University of South Carolina Scholar Commons

Theses and Dissertations

Spring 2021

Widely Digitally Stable Numbers and Irreducibility Criteria For Polynomials With Prime Values

Jacob Juillerat

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Juillerat, J.(2021). *Widely Digitally Stable Numbers and Irreducibility Criteria For Polynomials With Prime Values.* (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/6321

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact digres@mailbox.sc.edu.

WIDELY DIGITALLY STABLE NUMBERS AND IRREDUCIBILITY CRITERIA FOR POLYNOMIALS WITH PRIME VALUES

by

Jacob Juillerat

Bachelor of Arts Lake Forest College, 2016

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Mathematics

College of Arts and Sciences

University of South Carolina

2021

Accepted by:

Michael Filaseta, Major Professor

Matthew Boylan, Committee Member

Frank Thorne, Committee Member

Ognian Trifonov, Committee Member

Hans-Conrad zur Loye, Committee Member

Tracey L. Weldon, Interim Vice Provost and Dean of the Graduate School

© Copyright by Jacob Juillerat, 2021 All Rights Reserved.

DEDICATION

For the friends, family, teachers, and mentors that always believed in me, but especially to my wife, Christian, for being by my side every step of the way.

ACKNOWLEDGMENTS

Getting to this point has been filled with trials and tribulations, and it is because of the tremendous help, support, and encouragement from many people that I have made it this far. First, I would like to thank my advisor, Michael Filaseta, for agreeing to work with me and offering guidance in the various research projects appearing in this dissertation. I would also like to thank Sean Yee for helping me grow into the teacher I am today. Additionally, I'd like to thank my committee members for being very flexible and for showing an interest in my development as a graduate student.

Next I owe thanks to Joseph C Foster and Jeremiah Southwick. It is because of our study sessions that I was able to pass my qualifying and comprehensive exams. As we haphazardly stumbled into what felt like was not our project, we continued to encourage one another until we had a well-written article that we could finally call our first project together. In all our research together, they were invaluable as honest, enthusiastic friends that I was privileged to share the struggles and successes of research with. I am very honored to call them my academic brothers.

I would also like to thank my family, especially my wife. Christian, I am so grateful that we are journeying through life together and glad we've been able to go through this experience together. I am blessed to be married to a woman as bright, tender, and amazing as you.

Finally, I thank God for the gifts and talents that have enabled me to pursue my degree. I could have never made it this far without His helping hand. He continues to surprise me as He orchestrates my life and things come together in ways I could never have imagined.

Abstract

This dissertation considers three different topics. In the first part of the dissertation, we show for an integer b > 2 that if a polynomial f(x) with non-negative integer coefficients is such that f(b) is prime, then there are explicit bounds $M_1(b)$, $M_2(b)$, and $M_3(b)$ such that if the coefficients of f(x) are each $\leq M_1(b)$, then f(x) is irreducible; if the coefficients of f(x) are each $\leq M_2(b)$ and f(x) is reducible, then it is divisible by the shifted cyclotomic polynomial $\Phi_3(x-b)$ for $3 \leq b \leq 5$, and divisible by $\Phi_4(x-b)$ for b > 5; and if the coefficients of f(x) are each $\leq M_3(b)$ and f(x) is reducible, then it is divisible by at least one of $\Phi_3(x-b)$ and $\Phi_4(x-b)$. Furthermore, if b > 69 and the coefficients of f(x) are each $\leq M_4(b)$, then f(x) is either irreducible or divisible by at least one of $\Phi_3(x-b)$, $\Phi_4(x-b)$, and $\Phi_6(x-b)$.

In the second part of the dissertation, we show that there are only finitely many values of t such that the truncated binomial polynomial of degree 6,

$$q_{6,t}(x) = \sum_{j=0}^{6} \binom{t}{j} x^j.$$

has Galois group $PGL_2(5)$, a transitive subgroup of S_6 isomorphic to S_5 . When the Galois group of the truncated binomial of degree 6 is not $PGL_2(5)$, it has been shown to be S_6 . Additionally, we show that the truncated binomial of degree 6 is irreducible for all values of t.

In the third part of the dissertation, we show that there are infinitely many composite numbers, N, with the property that inserting a digit between any two digits in base 10 of N, including between any two of the infinitely many leading zeros and to the right of N, always results in a composite number. We show that the same result holds for bases $b \in \{2, 3, \dots, 8, 9, 11, 31\}$.

TABLE OF CONTENTS

DEDICATION	iii
Acknowledgments	iv
Abstract	v
LIST OF TABLES	ix
Chapter 1 Introduction	1
1.1 Irreducibility criteria for polynomials with prime values \ldots \ldots \ldots	1
1.2 Results pertaining to the truncated binomial polynomials	5
1.3 Results pertaining to widely digitally stable composite numbers \ldots	7
1.4 Other Results	12
CHAPTER 2 IRREDUCIBILITY CRITERIA FOR POLYNOMIALS WITH PRIME VALUES	16
2.1 Root Bounding Function	16
2.2 A First Bound on the Coefficients	22
2.3 Bounds Based on Recurrence Relations	25
2.4 Inequalities on the bounds	31
Chapter 3 Truncated Binomial Polynomials	41
3.1 Preliminaries	41

3.2	Irreducibility of $p_{6,t}(x)$	43						
3.3	The Galois group of $p_{6,t}(x)$	50						
Chapt	er 4 Widely Digitally Stable Composite Numbers	55						
4.1	Preliminaries							
4.2	Inserting a digit into the leading zeros							
4.3	Inserting a digit into the leading sevens							
4.4	4.4 The right-most digits							
4.5	Related topics and open problems	76						
Biblio	GRAPHY	79						
Append	DIX A COVERINGS FOR INSERTING A DIGIT IN THE LEADING SEV- ENS IN BASE 10	83						
Append	dix B Coverings for bases other than $10 \ldots \ldots \ldots$	115						
B.1	Covering systems for $b = 2$	118						
B.2	Covering systems for $b = 3$	121						
B.3	Covering systems for $b = 4$	123						
B.4	Covering systems for $b = 5$	124						
B.5	Covering systems for $b = 6$	126						
B.6	Covering systems for $b = 7$	145						
B.7	Covering systems for $b = 8$	146						
B.8	Covering systems for $b = 9$	153						
B.9	Covering systems for $b = 11$	155						

B.10 Covering systems for $b = 31$	157
Appendix C Resolvent polynomial $Q(x, t-3)$	197
Appendix D Magma and Maple Code	200
D.1 Magma code for finding integer solutions to $ax^5 - by^5 = 4$	200
D.2 Magma code for finding integer solutions to $ax^3 - by^3 = 6$	201
D.3 Magma code for finding integer solutions to $ax^2 - by^3 = 6$	202
D.4 Magma code for finding integer solutions to $ax^3 - by^2 = 6$	203
D.5 Maple code for constructing the resolvent polynomial $\ldots \ldots \ldots \ldots$	203
D.6 Magma code for finding prime divisors of $\Phi_n(b)$	207
D.7 Maple code for checking whether a system of congruences is a covering 2	208
D.8 Maple code for various checks on the coverings	209

LIST OF TABLES

Table 2.1	Numbers used in $\mathcal{F}_b(z)$ for b	18
Table 3.1	Solutions to $ax^5 - by^5 = 4$ corresponding to positive t	47
Table 3.2	Solutions to $ax^3 - by^3 = 6$ corresponding to positive $t \ldots \ldots$	48
Table 3.3	Solutions to $a_1x^2 - by^3 = 6$ and $ax^3 - b_1y^2 = 6$	50
Table 4.1	Covering used in Lemma 4.2 (i) for $x = 9$	60
Table 4.2	Covering used in Lemma 4.2 (i) for $x = 3$	62
Table 4.3	Covering used in Lemma 4.2 (i) for $x = 6$	63
Table 4.4	Covering used in Lemma 4.2 (i) for $x = 1$	63
Table 4.5	Partial/Full factorizations of $\Phi_n(10)$ for large n	64
Table 4.6	Covering used in Lemma 4.2 (i) for $x = 4$	66
Table 4.7	Reusable primes for inserting a digit in the leading sevens $\ . \ . \ .$	71
Table A.1	Partial/Full factorizations of $\Phi_n(10)$ for $d = 1 \dots \dots \dots \dots$	84
Table A.2	Covering used in Lemma 4.3 (i) for $d = 1$	85
Table A.3	Partial/Full factorizations of $\Phi_n(10)$ for $d = 3 \dots \dots \dots \dots$	93
Table A.4	Covering used in Lemma 4.3 (1) for $d = 3$	94
Table A.5	Partial/Full factorizations of $\Phi_n(10)$ for $d = 4$	96
Table A.6	Covering used in Lemma 4.3 (i) for $d = 4$	97
Table A.7	Partial/Full factorizations of $\Phi_n(10)$ for $d = 6 \dots \dots \dots \dots$	100

Table A.8 Covering used in Lemma 4.3 (i) for $d = 6$.01
Table A.9 Partial/Full factorizations of $\Phi_n(10)$ for $d = 9 \dots \dots$.07
Table A.10 Covering used in Lemma 4.3 (i) for $d = 9$.08
Table B.1 Covering for $x = 1$ in Base 2 $\dots \dots $.19
Table B.2 Covering for $d = 0$ in Base 2	.19
Table B.3 Covering for $d = 1$ in Base 2 $\ldots \ldots $.19
Table B.4 Covering for $x = 1$ in Base 3 $\dots \dots $.22
Table B.5 Covering for $d = 1$ in Base 3	.22
Table B.6 Covering for $x = 1$ in Base 4	.23
Table B.7 Covering for $x = 2$ in Base 4	.23
Table B.8 Covering for $d = 1$ in Base 4	.24
Table B.9 Covering for $d = 2$ in Base 4	.24
Table B.10 Covering for $x = 1$ in Base 5	.26
Table B.11 Covering for $d = 1$ in Base 5	.26
Table B.12 Covering for $x = 1$ in Base 6	.28
Table B.13 Covering for $x = 2$ in Base 6	.28
Table B.14 Covering for $x = 3$ in Base 6	.28
Table B.15 Covering for $x = 4$ in Base 6	.29
Table B.16 Covering for $d = 1$ in Base 6	.31
Table B.17 Partial/Full factorizations of $\Phi_n(6)$ for $d = 2$.34
Table B.18 Covering for $d = 2$ in Base 6	.35
Table B.19 Partial/Full factorizations of $\Phi_n(6)$ for $d = 3$ and $d = 4$	40

Table B.20 Covering for $d = 3$ in Base 6	141
Table B.21 Covering for $d = 4$ in Base 6	143
Table B.22 Covering for $x = 1$ in Base 7 $\ldots \ldots $	145
Table B.23 Covering for $d = 1$ in Base 7	146
Table B.24 Covering for $x = 1$ in Base 8 $\dots \dots $	147
Table B.25 Covering for $x = 2$ in Base 8 $\dots \dots $	147
Table B.26 Covering for $x = 4$ in Base 8 $\dots \dots $	148
Table B.27 Covering for $d = 1$ in Base 8	148
Table B.28 Covering for $d = 2$ in Base 8	149
Table B.29 Covering for $d = 4$ in Base 8	150
Table B.30 Covering for $d = 5$ in Base 8	152
Table B.31 Covering for $x = 1$ in Base 9	153
Table B.32 Covering for $x = 3$ in Base 9	153
Table B.33 Covering for $x = 5$ in Base 9	154
Table B.34 Covering for $d = 1$ in Base 9	154
Table B.35 Covering for $d = 3$ in Base 9	155
Table B.36 Covering for $d = 5$ in Base 9	155
Table B.37 Covering for $x = 1$ in Base 11	156
Table B.38 Covering for $x = 7$ in Base 11	156
Table B.39 Covering for $d = 1$ in Base 11	157
Table B.40 Covering for $d = 7$ in Base 11	157
Table B.41 Covering for $x = 1$ in Base 31	158
Table B.42 Covering for $x = 3$ in Base 31	158

Table B.43 Covering for $x = 9$ in Base 31	159
Table B.44 Partial/Full factorizations of $\Phi_n(31)$ for $x = 13$ and $x = 19$	160
Table B.45 Covering for $x = 13$ in Base 31	160
Table B.46 Covering for $x = 19$ in Base 31	163
Table B.47 Partial/Full factorizations of $\Phi_n(31)$ for $x = 27$	164
Table B.48 Covering for $x = 27$ in Base 31	165
Table B.49 Partial/Full factorizations of $\Phi_n(31)$ for $d = 1 \dots \dots \dots \dots$	167
Table B.50 Covering for $d = 1$ in Base 31	167
Table B.51 Partial/Full factorizations of $\Phi_n(31)$ for $d = 3 \dots \dots \dots \dots$	170
Table B.52 Covering for $d = 3$ in Base 31	171
Table B.53 Partial/Full factorizations of $\Phi_n(31)$ for $d = 9 \dots \dots \dots \dots$	175
Table B.54 Partial/Full factorizations of $\Phi_n(31)$ for $d = 13$	175
Table B.55 Covering for $d = 9$ in Base 31	176
Table B.56 Covering for $d = 13$ in Base 31	180
Table B.57 Partial/Full factorizations of $\Phi_n(31)$ for $d = 19 \dots \dots \dots \dots$	184
Table B.58 Covering for $d = 19$ in Base 31 \ldots \ldots \ldots \ldots \ldots \ldots	185
Table B.59 Partial/Full factorizations of $\Phi_n(31)$ for $d = 27$	189
Table B.60 Covering for $d = 27$ in Base 31	190

CHAPTER 1

INTRODUCTION

In this dissertation, we explore two main topics pertaining to number theory; polynomial irreducibility and digit insertions. This introduction is therefore split into three sections, two of which pertain to polynomial irreducibility and one on digit insertions. The proofs that follow in the dissertation are split into three chapters based on the first three sections in the introduction. A fourth section of the introduction lists several results which the author helped to establish.

