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ABSTRACT 

 

Many methods are used to measure interrater reliability for studies where each target 

receives ratings by a different set of judges.  The purpose of this study is to explore the 

use of hierarchical linear modeling for estimating interrater reliability using the intraclass 

correlation coefficient.  This study provides a description of how the ICC can be 

estimated using hierarchical linear modeling, recommends an appropriate non-parametric 

bootstrapping method, illustrates how both can be implemented to obtain a point estimate 

and an estimate of bias, and explores the viability of using these statistical tools to obtain 

such estimates.  Results indicated that hierarchical linear modeling and the non-

parametric bootstrap method can be used on both continuous and binary data to provide 

point and bias estimates of interrater reliability. 
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CHAPTER 1 

 

INTERRATER RELIABILITY AND THE INTRACLASS CORRELATION  

 

COEFFICIENT 

 

 

Researchers and practitioners in fields such as education, psychology, and 

medicine administer assessments, examinations, and other measures to collect data on the 

different qualities of the individuals they work with.  Such data is generally used to make 

important decisions, predict outcomes, or direct policy.  Because of the stakes involved in 

using such data, care should be taken to ensure that quality is adequate.  Reliability and 

validity are two properties that are evaluated to provide evidence that a measure has 

adequate quality for its intended use.  Validity refers to the extent to which evidence 

supports score interpretations for an intended purpose and depicts the degree of accuracy 

in making inferences using scores that result from an instrument.    Reliability is defined 

as the extent to which scores on an instrument are reproducible or consistent.  When 

evidence supports both validity and reliability, test users have increased confidence that 

the instrument is consistently and appropriately measuring the same phenomenon; this is 

typically the goal in any field utilizing measurement. 

Of interest to this study is a specific type of reliability.  In the social sciences, 

when researchers and practitioners administer assessments and other data collection 

instruments, results from the administration are usually obtained from raters or judges 

based on their observations of the individuals or their work.  In education, a mathematics 
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teacher may administer a performance assessment to evaluate students’ ability to problem 

solve in Algebra; in psychology, a psychologist may use a rating scale to identify the 

level of anxiety in his clients; and in health care, a doctor may use a medical examination 

to classify the level of pain experienced by her patients.  In each of these cases, an 

observer or judge provides the scores, which are then used to make inferences about the 

individuals being measured.  

A necessary (but not sufficient) condition for such inferences to be valid is that 

the scores must be consistent.  This means that if the same or even a different observer 

were to administer the measure to the same individual and provide a score, then the new 

score should be the same as or similar to the previous score, assuming multiple 

administrations do not affect results.  When a measurement procedure has this property, 

the results are presumed to be highly reliable.  Otherwise, they are not reliable and should 

not be used to make inferences.  As stated previously, reliability is an important property 

needed for appropriate measurement. 

1.1: RELIABILITY 

Reliability is rooted in Classical Test Theory (CTT), a psychometric theory that 

provides a simple model that explains the difficulty in measuring constructs (i.e., 

theoretical phenomena that cannot be directly measured), which are usually of interest in 

fields such as education and psychology (Crocker & Algina, 1986).  CTT models 

examinees’ observed scores as a function of their true scores and random measurement 

error.  This model is given by the equation X = T + E, where X represents an individual’s 

observed score (i.e., the score obtained empirically), T represents the individual’s true 

score (i.e., the arithmetic average of the observed scores if the instrument were 
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administered an infinite number of times) and E represents random measurement error 

(i.e., any random factor that influences the total score other than the construct being 

measured) (Lord & Novick, 1968).   

As shown in the model, all measurement of constructs suffers from error, and 

quality measurement requires that observed scores be overwhelmingly composed of true 

score rather than error.  This provides a link to reliability because if the scores are 

composed mainly of the true score and little of error, then the scores should be consistent.  

One way to quantify this is to consider the variance in the observed score, σX
2 .  Because 

observed scores are a composite of true score and measurement error, we can write its 

variance as 

σX
2  = σT

2  + σE
2  + 2Cov(T,E), 

where Cov(T,E) is the covariance between true score and random measurement error.  

One of the assumptions in the CTT model is that measurement errors are random and 

thus are uncorrelated with true score.  Therefore, Cov(T,E) = 0, and the variance in 

observed scores can be written as 

σX
2  = σT

2  + σE
2 . 

With this relationship, reliability, denoted 𝜌, can be quantified as the ratio of true score 

variance to observed or total score variance: 

                                                     ρ = 
σT

2

σX
2

 = 
σT

2

σT
2 +σE

2
.                                          (1)                

In other words, reliability is the proportion of total variance accounted for by the variance 

in true scores.  Based on equation 1, reliability will be a value between 0 and 1.  In the 

latter part of equation 1, it is evident that if error variance is large relative to true score 

variance, then reliability will be low or approximately equal to 0.  This indicates that the 
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observed score variance is predominantly composed of measurement error leading to 

scores that are not consistent.  If error variance is small relative to true score variance, 

then reliability will be high or approximately equal to 1.  This indicates that the observed 

score variance is mainly composed of true score, meaning the scores are consistent.  If 

there is no error variance (i.e., σE
2  = 0), then reliability will equal one, and if there is no 

true score variance (i.e., σT
2  = 0), then reliability will equal zero.  Thus, the larger and 

closer the value is to one, the higher the reliability.  Overall, reliability provides a means 

to evaluate the effect that random measurement error has on the measurement process. 

1.2:  INTERRATER RELIABILITY 

While there are many ways error and lack of reliability may be introduced into the 

measurement process, this study will focus on error induced by human judgement.  

Anytime humans are used to judge phenomena, subjectivity is inherent.  For this reason, 

it is recommended in the Standards for Educational and Psychological Testing (The 

Standards) that reliability studies be conducted and results be reported to quantify the 

consistency in such judgements. (AERA, APA, NCME, 2014).  The specific type of 

reliability study involves interrater reliability or interrater agreement.  As defined in The 

Standards, interrater reliability refers to the “level of consistency in rank ordering or 

ratings across raters,” and interrater agreement refers to the “level of consistency with 

which two or more judges rate the work or performance[s]” (AERA, APA, NCME, 2014, 

p. 220).   

Because of the importance of providing such measures in rating contexts, multiple 

indexes have been developed.  In the social sciences, especially educational research, 

these measures include, but are not limited to the Pearson product moment correlation 
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coefficient, Spearman’s rank-order correlation coefficient, the polychoric correlation 

coefficient, Cronbach’s alpha (Cronbach, 1951), percent agreement, percent adjacent 

agreement, Cohen’s Kappa and its variants (Cohen, 1960; 1968), Fleiss’ Kappa ( Fleiss, 

1971), the generalizability (G) coefficient from Generalizability Theory (Cronbach et al., 

1963), statistics from the many-facets Rasch model (Linacre, 1994), and the intraclass 

correlation coefficient (Fisher, 1934; Moore & Young, 1997; Stemler, 2004).  As 

evidenced by the number of coefficients, providing estimates of interrater reliability is 

vital in the social sciences.  Each of the estimators are typically used in different contexts, 

and the specifics required for the use of each is beyond the scope of this study.   

Of focus to this study is the estimation of interrater reliability using the intraclass 

correlation coefficient.  The intraclass correlation coefficient (ICC) is a statistical tool 

originally developed as a measure of the degree of resemblance between family members 

(Fisher, 1934).  It measures the relationship between two or more groups of individuals of 

the same class on a single continuous variable.  While the intraclass correlation 

coefficient, also called the intra-cluster correlation coefficient, has a long history in the 

statistics literature, it was not until the latter part of the 20th century that this statistical 

index began to be used in the field of measurement as a measure of interrater reliability 

and interrater agreement (McGraw & Wong, 1996; Shrout & Fleiss, 1979).   

Unlike the restriction to pairwise relationships imposed by the Pearson product 

moment correlation coefficient, Spearman’s rank-order correlation coefficient, the 

polychoric correlation coefficient, percent agreement, percent adjacent agreement, and 

Cohen’s Kappa, the ICC is not restricted to relationship between pairs of individuals.  In 

a review of literature on the reliability and validity of rubrics and performance 
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assessments in education, Jonsson and Svingby (2007) classified the intraclass correlation 

coefficient as an estimate of interrater reliability most similar to estimates obtained from 

Generalizability Theory and the many-facets Rasch model, which Stemler (2004) call 

measurement estimates of interrater reliability.  Of these methods, Generalizability 

Theory was found to be most utilized and the intraclass correlation, a special case of 

Generalizability Theory, was found to be least utilized.  While this is the case, a recent 

textbook in educational and psychological measurement presents the intraclass 

correlation coefficient as a viable method for evaluating interrater reliability that is 

“useful in many situations” (Finch & French, 2016, p. 121).  In addition, notable 

assessment organizations in education have indicated the use of the ICC when assessing 

interrater reliability.  Such use has been documented in technical manuals and reports for 

the following assessments:  the National Assessment of Educational Progress’ assessment 

(NAEP, National Center for Educational Statistics, 2017; Swick, 1985), Educational 

Testing Service’s Test of English as a  Foreign Language (Boldt, 1992), the College 

Board’s SAT assessment (Breland et al., 2004), the IDEA Feedback System for Chairs 

(Archie et al., 2018), the General Educational Development (GED) Testing Service’s 

GED Test (2009), and the American Board of Psychiatry and Neurology’s Neurology 

Clinical Skills Examination (NEX; Schuh et al., 2009),to name a few.  In addition, the 

Partnership for Assessment of Readiness for College and Careers and the Smarter 

Balanced Assessment Consortium assessments use quadratic weighted kappa coefficients 

to provide evidence of interrater reliability (Pearson, 2017; Smarter Balanced Assessment 

Consortium, n.d. A).  As shown in Fleiss and Cohen (1973), this coefficient is equivalent 
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to the intraclass correlation coefficient under certain conditions.  Thus, such data could 

have also been analyzed using an intraclass correlation.   

Although there is evidence of use of the intraclass correlation coefficient as a 

measure of interrater reliability in educational and psychological measurement, there is a 

lack of methodological studies on its use.  Thus, this study will focus on the intraclass 

correlation coefficients formalized in Shrout and Fleiss (1979) and extended in McGraw 

and Wong (1996).    

1.3:  INTRACLASS CORRLEATION COEFFICIENTS FOR QUANTITATIVE DATA 

In Shrout and Fleiss (1979), the units of analysis (i.e., subjects being measured) 

are called targets and the individuals providing the ratings are called judges.  These terms 

will be adopted in this study.  When conducting an interrater reliability study, it is 

important to consider at least two factors:  1) the appropriate model that represents the 

data and 2) the type of scores used in for reliability calculations are of interest.  The 

calculation of the ICC is dependent on these two features. 

The first consideration is related to the study design.  Shrout and Fliess (1979) 

identified three specific study designs.  In the first study design, called Design 1 here, 

randomly selected targets are each rated by a different set of judges who are randomly 

selected from a population of judges.  In education, this design might correspond to a 

research study where students at different schools across the nation participating in a 

gifted and talented program completes a performance assessment at the culmination of 

the program.  To determine the effectiveness of the program, each performance is rated 

on a scale from 0 to 100 by a different group of randomly selected teachers from a 

population of teachers across the nation trained to provide such ratings.  In the second 
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study design, named Design 2 here, all randomly selected targets are rated by the same 

set of judges who were also randomly selected from a population of judges.  This study 

design is more common.  Continuing with the education example, all students are rated 

by every randomly selected teacher from the population of teachers.  The distinguishing 

feature between Design 2 and the third study design, called Design 3 here, is that in 

Design 3, the judges are not a random sample from a population of judges.  In this case, 

the only judges of concern to the reliability study are the judges participating in the study, 

and no generalizations to non-participating judges can be made based on the reliability 

study.  Generalizations can be made in the first and second study designs only.   

In addition, the type of score used in calculating the ICC should be determined.  

Specifically, a consideration as to whether single measurements on targets or a composite 

(i.e., the mean) of several measurements on targets are of interest.  Researchers generally 

are interested in the consistency of individual judges; however, in some cases, the rating 

from a single judge is not considered reliable enough.  Consequently, a researcher may 

use the mean rating or some other composite of ratings from several judges instead of the 

ratings from individual judges when calculating reliability.  In this case, the computation 

must include the application of the Spearman Brown Prophecy formula to obtain 

appropriate reliability coefficients.  Once decisions are made related to the appropriate 

design and the number of measurements used, the models and formulas for calculating 

the ICC can be determined.   

Following Shrout and Fleiss (1979) and McGraw and Wong (1996), all ICCs can 

be calculated using analysis of variance (ANOVA) models.  From these two sources, a 

description and comprehensive overview of 10 ICCs classified by study design and type 
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of score are presented.  Different ANOVA models are used to estimate the ICC because 

each decomposes total variance into variance due to the target effect, the judge effect, the 

interaction between judges and targets, and/or the effect due to error differently.   

For Design 1, the one-way ANOVA with random effects model is the appropriate 

model to use when estimating interrater reliability, denoted ICC(1,1) (Shrout & Fleiss, 

1979).  This model is appropriate because the effects due to targets is the only effect that 

can be modeled and estimated since each target is measured by a different set of judges.  

All other effects are confounded in the error term.  If Yij represents the rating by judge i 

(i=1,…,k) for target  (j=1,…,n), then the model equation is given by 

                                                       Yij = μ + tj + eij                                                       (2) 

where 𝜇 represents the grand mean rating, tj represents the target effect (i.e., the deviation 

of target j’s score from the overall mean rating), and eij represents error.  In this model, tj 

are assumed to be independently and identically distributed with mean 0 variance σT
2 , eij 

are assumed to be independently and identically distributed with mean 0 and variance 

σW
2 , and tj and eij are assumed to be mutually independent.  To obtain an estimate of the 

ICC, the expected mean squares as well as the estimated mean scores from running the 

ANOVA model are used.  These expressions are given in Table 1.1. 

Table 1.1 One-Way ANOVA with Random Effects Table 

 

Source df MS EMS 

Between Targets n - 1  MST σW
2  + kσT

2    

Within Targets n(k - 1)  MSW   σW
2   

 

Using the formula for reliability, ρ, founded in CTT, ICC(1,1) can be estimated 

within the ANOVA framework using MST and MSW.  As MSW is an unbiased estimate 
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of σW
2  and MST is an estimate of σW

2  + kσT
2 , then an unbiased estimate of σT

2  is (MST – 

MSW)/k.  To provide an estimate of 𝜌 using the corresponding estimates from ANOVA 

yields,  

                                     ρ = 
σT

2

σT
2  + σW

2
 ≈ 

MST - MSW

MST + (k - 1)MSW
.                                    (3)   

The formula given in equation 3 is for balanced data (i.e., all targets are rated by the same 

number of judges).  For unbalanced data, which is more likely in practice, an adjustment 

is necessary and requires the following: 

k0 = k ̅- 
∑(kj - k̅)

2

(n - 1)K
, 

where K is the total number of ratings/judges overall, kj is the number of judges rating 

the jth target, and k̅ is the average number of judges rating each target (Donner & Koval, 

1980).  In this case, the estimate of ρ using ANOVA is given by 

ρ = 
σT

2

σT
2  + σW

2
 ≈ 

MST - MSW

MST + (k0 - 1)MSW
. 

By default, this index can be interpreted as a measure of absolute agreement and yields 

the proportion of variance in ratings attributable to the variance between targets.  High 

values of this index occur when the variance within targets (i.e., variance due to judges) 

is low.  When the variance due to judges is low, it can be implied that their ratings are 

generally the same or similar, which is why this is an index of absolute agreement, rather 

than an index of consistency. 

An alternative way to interpret the ICC is the correlation between targets within 

the same cluster.  This alternative definition is based on equation 2 and is derived by 

considering the statistical definition of correlation, which is the covariance between two 
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ratings divided by the product of their standard deviations.  This relationship in terms of 

model equation 2 is given in the following:   

E[(Yij - μ)(Ylj - μ)]

σY
2

=
E[(tj + eij)(tj + elj)]

σY
2

=
E(tj

2)

σY
2

, 

for all Yij and Ylj, and for all j ≠ l (Donner & Koval, 1980).  This yields the correlation 

between judges who rate the same target. 

For study design 2, the two-way ANOVA with random effects model is 

appropriate for obtaining an estimate of interrater reliability, denoted ICC(2,1).  This 

model not only includes targets as a random factor, but it also includes judges as a second 

random factor.  The linear model equation associated with this design is given by, 

Yij = μ + tj + ri + (tr)ij + eij, 

where μ and tj are the same as in the one-way ANOVA with random effects model, ri 

represents the effects due to judges, and (tr)ij represents the interaction between judges 

and targets, and eij represents error.  In addition to the assumptions associated with the 

one-way ANOVA with random effects model, we assume that ri is random and 

distributed with mean 0 and variance σJ
2.  We also assume that (tr)ij has components that 

are independent and are distributed with mean 0 and variance σI
2, and the error term is 

distributed with mean 0 and variance σE
2  (Shrout & Fleiss, 1979).   

To obtain an estimate of the ICC, the expected mean squares as well as the 

estimated mean scores from running the ANOVA model are used.  These values are 

given in Table 1.2. 
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Table 1.2 Two-Way ANOVA with Random Effects Table 

 

Source df MS EMS 

Between Targets n - 1  MST σI
2 + σE

2  + kσT
2    

Between Judges k - 1  MSJ σI
2 + σE 

2 + nσJ
2  

Residual (n - 1)(k - 1)  MSE σI
2 + σE

2   

 

In McGraw and  Wong (1996), two separate models are presented for study 

design 2, one with the interaction terms and one without the interaction term.  In this 

paper, only the above model without the interaction term is presented.  As is the case with 

two-way ANOVA models, because each judge provides one rating per target, the effect 

of interaction between targets and judges cannot be estimated and is confounded in the 

error term.  Thus, I leave it to the interested reader to explore the other model by 

referencing McGraw and Wong (1996). 

Using the formula for reliability founded in CTT, ICC(2,1) can be estimated 

within the ANOVA framework using MST, MSJ, and MSE.  As MSE is an unbiased 

estimate of σI
2 + σE

2 , then σJ
2 can be approximated by (MSJ – MSE)/n, and  σT

2  can be 

approximated by (MST – MSE)/k.  Thus, to provide an estimate of ρ using the 

corresponding estimates from ANOVA yields,  

ρ = 
σT

2

σT
2  + σJ

2 + σI
2 + σE

2
≈

MST - MSE

MST + (k - 1)MSE + (
k
n

) (MSJ - MSE)
. 

ICC(2,1) also provides an estimate of absolute agreement, given the judges are a random 

sample from the population of judges and the total variance (i.e., the denominator of the 

reliability estimate above) includes the variance due to judges.  An adjusted version of 

this ICC estimate, which is an estimate of interrater consistency is presented in McGraw 
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and Wong (1996).  This estimate removes the variance due to judges from the total 

variance as differences in judges are irrelevant in measures of consistency. 

For study design 3, the two-way ANOVA with mixed effects model is appropriate 

for obtaining an estimate of interrater reliability, denoted ICC(3,1).  This model follows 

the same equation as ICC(2,1); however, different assumptions related to the interaction 

term and the fixed effects are required since the judges are fixed rather than random 

effects.  These assumptions are that   ∑ ri = 0, ∑(tr)ij = 0 and the term corresponding to σJ
2 

in the two-way random effects model is given by θJ
2 = ∑ ri

2 /(k - 1) (Shrout & Fleiss, 

1979). 

To obtain an estimate of the ICC, the expected mean squares as well as the 

estimated mean scores from running the ANOVA model are used.  These values are 

given in Table 1.3. 

Table 1.3 Two-Way ANOVA with Mixed Effects Table 

 

Source df MS EMS 

Between Targets n - 1  MST σE
2  + kσT

2    

Between Judges k - 1  MSJ k

k-1
σI

2 + σE
2  + nσJ

2  

Residual (n - 1)(k - 1)  MSE k

k-1
σI

2 + σE
2   

 

Because judges are not a random effect, the interaction terms for the same target are 

correlated with covariance σT
2  - σI

2/(k - 1), and the total variance does not include the 

variance due to judges.  Thus, the reliability estimate is given by the following variance 

components with the corresponding estimates from the two-way ANOVA with mixed 

effects model: 

ρ = 
σT

2  - σI
2/(k - 1)

σT
2  + σI

2 + σE
2

 ≈ 
MST - MSE

MST + (k - 1)MSE
. 
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Unlike ICC(1,1) and ICC(2,1), this ICC provides a measure of consistency rather than 

agreement.  For an estimate of absolute agreement, see McGraw and Wong (1996), where 

they also provide a corresponding estimate that excludes the interaction term. 

In addition to viewing the coefficients as indicated above, McGraw and Wong 

(1996) further classify reliability estimates into measures of consistency and measures of 

agreement.  Since interrater reliability measures the extent to which judges’ ratings are 

consistent, having judges obtain the exact same scores over multiple measurements is 

irrelevant, while the reproducibility or similarity of the scores is more important.  In 

relation to the education context, this means that if teachers who generally rate student 

performances low does so consistently and teachers who generally rate student 

performance high does so consistently, then the ratings are said to be consistent, and the 

reliability estimate will be high.  Here, the differences in how judges score is not of 

concern but rather the maintenance of their rating characteristics across the observations 

is of concern.  In other words, interrater consistency measures how similar the 

measurements provided by the raters are as they participate in the rating process.  When 

this reliability is high, there is support for a rank ordering of scores and the ratings are 

considered an additive transformation from one judge to another (McGraw & Wong, 

1996; Shrout & Fleiss, 1979).   

Alternatively, interrater agreement concerns the exactness of scores between 

judges, and it is sometimes referred to as a measure of absolute agreement.  This measure 

of reliability goes beyond judges being consistent and requires the exact same rating over 

the same observations (McGraw & Wong, 1996).  In the education example, this type of 

reliability will be high when all judges rating the same students give the same result and 
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will be low when the judges rating the same students give different ratings.  This type of 

reliability can be interpreted as a measure of the interchangeability of judges (Shrout & 

Fleiss, 1979).   

McGraw and Wong (1996) make known that when total variance includes 

variance due to judges, then it is a measure of absolute agreement.  In Designs 2 and 3, it 

is possible to include or exclude this variance from the total variance, leading to ICC(2,1) 

and ICC(3,1) being classified as indexes of interrater reliability and agreement.  When it 

comes to ICC(1,1), it is considered only an estimate of interrater agreement because the 

variance due to judges is consumed in the random error term and cannot be estimated 

separately. While this distinction has been made in McGraw and Wong (1996) and 

definitions of each are given in The Standards, much of the literature on interrater 

reliability in educational psychology and measurement refer to coefficients used to 

estimate reliability based on Equation 1 as interrater reliability indexes and coefficients 

not based on that equation as interrater agreement indexes.  A more recent assessment of 

interrater reliability refers to this very coefficient as a measure of both interrater 

agreement and interrater consistency (LeBrenton & Senter, 2008) because the coefficient 

measures both the consistency in ratings on targets by multiple judges and the absolute 

agreement in ratings when multiple judges provide ratings for multiple targets.  Even 

though ICC(1,1) can be viewed as both a reliability and agreement measure, it will be 

named a coefficient of reliability as it provides the proportion of total score variance 

attributed to between target variation in this study. 

This concludes the overview of the ICCs calculated using single ratings by judges 

summarized in Shrout and Fleiss (1979) and McGraw and Wong (1996).  ICC(1,1), 
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ICC(2,1), and ICC(3,1) were presented in both articles, and ICC(2,1) and ICC(3,1) were 

adjusted to not include the interaction term in McGraw and Wong (1996), leading to 5 

ICCs.  In cases where the reliability of the average of ratings by a number of judges is of 

concern, each of these ICCs can be extended by using the Spearman-Brown Prophecy 

and the appropriate models as outlined before, which leads to 10 ICCs. The specifics of 

these formulas are not presented here as interested readers should consult the two articles 

for more details. 

While all ICCs are important measures of interrater reliability or agreement as 

their use depends on the research context and design, much of the literature has focused 

on the study of ICC(1,1).  In the epidemiology field, researchers were interested in its 

performance in estimating the degree of resemblance in familial data; in psychology, 

researchers were interested in its performance for estimating interrater reliability; in 

medical research, researchers were interested in its performance for estimating the 

dependence of observations in cluster randomized trials.  Given that most methodological 

studies of the ICC focuses on ICC(1,1), this study will focus on its performance as well.  

Since this coefficient is traditionally estimated using ANOVA methods, in this study, I 

will use the notation ICCANOVA interchangeably with ICC(1,1) since the focus of this 

study will be on estimation and not design.   

Early methodological studies of ICCANOVA have presented alternate estimators.  It 

was noted that in the case of balanced data, ICCANOVAis equivalent to Pearson’s product 

moment correlation coefficient (PPMC) over all possible pairs of observations within the 

same individual (as cited in Donner & Koval, 1980).  Thus, an alternative method for 

calculating the ICC is to use the PPMC, which is given in the formula, 
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ICCPPMC = ∑ ∑ ∑[(Yij - Y̅)(Ylj - Y̅)]

k

l = 1

k

i = 1

n

j = 1

/[K(k - 1)Sy
2], 

for all i≠l, where Y̅ is the sample mean, Sy
2
 is the sample variance over all observations, 

and K is the total number of observations.  Unlike the ANOVA estimator, ICCPPMC does 

not depend on a model.  The only requirements for ICCPPMC are that the sample mean 

and variance exist and are finite (Donner, 1986).  In cases of unbalanced data, this 

estimate suffers from applying more weight to clusters or targets with larger numbers of 

measurements (Fieller & Smith, 1951).  Thus, weighted versions of the estimator were 

developed to account for such a disadvantage (Karlin et al., 1981; Namboodiri et al., 

1984).  Even with the weighted versions, this coefficient is not used as a measure of 

interrater reliability as often as the ANOVA estimator. 

