are consolidated at the county level in most areas of the US (Sherrieb et al., 

2010).  

3.1 DATA SOURCES 

Data were collected from four sources, including the Department of Defense 

(DoD), the United States Census Bureau, the Hazards and Vulnerability Research Institute 

at the University of South Carolina (HVRI), and the Center of Emergency Management 

and Homeland Security at Arizona State University (CEMHS). Military installation, 

ranges, and training areas (MIRTA) shapefiles were downloaded from the US Army Corps 

of Engineers data repository available to the public (DoD, 2017). The 2020 MIRTA dataset 

includes the name of the military base, the service branch (Army, Navy, Air Force, etc.), 

the bases’ status (active, reserve, national guard), and the spatial boundary. County 
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boundary shapefiles were downloaded from the United States Census Bureau and provided 

the basis for joining non-spatial data into the GIS interface (Census, 2020). Data tables for 

military employment and insurance data were also downloaded from the US Census, which 

is expanded on in the following section.  

The Social Vulnerability Index (SoVI) is used as the measure of social vulnerability 

and was downloaded from HVRI. While many indices exist to measure the concept, 

including a freely available social vulnerability index (SVI) from the Center for Disease 

Control, SoVI is one of the most widely cited and used social vulnerability index in 

academia, state governments, non-profits and NGOs, and even the federal government. 

SoVI also performed better than SVI in attempts to validate the indices using disaster 

outcomes (Rufat et al., 2019) and SoVI displayed reliable results at different scales through 

sensitivity analysis (Schmidtlein et al. 2008). The Corps of Engineers uses SoVI methods 

to identify environmental justice impacts for flood control projects and the Federal 

Emergency Management Agency (FEMA) has adopted SoVI in their recent Hazard Risk 

Index tool (Dunning and Durden, 2011; FEMA, 2020).  

Using principal component analysis, SoVI reduces an extensive range of 

socioeconomic variables known to influence the vulnerability of places into eight factors 

that explain the most variance in the data (Cutter et al. 2003). The SoVI used in this analysis 

was not calculated by the author but used with permission from HVRI, which was 

composed using the 2014-2018 ACS 5-year estimate. The eight factors of social 

vulnerability in the dataset are race (African American and social status), wealth (low), age 

dependence, ethnicity (Hispanic and education), special needs populations, race (Native 
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American), service sector employment, and gender (Female). Cutter et al. (2003) describes 

the framework behind SoVI and a more detailed description of how the index is calculated.  

Similar to social vulnerability, many indices exist that attempt to measure 

community resilience. The Baseline Resilience Indicators for Communities (BRIC) is used 

in this research because it is one of the few indices available for all 3,143 counties in the 

US and was developed using a multi-hazard approach (Ostadtaghizadeh, 2015). BRIC is 

also widely used in the hazards and emergency management community, evidenced from 

its inclusion in the National Risk Index with SoVI (FEMA, 2020).  

BRIC follows a different approach than SoVI’s inductive method using principal 

component analysis. BRIC uses a deductive approach that starts with six capitals 

representing the different types of resilience in communities. Forty-nine total variables 

were identified and then placed into their six corresponding capitals of resilience based on 

expert knowledge and previous literature (Cutter et al., 2014). Each capital of resilience 

has a theoretical range of 0-1, and then added together to create a composite index with a 

theoretical range of 0-6. The six capitals of resilience in BRIC are social, economic, 

institutional, infrastructural, environmental, and community capital. BRIC capital values 

and overall scores were downloaded with permission by HVRI and compiled using various 

data sources collected from 2010-2016.  

Hazard loss data was obtained from SHELDUS, which is maintained by the 

CEMHS at Arizona State University (CEMHS, 2020). Data was downloaded for all 

counties in the U.S. from the years 1960-2018, and for all hazards. SHELDUS includes 

hazard loss data for crop and property losses from 17 different hazards types, including 

meteorological events such as drought and hail, and geophysical events such as earthquakes 
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and tsunamis. Crop and property losses were adjusted for inflation into 2018 dollars and 

standardized per capita using 2018 population totals for each county from SHELDUS. 

Likewise, losses were standardized per capita so that values could be compared between 

less populated rural areas and more populated urban areas. Property and crop losses were 

then summed to get total hazard losses per capita from 1960-2018.  

 SHELDUS does have limitations, such as only providing direct losses from natural 

hazards and not indirect losses, such as decreased economic activity (Hahn, 2017). Scale 

is another limitation of SHELDUS, which aggregates data to the county level, making it 

difficult to understand the hazard exposure at the local level (Emrich and Cutter, 2011). 

Despite these limitations, however, SHELDUS presents the best available database for 

natural hazard losses in the United States due to its complete coverage of the United States 

and long record of loss data going back to 1960. Table 3.1 provides descriptive statistics 

on hazard losses, SoVI values, and BRIC values used in the analysis.  

Table 3.1. Descriptive Statistics for Hazard Losses, SoVI, and BRIC (n = 3,143 counties) 

 Total Damages 
Per Capita SoVI Score BRIC Score 

Mean $11,354 0 2.729 
Median $3,877 .03 2.733 

Std. Deviation $34,676 2.89 .147 
Range $1,248,308 25.6 1.174 

Kurtosis 563 2.12 .335 
Skewness 18.9 .367 -.283 

Kolmogorov-Smirnov 
Test for Normality Fail (p = .000) Fail (p = .000) Fail (p = .000) 

 
3.2 DEFINING MILITARY COMMUNITIES 

 In this research, the term community is synonymous with a county. Although a 

community is more likely to be used colloquially as a neighborhood or smaller census unit 
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such as census tract, the term is used more broadly in this research to describe places 

significantly influenced by military installations and military populations. This is primarily 

due to the level of analysis conducted at the county level and because military installations 

are often large and cross county boundaries. Military members and families are not 

constrained to only living on the military base and work, live, and go to school in the 

community. The military community is also sometimes used to describe the people that are 

in the military or their family members (DoD, 2019b). However, here it is referenced as a 

place, which includes the people in the military, civilians, the organizations, networks, and 

all other components and relationships that make up a community. Two census variables, 

using the 2014-2018 5-year American Community Survey estimates, are used in 

combination as a proxy to identify military communities, as well as the Military 

Installation, Ranges, and Training Areas (MIRTA) shapefile from the Department of 

Defense (U.S. Census, 2019; DoD, 2017). The number of people with Tricare Insurance 

(table C27008) and the number of people with military employment (table B23001) is used 

as a pass or fail screen to identify potential military communities. The MIRTA shapefile 

was used as a final screen to ensure only counties near an active military base were 

considered military communities.   

Tricare Insurance is the insurance program for the military and their family 

members. Eligibility for Tricare extends to the national guard, reserves, military retirees 

(20+ years of service), and Coast Guard. The additional dataset of active-duty employment 

helped pinpoint communities with a significant military presence rather than places with 

reservists only, for example. Tricare insurance and military employment variables were 

normalized as a percent of the population. The distribution of the percent of the US 
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population with Tricare insurance or active-duty employment was highly skewed, with 

most counties having only a small percentage of people with those characteristics. Again, 

this paper defined military communities as counties with significant influence by military 

populations and bases, which prior research has not identified. Therefore, a subjective 

determination for thresholds in Tricare insurance and military employment data was made 

after close inspection of the descriptive statistics, distribution, research into individual 

counties, and the author's best judgment based on experience.  

Table 3.2 displays the descriptive statistics for the variables used to identify military 

communities, the cutoff criteria, and the purpose of the variable. Counties with more than 

4.5% of the population with Tricare insurance and 1.5% of the population with military 

employment were determined to be considered military communities. The ratio of Tricare 

to military employment equates to a 3:1 ratio, which is close to the 2:1 ratio of military 

family members to active-duty soldiers in the U.S (DoD, 2019b). The additional unit 

accounts for other populations eligible for Tricare and live in military communities 

(retirees, reservists). Lastly, counties without an active-duty military base or were not 

adjacent to a county with an active base were screened out using GIS. The geographic 

criteria helped identify only counties near an active-duty military base, where their 

influence is more significant. The geospatial criteria screened out five counties. Two of the 

five had Coast Guard bases (Kodiak Island, AK and Pasquotank County, NC), two were 

rural counties tangentially influenced by Fort Riley (Clay and Pottawatomie Counties, KS), 

and one was a reserve base outside of New Orleans (Plaquemines Parish, LA).  
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Table 3.2. Descriptive statistics and criteria for classifying military communities. 

Variable Mean Median Skew-
ness 

Military 
Community 

Criteria/Cut-off 
Purpose 

% Tricare 
Insurance 2.88 2.13 6.23 ~ 90th percentile 

(4.5%) 

Identify people 
connected to military 

service (includes military 
dependents, retirees, 

reserves, national guard 
and coast guard) 

% Active 
Military 

Employment 
.287 .033 17.5 ~  95th percentile 

(1.5%) 
Identify active duty 

service members 

Location of 
Military 

Base 
   

County contains 
an active military 

base or is 
adjacent to a 
county that 
contains an 
active base 

Identify counties that are 
geographically 

influenced by an active 
military base (screen out 

Reservist, National 
Guard, Retiree, etc.) 

 

Upon close inspection of the counties that passed all thresholds, the criteria did well 

in representing the 106 communities heavily influenced by military bases and populations. 

This was determined based on the author’s personal knowledge and expert judgment of 

military installations and communities. Among some of the more notable counties 

classified as military were large counties like San Diego, CA and Honolulu, HI, medium-

sized counties of El Paso, TX and El Paso, CO, and smaller counties and independent cities 

such as Petersburg, VA, and Alexandria, VA. Bexar County, TX, which is often thought 

of as a military community, was screened out. Bexar County, Texas is home to Joint Base 

San Antonio, which has several military facilities in the county. However, military 

members are a small percentage of the overall population (1.07% military employment) 

compared to other large counties like San Diego, California (2.76% military employment). 

Counties that met all three criteria were classified as military communities (N=106), while 

the remaining 3,037 were classified as non-military communities. Figure 3.1 displays the 



 

23 

counties classified as military and non-military, with clusters in the Hampton Roads region 

of Virginia, the South, and a smaller number of counties scattered throughout the West and 

Midwest. 

 
Figure 3.1: Military Communities in the United States differentiated by service branch 
(non-military communities in beige color). 
 
 To answer the second part of the research questions, the type of military base in the 

community was identified and classified either as Army, Air Force, Navy, or Joint. Joint 

communities were those with a combination of military installations belonging to multiple 

branches of the military. For example, El Paso County, CO,  was defined as a Joint 

community because it is home to Fort Carson (Army) and several Air Force Bases (AFB) 

such as Peterson AFB and Schriever AFB. Communities with only one type of military 

base were classified under that type of base. Marine Corps bases were classified as Navy 

due to being under the Department of the Navy's jurisdiction, and Space Force garrisons 

are classified as Air Force. As a result, 13 communities were classified as Joint, 28 as Navy, 

31 as Air Force, and 34 as Army. 
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3.3 STATISTICAL ANALYSIS 

A variety of statistical tests, spatial statistics, and mapping techniques answer the 

research questions and determine differences between hazard losses, SoVI, and BRIC in 

military and non-military communities. Hazard losses were normalized on a per capita 

basis to account for urban and rural differences and adjusted into 2018 dollars to account 

for inflation over time. Property and crop losses were summed for all counties during the 

59 years of 1960-2018 to get the total damages used in the analysis. Although the number 

of service members and the overall population in military communities have changed over 

time, the complete dataset in SHELDUS (59 years) was used to capture as many hazard 

events as possible so as to not skew data towards more recent events.  