1.1 IRREDUCIBILITY CRITERIA FOR POLYNOMIALS WITH PRIME VALUES

If $d_n d_{n-1} \dots d_1 d_0$ is the decimal representation of a prime, then a result of A. Cohn [28] asserts that

$$f(x) = d_n x^n + d_{n-1} x^{n-1} + \dots + d_1 x + d_0$$

is irreducible over the integers. If we generalize this setting and view f(x) as a polynomial with non-negative integer coefficients with f(10) prime, a few questions arise. Does the irreducibility of f(x) depend on the coefficients being less than 10? Can we find a degree n so that if f(x) has degree less than n, then f(x) is irreducible? Is the base 10 special, or do similar results hold when 10 is replaced by a different base $b \ge 2$?

Some answers to these questions can be found in the literature. The result of Cohn has been extended to all bases $b \ge 2$ by J. Brillhart, M. Filaseta, and A. Odlyzko in [2]. In [9], M. Filaseta extended this to base b representations of kp where k is a positive integer less than b and p is a prime, and M. R. Murty [30] has obtained an analog in function fields over finite fields. Furthermore, [2] allows the coefficients d_j in Cohn's theorem to satisfy $0 \le d_j \le 167$ rather than $0 \le d_j \le 9$; and later M. Filaseta [10] showed that the d_j need only satisfy $0 \le d_j \le 10^{30} d_n$, and further that simply $d_j \ge 0$ suffices if $n \le 31$.

Recent work by M. Filaseta and S. Gross [12] extended this last line of investigation even further. They showed that if f(x) is a polynomial with non-negative coefficients bounded above by

49598666989151226098104244512918

and f(10) is prime, then f(x) is irreducible over \mathbb{Z} . They also showed that if the coefficients are instead bounded above by

8592444743529135815769545955936773,

then f(x) is either irreducible over $\mathbb{Z}[x]$ or divisible by $x^2 - 20x + 101$. Furthermore, they showed that these values are sharp, in that they exhibited polynomials having non-negative integer coefficients with f(10) prime and maximum coefficient one more than each of these numbers where in each case the polynomial factors in $\mathbb{Z}[x]$ and in the latter case is divisible by $x^2 - 19x + 91$.

In [4], M. Cole, S. Dunn, and M. Filaseta extended these results and exhibited bounds $M_1(b)$ such that if the coefficients of f(x) are bounded above by $M_1(b)$ and f(b) is prime for an integer $b \in [2, 20]$, then f(x) is irreducible in $\mathbb{Z}[x]$. They also found bounds $M_2(b)$ such that if the coefficients of f(x) are bounded above by $M_2(b)$ and f(b) is prime for $3 \leq b \leq 5$, then f(x) is either irreducible or divisible by $\Phi_3(x-b)$, where $\Phi_n(x)$ is the n^{th} cyclotomic polynomial. Similarly, if $6 \leq b \leq 20$, and the coefficients of f(x) are bounded above by $M_2(b)$, then f(x) is either irreducible or divisible by $\Phi_4(x-b)$. Furthermore, they established that the upper bounds $M_1(b)$ are sharp for $3 \leq b \leq 20$, and that the upper bounds $M_2(b)$ are sharp for $4 \leq b \leq 20$. Our main goal for this portion of the dissertation is to extend the results in [4] to all integers $b \ge 2$. We rely heavily on the basic techniques established in both [12] and [4], though some care is needed to handle the generality to all $b \ge 2$. We establish the following due to M. Filaseta, J. Foster, J. Southwick, and the author.

Theorem 1.1. Let $b \in \mathbb{Z}$ with b > 2. Let f(x) be a polynomial with non-negative integer coefficients and f(b) prime. Let $\Phi_n(x)$ be the n^{th} cyclotomic polynomial and define $D = D_b = \left| \frac{\pi}{\arctan(1/b)} \right|$. Then the following hold.

• For b > 5, define $M_1(b) = max(M_1^{(1)}(b), M_1^{(2)}(b))$ where

$$M_1^{(1)}(b) = \left(\sum_{0 \le k \le \frac{D}{2}} {D \choose 2k+1} b^{D-2k-1} (-1)^k \right) (b^2 - 2b + 2)$$

and

$$M_1^{(2)}(b) = \left(\sum_{0 \le k \le \frac{D-1}{2}} {D-1 \choose 2k+1} b^{D-2k-2} (-1)^k \right) (b^2 - 2b + 2).$$

If each coefficient of f(x) is less than or equal to $M_1(b)$, then f(x) is irreducible.

- There exists a similarly explicit bound, M₂(b), such that if the coefficients of f(x) are less than or equal to M₂(b) and f(x) is reducible, then f(x) is divisible by Φ₃(x − b) if 3 ≤ b ≤ 5, and divisible by Φ₄(x − b) if b > 5.
- For b > 2, there exists a similarly explicit bound, M₃(b), such that if the coefficients of f(x) are less than or equal to M₃(b) and f(x) is reducible, then f(x) is divisible by at least one of Φ₃(x b) and Φ₄(x b).
- For b > 69, there exists an explicit bound, M₄(b), such that if the coefficients of f(x) are less than or equal to M₄(b) and f(x) is reducible, then f(x) is divisible by at least one of Φ₃(x − b), Φ₄(x − b), and Φ₆(x − b).

Expressions for $M_1(b)$, $M_2(b)$, $M_3(b)$, and $M_4(b)$ are given in Chapter 2. Whereas M. Cole, S. Dunn, and M. Filaseta were able to show for a fixed $b \in [4, 20] \cap \mathbb{Z}$ that the given upper bounds are sharp, we were not able to do so for general $b \ge 2$. However, the bounds in Theorem 1.1 agree with the prior sharp bounds obtained for $4 \le b \le 20$, and we conjecture the bounds $M_1(b)$, $M_2(b)$, and $M_3(b)$ in Theorem 1.1 are sharp for all $b \ge 4$. Furthermore, the values $M_1(b)$, $M_2(b)$, and $M_3(b)$ are sharp in another way: For $n \in \{3, 4, 6\}$, if $\Phi_n(x - b)$ is a factor of f(x) and f(x) has nonnegative coefficients (and where we no longer require that f(b) is prime), then the largest coefficient must be at least as large as $M_1(b)$, $M_2(b)$, or $M_3(b)$, respectively, and there is a polynomial that achieves this bound.

The proof of Theorem 1.1 is discussed in Chapter 2, noting that some of the details that are omitted are made explicit in Joseph C Foster's dissertation. The proof relies heavily on the techniques established in [12] and [4]. Throughout Chapter 2, irreducibility will refer to irreducibility in $\mathbb{Z}[x]$.

On the degree side of the questions, S. Gross and M. Filaseta [12] showed that for f(x) a polynomial with non-negative coefficients with f(10) prime, if the degree of f(x) is less than or equal to 31, then f(x) is irreducible. They also showed that if the degree of f(x) is instead less than or equal to 34, then f(x) is reducible only in the case that $\Phi_4(x - 10) = x^2 - 20x + 101$ divides f(x). They further showed that if 34 is instead replaced by 36, then f(x) is reducible only if it is divisible by one of $\Phi_3(x - 10)$ and $\Phi_4(x - 10)$.

Continuing to explore the degree of f(x), M. Cole, S. Dunn, and M. Filaseta [4] showed that for f(x) a polynomial with non-negative coefficients such that f(b) is prime for $2 \le b \le 20$, there are sharp bounds D(b), $D_1(b)$, and $D_2(b)$ on the degree of f(x) such that if f(x) has degree less than or equal to D(b), then f(x) is irreducible; if f(x) has degree less than or equal to $D_1(b)$, then f(x) is only reducible if it is divisible by $\Phi_4(x-b)$; while if f(x) has degree less than or equal to $D_2(b)$, then f(x)must be divisible by $\Phi_3(x-b)$ or $\Phi_4(x-b)$. We state here an extension of the results in [4] due to M. Filaseta, J. Foster, J. Southwick, and the author for $b \ge 5$ that integrates a similar divisibility condition with $\Phi_6(x-b)$ that is joint work with .

Theorem 1.2. Fix an integer $b \ge 5$, and for $n \in \{3, 4, 6\}$ set

$$D_n = D_n(b) = \left\lfloor \frac{\pi}{\arg(b + \zeta_n)} \right\rfloor \qquad and \qquad D = D(b) = \left\lfloor \frac{\pi}{\arctan\left(\frac{1732}{1000(2b+1)}\right)} \right\rfloor$$

Let $f(x) \in Z[x]$ with non-negative coefficients and with f(b) prime. If the degree of f(x) is $\leq D_4$, then f(x) is irreducible. Additionally, if the degree of f(x) is $\leq D_3$ and f(x) is reducible, then f(x) is divisible by $\Phi_4(x-b)$ and not divisible by $\Phi_3(x-b)$ or $\Phi_6(x-b)$. Furthermore, in the case that $b \geq 27$, if the degree of f(x) is $\leq D_6$ and f(x) is reducible, then f(x) is divisible by either $\Phi_4(x-b)$ or $\Phi_3(x-b)$ and not by $\Phi_6(x-b)$. Lastly, in the case that $b \geq 27$, if the degree of f(x) is $\leq D$ and f(x) is reducible, then f(x) is divisible by $\Phi_3(x-b)$, $\Phi_4(x-b)$, or $\Phi_6(x-b)$.

The proof of Theorem 1.2 is discussed further in Jeremiah Southwick's dissertation [36].

1.2 Results pertaining to the truncated binomial polynomials

In 2018, M. Filaseta and R. Moy [16] studied the Galois group of a truncated binomial expansion. They start by defining for t and r non-negative integers, the polynomial

$$p_{r,t}(x) = \sum_{j=0}^{r} \binom{t+j}{j} x^j.$$

This polynomial arises from a normalization of the t^{th} derivative of $1 + x + \cdots + x^{t+r}$ and has been conjectured to be irreducible for all values of r and t. In [1], the polynomial is shown to be irreducible for t sufficiently large when r is fixed. The polynomial is considered in a different form in [15] where M. Filaseta, A. Kumchev, and D. Pasechnik study a truncated binomial expansion of $(x+1)^n$, that is

$$q_{r,n}(x) = \sum_{j=0}^{r} \binom{n}{j} x^j \quad \text{for } r < n.$$

In [1] and [15], identities involving $p_{r,t}(x)$ and $q_{r,n}(x)$ are established. If we define

$$\widetilde{p}_{r,t}(x) = x^r p_{r,t}(1/x) = \sum_{j=0}^r \binom{t+j}{j} x^{r-j},$$

then according to [1] we have

$$\widetilde{p}_{r,t}(x+1) = \sum_{j=0}^{r} \binom{t+r+1}{j} x^{r-j}.$$

They show that these polynomials are related to a truncated binomial expansion via $\tilde{p}_{r,t}(x+1) = x^r q_{r,t+r+1}(1/x).$

The irreducibility over \mathbb{Q} of one of $p_{r,t}(x)$, $\tilde{p}_{6,t}(x)$, $\tilde{p}_{6,t}(x+1)$, and $q_{r,t+r+1}(x-1)$ implies the irreducibility of the other three. Also, since the roots for each all generate the same number field, we have that the Galois groups over \mathbb{Q} associated with these polynomials are all the same.

In [16], M. Filaseta and R. Moy show that the Galois group over \mathbb{Q} of most of these polynomials are the symmetric group. In particular, they show that for the tvalues that make $p_{r,t}(x)$ irreducible, $p_{r,t}(x)$ has Galois group S_r for each r a positive integer not equal to 6. For r = 6, they show that there are at most $O(\log T)$ values of $t \leq T$ for which the Galois group of $p_{6,t}(x)$ is not S_6 and is instead $PGL_2(5)$, a transitive subgroup of S_6 isomorphic to S_5 . Notice that the set of values for t such that $p_{6,t}(x)$ has Galois group $PGL_2(5)$ is not necessarily finite. They are able to give an explicit example of a polynomial having Galois group $PGL_2(5)$, namely $q_{6,10}(x)$.

In Chapter 3, we show, based on ideas of Jeremy Rouse (private communications), that the following theorem holds.

Theorem 1.3. There are at most finitely many values for t such that $p_{6,t}(x)$ has Galois group $PGL_2(5)$ over \mathbb{Q} .

Notice that this is an improvement over the result found in [16] for r = 6. For any progress in determining explicitly the finitely many values of t indicated in Theorem 1.3, we would need to know when $p_{6,t}(x)$ is irreducible. In Section 3.2, following ideas of [1] and [15], we show that the polynomial $p_{6,t}(x)$ is irreducible for all values of t using Newton polygons to create Thue equations and elliptic curves whose integer solutions are values of t where $\tilde{p}_{6,t}(x)$ or $\tilde{p}_{6,t}(x+1)$ could potentially factor. As there are a finite number of equations to solve, each with a finite number of integer solutions, we reduce showing the irreducibility of $p_{6,t}(x)$ for all t, to showing the irreducibility of $p_{6,t}(x)$ for a finite list of t values.