 In addition to ICCPPMC, a maximum likelihood estimator, denoted ICCML was 

also developed, which can better handle unbalanced data (Donner & Koval, 1980; Paul, 

1990; Rosner et al., 1977).  For unbalanced data, no closed-formed formulas exist; 

however, iterative, numerical methods can be used to obtain the estimate.  For 

appropriate estimation using maximum likelihood, it is assumed that data fit the common 

correlation model, where all observations Yij are distributed about a common mean and 

variance, and multivariate normality of observations within each group or target is 

satisfied (Donner & Koval, 1980; Paul, 1990; Rosner et al., 1977).  When the 

assumptions of the ANOVA estimator are satisfied and for balanced data, the maximum 

likelihood estimator is equal to the ANOVA estimator, if restricted maximum likelihood 

is used (Donner, 1986).  In addition, when data are balanced, the maximum likelihood 

estimator is equal to  ICCPPMC (Donner & Koval, 1980b; Rosner et al., 1977). 
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 While each estimator is used to measure interrater reliability and/or agreement, 

the ANOVA and maximum likelihood estimators are more predominantly used.  In 

regard to interrater reliability studies in the social sciences, the ANOVA estimator 

initially enjoyed widespread use; however, as computer technology has advanced, the 

maximum likelihood estimator is used much more frequently.   

Given the choice of estimators, one may ponder which is best to use and under 

what conditions should they be used.  Thus, methodological studies have been conducted 

which compare the statistical properties of estimators when they are implemented on 

various types of data.  Then recommendations are made as to which estimators and under 

which conditions those estimators exhibit optimal statistical properties.  One goal of this 

study is further explore the use of a maximum likelihood estimator for ICC(1,1) and to 

explore how the statistical property of bias can be obtained for that estimator.  In Chapter 

2, a discussion of statistical bias and a statistical procedure that can be used to estimate it 

is given.  Then a review of the literature surrounding the methodological studies 

involving the various estimators is given.  Lastly, a discussion of the goals of this study 

are given. 
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CHAPTER 2 

 

THE BOOTSTRAP  

 

In traditional statistical analyses, a random sample is drawn from a population of 

interest, and observations on the units of analysis regarding a variable of interest are 

obtained.  From these observations, a statistic, denoted θ̂, which is usually a numerical 

summary of the variable, is obtained.  With this statistic, inferences regarding the value 

of the variable for the population (i.e., parameter) it estimates, denoted θ, can be made.  

The usual procedure in making inferences involve the following: 

1. Collect sample data using random sampling. 

2. Calculate a statistic, θ̂, that summarizes the sample data.  This statistic should be 

an index that characterizes the phenomenon of interest in the population. 

3. Make assumptions about the distribution of the statistic, the sampling distribution. 

4. Estimate the parameters of the sampling distribution of the statistic using the 

sample data. 

5. Use an analytic formula, which is usually a function of the parameters of the 

sampling distribution, to calculate the probability of obtaining the sample statistic 

or to build a confidence interval around the parameter estimated by the sample 

statistic. 

This traditional method of conducting statistical inference is efficient and 

performs well when the assumptions about the sampling distribution of the statistic are
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correct or approximately correct.  This is usually the case when methods for 

approximating the parameters of the correct sampling distribution exist.  Such methods 

usually depend on strong assumptions about the sampling distribution.  In cases when the 

assumptions are not correct and/or no analytic formulas exists for constructing the 

sampling distribution, traditional statistical analyses may be invalid leading to inaccurate 

inferences.  In such occurrences the bootstrap offers a solution.   

2.1:  THE BOOTSTRAP ALGORITHM  

The principle behind bootstrapping is to imitate the same procedure used in 

traditional statistical analyses.  As the random sample, calculated statistic, and parametric 

assumptions are used to conduct traditional statistical inferences, only the random sample 

and the calculated statistic are used to make inferences when using the bootstrap.  Thus, a 

big difference between traditional statistical inference and the bootstrap is lack of reliance 

on strong parametric assumptions.  More specifically, the bootstrap treats sample data as 

a proxy for the population.  It is from the sample data that samples of the same size are 

resampled with replacement, and the statistic is calculated on each bootstrap sample 

creating a sampling distribution called the empirical distribution.  From this empirical 

sampling distribution, statistical inferences can be made without using the same 

assumptions about the sampling distribution typically used in traditional statistical 

inference.  Thus, the bootstrap procedure, as explained here, can be thought of as a 

nonparametric procedure for conducting inference due to the relaxation of required 

assumptions (Fox, 2016).   
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Stated more formally, the following are steps used to perform the bootstrap: 

1. From a population distribution function, F(x), which represents a population of 

data, a random sample is collected called the empirical distribution function 

(EDF), F̂(x), which consists of the elements x1, x2, …, xn, which is a sample of 

size n.  Each element of the EDF has probability 1/n of occurrence, representing 

the simple random sample sampling process.  The parameter of interest θ is thus 

estimated by the same characteristic in the sample, θ̂. 

2. A simple random sample of size n with replacement of the random component of 

the data is selected from F̂(x) and the same characteristic of interest calculated in 

step 1 should be calculated and is denoted θ̂
*
. 

3. Step 2 is repeated B times, leading to B bootstrap sample statistics, denoted θ̂b

*
 

and called bootstrap replicates or replications, where 1 ≤ b ≤ B.  

4. The  θ̂b

*'

s should be collected to construct the bootstrap sampling distribution of θ̂ 

from the bootstrap, denoted F̂
*

(θ̂
*
), which is an estimation of the sampling 

distribution of θ̂, denoted F(θ̂) (Mooney & Duval, 1993). 

From F̂
*

(θ̂
*
)  statistical inferences can be made without strong assumptions about F(θ̂).    

Because the bootstrap sampling distribution, F̂
*

(θ̂
*
)  , is constructed using the sample 

data and no assumptions about what is believed to be the sampling distribution of the 

statistic, the term bootstrap is used to follow the metaphor of pulling one’s self up by the 

bootstrap (Fox, 2016).  

The theory that supports the use of this method for making statistical inferences is 

that as n → ∞, F̂(x) → F(x).  In other words, as the sample size increases, the sample 
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becomes more like the population.  Thus, samples from step 1 above should be 

representative and of adequate size.  In addition, as B → ∞, F̂
*

(θ̂
*
)  → F(θ̂).  In other 

words, as the number of resamples increases, the bootstrap sampling distribution 

becomes more like the actual sampling distribution.  Thus, the number of resamples is 

important, and it is recommended that between 400 - 1,000 bootstrap samples be 

collected for accurate confidence intervals from bootstrapping (Efron & Tibshirani, 1993; 

Mooney & Duval, 1993).   

Overall, bootstrapping provides an alternative framework for making statistical 

inferences.  It can be applied to any number of statistical procedures using the steps 

above and may be adjusted to meet more complex sampling procedures.  For the more 

complex sampling procedures, it is important that random component of the statistical 

procedure or model is resampled (Efron & Tibshirani, 1993; Mooney & Duval, 1993; 

Fox, 2016).   

2.2:  STATISTICAL BIAS 

A point estimate is a numerical summary of a variable calculated using the 

measurements of units of analysis after a sample composed of the units are drawn from 

the population of interest.  When measurements are obtained, there is a possibility of 

measurement error just as in the case of Classical Test Theory discussed in Chapter 1.  A 

similar but alternative model based in statistics that applies to physical and other 

measurements of individuals is the model of measurement error as presented in Rice 

(2007).  This model presents a decomposition of a measurement in terms of sources of 

error and the attribute of interest.  Let X represent an obtained measurement.  Then X can 

be modeled using the equation 
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X = x + β + ε, 

where x is the true value of the variable, β represents systematic error (i.e., a component 

of the measurement process that affects some or all individuals in the same manner), and 

ε represents random error (i.e., idiosyncratic factors that has a different effect on 

individual measurements).  Because random error is random, its expected value is 

E(ε) = 0 with variance given by Var(ε) = σ2.  Consequently, the expected value of an 

observed measurement on a unit of analysis is given by: 

E(X) = E(x + β + ε) = E(x + β),    

with variance given by Var(X) = σ2 since x and β are constant.  The importance of this 

model is that the factors which influence the quality of measurement involves β and σ2.  

In Rice (2007), β is referred to as bias, and ideal measurement is measurement in which 

both β and σ2 are both as small as possible (i.e., nearly 0).  Focusing on β, when it is zero,  

E(X) = E(x + β) = E(x) = x, 

because x is the true measurement value, which is assumed to be constant.  In this case, 

measurement is considered unbiased, yielding the following relationship:  E(X) - x = 0. 

This definition of bias can be extended to statistics or point estimates.  From a 

statistical perspective, the goal of obtaining a point estimate is 1) to provide a single 

estimate that adequately describes the value of the variable in a sample and/or 2) to 

obtain an estimate which is sufficient enough to make inferences about the true, unknown 

value of a parameter in the population.  Because point estimates are functions of a 

random sample drawn from a population, they are considered random measurements and 

have the potential to be affected by bias.   
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Let θ be a parameter and θ̂ be its point estimate.  Then the bias in the point 

estimate is given by: 

β = Bias(θ̂) = E(θ̂) - θ. 

As indicated previously, when β = 0, the estimate is said to be unbiased.  The further this 

value is from 0 (in either direction), the more biased the estimator is.  If this value is 

greater than 0, then the estimator is positively biased and generally overestimates the 

value of the parameter.  If this value is less than 0, then the estimator is negatively biased 

and generally underestimates the value of the parameter.  By having a formula for the 

bias in an estimator, corrections can be made to the estimator to undo the bias, leading to 

more accuracy in estimation. 

2.3:  BOOTSTRAP ESTIMATE OF BIAS 

With some statistics, due to the reliance on strong assumptions, bias can be easily 

evaluated with exact methods utilizing statistical and probability theory with formulas.  

However, in cases where statistical and probability theory are underdeveloped and no 

known formulas exist or in cases where formulas may exist but may be acutely 

complicated, the bootstrap has been found to be a viable method that can be used for 

estimating bias (Efron & Tibshirani, 1998).  Since bias is defined as the difference in the 

expectation of an estimator and the parameter being estimated (i.e., E(θ̂) - θ), to obtain an 

estimate of bias using bootstrap methods, an analogous expression is needed.  Whereas θ̂ 

estimates θ and the mean of the sampling distribution of θ̂ is E(θ̂) in traditional statistical 

analyses, when the bootstrap is used, θ̂
*
 estimates θ̂ and the mean of the analogous 
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bootstrap sampling distribution of θ̂
*
 is E(θ̂

*
).  Thus, the bias is approximated using the 

following (Efron, 1982):  bias* = E (θ̂
*
)  - θ̂.  

In theory, E (θ̂
*
) is the mean based on an infinite number of independent 

bootstrap samples of the same size.  However, in practice it is not feasible to obtain an 

infinite number of bootstrap samples and replicates.  Therefore, using Monte Carlo 

simulation methods, only a finite number, say B, bootstrap samples and replicates are 

obtained.  From the B bootstrap replicates, the E (θ̂
*
) is approximated by finding the 

mean of the bootstrap replicates.  Thus, the bootstrap estimate of bias is given by: 

bias
*
=E (θ̂

*
)  - θ̂ 

                                                        bias** ≈ (
1

B
∑ θ̂b

*

B

b = 1

) - θ̂.                                         (1) 

In other words, the bootstrap bias estimate is the bootstrap mean of the estimators over all 

bootstrap samples minus the original sample estimate (Efron, 1982; Efron, 1990).  It 

should be noted that this estimate of bias is an estimate of bias for using θ̂ to estimate θ; 

however, the expression used in the calculations utilizes the simulated bootstrap 

replicates θ̂
*'

s and θ̂.   

Once an estimate of bias is obtained, an analysis into the adequacy of the estimate 

may be conducted.  From equation (1) above, the expected value of the bootstrap 

replicates is replaced by the mean of B bootstrap replicates.  The ideal bootstrap estimate 

of bias occurs when B = ∞, which is not feasible.  This would lead to the theoretical 

definition of expected value.  Efron and Tibshirani (1998) indicated that as few as 400 

bootstrap samples are needed for bias estimation and as few as 1,000 are needed for 
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confidence interval construction.  However, the number of bootstrap samples and 

replications may vary depending on the type of data, statistic, and analysis involved.  

Thus, an analysis of results from the bootstrap procedure are necessary. 

In determining whether an obtained estimate of bias
**

 is a good estimate, an 

examination of how well 
1

B
∑ θ̂b

*B
b = 1  estimates E (θ̂

*
) must be conducted (Efron & 

Tibshirani, 1998).  One way to do this, which is recommended by these authors is to 

inspect the distribution of the bootstrap replications.  If there is evidence that the 

replications are centered about the mean of the distribution, then there is evidence that 

1

B
∑ θ̂b

*B
b = 1  estimates E (θ̂

*
) adequately.  This is essentially assessing whether the mean is 

a good measure of center for a distribution.  Alternatively, one can determine the number 

of replications it takes for bias** to closely estimate the ideal bias estimate, denoted 

bias∞, which would be obtained when B = ∞ (Efron & Tibshirani, 1998).  This can be 

done by increasing the number of replications B to determine when and if it converges to 

or settles on a specific value.  Based on the law of large numbers, this is expected; 

however, how large B should be is potentially dependent on the statistic being estimated 

and thus should be analyzed.  In addition to these methods, one can determine how well 

of an estimate bias
**

 is by placing a confidence band around the absolute difference 

between bias
**

 and bias∞.  Based on the Central Limit Theorem, it is known that 

approximately 95% of statistics lie within 2 standard deviations of the center of a 

sampling distribution.  Borrowing from this concept, Efron and Tibshirani (1998) 

indicated that another method useful for judging the reasonableness of using a certain 

number of replications to estimate bias is to determine the endpoints of a confidence band 
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about the difference between the obtained estimate of bias and ideal estimate of bias 

using B replications.  The formula for computing this is given by: 

P (|bias** -  bias∞| < 
2seB

*

√B
)  = .95 

where seB
*  is the standard deviation of the distribution of bootstrap replications and is 

given by: 

seB
*  = {

1

(B - 1)
∑ [θ̂b

* 
- 

1

B
∑ θ̂b

*

B

b = 1

]

2B

b = 1

}

1/2

. 

While each of these methods provide information regarding the validity of the bootstrap, 

other methods have been proposed.  Davison and Hinkley (1997) and Chernick and 

LaBudde (2011) both describe a method for diagnosing the bootstrap procedure by 

determining how each individual observation within a data set impacts bootstrap results.  

Though this method is presented, it does not give an overall assessment of how well the 

bootstrap procedure estimates bias.  Andrews and Buchinsky (2000) developed a three-

step procedure that can be used to determine a priori the number of replications needed 

to make statistical inference when using the bootstrap algorithm.  Unfortunately, they do 

not provide guidance on the number of replications needed to obtain adequate estimates 

of statistical bias.  Thus, methods developed by Efron and Tibshirani (1998) appear to 

provide the most useful information for judging the validity of the bootstrap that is 

accessible to practitioners. 

Once bootstrap evaluative analyses are conducted and it is found that the estimate 

of bias converges to a value, has a distribution in which the mean is representative of its 

center and/or the absolute difference between bias** and bias∞ is sufficiently small, the 
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estimate of bias may be used to obtain a bias-corrected estimate of the statistic.   As 

indicated in Efron and Tibshirani (1998), generally, bias is trivial, when the following 

inequality holds: 

|
bias**

seB
*

|  ≤ .25. 

When the inequality above holds, there is no need to obtain a bias-corrected estimate of 

the statistic.  However, in instances where the bias may not be trivial, a correction to the 

estimator may yield a better estimator.  To correct the bias, the estimate of bias is 

subtracted from the original point estimator.  Thus, the bias corrected parameter 

estimator, θ̂c, is twice the original point estimator minus the mean of bootstrap replicates, 

and is given by: 

θ̂c = θ̂ - bias** 

=2θ̂ - (
1

B
∑ θ̂b

*

B

b = 1

) . 

Although this is possible, Efron and Tibshirani (1998) warned that the bootstrap estimate 

of bias may not be the best estimate of bias for obtaining a bias-corrected estimator.  This 

is due to the possibility that the estimated standard error of the bias-corrected estimator 

may be larger than the standard error of the original estimator.  To evaluate such an 

occurrence, it is suggested that if bias∗∗ is larger than the bootstrap estimate of standard 

error, then the bias corrected estimator is appropriate; otherwise, the original estimator is 

appropriate.  Overall, care should be taken to evaluate the use of bias∗∗ for correcting the 

bias in estimators.  
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2.4:  BIAS IN INTRACLASS CORRELATION COEFFICIENT ESTIMATORS 

All ICCs reviewed in the ANOVA framework for continuous, balanced data are 

negatively biased (Shrout & Fleiss, 1979), even when different estimation procedures are 

used.  The formulas presented in Chapter 1 for ICC(1,1), ICC(2,1), and ICC(3,1), for 

example, all have population values that are functions of several population variance 

components (i.e., σT
2 , σW

2 , σJ
2, σI

2, and σE
2 ).  It is these population variance components, 

which appear in the ICC formulas, that define each reliability measure.  To obtain an 

estimate of each variance component, the expected mean squares of the various sources 

of variance in the ANOVA models are replaced by the corresponding sample values.  

Then a system of equations is solved.  Recall, for example, that for ICCANOVA, the 

estimate for the population value of the intraclass correlation was given by:  

ρ = 
σT

2

σT
2 + σW

2
 ≈ 

MST - MSW

MST + (k - 1)MSW
, 

and to obtain the formula using means squares from ANOVA, the expected mean square 

of each source of variation were replaced by their sample estimates, which in this case are 

unbiased estimates of the variance components when all the assumptions of ANOVA are 

met (Eisenhart, 1947).  This estimation process is known as method of moments 

estimation.  This should not be confused with method of moments estimation of the ICC 

itself, but the method of moments estimation of variance components.  Although the 

estimates of the expected mean square of the sources of variance are unbiased, when 

these unbiased estimates are used in the formula for the ICC, they yield a negatively 

biased estimate because the values are used in a ratio (Ponzoni & James, 1978).  Even 

though this is the case, estimation using the ANOVA framework is still the most 
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commonly used method in estimating the ICC (Donner, 1986), which may be due to the 

small and sometimes trivial amount of bias in the estimator (van der Kamp, 1972). 

Another method used to estimate the ICC uses maximum likelihood estimation 

(Donner & Koval, 1980; Paul, 1990; Rosner et al., 1977).  With maximum likelihood 

estimation, the common correlation model is assumed.  In the common correlation model, 

all observations are assumed to be distributed about the same mean and same variance 

such that observations within the same group (e.g., judges who rate the same target) have 

a common correlation (Snedecor & Cochran, 1967).  In addition to these assumptions, the 

assumption that the group level outcomes are distributed as a multivariate normal random 

variable is also required for maximum likelihood estimation.  Donner and Koval (1980) 

derive the likelihood equations, which model the probability of the sample data.  To 

maximize this likelihood function, differential calculus and numerical techniques are 

typically used to solve equations to find the value(s) of parameter(s).  This method began 

to be used in the estimation of multiple statistics as computer technology advanced.  

While this method is promising, it also yields an estimate of the ICC that is negatively 

biased (Donner, 1986); and a closed form of the bias is not available, especially for 

unbalanced data.  While a closed form of the bias is not available, even for balanced data, 

closed forms of the equations used to obtain the maximum likelihood estimates are 

available (Paul, 1990) and a closed form approximate formula using the estimated mean 

squares from the ANOVA framework are available.  In either case, the bias was still 

found to be negative (Wang et al., 1991). 

Another method proposed by Olkin and Pratt (1958) provided an unbiased 

estimate for the ICC.  This unbiased estimate is written as a joint distribution function of 
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sufficient statistics which are equated to a function of the traditional estimate of the 

correlations between all pairs of observations (De Lury, 1938).  Although this unbiased 

estimate is presented, it is presented as a function, which as indicated by these authors, is 

cumbersome to use in calculations, and a closed form for the estimate does not exist 

(Atenafu et al., 2012; Donner, 1986).  For this reason, the authors presented a table of 

values which calculate the unbiased estimates but only for the bivariate case.  For 

practitioners with more than two pairs of observations per target, there is a lack of 

guidance on obtaining an unbiased estimate.  Overall, in practice, this method does not 

appear to be used and does not appear in recent literature. 

As indicated in the previous chapter, PPMC is another estimator, and it is 

approximately equal to ICCANOVA for balanced data and does not require model 

assumptions (Donner, 1986).  Because of the equivalencies and closeness of the values 

obtained from these estimators under certain data conditions, excluding the estimator 

proposed by Olkin and Pratt (1958), early simulation studies provided comparisons of the 

performances of the estimators sometimes using the amount of statistical bias as a 

standard.   

Donner and Koval (1980) compared the three estimators based on relative 

efficiency in unbalanced data modeled after familial data.  They found that ICCML was 

more efficient than all estimators when there were a large number of observations with 

multiple measures and more efficient than ICCANOVA for extreme values of ρ.  Both 

ICCML and ICCANOVA outperformed ICCPPMC in terms of relative efficiency, except 

when the simulated value of ρ was zero.  From the study, it was recommended to use 
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ICCANOVA when the expected magnitude of the intraclass correlation would be of small 

to moderate size and to use ICCML in other cases.   

Swallow and Monahan (1984) conducted a study comparing the ICCANOVA, 

ICCML and other estimators for variance components estimation, which ICCANOVA is a 

function of.  They found that when the ratio of between-group (i.e., between-target) 

variance to within-group (i.e., within-target) variance is greater than or equal to .5, the 

ICCML may have a larger than adequate bias for between-variance.  However, when that 

ratio is less than .5, the bias is negligible to small, the mean squared error is low, and 

ICCML is the preferred method of estimation.  In regard to estimating the within-group 

variance, all estimators were found to be adequate.  Overall, ICCANOVA was found to 

yield adequate estimates unless data were severely unbalanced.  From these two studies, 

both the ICCANOVA and ICCML have been deemed appropriate for estimating the 

intraclass correlation coefficient, while ICCPPMC and other estimators were not. 

 In addition to studies investigating the methods for estimating ICCANOVA, studies 

have also been conducted to evaluate the bias in estimation.  Ponzoni and James (1978) 

provided an estimate of the bias in ICC(1,1) using the ANOVA estimator, and Wang et 

al. (1991) used their estimate of bias to derive an estimate of the bias in the maximum 

likelihood estimator.  More recently, Atenafu et al. (2012) proposed defining ICCANOVA 

in terms of the F statistic and performing a logarithmic transformation and Taylor series 

approximation to estimate the bias in the intraclass correlation coefficient.  Then they 

obtained a bias-corrected estimator of the index.  In the simulation study comparing the 

ANOVA estimator to their bias-corrected estimator, they found that their estimator was 

less biased.  This was the case in both large and small samples, across all magnitudes of 
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the intraclass correlation coefficient, and for normally and non-normally distributed 

balanced data.  While the ANOVA estimator was always negatively biased, which is 

known in the literature, the proposed bias-corrected estimator was in some instances 

positively biased. 

Further study of the bias in point estimation of the intraclass correlation 

coefficient is needed.  From the studies above, many of the investigations have focused 

on contexts of family studies or medicine.  In addition, many have sought to characterize 

bias when model distributional assumptions are met or when data are balanced.  Thus, 

methods which can handle both of these situations may allow for better point estimates. 

In addition to investigating the bias in estimating the intraclass correlation 

coefficient’s point estimate, studies have also focused on confidence interval estimation.  

One of the earliest studies was conducted by Donner and Wells (1986).  In their study, 

they set out to compare the traditional confidence interval estimation using exact methods 

to several other methods.  For balanced data, the (100 - α)% confidence interval for the 

intraclass correlation coefficient using the one-way ANOVA with random effects model 

with the added assumption that the distributions of σt
2 and σe

2 are normally distributed is 

based on the F statistic given by F = 
MST

MSW
 with n - 1 and K - n degrees of freedom, where 

K is the total number of observations in the data set.  For balanced data, the confidence 

interval is given by: 

[

F
FU

 - 1

k + 
F

FU
 - 1

, 

F
FL

 - 1

k + 
F
FL

 - 1
] , 

where FL and FU are the quantiles of the F distribution such that P(FL ≤ F ≤ FU)= 

1 - α (Searle, 1971).   
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In Donner and Wells (1986), a comparison of 6 methods for constructing the 

confidence interval about the intraclass correlation coefficient for unbalanced data was 

conducted, including the method of adjusting the formula above for variable group sizes 

(Searle, 1971; Thomas & Hultquist, 1978), a method based on the large-sample variance 

of the maximum likelihood estimator of the intraclass correlation coefficient for 

obtaining standard error (Donner & Koval, 1980b), and a method based on the large-

sample variance of the ANOVA estimate of the intraclass correlation coefficient (Smith, 

1957).  Results from Monte Carlo simulation indicated that the latter method is preferred 

and that for large numbers of groups (i.e., targets) maximum likelihood methods perform 

better for values of the index of low magnitude.   