All three variables of total hazard losses, SoVI, and BRIC exhibited non-normal 

properties and failed the Kolmogorov-Smirnov test for normality (Table 3.2). Due to 

failing the normality assumption and the significant difference in the number of non-

military communities and military communities, non-parametric statistical tests were 

conducted. The Mann-Whitney U test was conducted to identify significant differences 

between the mean ranks of the three variables (Hazard losses, SoVI, BRIC) in military and 

non-military communities. The Mann-Whitney U test ranks all communities from 1 to 

3,143 based on the value of the variable, and determines statistical significance between 

those ranks. The community with the lowest total hazard losses per capita would rank as 

1, while the community with the highest losses ranks as 3,143, for example. This negates 

the influence of extreme outliers on the mean values and other non-normal characteristics 

in the data. The Kruskal-Wallis test was conducted to understand the differences in the 
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variables by type of military community (Army, Air Force, Navy). This method also tested 

differences in the mean ranks of the variables.   

Next, the factors of SoVI and BRIC capitals were analyzed further using binary 

logistic regression (between military and non-military communities) and multinomial 

logistic regression (between types of military communities). The choice of binary logistic 

regression was similar to Cutter et al. (2016), which explored the capitals of BRIC between 

rural and urban communities. The beta coefficient, Wald statistic, and odds ratio for each 

of the significant contributing variables in the models determined the driving factors in 

differences of social vulnerability and resilience between military and non-military 

communities. Before conducting the logistic regression analysis, however, SoVI factors 

and BRIC capitals were standardized using z-scores to account for any outliers that may 

influence the model. Also, to account for the large disparity in the number of communities 

in each category, 106 military and 3,037 non-military, a random sample of 106 non-

military communities was taken before conducting the regression models1. Additionally, a 

random sample of 28 Army and 28 Air Force communities was taken to account for sample 

size differences before conducting the multinomial regression model (only 28 Navy 

communities in the dataset). All statistical analyses were completed using SPSS Version 

26 (IBM Corp, 2020). 

 

 

 
1 Binary logistic regression models did poorly when all counties were included in the 
model. Therefore, a random sample of 106 non-military counties were selected in the 
regression analysis. To remain consistent, 28 Army and Air Force counties were 
randomly selected so that the number of counties for each category (Army, Air Force, 
Navy) were the same. 
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3.4 SPATIAL ANALYSIS 

To fully understand the significant differences and drivers of social vulnerability 

and community resilience in military communities, the community's location must also be 

considered. Social vulnerability and community resilience in the United States have high 

and significant levels of spatial autocorrelation (p = .000) with distinct clusters in some 

areas of the United States. Spatial autocorrelation violates the assumption that observations 

in the data are independent of one another, which was not addressed in the logit models 

directly. Therefore, Anselin Local Moran’s I was employed as a form of sensitivity analysis 

to determine if the logit models' results were due to the community's location and existing 

geographic trends or were unique to military communities irrespective of location. Anselin 

Local Moran’s I is a technique used to identify statistically significant outliers in 

geographic clusters of areas with high or low values (Anselin, 1995). It is a local indicator 

of spatial association (LISA statistic) and provides four outputs, clusters of high values, 

clusters of low values, high-value outliers in low clusters, and low-value outliers in high 

clusters (ESRI, 2020). Communities that do not exhibit the same values as those around 

them were reported as statistically significant outliers, which was essential in 

understanding the differences between places. Special attention was given to military 

communities identified as outliers to describe and analyze any patterns in the results. 

Hawaii and Alaska were excluded from the spatial analysis because of the contiguity 

requirement in using the county boundary polygons. Spatial statistics and maps used ESRI 

Arc Map 10.7. 

In addition to mapping and evaluating outliers, the binary and multinomial 

regression models' residuals were visually inspected for spatial patterns. Visual inspection 
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instead of spatial statistics was performed because the binary and multinomial models only 

included 212 and 84 counties, respectively. Visual inspection of the residuals further 

helped understand the driving factors in vulnerability and resiliency, where communities 

with high residuals were those that the regression models had trouble in classifying 

correctly, indicating different influencing variables. The perspective given through the 

spatial analysis, combined with the statistical evidence and hazard loss data, enabled a 

better understanding of the threat and risk that hazards place on those communities. Results 

are presented in four parts; first identifying the differences between military and non-

military communities, then analyzing only military communities by type, next by analyzing 

hazard losses combined with the underlying conditions in places, and finally, a summary 

of the results.
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CHAPTER 4 

RESULTS 

The first half of the results section identifies differences between military 

communities and non-military communities, while the second half identifies differences in 

military communities based on the type of military base in the community. In both 

comparisons, results from descriptive and inferential statistics are presented first, followed 

by the spatial statistics. Lastly, hazard losses in military communities are explored in more 

detail, and put into context with the results from analyzing social vulnerability and 

community resiliency.  

4.1 COMPARING MILITARY AND NON-MILITARY COMMUNITIES 

Differences in the levels of hazard losses and social vulnerability between military 

and non-military communities in the United States were found to be statistically significant. 

Although there were differences in community resilience levels, those differences were not 

significant based on the Mann-Whitney U test. Table 4.1 displays the mean values, mean 

ranks, the standardized test statistic, and p-value when tested at the 95% confidence level. 

Hazard losses and social vulnerability were significantly lower in military communities 

than in non-military communities, and resiliency was higher in military communities. 

However, the difference in resiliency was not statistically significant. The composite SoVI 

scores need to be unpacked and analyzed further through statistical and spatial analysis to 

understand why military communities were less socially vulnerable. 
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Table 4.1. Comparing Military and Non-Military Communities  

 Community 
Type Mean Mean Rank Standardized 

U Statistic* p-value 

Total 
Hazard 
Losses 

Military 
Non-Military 

$6,740 
$11,515 

1,198 
1,584 -3.443 .000 

SoVI Military 
Non-Military 

-1.295 
0.045 

1,158 
1,585 -4.767 .000 

BRIC Military 
Non-Military 

2.738 
2.729 

1,652 
1,568 .938 .350 

*Negative sign direction indicates association with military communities; n = 106 for 
military communities and 3,037 for non-military communities 
 
4.2 DIFFERENCES IN SOVI FACTORS BETWEEN MILITARY AND NON-

MILITARY COMMUNITIES 

Through binary logistic regression, social vulnerability factors that associate more 

with military communities than non-military communities were identified to help 

understand the drivers behind their lower SoVI scores. Again, the eight factors that 

comprised the social vulnerability index were wealth (low), race (African American) and 

social status, age (elderly), ethnicity (Hispanic) and lack of health insurance, special needs 

populations, service sector employment, race (Native American), and gender (Female). 

The logit model was statistically significant (𝜒!(8) = 120,	p =.000) and t Table 4.2 

displays the beta coefficient (B), Wald statistic, significance levels, and odds ratios for each 

variable in the model. Age and special needs factors stand out in explaining the differences 

between military communities and non-military communities.  

In logistic regression, the odds ratio was interpreted as the number of times more 

likely to be associated with a category (dependent variable) considering a one-unit increase 

in the factor (independent variable) (Bewick et al., 2005). Therefore, after interpreting the 

results, communities were 6 and 7 times more likely to classify as non-military with every 
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one-unit increase in the age and special needs factor scores, respectively. Military 

communities had a lower median age and fewer social security beneficiaries, which were 

variables in the age factor. Likewise, non-military communities had a larger percent of 

nursing home residents and hospitals per capita (special needs factor). Communities were 

also one and a half times more likely to classify as non-military with a one-unit increase in 

wealth (low). Military communities had higher amounts of wealth than non-military 

communities, and some of the variables included in this factor were median income, 

median home value, and median rent.  

Other variables that significantly contributed to the model were service sector 

employment and race (African American and social status). These factors were two times 

more likely to be associated with military communities considering a one-unit increase in 

the factor scores. Variables in these factors included service sector employment and female 

participation in the workforce (service sector), and African American and female-headed 

households (race and social status). Ethnicity (Hispanic), race (Native American), and 

gender (female) were not significant contributors to the model.  

Table 4.2 Binary logistic regression results with factors of SoVI presented in descending 
order based on the Wald statistic. 

SoVI Factor B Wald 
𝝌𝟐 p-value Odds 

ratio 
Likely category with 

one unit increase 
Age -1.80 40.94 .000 6.02* Non-military 

Special Needs -1.98 18.89 .000 7.25* Non-military 
Wealth (low) -0.50 12.68 .000 1.65* Non-military 
Service Sector 

Employ. 0.88 10.86 .001 2.40 Military 

Race (African Am. 
and Social Status) 0.70 8.13 .004 2.03 Military 

Ethnicity (Hispanic) -0.26 1.73 .189 1.25* Non-military 
Race (Native 
American) 0.20 0.53 .466 1.22 Military 

Gender (Female) 0.08 0.13 .723 1.08 Military 
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*Inverted Odds Ratios; Negative Beta coefficients denote associations with non-military 
communities, positive coefficients denote associations with military communities. 
 

When the communities classified incorrectly by the model (high residuals) were 

examined, the driving factors of social vulnerability in military communities was further 

highlighted. Higher age vulnerability and lower race (African American and social status) 

vulnerability were noticed in the 17 military communities that the model incorrectly 

classified as non-military. The three counties with the highest residuals were military 

communities with large populations of retirees (high age factor score). Monroe County, 

FL, Moore County, NC, and Beaufort County, SC are prominent retirement communities 

(Florida Keys, Pinehurst, and Hilton Head, respectively) and have military bases in the 

counties. Other counties with high residuals had a lower race and social status factor score 

and are located in the upper Great Plains and Alaska. These counties were Meade County, 

SD, Ward County, ND, and Southeast Fairbanks, AK. No other spatial trends were visually 

identified in the residuals. Counties with high residuals highlight that not all military 

communities are alike and that broad, generalized observations should be used with 

caution.  

The driving factors of social vulnerability in military communities were quite 

consistent, especially in communities dominated by military employment (Table 4.3). 

Chattahoochee County, GA, Pulaski County, MO, Onslow County, NC, Geary County, 

KS, and Christian County, KY all have the highest percentages of military employment in 

the United States and service sector employment is the leading factor of social vulnerability 

in each of those counties. Service sector employment was high because military bases 

generate and require many service sector positions such as teachers, nurses, maintenance, 

cashiers, and human resource professionals, to name a few. They also generate service 
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positions outside the base that cater to military members and families, such as retail and 

banking. Military spouses also fill these positions, increasing female participation in the 

workforce which further increases service sector employment factor scores. However, 

communities dominated by military employment have relatively lower overall SoVI scores 

than other communities in the United States, driven by low age and gender factor scores. 

Small changes to the military bases in these communities, whether from troop level 

reductions or damages and impacts from natural hazards, are likely to have outsized 

negative impacts in the community due to their reliance on military spending and lower 

wage and hourly service sector opportunities.  

Table 4.3. Counties with highest percent military employment and their SoVI factor scores. 

County 
Percent
Military 
Employ. 