Section 3.3 uses the irreducibility of $p_{6,t}(x)$ to prove Theorem 1.3. This is achieved by creating the resolvent polynomial, a polynomial that holds information about the Galois group over \mathbb{Q} of a given polynomial. The resolvent polynomial is created using elementary symmetric polynomials and an extension of the elementary symmetric polynomials. Appendix C exhibits the resolvent polynomial. Observing that the resolvent polynomial has genus 7, we use Siegel's Theorem to see that their are finitely many integer roots of the resolvent polynomial. Each integer root corresponds to a tvalue for which the Galois group of $p_{6,t}(x)$ is $PGL_2(5)$, thus proving Theorem 1.3.

1.3 Results pertaining to widely digitally stable composite numbers

In 1979, P. Erdős [8], answering a problem posed by M. S. Klamkin [24], showed that there are infinitely many prime numbers N, with the property that you can change any digit in the base 10 representation of N, and the resulting number will be composite. The first such prime, called a *digitally delicate* prime in [23], is 294001. Later, T. Tao [38] showed a positive proportion of the primes are digitally delicate; and J. Hopper and P. Pollack [23] resolved a question of Tao's allowing for an arbitrary but fixed number of digit changes to the beginning and end of the prime. As Konyagin [25] (also see [14]) has pointed out, the methods of the others above imply that a positive proportion of composite numbers N, coprime to 10, satisfy the property that if any digit in the base 10 representation of N is changed, then the resulting number remains composite. For example, the number N = 212159 satisfies this property. That is, every number in the set

 $\{d12159, 2d2159, 21d159, 212d59, 2121d9, 21215d : d \in \{0, 1, 2, \dots, 9\}\}$

is composite. Note that if we remove the requirement that N be coprime to 10, then the results are less intriguing. For example, for m a positive integer, the number

$$N = (11 \cdot 13 \cdot 17 \cdot 19 \cdot 10)m + 15$$

is composite and remains composite when replacing any digit with $d \in \{0, 1, ..., 9\}$. This can be easily seen since changing any digit besides the right-most digit will result in a number divisible by 5. A similar conclusion can be obtained by looking at the number

$$N = (11 \cdot 13 \cdot 17 \cdot 19 \cdot 10)m + 12.$$

When starting with a composite number N, M. Filaseta, M. Kozek, C. Nicol, and J. Selfridge [14] noted that you can get an existence result for inserting a digit instead of replacing a digit. In other words, they showed that there are infinitely many composite numbers N, coprime to 10, with the property that if you insert any digit into the base 10 representation of N, then the resulting number remains composite. The first composite number with this property is N = 25011; that is, each number in the set

 $\{d25011, 2d5011, 25d011, 250d11, 2501d1, 25011d : d \in \{0, 1, 2, \dots, 9\}\}$

is composite. We call such numbers *digitally stable* composite numbers. A similar result is not currently known to hold for prime numbers N.

In 2020, M. Filaseta and J. Southwick [17] showed that a positive proportion of the primes N, are such that you can replace any digit in the base 10 representation of N, including one of the infinitely many leading zeros, and the resulting number will be composite. They called such numbers widely digitally delicate primes. Notice that the first digitally delicate prime, 294001, is not widely digitally delicate since 10294001 is prime. In fact, even though a positive proportion of the primes are widely digitally delicate, no specific examples of widely digitally delicate primes are known.

In this dissertation, we also consider the leading zeros, but in the case of composite numbers N.

Definition 1.4. A widely digitally stable composite number is a composite number, coprime to 10, that remains composite when any digit is inserted in the decimal expansion of N, including between two of the infinitely many leading zeros of N and to the right of the units digit of N.

In Chapter 4, we focus on widely digitally stable composite numbers in base 10. We establish the following theorem [26] due to M. Filastea, J. Southwick, and the author.

Theorem 1.5. There are infinitely many widely digitally stable composite numbers.

Providing an explicit example of a widely digitally stable composite number does not appear to be easy. For example, the smallest digitally stable composite number 25011 is not a widely digitally stable composite number as inserting a one to the right of the third leading zero results in the prime number 10025011. The proof of Theorem 1.5 is nevertheless constructive, so in theory one can construct such a number from our proof. Furthermore, we emphasize that unlike the prior results which give that a positive proportion of the primes or numbers satisfy a certain property, we do not know if a positive proportion of the composite numbers are widely digitally stable. In Section 4.1, we start with a number N defined to have a string of leading sevens. We then break the argument up into three cases: inserting a digit into the leading zeros, inserting a digit into the leading sevens, and inserting a digit into the right most digits of N. For the first two cases, we exhibit specific covering systems in a manner similar to [14] to show that for sufficiently large composite numbers Nsatisfying certain congruences, inserting a digit into the leading sevens or zeros results in a number divisible by at least one prime in a finite set \mathcal{P} . Section 4.2 looks at the coverings used for inserting a digit in the leading zeros, while Section 4.3 and Appendix A looks at the coverings used for inserting a digit in the right-most digits of N results in a composite number by observing that their are a fixed number of insertions, we guarantee that each insertion results in a composite number. Theorem 1.5 then follows.

Because our argument depends on exhibiting particular covering systems which allow for inserting a digit in base 10, our proof does not generalize directly to other bases. However, the rest of our argument only depends on the existence of such a covering system, so to prove the statement analogous to Theorem 1.5 for a given base b it suffices to exhibit enough coverings to take care of each digit insertion. We have found such covering systems for bases $b \in \{2, 3, ..., 11\}$, which are listed in Appendix B. As b gets larger, the coverings become harder to establish. We also looked at the base b = 31 since finding a covering is simplified in the case that b - 1has distinct small prime factors. That is, we use the primes 2, 3, and 5 in such a way that we only need 16 coverings instead of the initial 62 coverings. Constructing the composite number N to have a string of leading sevens, we are able to utilize the prime 7 to reduce this count to only 12 coverings. We were able to show that their are infinitely many widely digitally stable composite numbers in base 31, and the details for that argument can be found in Appendix B as well. We emphasize again though that we do not know whether a result similar to Theorem 1.5 holds for an arbitrary base.

The corresponding case of b = 2 in Theorem 1.5 has received prior attention in the literature in a different form. Examples of widely digitally stable composite numbers can be obtained by looking through a list of Sierpiński numbers. A Sierpiński number is a number n such that $n \cdot 2^k + 1$ is composite for all non-negative integers k.

The notion of a Sierpiński number relates to the notion of a widely digitally stable composite number in the following way: Let $n \in \mathbb{Z}^+$. One can show, as was shown for Riesel numbers in Lemma 4 of [11], that if there is a finite set of primes \mathcal{P} such that for all sufficiently large k, some prime $p \in \mathcal{P}$ divides $n \cdot 2^k + 1$, then for all k in \mathbb{Z} , the number $n + 2^k$ is divisible by some prime $p \in \mathcal{P}$.

When looking at the base 2 representation of each Sierpiński number, we know that inserting a one (or zero) into the leading zeros results in a composite number. To find an example of a widely digitally stable composite number in base 2, we found composite Sierpiński numbers, N, that remain composite when inserting a zero or one between any two digits of N and to the right of N. Since we know that inserting a digit in the leading zeros results in a composite number, each Sierpiński number only has a finite number of insertions to check.

We note that the number

$6135559 = (10111011001111100000111)_2$

is an example of a number N in base 2 which remains composite when any binary digit 0 or 1 is inserted in the number including between two of the infinitely many leading binary zeros of N and to the right of the units digit of N. We searched the numbers listed through [35] for digitally stable composite numbers and found 6135559. It is widely digitally stable since 6135559 is digitally stable and has been proven to be a Sierpiński number with covering set

$$\mathcal{P} = \{3, 5, 7, 13, 17, 241\},\$$

so that the numbers $6135559 + 2^k$ are also composite for all non-negative integers k since any base 2 digit insertion in 6135559 results in a number larger than 241. This provides an explicit example of a widely digitally stable number in base 2. Other examples in base 2 include the base 2 representations of the base 10 numbers 7134623, 8629967, 9454129, 16010419, 16907749, 34158143, and 34629797.

There are a number of interesting open questions related to Theorem 1.5 that can be asked, which we address in Section 4.5. One such open question merges the idea of inserting a digit with that of replacing a digit of N.

1.4 Other Results

We now proceed to other results due to the author whose details do not appear elsewhere in this dissertation. In [13], M. Filaseta and the author use methods similar to those used for Theorem 1.5 to prove the following theorem.

Theorem 1.6. For any positive integer k, there exist k consecutive primes all of which are widely digitally delicate.

The proof of Theorem 1.6 considers increasing and decreasing a digit in the $k + 1^{\text{st}}$ digit by x of a number N, denoted $N \pm x \cdot 10^k$. For each digit change, we construct a covering of the integers in a similar manner to that of Chapter 4, where the congruences in the coverings each correspond to a congruence condition on N that guarantees that the corresponding digit change results in a composite number. Many of the coverings used in the proof of Theorem 1.6 are the same as the coverings found in Chapter 4 and Appendix B.

The resulting numbers N that satisfy the congruence conditions can be written as N = Bx + A for fixed positive integers A and B with gcd(A, B) = 1. That is, every number in the arithmetic progression $N \equiv A \pmod{B}$ is such that changing any digit, including any one of the infinitely many leading zeros, results in a composite number. Since gcd(A, B) = 1, we know that there are infinitely many prime numbers in this arithmetic progression. D. Shiu [33] showed that in any arithmetic progression containing infinitely many primes, that is, Bx + A with gcd(A, B) = 1 and B >0, there are arbitrarily long sequences of consecutive primes. Thus, we establish through covering systems that such an arithmetic progression exists where every prime in the arithmetic progression is widely digitally delicate, and then D. Shiu's result immediately applies to finish the proof of Theorem 1.6.

We can also use the work done in [13] to prove the following theorem related to widely digitally stable composite numbers.

Theorem 1.7. A positive proportion of the composite numbers coprime to 10 remain composite when we replace any digit in the decimal expansion, including any of the infinitely many leading zeros.

In [13], we showed that there are relatively prime positive integers A and B with gcd(10, B) = 1 such that if N is a positive integer for which $N \equiv A \pmod{B}$, then every digit change in N, including any one of the infinitely many leading zeros of N, results in a composite number. Taking D to be any positive integer and K to be the number of digits of D, then almost all numbers $N \equiv A \pmod{B}$ and $N \equiv D \pmod{10^K}$ are composite. Thus, we are able to deduce that there is a positive density of positive composite integers N ending with the digits in D and satisfying the property that they remain composite after changing any single digit of N, including any one of its infinitely many leading zeros. That is, if we let $S_{w,D}(x)$ be the number of composite numbers up to x ending with the digits in D that remain composite when any single digit, including any of its infinitely many leading zeros, is changed, and let $S_D(x)$ be the number of composite number of composite numbers of zeros.

the digits in D, then

$$\liminf_{x \to \infty} \frac{S_{w,D}(x)}{S_D(x)} \ge \frac{1}{B} > 0.$$

Theorem 1.7 follows by taking D to be coprime to 10.

Another result due to the author utilizes Newton polygons. In [19], J. Foster, J. Southwick, and the author use Newton polygons to establish that a certain family of polynomials is irreducible. The work stems from [20], in which Heim, Luca, and Neuhauser study the functions

$$\exp\left(x\sum_{n\geq 1}g(n)\frac{q^n}{n}\right) = \sum_{n\geq 0}P_n^g(x)q^n,$$

where $q = e^{2\pi i \tau}$ with τ in the upper complex half-plane and $g : \mathbb{N} \to \mathbb{N}$ is an arithmetic function normalised such that g(1) = 1. Under these conditions, the polynomials $P_n^g(x)$ can be shown to satisfy the recursive relation

$$P_n^g(x) = \frac{x}{n} \sum_{k=1}^n g(k) P_{n-k}^g(x)$$

for all $n \ge 1$ with $P_0^g(x) = 1$. In the case that $g(n) = \sigma(n) = \sum_{d|n} d$, the roots of the polynomials $P_n^{\sigma}(x)$ dictate the vanishing properties of the *n*-th Fourier coefficients of powers of the Dedekind eta function (see, for example, [22], [27]).

Using the fact that $n \leq \sigma(n) \leq n^2$, Heim, Luca and Neuhauser consider the family of polynomials $P_n^g(x)$ where g(n) = n and $g(n) = n^2$. When g(n) = n, the recursive formula for $P_n^g(x)$ gives the closed form

$$P_n^g(x) = x \sum_{k=0}^{n-1} \binom{n-1}{k} \frac{x^k}{(k+1)!}.$$

Using a result of Schur [31], they show that for g(n) = n the polynomial $P_n^g(x)$ is x times an irreducible polynomial (over \mathbb{Q}).

Schur's result does not apply for $g(n) = n^2$, in which case Heim, Luca, and Neuhauser show that $P_n^g(x) = x \tilde{P}_n(x)$ where

$$\widetilde{P}_n(x) = \sum_{j=0}^{n-1} \frac{1}{(j+1)!} \binom{n+j}{2j+1} x^j.$$

They establish that $\tilde{P}_n(x)$ is Eisenstein when n-1 is prime, and hence, in this case, $\tilde{P}_n(x)$ is irreducible. By constructing the Newton polygons with respect to primes that divide n-1, J. Foster, J. Southwick, and the author establish the following theorem.

Theorem 1.8. The polynomials $\tilde{P}_n(x)$ are irreducible over \mathbb{Q} for all integers $n \geq 2$.

Using methods similar to those established by Heim and Neuhauser in [21], J. Foster and J. Southwick have generalized Theorem 1.8 to hold when $g(n) = n^k$ for $k \in \mathbb{Z}^+$.

Chapter 2

IRREDUCIBILITY CRITERIA FOR POLYNOMIALS WITH PRIME VALUES

2.1 ROOT BOUNDING FUNCTION

The following lemma can be found in [10, Lemma 1] and is meant to motivate the steps we take.