Ukoumunne (2002) conducted a study investigating many of the same confidence 

interval construction methods explored in Donner and Wells (1986).  Results showed that 

methods based on the F statistic are more appropriate compared to those based on the 

large-sample variance approximation for obtaining standard errors.  Unlike the Donner 

and Wells (1986) study, the maximum likelihood method was not included and the 

simulation data did not include data relevant to interrater reliability studies, which are 

characterized by a large number of targets with small numbers of ratings.   

Ukoumunne et al. (2003) conducted a study investigating multiple bootstrap 

methods for constructing confidence interval about the intraclass correlation coefficient.  

Only bootstrap confidence interval construction methods were compared in their 

simulation study.  Results showed that standard bootstrap methods had lower than 

nominal coverage rates in the data sets with smaller clusters and needed upwards of 50 

clusters to approach nominal coverage rates.  The bootstrap-t method with variance 
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stabilizing transformations, the newer method, provided an improved and typically 

showed close to nominal coverage even for small numbers of clusters.   

More recent confidence interval construction methods were studied; however, 

they generally extend beyond the simple one-way ANOVA with random effects model, 

which estimates ICC(1,1).  A study by Demetrashvili et al. (2016) explored ICC interval 

estimation for the intraclass correlation coefficient in the one-way ANOVA and more 

complex models in the context of agreement and interrater reliability studies.  They 

proposed closed form methods (i.e., a method based on Satterthwaite’s approximation 

and the F distribution and a method based on statistical moments of the intraclass 

correlation coefficient and the Beta distribution) and compared those methods to methods 

studied in Donner and Wells (1986) and Ukoumunne (2002).  They found that in the case 

of the one-way ANOVA model, the exact method given above (Searle, 1971) along with 

the adjustment for unbalanced designs performed best; however, their proposed method 

based on the statistical moments of the intraclass correlation and the Beta distribution 

performed well also.   

Given the literature surrounding confidence interval estimation, a study 

comparing findings from these studies that compares the method based on Searle’s 

(1971) method and its adjustments for unbalanced data, the transformed bootstrap-t 

method which was identified as superior in Ukoumunne et al. (2003) but for balanced 

data, and the method based on statistical moments and the Beta distribution in 

Demetrashvili et al. (2016) is needed. 

From the review of the literature surrounding ICC(1,1), it is evident that further 

exploration into the point and interval estimation of the coefficient is needed.  It is 
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evident that methods based on the one-way ANOVA model and maximum likelihood 

estimation show promise as estimators; however, further exploration into the 

performance of the estimators is needed, especially when distributional assumptions are 

not met and when data are unbalanced.  While the ANOVA estimator suffers from further 

bias when distributional assumptions are not met and data are unbalanced, maximum 

likelihood estimators may perform better.  However, maximum likelihood estimators may 

perform worse when sample sizes are smaller. 

Thus, the purpose of this study is explore the use of a specific maximum 

likelihood estimation framework in obtaining a point estimate of interrater reliability in 

reliability studies designed to fit ICC(1,1).  In addition, the purpose of this study is to 

propose a procedure that can be used to estimate the bias in the estimator that does not 

require distributional assumptions and balanced data, which may overcome both issues 

evident in ICCANOVA and ICCML.  This exploration and procedure will involve the use of 

hierarchical linear modeling and the nonparametric bootstrap.  In Chapter 3, a thorough 

description and illustration of the hierarchical linear modeling framework and the 

bootstrap procedures will be provided with a focus on continuous rating data.  A similar 

method will be proposed, and an illustration will be conducted and presented for 

dichotomous rating data in Chapter 4.  With each proposal, a review of additional 

literature, a description of the method, and an illustration of the method using published 

data from the interrater reliability literature will be conducted.  In each illustration, a 

description of the data set and components related to estimation using the alternative 

maximum likelihood framework will be conducted.  Chapter 5 will include a discussion 

of the results from the studies in Chapters 3 and 4.   
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Overall, this study should provide researchers and practitioners with a unified 

method for estimating ICC(1,1) and its bias without the use of analytical formulas.  As 

Eldridge et al.(2009) presented and defined ICC(1,1) within a unified framework, the 

goal of this study is to extend the literature from this unified framework to include 

estimation of bias.  This study might be used to not only develop bias-corrected 

estimators and identify factors in data sets that may influence the performance of such an 

estimator, but it may also shed light into extensions of this method to the more utilized 

intraclass correlation coefficients, ICC(2, 1) and ICC(3, 1). 
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CHAPTER 3 

HLM AND CLUSTER BOOTSTRAPPING FOR POINT AND BIAS ESTIMATION  

 

WITH CONTINUOUS RATING DATA 

 

The intraclass correlation coefficient has often been used as a measure of 

interrater reliability in fields such as education, psychology, and medicine.  Of the three 

primary study designs for calculating intraclass correlations described in Shrout and 

Fleiss (1979), this study will focus on ICC(1,1), which is calculated using continuous 

rating data in which targets are each rated by a different set of judges who are assumed to 

be randomly sampled from a population of raters.  This ICC estimate has most commonly 

been estimated using the one-way ANOVA with random effects model using the method 

of moments estimator for variance components and later using maximum likelihood.   

With the one-way ANOVA with random effects model, if Yij represents the rating 

given by judge i (i=1,…,k) for target  j (j=1,…,n), then the model equation is given by 

                                                          Yij = μ + tj + eij                                                      (1) 

where μ represents the grand mean rating, tj represents the target effect (i.e., the deviation 

of target j’s score from the overall mean rating), and eij represents error.  The 

assumptions that allow appropriate estimation of ICC(1,1) include:  tj ~ iid(0, σT
2 ), 

eij ~ iid(0, σW
2 ), and tj and eij are independent (Donner & Koval, 1980b).  For appropriate 

estimation using maximum likelihood, it is assumed that data fit the common 
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correlation model, where all observations Yij are distributed about a common mean and 

variance.  In addition, all observations Yij of the same class are assumed to be distributed 

as multivariate normal random variables (Donner & Koval, 1980; 1980b; Paul, 1990; 

Rosner et al., 1977).  While these two models have been used to estimate ICC(1,1), the 

use of the one-way ANOVA method dominates compared to maximum likelihood 

methods proposed by Donner and Koval (1980) and Rosner et al. (1977) and extended by 

Srivastava (1984).  This is probably due to the ease of implementation and the long 

history of ANOVA methods (Chen et al., 2018).  While this is the case, with the 

assumption that var(Yij) = σT
2  + σW

2 , both models are equivalent (Donner & Koval, 

1980b). 

3.1:  ESTIMATION OF ICC(1,1) USING HIERARCHICAL LINEAR MODELING 

The one-way ANOVA with random effects model given in equation 1 can be 

conceptualized as a hierarchical linear model (HLM) (Bleise, 2000).  Hierarchical linear 

modeling is used to model hierarchical or nested data.  Examples of nested data include 

students nested within classrooms, patients nested within hospitals, and citizens nested 

within communities.  In each of these cases, two levels of data exist.  Level-1 contains 

the units of analysis, and Level-2 contains the entities within which the units of analysis 

exist.  The levels of data can extend beyond two and can technically be any number of 

levels.  In the case of students nested within classrooms, for example, additional nestings 

may involve classrooms nested within schools, schools nested within districts, and 

districts nested within states, yielding 5 levels of data.  When units of observation are 

nested, they share common characteristics, which indicates that they are correlated and 

are not independent.  As traditional statistical procedures require independence of 
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observations, when data are nested, that assumption is violated.  The consequences of 

such a violation should not be ignored as this can lead to biased parameter estimates, 

biased standard errors, and inflated Type I error rates (Raudenbush & Bryk, 2002).  

Hierarchical linear modeling provides an analysis framework that can handle the 

relationships within the level-2 or higher units to overcome the violations of the 

independence of observations assumption that traditional statistical procedures cannot. 

Each of the hierarchical data examples mentioned above involve the physical 

nesting of data; however, data in which the individual is considered a higher level has 

been conceptualized to be hierarchical.  This occurs when individuals have repeated 

measures.  Some examples include longitudinal studies where time is nested within 

individual, measurement studies in which items are nested within individuals, and 

interrater reliability studies where judges are nested within targets.  As the focus of this 

study is on interrater reliability, the last example is noteworthy and will be studied within 

the framework of hierarchical linear modeling. 

Since each target is assumed to be rated by a different set of judges in reliability 

studies associated with ICC(1,1), the judges are conceptually nested within targets, 

making judges the level-1 units of analysis and targets the level-2 units of analysis.  The 

specific HLM equivalent to the one-way ANOVA with random effects model in this 

context is the random intercepts model, also called the unconditional or empty model, 

with no level-1 or level-2 predictors (Raudenbush & Bryk, 2002).  More specifically, the 

rating Yij given by judge i (i=1,…k) for target j (j=1,…,n) can be modeled using two 

equations, one for each level.  These equations are given by,  
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Level-1:  Yij = β
j
 + eij 

Level-2:  β
j
 = μ + tj     

where β
j
 is the random-intercept or the average rating for target j, μ is the grand mean 

across all intercepts or the average rating across all targets, tj is the random deviation of 

target j from the grand mean, and eij is the error term.  The two random effects, tj and eij, 

are assumed to be normally distributed with zero means and variances σT
2  and σW

2 , 

respectively.  The two separate models can be combined by substituting the right-hand 

side of the level-2 model into the level-1 model to obtain the same one-way ANOVA 

with random effects model given in equation 1. 

To estimate ICC(1,1) using HLM, a form of maximum likelihood estimation is 

typically used.  More specifically, one of two types of maximum likelihood estimates are 

most commonly used:  Full Maximum Likelihood (FML) and Restricted Maximum 

Likelihood (RML) (Patterson & Thompson, 1971).  FML follows traditional maximum 

likelihood estimation.  However, RML is slightly different.  When the number of level-2 

units are large, both FML and RML will produce almost identical results; however, when 

the number of level-2 units is small, FML will yield downwardly biased estimates of 

variance components.  RML accounts for this bias by adjusting for a loss in the degrees 

of freedom when regression coefficients are estimated in models.  Thus, the main 

differences between these methods involves the estimation of variance components.  In 

general, for large sample sizes, the difference between variance components estimates 

between the two methods should be small; however, it is recommended that RML be 

used when variance components are of interest and for cases when the sample size is 

small (McCulloch & Searle, 2001; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).   
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In either case, HLM estimation for the model given in equation 1 results in direct 

estimates of the variance components σT
2  and σW

2 .  Thus, instead of using sample mean 

square values from the one-way ANOVA with random effects model, this methodology 

provides RML estimates of the variance components, directly.  These variance 

components can be substituted in the formula for ICC(1,1) to obtain an estimate of ρ 

given by, 

ρ ̂= 
σ̂T

2

σ̂T
2  + σ̂W

2
. 

Just as previously indicated, the ICC gives the proportion of variance in ratings 

that is between targets (i.e., level-2 units).  As is the case when estimated using the one-

way ANOVA with random effects model, this measure is a measure of interrater 

reliability as it provides indication into the amount of variability between judges.  If ρ̂ is 

large, the value of σ̂W
2

 is small relative to σ̂T
2
 indicating similar ratings by judges.  

Conversely, if ρ̂ is small, then the value of σ̂W
2

 is relatively large indicating varying 

ratings by judges.  As this estimate follows the exact form of reliability as given in 

equation 1, its value will range from 0 to 1. 

With the equivalence of the random intercepts HLM model and the one-way 

ANOVA with random effects model, both models will generally yield the same estimate 

of ICC(1,1), except in cases in which the latter estimator yields a negative value (as cited 

in Chen et al. 2018; Liu & Pompey, 2020).  This means that the variance components 

from RML estimation are generally equivalent to the expressions involving mean squares 

estimates used in the numerator and denominator of the ICC from the ANOVA 

framework.  With such an equivalence, one may ponder which method should be used in 
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practice.  Traditionally, the ANOVA framework has been used.  This may be due to the 

initial introduction of the ICC within the framework of ANOVA as well as the fact that 

ANOVA is a familiar and therefore simpler procedure.  However, with the advancement 

of computer technology and modern statistical software, hierarchical linear modeling has 

become widely used in general statistical contexts, including the social sciences.  In fact, 

it has been stated that multilevel modeling, another term used for hierarchical linear 

modeling, was more fully developed by educational researchers (Goldstein, 2003).  

Because of this, the methodology is becoming more familiar to an increased number of 

researchers.  This increases the possibility that researchers will use it as a viable option 

when considering interrater reliability.   

There are several other reasons why one may want to use hierarchical linear 

modeling to estimate interrater reliability via the intraclass correlation coefficient.  One 

advantage of using this modeling process to obtain the estimate of ICC(1,1) is the 

guarantee of a non-negative value, which is not the case when using ANOVA (Chen et 

al., 2018).  From equation 3 in Chapter 1, it is evident that ICC(1,1) will be negative 

when MST is less than MSW.  In fact, the minimum value of ICC(1,1) under the one-way 

ANOVA with random effects model will occur when MST equals 0, which will yield a 

minimum value for ICC(1,1) of -1/(k - 1).  In such cases, the general practice is to set the 

negative value equal to 0 (Bartko, 1976; as cited in Wu et al., 2012).  This occurrence 

tarnishes the interpretation of ρ because based on equation 1 from Chapter 1, it should be 

a value between 0 and 1 to appropriately represent the proportion of total variance 

accounted for by true score variance.  Therefore, having a value that is nonnegative will 

allow for a proper and more consistent interpretation of all ICC(1,1) estimates.   
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In addition, within the one-way ANOVA framework with associated formulas 

previously described and given in equation 3 of Chapter 1, there is an underlying 

assumption that the design is balanced.  In cases where the design is unbalanced (i.e., 

when a different number of judges rates targets), the unbalanced estimator given in 

equation 4 of Chapter 1 should be used as it adjusts for the different sample sizes 

(Blalock, 1972; Haggard, 1958; Lix et al.,  1996).  While this is the case, with much of 

the literature accompanying the calculation of ICCs within the ANOVA framework, 

including the two foundational sources outlined in Chapter 1 (McGraw & Wong, 1996; 

Shrout & Fleiss, 1979), and a more recent review article (Koo & Li, 2016), there is a lack 

of guidance related to the estimation of the ICC for unbalanced data.  While separate 

formulas are needed when designs are unbalanced using the one-way ANOVA with 

random effects model, HLMs are equipped to handle level-2 units of various sizes (i.e., 

different numbers of level-1 units).  As targets are at level-2 and judges are at level-1, 

cases in which some targets are rated by a different number of judges can be adequately 

modeled using HLM without requiring special attention or making adjustments (Chen et 

al., 2018; Raudenbush & Bryk, 2002).  Thus, in cases of missing data where the judges 

are missing for some respondents, HLM is preferred.  In addition, when data are severely 

unbalanced, estimation of mean squares may be inaccurate (Searle, 1994), leading to the 

potential for additional bias in the ANOVA estimator. 

Even with these advantages, using HLM to obtain an estimation of ICC(1,1) is not 

without its limitations.  Because HLM estimation procedures uses maximum likelihood 

estimation, there is a reliance on normal theory.  However, normal theory is not required 

for point estimation when using the one-way ANOVA with random effects model 
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(Raudenbush & Bryk, 2002).  For the two-level random intercepts HLM model, the level-

1 residuals are assumed to be identically and independently distributed as normal random 

variables with mean 0 and a constant variance (i.e., σW
2 ), the level-2 residuals are 

assumed to be identically and independently distributed as normal random variables with 

mean 0 and constant variance (i.e., σT
2 ), and the level-1 and level-2 residuals are assumed 

independent (Raudenbush & Bryk, 2002).  When normal theory assumptions are violated, 

the results from normal theory-based analyses are expected to be biased.  However, when 

sample sizes are large, the estimates of variance components are approximately unbiased 

with minimum variance, especially when RML estimation is used (Raudenbush & Bryk, 

2002; West et al., 2007).  This is the case because large-sample asymptotic properties 

should hold based on the Central Limit Theorem.   

Maximum likelihood methods are robust to normal theory violations when sample 

sizes are large, but what about data in which sample sizes are small?  In such cases, 

variance component estimates at level-1 may be nearly unbiased.  However, those at 

level-2 are sometimes underestimated (van der Leeden et al., 1997).  To overcome this 

underestimation of level-2 variance component estimates, it is recommended that the 

number of level-2 units be increased because as the number of level-2 units increases, the 

level-2 variance component estimates become more accurate, regardless of the number of 

level-1 units (Busing, 1993; van der Leeden & Busing, 1994).  In a simulation study by 

Maas and Hox (2004) with non-normally distributed level-2 residuals, it was found that 

point estimates of variance components are generally unbiased, while the associated 

standard errors of those variance components are inaccurate.  This suggests that point 

estimation of variance components at both levels may be robust to violations of the 
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normality assumption for the level-2 residual distribution, but inference concerning them 

are not.  These results are different compared to those given by Busing (1993) and van 

der Leeden and Busing (1994), but as cited in Maas and Hox (2004), this difference was 

potentially due to the high ICC simulated values and low number of level-2 units used in 

those studies.  In general, the larger the number of level-2 units, the better the estimates 

of variance components, which should lead to more accurate ICC estimates.     

Since the HLM estimate of ICC(1,1) is a function of variance component 

estimates, it follows that satisfying the normality assumption or having a large number of 

level-2 units should yield adequate estimates of the index.  But when data fail to satisfy 

such requirements, there is no indication of the exact effect these violations may have on 

ICC(1,1).  It is under such conditions where further study into the accuracy of ICC(1,1) 

estimation is needed.  In conducting further study, care should be taken to simultaneously 

consider the fact that the other estimators (i.e., using the one-way ANOVA with random 

effects) also yield biased estimates of the intraclass correlation.  As discussed in Chapter 

1, traditional estimators are negatively biased, indicating a lack of accuracy in estimating 

the coefficient.  While Olkin and Pratt (1958) proposed an unbiased estimate of the index, 

due to a lack of a closed-form formula, most applications defer to the use of the 

traditional estimators whose approximate biases are given in Ponzi and James (1978) and 

Wang et al. (1991).   

Given the equivalences between the one-way ANOVA with random effects model 

and the random intercepts HLM model (except in cases in which the former yields 

negative estimates or with unbalanced data) and since the ICC(1,1) estimates are 

negatively biased in the former, it is reasonable to assume that the HLM estimates will be 
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negatively biased.  In addition, it has been shown that early maximum likelihood 

estimates (i.e., FML) are negatively biased.  So again, it is reasonable to infer that the 

HLM estimates using RML will be negatively biased also.  While this is the case, the 

degree of this bias, especially in cases of unbalanced data or in cases where large sample 

size and normal theory may not apply has not been studied extensively.  Moreover, in 

these cases, it may be too difficult or nearly impossible to analytically obtain estimates of 

bias. 

Therefore, the purpose of this study is to describe and illustrate the use of the 

bootstrap as a method for estimating the bias in the intraclass correlation when estimated 

using the random intercepts HLM model.  Given its flexibility and ease of use, it is 

hypothesized that the bootstrap will provide a viable method for adequate estimation of 

bias with unbalanced, small sample data.  This exploration will review and determine the 

appropriate bootstrap method to implement under the random intercepts HLM model.  

Then two illustrative examples using published data will be used to exemplify how to 

implement the bootstrap procedure using widely used statistical software and how to 

evaluate the appropriateness of using such procedures to estimate bias. 

3.2:  BOOTSTRAP METHODS FOR CONTINUOUS HIERARCHIAL DATA 

Several methods may be implemented when applying the bootstrap to nested data.  

There are many purposes and uses of these methods, but in general, they are used to 

construct approximate sampling distributions of statistics.  These sampling distributions 

can then be used to determine properties of statistics such as bias, standard error, and root 

mean squared error and are used when these statistics cannot be confidently estimated 

from sample data.  There are three general approaches: the parametric bootstrap, which 
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resamples from a parametric model assumed to fit the data , the residual bootstrap, which 

resamples from the residuals of a parametric model assumed model to fit the data, and the 

cases (nonparametric) bootstrap, which resamples observations from a data set without 

fitting a parametric model (van der Leeden et al, 1997; van der Leeden et al., 2008).  

Each approach has its assumptions and limitations.   The parametric bootstrap assumes 

fixed explanatory variables, correct parametric distributional assumptions, and a correctly 

specified model.  Specifically, the parametric bootstrap makes normality assumptions 

about the level-2 and level-1 residuals.  Under such assumptions, the parametric bootstrap 

algorithm selects residuals from the level-2 residual distribution with replacement, 

chooses residuals from the level-1 residual distribution, and then uses the fixed 

explanatory variables in the specified model to generate bootstrap samples.  The residual 

bootstrap assumes fixed explanatory variables and a correctly specified model.  The 

residual bootstrap uses the estimated residuals from the correctly specified HLM model 

and obtains bootstrap samples in the same fashion as the parametric bootstrap.  Because 

the residuals are not drawn from a known distribution, unlike the parametric bootstrap, 

the residuals bootstrap is considered a nonparametric bootstrap method.  The cases 

bootstrap only requires a correctly specified model, and it is also a nonparametric 

bootstrapping method.  It produces bootstrap samples by resampling level-2 cases from 

the original data with replacement.  The procedure may then stop or continue to resample 

level-1 cases with replacement from each selected level-2 units (Goldstein, 1998; Meijer 

et al., 1998; van der Leeden et al., 2008).  Given the assumptions and differences among 

bootstrapping methods, care should be taken to choose the appropriate algorithm to 

generate bootstrap samples for the nested data. 
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Given the need for special care with bootstrapping hierarchical linear models, 

several studies have been conducted.  In a study comparing the parametric, residual, and 

cases bootstrap methods to the FML HLM estimation method, results showed that the 

shrunken residual bootstrap (i.e., a variation of the residual bootstrap) generally produced 

approximately unbiased estimates of variance components, especially in cases where the 

normality assumption was not tenable (van der Leeden et al., 1997).  The shrunken 

residual bootstrap follows the same algorithm as the residual bootstrap but uses the more 

efficient shrunken residuals (i.e., maximum likelihood estimates of the expected values of 

residuals given observed data) rather than raw residuals to account for sampling and 

downward bias in raw residuals.  This study was based on HLM models with one 

predictor at each level.  It was noted that the cases bootstrap did not perform well, 

especially when compared to the residuals bootstrap due to the small sample size in the 

study (e.g., 20 level-2 units and 10 level-1 units).  While this study showed that the 

residual bootstrap outperformed the other methods based on bias, it involved the 

comparison of the different bootstrap methods, which is inappropriate since they all have 

different assumptions and should generally not be used on the same data.   

Another study investigated the shrunken residual bootstrap and compared it to 

RML estimates of variance components under the conditions where the normality and 

homogeneity of variance assumptions were violated.  This study found that the residuals 

bootstrap also outperformed the RML method but performed poorly when the number of 

groups was not large.  This study was conducted using the random coefficients two-level 

model, and it did not explore the cases bootstrap as the model contained explanatory 

variables (Seco et al., 2013).   
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Carpenter et al. (1999) conducted a simulation study comparing the residuals and 

parametric bootstrap methods.  They simulated 500 multilevel data sets based on the two-

level random coefficients model.  Each data set contained 4059 level-1 and 65 level-2 

units.  Results showed that both bootstrap methods yielded unbiased estimates of model 

parameters; however, the residuals bootstrap yielded better confidence intervals for all 

model parameters as seen in coverage percentages.   

Later, these authors conducted an updated simulation study where they compared 

the residuals and parametric bootstrap methods within two-level random coefficient 

models (Carpenter et al., 2003).  They varied the number of level-1 (e.g., 10, 20, and 40) 

and level-2 (e.g., 20, 40, and 80, respectively) units, simulated the random effects from 

non-normal distributions, and calculated 90% confidence interval percentages.  Results 

confirmed those from their 1999 study by showing that both bootstrap methods yielded 

similar results for fixed effects; however, the nonparametric residual bootstrap 

outperformed the parametric bootstrap in confidence interval coverage probabilities for 

variance-covariance estimates, especially for the level-1 variance components across all 

sample sizes.   

Much of the literature above has focused on more complicated models and fail to 

establish a foundation for simple HLM models such as the random intercepts model.  

Given that ICC(1,1) is the focus of this study, only one of the three general bootstrapping 

methods is valid.  Because the random intercepts HLM model includes no predictors at 

either level and essentially includes repeated measures of individuals, it is known that the 

cases bootstrap, not the parametric or residuals bootstrap, is appropriate (van der Leeden 

et al., 2008).  Davison and Hinkley (1997) considered several variations of the cases 
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bootstrap.  These variations include the cases bootstrap as described above, which was 

later termed the a two-stage bootstrap (Field & Welsh, 2007), the randomized cluster 

bootstrap in which level-2 units are sampled with replacement but level-1 units within 

each resampled level-2 unit are sampled without replacement, leaving level-2 units intact 

but permuted, and the cluster bootstrap which is a variation of the randomized cluster 

bootstrap where sampling is conducted of level-2 units only leaving the level-2 units 

intact.  According to Davison and Hinkley (1997), the cluster bootstrap was found to 

account for or maintain the nested nature of the data, and most closely reproduces the 

variational properties present in the original data when compared to the two-stage 

bootstrap.   