SoVI Factors* 

1 2 3 4 5 6 7 8 
Chattahoo-
chee, GA 52 0.40 -0.58 -3.53 -0.86 1.11 0.12 1.46 -6.21 

Pulaski, MO 28 -0.49 0.16 -2.22 -0.40 -0.14 0.20 1.87 -3.07 
Onslow, NC 25 -0.18 0.03 -1.99 -0.55 -0.29 0.07 1.94 -2.20 
Geary, KS 22 -0.28 -0.26 -1.98 -0.20 0.58 0.20 2.72 -1.30 
Christian, 

KY 14 0.61 0.18 -1.62 -0.33 0.56 0.07 1.62 -1.21 

Vernon 
Parish, LA 14 0.28 -0.03 -1.31 -0.29 0.19 0.22 0.43 -1.86 

Coryell, TX 14 -0.12 0.42 -1.84 0.07 -0.70 -0.20 1.53 -0.62 
Norfolk, VA 12 1.58 -1.04 -1.80 -0.41 0.75 0.30 1.45 -0.71 
Liberty, GA 12 1.26 -0.35 -1.59 -0.21 0.17 0.24 1.39 -0.58 
Elmore, ID 12 -0.56 0.11 -0.97 0.40 -0.18 0.48 0.38 -0.97 

*Factor 1 = Race (African American and Social Status); Factor 2 = Wealth (low); Factor 
3 = Age; Factor 4 = Ethnicity (Hispanic); Factor 5 = Special Needs Populations; Factor 6 
= Race (Native American); Factor 7 = Service Sector Employment; Factor 8 = Gender 
(female). 
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4.3 SPATIAL ANALYSIS OF SOCIAL VULNERABILITY IN MILITARY 

COMMUNITIES  

ArcMap 10.7 was used to identify clusters of high and low SoVI values, as well as 

associated outliers using Anselin Local Moran’s I. Outliers, were important to identify 

because they denote reversals in geographic trends. Suppose military communities are 

consistently among outliers in high-value clusters located throughout the US. In that case, 

it can be assumed that characteristics unique to military communities drive the lower values 

in those clusters rather than prevailing demographic and socio-economic trends of the area.  

High-value clusters of social vulnerability were found in the Great Plains stretching 

south into Texas, as far west as Arizona, and as far east as Mississippi (Figure 4.1). Pockets 

of high social vulnerability clusters appeared in small areas of the Carolinas and South 

Florida. Among the ten military communities with the highest SoVI values, seven were in 

Texas, Arizona, and New Mexico, and no military communities in those states were low 

SoVI outliers. Hispanic ethnicity and service sector employment were the two leading 

factors in all seven of those communities (El Paso, Val Verde, and Kleberg Counties in 

Texas, Yuma and Cochise Counties in Arizona, and Roosevelt and Curry Counties in New 

Mexico). Although military communities have lower SoVI values overall, only 4 of the 18 

(22%) military communities located in high-value clusters were low-value outliers. Those 

communities were Meade County, SD, Lonoke County, AR, Bossier Parish, LA, and 

Onslow County, NC. The four counties all have high percentages of the population using 

Tricare Insurance (greater than 10%), but were not spatially concentrated in any area. 
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Figure 4.1: Anselin Local Moran’s I output of SoVI values (military communities in dark 
outline). 
 

Low-value clusters of SoVI were located in the Mountain West and the Northeast 

stretching into the Midwest. Nine out of the ten military communities with the lowest SoVI 

values were located in low-value clusters. These communities generally have low age, 

wealth, and service sector employment vulnerabilities compared to other military 

communities. Interestingly, 5 of 28 (18%) military communities in low SoVI clusters were 

outliers of high social vulnerability and geographically clustered in southeast Virginia. The 

high number of outliers was an unexpected result, given that military communities have 

lower SoVI scores than others. These five outliers of high social vulnerability were located 

in the Hampton Roads region and nearby Petersburg, VA. In this area of Virginia, counties 

are smaller in size and often operate as independent cities. The differences in social 

vulnerability levels between communities that are close in geography are notable and stark. 

The five communities of Petersburg, Newport News, Hampton, Norfolk, and Portsmouth 
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have significantly lower social vulnerability than their six neighboring military 

communities (Figure 4.2). 

 
Figure 4.2: SoVI by county in the Hampton Roads region of Virginia (military 
communities in dark outline). 
 

North of the Hampton Roads (water feature) is Poquoson, York, Hampton, and 

Newport News. These communities are Joint communities, as there is a combination of 

Army, Air Force, and Navy bases nearby. Poquoson and York are primarily non-Hispanic 

white and wealthy communities with military bases located within their borders. These 

communities are suburban and have low overall social vulnerability. However, Hampton 

and Newport News, also containing military bases, have higher levels in the race and social 

status and service sector employment factors that subsequently result in higher SoVI 

values. South of Hampton Roads is Norfolk, Portsmouth, Chesapeake, Suffolk, and 

Virginia Beach, which surround the large naval bases of Norfolk and Air Station Oceana. 

Similar to the contrast on the northside of Hampton Roads, Norfolk and Portsmouth's 

denser cities have higher social vulnerability levels driven by race and social status 
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vulnerability. The adjacent suburb communities of Chesapeake, Suffolk, and Virginia 

Beach are majority non-Hispanic white and wealthier communities, with lower social 

vulnerability levels.  

Similar contrasts in local geographies of SoVI appear in Petersburg, VA, located 

outside the main entrance to Fort Lee. Petersburg has the highest SoVI score of all military 

communities of 7.75, driven by race and social status and service sector employment. 

Neighboring Prince George County has a SoVI score of -6.33. The range in SoVI values 

between Prince George County and Petersburg, VA is one of the largest between two 

neighboring communities in the United States. Therefore, it is a false assumption that 

military bases reduce social vulnerability in all military communities or do so equally. 

Communities within the Hampton Roads region and around Petersburg, VA show stark 

contrasts in their social vulnerability levels, explainable in part by other institutional and 

economic influences and inequities not captured in SoVI. 

The logit model's significant contributing factors of SoVI were also mapped 

through Anselin Local Moran’s I cluster analysis. Increases in the age factor, with variables 

median age, social security recipients, and age dependency (elderly and young children), 

were more likely to be associated with non-military communities in the logit model. Age 

has high clusters in Appalachia, South Florida, Texas, and South Florida (Figure 4.3). 11 

out of the 12 (92%) military communities in high age clusters were low outliers, compared 

to only 44% of non-military communities that were outliers. This adds to the logistic 

regression finding that age vulnerability is significantly lower in military communities, 

even when considering location. The one county that was not an outlier in high age clusters 

was Monroe County, FL, identified earlier as a popular retiree destination. Only one out of 
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the 19 (5%) military communities in low age clusters were high-value outliers, compared 

to the 36% of  non-military communities that were outliers. This further supports the result 

of military communities having uniquely lower age vulnerability.  

 
Figure 4.3: Age Factor clusters of social vulnerability (military communities in dark 
outline). 
 

Service sector employment was another significant factor in the logit model, where 

higher levels occurred in military communities. High values of service sector employment 

clustered in the Northeast through the Midwest and the West Coast, while low-value 

clusters wered found in the Southeast, northern Great Plains, Mountain West (Figure 4.4). 

In low service sector employment clusters, 35 out of 51 (69%) military communities were 

high-value outliers compared to only 48% of non-military communities identified as 

outliers. Conversely, only 10 out of the 38 (26%) military communities in high service 

sector employment clusters were low-value outliers, compared to 46% of non-military 

communities that were outliers. The ten low-value outliers in military communities were 

clustered in the greater D.C. metropolitan area and wealthier suburbs of the Hampton 
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Roads region, where high-paying wages and more diverse economies exist. The higher 

percentage of high-value outliers and the smaller percentage of low-value outliers 

demonstrates that service sector employment is generally higher in military communities, 

except in the national capital region (NCR), home to the defense industrial complex. The 

Pentagon, Fort Belvoir, Fort Myer, Marine Corps Base Quantico, and others in the NCR 

mainly function at the government's strategic level and are staffed by high-ranking officers 

and senior enlisted non-commissioned officers. Officers have much higher incomes than 

lower enlisted soldiers, who are more numerous at other military bases outside of the NCR. 

The high-paying jobs available in the defense industrial complex and demographic makeup 

of the military communities in the area demonstrated that military communities were not 

homogeneous and possess different vulnerabilities. 

Figure 4.4: Service Sector Factor Clusters (military communities in dark outline). 
 

With variables such as nursing home residents and the number of hospitals per 

capita, the special needs factor had high-value clusters in the Great Plains stretching down 
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to the Texas Panhandle and West Texas. Clusters of low special needs populations exist in 

Appalachia, the southwest, and the Pacific Northwest. Only a few outliers were found in 

military communities as they generally followed the prevailing geographic trend as the 

communities around them. Few outliers indicate that geographic location may influence 

the special needs vulnerability more than the military populations and bases themselves. 

There are also not as many military communities located in the Great Plains, where there 

are high-value clusters of special needs vulnerability. Other regions have more military 

communities, such as the South, which have low-value special needs clusters.  

The race (African American and social status) factor mostly followed existing 

geographic clusters as well, with only a few outliers in both high and low-value clusters. 

As expected, military communities in the South and Mid-Atlantic had higher levels of race 

and social status vulnerability than military communities in other regions. Low race and 

social status clusters were found in the Midwest, Great Plains, and Northwest, where there 

are fewer military communities. There were no military communities identified as outliers 

in clusters for the wealth factor of social vulnerability, which followed existing geographic 

patterns. Military communities located in clusters of high wealth, such as in the D.C. 

metropolitan area, exhibited similar levels of wealth as the neighboring communities in 

those clusters. There were also fewer and smaller clusters of both high and low wealth 

throughout the United States. 

4.4 DIFFERENCES IN CAPITALS OF BRIC BETWEEN MILITARY AND NON-

MILITARY COMMUNITIES 

Although no significant differences in community resilience levels between 

military and non-military communities were identified (p = .350), binary logistic regression 
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was conducted to highlight the most influential capitals of resilience in military 

communities compared to non-military communities. The six capitals of resilience that 

comprise BRIC are community, social, institutional, infrastructural, economic, and 

environmental. Again, each capital was standardized by z-scores before the regression 

analysis. The same random sample of the 212 communities (106 military and 106 non-

military) used in the SoVI regression was used in the BRIC regression to remain consistent. 

As expected, the results of the BRIC logistic regression were not as strong as the SoVI 

factors but was statistically significant (𝜒!(5) = 74.2,	p =.000).  

As shown in Table 4.4, three of the six capitals of BRIC significantly contributed 

to the model. They were community capital, social capital, and environmental capital. 

Environmental resilience was expected as it includes the variables percent of land in 

wetlands, average surface perviousness, and food access. Most military communities have 

large natural areas where the ground is pervious due to undeveloped training areas on 

military bases, and many are in rural counties. With a one-unit increase in social resilience 

values, communities were two times more likely to classify as military communities. This 

could be due to the military service requirement of receiving a high school diploma and 

benefits such as health insurance coverage, which are some of the social capital variables. 

A one-unit increase in community capital, which has variables like voting participation and 

percent of residents born in other states, was 3.76 times more likely to classify a community 

as non-military. This is likely due to the frequent moves of military members leading to 

lower levels of place attachment. 

 

 



 

41 

Table 4.4. Binary logistic regression results with capitals of BRIC in descending order 
based on the Wald statistic. 