Lemma 2.1. Fix an integer $b \ge 2$. Let f(x) be a polynomial with non-negative integer coefficients such that f(b) is prime. If f(x) is reducible, then f(x) has a non-real root in the disc $\mathfrak{D}_b = \{z \in \mathbb{C} : |b - z| \le 1\}.$

Proof. Assume that f(x) is reducible. Then f(x) = g(x)h(x) where g(x) and h(x) are in $\mathbb{Z}[x]$, have positive leading coefficients, and are not identically ± 1 . Since f(b) is prime, we may take, without loss of generality, $g(b) = \pm 1$ and $h(b) = \pm p$. Let c be the leading coefficient of g(x), and denote its roots including multiplicity β_1, \ldots, β_m . Thus, the degree of g(x) is m and we have

$$1 = |g(b)| = |c| \prod_{j=1}^{m} |b - \beta_j| \ge \prod_{j=1}^{m} |b - \beta_j|.$$

Thus, we conclude that at least one of the roots of g(x), and hence of f(x), is in \mathfrak{D}_b . The lemma then follows when we recall that f(x) has no positive real roots since it has non-negative coefficients.

A motivating idea for the remainder of this chapter is to replace the disc \mathfrak{D}_b in Lemma 2.1 with a different region such that if $\alpha = re^{i\theta}$ is in this region, then $|\theta|$ is bounded above by a small number. For a given integer $b \ge 6$, our main goal is to establish the upper bounds $M_n(b)$ in Theorem 1.1. We will utilize three main methods. First, we introduce certain rational functions that will give us information about the location of possible roots of f(x)assuming f(x) is reducible. While better rational functions can be chosen, as in [4], we will make choices to simplify the results in later sections. Second, we will obtain four upper bounds for the coefficients of f(x) such that if a bound is satisfied, then f(x) cannot have a root at a certain location. Third, we will show that the minimum of these four bounds is $M_1(b)$; hence, if the coefficients of f(x) are bounded above by $M_1(b)$, f(x) cannot have roots at the locations required for f(x) to be reducible. In the remainder of this section, we focus on the first of these ideas.

Recall that $\Phi_n(x)$ denotes the n^{th} cyclotomic polynomial, and let $\zeta_n = e^{2\pi i/n}$. As usual, for $z \in \mathbb{C}$, the notation \overline{z} will refer to the complex conjugate of z. Thus, $\overline{\zeta_n} = e^{-2\pi i/n}$. Fix an integer $b \ge 2$, and let f(x) be a non-constant polynomial with nonnegative integer coefficients such that f(b) is prime. Suppose f(x) = g(x)h(x), where g(x) and h(x) are in $\mathbb{Z}[x]$, have positive leading coefficients, and are not identically ± 1 . Since f(b) is prime, we may take, without loss of generality, $g(b) = \pm 1$ and $h(b) = \pm f(b)$. Using the ideas of [12], we want to show that either g(x) has a root in common with one of

$$\Phi_3(x-b) = x^2 - (2b-1)x + b^2 - b + 1,$$

$$\Phi_4(x-b) = x^2 - 2bx + b^2 + 1,$$

$$\Phi_6(x-b) = x^2 - (2b+1)x + b^2 + b + 1,$$

or g(x) has a root in a certain region \mathcal{R}_b to be defined shortly.

We define

$$\mathcal{F}_b(z) = \frac{\mathcal{N}_b(z)}{\mathcal{D}_b(z)},\tag{2.1}$$

where

$$\mathcal{N}_{b}(z) = |b - 1 - z|^{2e_{2}}(|b + \zeta_{3} - z||b + \overline{\zeta_{3}} - z|)^{2e_{3}}$$
$$\cdot (|b + i - z||b - i - z|)^{2e_{4}}(|b + \zeta_{6} - z||b + \overline{\zeta_{6}} - z|)^{2e_{6}},$$
$$\mathcal{D}_{b}(z) = |b - z|^{4(e_{3} + e_{4} + e_{6}) + 2(e_{2} + d + 1)},$$

and e_2, e_3, e_4, e_6 , and d are all non-negative integers that could depend on b. Although we want some flexibility on the choices for e_2, e_3, e_4, e_6 , and d for a given b, for clarity, we indicate in Table 2.1 the choices for these variables we use to establish Theorem 1.1. Note that the values for $b \leq 20$ are the same as the values chosen in [4]. The values

Table 2.1 Numbers used in $\mathcal{F}_b(z)$ for b

b	2	3	4	5	$6 \le b \le 20$	$b \ge 21$
$e_2(b)$	20	0	0	0	0	0
$e_3(b)$	4	15	9	6	4	1
$e_4(b)$	0	2	2	2	2	1
$e_6(b)$	0	0	3	3	3	1
d(b)	0	3	3	3	3	1

we chose for $b \ge 21$ achieve our purposes for all $b \ge 7$; however, the bounds acquired in Section 2.4 are not good enough to include $b \le 20$. Thus, we will refer to [4] to make a statement about all $b \ge 2$. Our choices for $b \ge 21$ were based on trial and error to give us our desired results.

Setting z = x + iy, direct computations show that the expressions in \mathcal{N}_b and \mathcal{D}_b simplify to

$$|b - 1 - z|^{2} = y^{2} + (x - b)^{2} + 2(x - b) + 1,$$

$$(|b + \zeta_{3} - z||b + \overline{\zeta_{3}} - z|)^{2} = y^{4} + (2(x - b)^{2} + 2(x - b) - 1)y^{2} + ((x - b)^{2} + (x - b) + 1)^{2},$$

$$(|b + i - z||b - i - z|)^{2} = y^{4} + (2(x - b)^{2} - 2)y^{2} + ((x - b)^{2} + 1)^{2},$$

$$(|b + \zeta_6 - z||b + \overline{\zeta_6} - z|)^2 = y^4 + (2(x - b)^2 - 2(x - b) - 1)y^2 + ((x - b)^2 - (x - b) + 1)^2,$$

and

$$|b - z|^2 = y^2 + (x - b)^2.$$

Notice that each one of these expressions is in $\mathbb{Z}[b, x, y^2]$, namely in $\mathbb{Z}[x-b, y^2]$. Thus, $\mathcal{N}_b(z)$ and $\mathcal{D}_b(z)$ are in $\mathbb{Z}[b, x, y^2]$, making $\mathcal{F}_b(z)$ a rational function in b, x, and y^2 . Moreover, we observe that for each integer $b \geq 3$, the polynomial

$$\mathcal{P}_b(x,y) = \mathcal{D}_b(x+iy) - \mathcal{N}_b(x+iy)$$
(2.2)

can be written as

$$\mathcal{P}_b(x,y) = \sum_{j=0}^r a_j(b,x) y^{2j}$$
(2.3)

where $r = 2(e_3 + e_4 + e_6) + e_2 + d + 1$ and each $a_j(b, x)$ is an integer polynomial in b and x. We write the factor g(x) of f(x) in the form

$$g(x) = c \prod_{j=1}^{m} (x - \beta_j),$$

where c is the leading coefficient of g(x) and β_1, \ldots, β_m are the roots of g(x) and, hence, roots of f(x). One can check that

$$\frac{|g(b-1)|^{2e_2}|g(b+\zeta_3)g(b+\overline{\zeta_3})|^{2e_3}|g(b+i)g(b-i)|^{2e_4}|g(b+\zeta_6)g(b+\overline{\zeta_6})|^{2e_6}}{|g(b)|^{4(e_3+e_4+e_6)+2(e_2+d+1)}}$$

and

$$\frac{1}{c^{2(d+1)}}\prod_{j=1}^m \mathcal{F}_b(\beta_j)$$

are equal. We denote this common value by $V = V_b(g)$.

Since each of $g(b+\zeta_3)g(b+\overline{\zeta_3})$, g(b+i)g(b-i), and $g(b+\zeta_6)g(b+\overline{\zeta_6})$ are symmetric polynomials in the roots of an irreducible monic quadratic in $\mathbb{Z}[x]$, we conclude that

each of these expressions are themselves integers. Also, g(b-1) is an integer, and by assumption, $g(b) = \pm 1$. Thus, by looking at the first expression for V, either V = 0or $V \in \mathbb{Z}^+$.

We can say more about when V = 0. Since f(x) has non-negative integer coefficients, it cannot have a positive real root, and neither can its factor g(x). Therefore, $g(b-1) \neq 0$. Either expression for V now implies that V = 0 if and only if $g(b+\zeta_3)g(b+\overline{\zeta_3}), g(b+i)g(b-i), \text{ or } g(b+\zeta_6)g(b+\overline{\zeta_6})$ is zero, which happens precisely when g(x) is divisible by at least one of $\Phi_3(x-b), \Phi_4(x-b), \text{ or } \Phi_6(x-b)$. If one of these is not a factor of g(x), we have $V \in \mathbb{Z}^+$. Observe that $\mathcal{F}_b(z)$ is a non-negative real number for all $z \in \mathbb{C}$ with $z \neq b$. By looking at the product in the second expression for V, we see that if $V \neq 0$, then $\mathcal{F}_b(\beta_j) \geq 1$ for at least one value of $j \in \{1, \ldots, r\}$. Said differently, if $V \neq 0$, then there is a root β_j of g(x), and thus of f(x), such that $\mathcal{F}_b(\beta_j) \geq 1$.

More generally the above ideas imply, given only that $g(x) \in \mathbb{Z}[x]$, $g(b-1) \neq 0$, $g(x) \not\equiv \pm 1$, and $g(b) = \pm 1$, either g(x) is divisible by at least one of $\Phi_3(x-b)$, $\Phi_4(x-b)$, and $\Phi_6(x-b)$, or g(x) has a root β in the region

$$\mathcal{R}_b = \{ z \in \mathbb{C} : \mathcal{F}_b(z) \ge 1 \}.$$
(2.4)

Figure 2.1 is an illustration of our choice for \mathcal{R}_b when $b \geq 21$.

Figure 2.1: The region \mathcal{R}_{21} along with possible roots of g(x)

While analyzing the region \mathcal{R}_b , we will sometimes refer to points (x, y) in \mathcal{R}_b . This is to be interpreted as the point z = x + iy in the complex plane in \mathcal{R}_b . To further help analyze \mathcal{R}_b , we consider $\mathcal{P}_b(x, y)$ defined in equations (2.2) and (2.3). The definition of $\mathcal{D}_b(z)$ implies that $\mathcal{D}_b(z) > 0$ for all complex $z \neq b$. Thus

$$\mathcal{F}_b(x+iy) \ge 1$$
 and $\mathcal{P}_b(x,y) \le 0$

are equivalent for $z \neq b$, and $\mathcal{F}_b(x+iy) = 1$ and $\mathcal{P}_b(x,y) = 0$ are equivalent for $z \neq b$. Note that $\mathcal{P}_b(b,0) = \mathcal{D}_b(b) - \mathcal{N}_b(b) = 0 - 1 = -1$. Therefore, the $z \in \mathbb{C}$ such that $\mathcal{F}_b(z) = 1$ correspond exactly to the points (x,y) where $\mathcal{P}_b(x,y) = 0$.

The following lemma corresponds to [12, Lemma 2], and the variation [4, Lemma 3.1].

Lemma 2.2. Fix an integer $b \ge 2$, and let (e_2, e_3, e_4, e_6, d) be either as in Table 2.1 or with $(e_2, e_3, e_4, e_6, d) = (0, 1, 1, 1, 1)$ for $b \ge 5$. Then there exist real numbers $a_0 = a_0(b), a_1 = a_1(b),$ and a non-negative real-valued function $\rho_b(x)$ defined on the interval $I_b = [b - a_0, b + a_1]$ such that:

- (i) $\mathcal{P}_b(x, y) \neq 0$ for all $x \notin I_b$ and $y \in \mathbb{R}$.
- (ii) $\mathcal{P}_b(x, \rho_b(x)) = 0$ for all $x \in I_b$.
- (iii) $\rho_b(b-a_0) = 0$ and $\rho_b(b+a_1) = 0$.
- (iv) The function $\rho_b(x)$ is continuously differentiable on the interior of I_b and is continuous on I_b .
- (v) If x and y are real numbers for which $\mathcal{P}_b(x, y) \leq 0$, then $x \in I_b$ and $|y| \leq \rho_b(x)$.

In view of the above lemma, complex numbers of the form $x + i\rho_b(x)$ are boundary points of \mathcal{R}_b , which are on or above the real axis. Since $\mathcal{P}_b(x, y)$ is a polynomial in y^2 with coefficients in $\mathbb{Z}[b, x]$, the region \mathcal{R}_b is symmetric about the real axis. Thus, the points $x - i\rho_b(x)$ are boundary points of \mathcal{R}_b which lie on or below the real axis. The points $b - a_0$ and $b + a_1$ are boundary points on the real axis.

A proof of Lemma 2.2 can be found in [4, Lemma 3.1]. In their proof, they reduce the dependence on b to strictly a dependence on $e_2(b)$, $e_3(b)$, $e_4(b)$, $e_6(b)$, and d(b). They then use Sturm sequences on the resulting polynomials in x to prove the lemma. One can verify computationally that the desired properties hold for our choice of $(e_2, e_3, e_4, e_6, d) = (0, 1, 1, 1, 1)$ when $b \ge 21$, with $a_0 = a_1 = 1.522009...$ Thus, the lemma follows. For further details, the reader should see [4].

In the next section, we will use Lemma 2.2 to prove irreducibility criteria based on the coefficients of f(x) when f(x) has a root in \mathcal{R}_b for $b \ge 21$.