In addition to these methods, several other bootstrapping methods for hierarchical 

data exist to include the random-effects bootstrap and the reverse-two stage bootstrap to 

name a few.  In a study by Field and Welsh (2007), the performance of these and several 

other bootstrapping methods was evaluated using the consistency of variance component 

estimates as evaluative criteria.  It was found that in the case of the random effects model 

with balanced data, the cluster bootstrap yields consistent estimates of variance 

components under cluster asymptotics.  In other words, as the number of level-2 units 

increases, the variance component estimates better approximate their true values, which 

confirms results by Busing (1993) and van der Leeden and Busing (1994).  The cluster 

bootstrap method was also found to be appropriate for clustered data with a low number 

of clusters, which may be the case in interrater reliability studies (Huang, 2018).  Thus, 

the cluster bootstrap method is the version of the cases bootstrap that should be used to 

obtain an estimate of bias for the intraclass correlation.  In fact, this method has been 
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used in evaluating methods used to construct confidence intervals around ICC(1,1) for 

hierarchical data in the context of cluster randomized trials (Ukoumunne et al., 2003).  

While this study supports the use of the cluster bootstrap as a method for confidence 

interval construction, it did not provide information regarding the appropriateness of 

using the cluster bootstrap for estimating the bias in an estimator.  In addition, there was 

no evaluation of the use of maximum likelihood methods in obtaining the intraclass 

correlation associated with this study.  

More recently, Liu and Pompey (2020) explored the use of the cluster bootstrap 

for estimating the bias in ICC(1,1) using RML estimation within the framework of the 

random intercepts HLM model.  In their exploration, they used a popular small data set 

(see Shrout & Fleiss, 1979) to obtain several estimates of bias based on the number of 

bootstrap replications.  The results implicated that the cluster bootstrap is a viable option 

that can be used to estimate bias even for the small sample sizes data (i.e., 6 targets each 

rated by 4 different judges).  While this is the case, their study focused on a single data 

set with balanced data.  Therefore, to expand on their study, a goal of this study is to 

provide illustrative examples with larger data sets and data sets that are unbalanced.   

Bias in ICC(1,1), denoted bias
**

 is estimated using equation 1 in Chapter 2 using 

the cluster bootstrap procedure.  Using the bootstrap replications, θ̂
*
, the distribution of 

the bootstrap replications can be used to evaluate how well they potentially estimate 

E (θ̂
*
).  In addition to analyzing this distribution, an analysis of the graphical 

representation of bias against number of replications will be conducted as well as the 

calculation of the standard error of the distribution, which will be used to judge the effect 

of the number of bootstrap replications on estimates of bias.   
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To conduct such analyses, the lme4 (Bates et al., 2015) package in the R 

statistical software (2018) was used to obtain the restricted maximum likelihood 

estimates of the variances in the random intercepts HLM model.  Additional code was 

written to perform the cluster bootstrap to obtain all results. 

For each illustrative example, a description of the data set as well as descriptive 

statistics that are useful when estimating HLM models as well as interrater reliability 

studies were provided. 

3.3:  ILLUSTRATIVE EXAMPLE ONE 

 The first data set examined in this study exploring the use of the cluster bootstrap 

in the estimation of bias in ICC(1,1) using balanced data was adapted from Table 6 of 

Haggard (1958).  For this study, it was assumed that the data contain continuous ratings 

on 25 targets who are each rated by a different set of five judges.  In educational research, 

this type of study design may occur in large-scale assessment interrater reliability studies 

where a large pool of teachers must grade a large number of student performances on 

essays.  To calculate interrater reliability, the same number of teachers are randomly 

assigned to rate the same targets and all ratings from each teacher on all students are 

obtained.  In such a design, the one-way ANOVA with random effects model and 

ICC(1,1) are the appropriate model and intraclass correlation useful for obtaining a 

measure of interrater reliability.  This data set was selected as it provides a larger number 

of targets compared to the study presented in the illustration by Liu and Pompey (2020).  

The data are shown in Table 3.1 below.  As shown in Haggard (1958), the estimate of 

ICC(1,1) for this data set is approximately 0.46, which is substantially larger than that in 

Liu and Pompey (2020).  Since this data set is balanced (i.e., all targets are rated by the 
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same number of judges) this value will be the same (within rounding error) whether the 

mean square estimates from the one-way ANOVA with random effects model or 

maximum likelihood methods are used.  In either case, this value will be used in the place 

of 𝜃 in the formula for bootstrap bias given by, 

bias** ≈ (
1

B
∑ θ̂b

*

B

b = 1

)  - θ̂. 

To obtain the full estimate of bias, computer software using Monte Carlo processes are 

needed to obtain the first term on the right-hand side of the equation above.  First, 

samples of the same size (i.e., 25) were randomly selected with replacement by 

Table 3.1 Ratings of Targets by an Equal Number of Judges 

 

Target Judge 1 Judge 2 Judge 3 Judge 4 Judge 5 

1 6.80 6.02 0.00 5.65 11.39 

2 7.49 0.00 7.27 12.66 9.10 

3 11.97 4.52 16.32 4.29 15.45 

4 11.97 0.00 9.28 14.18 12.39 

5 8.33 0.00 7.49 14.77 7.92 

6 18.15 21.13 15.00 7.71 15.45 

7 10.14 6.80 9.98 10.63 8.13 

8 16.64 7.27 12.25 16.22 12.79 

9 10.31 12.39 12.79 12.11 10.47 

10 14.65 25.10 7.92 21.47 15.68 

11 20.79 23.50 32.14 24.50 14.54 

12 11.39 5.53 3.63 6.02 10.47 

13 12.66 10.63 8.33 10.14 9.10 

14 13.56 9.10 18.44 13.31 11.54 

15 12.39 9.10 7.27 13.56 10.78 

16 2.07 0.00 0.00 0.00 11.09 

17 3.53 0.00 0.00 0.00 6.80 

18 1.72 0.00 4.66 5.53 20.00 

19 6.02 15.56 7.27 13.44 7.71 

20 4.73 9.63 13.69 8.91 7.04 

21 6.02 2.75 9.28 4.29 12.11 

22 11.24 18.63 4.17 10.63 10.14 

23 10.94 12.39 8.13 7.04 5.50 

24 16.74 16.54 17.05 11.54 14.65 

25 13.05 6.29 6.02 0.00 5.13 
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resampling complete cases of targets (i.e., targets with corresponding ratings from five 

judges).  Then the lmer function of the lme4 package was used to obtain parameter 

estimates from a random intercepts HLM model using RML.  At this step, σ̂T and σ̂W  

were directly obtained and extracted.  From these estimates, the estimate of ICC(1,1) 

using the formula given by 

ρ̂ = 
σ̂T

σ̂T + σ̂W

 

was calculated.  As stated previously, ρ̂ is a bootstrap replicate corresponding to the 

bootstrap sample selected in the first step.  This process was repeated B times, resulting 

in B bootstrap replications, which are represented by θ̂b

*
 in the formula for bias.  Given 

large B, the bootstrap distribution of ICC(1,1) was constructed, and bias** was calculated 

by taking the average of the B bootstrap replications and finding the difference between it 

and the sample estimate of ICC(1,1) from the original data.  Once the estimate of bias 

was obtained, an inspection of distribution of the bootstrap replications was used to 

determine how well the cluster bootstrap estimates bias. 

As shown in Table A.1 in the appendix, estimates of bias using the cluster 

bootstrap method ranged in value from -0.0406 to -0.0209 yielding a range of about 

0.0197 when the number of bootstrap replications range from 100 to 20,000 in 

increments of 100.  Also, in Table A.1 are bias estimate when 100,000 and 1,000,000 

bootstrap replications are used.  Figure 3.1 contains a plot of bias estimates against the 

number of bootstrap replications.  The solid line represents the bias estimate when 

1,000,000 bootstrap samples and replications are obtained.  This bias estimate is -0.0322 

and can be thought of as a representative of the true bias, which is unknown given that a 
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real data set is used. Once the number of replications surpasses 900, the range of the 

estimates of bias decreases to a much smaller interval of .01.  More specifically, the bias 

estimates range from -0.0375 to -0.0267.  Once the number of replications surpasses 

5100, the range of bias estimates are between -0.0351 and -0.0292, a range of .0060.  If 

the number of replications surpasses 10000 replications, bias estimates range from -

0.0348 to -0.0300, a range of .0048.  Thus, as the number of bootstrap replications 

increases, the variability in bias estimates tend to decrease supporting that the bias 

estimates are settling or converging.   

 

In addition, the distribution of bootstrap replicates was analyzed to determine the 

adequacy of using the mean of the replicates as an estimate of the expected value of the 

replicates.  As shown in Figure 3.2, as the number of bootstrap replicates increases, the 

Figure 3.1 Graph of bias plotted against number of replications for illustrative 

example one, indicating that as the number of bootstrap replications increases, there 

is a decrease in how much the estimates of bias vary. 
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shape of the distribution of the bootstrap replicates becomes more unimodal and with a 

slight negative skew.  Once the number of replications reach 500, the distributions are 

more similar and are clearly skewed to the left.  Although there is evidence of a slight 

negative skew graphically, as shown in Table 3.2, there is evidence of only slight 

deviation from a normal distribution in terms of the kurtosis of the distribution as most 

values are very close to zero.  However, there is some departure from normality in terms 

of skewness as these values deviate much more from zero in the negative direction 

(Blanca et al., 2013; Joanes & Gill, 1998).  While this is the case, researchers typically 

categorize slight deviations from normality when the absolute value of skewness and 

kurtosis are less than or equal to 1 (as cited in Lei & Lomax, 2005).  Given the small 

deviation from 0 and that the mean and median of each distribution are similar, these data 

show evidence of a normal distribution, which supports the use of the mean as the center 

of the distribution.   

Table 3.2 Descriptive statistics of distributions of ICC estimates for select numbers of 

replications 

 

B M SD Min Q1 Mdn Q3 Max Skew Kurtosis 

100 0.43 0.10 0.20 0.35 0.44 0.50 0.65 -0.12 -0.46 

300 0.42 0.11 0.00 0.35 0.43 0.50 0.65 -0.52 0.15 

500 0.44 0.11 0.09 0.37 0.45 0.52 0.70 -0.45 -0.08 

1000 0.43 0.11 0.01 0.36 0.44 0.50 0.66 -0.59 0.09 

10000 0.43 0.11 0.00 0.36 0.44 0.51 0.70 -0.47 -0.05 

1000000 0.43 0.11 0.00 0.36 0.44 0.51 0.74 -0.50 0.00 

 

In addition to considering the distributions, the standard deviations of the 

distributions of bootstrap replications were used to construct probability bands which 

may indicate the absolute deviation between the bootstrap replication of bias for B 

replications and the ideal bootstrap  estimate of bias, which uses B = ∞.    Table 3.3 
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Figure 3.2:  Distributions of bootstrap replications for select numbers of replications.  Distributions are generally skewed to the right 

but maintain defined shape starting with B=500 replications.
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gives the standard error (i.e., standard deviation of the bootstrap distributions) and the 

maximum of the absolute deviations between bias** and bias∞ if a 95% probability bands 

were constructed for each distribution shown in in Figure 3.2.  When the number of 

replications equal 1,000,000, with probability 0.95, the bootstrap estimate of bias should 

be no more than 0.0002 units from the ideal estimate of bias.  For a few as 1000 

replications, with probability 0.95, the bootstrap estimate of bias should be no more than 

0.0069 units from the ideal estimate of bias.  Thus, increasing the number of bootstrap 

replications from 1000 to 1,000,000 should yield a bootstrap estimate of bias that is 

0.0067 units closer to the ideal estimate of bias. 

Table 3.3 Standard Errors and 95% Probability Band for the Maximum Absolute 

Difference Between Obtained Bias Estimate and Ideal Bias Estimate 

 

B  seB  Maximum |bias** -  bias∞| 

100 0.1027 0.0205  

300 0.1117 0.0129  

500 0.1094 0.0098  

1000 0.1097 0.0069  

10000 0.1096 0.0022  

1000000 0.1100 0.0002  

 

Also shown in Table A.1 in the appendix are the convergence rates when 

implementing RML.  In this study, convergence rates are defined as the percentage of 

bootstrap samples on which the random intercepts HLM converged.  This index was 

considered because of the small sample size of the Haggard (1958) data set and the fact 

that maximum likelihood-based procedures usually require large samples sizes.  

Convergence rates ranged from 99% to 100% indicating that very few models had 

convergence issues.  For data sets for which models that did not converge, the obtained 

replicate was not used in the calculation of bias. 



 

60 

 

Although the cluster bootstrap estimate of bias appears to converge to a value of -

0.0322, there still may be concern as to whether this estimate of bias is a good estimate of 

bias.  Given that this is a real data set, the true value of the ICC(1,1) parameter is not 

known, which is usually the case in practice.  Thus, the bias can never be truly obtained.  

While this is true, by using formulas that approximate bias, a comparison of the bias 

obtained using the cluster bootstrap and those approximated using formulas was obtained.  

For balanced data fitting the one-way ANOVA with random effects model, Ponzoni and 

James (1978) presented the following formula as an estimate of bias in ICC(1,1): 

E(ρ̂ - ρ)≈
-2(1 - ρ) (ρ + 

1 - ρ
k

) (ρ + 
1 - ρ
nk

)

n - 1
, 

where n is the number of targets and k is the number of judges.  Figure 3.3 below depicts 

estimates of bias using the formula above for n = 25 and k = 5, which is representative of 

the values in the data set given in Table 3.1.  As can be seen in the figure by the solid 

curve, bias estimates using ANOVA ranged in value from -0.0137 to 0.0, with the largest 

bias associated with ICC(1,1) estimates slightly above the center of the possible range of 

ICC values (i.e, approximately 0.65).  Note that the plot includes all possible values of 

ICC(1,1) as this is a single data set in which the true value of the coefficient is not 

known.  If the true intraclass correlation coefficient was equal to the obtained estimate of 

the ICC using ANOVA (i.e., 0.4608), the estimate of bias based on this formula would be 

-0.0137.  Based on this estimate, the cluster bootstrap estimate of bias appears to lead to 

an over estimation of the negative bias, no matter the number of bootstrap replications. 
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In addition to the ANOVA estimate of bias, Wang et al. (1991) gave an 

approximation the bias in the maximum likelihood estimator of ICC(1,1).    Their formula 

is the sum of the 

 

estimate given in Ponzoni and James (1978) and the following expression: 

-
(1 - ρ̂

ML
)[1 + (k - 1)ρ̂

ML
]

1 + k(n - 1) + (k - 1)ρ̂
ML

, 

where n and k are the same as before, and ρ̂
ML

 is the maximum likelihood estimator.  For 

the data in the illustrative example, bias in the maximum likelihood estimator for various 

values of the intraclass correlation are given in Figure 3.1 with the dashed line.  As 

shown in the figure and as indicated in Wang et al. (1991), this estimate of bias is in 

addition to the ANOVA estimate of bias, which is a shift of the bias in the ANOVA 

estimator in the negative direction as the expression above is always negative.  The bias 

Figure 3.3:  Bias in the one-way ANOVA with random effects model is less 

than the bias in the maximum likelihood estimator.   
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in the maximum likelihood estimator ranges from -0.0262 to -0.0125.  If the ANOVA 

estimator obtained in the sample data (i.e., 0.4608) were equal to the true ICC estimate, 

then the value of bias in the maximum likelihood estimator would equal -0.0244 based on 

this formula.  In comparing these estimates of bias to the bias estimated using the cluster 

bootstrap, again the cluster bootstrap leads to more negative bias compared to the 

estimate of bias using the formula for the ANOVA estimator; however, it is more similar 

to the estimate of bias when using the maximum likelihood estimate of bias. 

3.4:  ILLUSTRATIVE EXAMPLE TWO 

The second data set examined in this study exploring the use of HLM to estimate 

ICC(1,1) and the cluster bootstrap in the estimation of bias in ICC(1,1) is adapted from 

Table 2 of Haggard (1958).  In this study, it is assumed that the data contain continuous 

ratings on 6 targets by different sets of judges where the number of judges range from 3 

to 13 judges.  An interrater reliability study that fits this design is similar to the design 

described for illustrative example one.  The only difference is that not all teachers 

randomly assigned to grade each student’s essay provides a useful grade that can be used 

in the interrater reliability study.  This may happen when teachers either fail to submit or 

provide a rating or if there is an error with the rating the teacher provides.  In such cases, 

the students in the interrater reliability study are rated by a different number of teachers.  

With such a design, the one-way ANOVA with random effects model and ICC(1,1) are 

appropriate for obtaining a measure of interrater reliability.  This data set was selected in 

comparison to the data set used in the illustration by Liu and Pompey (2020) because it 

had a similar number of targets but with unbalanced data and with differing numbers of 

judges.  The data are shown in Table 3.4 below. 
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Table 3.4 Ratings of Targets by an Unequal Number of Judges 

 

Target Judges’ Ratings 

1 28 32 23 34 28 30 28 30 31 30 30 29 40 

2 7 24 17 16 28 29 33 21 16 20 15 25  

3 34 37 37 25 30 23 29 35 38 33    

4 25 23 33 38 18 21 16 29 23 26 22 16 22 

5 27 26 15 18 7 31 26 33 15 25    

6 1 10 19           

 As indicated in Haggard (1958), the estimate of ICC(1,1) using the mean square 

estimates from the one-way ANOVA with random effects model and the formula that 

uses the adjusted value, k0, for the number of judges was approximately 0.44.  Unlike in 

the case of balanced data (i.e., all targets rated by the same number of judges), the 

maximum likelihood estimator is not equal.  In fact, when the random intercepts HLM 

with RML was used to obtain σ̂T and σ̂W for estimating ρ̂, the estimated value was 0.54.  

Thus, the difference in the ANOVA and the maximum likelihood estimators for 

unbalanced data are noticeably different.  This may lead to issues with making 

comparisons between the two estimators and the bias in each estimator.  This indicates 

that although the two modeling frameworks are conceptually equivalent, the estimation 

processes lead to differing results, which appear to be influenced by how balanced the 

data are.   

The same cluster bootstrap procedures used in illustration one were followed in 

this data illustration.  The maximum likelihood estimate of ICC(1,1) was used as a proxy 

for the population parameter and the mean of the bootstrap replicates were used as a 

proxy for the expected value of the estimators in the formula for bias.  The estimate of 

bias for various numbers of bootstrap replication, B, are given in Table A.2 in the 

appendix.   
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The estimates of bias vary from -0.2103 to -0.1885 with a range of 0.0218 for 

replications that ranged from 100 to 20,000 in increments of 100.  Also included in Table 

A.2 are the bias estimates when 100,000 and 1,000,000 replications are used.  Figure 3.1 

contains a plot of bias estimates against the number of bootstrap replications.  The solid 

line represents the bias estimate when 1,000,000 bootstrap samples and replications are 

obtained.  This bias estimate is   -0.1985 and can be thought of as a representative of the 

true bias, which is unknown given that a real data set is used.  After the number of 

replications reached 900, the range of bias was reduced to 0.0127 with bias estimates 

varying between -0.2049 and -0.1922.  If 5000 or more replications are used, the range is 

further reduced to 0.0081 with bias estimates varying between -0.2026 and -0.1945.  

When 10,000 or more replications are used, the range of bias estimates is 0.0073 with 

values ranging between -0.2024 and -0.1951.  From these results, it is evident that as the 

number of bootstrap replications increases, there is less variability in the estimate of bias.  

This supports the idea that the bootstrap estimates of bias converge. 

In judging the appropriateness of using the mean of the distribution of bootstrap 

replicates for estimating their expected values, an evaluation of the distribution of 

replications were obtained for different numbers of replications.  These distributions are 

given in Figure 3.5.  In general, the distributions have the same shape; however, as B 

increases, the distribution becomes more similar to the distribution shown for B = 1000.  

They start out unimodal and asymmetric such that the right tail of the distribution is 

flatter than the left tail.  As the number of replications increases, the right tail becomes 

slightly less flat but starts to replicate the same asymmetric distribution.  In addition, the 

percentage of replicates with estimates equal to zero stays approximately constant, 
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leading to a left tail that does not flatten as the number of replications increases.  Table 

3.5 contains descriptive statistics on the distribution of bootstrap replications.  As shown, 

for the selected number of bootstrap replications, the mean and median are approximately 

equal and the values of skewness and kurtosis are all within one.  These results hold true 

regardless of the number of replications.  Based on these results, the distributions are 

slightly skewed to the right and are more peaked than what is expected if the distributions 

are normal.  However, even with the slight departures from normality, there is not enough 

descriptive evidence to conclude that the distributions are not normal, which provides 

evidence supporting the mean as the center of the distribution as well as an appropriate 

estimator for the expectation used to calculate bias. 

Figure 3.4 Graph of bias plotted against number of replications for illustrative example 

one, indicating that as the number of bootstrap replications increases, there is a decrease 

in how much the estimates of bias vary. 
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In addition to considering the distributions, the standard deviations of the 

distributions of bootstrap replications were used to construct probability bands which 

may indicate the absolute deviation between the bootstrap replication of bias for B 

replications and the ideal bootstrap estimate of bias, which uses B = ∞.  Table 3.6 below 

gives the standard error (i.e., standard deviation of the bootstrap distributions) and the 

maximum of the absolute distance between bias** and bias∞ if a 95% probability bands 

were constructed for each distribution shown in Figure 3.5.  When the number of 

replications equals 1,000,000, with probability 0.95, the bootstrap estimate of bias should 

be no more than 0.0003 units from the ideal estimate of bias.  For as few as 1000 

replications, with probability 0.95, the bootstrap estimate of bias should be no more than 

0.0097 units from the ideal estimate of bias.  Thus, increasing the number of bootstrap 

replications from 1000 to 1,000,000 should yield a bootstrap estimate of bias that is 

0.0094 units closer to the ideal estimate of bias. 

Also shown in Table A.2 in the appendix are the convergence rates when 

implementing RML.  All bootstrap data sets converged as shown in the 100% 

convergence rate for each number of replications.  This indicates that convergence of the

Table 3.5 Descriptive statistics of distributions of ICC estimates for select numbers of 

replications 

 

B M SD Min Q1 Mdn Q3 Max Skew Kurtosis 

100 0.34 0.16 0.00 0.26 0.33 0.40 0.82 0.17 0.40 

300 0.35 0.16 0.00 0.26 0.34 0.41 0.75 0.19 0.10 

500 0.34 0.16 0.00 0.26 0.33 0.41 0.77 0.19 0.23 

1000 0.35 0.15 0.00 0.26 0.34 0.40 0.81 0.24 0.40 

10000 0.34 0.16 0.00 0.26 0.33 0.40 0.83 0.20 0.23 

1000000 0.34 0.16 0.00 0.26 0.33 0.40 0.83 0.19 0.21 
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Figure 3.5:  Distributions of bootstrap replications for a select number of replications.  Distributions are not symmetric but tend to 

maintain a similar shape no matter the number of replications.
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models was not an issue.  While this is the case, approximately 5% of ICC(1,1) estimates 

were zero, regardless of the number of bootstrap replications.   

Table 3.6 Standard Errors and 95% Probability Band for the Maximum Absolute 

Difference Between Obtained Bias Estimate and Ideal Bias Estimate 

 

B  seB  Maximum |bias** -  bias∞| 

100 0.1642 0.0328 

300 0.1615 0.0187 

500 0.1568 0.0140 

1000 0.1539 0.0097 

10000 0.1579 0.0032 

1000000 0.1588 0.0003 

 

For unbalanced data, there are no known formulas for estimating the bias in the 

one-way ANOVA with random effects model.  The formula given in Ponzoni and James 

(1978) was used for balanced data only.  Thus, comparisons of the cluster bootstrap 

estimate of bias to the ANOVA and maximum likelihood estimators are not included 

here. 
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CHAPTER 4 

 

HGLM AND CLUSTER BOOTSTRAPPING FOR POINT AND BIAS ESTIMATION  

 

The content in the previous chapter provided an illustration of how the intraclass 

correlation coefficient could be estimated using HLM and how the bias in the estimator 

can be obtained using cluster bootstrapping.  Such illustrations were focused on interrater 

reliability studies where judges give ratings on a continuous scale.  In some interrater 

reliability studies in educational and psychological research, measurement, and 

assessment, many types of rating data are analyzed, including categorical data.  Unlike 

continuous rating data, where judges give ratings that may take any value on a closed 

interval, categorical ratings require judges to place individuals into one of two or more 

categories.  This chapter will focus on binary categorical ratings. 

There are several contexts in which judges place targets into one of two 

categories.  In educational psychology, practitioners may interview, interact with, and/or 

observe behaviors in children to either diagnose or not diagnose them with a mental 

illness or disorder.  In secondary education, teachers of skills-based subjects such as 

automotive and other industrial technologies may observe students while completing a 

performance tasks to determine whether students have mastered or not mastered the skills 

necessary to complete the task.  In higher education, admissions counselors review 

applications and other documents to make decisions as to whether they recommend 

prospective students to be admitted or not admitted to a specific college or program.  
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In addition, several large-scale assessment organizations use measures of 

interrater reliability when examinees respond to individual constructed response and 

other performance tasks that are score dichotomously.  In medical assessment, raters 

assign performances on the American Board of Psychiatry and Neurology’s Neurology 

Clinical Skills Examination, which is an observational examination, to one of two 

categories:  pass or fail (Schuh et al., 2009).  In K-12 assessment, the NAEP assigns a 

rating of one or two to its shorter constructed response items (National Center for 

Educational Statistics, 2017), and the Smarter Balanced Assessment Consortium assigns 

a rating of one or zero to some of its mathematics items (Smarter Balanced Assessment 

Consortium, n.d. B).  In each of these cases, interrater reliability studies are conducted to 

provide a measure of agreement between raters.  In general, indices such as the percent of 

agreement, Cohen’s Kappa or other agreement measures are used as they generally are 

easy to implement when two raters rate targets.  However, in cases in which more than 

two raters judge and/or different groups of raters judge each target’s performance, 

applying such indices are inappropriate.  In these cases, the intraclass correlation 

coefficient offers a more appropriate index of interrater reliability. 