BRIC Capital B Wald 
𝝌𝟐 p-value Odds ratio Likely category with 

one unit increase 
Community -1.32 37.08 .000 3.76* Non-military 

Social 0.76 10.44 .001 2.13 Military 
Environmental 0.36 4.06 .044 1.43 Military 

Institutional 0.33 3.09 .079 1.39 Military 
Infrastructural 0.29 1.96 .162 1.33 Military 

Economic .015 0.47 .492 1.16 Military 
*Inverted odds-ratio 

Military communities with high residuals that were incorrectly classified by the 

model included higher levels of community capital, lower levels of social capital, and more 

urban communities with lower environmental capital levels. The urban counties of 

Honolulu, HI and Petersburg, VA, had some of the lowest environmental capital levels in 

the sample and were incorrectly classified as non-military by the model. Petersburg, VA, 

Kleberg County, TX, and Cochise County, AZ all had the lowest social capital levels 

among military communities. In contrast, Sumter County, SC and Hardin County, KY have 

high levels of social capital. No spatial pattern existed in the residuals, as high and low 

residuals were in various parts of the country. Looking again at the most military-

dominated counties in the U.S., it is clear that lower levels of community capital drive 

lower overall community resilience in those places (Table 4.5). This finding is similar to 

those of Cutter and Derakhshan (2020), who identified low community capital as the driver 

in the least resilient communities in the U.S 
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Table 4.5. Z-scores of BRIC capitals in the most concentrated military communities. 

County 
Percent 
Military 
Employ. 

Social Econ-
omic 

Infrast-
ructural 

Comm-
unity 

Institut-
ional 

Enviro-
nmental 

Chattahoo-
chee, GA 52 -0.34 -1.99 0.35 -3.28 -0.52 -0.33 

Pulaski, MO 28 0.69 -0.16 -1.42 -1.02 -0.56 -0.28 
Onslow, NC 25 0.58 -0.48 -0.03 -0.85 1.19 1.19 
Geary, KS 22 1.20 0.54 0.90 -0.03 0.70 -0.16 
Christian, 
KY 14 0.71 -0.28 0.05 -0.14 0.19 -0.48 

Vernon 
Parish, LA 14 0.75 -0.61 -0.86 -0.14 1.73 -0.26 

Coryell, TX 14 0.34 -0.66 -0.39 -1.21 -0.15 -0.05 
Norfolk, VA 12 -0.05 0.28 1.69 -0.83 0.24 -1.88 
Liberty, GA 12 1.00 0.25 -0.58 -0.04 -0.34 1.52 
Elmore, ID 12 0.15 0.02 0.03 -1.42 -0.68 -0.29 

 
4.5 SPATIAL ANALYSIS OF COMMUNITY RESILIENCY OF MILITARY 

COMMUNITIES 

Significant clusters of high BRIC scores existed in the upper Great Plains, New 

England, and southern Louisiana (Figure 4.5).  Low BRIC clusters were located throughout 

the western states, primarily in the southwest and into southern Texas. Smaller clusters of 

low BRIC existed in pockets of the southeast, including Appalachia and Florida. Only one 

of seven (14%) military communities located in high BRIC clusters was a low outlier, 

which was Riley County, Kansas, home to Fort Riley and Kansas State University. Out of 

the 21 military communities located in low BRIC clusters, 7 were high-value outliers 

(33%). The outliers were expected, as BRIC values are higher in military communities. 

The seven outliers of high BRIC values were located in the southeast and central Texas, 

and no outliers were located in the southwest. 
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Figure 4.5: Anselin Moran’s I output for BRIC clusters (military communities in dark 
outline). 

  
Community capital was the most influential component of BRIC in the logit model, 

and higher values were more likely to be associated with non-military communities. Low 

values of community capital clustered along the West Coast, Southwest, Florida, and others 

(Figure 4.6).  Out of the 33 military communities located in low-value clusters, zero were 

high-value outliers, while 16% of all non-military communities in low community capital 

clusters were high-value outliers. This indicated that lower community capital was a trait 

consistent across military communities. In addition, 8 out of 13 (62%) military 

communities in high-value clusters were identified as low-value outliers, compared to only 

16% of non-military communities. The spatial analysis findings add to the logit model 

results that identified community capital was uniquely lower in military communities, 

regardless of prevailing geographic trends.  
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Figure 4.6: Community Capital Clusters (military communities in dark outline). 
 

 Social capital, the next most influential variable in the model, had high-value 

clusters in the Northeast, Midwest, and the Great Salt Lake region (Figure 4.7). Out of the 

16 military communities located in clusters of high social capital, zero were low outliers, 

compared to 5% of non-military communities. Low values of social capital were clustered 

primarily in the southern U.S., including Florida, south Texas, and the Mississippi River 

valley. In those areas, 5 out of 13 (38%) military communities were identified as high-

value outliers, compared to only 17% of non-military communities. The individual 

variables in social capital were sociodemographic and economic characteristics such as 

educational equity, transportation access, food access, and health coverage. Many social 

capital variables are high in military communities due to enlistment requirements and 

benefits provided to service members and their families.  
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Figure 4.7: Social Capital Clusters (military communities in dark outline). 
 

No significant patterns or outliers emerged from the LISA statistic in environmental 

capital. Only a few small clusters of high values existed along the coastline (wetlands) and 

low values in urban areas (perviousness). After conducting the statistical and spatial 

analysis of the differences between military and non-military communities in resiliency, 

military communities had uniquely lower levels of community capital than non-military 

communities, regardless of geographic location. Social capital was higher in military 

communities but is not as strong as the influence of community capital. 

4.6 COMPARING WITHIN MILITARY COMMUNITIES BY MILITARY 

DEPARTMENT 

In addition to identifying differences between military and non-military 

communities, it is also beneficial to identify differences within military communities, using 

the service branch represented by the base. This type of analysis helps leaders in the DoD 

and state and federal governments identify any differences in Army, Air Force, or Navy 
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communities' underlying conditions. Non-parametric tests examined any differences, this 

time using the Kruskal-Wallis test and multinomial logistic regression. Table 4.6 displays 

the Kruskal-Wallis test results against the mean ranks of the 93 military communities in 

the dataset. The 13 Joint communities with multiple types of bases were not included.  

Significant differences were found in hazard losses and social vulnerability, while 

differences in the mean ranks of community resilience were not statistically significant. 

After conducting multiple comparisons between community types, there were significant 

differences between Army and Air Force communities in hazard losses. Army communities 

had lower total losses per capita, while Air Force communities had greater total losses per 

capita. Interestingly, Navy communities had greater losses per capita on average, but that 

was due to the outlier of Monroe County, FL ($152,285). Non-parametric statistical tests 

reduced the impacts of outliers on results, as shown in the mean rank values. When 

conducting multiple comparisons for social vulnerability, significant differences were 

found, where Air Force communities had significantly higher SoVI scores than Navy 

communities.  

Table 4.6. Comparing between military community type (Kruskal-Wallis test). 

 Military 
Community Type N Mean Mean 

Rank 
Adjusted H 

Statistic p-value*** 

Hazard 
Losses 

Army 
Air Force 

Navy 

34 
31 
28 

$2,950 
$8,275 
$9,378 

40.6* 
57.5* 
43.2 

7.72 .027 

SoVI 
Army 

Air Force 
Navy 

34 
31 
28 

-1.13 
-0.21 
-1.92 

45.2 
56.6** 
38.5** 

6.85 .033  

BRIC 
Army 

Air Force 
Navy 

34 
31 
28 

2.70 
2.76 
2.75 

40.7 
52.7 
48.3 

3.30 .192 

* Differences in the mean ranks of hazard losses between Army and Air Force communities 
were statistically significant (p =.034) ** Differences in mean ranks of SoVI between Air 
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Force and Navy communities were statistically significant (p =.03) *** Bonferroni 
correction applied for multiple tests. 
 
4.7 DIFFERENCES IN SOVI FACTORS WITHIN MILITARY COMMUNITIES 

 Once again, the overall SoVI score was unpacked to identify the factors 

contributing to the significant differences between communities by type of military base. 

Multinomial regression was performed using standardized SoVI factors as independent 

variables and the type of military community (Army, Air Force, and Navy) as dependent 

variables. Only 84 out of the 106 military communities were included in the model to 

reconcile differences in the number of Army, Air Force, and Navy communities. The 28 

Navy communities were used in the model, along with random samples of 28 Army and 

28 Air Force communities.  This was done to follow the same binary logit model 

procedures examining differences between military and non-military communities. The 

resulting model was statistically significant (	𝜒!(16) = 65.5	, 𝑝 = 	 .000) and correctly 

identified the different types of military communities 71.4% of the time for Army, 75% for 

Air Force, and 67.9% for Navy communities.  

Wealth (low), race (African American) and social status, and gender were the three 

factors that significantly contributed to differences in social vulnerability between Navy 

and Air Force communities (Table 4.7). With a one-unit increase in the wealth (low) factor, 

communities were 43 times more likely to be classified as Air Force than Navy and 11 

times more likely to be classified as Army than Navy communities. As noted earlier in the 

spatial analysis, military communities generally had similar wealth values as those around 

them and similar high and low-value clusters (no outliers). Therefore, larger amounts of 

wealth in Navy communities, or the lack of wealth in Army and Air Force communities,  

were likely due to Navy communities' geographic location on the coasts.  
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Only three naval communities had low levels of wealth (Onslow, NC, Yuma, AZ, 

and Kleberg, TX), and 16 out of the 28 Navy communities had wealth (low) factor scores 

less than negative 1, indicating high levels of wealth. In contrast, not a single Army and 

Air Force community had a wealth (low) factor less than negative 1, indicating a lack of 

wealth comparatively. The existing level of wealth is an essential factor to consider when 

assessing the communities’ ability to prepare and mitigate against adverse disaster 

outcomes. 

Table 4.7: Multinomial logistic regression results with SoVI factors displayed by 
descending Wald statistic by military community type. 

Factor B Wald 
𝜒! p-value Odds 

ratio 
Likely category with 

one unit increase 
Significant factors between Air Force and Navy  (negative denotes AF association) 

Wealth (low) -3.78 12.9 .000 43.45* Air Force 
Race (African Am. 
and Social Status) 1.64 5.79 .016 5.12 Navy 

Gender (female) -1.64 4.90 .027 5.13* Air Force 

Significant factors between Army and Navy Communities 
Wealth (low) -2.41 9.14 .002 11.15* Army 

Ethnicity (Hispanic) .949 .449 .034 2.58 Navy 

Significant factors between Army and Air Force (negative denotes Army association) 
Race and Social 

Status -1.52 8.19 .004 4.57* Army 

Special Needs 2.43 5.24 .022 11.31 Air Force 

*Inverted Odds-Ratio 

Higher levels of race (African American) and social status were associated  more 

with Army and Navy communities than Air Force communities. A one-unit increase in race 

and social status vulnerability was about five times less likely to be attributed to Air Force 

communities. Again, very few outliers existed in the spatial analysis of race and social 

status, so these differences were most likely due to Army, Air Force, and Navy 
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communities' geographic location. Only about a third of Air Force communities were in 

the South, compared to two-thirds of all Army communities and three-quarters of all Navy 

communities. Army and Navy communities were more heavily concentrated in the South, 

and therefore had higher levels of race and social status vulnerabilities. The special needs 

factor of social vulnerability was a significant contributor to the model between Army and 

Air Force communities. With a one-unit increase in the special needs factor, Air Force 

communities were 11 times more likely to be selected by the model. This was also due to 

special needs vulnerabilities having high-value clusters in the Great Plains, where more 

Air Force communities are overall.  