2.2 A First Bound on the Coefficients

Throughout this section, \mathcal{R}_b is as defined in (2.4), with $\mathcal{F}_b(z)$ given by (2.1) and $\mathcal{P}_b(x, y)$ given by (2.2). We use the values for e_2 , e_3 , e_4 , e_6 , and d given in Table 2.1.

We summarize what we have done so far. Let b be an integer ≥ 2 , and let f(x) be in $\mathbb{Z}[x]$ with non-negative coefficients and f(b) prime. We write f(x) = g(x)h(x) with $g(x) \not\equiv \pm 1$, $h(x) \not\equiv \pm 1$, and both g(x) and h(x) having positive leading coefficients. Using the fact that f(b) is prime, we reduced our considerations to $g(b) = \pm 1$. We then showed that either g(x), and hence f(x), is divisible by at least one of $\Phi_3(x-b)$, $\Phi_4(x-b)$, or $\Phi_6(x-b)$, or g(x) has a root $\beta \in \mathcal{R}_b$.

A goal of ours is to establish bounds on the coefficients of f(x) based on the location of a root of g(x). We start by considering the case that g(x) has the root $\beta \in \mathcal{R}_b$. Since M. Cole, S. Dunn, and M. Filaseta already found bounds for $2 \leq b \leq$ 20, we restrict our attention to $b \geq 21$. We rely heavily on the following lemma. **Lemma 2.3.** Let $f(x) = \sum_{j=0}^{m} a_j x^j \in \mathbb{Z}[x]$, where $a_j \ge 0$ for $j \in \{0, 1, \dots, m\}$ and $a_m > 0$. Suppose $\alpha = re^{i\theta}$ is a root of f(x) with $0 < \theta < \pi/2$ and r > 1. Let

$$B = \max_{\pi/(2\theta) < k < \pi/\theta} \left\{ \frac{r^k(r-1)}{1 + \cot(\pi - k\theta)} \right\},$$

where k denotes an integer. Then there is some $j \in \{0, 1, ..., m-1\}$ such that $a_j > Ba_m$.

The proof of Lemma 2.3 is similar to that of [10, Theorem 5], and is established in the above form in [12]. We use Lemma 2.3 to prove the following corollary.

Corollary 2.4. Let $b \ge 21$ be an integer. Let $f(x) = \sum_{j=0}^{m} a_j x^j \in \mathbb{Z}[x]$ be such that $a_j \ge 0$ for each j and $a_m > 0$. Let $\phi = \arctan(0.8444/(b-0.2))$. If f(x) has a root $\beta \in \mathcal{R}_b$, then f(x) has a coefficient $a_j > \mathcal{B}_b$ where

$$\mathcal{B}_{b} = \frac{(b - 1.5221)^{\kappa}(b - 2.5221)}{1 + \cot(\pi/b^{2})} \quad with \quad \kappa = \kappa(b) = \left\lfloor \frac{(b^{2} - 1)\pi}{b^{2}\phi} \right\rfloor.$$
(2.5)

Before proceeding to the proof of Corollary 2.4, we note that the value for \mathcal{B}_b is not the best bound that can be achieved. The values b - 1.5221 and 0.8444 appear respectively as bounds for the least real part and the largest imaginary part of elements in \mathcal{R}_b . The region chosen for values $b \leq 20$ proved difficult to generalize for all b, which is why we have different values for d and the e_i 's for $b \geq 21$.

Proof of Corollary 2.4. Suppose that f(x) is as described with a root $\beta \in \mathcal{R}_b$. Taking *B* as in Lemma 2.3, we have $B \ge B_k$, where

$$B_k = \frac{r^k(r-1)}{1 + \cot(\pi - k\theta)},$$
(2.6)

for each $k \in \mathbb{Z} \cap (\pi/(2\theta), \pi/\theta)$.

Fix an integer $b \ge 21$. Let $\beta = re^{i\theta}$ be a root of f(x) in the region \mathcal{R}_b . Since f(x) has no positive real roots, we have $\theta \ne 0$. Since the conjugate of β is also a root of f(x) and \mathcal{R}_b is symmetric about the real axis, we may take $\theta > 0$. Denote the
imaginary part of β by Im(β), and the real part of β by Re(β). Using Sturm sequences for $\mathcal{P}_b(x+b,8444/10000)$ and $\mathcal{P}_b(b-15221/10000, y)$, which do not depend on b, we see that $0 < \text{Im}(\beta) < 0.8444$ and $b-1.5221 < \text{Re}(\beta)$. Then $r = \sqrt{\text{Im}(\beta)^2 + \text{Re}(\beta)^2}$ satisfies r > b-1.5221. Note that in Maple, one must use fractions instead of decimals when finding Sturm sequences.

We claim that the line L, defined by y = 0.8444x/(b-0.2), lies completely above the region \mathcal{R}_b for $b \ge 21$. We use a Sturm sequence to see that

$$\mathcal{P}_{21}(x, 8444x/(10000(21-0.2))) = \mathcal{P}_{21}(x, 2111x/52000)$$

has no real roots. Using Lemma 2.2 (ii), we deduce that the line L does not intersect the region \mathcal{R}_{21} . Using a Sturm sequence with $\mathcal{P}_{21}(x, 0.8444)$, we deduce similarly that the line y = 0.8444 does not intersect the region \mathcal{R}_{21} . Since \mathcal{R}_b is simply a horizontal translation of \mathcal{R}_{21} , we see that the line y = 0.8444 lies strictly above \mathcal{R}_b for $b \geq 21$. The lines y = 0.8444 and L intersect at the point (b-0.2, 0.8444). The angle between these two lines is $\arctan(0.8444/(b-0.2))$. It follows that, since the line L lies strictly above the region \mathcal{R}_{21} , we have also that the line L lies strictly above the region \mathcal{R}_b . Thus, we have an upper bound for the angle θ , given by $0 < \theta < \phi < \pi/2$, where

$$\phi := \arctan\left(\frac{0.8444}{b - 0.2}\right)$$

Let

$$\kappa = \kappa(b) = \left\lfloor \frac{(b^2 - 1)\pi}{b^2\theta} \right\rfloor.$$

From the first inequality in [36, Equation 3.8], we see that

$$\theta < \arg(b + \zeta_4) = \arctan\left(\frac{1}{b}\right) \le \arctan\left(\frac{1}{5}\right) < \frac{\pi}{6} \quad \text{for } b \ge 9.$$
(2.7)

We now argue that κ is in the desired range noting that

$$\kappa\theta < \frac{(b^2-1)\pi}{b^2\theta}\theta = \frac{(b^2-1)\pi}{b^2} < \pi,$$

and

$$\kappa\theta > \left(\frac{(b^2 - 1)\pi}{b^2\theta} - 1\right)\theta = \frac{(b^2 - 1)\pi}{b^2} - \theta \ge \frac{24\pi}{25} - \theta > \frac{\pi}{2}$$

Putting these together we see that

$$\frac{\pi}{2\theta} < \kappa < \frac{\pi}{\theta},$$

so $\kappa \in \mathbb{Z} \cap (\pi/(2\theta), \pi/\theta)$. We now bound the denominator of B_k , for $k = \kappa$, in (2.6). We have

$$\frac{\pi}{2} > \pi - \kappa \theta > \pi - \frac{b^2 - 1}{b^2} \pi = \frac{\pi}{b^2} > 0,$$

which gives us $\cot(\pi - \kappa \theta) < \cot(\pi/b^2)$.

Thus we have established that

$$B > \frac{r^{\kappa}(r-1)}{1 + \cot(\pi - \kappa\theta)} > \mathcal{B}_b,$$

for κ defined above and \mathcal{B}_b as in (2.5). In conclusion, Lemma 2.3 implies that if f(x) has a root in \mathcal{R}_b , then f(x) has a coefficient $a_j > Ba_m > \mathcal{B}_b a_m \ge \mathcal{B}_b$, completing the proof.

2.3 Bounds Based on Recurrence Relations

In this section we will establish results that will help us find bounds $\mathcal{B}_b^{(n)}$ for $n \in \{3, 4, 6\}$ such that if f(x) is divisible by $\Phi_n(x - b)$, then f(x) must have a coefficient $\geq \mathcal{B}_b^{(n)}$. We take $b \geq 5$.

Much of this section is based on the work done in [4] and [12]. We give enough background from these to describe our work for general b.

Fix positive integers A and B and integers b_j such that

$$f(x) = h(x)g(x) = (b_0x^s + b_1x^{s-1} + \dots + b_{s-1}x + b_s)(x^2 - Ax + B)$$

is a polynomial of degree m = s + 2 with non-negative integer coefficients. We restrict ourselves to the case where

$$x^{2} - Ax + B = \Phi_{n}(x - b), \text{ with } n \in \{3, 4, 6\}$$

so that

$$(A, B) \in \{(2b - 1, b^2 - b + 1), (2b, b^2 + 1), (2b + 1, b^2 + b + 1)\}.$$

Define $b_j = 0$ for all j < 0 and all j > s. Since the coefficients of f(x) are all non-negative, we deduce that $b_0 \ge 1$ and $b_j \ge Ab_{j-1} - Bb_{j-2}$ for all $j \in \mathbb{Z}$. Define

$$\beta_{j} = \begin{cases} 0 & \text{if } j < 0, \\ 1 & \text{if } j = 0, \\ A\beta_{j-1} - B\beta_{j-2} & \text{if } j \ge 1, \end{cases}$$
(2.8)

so that the β_j satisfy a recurrence relation for $j \ge -1$. In particular, $\beta_1 = A$ and $\beta_2 = A^2 - B$. Also, with our restriction on our choice of $x^2 - Ax + B$ above, we have

$$\beta_1 \in \{2b - 1, 2b, 2b + 1\},\$$

so the sequence β_0, β_1, \ldots is initially increasing. We obtain a closed form for the solution to this recurrence relation. The recurrence relation has characteristic polynomial $x^2 - Ax + B$, which has roots $b + \zeta_n$ and $b + \overline{\zeta_n}$ for some $n \in \{3, 4, 6\}$. So β_j has the closed form

$$\beta_j = c_1 (b + \zeta_n)^j + c_2 (b + \overline{\zeta_n})^j,$$

for some constants c_1 and c_2 depending on A and B. Taking j = 0, we obtain $c_2 = 1 - c_1$; and taking j = -1, we see that $c_1 = (b + \zeta_n) / (\zeta_n - \overline{\zeta_n})$. Substituting these values for c_1 and c_2 and reducing, we deduce

$$\beta_{j} = \frac{1}{\zeta_{n} - \overline{\zeta_{n}}} \left[(b + \zeta_{n})^{j+1} - (b + \overline{\zeta_{n}})^{j+1} \right]$$

$$= \frac{|b + \zeta_{n}|^{j+1} e^{i(j+1)\arg(b+\zeta_{n})} - |b + \overline{\zeta_{n}}|^{j+1} e^{-i(j+1)\arg(b+\zeta_{n})}}{\zeta_{n} - \overline{\zeta_{n}}}$$

$$= \frac{|b + \zeta_{n}|^{j+1}}{\sin(2\pi/n)} \sin((j+1)\arg(b+\zeta_{n})).$$
(2.9)

We note that B is the constant term of the minimal polynomial for $b + \zeta_n$, so

$$B = |b + \zeta_n|^2.$$
 (2.10)

For ease of notation, we set

$$\theta = \arg(b + \zeta_n) \in (0, \pi/2) \quad \text{and} \quad D = \lfloor \pi/\theta \rfloor$$
(2.11)

where θ and D depend on both b and n. From (2.9), we obtain

$$\beta_j = \frac{\sqrt{B}^{j+1}}{\sin(2\pi/n)} \sin((j+1)\theta).$$
(2.12)

By taking j = 0 in (2.12), with (2.8), we see that

$$\sin(\theta) = \frac{\sin(2\pi/n)}{\sqrt{B}}.$$
(2.13)

Define J to be the smallest positive integer such that

$$\beta_{J+1} < \beta_J$$
 and $\beta_{J-1} < \beta_J$.

Analyzing the derivative of β_j with respect to j one can show that J is well-defined and

$$J = D - 2$$
 or $J = D - 1$, (2.14)

with explicit details found in Joseph C Foster's dissertation.

We are interested in A and B with f(x) divisible by $\Phi_n(x-b) = x^2 - Ax + B$, where $n \in \{3, 4, 6\}$. We view A and B as fixed. We want f(x) to have non-negative integer coefficients but with the largest coefficient as small as possible. Theorem 3.8 of [36] implies such f(x) exist (also, see Lemma 3 in [10]). Let

M = M(A, B) be the maximum coefficient for such an f(x).

Let $\ell \in \mathbb{Z}^+$. We consider he matrix equation

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 & 1 \\ -A & B & 0 & \dots & 0 & 0 & 0 \\ 1 & -A & B & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & B & 0 & 0 \\ 0 & 0 & 0 & \dots & -A & B & 0 \\ 0 & 0 & 0 & \dots & 1 & -A & B \end{pmatrix} \begin{pmatrix} \mu_0 \\ \mu_1 \\ \mu_2 \\ \vdots \\ \mu_{\ell-3} \\ \mu_{\ell-2} \\ \mu_{\ell-1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
(2.15)

in the unknowns $\mu_0, \mu_1, \ldots, \mu_{\ell-1}$. Let $\ell = J + 1$. We make some observations about the solutions to (2.15), as well as produce a closed form for such a solution.

Lemma 2.5. Let b be an integer ≥ 5 . Let A and B be such that $x^2 - Ax + B$ is $\Phi_n(x-b)$ where $n \in \{3,4,6\}$. The above matrix equation has a solution where $\mu_j > 0$ for all $0 \leq j \leq J$.