Given the potential for its use in providing a measure of interrater reliability in 

cases where judges rate targets resulting in binary outcomes, this chapter will focus on 

extending the framework presented in Chapter 3 to not only estimate the intraclass 

correlation coefficient using hierarchical linear modeling, but to also estimate the bias in 

the estimator using cluster bootstrapping.  In exploring this extension, the notation used 

in Chapter 3 for the intraclass correlation coefficient for continuous data, ICC(1,1), will 
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continue to be used for the same interrater reliability study design in this chapter but with 

a focus on binary rating data.  

4.1 HIERARCHICAL GENERALIZED LINEAR MODELING ESTIMATE OF  

 

INTRACLASS CORRELATION COEFFICIENTS FOR BINARY DATA 

 

The hierarchical linear modeling framework presented previously can be extended 

to handle binary ratings using Hierarchical Generalized Linear Models (HGLM).  These 

models are constructed based on three components:   a sampling model, a link function, 

and a structural model (Hox et al., 2010; Raudenbush & Bryk, 2002).  In the case of two-

level modeling of binary data, a hierarchical logistic regression model can be used.  Let 

Yij be the binary rating for target j by judge i, where the response of interest is classified 

as a success and coded as 1 and the opposing response is classified as a failure and coded 

as 0.  Also, let πij be the probability of a successful rating for target j by judge i.  Then the 

sampling model is given by 

Yij|πij ~ Bernoulli(πij), 

which is a Bernoulli random variable with E(Yij|πij) = πij and Var(Yij|πij) = πij(1 - πij).  

The link function, which is typically used to transform the data in a way that restricts the 

range of observations to a specific interval, can be any function.  Since a Bernoulli 

random variable takes on the value of 0 or 1 with probability between 0 and 1, the 

appropriate link function should restrict outcomes to be between 0 and 1.  One of the 

most commonly used link functions for binary data is the logit link (Snijders & Boskers, 

2012).  This link function is given by 

η
ij
 = ln (

πij

1 - πij

) , 
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where ln (∙) is the natural logarithmic function, and η
ij
 is the log-odds of a successful 

rating.  The structural model describes how the link function is related to the model 

parameters.  In the case of interrater reliability studies that fit study design one, which are 

measured by ICC(1,1), the structural model is given by 

η
ij
 = β

j
. 

These components together lead to the following two-level model for binary ratings, 

Level-1:  η
ij
 = β

j
        

Level-2:  β
j
 = μ + tj      

Combined:  η
ij
 = μ + tj, 

where tj  is normally distributed with mean 0 and variance σT
2 .   

This model is analogous to the one-way random effects ANOVA model as 

presented previously.  One difference beyond the fact that Yij is distributed differently is 

that the level-1 model does not contain an individual error term in the model equation.  

This occurs because Yij is distributed as a Bernoulli random variable, which means the 

level-1 variance is given by πij(1 - πij) and is not freely estimated during the modeling 

process because it is a function of πij.  This also means that the total variance cannot be 

separated into between-target and within-target variance.  Moreover, because a link 

function is used to relate the model parameters to Yij|πij, obtaining a measure of ICC 

using the same strategy as that which was used with HLM models will not yield an 

appropriate estimate.  More specifically, if an attempt is made to estimate ICC(1,1) using 

the proportion of variance between targets to total variance, the formula would be given 

by 
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ρ̂ = 
σ̂T

2

πij(1 - πij)
. 

As the numerator is on the log-odds scale and the denominator is on the proportions scale 

given that it is the variance of a Bernoulli random variable, this ICC estimate is non-

interpretable because the numerator and denominator are on different scales.   

For this reason, the model can be adjusted to be a threshold or latent variable 

model (Snijders & Bosker, 2012).  In this model, the outcome Yij is assumed to be a 

byproduct of an unobserved underlying continuous variable Yij
+.  This continuous variable 

has an arbitrary threshold such that if Yij
+ is greater than the threshold, then Yij = 1; 

otherwise, Yij = 0, which maintains the dichotomy of outcomes.  With this formulation, 

Yij
+ is assumed to be distributed as a random variable from a continuous distribution.  

When the logit link is used, an appropriate choice is the logistic distribution.  With such 

an assumption, the response can be modeled on the continuous logistic scale by adjusting 

the level-1 equation and keeping the same level-2 equation.  This results in the following 

model equations: 

Level-1:  Yij
+  = β

j
 + eij 

Level-2:  β
j
 = μ + tj     

        Combined:  Yij
+ = μ + tj + eij. 

In this case, we obtain a combined model equation with the same representation 

as the one-way random effects ANOVA model formulated as a two-level hierarchical 

generalized linear model with the individual error term included.  This model overcomes 

the separability issue of the between-target and within-target variance when Yij|πij is 

distributed as a Bernoulli random variable.  With Yij
+ distributed as a standard logistic 
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random variable, its distributed with mean = 0 and variance = π2/3, where π ≈ 3.14.  

Thus, Var(eij) = σW
2  = π2/3 ≈ 3.29 (Snijders & Boskers, 2012).  Thus, the ICC(1,1) 

estimate of ρ, the measure of interrater reliability, is given by 

ρ̂ = 
σ̂T

2

σ̂T
2  + σ̂W

2
, 

where σ̂T
2
 is the variance between targets, and σ̂W

2  = π2/3 is the variance within targets.  

Note that since Yij
+ is written in terms of β

j
, which is equal to the link function, the value 

of ρ̂ is dependent on the link function used. 

4.2 ALTERNATE ESTIMATORS FOR THE INTRACLASS CORRELATION 

COEFFICIENT 

While the estimate of ICC(1,1) for balanced, continuous rating data using the one-

way ANOVA with random effects model is equivalent to the estimate obtained using 

HLM models, this equivalence is not the same for binary data.  The ANOVA estimator 

(Donald & Donner, 1987; Elston, 1977; Fleiss, 1981; Landis & Koch, 1977) for ICC(1,1) 

for binary data is given by 

ρ̂ = 
MST - MSW

MST + (k0 - 1)MSW
, where ko = 

1

n - 1
[K - ∑

kj
2

K

n

j = 1

]  and K = ∑ kj

n

j = 1

. 

The MST and MSW values are the mean square estimates calculated in standard 

ANOVA tables.  Because this estimate does not use transformations such as the log-odds 

transformation which was used in the HGLM model, this estimate is not on the same 

scale as the HGLM estimator.  As there are no closed form methods to convert or place 

these estimates on the same scale (Eldridge et al., 2009; Goldstein et al., 2002), these 

estimates are not equivalent and are non-comparable.  Nevertheless, the HGLM estimate 
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is still deemed an appropriate method for estimating the intraclass correlation coefficient 

and is used as an appropriate measure of interrater reliability.  As cited in Eldridge et al. 

(2009), it is useful, commonly used, and is the default method of calculating the 

coefficient in statistical software such as Stata. 

Unlike the estimator of ICC(1,1) for interrater reliability studies for continuous 

rating data, there are several other estimators for binary data.  An extensive review of 20 

estimators was provided in Ridout et al. (1999).  These estimators included the ANOVA 

estimator, a direct probabilistic interpretation estimator (FC; Fleiss & Cuzick, 1979), a 

method of moments estimator (MofM; Kleinman, 1973; Williams, 1982; Yamamoto & 

Yanagimoto, 1992), a maximum likelihood estimator based on the modeling of ratings 

within the Beta-Binomial distribution (Crowder, 1979), a direct calculation of 

correlations estimators (Karlin et al., 1981), a quasi-likelihood estimator using 

generalized linear models (Nelder & Pregibon, 1987), and many other variations of these 

and other estimators.  Of the 20 estimators reviewed and included in their simulation 

study, only a few were deemed superior based on bias, standard deviation, and mean 

square error.  One of them and the most commonly used estimator was the ANOVA 

estimator presented previously, although the FC and MofM estimators showed similar 

performance.    

4.3 BIAS IN INTRACLASS COEFFICIENT ESTIMATORS FOR BINARY DATA  

In terms of bias, Ridout et al. (1999) found that nearly all estimators of the ICC 

for binary data are negatively biased, with the ANOVA, FC, and MofM estimators 

having relatively low negative bias with low mean square errors.  Prior studies explored 

bias and other components of estimators but were not as comprehensive in that they only 
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compared a subset of estimators (Feng & Grizzle, 1992; Lipsitz et al., 1994; Yamamoto 

& Yanagimoto, 1992).   

Of the methods deemed appropriate, Zou and Donner (2004) conducted a study 

deriving the variance of the estimators and investigating confidence interval coverage of 

the ICC for binary data under the common correlation model.  In their study, they found 

that the optimal estimator for inferential use based on confidence intervals is the FC 

estimator with a modified Wald confidence interval, followed by a Pearson correlation 

estimator (Pearson).  These results were based on simulating data based on different 

values of the ICC, different outcome prevalence, variable cluster sizes, and different 

numbers of clusters.  While this study did not estimate bias, it did highlight factors that 

influence the estimation process. 

Wu et al. (2012) conducted a study comparing the following ICC estimators:  

ANOVA, Pearson, FC, generalized estimating equations (Lipsitz et al., 1994), and the 

hierarchical logistic regression model.  They studied bias as well as coverage probability 

of confidence intervals for balanced binary data under the common correlation model by 

manipulating the cluster size, ICC values, and outcome prevalence.  Results indicated 

negative bias for each method and that using different methods can lead to different ICC 

values.  Also, to complicate things, as indicated previously, the ICC estimate using 

HGLM is on a different scale compared to the other ICCs leading to difficulty in making 

comparisons.  Thus, no bias information regarding the HGLM estimator were obtained.  

Also, in their study, they investigated the estimate of overall ICC as well as the ICC in 

each arm of a cluster randomized trial.  They found that the GEE estimator is preferred in 

cluster-randomized trials because outcome probabilities are quite different across study 
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arms, while the ANOVA, Pearson, and FC estimators are preferred when the outcome 

probabilities are similar across study arms.  This was attributable to the fact that the latter 

methods assume a common correlation across all clusters.  As HGLM models allow 

cluster level proportions to vary across higher level units, based on the conclusions of this 

study, HGLM may be a better option for estimation compared to ANOVA, Pearson, and 

FC methods.   

Chakraborty and Sen (2016) proposed a new method of estimating the ICC based 

on resampling methods and U-statistics (Lee, 1990).  They compared the performance of 

their method to the ANOVA and MofM estimators by focusing on the number of clusters, 

size of clusters, ICC magnitude, and outcome prevalence of two-level cluster randomized 

trials.  They found relatively comparable performance between their estimator and the 

ANOVA estimator in terms of point estimation and bias when the number of clusters was 

small (20 or less); however, for large numbers of clusters, their estimate of the ICC was 

least biased.  Overall, they provided a unified method for estimating ICC and 

constructing confidence intervals in the context of cluster-randomized trials, but the 

method only showed comparable performance compared to ANOVA and was 

computationally intensive for large numbers of clusters. 

Westgate (2019) conducted a study comparing empirical bias when the ANOVA 

estimator, the MofM estimator within the generalized estimating equations (GEE) 

framework, and the residual pseudo-likelihood estimator, which is also within the GEE 

framework are used to estimate the ICC.  The factors manipulated in the simulation study 

included:  number of clusters, ICC magnitude, and outcome prevalence all within the 

context of cluster randomized trials (CRT).  Results showed that in cases where the 
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ANOVA estimator was valid (marginal CRT models where the only covariate is the trial 

arm), the ANOVA estimator was superior to both estimators within the GEE framework.  

Since the GEE framework is slightly different from that of HGLMs used for estimating 

ICC(1,1) and estimation methods within that framework were outperformed by the 

ANOVA estimator when ANOVA was appropriate, no further details of the GEE 

modeling framework will be given.   

In addition to these studies, other studies have been conducted exploring the 

intraclass correlation coefficient; however, they are usually in the context of CRTs and 

estimates of bias in point estimation and comparisons of that bias for the model 

associated with ICC(1,1) for interrater reliability studies is lacking.  From the literature 

given above, it is evident that the bias in the ICC is negative and that factors which were 

a part of the previous studies such as outcome prevalence, number of level-two units, size 

of level-two units, and ICC magnitude all influence estimation; however, an extensive 

analysis for this specific ICC is still needed within the framework of HGLM. 

In addition, given the vast number of estimators of the ICC for both continuous 

and binary data, a unified treatment of the index that can handle multiple types of data are 

needed.  As indicated in Eldridge et al. (2009), hierarchical linear modeling offers such a 

treatment.  As HLM was used in the case of continuous rating data, HGLM modeling, 

which HLM is a special case of, can be used with binary and other categorical data 

offering a unified modeling framework for estimating ICC(1,1).  Not only does this 

method provide a unified treatment, but it also provides some of the same benefits that 

HLM modeling provided for continuous rating data:  the direct estimation of variance 

components, an estimate of ICC in the appropriate range of the index (i.e., 0 to 1), the 
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ease of interpretation as the value is always between 0 and 1, and the ability to handle 

unbalanced data without estimation issues.  Thus, this study will focus on the point 

estimation of ICC(1,1) using HGLM. 

As indicated previously, the HGLM estimate of ICC(1,1) is not comparable to 

other estimates of the intraclass correlation coefficient for binary data because it is 

expressed in different units.  While this presents an issue to some, I submit that providing 

a unified treatment is more important than providing an estimate that is on the same scale 

as the other estimators.  Doing so will lead to the potential for increased use of the ICC as 

a viable option for estimating the degree of consistency of raters in interrater reliability 

studies no matter the type of rating data used and may provide a method that allows for 

the consistent interpretation of an interrater reliability coefficient.  Therefore, my goal is 

to explore the appropriateness of using HGLM as a framework for obtaining a point 

estimate of ICC(1,1) and to determine if the modeling framework leads to an estimate 

with desirable estimation properties.  One such property is statistical bias, which was 

expressed in Chapter 2. 

As there are no closed form estimates of bias, bootstrapping provides a method to 

estimate the bias.  The same bootstrapping procedure used in Chapter 3 will be adopted 

and used to estimate the bias in ICC(1,1) here because the focus is on interrater reliability 

studies of the same study design.  Thus, in addition to obtaining an estimate of ICC(1,1) 

using HGLM, the goal of this study is also to illustrate and obtain an estimate of the bias 

in the HGLM estimate using the cluster bootstrap, where targets are resampled with 

replacement.  Such an estimate of bias allows for the development of a bias-corrected 

estimate of the ICC to remove the assumed negative bias in the estimator. 
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4.4 ESTIMATING PARAMETERS IN HGLM MODELS 

An important issue to consider when estimating model parameters with HGLM is 

the method used.  Within this modeling framework, maximum likelihood methods are 

still applied.  In general, estimation of model parameters using maximum likelihood 

occurs in two steps: 

1. Evaluation of the likelihood integral to obtain the likelihood as a function of the 

model parameters. 

2. Maximization of the likelihood function to obtain the most probable model 

parameter estimates. 

In the case of HLM, the first step is easily obtained analytically because of linear 

modeling and the application of normal theory, and the second step is obtained using 

numerical methods.  In the case of HGLM, the first step is difficult because no closed-

form solution to the integral exists due to the use of a non-linear link function and the 

inability of applying normal theory to categorical data.  Consequently, step one must be 

estimated and from that estimation, numerical methods can be used in step two to 

maximize the function and obtain estimated model parameters.  This is the process used 

in a commonly used method called penalized quasi-likelihood (PQL).  More specifically, 

the likelihood function is approximated using a Taylor series expansion of the non-linear 

link function about all fixed and random effects in the model.  This in effect linearizes the 

link function, which means the level-1 model can now be assumed to be approximately 

normally distributed.  With such an assumption, the integral can now be evaluated 

analytically, and estimation can proceed to step two where numerical methods are used to 

maximize the approximate likelihood function (Breslow & Clayton, 1993; Goldstein, 
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1991).  While PQL offers a solution to the difficulty of evaluating the integral, it was 

found that obtained parameter estimates are inconsistent (Breslow & Lin, 1995) and 

severely negatively biased when sample sizes are small, the variance of random 

components are large, and/or the outcome prevalence (the probability of a successful 

outcome) is extreme (Breslow, 2005; Breslow & Lin, 1995; Goldstein & Rasbash, 1996; 

Kim et al., 2013; Rodriguez & Goldman, 1995).  Thus, other methods should be used.   

Given the potential for severely biased PQL variance component parameter 

estimates, the Laplace and Adaptive GH approximation methods offer alternative 

methods that may yield less biased estimates.  The Laplace approximation to integration 

involves implementing a Taylor series expansion of the logarithm of the integrand of the 

likelihood integral and maximizing it with respect to the random effects (Breslow & Lin, 

1995; Lin & Breslow, 1996; Raudenbush et al., 2000).  This method generally yields 

more accurate variance component estimates compared to PQL and is recommended to 

be used instead of PQL when variance component and intraclass correlation coefficients 

are of interest (Diaz, 2007).  This was found in a study with small prevalence values, 

where the number of level-2 units was between 15-35, and with settings of CRTs with no 

explanatory variables.  Schoeneberger (2016) compared PQL to Laplace approximation 

and found PQL performance to be better, except in data with small sample sizes and 

extreme outcome prevalence.  Thus, performance of each estimation method depends on 

the context of data.   

The Gauss-Hermite (GH) quadrature method approximates the integral 

representing the likelihood function using a weighted sum of functional values.  This is 

done by splitting the area represented by the integral into several subareas, estimating the 
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integral over each subarea, and summing them together.  The number of subareas 

corresponds to the number of quadrature points, and as the number of quadrature points 

increases, so does the accuracy of estimation (Lessafre & Spiessens, 2001).   

The Adaptive GH quadrature extends GH quadrature estimation by allowing 

computer software to determine the location of the quadrature points, which should lead 

to more accurate parameter estimates with less quadrature points (Raudenbush & Bryk, 

2002).  Kim et al. (2013) studied the estimation of model parameters using PQL, 

Adaptive GH approximation, and Laplace approximation in two- and three-level logistic 

regression HGLM models with large sample size data (i.e., 50 level-2 units each 

containing 100 observations) with explanatory variables when implemented in various 

statistical software programs.  Results of their study indicated that PQL was most biased, 

with Laplace and Adaptive GH approximation methods yielding better performance in 

terms of point estimation and standardized bias.  In some statistical software, the RMSE 

of these estimators were poor; however, the Laplace and Adaptive GH approximation 

methods were deemed preferrable.  As noted in the literature, Laplace approximation 

performs best in data with large samples (Diaz, 2007).  Thus, Kim et al. (2013) 

recommended using Adaptive GH approximation for data with small sample sizes and 

Laplace approximation with data with large sample sizes.   

Given the results from the above-mentioned studies, the choice of estimation 

method is dependent on the data and intended analysis needed.  As this study focused on 

interrater reliability studies, estimation methods should be able to handle moderate to 

large sample sizes at level-2 (i.e., the targets) and small sample sizes at level-1 (i.e., 

judges).  Also, in this context, there is the potential for a wide range of outcome 
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prevalence values including extreme values and a variety of sizes of level-2 random 

effects may be probable depending on the substantive area on which raters rate targets.  

Thus, Laplace approximation and Adaptive GH approximation methods were both 

deemed appropriate in obtaining maximum likelihood-like estimates of model 

parameters.  In addition, these estimation methods are available in free and accessible 

software typically used for estimation of HGLMs.As stated previously, the goal of this 

study is to explore the use of HGLMs in estimating ICC(1,1) as a measure of interrater 

reliability.  In addition to obtaining the measure, the calculation of the bias in this 

measure will be obtained using the cluster bootstrap methods outlined in Chapter 3.  

These methods allow for a robust method to be used to obtain the estimate of the ICC that 

can handle multiple raters and unbalanced data.  To conduct such analyses, the lme4 

(Bates et al., 2015) package in the R statistical software (2018) will be used to obtain the 

Laplace and Adaptive GH approximation estimates of the variance between targets in the 

threshold HGLM model.  Additional code will be written to perform the cluster bootstrap 

to obtain bias and all other results. 

4.5 ILLUSTRATIVE EXAMPLE 

The data set used in this study to explore the use of HGLM in estimating ICC(1,1) 

and the cluster bootstrap in estimating bias for binary data is found in the psychological 

measurement literature.  It is adopted from Table 1 of Lipsitz, Laird, and Brennan (1994) 

where they proposed a method for extending Cohen’s kappa coefficient of agreement for 

measuring interrater agreement when more than two raters judge each target and when 

the number of raters rating each target is not constant across all targets (i.e., unbalanced 

data sets).  The data set, which is a subset of a larger data set published in both Fleiss 
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(1971) and Sandifer et al. (1968), contains ratings on 26 psychiatric patients (i.e., targets) 

who were each classified into one of two categories by a subset 43 psychiatrists (i.e., 

raters).  More specifically, each target was rated by a different set of psychiatrists 

randomly sampled from this larger pool of psychiatrists who classified targets as having 

neurosis disorder (i.e., a success) or as having some other disorder (i.e., a failure).  The 

data are shown in Table 4.1 below. 

 

Table 4.1 Binary rating data adopted from Lipsitz et al. (1994) 

 

Target Number of Raters Number of 

Successes 

Proportion of 

Successes 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

6 

3 

5 

6 

6 

4 

6 

6 

6 

6 

6 

6 

5 

5 

4 

6 

6 

3 

6 

3 

6 

5 

6 

4 

6 

6 

6 

0 

0 

3 

0 

0 

1 

4 

5 

4 

0 

5 

3 

0 

1 

0 

4 

0 

5 

1 

4 

4 

1 

0 

4 

0 

             1.00  

.00 

.00 

.50 

.00 

.00 

.17 

.67 

.83 

.67 

.00 

.83 

.60 

00 

.25 

.00 

.67 

.00 

.83 

.33 

.67 

.80 

.17 

.00 

.67 

.00 
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In this data set, the number of judges rating each target ranges from 3 to 6 judges 

with most targets receiving ratings from 6 judges.  The number of successes for each 

target ranges from 0 to 6 with most targets receiving a rating of 0.  Given that the number 

of judges rating each target is different, the proportion of successes based on the ratings 

were obtained, and results show that the proportion of successes for each target ranges 

from .00 to 1 with most proportions either close to .00 (less than or equal to .33) or close 

to 1 (greater than or equal to .67), the extreme ends of the proportions distribution, given 

the small denominators used to obtain the proportions.  This may indicate that judges are 

generally giving the same ratings in most cases, which is expected in educational and 

psychological interrater reliability studies because judges usually participate in extensive 

rating training.  While the judges’ ratings are generally similar for each target, the overall 

proportion of success, which is an estimate of the outcome prevalence, was found to be 

approximately .40, while the average proportion of success across targets was 

approximately .37.   

To obtain point estimates of interrater reliability corresponding to ICC(1,1) for 

this data set, the glmer function of the lme4 R package will be used to run the threshold 

model using both the Laplace and Adaptive GH approximation methods.  When using the 

glmer function to obtain the estimates for binary data, the user specifies which method to 

use by setting the number of quadrature points using the nAGQ argument.  For nAGQ = 

1, Laplace approximation is specified, and setting nAGQ equal to any other natural 

number results in the specification of Adaptive GH approximation.  Note:  the natural 

number specified is equivalent to the number of quadrature points used in Adaptive GH 

approximation and both methods are equivalent when one quadrature point is used.  
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Based on lme4 documentation, the glmer function can only handle models with one 

random effect, which is the case in the threshold model, and can reasonably handle up to 

25 points (Bates et al., 2020).  It is advantageous for users to consider as many quadrature 

points as possible because the more quadrature points used, the more accurate parameter 

estimates but also the more computation inefficient and time consuming modeling will 

be.   

Because the estimation methods are different, estimates of variance components 

might be different.  In either case, σ̂T
2
 will be estimated through modeling and σ̂W

2
 = 

π2/3 ≈ 3.29 will not be estimated because Yij
+ is assumed to be distributed as a standard 

logistic distribution.  Both values will be placed the following formula to obtain the 

estimate of ICC(1,1): 

ρ̂ = 
σ̂T

2

σ̂T
2  + σ̂W

2
. 

Table 4.2 contains the approximation of σ̂T
2
 and ICC(1,1) based on the number of 

quadrature points for the neurosis disorder data set.  As shown, the obtained value of 

interrater reliability for this data set using Laplace approximation was approximately 

0.56.  The other values in Table 4.2 are estimates using Adaptive GH approximation.  

From these results, when nAGQ = 18, the estimates tend to stabilize to the same value up 

to the ten thousandths digit.  While this is the case, nAGQ = 25 will be used not only for 

the obtained Adaptive GH approximation estimate of the ICC(1,1), which is 0.58, but it 

will also be used when obtaining bootstrap replicates in the formula for calculating bias 

as it is more accurate.  It should be noted that these estimates of the intraclass correlation 

coefficient are much different from the estimate obtained in the original article.  From the 
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original article, the maximum likelihood estimate under a different framework was 

approximately 0.41.  The difference is due to the fact that the estimate from the article 

uses the beta-binomial distribution estimate, which is on the proportions scale, while the 

estimate obtained using Laplace and Adaptive GH approximation are on the logistic 

scale.   