4.8 DIFFERENCES IN CAPITALS OF BRIC WITHIN MILITARY COMMUNITIES 

The multinomial logit model using the capitals of community resiliency was not 

significant (𝜒!(10) = 13.3	, 𝑝 = 	 .208) and only classified Army communities correctly 

54% of the time, Air Force communities 39% of the time, and Navy communities 54%, 

which was not significantly better than random choice. Community capital was the only 

significant contributor to the model (𝑝 = 	 .03). When multiple comparisons were 

conducted, significant differences were found between Army and Navy communities (B = 

-.988, Wald 𝜒! = 5.65, p = .017). With a one-unit increase in community capital, military 

communities were 2.7 times more likely to be classified as Army communities than Navy. 

Navy communities were in the Pacific Northwest, the southwestern U.S., and along the 

Atlantic Coast, where low community clusters were located. Army communities were 

located mostly in areas with higher community capital values, such as Kentucky, Alabama, 

and South Carolina. Only one Navy community had a community capital score greater than 

the mean, compared to the eight Army communities that met the same criteria. 
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4.9 HAZARD LOSSES COMBINED WITH SOVI AND BRIC 

Comparing SoVI and BRIC scores in communities helped identify communities' 

underlying conditions but only provided part of the picture. Past economic losses should 

also be considered when comparing the hazardousness of places. As found earlier, hazard 

losses are significantly lower in military communities than in others, and Army 

communities had significantly lower damages than non-military military communities. 

However, many military communities have experienced significant damages from hazards 

in the past. Table 4.8 displays the ten military communities with the highest hazard losses 

per capita from 1960-2018.  

Table 4.8. Military communities with the highest hazard losses per capita (1960-2018). 

Location Major Military 
Base 

Crop 
Losses Per 
Capita($) 

Property 
Losses Per 
Capita ($) 

Total Losses 
Per Capita 

($) 
Monroe      

County, FL NAS Key West 5,999 146,287 152,285 

Grand Forks 
County, ND 

Grand Forks 
AFB 554 70,938 71,492 

Jackson       
County, OK Altus AFB 1,113 40,642 41,755 

Anchorage, AK JB Elmendorf-
Richardson 1 34,491 34,492 

Harrison      
County, MS 

Keesler AFB and 
NCBC Gulfport 177 34,032 34,209 

Santa Rosa 
County, FL 

NAS Whiting 
Field 326 33,275 33,601 

Okaloosa    
County, FL Elgin AFB 168 23,330 23,498 

Coffee County, 
AL Fort Rucker 1,998 13,623 15,621 

Escambia     
County, FL NAS Pensacola 101 14,350 14,451 

Meade        
County, SD Ellsworth AFB 560 12,680 13,240 

Source: Data compiled by author from SHELDUS 
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All military communities located along the Gulf of Mexico are within the top ten 

hazard losses per capita, except for Bay County, FL (top 13). Hurricanes, the most 

expensive type of hazard in the U.S., have wreaked havoc on military communities in 

recent years (Gall et al., 2009). Grand Forks County, ND, and Jackson County, OK were 

two communities that were unexpected to be in the top three due to the relatively little 

media attention the Midwest receives (Figure 4.8). Grand Forks experienced frequent 

riverine flooding events along the Red River of the North, while Jackson County, 

Oklahoma, located along the Red River of the South, experienced severe storms, tornadoes, 

and periodic flooding. Most of the damages in these communities were due to a singularly 

large hazard event. In Grand Forks, the 1997 Red River Flood caused over $60,000 in 

damages per capita while in Jackson County, OK, severe storms and high winds caused 

over $35,000 in damages per capita in 2008. These single hazard events led to Presidential 

Disaster Declarations and accounted for over 85% of Jackson and Grand Forks Counties' 

damages in the 59-year dataset.  

Anchorage, Alaska, experienced the deadly 1964 Great Alaskan earthquake, its 

most damaging event. Anchorage experienced other hazards as well, such as severe winter 

weather, flooding, and even wildfire. Coffee County, Alabama, located 60 miles from the 

Gulf, experienced frequent flooding events  as well as occasional tornado outbreaks. The 

2007 Enterprise, AL tornado was an EF-4 that destroyed the local high school, several 

hundred homes and businesses, and killed nine people, including the children of soldiers 

at nearby Fort Rucker (Pitts, 2017). Lastly, Meade County, SD, located on the Black Hills' 

eastern slope, experienced many hazard types such as flash flooding, wildfires, landslides, 

severe storms, and winter storms.  
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Figure 4.8: Total Losses Per Capita in the United States (1960-2018), military communities 
in dark outline and hazard losses presented in quartiles. 

 
In addition to a per capita assessment, hazard losses were also adjusted by the size 

of the county’s military population (total losses per capita x number of military members). 

Results of this adjustment highlight communities where hazard losses have impacted the 

most military members. The larger military communities of El Paso County, CO, San 

Diego County, CA, and Onslow County, NC, replaced smaller military communities of 

Grand Forks, Jackson, and Coffee Counties in the top ten. The other counties along the 

Gulf of Mexico and Anchorage, AK, remained. El Paso County, Colorado, with over 

30,000 military members, experienced the full spectrum of hazards. Hazard damages in the 

Colorado Springs area (El Paso County) totaled $3,800 per capita and included losses from 

flooding, wildfires, winter weather, and severe weather like hail. San Diego County had 

relatively low damages per capita ($1,473) over the 59-year period, but when multiplied 

by the 73,000 military members in the county, it demonstrated that the losses have 
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impacted many military families. Compare that to Jackson County, OK, for example, 

which had only 1,000 military members but a per capita loss of over $40,000. While the 

losses were greater in Jackson County, fewer military members and families were 

impacted. San Diego County experienced an increasing amount of hazard losses, however, 

mostly due to wildfire. Onslow County, NC, is on the east coast and home to Camp 

Lejeune, a Marine Corps base home to 40,000 service members. Onslow residents 

experienced frequent flooding events, including large flood losses in 2018 from Hurricane 

Florence and other hazards like severe weather.  

However, hazard losses only show the magnitude of physical damage that a 

community experienced and does not consider the people who bear the brunt of the losses 

or how that community recovers. It also skews the results to show counties with singular 

or a few large-scale hazard events, compared to more frequent but smaller hazard events. 

While Monroe County, FL experienced the most hazard losses by far, the underlying social 

vulnerability and resiliency in that county were about average (SoVI = 0.48, BRIC = 2.734) 

compared to other places. Similarly, El Paso County, CO and San Diego County, CA had 

lower than average social vulnerability and higher resiliency. Onslow County, NC, on the 

other hand, had lower social vulnerability but lower resiliency than average, indicating it 

may not be as resilient as other communities.  

When hazard losses were combined with the underlying measures of social 

vulnerability and community resiliency in a community, the community's hazardousness 

was assessed. This is not to say that places such as Monroe County, FL are not hazardous 

or that there are not vulnerable populations within the county; only that when compared at 

the county level, there are other counties that may face worse consequences if a similar 
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magnitude hazard event were to occur. Table 4.9 displays the five military communities 

that were above the median level of hazard losses ($3,878), above the median SoVI (.30), 

and below the median BRIC (2.733). Interestingly, four out of the five are located in the 

Southwest.  

Val Verde County, TX is located along the U.S. and Mexico border and contains 

Laughlin Air Force Base, a relatively small base used to train future Air Force pilots. As 

expected, higher social vulnerability in Val Verde was driven by ethnicity (Hispanic) and 

service sector employment factors. Low community resiliency in Val Verde was driven by 

lower levels of community and institutional capital. It is a smaller county by population 

but experienced periodic flooding and severe weather events such as hailstorms that caused 

significant damages on a per capita basis. When higher levels of social vulnerability and 

lower levels of resiliency were taken into account, these hazard losses were amplified, and 

recovery took longer or was uneven within the community. Roosevelt and Curry counties 

in New Mexico have almost identical drivers of social vulnerability and resilience as Val 

Verde County, Texas, and experienced similar hazards. These counties border each other 

and contain Cannon Air Force Base, another smaller-sized base home to an Air Force 

Special Operations Wing. Kleberg County is another South Texas county and faces similar 

hazard threats like flooding, but it is located along the Gulf Coast and experiences 

hurricanes. It has the same drivers of low social vulnerability but also has lower levels of 

economic resilience.  
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Table 4.9: Military communities greater or less than median thresholds of SoVI and BRIC 
respectively, sorted by total hazard losses. 

Location Major Military 
Base 

Hazard 
Losses Per 
Capita ($) 

Social 
Vulnerability 

(SoVI) 

Community 
Resiliency 

(BRIC) 
Roosevelt 

County, NM 
Cannon Air 
Force Base 7,092 2.7 2.558 

Curry      
County, NM 

Cannon Air 
Force Base 5,728 0.92 2.627 

Val Verde 
County, TX 

Laughlin Air 
Force Base 5,646 5.27 2.553 

Kleberg 
County, TX 

Naval Air Station 
Kingsville 5,452 3.95 2.726 

Dale      
County, AL Fort Rucker 4,873 0.05 2.695 

 
One of the constants when comparing both Tables 4.8 and 4.9 is the presence of 

Air Force Bases, Naval Air Stations, and an Army Aviation community (Dale and Coffee 

County, AL). Airbases, whether Air Force or Navy, appear to be in more hazardous 

communities overall when accounting for hazard losses, social vulnerability, and 

resiliency. The Gulf of Mexico and highly rural locations in the West provide the military 

with large areas over land and sea where aircraft training and missile testing are unfettered. 

The Gulf locations provide instant access for fighter pilots and warships to conduct training 

in the Eglin Gulf Test and Training Range, located in the eastern half of the Gulf. This area 

in the Gulf of Mexico gives the military a vast area to conduct aircraft training and testing, 

joint exercises, and weapon testing free from the restrictions in place over more populated 

land areas and more trafficked sea areas (DoD, 2018). However, as mentioned earlier, the 

coastal airbases along the Gulf are primarily located directly on the water and shoreline, 

making them extremely vulnerable to storm surge, wind damage, and flooding from 

hurricanes (Figure 4.9). NAS Kingsville, Keesler AFB, NAS Pensacola, Eglin AFB, 

Tyndall AFB, NAS Key West, and even more inland locations such as Fort Polk, 
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Louisiana, and Fort Rucker, Alabama, have experienced significant damages from 

hurricanes in the past.  

 
Figure 4.9: Hurricanes and Military Communities along the Gulf of Mexico. Labeled tracks 
are select hurricanes that have significantly impacted military communities and hazard 
losses are from all hazards, data from NOAA’s IBTrACS database (Knapp et al., 2018). 
 

Flooding due to extreme precipitation and continued human development, as well 

as the frequency of major hurricanes, are likely to continue and increase in the future 

(Wuebbles et al., 2014). Communities with a severe risk to hazards like hurricanes are ideal 

targets for military and local community partnerships to decrease overall disaster risk. 

Public-private partnerships (PPPs) effectively reduce the costs of projects designed to 

increase local communities' resilience to hazards (Twigg, 2015).  The essential ties between 

military bases and local communities can be strengthened by using PPPs to decrease their 

vulnerability and increase their resilience to hazards.  

4.10 SUMMARY OF RESULTS  

The combination of both statistical and spatial analysis resulted in a variety of 

significant findings in the hazardousness of military communities in the United States. 
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First, significant differences were found between military and non-military communities 

in hazard losses and social vulnerability. The differences in hazard losses were primarily 

explained by military communities' geographic location, whereas many factors, including 

location, influenced social vulnerability in military communities. The factor of social 

vulnerability found to be the most influential in explaining these differences was age, 

where military communities have lower age vulnerability and were low spatial outliers in 

high age clusters. The service sector employment factor in SoVI was also an influential 

variable in the regression model where communities with higher service sector 

vulnerability were more likely classified as military. This was also moderately consistent 

across geographies, except in the national capital region.  