Proof. Let \mathcal{M} be the matrix in (2.15) with $\ell = J + 1$. The equation in (2.15) arising from the second row of \mathcal{M} is equivalent to the condition $\mu_1 = A\mu_0/B$. The next $\ell - 2 = J - 1$ rows of \mathcal{M} correspond to a recurrence relation for $\mu_0, \mu_1, \ldots, \mu_J$ beginning with μ_0 and μ_1 and satisfying

$$\mu_j = \frac{A\mu_{j-1}}{B} - \frac{\mu_{j-2}}{B} \quad \text{for } 2 \le j \le J.$$

We will have a solution in μ_j to (2.15) provided then that we can find $\mu_0 > 0$ for which $\mu_1 = A\mu_0/B$ and the above recurrence gives $\sum_{0 \le j \le J} \mu_j = 1$. Observe that with μ_0 defined arbitrarily, this solution gives each μ_j as a multiple of μ_0 . With this in mind, we define $\mu_j^* = \mu_j/\mu_0$.

As before, we find the characteristic polynomial for this recurrence relation to find the general term. This recurrence has characteristic polynomial $x^2 - Ax/B + 1/B$, which is the reciprocal polynomial of $x^2 - Ax + B$ divided by B; hence, the roots of the characteristic polynomial are $1/(b+\zeta_n)$ and $1/(b+\overline{\zeta_n})$. So

$$\mu_j^* = c_1 \left(\frac{1}{b+\zeta_n}\right)^j + c_2 \left(\frac{1}{b+\overline{\zeta_n}}\right)^j \tag{2.16}$$

for $j \ge 0$, where c_1 and c_2 are constants to be determined. Taking j = 0 in (2.16), we see that since $\mu_0^* = 1$ we obtain $c_2 = 1 - c_1$. Next, we take j = 1 and use both $\overline{\zeta_n} - \zeta_n = -2i \sin(2\pi/n)$ and (2.10). Since $\mu_1^* = A/B$, we obtain

$$c_1 = \frac{\frac{A}{B} - \frac{1}{b + \overline{\zeta_n}}}{\frac{1}{b + \zeta_n} - \frac{1}{b + \overline{\zeta_n}}} = \frac{A - (b + \zeta_n)}{-2i\sin(2\pi/n)}$$

and

$$c_2 = 1 - c_1 = \frac{\overline{\zeta_n} - \zeta_n}{-2i\sin(2\pi/n)} - \frac{A - (b + \zeta_n)}{-2i\sin(2\pi/n)} = \frac{A - (b + \overline{\zeta_n})}{2i\sin(2\pi/n)}.$$

Thus, for $0 \leq j \leq J$, we have

$$\mu_j^* = \frac{A - (b + \zeta_n)}{-2i\sin(2\pi/n)} \left(\frac{1}{b + \zeta_n}\right)^j + \frac{A - (b + \overline{\zeta_n})}{2i\sin(2\pi/n)} \left(\frac{1}{b + \overline{\zeta_n}}\right)^j$$
$$= \frac{1}{2B\sin(2\pi/n)} \left[\frac{B - A(b + \overline{\zeta_n})}{i(b + \zeta_n)^{j-1}} + \frac{A(b + \zeta_n) - B}{i(b + \overline{\zeta_n})^{j-1}}\right].$$

Recall (2.11). As in (2.9), for any $t \in \mathbb{Z}$, we deduce

$$(b + \overline{\zeta_n})^t - (b + \zeta_n)^t = -2i|b + \zeta_n|^t \sin(t\theta).$$

Taking t = j and t = j - 1 with $0 \le j \le J$, we obtain

$$\mu_{j}^{*} = \frac{1}{2B\sin(2\pi/n)} \left[\frac{2Ai|b + \zeta_{n}|^{j}\sin(j\theta) - 2Bi|b + \zeta_{n}|^{j-1}\sin((j-1)\theta)}{i|b + \zeta_{n}|^{2(j-1)}} \right]$$
$$= \frac{1}{B\sin(2\pi/n)} \left[\frac{A|b + \zeta_{n}|^{j}\sin(j\theta) - B|b + \zeta_{n}|^{j-1}\sin((j-1)\theta)}{B^{j-1}} \right].$$

Using (2.8) and (2.9), we get

$$\mu_j^* = \frac{A\beta_{j-1} - B\beta_{j-2}}{B^j} = \frac{\beta_j}{B^j}$$

for $1 \leq j \leq J$. As $\mu_0^* = 1 = \beta_0/B^0$, we see that $\mu_j^* = \beta_j/B^j$ for all $j \in [0, J] \cap \mathbb{Z}$. The definition of J implies μ_j^* is positive for $0 \leq j \leq J$.

Recall that we want $\sum_{0 \le j \le J} \mu_j = 1$, which is equivalent to $\sum_{0 \le j \le J} \mu_j^* = 1/\mu_0$. Set

$$K = \sum_{j=0}^{J} \mu_j^* = \sum_{j=0}^{J} \frac{\beta_j}{B^j}.$$

As K > 0, we can take $\mu_0 = 1/K$ to deduce that the lemma holds.

From the proof of Lemma 2.5, we have a closed form for $\mu_j > 0$ satisfying (2.15). Using geometric series, one can write a closed form for K as

$$K = \frac{B^{J+1} - \beta_{J+1} + \beta_J}{B^{J-1}|b + \zeta_n - B|^2},$$

with explicit details found in Joseph C Foster's dissertation.

To finish this section, we establish three bounds, $\mathcal{B}_{b}^{(3)}$, $\mathcal{B}_{b}^{(4)}$, and $\mathcal{B}_{b}^{(6)}$ such that if f(x) has coefficients less than or equal to $\mathcal{B}_{b}^{(n)}$ with f(b) prime, then f(x) cannot be divisible by $\Phi_{n}(x-b)$ for $n \in \{3,4,6\}$. Recall that M(A,B) is the smallest value that the largest coefficient of f(x) can be given that f(x) is a polynomial with non-negative integer coefficients divisible by $\Phi_{n}(x-b)$ for some $n \in \{3,4,6\}$. Note the difference between $\mathcal{B}_{b}^{(n)}$ and M(A,B); M(A,B) does not require f(b) to be prime while $\mathcal{B}_{b}^{(n)}$ does. To establish such bounds, we show both of the following:

- (i) The value of M(A, B) is $(1 A + B) \cdot \beta_J$ for each $n \in \{3, 4, 6\}$.
- (ii) If the maximal coefficient of f(x) equals M(A, B), then f(b) is composite.

Assuming (i) and (ii), we explain now that we can take $\mathcal{B}_b^{(n)} = M(A, B)$. If f(x) has each coefficient less than M(A, B), then f(x) cannot be divisible by $\Phi_n(x-b)$ by the minimality of M(A, B). Note that this conclusion does not require f(b) to be prime. If we further require f(b) to be prime, then by (ii), we would also have that the largest coefficient of f(x) cannot equal M(A, B). Hence, we can take $\mathcal{B}_b^{(n)} = M(A, B)$.

Note the dependence on n; A and B are the integers such that $x^2 - Ax + B$ is $\Phi_n(x-b)$; hence, A and B depend on n. Also, β_J depends on D and θ , both defined in (2.11), which depend on n. The details of the proofs of (i) and (ii) are made explicit

in Joseph C Foster's dissertation. Thus, for $n \in \{3, 4, 6\}$, we have bounds $\mathcal{B}_b^{(n)}$ such that if f(x) is a polynomial with non-negative integer coefficients with f(b) a prime, with each coefficient less than or equal to

$$\mathcal{B}_{b}^{(n)} = (1 - A + B)\beta_{J}, \qquad (2.17)$$

then f(x) cannot be divisible by $\Phi_n(x-b)$.

2.4 Inequalities on the bounds

We summarize what we have done so far. Let b be an integer greater than or equal to 2, and let f(x) be in $\mathbb{Z}[x]$ with non-negative coefficients and f(b) prime. We write f(x) = g(x)h(x) with $g(x) \neq \pm 1$, $h(x) \neq \pm 1$, and both g(x) and h(x)having positive leading coefficients. Using the fact that f(b) is prime, we reduced our considerations to $g(b) = \pm 1$. We then showed that either g(x), and hence f(x), is divisible by at least one of $\Phi_3(x - b)$, $\Phi_4(x - b)$, and $\Phi_6(x - b)$, or g(x) has a root $\beta \in \mathcal{R}_b$. In the previous sections we established that if the coefficients of f(x) are less than or equal to \mathcal{B}_b defined in (2.5) from Section 2.2, then f(x) does not have a root in the region \mathcal{R}_b , and if the coefficients of f(x) are less than or equal to $\mathcal{B}_b^{(n)}$ defined in (2.17) from Section 2.3, then f(x) does not have a root in common with $\Phi_n(x - b)$ for $n \in \{3, 4, 6\}$.

Letting M(b) be the minimum of these four bounds, then if the coefficients of f(x)are less than or equal to M(b), f(x) is irreducible. In this section we finish the proof of Theorem 1.1 by showing for $b \ge 6$ the inequalities

$$\mathcal{B}_b^{(4)} < \mathcal{B}_b^{(3)} < \mathcal{B}_b^{(6)}$$

hold, and then by finding, for each $n \in \{3, 4, 6\}$, a lower bound for *b* satisfying $\mathcal{B}_b^{(n)} < \mathcal{B}_b$. Having established these inequalities, we will have that for *b* large enough, each of the following hold; if the coefficients of f(x) are less than or equal to $\mathcal{B}_b^{(4)}$, then f(x) is irreducible; if the coefficients of f(x) are less than or equal to $\mathcal{B}_b^{(3)}$ and f(x) is reducible, then f(x) is divisible by $\Phi_4(x-b)$; if the coefficients of f(x) are less than or equal to $\mathcal{B}_b^{(6)}$ and f(x) is reducible, then f(x) is divisible by $\Phi_4(x-b)$ or $\Phi_3(x-b)$; and if the coefficients of f(x) are less than or equal to \mathcal{B}_b and f(x) is reducible, then f(x) is divisible by $\Phi_4(x-b)$, or $\Phi_6(x-b)$.

We begin by showing that $\mathcal{B}_{b}^{(4)} < \mathcal{B}_{b}^{(3)}$. Recall that $\mathcal{B}_{b}^{(n)} = M(A, B) = (1 - A + B)\beta_{J}$. Also recall that A, B, D, J, β_{j} , and θ all depend on n and b. For clarity, we introduce subscripts on these values to indicate which n we are considering. Thus, we want to establish the values of b such that

$$\frac{\mathcal{B}_b^{(4)}}{\mathcal{B}_b^{(3)}} = \frac{(1 - A_4 + B_4)\beta_{J_4}}{(1 - A_3 + B_3)\beta_{J_3}} < 1.$$

By the definition of J in (2.14), we have $\beta_{J_3} > \beta_{J_3-1}$. Since $\Phi_n(x) = x^2 - A_n x + B_n$ and recalling the definition of β_j in (2.12) for n = 4 and n = 3, we obtain

$$\frac{\mathcal{B}_{b}^{(4)}}{\mathcal{B}_{b}^{(3)}} < \frac{(1 - A_4 + B_4)\beta_{J_4}}{(1 - A_3 + B_3)\beta_{J_3 - 1}} = \frac{\sqrt{3}(b^2 - 2b + 2)\sqrt{b^2 + 1}^{J_4 + 1}\sin((J_4 + 1)\theta_4)}{2(b^2 - 3b + 3)\sqrt{b^2 - b + 1}^{J_3}\sin(J_3\theta_3)}.$$

Using (2.13) and the inequality $\pi/2 < J_3\theta_3 \leq (D_3 - 1)\theta_3 < \pi - \theta_3 < \pi$ arising from $D = \lfloor \pi/\theta \rfloor$, we have

$$\sin(J_3\theta_3) > \sin(\theta_3) = \frac{\sqrt{3}}{2\sqrt{b^2 - b + 1}} > \frac{1}{2\sqrt{b^2 - b + 1}}.$$
(2.18)

Since $\pi > (J_4 + 1)\theta_4 \ge (D_4 - 1)\theta_4 > \pi - 2\theta_4 > \pi/2$, we obtain from (2.13) that

$$\sin((J_4+1)\theta_4) < \sin(2\theta_4) = 2\sin\theta_4\cos\theta_4 = \frac{2b}{b^2+1}.$$
(2.19)

Using these approximations, we acquire

$$\begin{aligned} \frac{\mathcal{B}_{b}^{(4)}}{\mathcal{B}_{b}^{(3)}} &< \frac{(b^{2}-2b+2)\sqrt{b^{2}+1}^{J_{4}+1}\frac{2b}{b^{2}+1}}{(b^{2}-3b+3)\sqrt{b^{2}-b+1}^{J_{3}}\frac{1}{2\sqrt{b^{2}-b+1}}} \\ &= \frac{4b(b^{2}-2b+2)}{(b^{2}+1)(b^{2}-3b+3)}\cdot\frac{\sqrt{b^{2}+1}^{J_{4}+1}}{\sqrt{b^{2}-b+1}^{J_{3}-1}}. \end{aligned}$$