Table 4.2 Estimate of Variance Between Targets and ICC(1,1) by Number of 

Quadrature Points using Adaptive Gauss-Hermite Approximation 

 

nAGQ σ̂T
2
 ρ̂ 

1 4.216948 0.561749 

2 3.958312 0.546111 

3 4.209304 0.561303 

4 4.681238 0.587276 

5 4.469889 0.576035 

6 4.642565 0.585264 

7 4.602764 0.583172 

8 4.609924 0.583550 

9 4.628413 0.584522 

10 4.612898 0.583707 

11 4.625455 0.584367 

12 4.619020 0.584029 

13 4.622031 0.584187 

14 4.621479 0.584158 

15 4.621072 0.584137 

16 4.621844 0.584178 

17 4.621174 0.584142 

18 4.621688 0.584169 

19 4.621354 0.584152 

20 4.621528 0.584161 

21 4.621439 0.584156 

22 4.621454 0.584157 

23 4.621513 0.584160 

24 4.621493 0.584159 

25 4.621513 0.584160 
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The two ICC(1,1) estimates will be used in the place of 𝜃 in the formula for bootstrap 

bias given by, 

bias** ≈ (
1

B
∑ θ̂b

*

B

b = 1

)  - θ̂. 

More specifically, when estimating using Laplace approximation, θ̂ = 0.56, and when 

estimating using Adaptive GH approximation, θ ̂= 0.58.  To obtain the full estimate of 

bias, computer software using Monte Carlo processes are needed to obtain the first term 

on the right-hand side of the equation above.  First, samples of the same size (i.e., 26 

targets) will be randomly selected with replacement by resampling complete cases of 

targets.  Then the glmer function of the lme4 package will be used to obtain parameter 

estimates from the threshold HGLM model using each method.  At this step, σ̂T will be 

directly obtained and extracted, and ρ̂, the bootstrap replicate corresponding to the 

bootstrap sample selected in the first step, will be obtained.  This process will be repeated 

B times, resulting in B bootstrap replications, which are represented by θ̂b

*
 in the formula 

for bias.  Given large B, the bootstrap distribution of ICC(1,1) is now constructed, and 

bias** can be calculated by taking the average of the B bootstrap replications and finding 

the difference between it and the sample estimate of ICC(1,1) from the original data.  

Once the estimate of bias is obtained, an inspection of distribution of the bootstrap 

replications can help determine how well the cluster bootstrap estimates bias. 

As shown in Table A.3 in the appendix, Laplace approximation estimates of bias 

using the cluster bootstrap method range from -0.0336 to -0.0155 resulting in a range of 

0.0180 when the number of replications range from 100 to 20,000 in increments of 100.  

Table A.3 also contains the bias estimates when 100,000 and 1,000,000 replications are 
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used.  These results are also depicted in Figure 4.1.  The solid line in the figure is the 

estimate of bias when the number of replications is 1,000,000.  This bias estimate is -

0.0245 and can be thought of as a representative of the true bias, which is unknown given 

that a real and not simulated data set is used. Once the number of replications reaches 

1500, the range of bias estimates decreases to about 0.0096, which is a smaller range  

 

 

compared to the overall range of bias estimates.  A further decrease in the range of bias 

estimates occurs when 5000 or more replications are used.  In this case, the bias estimates 

range from -0.0281 to -0.0211, which is a range of 0.0070.  At 10,000 or more 

replications, the estimates of bias have an even smaller range of 0.0031 as the estimates 

range from -0.0250 to -0.0219.  Consequently, as the number of bootstrap replicaitons 

increases, the variability in bias estimates tend to decrease supporting that the bias 

estimates are settling or converging. 

Figure 4.1 Graph of bias plotted against number of replications when 

Laplace approximation is used.  Bias estimates settle when 10,200 or more 

replications are used.  Solid line represents bias estimate when 1,000,000 

replications are used. 
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Figure 4.2 Distributions of bootstrap replications (i.e., estimates of ICC(1,1)) for various number of replications when Laplace 

approximation is used.  Distributions are unimodal and symmetric and maintain this shape with as few as B=700 replications.
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In addition to evaluating the random behavior of the bias estimates as shown in 

Figure 4.1, an assessment into the shape of the distribution of ICC(1,1) estimates 

obtained from each bootstrap sample can help determine the validity of the bootstrap.  In 

Figure 4.2, it is evident that with as few as 700 replications, the distributions are 

unimodal and symmetric.  As the number of replications increases, the distributions 

maintain the same shape.  Table 4.3 contains descriptive statistics of the distribution of 

ICC(1,1) estimates including values of sample skewness and kurtosis.  As shown in the 

table, the values of both statistics do not deviate much from 0, which is the value 

expected under a normal distribution (Blanca et al., 2013; Joanes & Gill, 1998).  Given 

such a shape, using the mean as a measure of the expected value in the formula for bias 

appears to be appropriate, giving validity to using the cluster bootstrap procedure as a 

means of estimating bias.   

Table 4.3 Descriptive statistics of distributions of ICC estimates for various numbers of 

replications 

 

B M SD Min Q1 Mdn Q3 Max Skew Kurtosis 

100 0.54 0.10 0.35 0.46 0.55 0.60 0.75 0.13 -0.84 

300 0.53 0.11 0.20 0.44 0.53 0.60 0.81 -0.05 -0.31 

500 0.53 0.12 0.16 0.45 0.54 0.62 0.80 -0.30 -0.37 

700 0.53 0.12 0.09 0.45 0.55 0.61 0.92 -0.21 0.22 

1000 0.54 0.12 0.14 0.46 0.54 0.62 0.96 -0.05 0.13 

10000 0.54 0.12 0.00 0.45 0.54 0.62 0.96 -0.22 0.14 

1000000 0.54 0.12 0.00 0.46 0.54 0.62 0.98 -0.15 0.09 

 

In addition to considering the distributions, the standard deviations of the 

distributions of bootstrap replications can be used to construct probability bands which 

may indicate the absolute deviation between the bootstrap replication of bias for B 

replications and the ideal bootstrap estimate of bias, which uses B = ∞.  Table 4.4 below 

gives the standard error (i.e., standard deviation of the bootstrap distributions) and the 
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maximum of the absolute distance between bias** and bias∞ if a 95% probability bands 

were constructed for each distribution shown in Figure 4.2 for Laplace approximation.  

When the number of replications equals 1,000,000, with probability 0.95, the bootstrap 

estimate of bias should be no more than 0.0002 units from the ideal estimate of bias.  For 

a few as 700 replications, with probability 0.95, the bootstrap estimate of bias should be 

no more than 0.0092 units from the ideal estimate of bias.  Thus, increasing the number 

of bootstrap replications from 700 to 1,000,000 should yield a bootstrap estimate of bias 

that is 0.0090 units closer to the ideal estimate of bias. 

Table 4.4 Standard Errors and 95% Probability Band for the Maximum Absolute 

Difference Between Obtained Bias Estimate and Ideal Bias Estimate with Laplace 

Approximation 

 

B  seB  Maximum |bias** -  bias∞| 

100 0.0997 0.0199 

300 0.1132 0.0131 

500 0.1199 0.0107 

700 0.1222 0.0092 

1000 0.1198 0.0076 

10000 0.1232 0.0025 

1000000 0.1220 0.0002 

 

Also, model convergence was assessed.  As indicated in the literature, HGLM 

models sometimes have issues with convergence when sample sizes are small, level-two 

variances are large, and for many other reasons (Callens & Croux, 2005; Kim et al., 

2013; Rodriguez & Goldman, 2001; Schoeneberger, 2016).    When using Laplace 

approximation, 90% of models converged, indicating that about 10% of bootstrap data 

sets were generally not included in calculating the estimate of bias.  This was the case no 

matter the number of replications used. 
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As shown in Table A.4 in the appendix, Adaptive GH approximation estimates of 

bias using the cluster bootstrap method range from -0.0333 to -0.0198 resulting in a range 

of approximately 0.0135 when the number of replications range from 100 to 20,000 in 

increments of 100.  Table A.4 also contains the bias estimates when 100,000 and 

1,000,000 replications are used.  These results are also depicted in Figure 4.3.  The solid 

line in the figure is the estimate of bias when the number of replications is 1,000,000.  

This bias estimate is -0.0266 and can be thought of as a representative of the true bias.  

 

Figure 4.3 contains a graph of bias estimates when various numbers of 

replications are used to estimate ICC(1,1).  When focusing on estimates of bias if 1500 or 

more replications are used, the range of bias estimates reduces to about 0.0109 as the bias 

estimate range between -0.0330 and -0.0221.  When 5000 or more replications are used, 

Figure 4.3 Graph of bias plotted against number of replications when Adaptive 

GH approximation is used.  Bias estimates settle when 9,900 or more replications 

are used.  Solid line represents bias estimate when 1,000,000 replications are 

used. 
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the range of bias estimates reduces substantially to .0056 as the estimates range from -

0.0294 to -0.0238.  If 10,000 or more replications are used, the estimates of bias have a 

range of 0.0039 with values between -0.0284 and -0.0245.  Thus, for data such those used 

in this study, it appears that as the number of replications increases, the range of bias 

estimates decreases, which provides evidence of a settling or convergence of bias 

estimates.  

 In addition to evaluating the behavior of the bias estimates, an analysis into the 

shape of the distribution of ICC(1,1) estimates was conducted.  As shown in Figure 4.4, 

when 1,000,000 replications are used, the distribution is unimodal and approximately 

symmetric with a slight negative skew.  This shape is seen with as few as 300 

replications.  As shown in Table 4.5, there is evidence of very slight deviation from a 

normal distribution as all values of skewness and kurtosis obtained deviate from the 

values expected under normal distributions by less than one unit (Blanca et al., 2013; 

Joanes & Gill, 1998).  This is evident regardless of the number of replications.  Given the 

small deviation from 0, these data show evidence of a normal distribution, which 

supports the use of the mean as the center of the distribution.   

Table 4.5 Descriptive statistics of distributions of ICC estimates for various numbers of 

replications 

 

B M SD Min Q1 Mdn Q3 Max Skew Kurtosis 

100 0.56 0.09 0.37 0.49 0.57 0.62 0.77 0.12 -0.80 

300 0.55 0.11 0.22 0.47 0.56 0.62 0.84 -0.11 -0.18 

500 0.55 0.11 0.17 0.48 0.56 0.64 0.81 -0.33 -0.22 

700 0.55 0.12 0.11 0.48 0.57 0.63 0.84 -0.34 0.24 

1000 0.56 0.11 0.16 0.49 0.56 0.64 0.89 -0.19 0.02 

10000 0.56 0.12 0.00 0.48 0.56 0.64 0.90 -0.34 0.16 

1000000 0.56 0.11 0.00 0.48 0.56 0.64 0.97 -0.29 0.07 
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Table 4.6 below contains the standard errors of the bootstrap replications distributions as 

well as the maximum of the absolute deviation between the bootstrap replication of bias 

for 𝐵 replications and the ideal bootstrap estimate of bias when Adaptive GH 

approximation is used.  It was found that with as few as 700 replications, the maximum 

deviation the obtained estimate of bias from the ideal bootstrap estimate of bias is .0088 

units, which is less than 0.01.  If the number of replications is increased to 1,000,000, the 

maximum deviation between that estimate of bias and the ideal estimate of bias is 0.0002 

units.  These results were based on 95% probability. 

 

Table 4.6 Standard Errors and 95% Probability Band for the Maximum Absolute 

Difference Between Obtained Bias Estimate and Ideal Bias Estimate with Adaptive GH 

Approximation 

 

B  seB  Maximum |bias** -  bias∞| 

100 0.0948 0.0190 

300 0.1075 0.0124 

500 0.1144 0.0102 

700 0.1160 0.0088 

1000 0.1122 0.0071 

10000 0.1161 0.0023 

1000000 0.1147 0.0002 

 

In terms of evaluating the ability of the Adaptive GH approximation method to 

estimate bias, convergence was also considered.  As shown in Table A.4 in the appendix, 

between 99.83 and 100% of data sets based on bootstrap samples converged across the 

varying numbers of replications.  This provides evidence that convergence is not an issue 

of concern when Adaptive GH approximation is used with 25 quadrature points. 

When considering the two approximations methods in obtaining estimates of bias 

in ICC(1,1) for binary data using the cluster bootstrap, it appears that the Adaptive GH 
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approximation method is preferred.  Both methods require approximately 10,000 

replications for the vast majority of bias estimates to be within .002 units of the bias 

estimate when 1,000,000 replications are used.  Also, both methods have distributions 

that are approximately normal based on skewness and kurtosis values, even though the 

values of these statistics are closer to those expected under normality when Laplace 

approximation is used.  More importantly, given the moderate number of targets and the 

unbalanced-ness of the original data, Adaptive GH approximation is preferred because 

almost all HGLM models converged for all bootstrap samples, while only 90% 

converged when Laplace approximation was used.   

Overall, the negative bias expected for ICC(1,1) was confirmed using HGLM and 

the cluster bootstrap, and the bootstrap procedure offered an adequate method to estimate 

such bias as shown in the well-shaped bootstrap replicate distributions, convergence of 

bias estimates, and the convergence of HGLM models when Adaptive GH approximation 

was used. 
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Figure 4.4 Distributions of bootstrap replications (i.e., estimates of ICC(1,1)) for various number of replications when Adaptive GH 

approximation is used.  Distributions are unimodal and negatively skewed and maintain this shape with as few as B = 700 replications.
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

 

In this study, hierarchical linear modeling was used to provide a point estimate of 

the intraclass correlation coefficient, which can be used as a measure of interrater 

reliability in studies of design one.  As indicated previously, there are a large number of 

methods that provide point estimates of interrater reliability.  The intraclass correlation 

coefficient is one method that in fields such as education, psychology, and other social 

sciences has been deemed an appropriate estimator of interrater reliability although it has 

not been widely used.  This may be due to the fact that in most social science research, 

interrater reliability studies are designed so that the reliability between two judges who 

rate all targets is studied rather than the reliability when multiple (i.e., more than two) 

judges rate a single target and each target is rated by a different set of judges.  While this 

interrater reliability study design is not prominent in education as it costs to have an 

abundance of judges, it is still utilized in large-scale assessment programs such as the 

National Assessment of Educational Progress, the Smarter Balanced Assessment 

Consortium, and the GED examination (Monahan & Schumacker, 2003; National Center 

for Educational Statistics, 2017; Smarter Balanced Assessment Consortium).  Although 

the use of this coefficient as a measure of interrater reliability is evident at these and other 

large-scale assessment companies, it is much more widely used in fields such as 
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psychology, psychiatry, and medicine because it is more feasible to have multiple groups 

of judges rate multiple targets.  Thus, exploring the estimation properties of this 

coefficient is still important. 

As there are equivalencies between different estimators of ICC(1,1) (i.e., ANOVA 

vs maximum likelihood) and an abundance of methods for obtaining interrater reliability 

overall regardless of the level of measurement, there was a call for a more unified 

approach to providing measures of interrater reliability (Eldridge et al., 2009).  By doing 

so, reporting of the coefficients will be more consistent, which may lead to better 

comparisons and interpretations of results of interrater reliability studies.  In the call for a 

unified framework, hierarchical linear modeling was noted as a viable option because it 

can be adjusted to handle data at different levels of measurement (i.e., continuous, 

ordinal, binary), and it can handle unbalanced data where a different number of judges 

rate the different targets.  These are things that hierarchical linear modeling allow that 

pose issues for other estimators.   

In addition, it was already known that almost all estimators of ICC(1,1) are 

negatively biased, and because of the estimation processes, this bias can only be 

estimated as no closed-form estimates are available (Ponzoni & James, 1978; Ridou, et 

al., 1999; Wang et al., 1991).  Hence, others have more recently attempted to develop 

new estimators that correct the biases (Atenafu et al., 2012; Chakraborty & Sen, 2016).  

With these new attempts, they fail to respond to the call of a unified approach for 

estimating the index, and the methods involve highly technical statistical knowledge to 

understand, which makes them inaccessible to general users of the coefficient.  

Moreover, these methods may not be valid with the type of rating data one may see in 
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educational research and may not allow for estimation when data are of different levels of 

measurement than those of the proposed methods.  Thus, in proposing a unified 

framework, it is necessary to provide a statistical method that stays within the unified 

framework, aids in evaluating statistical properties, and is accessible to general users of 

the index.  The methods discussed in this study answers such a call. 

5.1 FINDINGS 

In Chapter 3, HLM modeling was used and deemed appropriate as continuous 

rating data was of focus, and in Chapter 4, HGLM modeling was used and deemed 

appropriate as binary rating data was of focus.  In addition, the cluster bootstrapping 

procedure was used to provide an estimate of bias to provide an alternative for estimating 

the bias in the index as no exact, closed form estimates exists and estimates of bias that 

do exist typically depend on strict distributional assumptions or methods that go beyond 

modeling.  By exploring hierarchical linear modeling and the cluster bootstrap as a means 

of estimating bias, a unified framework for estimating ICC(1,1) was achieved. 

Overall, the results of this study support the use of hierarchical linear modeling 

for estimating ICC(1,1).  In the case of balanced continuous data, the estimate obtained 

using HLM was equal to the ANOVA estimator, which is the most commonly used 

method.  For unbalanced continuous data, the estimate using HLM was not equal to that 

of ANOVA and was noticeably greater.  This difference is due to the fact that methods 

using ANOVA make adjustments to existing formulas to account for data imbalance, 

while maximum likelihood methods inherently account for unbalanced data.  Thus, the 

HLM estimate may be deemed superior.   
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In the case of binary rating data, HGLM estimates using the threshold model were 

obtained using both Laplace approximation and Adaptive GH approximation.  Both 

methods resulted in an obtained index, and no comparative methods exist since the index 

is measured on a scale that is different from the scale of other existing estimators.  While 

this is the case, this method is still appropriate in that it is commonly used in the 

hierarchical linear modeling literature.  Given that an estimate of the coefficient was 

obtained when HLM and HGLM models were used, hierarchical linear modeling 

remained an option for a unified framework. 

Also, in all cases, the cluster bootstrap procedure appeared to work.  It is known 

that the bias in intraclass correlation coefficients for both continuous and binary data is 

negative (Chen et al., 2018; Donner, 1986; Ponzoni & James, 1978; Ridout et al., 1999; 

Shrout & Fleiss, 1979; Wang et al., 1991; Wu et al., 2012).  When HLM, HGLM, and 

cluster bootstrapping were used, the bias obtained was always negative, confirming what 

is known in the literature.  While the true values of bias are not available, descriptive 

comparisons of the bias can be made.  Liu and Pompey (2020) provided estimates of bias 

when at most 3000 replications were used on a small, balanced data set with a low 

ICC(1,1) initial estimate of 0.17.  Their estimate of bias using the methods of this study 

was -0.044.  In illustrative example one in Chapter 3, which included a much larger, 

balanced data set with a larger initial estimate of ICC(1,1) equal to 0.46, the estimated 

bias was -0.035, which is less.  From these results, it is noted that data sets of larger size 

with a larger intraclass correlation coefficient may lead to slightly lower estimated bias as 

calculated using cluster bootstrapping and holding all other differences in the data sets 

constant compared to smaller sample sized data with a smaller initial estimate of 
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ICC(1,1).  Moreover, when considering illustrative example two of Chapter 3, which is a 

smaller data set in terms of the number of targets, but with a larger number of judges 

rating each target in general and an initial estimate of ICC(1,1) equal to 0.54, results are 

quite different compared to the results of Liu and Pompey (2020) and in illustrative 

example one of Chapter 3.  More specifically, the estimate of bias when 3000 replications 

are used was much larger at -0.201.  This result indicates that having data that are 

unbalanced may lead to estimate of ICC(1,1) using hierarchical linear modeling that are 

generally higher when the cluster bootstrap procedure is used to estimate bias.  This 

result confirms what is known about bias in the ANOVA estimator when data are 

unbalanced (Donner & Wells, 1986; Swallow & Monahan,1984) and potentially adds to 

what is known about maximum likelihood methods.  For instance, maximum likelihood 

methods based on restricted maximum likelihood are robust to normal theory 

assumptions when sample sizes are large; however, when sample sizes are small, 

variance component estimators and/or their standard errors are biased leading to 

potentially biased intraclass correlation coefficient estimates (McNeish & Stapleton, 

2016).  The results here go beyond what is known about variance components and 

indicate that when sample sizes are smaller with unbalanced data, intraclass correlation 

coefficients are potentially more biased compared to cases when sample sizes are 

moderately large and balanced.    

Not only was the estimated bias negative as expected, but the behavior of the 

cluster bootstrap procedure appeared to work as expected in some respects.  For both the 

large, balanced, continuous rating data and the small, unbalanced, continuous rating data, 

as the number of replications increased, the distributions of the bootstrap replications 
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tended to approach a general overall shape.  The shape of the distribution of replications 

started to take a consistent form when as few as 500 replications are used.  For the large, 

balanced data set in illustrative example one, the overall shape was slightly skewed to the 

left, and for the small, unbalanced data set in illustrative example two, the distributional 

shape was abnormal (i.e., asymmetric and potentially bimodal with a much less 

pronounced second mode).  Based on values of skewness and kurtosis, both distributions 

are within acceptable ranges of values expected under a normal distribution and the mean 

and medians of those distributions were very similar.  Thus, using the mean as the center 

of the distribution and in the place of the expected value of the point estimator was 

deemed valid.  Not only does the mean appear valid, but the mean does not appear to 

change value much as the number of replications increases.  With as few as 500 and up to 

1000 replications, the distribution of replications and the values of the median and means 

of those distributions maintain the same shape and values.  Also, as the number of 

replications surpassed 1000, the bias estimates vary randomly with a decreasing range of 

values compared to the range of values with fewer than 1000 replications.  As shown in 

the probability intervals, the maximum deviation of bias estimates from the ideal estimate 

of bias decreases for large numbers of replications. 

While this is the case, it should be noted that in illustrative example two of 

Chapter 3 with the small, unbalanced data, there were a noticeable amount of data sets 

(i.e., approximately 5% no matter the number of replications) that had ICC(1,1) estimates 

equal to 0.  This result presents an issue with data sets with a small number of targets 

(e.g., level-2 units) since the cluster bootstrap method resamples level-2 units only.  Since 

the numerator of ICC(1,1) includes the between-target variance component only and the 
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cluster bootstrap only has a few units to resample from, it is probable that the between-

target variance can equal zero.  In addition to this, it has been noted that restricted 

maximum likelihood methods have issues with estimation of variance components when 

they are close to zero but may not equal zero.  This was discussed and explored in Chen 

et al. (2018).  They noted that when maximum likelihood estimation is used, a variance 

component estimate of zero does not mean that the value is zero, it may mean that the 

value is too close to zero for the estimation procedure to accurately estimate it.  They 

proposed using Bayesian methods to nudge the variance component estimate away from 

the boundary to more accurately assess whether the value is zero.  As Bayesian methods 

were not of interest in this study as the procedures are already computer and time 

intensive, further study may include this Bayesian nudging method to determine if the 5% 

of ICC(1,1) estimates of zero may change.   

Overall, with continuous rating data, it appears that with 500 to (preferably) 1000 

replications, the distribution of bootstrap replicate estimates as well as a stable mean and 

median of bootstrap estimates are achieved.  From that, estimates of bias can be 

calculated, and a value that should be within 0.01 or less of the ideal bootstrap estimate is 

obtained.  In addition, model convergence even with the small data set does not appear to 

be a problem; however, care should be taken to ensure that ICC(1,1) values of zero are 

indeed zero and not a byproduct of the estimation process.  In terms of the cluster 

bootstrap, it appears to be a viable option for estimating bias as several findings in the 

literature are reproduced. 

In terms of binary rating data, one example data set was included in this study.  

The data set would be considered moderate to large in size given that 26 targets were 
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each rated by an unbalanced number of judges ranging from as few as 3 to at most 6 

judges.  With this single data set, two sets of results were given, each corresponding with 

two separate estimation methods:  Laplace approximation and Adaptive GH 

approximation.  These two estimation methods were chosen because they both may yield 

results with as little bias as possible.  Recall that PQL was another estimation method 

used for estimating HGLMs.  While PQL offers a solution to the difficulty of evaluating 

the likelihood integral, it was found that obtained parameter estimates are inconsistent 

(Breslow & Lin, 1995) and severely negatively biased when sample sizes are small, the 

variance of random components are large, and/or the outcome prevalence (the probability 

of a successful outcome) is extreme (Breslow, 2005; Breslow & Lin, 1995; Goldstein & 

Rasbash, 1996; Kim et al., 2013; Rodriguez & Goldman, 1995). 

In terms of point estimation, both methods returned a similar estimate of ICC(1,1) 

with Laplace approximation yielding a slightly smaller value (0.56) compared to the 

value with Adaptive GH approximation (0.58) with 25 quadrature points.  Recall that the 

estimates of ICC(1,1) obtained using these methods are different from the estimates 

obtained in the original article by Lipsitz et al. (1994) because their maximum likelihood 

estimate is on the proportions scale, while the estimates obtained in this study are on the 

logistic scale.  Eldridge et al. (2009) provided results of a short simulation study 

comparing the value of the index on each scale based on prevalence values.  It was noted 

that values of the index on the logistic scale tended to be greater in general.  Also, for 

data with large ICC values on the proportions scale (i.e., greater than 0.3), the 

discrepancy between the two estimates tended to be larger, which is exactly the case in 

this example. 