Second, there were significant differences in social vulnerability between the type 

of military community. Communities with Air Force bases had significantly higher SoVI 

scores overall, especially when compared to Navy communities. The wealth (low) factor 

drove these differences in SoVI, where Navy communities had significantly higher wealth 

than Army and Air Force communities, thus reducing their relative levels of social 

vulnerability. Race (African American and social status) was also a significant contributing 

factor. Air Force communities had a significantly lower race (African American) and social 

status vulnerability than Navy and Army communities. This was also a function of location. 

Fewer Air Force communities are located in the South, with its historical background of 

higher levels of African Americans and lower-income populations. 

Third, there was no significant difference between military and non-military 

communities and between types of military communities in community resilience. 

However, community capital was lower in military communities overall, with increasing 
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community capital levels more likely to represent non-military communities. In military-

dominated counties, community capital was the lowest capital of resilience in those places. 

The differences in community capital were mostly consistent regardless of geographic 

location, with just over half of military communities in high-value clusters identified as 

low-value outliers. Within military communities, Navy communities had significantly 

lower levels of community capital than Army communities. However, this was reflective 

of geographic location. Army communities are mostly in high community capital clusters 

(Southeast), and Navy communities are located along the coast where there are lower 

community capital levels.  

Lastly, military communities along the Gulf of Mexico and select military 

communities in Alaska and the Dakotas have experienced the most hazard losses per capita. 

When hazard losses, social vulnerability, and resilience levels were analyzed together, 

aviation hubs in South Texas, New Mexico, and Dale County, AL were most at risk for 

adverse disaster outcomes. This was driven by the combination of high Hispanic ethnicity, 

high service sector employment, and low levels of community capital. In general, military 

communities along the Gulf of Mexico were most at risk to hazards and will likely continue 

to be in the future.
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

Previous studies related to hazards and militaries identified the military’s role in 

emergency management. A smaller amount of literature identified how military bases assist 

local communities in disaster response and initial recovery. The primary goal of this 

research was to understand how military bases influence the underlying conditions of 

disaster risk in their communities and the drivers producing that risk. Doing so was a crucial 

first step in understanding military communities' overall hazardousness and identifying 

communities that may require greater assistance in reducing risk in their communities. 

Counties were identified as military communities, and then a variety of statistical and 

spatial tests and analyses were conducted, including logistic regression and Anselin Local 

Moran’s I. 

Results were robust in that military communities have lower social vulnerability 

than other communities driven by their lower age vulnerability. The primary factors 

increasing the social vulnerability of military communities were service sector employment 

and race (African American and social status). Higher levels of service sector vulnerability 

were in military-dominated communities, and Air Force communities had the highest 

overall social vulnerability levels out of all defense service branches. In community 

resiliency, community capital is the primary driver of lower resilience within military 

communities, although military communities had higher resiliency levels than non-military
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 communities. This finding bridged knowledge from hazards researchers that identified 

community capital as necessary for resilient communities with those of psychologists, who 

studied the connections between military families and the local community as key to 

building resilience at the individual level. 

These findings are helpful on several levels. At a basic level, it shows that military 

communities are unique places and that military bases and their influence should not be 

overlooked or ignored when conducting hazard research or in practice. It also identified 

the factors contributing to military communities’ lower social vulnerability and greater 

resiliency to hazards. This can help county, state, federal emergency managers, NGOs, and 

the Department of Defense allocate funding, prioritize mitigation and resilience projects, 

and determine what types of outreach and educational programs should be conducted to 

maximize benefits. At a more profound level, it signifies that there are inequities in the 

levels of social vulnerability and resilience within military communities that extend beyond 

differences in geographic location, such as the differences between neighboring places 

around Petersburg and the Hampton Roads region of Virginia. 

There are several limitations and shortcomings from this research. The local 

impacts and differences in military communities were not observed or were muted at the 

county level, except in smaller county geographies and independent cities like Petersburg, 

VA. A finer scale of analysis would have improved the results and findings in places like 

Beaufort County, SC, due to the large retirement population on Hilton Head Island. 

Beaufort County includes Hilton Head and Port Royal Island, the latter home to two 

military bases and a younger population, with very different vulnerabilities than the island 

of Hilton Head. Also, hazard losses were biased towards more extensive, more extreme 
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events like hurricanes. The impacts from less costly and more frequent events were 

subdued. Frequent events may not cause extensive direct economic damages but cause 

indirect damages connected to school and road closures in communities, for example. 

Another limitation of the research is that the regression models did not directly 

address spatial autocorrelation. As mentioned previously, this omission is partly addressed 

by using Anselin Local Moran’s I to identify spatial outliers, which is useful when spatial 

autocorrelation is present in the data (Anselin, 1995). Lastly, the data did not account for 

the future impacts of anthropogenic climate change and its association with climate-

sensitive hazards. This may have underestimated some coastal locations' hazardousness, 

such as the Hampton Roads, which are under severe threat from sea-level rise, and even 

underestimated the hazardousness of more continental locations, which are at risk to 

drought in a warming climate.  

Many other aspects regarding the vulnerability and resilience in military 

communities were not captured in this research. Military bases create other political, 

institutional, and environmental vulnerabilities in communities. Although not the focus of 

this research, they are briefly described below: 

•The potential of future base realignment and closure commissions (BRAC) or 

troop and mission reductions on military bases is a constant threat. Communities spend 

money to ‘BRAC proof’ their communities (Sorenson, 2018). Hazards also influence 

BRAC decisions (Dixon, 1994). 

•Pollution from toxic chemicals, waste, and pollutants on military bases impact 

local communities (Davis et al., 2007). The impacts of pollution have also been evidenced 

at former military sites (Kopack, 2019).  
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•Civilians cannot receive compensation from federal entities under the 

discretionary exclusion of the Federal Tort Claim Act. A dam failure was partially 

attributed to the base commander's actions at Fort Jackson in 2015, flooded downstream 

off-base homes, and the homeowners could not be compensated for those damages (US 

Court of Appeals, 2020; Hamilton, 2016). 

•Department of Defense installations do not pay property taxes on their land or 

provide any payment in lieu of taxes (PILT) to local communities (H.R.4710). Non-

resident military members are also exempt from state income taxes. The impact of these 

foregone payments on communities to their underlying vulnerability and resiliency is 

unknown. 

There are also other positive influences on resiliency and vulnerability in military 

communities not captured in this research. These include: 

•The newly established military infrastructure resilience (MIR) and defense 

community infrastructure pilot program (DCIP) provides additional funding sources in 

military communities to increase infrastructure resilience (Congressional Research 

Service, 2020). 

•Mutual aid agreements can help speed up the initial recovery in local communities 

and disaster response (Trivedi, 2020). 

•Additional funding and support for local school districts are available for military 

communities (Buddin, 2001). 

This research was premised on the belief that the Department of Defense and local 

communities have a shared responsibility to reduce disaster risk in their communities and 

identified the factors in which local communities and military bases can reduce that risk 
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(NRC, 2012). To meet the challenges in a future climate and to create resilient military 

communities, partnerships need to go beyond emergency response and initial recovery. 

Doing so will not only increase the resilience in the community, but also the resilience of 

the nation’s military.  

The top-down approach used in this research was necessary to understand and 

compare military communities' current hazardousness across the U.S. However, it should 

not be used as a replacement for local hazard assessments and mitigation plans. As local 

communities and military bases continue to work together to increase resilience in their 

communities, more guidance, direction, and funding are required at the federal level to set 

goals, standards, and equitable policies for all military communities, especially in the face 

of global climate change. Future directions of research in hazards and military communities 

include assessing vulnerability and resilience over time, especially before and after base 

closures or severe hazard events; conducting localized case studies that identify how 

military bases influence all phases of the disaster cycle; the effectiveness of PPP’s to reduce 

disaster risk reduction, such as those approved by the MIR and DCIP programs; and on 

other political and institutional influences on vulnerability and resilience in military 

communities that create or reduce disaster risk. Hazards research in communities that 

ignore a military base’s presence are likely to miss critical factors influencing their 

vulnerability and resiliency, as they were shown to be unique places in the landscape.



 

64 

REFERENCES 

Adger, W.N. 2000. Social and Ecological Resilience: Are they Related?. Progress in 
Human Geography 24: 347-363. 

 
Anselin, L. (1995). Local Indicators of Spatial Association-LISA. Geographical Analysis. 

2 (27) 93-115. 
 
Ashcroft, D. B. A., & Mason, D. J. L. (2006). “Operation Dragon Comeback” Air and 

Education Training Command’s Response to Hurricane Katrina. U.S. Air Force. 
Washington D.C. 

 
Balbach, H., Goran W., and Latino, A. (2014). From protection to projection: An 

overview of location considerations for U.S. military bases. Military Geosciences 
in the Twenty-First Century: The Geological Society of America Reviews in 
Engineering Geology. 22, 27-38. 

 
Bewick, V., Cheek, L., & Ball, J. (2005). Statistics Review 14: Logistic Regression. 

Critical Care. 9(1): 112:118. 
   
Banks, W. (2006). Who's in charge: The role of the military in disaster response. 

Mississippi College Law Review, 26(1), 75-106. 
 
Borden, K. A., & Cutter, S. L. (2008). Spatial patterns of natural hazards mortality in the 

United States. International Journal of Health Geographics, 7(1), 64. 
https://doi.org/10.1186/1476-072X-7-64 

 
Brzoska, Michael. (2012). Climate Change and the Military in China, Russia, the United 

Kingdom, and the United States. Bulletin of the Atomic Scientists 68(2), 43-54. 
 
Buddin, R., Gill, B.P., & Zimmer, R.W. (2001). Impact Aid and the education of military 

children. Rand Corp: Santa Monica, CA. 
 
Center for Emergency Management and Homeland Security. (2020). Spatial Hazard 

Events and Losses Database for the United States, Version 18.0. [Online 
Database]. Phoenix, AZ: Center for Emergency Management and Homeland 
Security, Arizona State University.  

 
Clever, M., & Segal, D. R. (2013). The Demographics of Military Children and Families. 

Future of Children. 23 (2).



 

65 

Congressional Research Service. (2020). “The Defense Community Infrastructure Pilot 
Program (DCIP): FY2020 Funding and Approved Projects” Washington D.C 

 
Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to 

Environmental Hazards. Social Science Quarterly, 84(2), 242–261. 
https://doi.org/10.1111/1540-6237.8402002 

 
Cutter, S.L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to 

natural hazards. PNAS. 105(7) 2301-2306.   
 
Cutter, S. L., Burton, C. G., & Emrich, C. T. (2010). Disaster Resilience Indicators for 

Benchmarking Baseline Conditions. Journal of Homeland Security and 
Emergency Management, 7(1). https://doi.org/10.2202/1547-7355.1732 

 
Cutter, S. L., Ash, K. D., & Emrich, C. T. (2014). The geographies of community disaster 

resilience. Global Environmental Change, 29, 65–77. 
https://doi.org/10.1016/j.gloenvcha.2014.08.005 

 
Cutter, S. L., Ash, K. D., & Emrich, C. T. (2016). Urban-Rural Differences in Disaster 

Resilience. Annals of the American Association of Geographers, 106(6), 1236–
1252. https://doi.org/10.1080/24694452.2016.1194740 

 
Cutter, S. L., & Derakhshan, S. (2020). Temporal and spatial change in disaster resilience 

in US counties, 2010–2015. Environmental Hazards, 19(1), 10–29. 
https://doi.org/10.1080/17477891.2018.1511405 

 
Department of Defense. (2017). “Military Installations, Ranges, Training Areas.” 