Direct calculations show that for $b \ge 6$, the first fraction is less than 1. In the way of some details, viewing the first fraction as a function of b, we find the critical points of the first fraction and see that its derivative is negative past the largest critical point, which is < 2. The fraction is then decreasing for $b \ge 6$, and we see that evaluating it at b = 6 results in a number less than 1; thus, we conclude that the first fraction is less than 1 for all values of $b \ge 6$. We consider the second fraction. If we can show that the second fraction is less than 1, then we will have shown $\mathcal{B}_b^{(4)} < \mathcal{B}_b^{(3)}$. Consider the Shafer-Fink inequalities (see [18] and [32])

$$\frac{3x}{1+2\sqrt{1+x^2}} < \arctan(x) < \frac{\pi x}{1+2\sqrt{1+x^2}}, \quad \text{for } x > 0.$$
 (2.20)

From (2.20), we deduce

$$J_4 + 1 < \frac{\pi}{\theta_4} = \frac{\pi}{\arctan(1/b)} < \frac{\pi}{3}(b + 2\sqrt{b^2 + 1}) < \pi(b + 1)$$

and

$$J_3 > \frac{\pi}{\theta_3} - 3 = \frac{\pi}{\arctan\left(\sqrt{3}/(2b-1)\right)} - 3 > \frac{1}{\sqrt{3}}(2b-1+4\sqrt{b^2-b+1}) - 3.$$

Utilizing these approximations on the second fraction, we obtain

$$\begin{aligned} \frac{\sqrt{b^2 + 1}^{J_4 + 1}}{\sqrt{b^2 - b + 1}^{J_3 - 1}} &\leq \frac{\sqrt{b^2 + 1}^{\pi(b+1)}}{\sqrt{b^2 - b + 1}^{(2b - 1 + 4\sqrt{b^2 - b + 1})/\sqrt{3} - 4}} \\ &\leq \frac{\sqrt{b^2 + 1}^{\pi(b+1)}}{\sqrt{b^2 - b + 1}^{(2b - 1 + 4(b - 1))/\sqrt{3} - 8/\sqrt{3}}} \\ &= \frac{\sqrt{b^2 + 1}^{\pi(b+1)}}{\sqrt{b^2 - b + 1}^{(6b - 13)/\sqrt{3}}} \leq \frac{\sqrt{b^2 + 1}^{\pi(b+1)}}{\sqrt{b^2 - b + 1}^{2\sqrt{3}(b - 3)}} \end{aligned}$$

For $b \ge 47$, one checks that

$$50\pi \left(1 + \frac{1}{b}\right) \le 50\pi \left(1 + \frac{1}{47}\right) < 161$$
 and
 $100\sqrt{3} \left(1 - \frac{3}{b}\right) \ge 100\sqrt{3} \left(1 - \frac{3}{47}\right) > 162.$

Thus, we deduce that for $b \ge 47$, the inequality

$$\frac{\sqrt{b^2 + 1}^{\pi(b+1)}}{\sqrt{b^2 - b + 1}^{2\sqrt{3}(b-3)}} = \left(\frac{\sqrt{b^2 + 1}^{\pi(b+1)}}{\sqrt{b^2 - b + 1}^{2\sqrt{3}(b-3)}}\right)^{\frac{50}{b} \cdot \frac{b}{50}} = \left(\frac{\sqrt{b^2 + 1}^{50\pi(1+1/b)}}{\sqrt{b^2 - b + 1}^{100\sqrt{3}(1-3/b)}}\right)^{\frac{b}{50}}$$
$$\leq \left(\frac{\sqrt{b^2 + 1}^{161}}{\sqrt{b^2 - b + 1}^{162}}\right)^{\frac{b}{50}} = \left(\frac{1}{\sqrt{b^2 - b + 1}} \cdot \left(\sqrt{\frac{b^2 + 1}{b^2 - b + 1}}\right)^{161}\right)^{\frac{b}{50}}$$
$$\leq \left(\frac{1}{8}\right)^{\frac{b}{50}} \leq \left(\frac{24}{25}\right)^{b}$$

holds where we have used that $b^2 - b + 1$ is increasing and $(b^2 + 1)/(b^2 - b + 1)$ is decreasing for $b \ge 47$. Since 24/25 is less than 1, we have $\mathcal{B}_b^{(3)} > \mathcal{B}_b^{(4)}$ for $b \ge 47$. Direct calculations show that $\mathcal{B}_b^{(3)} > \mathcal{B}_b^{(4)}$ for $b \ge 6$.

We now use similar methods to show $\mathcal{B}_b^{(3)} < \mathcal{B}_b^{(6)}$. From the definitions of J in (2.14) and β_j in (2.12) for n = 3 and n = 6, we obtain

$$\frac{\mathcal{B}_{b}^{(3)}}{\mathcal{B}_{b}^{(6)}} < \frac{(1-A_{3}+B_{3})\beta_{J_{3}}}{(1-A_{6}+B_{6})\beta_{J_{6}-1}} = \frac{(b^{2}-3b+3)\sqrt{b^{2}-b+1}^{J_{3}+1}\sin((J_{3}+1)\theta_{3})}{(b^{2}-b+1)\sqrt{b^{2}+b+1}^{J_{6}}\sin(J_{6}\theta_{6})} < \frac{(b^{2}-3b+3)\sqrt{b^{2}-b+1}^{J_{3}-J_{6}+1}\sin((J_{3}+1)\theta_{3})}{(b^{2}-b+1)\sin(J_{6}\theta_{6})}.$$

Using similar approximations to (2.18) and (2.19) with n = 6 and n = 3 respectively, we establish the inequalities

$$\sin(J_6\theta_6) > \frac{1}{2\sqrt{b^2 + b + 1}} \quad \text{and} \quad \sin((J_3 + 1)\theta_3) < \frac{\sqrt{3}(2b - 1)}{2(b^2 - b + 1)}.$$

From these approximations, we see that

$$\frac{\mathcal{B}_{b}^{(3)}}{\mathcal{B}_{b}^{(6)}} < \frac{(b^{2} - 3b + 3)\sqrt{b^{2} - b + 1}^{J_{3} - J_{6} + 1}\frac{\sqrt{3}(2b - 1)}{2(b^{2} - b + 1)}}{(b^{2} - b + 1)\frac{1}{2\sqrt{b^{2} + b + 1}}}$$
$$< \frac{2(b^{2} - 3b + 3)(2b - 1)\sqrt{b^{2} + b + 1}\sqrt{b^{2} - b + 1}^{J_{3} - J_{6} + 1}}{(b^{2} - b + 1)^{2}}$$
$$< \frac{2(b^{2} - 3b + 3)(2b - 1)\sqrt{b^{2} + b + 1}^{J_{3} - J_{6} + 2}}{(b^{2} - b + 1)^{2}}.$$

If we can show that $J_3 - J_6 + 2 < 1/2$, then

$$\frac{\mathcal{B}_{b}^{(3)}}{\mathcal{B}_{b}^{(6)}} < \frac{2(b^{2}-3b+3)(2b-1)\sqrt{b^{2}+b+1}^{1/2}}{(b^{2}-b+1)^{2}} < \frac{2(b^{2}-3b+3)(2b-1)\sqrt{b+1}}{(b^{2}-b+1)^{2}}.$$

One checks that this is a decreasing function of b for $b \ge 5$ that is less than 1 for $b \ge 14$. Thus, by showing that $J_3 - J_6 + 2 < 1/2$, we will have $\mathcal{B}_b^{(3)} < \mathcal{B}_b^{(6)}$ for $b \ge 14$. Using the definition of J in (2.14) and the definition $D = \lfloor \pi/\theta \rfloor$ to deduce

$$J_3 - J_6 + 2 \le D_3 - D_6 + 3 \le \frac{\pi}{\theta_3} - \frac{\pi}{\theta_6} + 4.$$

Consider the function $\Omega(b) = \pi / \arctan\left(\sqrt{3}/(2b-1)\right)$. Then we have $\Omega(b) = \pi/\theta_3$ and $\Omega(b+1) = \pi/\theta_6$. Differentiating with respect to b and using $\arctan(x) \le x$ for $x \ge 0$, we obtain

$$\frac{d\Omega(b)}{db} = \frac{\pi\sqrt{3}}{2(b^2 - b + 1)\left(\arctan\left(\frac{\sqrt{3}}{2b - 1}\right)\right)^2} \ge \frac{\pi\sqrt{3}}{2(b^2 - b + 1)\left(\frac{\sqrt{3}}{2b - 1}\right)^2} = \frac{\pi\sqrt{3}(2b - 1)^2}{6(b^2 - b + 1)}.$$

One checks that this last expression is an increasing function of b that approaches $2\pi/\sqrt{3} > 7/2$ as b gets large; furthermore, direct calculations show that it is greater than 7/2 for $b \ge 6$. Thus, for $b \ge 6$ we have $\Omega(b+1) - \Omega(b) > 7/2$, which is $\frac{\pi}{\theta_3} - \frac{\pi}{\theta_6} < -\frac{7}{2}$ proving that $J_3 - J_6 + 2 < 1/2$ for $b \ge 6$. Hence, we have shown that $\mathcal{B}_b^{(6)} > \mathcal{B}_b^{(3)}$ for $b \ge 14$. Direct calculations show that $\mathcal{B}_b^{(6)} > \mathcal{B}_b^{(3)}$ also holds for $b \ge 2$. Having established $\mathcal{B}_b^{(4)} < \mathcal{B}_b^{(3)} < \mathcal{B}_b^{(6)}$, we now find the values of b such that $\mathcal{B}_b > \mathcal{B}_b^{(4)}$, $\mathcal{B}_b > \mathcal{B}_b^{(3)}$, and $\mathcal{B}_b > \mathcal{B}_b^{(6)}$. As each inequality involves \mathcal{B}_b , we first make approximations on \mathcal{B}_b . Recall that the equation for \mathcal{B}_b in (2.5) is

$$\mathcal{B}_{b} = \frac{(b - 1.5221)^{\kappa}(b - 2.5221)}{1 + \cot(\pi/b^{2})} \quad \text{with} \quad \kappa = \kappa(b) = \left\lfloor \frac{(b^{2} - 1)\pi}{b^{2}\phi} \right\rfloor$$

for $\phi = \arctan(0.8444/(b-0.2))$. Using $\tan x \ge x$ for $x \in [0, \pi/2)$, we obtain

$$1 + \cot(\pi/b^2) \le 1 + b^2/\pi < b^2 + 1$$

and

$$\kappa + 1 > \frac{(b^2 - 1)\pi}{b^2 \phi} > \frac{b^2 - 1}{b^2} \cdot \frac{\pi}{\frac{0.8444}{b - 0.2}} = \frac{b^2 - 1}{b^2} \cdot \frac{\pi(b - 0.2)}{0.8444}.$$

Using these approximations, we see that

$$\mathcal{B}_b > \frac{(b-2)^{k_1-1}(b-3)}{b^2+1} \quad \text{for} \quad k_1 = \frac{b^2-1}{b^2} \cdot \frac{\pi(b-0.2)}{0.8444}.$$
 (2.21)

One checks that k_1/b is increasing for $b \ge 1$.

We now show $\mathcal{B}_b > \mathcal{B}_b^{(4)}$. Using the approximations $\sin((J_4 + 1)\theta_4) < 2b/(b^2 + 1)$ and $J_4 + 1 < \pi(b+1)$ previously established with the above approximation for \mathcal{B}_b , we see that

$$\frac{\mathcal{B}_{b}^{(4)}}{\mathcal{B}_{b}} < \frac{2b(b^{2} - 2b + 2)\sqrt{b^{2} + 1}^{\pi(b+1)}}{b^{2} + 1} \cdot \frac{b^{2} + 1}{(b-3)(b-2)^{k_{1}-1}} \\
= \frac{2b(b^{2} - 2b + 2)}{b-3} \cdot \frac{\sqrt{b^{2} + 1}^{\pi(b+1)}}{(b-2)^{k_{1}-1}} \\
< \frac{2b(b^{2} - 2b + 2)}{(b-3)^{4}} \cdot \frac{\sqrt{b^{2} + 1}^{\pi b+4}}{(b-2)^{k_{1}-4}},$$

where the last inequality comes from moving three powers of b-2 over to b-3 noting that b-2 > b-3.

One checks that $2b(b^2 - 2b + 2)/(b - 3)^4$ is less than 1 for $b \ge 9$. Note that for $b \ge 24$, we have both

$$10\left(\pi + \frac{4}{b}\right) \le 10\left(\pi + \frac{4}{24}\right) < 34 \text{ and}$$
$$10\left(\frac{k_1}{b} - \frac{4}{b}\right) \ge 10\left(\frac{k_1(24)}{24} - \frac{4}{24}\right) > 35$$

where we use the fact that k_1/b is an increasing function of b. Thus, for $b \ge 24$ we deduce that the inequality

$$\frac{\mathcal{B}_{b}^{(4)}}{\mathcal{B}_{b}} < \left(\frac{\sqrt{b^{2}+1}}{(b-2)^{k_{1}-4}}\right)^{\frac{10}{b}\cdot\frac{b}{10}} < \left(\frac{1}{b-2}\cdot\left(\frac{b^{2}+1}{b^{2}-4b+4}\right)^{17}\right)^{b/10} < \left(\frac{91}{1000}\right)^{b/10} < \left(\frac{991}{1000}\right)^{b} < 1$$

holds where we have used that b-2 is increasing and $(b^2+1)/(b^2-4b+4)$ is decreasing for $b \ge 24$. Since 9991/1000 is less than 1, we have $\mathcal{B}_b > \mathcal{B}_b^{(4)}$ for $b \ge 24$. Direct calculations show that $\mathcal{B}_b > \mathcal{B}_b^{(4)}$ for $b \ge 8$. Note that we only need to show this inequality holds for b > 20 since our choice for the $e_i(b)$'s and d(b), and thus our approximation \mathcal{B}_b , change when $b \le 20$. For $b \le 20$, our choice for the $e_i(b)$'s and d(b) are the same as those found in [4]. Using these values, we see that $\mathcal{B}_b > \mathcal{B}_b^{(4)}$ for $b \ge 4$.