  

106 

 

Since Laplace approximation is equivalent to Adaptive GH with one quadrature 

point and it is known that as the number of quadrature points increases, so does the 

accuracy in estimation, it is safe to say that the Adaptive GH estimate of 0.58 is a better 

estimate.  Again, there is no way to be absolutely sure because this example uses a real 

data set; however, given the literature, one can be confident that the Adaptive GH 

estimate is more accurate.  Since the Adaptive GH estimator will generally be more 

accurate, one may ponder why focus on both estimators.  The reason is time.  The 

Adaptive GH approximation method requires much more computing time compared to 

Laplace approximation.  If Laplace approximation performs similarly relative to 

Adaptive GH, then it may be sufficient to use that method if time and computer resources 

are an issue compared to using the more time expensive method of Adaptive GH 

approximation. 

In terms of bias estimation, the Laplace approximation method generally yielded a 

lower bias estimate compared to the Adaptive GH approximation method.  When 

1,000,000 replications were used, the Laplace approximation method showed a bias of       

-0.025, while the Adaptive GH approximation method showed a bias of -0.027.  While 

these estimates are similar, they are different, which may be due to the differing values of 

the original ICC(1,1) estimates.  Ultimately, each method produced a bias estimate that is 

negatively biased, which is expected for intraclass correlation coefficients. 

In terms of the performance of the cluster bootstrap procedure, it appears to 

perform as expected.  Once the number of bootstrap replications reaches 700, the 

distribution of bootstrap replicates take on a shape that is maintained as the number of 

replications increases.  This is true for both estimation methods.  Also with both methods, 
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the distribution is approximately symmetric with a very slight negative skew.  The mean 

and median of the distributions are essentially equal (within rounding error) once the 

number of replications reach 1000, and the maximum deviation between the ideal 

bootstrap estimate of bias and the estimate at 1,000 is less than 0.01.  

Other than Adaptive GH approximation resulting in a larger initial estimate of 

ICC(1,1) with slightly more bias, the only other differences between the two methods 

have to do with the model implementation process.  Because Adaptive GH approximation 

requires more computations, it takes a much longer time when implementing the cluster 

bootstrap when the number of replications is quite large (i.e., 10,000).  However, nearly 

all of the models implemented converged when using this method compared to about 

10% of models failing to converge when Laplace approximation is used.  This is the main 

difference between the two estimation methods beyond the actual values of the point 

estimator and bias. 

Overall, for binary rating data, at least 1,000 replications are needed for a 

consistent distribution of bootstrap replications with means and medians that are similar 

for both methods.  Laplace approximation provided a lower original estimate of ICC(1,1) 

with less bias but failed to converge for 10% of models implemented, while Adaptive GH 

approximation provided a slightly higher original estimate of ICC(1,1) with slightly more 

bias but had no convergence issues.  Adaptive GH approximation tended to take more 

time running for very large numbers of replications. 

When considering the results for binary vs continuous rating data, the estimates of 

bias using the cluster bootstrap varied substantially with the three data sets.  For 

continuous rating data from Chapter 3 and from Liu and Pompey (2020), it was clear that 



  

108 

 

data unbalance might lead to much more bias compared to the bias obtained with 

balanced data.  This was not the case in Chapter 4.  That data set, which contained binary 

ratings with unbalanced data with a moderate to large sample size, yielded bias estimates 

that were even smaller than the bias estimates for the moderate to large sample size data 

set for continuous rating data.  The data set with the lowest estimate of data was moderate 

to large in sample size, contained binary data, and was estimate using an HGLM model.  

This result is somewhat non-intuitive as it is expected that unbalanced data would lead to 

more biased results, and HGLM models would have a more difficult time with 

estimation, which was not the case.  While this result is noted, true comparisons cannot 

be because this study was limited to real data.   

Overall, hierarchical linear modeling and the cluster bootstrap shows promise in 

being able to provide a uniform framework for estimating ICC(1,1) and its bias regardless 

of the type of rating data used or the structure and size of the data.  Results obtained in 

this exploration confirm what is known about intraclass correlation coefficients and other 

measures of interrater reliability from the literature (i.e., negative bias, more bias when 

data are unbalanced, etc.) and can aid in further study of the performance of this 

coefficient moving forward.  In general, 1,000 replications may be valid for obtaining an 

estimate of bias as the mean of the distributions when a much higher number of 

replications is used is quite similar, regardless of the model, data type, and original data 

set.  For continuous rating data, convergence was not an issue, but further study should 

focus on incorporating Bayesian approaches for boundary values problems.  For binary 

rating data, convergence was an issue with Laplace approximation while Adaptive GH 

takes more time to implement with no convergence issues.   
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Some may ponder the significance of providing an estimate of bias within this 

unified framework.  The response to that rest in what would happen with the use of a 

negatively biased measure of interrater reliability.  When negatively bias estimators are 

used it is possible that a lower than actual value of the index is obtained than that which 

accurately measures the consistency of judges’ ratings.  In other words, the obtained 

estimate is an underestimate of the actual level of interrater reliability.  This 

underestimated value is due to the type of data and the calculation of the index rather than 

the inconsistencies in ratings by judges.  Therefore, using such an index may lead to 

unnecessary consequences such as expending resources such as time and additional 

trainings to improve rating consistency when rating consistency may not be an issue.  

Since the cluster bootstrap offers a method that can be used to provide an estimate of the 

negative bias that is robust to different types of data and interrater reliability contexts, an 

unbiased estimator can be obtained, which can be used to draw more accurate inferences. 

5.2 LIMITATIONS AND FUTURE STUDY 

A major limitation of this study is that the results are based on the analysis of 

specific data sets.  Therefore, this study was deemed exploratory.  For a more robust, 

rigorous study, that can provide more firm information and guidance on the performance 

of this unified framework for estimating interrater reliability, data should be simulated 

with a known value of the intraclass correlation coefficient, and bias estimates obtained 

using hierarchical linear modeling and the cluster bootstrap can be compared to the bias 

from estimation using the simulated data and existing methods.  This was not conducted 

in this study as the goal was to illustrate and determine the viability of the approach for 

offering a unified framework as no one has presented such work.  Thus, future study will 
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focus on exploring a true simulation study where a wider variety of data structures, 

sample sizes, values of the coefficient, estimation approaches (i.e., restricted maximum 

likelihood vs Bayesian adjustments, Laplace approximation vs Adaptive GH 

approximation vs Bayesian approximation) can be explored.  In addition, prior to a true 

simulation study, it may be appropriate to consider the viability of a bias-corrected 

estimator, which is calculated using the same formula in Chapter 2.  Recall that Efron and 

Tibshirani (1998) indicated that bias is generally trivial unless,  

|
bias**

seB
*

|  > 0.25. 

Thus, when the inequality above holds, the original ICC(1,1) point estimator may be bias-

corrected using the estimated bias from the cluster bootstrap to yield a better estimator.  

With this bias-correct estimator simulations can focus on comparing it to the maximum 

likelihood estimator from the threshold model for binary data and to the maximum 

likelihood estimator and other estimators for continuous rating data.  

Another limitation that should be further explored is the use of the mean in the 

place of the expected value of the point estimation in the formula for bias.  In this study, 

only descriptive statements and therefore subjective statements were made regarding the 

validity of using the mean in the place of the expectation of the point estimator.  As the 

distributions of bootstrap replications were slightly skewed or had abnormally shaped 

histograms and measures of skewness and kurtosis supported such shapes, some may call 

into question the validity of the bootstrap estimations, even though the means and 

medians of the distributions were quite similar.  This further calls for a more robust study 

that includes simulation as simulation may reveal whether the shapes of the overall 
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distributions matter even in the midst of a mean that is quite similar in value to the 

median. 

In addition to further studying the performance of these methods through true 

simulation, extending the framework to include ordinal variables should be explored.  

Some organizations use the continuous ICC(1,1) estimator for polytomously scored 

rating data, which may not be appropriately estimated using HLM.  By illustrating and 

including polytomous HGLM, the framework for studying interrater reliability will be 

more inclusive and whole.   

Thus, there is much more to study and a range of topics to consider in providing 

the fields of educational and psychological research and the other social sciences with a 

unified approach to estimating intraclass correlation coefficients that fit the design of 

ICC(1,1).  If this unified approach is sound and has statistical properties that are more 

desirable compared to other estimators, then there will be a need to develop and make 

available the appropriate statistical computing resources using free and accessible 

software, which will allow researchers and practitioners to use hierarchical linear 

modeling and the cluster bootstrap to obtain an estimate or bias-corrected estimate of 

ICC(1,1).   

After optimal point estimation techniques are more developed, exploration into 

interval estimation can take place.  Then extensions into the other study designs can be 

explored.  It is hoped that the results and knowledge gained from exploring the unified 

framework for study design one in this study will inform the factors that impact the 

performance and should be considered when extending the framework to more settings. 
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APPENDIX A 

TABLES OF BOOTSTRAP BIAS ESTIMATES 

Table A.1 HLM estimate of bias and exact convergence rates using cluster bootstrap 

for varying numbers of replications for illustrative example 1 of Chapter 3 

 

Replications Bias Convergence Rate 

100 -0.03383 1 

200 -0.03817 0.995 

300 -0.03663 0.99 

400 -0.03247 0.995 

500 -0.02093 0.996 

600 -0.02956 0.993333 

700 -0.03136 0.997143 

800 -0.02974 0.9975 

900 -0.04063 0.998889 

1000 -0.03468 0.997 

1100 -0.03066 0.994545 

1200 -0.03008 0.996667 

1300 -0.0275 0.996154 

1400 -0.02796 0.998571 

1500 -0.02668 0.998 

1600 -0.03004 0.995625 

1700 -0.02901 0.996471 

1800 -0.03253 0.998333 

1900 -0.03199 0.996316 

2000 -0.03007 0.996 

2100 -0.03748 0.995238 

2200 -0.03044 0.995909 

2300 -0.0289 0.995217 

2400 -0.03394 0.99625 

2500 -0.03248 0.9952 

2600 -0.03229 0.996154 

2700 -0.0289 0.996667 

2800 -0.02956 0.996786 

2900 -0.03394 0.998276 

3000 -0.0354 0.996667 
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Table A.1 continued 

 

Replications Bias Convergence Rate 

3100 -0.03273 0.995806 

3200 -0.03415 0.99625 

3300 -0.03202 0.997879 

3400 -0.03286 0.996176 

3500 -0.02986 0.998 

3600 -0.03296 0.998056 

3700 -0.03605 0.997027 

3800 -0.03367 0.996579 

3900 -0.033 0.997949 

4000 -0.03129 0.99775 

4100 -0.02965 0.998293 

4200 -0.03233 0.997381 

4300 -0.03109 0.99814 

4400 -0.03316 0.998182 

4500 -0.0319 0.996667 

4600 -0.03151 0.995217 

4700 -0.03199 0.997447 

4800 -0.03305 0.996875 

4900 -0.03011 0.996939 

5000 -0.0355 0.997 

5100 -0.02745 0.997059 

5200 -0.03367 0.995769 

5300 -0.03513 0.997547 

5400 -0.03153 0.996296 

5500 -0.03303 0.996182 

5600 -0.03047 0.997857 

5700 -0.02999 0.996491 

5800 -0.03274 0.99569 

5900 -0.0325 0.997797 

6000 -0.03082 0.9965 

6100 -0.03424 0.996721 

6200 -0.03217 0.996613 

6300 -0.03393 0.997143 

6400 -0.03414 0.996719 

6500 -0.03464 0.996615 

6600 -0.03281 0.996061 

6700 -0.03215 0.996418 

6800 -0.03195 0.995882 

6900 -0.03098 0.996812 
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Table A.1 continued 

   

Replications Bias Convergence Rate 

7000 -0.02918 0.996857 

7100 -0.03343 0.996479 

7200 -0.03063 0.998611 

7300 -0.03199 0.996712 

7400 -0.03285 0.997973 

7500 -0.03337 0.996133 

7600 -0.03306 0.996579 

7700 -0.03065 0.996364 

7800 -0.0342 0.997436 

7900 -0.03069 0.997215 

8000 -0.03209 0.99625 

8100 -0.03122 0.997407 

8200 -0.03443 0.99622 

8300 -0.03251 0.996024 

8400 -0.0312 0.996667 

8500 -0.03241 0.996353 

8600 -0.03297 0.99686 

8700 -0.03266 0.997011 

8800 -0.03407 0.996477 

8900 -0.03143 0.996629 

9000 -0.03424 0.996333 

9100 -0.03225 0.997582 

9200 -0.03136 0.99663 

9300 -0.0349 0.995484 

9400 -0.03294 0.99734 

9500 -0.03167 0.996 

9600 -0.03327 0.996771 

9700 -0.03174 0.996701 

9800 -0.03223 0.997755 

9900 -0.0333 0.997172 

10000 -0.03197 0.9967 

10100 -0.03278 0.996832 

10200 -0.03126 0.997157 

10300 -0.03127 0.996602 

10400 -0.03284 0.99625 

10500 -0.03031 0.997429 

10600 -0.0324 0.995849 

10700 -0.03244 0.996636 

10800 -0.03086 0.997685 
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Table A.1 continued 

   

Replications Bias Convergence Rate 

10900 -0.03213 0.996881 

11000 -0.03354 0.997091 

11100 -0.03424 0.997027 

11200 -0.03246 0.996161 

11300 -0.03255 0.996991 

11400 -0.0313 0.995351 

11500 -0.03186 0.997304 

11600 -0.03039 0.997069 

11700 -0.03074 0.997094 

11800 -0.03209 0.997119 

11900 -0.03286 0.996807 

12000 -0.03368 0.996917 

12100 -0.03115 0.996694 

12200 -0.0322 0.997295 

12300 -0.03062 0.996992 

12400 -0.03281 0.997177 

12500 -0.03259 0.99688 

12600 -0.03276 0.996905 

12700 -0.0317 0.996457 

12800 -0.03161 0.997734 

12900 -0.03175 0.997132 

13000 -0.03217 0.997231 

13100 -0.03254 0.996107 

13200 -0.03347 0.997197 

13300 -0.03111 0.996466 

13400 -0.03267 0.996418 

13500 -0.03138 0.996222 

13600 -0.03325 0.997206 

13700 -0.03223 0.997299 

13800 -0.03077 0.997029 

13900 -0.03195 0.996115 

14000 -0.03201 0.996643 

14100 -0.03269 0.997518 

14200 -0.03143 0.99669 

14300 -0.03231 0.996923 

14400 -0.03203 0.997292 

14500 -0.03276 0.997241 

14600 -0.0322 0.997055 

14700 -0.0326 0.997347 
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Table A.1 continued 

   

Replications Bias Convergence Rate 

14800 -0.03217 0.996622 

14900 -0.0323 0.997383 

15000 -0.03233 0.997867 

15100 -0.0322 0.997417 

15200 -0.03164 0.995987 

15300 -0.03284 0.996013 

15400 -0.03291 0.997468 

15500 -0.03481 0.996 

15600 -0.03301 0.996538 

15700 -0.03156 0.996624 

15800 -0.03115 0.996266 

15900 -0.0325 0.996352 

16000 -0.03288 0.99625 

16100 -0.03153 0.996708 

16200 -0.02998 0.996481 

16300 -0.03057 0.996871 

16400 -0.03271 0.996829 

16500 -0.03159 0.997333 

16600 -0.03161 0.996084 

16700 -0.03224 0.997485 

16800 -0.03181 0.996369 

16900 -0.03156 0.997041 

17000 -0.03295 0.996941 

17100 -0.03298 0.996667 

17200 -0.03238 0.997093 

17300 -0.03245 0.996474 

17400 -0.03347 0.996954 

17500 -0.03189 0.997086 

17600 -0.03262 0.99733 

17700 -0.03272 0.997401 

17800 -0.03147 0.997472 

17900 -0.03256 0.996816 

18000 -0.03134 0.996778 

18100 -0.0318 0.996354 

18200 -0.03199 0.996429 

18300 -0.03211 0.997541 

18400 -0.03246 0.996576 

18500 -0.03235 0.996919 

18600 -0.03243 0.997204 
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Table A.1 continued 

   

Replications Bias Convergence Rate 

18700 -0.0332 0.99631 

18800 -0.03223 0.996968 

18900 -0.03305 0.996349 

19000 -0.03125 0.997263 

19100 -0.03191 0.997539 

19200 -0.03253 0.997813 

19300 -0.03306 0.997098 

19400 -0.03204 0.996856 

19500 -0.03339 0.996154 

19600 -0.03266 0.996735 

19700 -0.03387 0.997005 

19800 -0.03169 0.997121 

19900 -0.0321 0.996834 

20000 -0.03279 0.9974 

100000 -0.03194 0.99693 

1000000 -0.03223 0.996987 
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Table A.2 HLM estimate of bias and exact convergence rates using cluster bootstrap 

for varying numbers of replications for illustrative example 2 of Chapter 3 

 

Replications Bias Convergence Rate 

100 -0.20082 1 

200 -0.20693 1 

300 -0.18847 1 

400 -0.21032 1 

500 -0.19653 1 

600 -0.20167 1 

700 -0.19615 1 

800 -0.20613 1 

900 -0.19785 1 

1000 -0.19221 1 

1100 -0.19393 1 

1200 -0.19816 1 

1300 -0.19777 1 

1400 -0.20095 1 

1500 -0.20307 1 

1600 -0.19689 1 

1700 -0.20064 1 

1800 -0.19356 1 

1900 -0.20407 1 

2000 -0.1935 1 

2100 -0.20279 1 

2200 -0.19893 1 

2300 -0.193 1 

2400 -0.19975 1 

2500 -0.20489 1 

2600 -0.19862 1 

2700 -0.19726 1 

2800 -0.20181 1 

2900 -0.19964 1 

3000 -0.20128 1 

3100 -0.19425 1 

3200 -0.1949 1 

3300 -0.19832 1 

3400 -0.19881 1 

3500 -0.20112 1 

3600 -0.19419 1 

3700 -0.19488 1 

3800 -0.20222 1 
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Table A.2 Continued 

 

Replications Bias Convergence Rate 

3900 -0.20401 1 

4000 -0.20415 1 

4100 -0.19942 1 

4200 -0.1991 1 

4300 -0.1977 1 

4400 -0.19834 1 

4500 -0.20322 1 

4600 -0.20045 1 

4700 -0.19916 1 

4800 -0.20334 1 

4900 -0.20019 1 

5000 -0.19838 1 

5100 -0.20208 1 

5200 -0.19788 1 

5300 -0.20242 1 

5400 -0.20009 1 

5500 -0.19525 1 

5600 -0.19604 1 

5700 -0.19822 1 

5800 -0.19623 1 

5900 -0.20008 1 

6000 -0.19983 1 

6100 -0.20023 1 

6200 -0.20184 1 

6300 -0.19609 1 

6400 -0.19749 1 

6500 -0.19821 1 

6600 -0.19816 1 

6700 -0.19706 1 

6800 -0.19587 1 

6900 -0.19878 1 

7000 -0.201 1 

7100 -0.19958 1 

7200 -0.19452 1 

7300 -0.1996 1 

7400 -0.1951 1 

7500 -0.19901 1 

7600 -0.20201 1 

7700 -0.19978 1 
  



  

131 

 

Table A.2 Continued 

   

Replications Bias Convergence Rate 

7800 -0.19883 1 

7900 -0.19778 1 

8000 -0.19697 1 

8100 -0.19735 1 

8200 -0.20038 1 

8300 -0.1997 1 

8400 -0.20258 1 

8500 -0.2011 1 

8600 -0.19778 1 

8700 -0.19945 1 

8800 -0.20146 1 

8900 -0.19531 1 

9000 -0.19862 1 

9100 -0.19918 1 

9200 -0.19894 1 

9300 -0.2016 1 

9400 -0.19921 1 

9500 -0.20027 1 

9600 -0.19839 1 

9700 -0.20023 1 

9800 -0.19993 1 

9900 -0.19557 1 

10000 -0.19635 1 

10100 -0.19928 1 

10200 -0.19996 1 

10300 -0.19756 1 

10400 -0.19849 1 

10500 -0.19859 1 

10600 -0.20027 1 

10700 -0.1983 1 

10800 -0.20152 1 

10900 -0.19809 1 

11000 -0.19967 1 

11100 -0.19751 1 

11200 -0.19907 1 

11300 -0.19918 1 

11400 -0.20024 1 

11500 -0.19967 1 

11600 -0.19591 1 
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Table A.2 Continued 

   

Replications Bias Convergence Rate 

11700 -0.19951 1 

11800 -0.19931 1 

11900 -0.19929 1 

12000 -0.20094 1 

12100 -0.19713 1 

12200 -0.20071 1 

12300 -0.19875 1 

12400 -0.19939 1 

12500 -0.19869 1 

12600 -0.19785 1 

12700 -0.19914 1 

12800 -0.19954 1 

12900 -0.19797 1 

13000 -0.20008 1 

13100 -0.19628 1 

13200 -0.19882 1 

13300 -0.2024 1 

13400 -0.19851 1 

13500 -0.20058 1 

13600 -0.19787 1 

13700 -0.19506 1 

13800 -0.19851 1 

13900 -0.19986 1 

14000 -0.19814 1 

14100 -0.19817 1 

14200 -0.19906 1 

14300 -0.1981 1 

14400 -0.19855 1 

14500 -0.19858 1 

14600 -0.19959 1 

14700 -0.19714 1 

14800 -0.19854 1 

14900 -0.19733 1 

15000 -0.19943 1 

15100 -0.19772 1 

15200 -0.19897 1 

15300 -0.19839 1 

15400 -0.19789 1 

15500 -0.19865 1 
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Table A.2 Continued 

   

Replications Bias Convergence Rate 

15600 -0.1975 1 

15700 -0.19761 1 

15800 -0.20077 1 

15900 -0.19955 1 

16000 -0.20176 1 

16100 -0.20007 1 

16200 -0.19769 1 

16300 -0.20009 1 

16400 -0.19763 1 

16500 -0.1982 1 

16600 -0.19901 1 

16700 -0.19663 1 

16800 -0.19807 1 

16900 -0.19769 1 

17000 -0.19896 1 

17100 -0.19973 1 

17200 -0.19809 1 

17300 -0.19979 1 

17400 -0.19802 1 

17500 -0.19954 1 

17600 -0.19831 1 

17700 -0.19693 1 

17800 -0.19992 1 

17900 -0.19806 1 

18000 -0.19858 1 

18100 -0.19928 1 

18200 -0.19896 1 

18300 -0.19719 1 

18400 -0.19828 1 

18500 -0.19862 1 

18600 -0.19805 1 

18700 -0.19723 1 

18800 -0.19766 1 

18900 -0.19833 1 

19000 -0.19803 1 

19100 -0.1988 1 

19200 -0.19786 1 

19300 -0.19785 1 

19400 -0.19881 1 
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Table A.2 Continued 

   

Replications Bias Convergence Rate 

19500 -0.19718 1 

19600 -0.19829 1 

19700 -0.1987 1 

19800 -0.19959 1 

19900 -0.19798 1 

20000 -0.2004 1 

100000 -0.19796 1 

1000000 -0.19849 1 
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Table A.3 Laplace approximation HGLM estimate of bias and exact convergence rates 

using cluster bootstrap for varying numbers of replications 

 

Replications Bias Convergence Rate 

100 -0.00972 0.92 

200 -0.01538 0.9 

300 -0.02138 0.876667 

400 -0.02552 0.8825 

500 -0.02323 0.888 

600 -0.02412 0.891667 

700 -0.02278 0.892857 

800 -0.02213 0.9075 

900 -0.02847 0.888889 

1000 -0.02303 0.897 

1100 -0.01921 0.902727 

1200 -0.01793 0.901667 

1300 -0.03045 0.899231 

1400 -0.02444 0.901429 

1500 -0.02617 0.878667 

1600 -0.02171 0.904375 

1700 -0.02359 0.903529 

1800 -0.0206 0.898889 

1900 -0.02024 0.894737 

2000 -0.02327 0.903 

2100 -0.0191 0.895238 

2200 -0.01968 0.900455 

2300 -0.02671 0.896522 

2400 -0.0255 0.896667 

2500 -0.02771 0.8968 

2600 -0.0237 0.899231 

2700 -0.02556 0.891852 

2800 -0.01971 0.901071 

2900 -0.02039 0.895517 

3000 -0.02261 0.9 

3100 -0.02578 0.897419 

3200 -0.02672 0.894375 

3300 -0.02562 0.904545 

3400 -0.02719 0.889706 

3500 -0.02396 0.901143 
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Table A.3 Continued 

   

Replications Bias Convergence Rate 

3600 -0.02441 0.891667 

3700 -0.02235 0.898108 

3800 -0.02735 0.896053 

3900 -0.0279 0.903077 

4000 -0.02415 0.88975 

4100 -0.02245 0.908049 

4200 -0.02772 0.894286 

4300 -0.02765 0.897674 

4400 -0.02372 0.8925 

4500 -0.02185 0.901111 

4600 -0.02153 0.890652 

4700 -0.02253 0.898511 

4800 -0.02402 0.89375 

4900 -0.02363 0.897143 

5000 -0.02649 0.8968 

5100 -0.02178 0.897059 

5200 -0.02263 0.895962 

5300 -0.02316 0.89434 

5400 -0.0249 0.894259 

5500 -0.02505 0.894909 

5600 -0.02476 0.90375 

5700 -0.02559 0.895088 

5800 -0.02325 0.896724 

5900 -0.02402 0.899153 

6000 -0.02097 0.896 

6100 -0.02724 0.90377 

6200 -0.02224 0.893226 

6300 -0.02703 0.894762 

6400 -0.02389 0.896719 

6500 -0.02657 0.901692 

6600 -0.02609 0.895 

6700 -0.02645 0.896567 

6800 -0.02438 0.898235 

6900 -0.02487 0.898406 

7000 -0.02536 0.901857 

7100 -0.02534 0.897183 

7200 -0.02275 0.897778 

7300 -0.02479 0.9 

7400 -0.02263 0.896081 
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Table A.3 Continued 