Accessed on June 3, 2020. https://catalog.data.gov/dataset/military-installations-
ranges-and-training-areas. 

 
——— (2018). “Preserving Military Readiness in the Eastern Gulf of Mexico.” Office of 

the Secretary of Defense. Washington D.C. 
 
——— (2019a). “Report on Effects of a Changing Climate to the Department of 

Defense.” Office of the Under Secretary of Defense for Acquisition and 
Sustainment. Washington D.C.  

 
——— (2019b). “2019 Demographics Report.” Office of the Deputy Assistant Secretary 

of Defense for Military Community and Family Policy. Washington D.C. 
 
——— (2021). “Statement by Secretary of Defense Lloyd J. Austin III on Tackling the 

Climate Crisis at Home and Abroad.” Press Release, January 27, 2021. 
Washington D.C. 

 



 

66 

Davis, J., Hayes-Conroy, J., & Jones, V. (2007). Military pollution and natural purity: 
seeing nature and knowing contamination in Vieques, Puerto Rico. GeoJournal 
69 (3) 165-179. 

 
Dixon, J., & Murphy, T. (1994). Creating emergency programs for business disaster 

recovery: The case of Dade County, Florida. 
 
Doe III, W. (2010). “The legacy of federal military lands in the US.” In Modern Military 

Geography, edited by Eugene Palka and Frank Galgano, 92-103. 
 
Dunning, C. M. & S. Durden. (2011). Social vulnerability analysis methods for Corps 

planning. 105. Institute for Water Resources: Army Corps of Engineers. 
Washington, D.C. 

 
Embrey, E. P., Clerman, R., Gentilman, M. F., Cecere, F., & Klenke, W. (2010). 

Community-Based Medical Disaster Planning: A Role for the Department of 
Defense and the Military Health System. Military Medicine, 175(5), 298–300. 
https://doi.org/10.7205/MILMED-D-09-00256 

 
Emrich, C. T., & Cutter, S. L. (2011). Social Vulnerability to Climate-Sensitive Hazards 

in the Southern United States. Weather, Climate, and Society, 3(3), 193–208. 
https://doi.org/10.1175/2011WCAS1092.1 

 
Emrich, E.T. & Tobin G.A. (2017). “Resilience: An Introduction”. In Vulnerability and 

Resilience to Natural Hazards, edited by Sven Fuchs and Thomas Thaler, 124-
144.   

 
ESRI. (2020). “How Cluster and Outlier Analysis (Anselin Local Moran’s I) works” 

Accessed 2020. https://www.desktop.arcgis.com/en/arcmap10.3/tools/spatial-
statistics-toolbox. 

 
Federal Emergency Management Institute. (2011). “Military Resources in Emergency 

Management.” Emergency Management Course IS-75. Washington D.C. 
 
——— (2020). “National Risk Index: Primer” Washington D.C.  
 
Fekete, A. & Montz, B. (2017). “Vulnerability: An Introduction”. In Vulnerability and 

Resilience to Natural Hazards, edited by Sven Fuchs and Thomas Thaler, 14-31. 
 
Ferris, E. (2012). Future directions in civil-military responses to natural disasters. 

Australian Civil-Military Centre. Brookings Institute, Washington D.C. 
 
Floyd, D. (1997). “Defending America’s Coasts: 1775-1950”. Office of History, United 

States Corps of Engineers. Washington D.C 
 



 

67 

Gall, M., Borden, K. A., Cutter, S.L. (2009). When Do Losses Count? Six Fallacies of 
Natural Hazards Loss Data. American Meteorological Society. (6)799-809. 
DOI:10.1175/2008BAMS2721.1. 

 
Government Accountability Office. (2020). “Climate Resilience: DoD Coordinates with 

communities, but needs to assess the performance of related grant programs.” 
Report to the Ranking Member, Committee on Armed Services, U.S. Senate. 
Washington D.C. 

 
Hahn, D. J., Viad E., Corotis R., & Ashe D. (2017). Multihazard Mapping of the United 

States. Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil 
Engineering (3): 1–14. DOI:10.1061/AJRUA6.0000897. 

 
Hamilton, J.W. (2016). Contamination at U.S. military bases: Profiles and responses. 

Stanford Environmental Law Journal, 35(2), 223-250. 
 
Harrell, M. C. (2000). Invisible women: Junior enlisted Army wives. Rand Corporation. 

Washington D.C. 
 
H.R. 4710. (2013). “To amend the Payments in Lieu of Taxes Program to include all 

lands owned by the United States Government that are under the jurisdiction of 
the Department of Defense.” Proposed under the 113th Congress. 

 
Hultquist, A. & Petras, T. (2012). An Examination of the Local Economic Impacts of 

Military Base Closures.” Economic Development Quarterly. 2. 
 
Huebner, A.J., Mancini, J.A., Bowen, G.L, Orthner, D.K. (2009). Shadowed by War: 

Building Community Capacity to Support Military Families. Family Relations. 
58(4)216-228. 

 
IBM Corp. (2019). IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY. 
 
Kopack, Robert. (2019). Rocket Wastelands in Kazakhstan: Scientific Authoritarianism 

and the Baikonur Cosmodrome.” Annals of the American Association of 
Geographers, 109(2) 555-567. 

 
Knapp, K.R., Diamond, H.J., Kossin, J.P., & Shreck, C.J. (2018). International Best 

Track Archive for Climate Stewardship (IBTrACS) Project, Version 4. [North 
Atlantic subset]. NOAA National Centers for Environmental Information. 
Accessed February 11, 2021. 

 
Malešič, M. (2015). The impact of military engagement in disaster management on civil-

military relations. Current Sociology, 63(7), 980–998. 
https://doi.org/10.1177/0011392115577839 

 



 

68 

Mancini, J.A., O’Neal C.W., Martin, J.A., Bowen, G.L. (2018). Community Social 
Organization and Military Families: Theoretical Perspectives on Transitions, 
Contexts, and Resilience. Journal of Family Theory & Review. 16(10), 550-565. 

 
McCollester, M., Miro, M., & Van Abel, K. (2020). Building Resilience Together: 

Military and Local Government Collaboration for Climate Adaptation. Rand 
Corporation. https://doi.org/10.7249/RR3014 

 
Morrow, Betty. (1999). Identifying and Mapping Community Vulnerability. Disasters. 

23(1) 1-18. 
 
Murphy, Brenda. (2007). Locating social capital in resilient community-level emergency 

management. Natural Hazards. 41,297-315. 
 
National Defense Authorization Act for Fiscal Year 2020. (2020). S.1790. 116th 

Congress. Washington D.C. 
 
Navy Installations Command. (2021). “Naval Air Station Joint Reserve Base New 

Orleans: History”. Accessed 2021. https://cnic.navy.mil/regions/cnrse 
/installations/nas_jrb_new_orleans/about/history. 

 
National Oceanic and Atmospheric Administration. (2019). National Centers for 

Environmental Information U.S. Billion-Dollar Weather and Climate Disasters. 
Accessed 2019. https://ncdc.noaa.gov/billions. 

 
National Research Council. (2012). Disaster Resilience: A National Imperative. 

Washington D.C.: The National Academies Press.  
 
Nguyen, H.L., & Akerkar, R. (2020). Modelling, Measuring, and Visualising Community 

Resilience: A Systematic Review. Sustainability, 12, 7896. 
 
Ostadtaghizadeh, A., Ardalan, A., Paton, D., Jabbari, H., & Khankeh, H. R. (2015). 

Community Disaster Resilience: A Systematic Review on Assessment Models 
and Tools. PLoS Currents. 
https://doi.org/10.1371/currents.dis.f224ef8efbdfcf1d508dd0de4d8210ed 

 
Pitts, Sally. (2017). “Enterprise remembers tornado victims 10 years later”. WSFA 12 

News, February 22, 2017. Accessed 2020. 
https://www.wsfa.com/story/34576363/enterprise-remembers-tornado-victims-10-
years-later/ 

 
Rufat, S., Tate, E., Emrich, C. T., & Antolini, F. (2019). How Valid Are Social 

Vulnerability Models? Annals of the American Association of Geographers, 
109(4), 1131–1153. https://doi.org/10.1080/24694452.2018.1535887. 

 



 

69 

Schmidtlein, M., Deutsh, R., Piergorsch, W., Cutter, S. (2008). A Sensitivity Analysis of 
the Social Vulnerability Index. Risk Analysis, 28(4), 1099-1114.  

 
Strategic Environmental Research and Development Program (2017). “Climate Change 

Impacts and Adaptation on Southwestern DoD Facilities”. Final Technical 
Report, Department of Defense: Alexandria, VA.  

 
Sherrieb, K., Norris, F., & Galea, S. (2010). Measuring Capacities for Community 

Resilience. Social Indices Research 99: 227-247. 
 
Sorenson, David. (2019). More military base closure? Consider the alternatives. Defense 

& Security Analysis. 35(1), 23-39. 
 
Smith, A. B., & Katz, R. W. (2013). US billion-dollar weather and climate disasters: Data 

sources, trends, accuracy and biases. Natural Hazards, 67(2), 387–410. 
https://doi.org/10.1007/s11069-013-0566-5. 

 
Tate, E., Cutter, S. L., & Berry, M. (2010). Integrated Multihazard Mapping. 

Environment and Planning B: Planning and Design, 37(4), 646–663. 
https://doi.org/10.1068/b35157 

 
Tate, Eric. (2012). Social vulnerability indices: a comparative assessment using 

uncertainty and sensitivity analysis. Natural Hazards, 63, 325-347. 
 
Trivedi, Jennifer. (2020). “Mississippi after Katrina: Disaster Recovery & Reconstruction 

on the Gulf Coast.” Page 101. Lanham, Maryland: Lexington Books.  
 
Twigg, John. (2015). “Disaster Risk Reduction.” Good Practice Review. Humanitarian 

Policy Group. London, England.  
 
United States Army War College. (2019). “Implications of Climate Change for the U.S. 

Army.” Carlisle Barracks, Pennsylvania. 
 
United States Census Bureau. (2020). “Tables.” Accessed on August 3, 2020. 

https://www.census.gov/data/tables.html. 
 
——— (2018). “Cartographic Boundary Files”. Accessed on August 3, 2020. 

https://www.census.gov/geographies/mapping-files/time-series/geo/carto-
boundary-file.html 

 
United States Court of Appeals for the Fourth Circuit. (2020). “Kings Grant Owners’ 

Association Inc. v. United States of America.” No. 19-1090. 
 
Villafan, Freddy. (2016). Navigating Veteran Homelessness in San Diego. (Master’s 

Thesis). Retrieved from http://csusm-dspace.calstate.edu/handle/10211.3/170417. 
 



 

70 

Wisner, Benjamin. (2016). Vulnerability as Concept, Model, Metric, and Tool. Oxford 
Research Encyclopedias: Natural Hazard Science.  

 
Woodward, Rachel. (2015). Military Geography. International Encyclopedia of the 

Social & Behavioral Sciences. 15(2), 501-505.  
 
Wuebbles, D.J., Kunkel, K., Wehner, M., & Zobel, Z. (2014). Severe Weather in the 

United States Under a Changing Climate. EOS. 95(18):149-156.



 

71 

APPENDIX A 
 

VARIABLES AND FACTORS IN SOVI 
 

 This appendix identifies the dominant variables used as indicators in SoVI and the 

resulting component the variables loaded on after principal component analysis. More 

information can be found at the Hazards and Vulnerability Research Institute website at 

https://artsandsciences.sc.edu/geog /hvri.

Table A.1: Variables and Factors in SoVI 

Component Variables 

Race (African American 
and Social Status) 

Percent Black 
Percent female headed households 
Percent poverty 
Percent civilian unemployment 
Percent with less than 12th grade education 
Percent of housing units with no car 
Percent renters 
Percent mobile homes 
Percent children living in 2-parent families (-) 

Wealth (-) 

Median house value 
Percent households earning over $200k annually 
Median gross rent 
Per capita income 
Percent Asian 

Dependence and Age 
(Elderly) 

Median age 
Percent population under 5 years or 65 and over 
Percent households receiving social security benefits 
Percent unoccupied housing units 
People per unit (-) 

Ethnicity (Hispanic and 
Education) 
 

Percent Hispanic 
% speaking English as 2nd language w/ limit. proficiency 
Percent with less than 12th grade education 
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Ethnicity Cont. Percent of pop. without health insurance (county level) 

Special Needs Populations 
Hospitals per capita (county level only) 
Nursing home residents per capita 
Percent employment in extractive industry 

Race (Native American) Percent Native American 
Service Sector 
Employment 

Percent employment in service industry 
Percent female participation in labor force 

Female Percent female 
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APPENDIX B 
 

VARIABLES AND CAPITALS IN BRIC
 
 This appendix shows indicators of community resilience and the corresponding 

capital that were used in BRIC. More information can be found at the Hazards and 

Vulnerability Research Institute website at https://artsandsciences.sc.edu/geog /hvri.  

Table B.1: Variables and Capitals in BRIC 

Capital Indicator 

Social 

Educational Equity Health Coverage 
Age Mental Health 
Transportation Access Food Access 
Communication Capacity Health Access 
Language Competency Special Needs 

Economic 

Housing Capital Business Size 
Employment Multi-purpose retail 
Income and equality (race/ethnicity) 
Primary and Tourism Employment dependence 
Federal Employment 

Institutional 

Mitigation Spending Distance from state capital 
Flood Insurance Coverage Intercounty partnerships 
Jurisdictional Uniformity Population stability 
Disaster Aid Experience Nuclear accident planning 
Public Disaster Training Crop Insurance 

Infrastructural 

Housing type Housing age 
Temporary housing availability Sheltering needs 
Medical capacity Recovery 
Access/Evacuation Potential Industrial Re-supply 
Internet Access  

Community 

Place attachment (immigrants) Religious involvement  
Place attachment (tenure) Civic involvement 
Political engagement Disaster volunteerism 
Citizen disaster preparedness and response skills 

   



 

74 

 
Environmental 

Food Access/Self Sufficiency Pervious surfaces 
Natural buffers Water stress 
Energy use  
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APPENDIX C 
 

 DATA FOR MILITARY COMMUNITIES 
 

This appendix shows the values for hazard losses per capita, SoVI, and BRIC for 

each of the 106 counties that were classified as military counties. This is included so that 

readers can explore and understand the hazardousness of other places not mentioned or 

referenced in the analysis. Communities are displayed in ascending order by FIPS code 

(not shown)

Table C.1: Hazard Losses, SoVI, and BRIC in military communities 

County, State Major Military Base 
Hazard 

Losses Per 
Capita ($) 

SoVI BRIC 

Coffee County, AL Fort Rucker  15,621 -0.5 2.743 
Dale County, AL Fort Rucker  4,874 0.05 2.695 

Russell County, AL Fort Benning  2,463 1.08 2.665 
Anchorage Municipality, AK JBER 34,492 -3.69 2.607 

Fairbanks North Star, AK Fort Wainwright  462 -5.09 2.422 
Southeast Fairbanks, AK Fort Greely 5,330 -1.87 2.253 

Cochise County, AZ Fort Huachuca 1,173 1.94 2.474 
Yuma County, AZ MCAS Yuma 914 3.34 2.394 

Lonoke County, AZ Little Rock AFB 3,913 -2.71 2.762 
Kings County, CA NAS Lemoore 6,150 -0.24 2.572 

San Diego County, CA Camp Pendleton 1,474 -2.72 2.580 
Yuba County, CA Beale AFB 7,027 -0.81 2.717 

El Paso County, CO Fort Carson and 
Peterson AFB 3,800 -3.41 2.697 

New London County, CT Sub-Base New London 494 -1.34 2.904 
Kent County, DE Dover AFB 1,332 -0.66 2.863 
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Bay County, FL Tyndall AFB 10,322 0.85 2.813 
Duval County, FL Mayport Naval Station 226 0.23 2.790 

Escambia County, FL NAS Pensacola  14,451 -0.3 2.778 
Monroe County, FL NAS Key West  152,285 0.48 2.735 

Okaloosa County, FL Elgin AFB 23,498 -1.05 2.718 
Santa Rosa County, FL NAS Whiting Field 33,601 -3.97 2.742 

Bryan County, GA Fort Stewart 1,081 -3.95 2.885 
Camden County, GA Sub-Base Kings Bay  1,315 -2.49 2.734 

Chattahoochee County, GA Fort Benning  931 -8.07 2.467 
Columbia County, GA Fort Gordon 589 -4.82 2.736 
Houston County, GA Robins AFB 496 -1.5 2.798 
Lanier County, GA Moody AFB 3,760 0.55 2.682 
Liberty County, GA Fort Stewart 1,649 0.34 2.789 
Long County, GA Fort Stewart 1,421 -3.24 2.597 

Lowndes County, GA Moody AFB 899 0.27 2.730 
Muscogee County, GA Fort Benning  359 1.8 2.748 
Richmond County, GA Fort Gordon 505 2.8 2.766 
Honolulu County, HA Pacific Command 587 -4.27 2.570 

Elmore County, ID Mountain Home AFB 1,588 -1.31 2.625 
St. Clair County, IL Scott AFB 1,959 0.26 2.850 
Geary County, KS Fort Riley 949 -0.51 2.847 

Leavenworth County, KS Fort Leavenworth 1,749 -4.44 2.804 
Riley County, KS Fort Riley 1,034 -2.43 2.713 

Christian County, KY Fort Campbell  2,484 -0.12 2.723 
Hardin County, KY Fort Knox 1,007 -1.63 2.885 
Meade County, KY Fort Knox 1,652 -4.75 2.749 
Bossier Parish, LA Barksdale AFB 5,036 -1.4 2.818 
Vernon Parish, LA Fort Polk 10,498 -2.38 2.722 

Anne Arundel County, MD Fort Meade/USNA 441 -6.18 2.841 
St. Mary's County, MD NAS Patuxent River 2,528 -5.5 2.831 
Harrison County, MS Keesler AFB  34,209 1.85 2.783 
Lowndes County, MS Columbus AFB 8,526 0.8 2.749 
Johnson County, MO Whiteman AFB 1,617 -1.59 2.719 
Pulaski County, MO Fort Leonard Wood 3,418 -4.09 2.588 
Cascade County, MT Malmstrom AFB 275 -0.16 2.886 
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Sarpy County, NE Offutt AFB 2,400 -4.58 2.965 
Churchill County, NV NAS Fallon  215 -0.17 2.626 

Curry County, NM Cannon AFB 5,728 0.92 2.627 
Otero County, NM Holloman AFB 357 2.4 2.530 

Roosevelt County, NM Cannon AFB 7,092 2.7 2.558 
Jefferson County, NY Fort Drum 1,234 -0.73 2.775 
Camden County, NC NSA Hampton Roads 7,724 -3.28 2.858 
Craven County, NC MCAS Cherry Point 4,062 -0.22 2.794 

Cumberland County, NC Fort Bragg 2,075 0.19 2.783 
Harnett County, NC Fort Bragg 4,656 -1.44 2.707 
Hoke County, NC Fort Bragg 11,742 -0.78 2.704 
Moore County, NC Fort Bragg 4,915 0 2.674 
Onslow County, NC MCB Camp Lejeune 2,706 -3.18 2.771 
Wayne County, NC Seymour Johnson AFB 5,064 1.48 2.805 

Grand Forks County, ND Grand Forks AFB 71,492 -1.36 2.927 
Ward County, ND Minot AFB 5,999 -3.2 2.899 

Greene County, OH Wright-Patterson AFB 1,665 -2.56 2.845 
Comanche County, OK Fort Sill 1,687 0.08 2.697 
Garfield County, OK Vance AFB 1,767 1.05 2.816 
Jackson County, OK Altus AFB 41,755 2.77 2.746 
Newport County, RI Naval Station Newport 1,833 -1.58 2.815 
Beaufort County, SC MCAS Beaufort 1,244 0.59 2.670 
Berkeley County, SC Joint Base Charleston  9,597 -3.32 2.783 
Richland County, SC Fort Jackson 775 -0.62 2.853 
Sumter County, SC Shaw AFB 8,596 0.63 2.819 
Meade County, SD Ellsworth AFB 13,240 -4.34 2.777 

Montgomery County, TN Fort Campbell 1,175 -2.44 2.725 
Bell County, TX Fort Hood 2,671 -0.12 2.742 

Coryell County, TX Fort Hood 1,354 -1.46 2.625 
El Paso County, TX Fort Bliss 1,125 5.39 2.592 
Kleberg County, TX NAS Kingsville 5,452 3.95 2.726 
Taylor County, TX Dyess AFB 5,875 1.71 2.778 

Tom Green County, TX Goodfellow AFB 3,645 0.68 2.764 
Val Verde County, TX Laughlin AFB 5,646 5.27 2.553 
Wichita County, TX Sheppard AFB 1,855 0.89 2.776 
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Caroline County, VA Fort A P Hill 884 -3.02 2.765 
King George County, VA NSF Dahlgren 3,767 -6.16 2.844 

Prince George County, VA Fort Lee 4,176 -6.33 2.834 
Prince William County, VA MCB Quantico 546 -6.23 2.720 

Stafford County, VA MCB Quantico 1,460 -8.07 2.743 
York County, VA JBLE 3,178 -5.24 2.798 

Alexandria city, VA Pentagon 353 -2.67 2.655 
Chesapeake city, VA Norfolk Naval Station 512 -4.02 2.883 

Hampton city, VA JBLE 1,307 0.55 2.809 
Newport News city, VA JBLE 1,119 1.07 2.768 

Norfolk city, VA Norfolk Naval Station 803 0.12 2.706 
Petersburg city, VA Fort Lee 3,053 7.75 2.873 
Poquoson city, VA JBLE 6,213 -5.86 3.012 

Portsmouth city, VA Norfolk Naval Station 1,595 1.82 2.870 
Suffolk city, VA Norfolk Naval Station 3,608 -2.44 2.900 

Virginia Beach city, VA NAS Oceana  947 -3.24 2.757 
Island County, WA NAS Whidbey Island 939 -2 2.652 
Kitsap County, WA Shipyard Puget Sound 2,131 -3.76 2.697 
Pierce County, WA JBLM 1,682 -2.91 2.743 

Thurston County, WA JBLM 7,196 -2.75 2.728 
Laramie County, WY F E Warren AFB 4,104 -2.63 2.766 
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