 

Replications Bias Convergence Rate 

7500 -0.02213 0.900133 

7600 -0.02223 0.900132 

7700 -0.02637 0.898571 

7800 -0.02417 0.904615 

7900 -0.02304 0.903165 

8000 -0.02086 0.8965 

8100 -0.02474 0.898519 

8200 -0.02557 0.893049 

8300 -0.02154 0.901325 

8400 -0.02318 0.901905 

8500 -0.02736 0.908235 

8600 -0.02563 0.898605 

8700 -0.02277 0.896207 

8800 -0.02568 0.898864 

8900 -0.0241 0.900112 

9000 -0.02435 0.898 

9100 -0.02511 0.899341 

9200 -0.02558 0.895652 

9300 -0.02542 0.903871 

9400 -0.02415 0.899787 

9500 -0.0254 0.890632 

9600 -0.02412 0.900833 

9700 -0.02473 0.900928 

9800 -0.0235 0.894796 

9900 -0.02413 0.893737 

10000 -0.02506 0.9028 

10100 -0.02939 0.895248 

10200 -0.02282 0.902941 

10300 -0.02538 0.899223 

10400 -0.02522 0.896923 

10500 -0.02652 0.89819 

10600 -0.02464 0.896415 

10700 -0.02529 0.895981 

10800 -0.02472 0.899907 

10900 -0.02326 0.902844 

11000 -0.02461 0.898 

11100 -0.0226 0.897568 
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Table A.3 Continued 

 

Replications Bias Convergence Rate 

11200 -0.02504 0.900893 

11300 -0.02339 0.90115 

11400 -0.02329 0.90114 

11500 -0.02513 0.899652 

11600 -0.02338 0.9025 

11700 -0.02551 0.902393 

11800 -0.02328 0.900593 

11900 -0.02223 0.900588 

12000 -0.0236 0.9005 

12100 -0.02207 0.898595 

12200 -0.02666 0.897049 

12300 -0.02401 0.896423 

12400 -0.02544 0.895645 

12500 -0.02504 0.89912 

12600 -0.02469 0.89873 

12700 -0.02371 0.900866 

12800 -0.0247 0.898125 

12900 -0.02467 0.897597 

13000 -0.0247 0.895846 

13100 -0.02484 0.902824 

13200 -0.0237 0.899697 

13300 -0.02522 0.893835 

13400 -0.02378 0.901045 

13500 -0.0252 0.900667 

13600 -0.02366 0.906618 

13700 -0.0248 0.896861 

13800 -0.0232 0.898333 

13900 -0.02474 0.900791 

14000 -0.02418 0.898857 

14100 -0.0225 0.904397 

14200 -0.02517 0.90331 

14300 -0.02555 0.898951 

14400 -0.02499 0.896806 

14500 -0.02356 0.897724 

14600 -0.02419 0.901164 

14700 -0.02301 0.898639 

14800 -0.02321 0.901554 

14900 -0.0255 0.902483 

15000 -0.02567 0.898067 
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Table A.3 Continued 

 

Replications Bias Convergence Rate 

15100 -0.02461 0.901589 

15200 -0.02389 0.897039 

15300 -0.02542 0.892614 

15400 -0.02424 0.902597 

15500 -0.02378 0.89729 

15600 -0.02425 0.896603 

15700 -0.02329 0.898599 

15800 -0.02423 0.898924 

15900 -0.02465 0.897862 

16000 -0.02512 0.90075 

16100 -0.02492 0.899565 

16200 -0.02326 0.896605 

16300 -0.02195 0.894785 

16400 -0.02398 0.900671 

16500 -0.02471 0.895515 

16600 -0.02284 0.899759 

16700 -0.02545 0.898743 

16800 -0.02346 0.89875 

16900 -0.02459 0.901953 

17000 -0.02458 0.902882 

17100 -0.02421 0.899825 

17200 -0.02387 0.897907 

17300 -0.02232 0.899827 

17400 -0.02474 0.90454 

17500 -0.02472 0.900343 

17600 -0.02429 0.900739 

17700 -0.02372 0.897514 

17800 -0.02383 0.901685 

17900 -0.02424 0.902179 

18000 -0.02435 0.897444 

18100 -0.0251 0.901105 

18200 -0.02518 0.893736 

18300 -0.02546 0.900219 

18400 -0.02339 0.899457 

18500 -0.02443 0.898811 

18600 -0.0242 0.900054 

18700 -0.02362 0.898503 

18800 -0.02465 0.899947 

18900 -0.02445 0.896561 
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Table A.3 Continued 

   

Replications Bias Convergence Rate 

19000 -0.02468 0.895579 

19100 -0.02318 0.901832 

19200 -0.02478 0.901823 

19300 -0.02357 0.900104 

19400 -0.02392 0.900258 

19500 -0.02413 0.900667 

19600 -0.02449 0.899388 

19700 -0.02474 0.893401 

19800 -0.02668 0.897879 

19900 -0.02377 0.897688 

20000 -0.02438 0.8986 

100000 -0.02457 0.89915 

1000000 -0.02453 0.899678 
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Table A.4 Adaptive GH HGLM approximation estimate of bias and exact convergence 

rates using cluster bootstrap for varying numbers of replications 

 

Replications Bias Convergence Rate 

100 -0.020298646 1 

200 -0.019843106 1 

300 -0.032313879 1 

400 -0.023817319 1 

500 -0.029886155 1 

600 -0.03333393 0.998333333 

700 -0.029639545 1 

800 -0.020427221 1 

900 -0.028871093 1 

1000 -0.026339582 0.999 

1100 -0.027380828 1 

1200 -0.021700836 1 

1300 -0.032281361 1 

1400 -0.027771375 1 

1500 -0.033014435 0.999333333 

1600 -0.026717857 0.999375 

1700 -0.025618442 1 

1800 -0.026588354 1 

1900 -0.029065102 1 

2000 -0.025589103 1 

2100 -0.028233032 1 

2200 -0.025096389 1 

2300 -0.025538177 1 

2400 -0.022106729 1 

2500 -0.029567689 1 

2600 -0.0246465 1 

2700 -0.02819657 1 

2800 -0.024698487 1 

2900 -0.023745661 0.999655172 

3000 -0.026622968 1 

3100 -0.028857134 1 

3200 -0.025756084 1 

3300 -0.028526156 1 

3400 -0.023514431 1 

3500 -0.025961259 1 

3600 -0.026325978 1 

3700 -0.024822567 0.99972973 

3800 -0.024975566 1 
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Table A.4 Continued 

 

Replications Bias Convergence Rate 

3900 -0.027096973 1 

4000 -0.029974251 1 

4100 -0.027387865 1 

4200 -0.026293579 1 

4300 -0.028893897 0.999767442 

4400 -0.027123353 1 

4500 -0.025937118 0.999777778 

4600 -0.026068185 1 

4700 -0.026006446 0.999787234 

4800 -0.026284493 1 

4900 -0.025209083 1 

5000 -0.028784252 0.9998 

5100 -0.026180493 0.999411765 

5200 -0.026139847 1 

5300 -0.026904917 0.999811321 

5400 -0.027211062 1 

5500 -0.024922384 0.999818182 

5600 -0.026204407 0.999821429 

5700 -0.028824002 0.999824561 

5800 -0.025965696 1 

5900 -0.026806922 0.999830508 

6000 -0.028535098 1 

6100 -0.023952486 1 

6200 -0.025031366 0.99983871 

6300 -0.029276463 1 

6400 -0.028215949 1 

6500 -0.027305615 0.999692308 

6600 -0.029389147 1 

6700 -0.028928401 0.999850746 

6800 -0.027623112 1 

6900 -0.028678718 1 

7000 -0.0263472 0.999857143 

7100 -0.027860368 1 

7200 -0.02559807 0.999861111 

7300 -0.028109414 0.999863014 

7400 -0.026252897 1 

7500 -0.028281581 0.999866667 

7600 -0.02748816 1 

7700 -0.028052528 0.99987013 
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Table A.4 Continued 

 

Replications Bias Convergence Rate 

7800 -0.025110639 0.999871795 

7900 -0.027101965 0.999620253 

8000 -0.026812258 1 

8100 -0.02807123 0.999876543 

8200 -0.026314791 0.999756098 

8300 -0.026105695 1 

8400 -0.024593066 1 

8500 -0.026790744 0.999882353 

8600 -0.026065556 0.999883721 

8700 -0.028254024 0.999885057 

8800 -0.02623946 0.999772727 

8900 -0.027079758 0.999775281 

9000 -0.027503838 0.999888889 

9100 -0.02880476 0.99989011 

9200 -0.024895461 0.999891304 

9300 -0.026911634 1 

9400 -0.026542998 0.999893617 

9500 -0.02673278 1 

9600 -0.025368988 0.999895833 

9700 -0.025085177 0.999793814 

9800 -0.0237619 0.999897959 

9900 -0.025304892 1 

10000 -0.027190328 0.9999 

10100 -0.024800241 1 

10200 -0.026520742 0.999705882 

10300 -0.027826965 1 

10400 -0.026704879 0.999903846 

10500 -0.026648407 1 

10600 -0.026111487 0.999716981 

10700 -0.027195324 0.999906542 

10800 -0.026145021 0.999907407 

10900 -0.026888768 0.999908257 

11000 -0.024475434 0.999909091 

11100 -0.027204103 1 

11200 -0.025601964 1 

11300 -0.026432386 1 

11400 -0.025085292 0.999912281 

11500 -0.027738198 1 

11600 -0.025214264 1 
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Table A.4 Continued 

 

Replications Bias Convergence Rate 

11700 -0.026671277 1 

11800 -0.025631593 1 

11900 -0.026979161 0.999915966 

12000 -0.026544914 1 

12100 -0.024997951 1 

12200 -0.027005263 1 

12300 -0.027347243 0.999837398 

12400 -0.027329135 0.999758065 

12500 -0.027416283 0.99976 

12600 -0.027457529 1 

12700 -0.027919056 0.99984252 

12800 -0.026315081 0.999765625 

12900 -0.025222567 1 

13000 -0.025841895 0.999846154 

13100 -0.026805411 0.999923664 

13200 -0.024617481 0.999848485 

13300 -0.027617605 0.999774436 

13400 -0.026104067 0.999925373 

13500 -0.025571763 0.999925926 

13600 -0.027046284 1 

13700 -0.026416326 0.999854015 

13800 -0.02604373 0.999855072 

13900 -0.025921931 0.999856115 

14000 -0.025674503 0.999928571 

14100 -0.027978441 0.999929078 

14200 -0.027221529 0.999929577 

14300 -0.025436887 0.99979021 

14400 -0.025342998 1 

14500 -0.026030435 0.999862069 

14600 -0.026622118 0.999863014 

14700 -0.028403352 0.999931973 

14800 -0.02776641 0.99972973 

14900 -0.026148472 0.999865772 

15000 -0.027856773 0.999933333 

15100 -0.027458199 0.999801325 

15200 -0.02800276 0.999934211 

15300 -0.027655165 0.999738562 

15400 -0.026081512 0.999935065 

15500 -0.026303981 0.999935484 
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Table A.4 Continued 

 

Replications Bias Convergence Rate 

15600 -0.025446269 0.999807692 

15700 -0.027831565 0.999808917 

15800 -0.027433258 1 

15900 -0.02620414 0.999811321 

16000 -0.025378861 1 

16100 -0.027105394 0.999751553 

16200 -0.026238511 0.999814815 

16300 -0.027883566 0.999877301 

16400 -0.026182061 0.999817073 

16500 -0.026257794 0.999818182 

16600 -0.026338418 0.999939759 

16700 -0.027682436 0.99994012 

16800 -0.026907105 0.999880952 

16900 -0.026025953 0.999940828 

17000 -0.026015834 1 

17100 -0.026407662 0.99994152 

17200 -0.026157754 0.99994186 

17300 -0.027083852 0.999884393 

17400 -0.027868571 0.999885057 

17500 -0.025655793 0.999885714 

17600 -0.025045297 0.999886364 

17700 -0.026669451 1 

17800 -0.024745152 0.99994382 

17900 -0.025662203 0.999944134 

18000 -0.02537835 1 

18100 -0.027312774 0.999889503 

18200 -0.025753954 1 

18300 -0.025999004 0.999945355 

18400 -0.025620041 0.999836957 

18500 -0.025184988 0.99972973 

18600 -0.02644092 0.999892473 

18700 -0.025667442 0.999786096 

18800 -0.028106221 0.999893617 

18900 -0.02657771 1 

19000 -0.027109511 0.999842105 

19100 -0.026876055 0.999895288 

19200 -0.027688655 0.999895833 

19300 -0.024897093 0.999896373 

19400 -0.025944174 0.999896907 
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Table A.4 Continued 

 

Replications Bias Convergence Rate 

19500 -0.026215543 0.999846154 

19600 -0.025729218 0.99994898 

19700 -0.026202143 0.999949239 

19800 -0.027370626 0.999949495 

19900 -0.026091086 1 

20000 -0.025705514 0.9999 

100000 -0.02656867 1 

1000000 -0.02656867 0.999912 
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APPENDIX B 

 R CODE FOR IMPLEMENTING CLUSTER BOOTSTRAP WITH  

HIERARCHICAL LINEAR MODELING FOR ESTIMATING BIAS IN THE ICC 

library(lme4) 

 

#Chapter 3 Illustrative Example 1: 

#  Load Data 

setwd("C:/Users/pompe/Documents/Dissertation/Bootstrap Results Ch 3/Example 1") 

mydata <- read.table("Haggard Data Balanced Table 6 Page 63.csv", sep=",", header=T) 

 

 

#  Implement Cluster Bootstrap for various replications 

B <- seq(100, 20000, by=100) 

B <- append(B, c(100000,1000000)) 

seed <- 115 

results.mat <- NULL 

 

for (m in 1:202){ 

  the.seed <- seed+m 

  set.seed(the.seed) 

  num_reps <- B[m] 

 

  ICC.mat <- NULL 

  convergence.mat <- NULL 

  

    for (k in 1:num_reps){ 

   

       

      L2 <- sample(unique(mydata$Target), size=length(unique(mydata$Target)), 

replace=T) 

      resample.mat <- NULL 

      for (i in 1:length(L2)){ 

        subsample <- mydata[which(mydata$Target == L2[i]),] #  subsetting original data to 

focus 

        resample.mat <- rbind(resample.mat, subsample) 

      } 
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       resample.mat$Target <- mydata$Target 

          

      model <- lmer(Rating ~ 1 + (1|Target), data=resample.mat, REML = T) 

      var.comp <- as.data.frame(VarCorr(model)) 

      ICC <- var.comp$vcov[1]/(var.comp$vcov[1]+var.comp$vcov[2]) 

      ICC.mat <- rbind(ICC.mat, ICC) 

   

      

      convergence <- any(grepl("failed to converge", 

model@optinfo$conv$lme4$messages)) 

      convergence.mat <- rbind(convergence.mat, convergence) 

    } 

   

    data2 <- cbind(ICC.mat, convergence.mat) 

    colnames(data2) <- c("ICC", "Convergence") 

    data2 <- as.data.frame(data2) 

    data3 <- data2[which(data2$Convergence==0),] 

 

    boot.mean <- mean(data3$ICC) 

 

    #  Original Sample ICC 

    model1 <- lmer(Rating ~ 1 + (1|Target), data=mydata, REML = T) 

    var.comp <- as.data.frame(VarCorr(model1)) 

    ICC.original <- var.comp$vcov[1]/(var.comp$vcov[1]+var.comp$vcov[2]) 

     

 

    #  Bias Calculation. 

    bias <- boot.mean - ICC.original 

    final.B <- nrow(data3) 

     

 

    hist(ICC.mat, main=paste("Bias Approximation Using B=",num_reps, "Replications")) 

 

  

    conv.rate <- 1-sum(data2$Convergence)/length(data2$Convergence) 

    prev.results <- c(the.seed, num_reps, bias, final.B, conv.rate) 

    results.mat <- rbind(results.mat, prev.results) 

} 

 

library(lme4) 

 

 

setwd("C:/Users/pompe/Documents/Dissertation/Bootstrap Results Ch 3/Example 2/") 

mydata <- read.table("Haggard Data Unbalanced Table 2 Page 15.csv",  

                     sep=",", header=T) 
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B <- seq(100, 20000, by=100) 

B <- append(B, c(100000,1000000)) 

seed <- 115 

results.mat <- NULL 

 

for (m in 1:202){ 

  the.seed <- seed+m 

  set.seed(the.seed) 

  num_reps <- B[m] 

 

    ICC.mat <- NULL 

    convergence.mat <- NULL 

    for (k in 1:num_reps){ 

       

      level2.sample <- sample(mydata$Target, length(unique(mydata$Target)), replace=T) 

 

         

        resample.mat <- NULL 

        for (i in 1:length(level2.sample)){ 

          subsample <- mydata[which(mydata$Target == level2.sample[i]),]  

          resample.mat <- rbind(resample.mat, subsample) 

        } 

 

        final.target <- NULL 

        New.Target <- NULL 

          for (j in 1:length(level2.sample)){ 

          subsample <- mydata[which(mydata$Target == level2.sample[j]),] 

          New.Target <- rep(paste("T",j, sep=""), times = nrow(subsample)) 

          final.target <- c(final.target,New.Target) 

        } 

         

        final.resample.mat <- cbind(resample.mat, final.target) 

         

        model <- lmer(Rating ~ 1 + (1|final.target), data=final.resample.mat, REML = T) 

        var.comp <- as.data.frame(VarCorr(model)) 

        ICC <- var.comp$vcov[1]/(var.comp$vcov[1]+var.comp$vcov[2]) 

        ICC.mat <- rbind(ICC.mat, ICC) 

     

        convergence <- any(grepl("failed to converge", 

model@optinfo$conv$lme4$messages)) 

        convergence.mat <- rbind(convergence.mat, convergence) 

    } 

     

    data2 <- cbind(ICC.mat, convergence.mat) 

    colnames(data2) <- c("ICC", "Convergence") 

    data2 <- as.data.frame(data2) 
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    data3 <- data2[which(data2$Convergence==0),] 

     

    boot.mean <- mean(data3$ICC) 

     

     

     

    model1 <- lmer(Rating ~ 1 + (1|Target), data=mydata, REML = T) 

    var.comp <- as.data.frame(VarCorr(model1)) 

    ICC.original <- var.comp$vcov[1]/(var.comp$vcov[1]+var.comp$vcov[2]) 

     

     

     

    bias <- boot.mean - ICC.original 

    final.B <- nrow(data3) 

     

     

    hist(ICC.mat, main=paste("Bias Approximation Using B=",num_reps, "Replications")) 

     

 

    conv.rate <- 1-sum(data2$Convergence)/length(data2$Convergence) 

    prev.results <- c(the.seed, num_reps, bias, final.B, conv.rate) 

    results.mat <- rbind(results.mat, prev.results) 

 

} 

 

#  Chapter 4 Laplace Approximation 

#  Load data 

setwd("C:/Users/pompe/Documents/Dissertation/Bootstrap Results Ch 4/Chapter 4 

Dissertation Laplace with Same Seeds as AGH FINAL") 

seedreps <- read.table("Seeds and Replications for Both Runs.csv", header=T, sep=",") 

mydata <- read.table("Lipsits, Laird, and Brennan 1994 data.csv", header=T, sep=",") 

 

#  Implement Cluster Bootstrap for various replications 

B<-seedreps[,2] 

the.seed <- seedreps[,1] 

results.mat <-NULL 

 

for (m in 1:202){ 

   

  set.seed(the.seed[m]) 

  num_reps <- B[m] 

   

  ICC.mat <- NULL 

  convergence.mat <- NULL 

  for (k in 1:num_reps){ 
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    level2.sample <- sample(mydata$Target, length(unique(mydata$Target)), replace=T) 

     

     

    resample.mat <- NULL 

    for (i in 1:length(level2.sample)){ 

      subsample <- mydata[which(mydata$Target == level2.sample[i]),]  

      resample.mat <- rbind(resample.mat, subsample) 

    } 

     

     

    final.target <- NULL 

    New.Target <- NULL 

    for (j in 1:length(level2.sample)){ 

      subsample <- mydata[which(mydata$Target == level2.sample[j]),] 

      New.Target <- rep(paste("T",j, sep=""), times = nrow(subsample)) 

      final.target <- c(final.target,New.Target) 

    } 

     

    final.resample.mat <- cbind(resample.mat, final.target) 

     

     

    model <- glmer(Rating ~ 1 + (1 | final.target), data = final.resample.mat, family = 

binomial("logit")) 

    var.comp <- as.data.frame(VarCorr(model)) 

    sigma2.t <- var.comp$vcov 

    ICC <- sigma2.t/(sigma2.t + pi^2/3) 

    ICC.mat <- rbind(ICC.mat, ICC) 

     

     

    convergence <- any(grepl("failed to converge", 

model@optinfo$conv$lme4$messages)) 

    convergence.mat <- rbind(convergence.mat, convergence) 

  } 

  data2 <- cbind(ICC.mat, convergence.mat) 

  colnames(data2) <- c("ICC", "Convergence") 

  data2 <- as.data.frame(data2) 

  data3 <- data2[which(data2$Convergence==0),] 

   

  boot.mean <- mean(data3$ICC) 

   

   

   

  model2 <- glmer(Rating ~ 1 + (1 | Target), data = mydata, family = binomial("logit")) 

  var.comp <- as.data.frame(VarCorr(model2)) 

  sigma2.t <- var.comp$vcov 

  ICC.original <- sigma2.t/(sigma2.t + pi^2/3) 
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  bias <- boot.mean - ICC.original 

  final.B <- nrow(data3) 

  hist(ICC.mat, main=paste("Laplace Approximation Using B=",num_reps, 

"Replications")) 

   

   

  conv.rate <- 1-sum(data2$Convergence)/length(data2$Convergence) 

   

  prev.results <- c(the.seed[m], num_reps, bias, final.B, conv.rate) 

  results.mat <- rbind(results.mat, prev.results) 

} 

 

#  Chapter 4 Adaptive GH Approximation 

#  Load Data 

setwd("C:/Users/pompe/Documents/Dissertation/Chapter 4 R Documents") 

mydata <- read.table("Lipsits, Laird, and Brennan 1994 data.csv", header=T, sep=",") 

 

#  Implement Cluster Bootstrap for various replications 

B<-seq(100, 20000, by=100) 

B <- append(B, c(100000,1000000)) 

 

 

results.mat <-NULL 

for (m in 1:202){ 

  the.seed <- m+1214202010 

  set.seed(the.seed) 

  num_reps <- B[m] 

   

  ICC.mat <- NULL 

  convergence.mat <- NULL 

  for (k in 1:num_reps){ 

     

    level2.sample <- sample(mydata$Target, length(unique(mydata$Target)), replace=T) 

     

     

    resample.mat <- NULL 

    for (i in 1:length(level2.sample)){ 

      subsample <- mydata[which(mydata$Target == level2.sample[i]),] #  subsetting 

original data to focus 

      resample.mat <- rbind(resample.mat, subsample) 

    } 

     

    

    final.target <- NULL 

    New.Target <- NULL 

    for (j in 1:length(level2.sample)){ 
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      subsample <- mydata[which(mydata$Target == level2.sample[j]),] 

      New.Target <- rep(paste("T",j, sep=""), times = nrow(subsample)) 

      final.target <- c(final.target,New.Target) 

    } 

     

    final.resample.mat <- cbind(resample.mat, final.target) 

     

     

    model <- glmer(Rating ~ 1 + (1 | final.target), data = final.resample.mat, family = 

binomial("logit"), nAGQ=25) 

    var.comp <- as.data.frame(VarCorr(model)) 

    sigma2.t <- var.comp$vcov 

    ICC <- sigma2.t/(sigma2.t + pi^2/3) 

    ICC.mat <- rbind(ICC.mat, ICC) 

     

     

    convergence <- any(grepl("failed to converge", 

model@optinfo$conv$lme4$messages)) 

    convergence.mat <- rbind(convergence.mat, convergence) 

  } 

    data2 <- cbind(ICC.mat, convergence.mat) 

  colnames(data2) <- c("ICC", "Convergence") 

  data2 <- as.data.frame(data2) 

  data3 <- data2[which(data2$Convergence==0),] 

 

  boot.mean <- mean(data3$ICC) 

   

   

   

  model2 <- glmer(Rating ~ 1 + (1 | Target), data = mydata, family = binomial("logit"), 

nAGQ=25) 

  var.comp <- as.data.frame(VarCorr(model2)) 

  sigma2.t <- var.comp$vcov 

  ICC.original <- sigma2.t/(sigma2.t + pi^2/3) 

   

   

  bias <- boot.mean - ICC.original 

  final.B <- nrow(data3) 

  hist(ICC.mat, main=paste("AGH Approximation Using B=",num_reps, "Replications")) 

   

   

  conv.rate <- 1-sum(data2$Convergence)/length(data2$Convergence) 

   

  prev.results <- c(the.seed, num_reps, bias, final.B, conv.rate) 

  results.mat <- rbind(results.mat, prev.results) 

} 
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