The method used for determining the values of b such that $\mathcal{B}_b > \mathcal{B}_b^{(3)}$ is similar. We start with the analogous argument to (2.19), except with n = 3 instead of n = 4. That is, we have the inequality

$$\sin((J_3+1)\theta_3) < \frac{\sqrt{3}(2b-1)}{2(b^2-b+1)}.$$

Using the Shafer-Fink inequalities in (2.20), we have the upper bound

$$J_3 + 1 < \frac{\pi}{\theta_3} < \frac{\pi}{3\sqrt{3}}(2b - 1 + 4\sqrt{b^2 - b + 1}) < \frac{\pi}{3\sqrt{3}}(6b + 3) = \frac{\pi}{\sqrt{3}}(2b + 1).$$

Thus, using the approximation on \mathcal{B}_b found in (2.21), we obtain

$$\begin{aligned} \frac{\mathcal{B}_{b}^{(3)}}{\mathcal{B}_{b}} &< \frac{(2b-1)(b^{2}-3b+3)\sqrt{b^{2}-b+1}^{\pi(2b+1)/\sqrt{3}}}{b^{2}-b+1} \cdot \frac{b^{2}+1}{(b-3)(b-2)^{k_{1}-1}} \\ &= \frac{(2b-1)(b^{2}-3b+3)}{(b-3)(b^{2}-b+1)} \cdot \frac{\sqrt{b^{2}-b+1}^{\pi(2b+1)/\sqrt{3}}}{(b-2)^{k_{1}-1}} \\ &< \frac{(2b-1)(b^{2}-3b+3)}{(b-3)^{2}(b^{2}-b+1)} \cdot \frac{\sqrt{b^{2}-b+1}^{\pi(2b+1)/\sqrt{3}}}{(b-2)^{k_{1}-2}}. \end{aligned}$$

One checks that the first fraction in the last expression above is less than 1 for $b \ge 6$. Note that for $b \ge 82$, we have both

$$\frac{40\pi}{\sqrt{3}} \left(2 + \frac{1}{b}\right) \le \frac{40\pi}{\sqrt{3}} \left(2 + \frac{1}{82}\right) < 146 \text{ and}$$
$$40 \left(\frac{k_1}{b} - \frac{2}{b}\right) \ge 40 \left(\frac{k_1(82)}{82} - \frac{2}{82}\right) > 147.$$

Thus, for $b \ge 82$ we deduce the inequality

$$\frac{\mathcal{B}_{b}^{(3)}}{\mathcal{B}_{b}} < \left(\frac{\sqrt{b^{2}-b+1}^{\pi/\sqrt{3}(2b+1)}}{(b-2)^{k_{1}-2}}\right)^{\frac{40}{b}\cdot\frac{b}{40}} < \left(\frac{1}{b-2}\left(\frac{b^{2}-b+1}{b^{2}-4b+4}\right)^{73}\right)^{b/40} < \left(\frac{1}{5}\right)^{b/40} < \left(\frac{97}{100}\right)^{b}$$

holds where we have used that b - 2 is increasing and $(b^2 + b + 1)/(b^2 - 4b + 4)$ is decreasing for $b \ge 82$. Since 97/100 is less than 1, we have $\mathcal{B}_b > \mathcal{B}_b^{(3)}$ for $b \ge 82$. Direct calculations show that $\mathcal{B}_b > \mathcal{B}_b^{(3)}$ for $b \ge 3$ where we recall that \mathcal{B}_b are the values determined in [4] for $2 \le b \le 20$.

We again use a similar method for determining the values of b such that $\mathcal{B}_b > \mathcal{B}_b^{(6)}$. We start with the analogous argument to (2.19), except with n = 6 instead of n = 4. That is, we have the inequalities

$$\sin((J_6+1)\theta_6) < \frac{\sqrt{3}(2b+1)}{2(b^2+b+1)},$$

and

$$J_6 + 1 < \frac{\pi}{\theta_6} < \frac{\pi}{3\sqrt{3}}(2b + 1 + 4\sqrt{b^2 + b + 1}) < \frac{\pi}{3\sqrt{3}}(6b + 5) < \frac{\pi}{\sqrt{3}}(2b + 2).$$

Thus, using the approximation on \mathcal{B}_b found in (2.21), we obtain

$$\begin{aligned} \frac{\mathcal{B}_{b}^{(6)}}{\mathcal{B}_{b}} &< \frac{(2b+1)(b^{2}-b+1)\sqrt{b^{2}+b+1}^{\pi(2b+2)/\sqrt{3}}}{b^{2}+b+1} \cdot \frac{b^{2}+1}{(b-3)(b-2)^{k_{1}-1}} \\ &= \frac{(2b+1)(b^{2}-b+1)}{(b-3)(b^{2}+b+1)} \cdot \frac{\sqrt{b^{2}+b+1}^{\pi(2b+2)/\sqrt{3}}}{(b-2)^{k_{1}-1}} \\ &< \frac{(2b+1)(b^{2}-b+1)}{(b-3)^{2}(b^{2}+b+1)} \cdot \frac{\sqrt{b^{2}+b+1}^{\pi(2b+2)/\sqrt{3}}}{(b-2)^{k_{1}-2}}. \end{aligned}$$

One checks that the first fraction in the last expression above is less than 1 for $b \ge 5$. Note that for $b \ge 112$, we have both

$$\frac{50\pi}{\sqrt{3}} \left(2 + \frac{2}{b} \right) \le \frac{50\pi}{\sqrt{3}} \left(2 + \frac{2}{112} \right) < 183 \text{ and}$$

$$50\left(\frac{k_1}{b} - \frac{2}{b}\right) \ge 50\left(\frac{k_1(112)}{112} - \frac{2}{112}\right) > 184.$$

Thus, for $b \ge 112$ we deduce the inequality

$$\frac{\mathcal{B}_{b}^{(6)}}{\mathcal{B}_{b}} < \left(\frac{\sqrt{b^{2} + b + 1}^{\pi(2b+2)/\sqrt{3}}}{(b-2)^{k_{1}-2}}\right)^{\frac{50}{b} \cdot \frac{b}{50}} < \left(\frac{1}{\sqrt{b^{2} + b + 1}} \left(\frac{b^{2} + b + 1}{b^{2} - 4b + 4}\right)^{92}\right)^{b/50} < \left(\frac{14}{25}\right)^{b/50} < \left(\frac{99}{100}\right)^{b}$$

holds where we have used that $\sqrt{b^2 + b + 1}$ is increasing and $(b^2 + b + 1)/(b^2 - 4b + 4)$ is decreasing for $b \ge 112$. Since 99/100 is less than 1, we have $\mathcal{B}_b > \mathcal{B}_b^{(6)}$ for $b \ge 112$. Direct calculations show that $\mathcal{B}_b > \mathcal{B}_b^{(3)}$ for $b \ge 70$. Here we note that in [4], M. Cole, S. Dunn, and M. Filaseta showed that $\mathcal{B}_b < \mathcal{B}_b^{(6)}$ for $2 \le b \le 20$. Thus, we know that while the bound $b \ge 70$ might not be sharp, it cannot be better than $b \ge 21$.

Having established these inequalities, we note that $M_1(b) = \mathcal{B}_b^{(3)}$ for $3 \le b \le 5$ and $M_1(b) = \mathcal{B}_b^{(4)}$ for b > 5 in Theorem 1.1. This is the case because $\mathcal{B}_b^{(4)} < \mathcal{B}_b^{(3)}$ for b > 5. Continuing along Theorem 1.1, $M_2(b) = \mathcal{B}_b^{(4)}$ for $3 \le b \le 5$ and $M_2(b) = \mathcal{B}_b^{(3)}$ for b > 5, $M_3(b) = \mathcal{B}_b^{(6)}$, and $M_4(b) = \mathcal{B}_b$.

We now put the finishing touches on the proof of Theorem 1.1. From the definition of β_j in (2.9), we have

$$\beta_j = \frac{1}{2i \operatorname{Im}(\zeta_n)} \left[(b + \zeta_n)^{j+1} - (b + \overline{\zeta}_n)^{j+1} \right]$$
$$= \frac{1}{2i \operatorname{Im}(\zeta_n)} \left[(b + \operatorname{Re}(\zeta_n) + i \operatorname{Im}(\zeta_n))^{j+1} - (b + \operatorname{Re}(\zeta_n) - i \operatorname{Im}(\zeta_n))^{j+1} \right].$$

Writing out the binomial expansion of each term and combining like terms yields

$$\beta_{j} = \frac{1}{2i \operatorname{Im}(\zeta_{n})} \left[\sum_{k=0}^{j+1} {j+1 \choose k} (i \operatorname{Im}(\zeta_{n}))^{k} (b + \operatorname{Re}(\zeta_{n}))^{j+1-k} - \sum_{k=0}^{j+1} {j+1 \choose k} (-i \operatorname{Im}(\zeta_{n}))^{k} (b + \operatorname{Re}(\zeta_{n}))^{j+1-k} \right]$$
$$= \frac{1}{2i \operatorname{Im}(\zeta_{n})} \left[\sum_{k=0}^{j+1} {j+1 \choose k} (b + \operatorname{Re}(\zeta_{n}))^{j+1-k} \left((i \operatorname{Im}(\zeta_{n}))^{k} - (-i \operatorname{Im}(\zeta_{n}))^{k} \right) \right]$$

$$= \sum_{0 \le k \le \frac{j+1}{2}} {j+1 \choose 2k+1} (b + \operatorname{Re}(\zeta_n))^{j-2k} (-\operatorname{Im}(\zeta_n)^2)^k.$$

Recall that J_n was shown to be either D_n-1 or D_n-2 . Evaluating β_j at $j = D_n-1$ and $j = D_n - 2$, we get

$$\beta_{D_n-1} = \sum_{0 \le k \le \frac{D_n}{2}} {D_n \choose 2k+1} (b + \operatorname{Re}(\zeta_n))^{D_n - 2k - 1} (-\operatorname{Im}(\zeta_n)^2)^k \text{ and}$$
$$\beta_{D_n-2} = \sum_{0 \le k \le \frac{D_n - 1}{2}} {D_n - 1 \choose 2k+1} (b + \operatorname{Re}(\zeta_n))^{D_n - 2k - 2} (-\operatorname{Im}(\zeta_n)^2)^k.$$

Taking J_n to be such that $\beta_{J_n} > \beta_{J_n-1}$ and $\beta_{J_n} > \beta_{J_n+1}$, we define $\beta_{J_n} = \max(\beta_{D_n-1}, \beta_{D_n-2})$. Thus, $\mathcal{B}_b^{(n)}$ is the maximum of

$$\mathcal{B}_{b,1}^{(n)} = \left(\sum_{0 \le k \le \frac{D_n}{2}} {D_n \choose 2k+1} (b + \operatorname{Re}(\zeta_n))^{D_n - 2k - 1} (-\operatorname{Im}(\zeta_n)^2)^k \right) (1 - A_n + B_n)$$

and

$$\mathcal{B}_{b,2}^{(n)} = \left(\sum_{0 \le k \le \frac{D_n - 1}{2}} {D_n - 1 \choose 2k + 1} (b + \operatorname{Re}(\zeta_n))^{D_n - 2k - 2} (-\operatorname{Im}(\zeta_n)^2)^k \right) (1 - A_n + B_n)$$

for each $n \in \{3, 4, 6\}$, completing the proof of Theorem 1.1.

Chapter 3

TRUNCATED BINOMIAL POLYNOMIALS

3.1 Preliminaries

We first introduce the notion of Newton polygons. Let $f(x) = \sum_{j=0}^{r} a_j x^j$ be a polynomial in $\mathbb{Z}[x]$ with $a_0 a_r \neq 0$ and fix a prime p. For an integer $m \neq 0$, denote $\nu_p(m)$ to be the p-adic valuation of m, that is, the exponent in the largest power of pdividing m. Let S be the set of lattice points $(j, \nu_p(a_{r-j}))$ for $0 \leq j \leq r$ with $a_{r-j} \neq 0$. The Newton polygon of f(x) with respect to the prime p is the polygonal path along the lower convex hull of these points from $(0, \nu_p(a_r))$ to $(r, \nu_p(a_0))$. The endpoints of every edge belong to the set S, and the slopes of the edges strictly increase as we move from left to right along the Newton polygon.

Newton polygons hold a wealth of information regarding the irreduciblity of a polynomial. The main result we use regarding Newton polygons is due to Dumas ([7] and [29]) and relates the Newton polygon of two polynomials to the Newton polygon of their product.

Theorem 3.1. Let g(x) and h(x) be in $\mathbb{Z}[x]$ with $g(0)h(0) \neq 0$, and let p be a prime. Let k be a non-negative integer such that p^k divides the leading coefficient of g(x)h(x)but p^{k+1} does not. Then the edges of the Newton polygon for g(x)h(x) with respect to p can be formed by constructing a polygonal path beginning at (0,k) and using translates of the edges in the Newton polygons for g(x) and h(x) with respect to the prime p, using exactly one translate for each edge of the Newton polygons for g(x) and h(x). Necessarily, the translated edges are translated in such a way as to form a polygonal path with the slopes of the edges increasing from left to right.

Theorem 3.1 will be utilized in the following way. Let f(x) be a polynomial of degree 6 such that there are primes p and q where the Newton polygon with respect to p has edges of horizontal length divisible by 2, and the Newton polygon with respect to q has edges of horizontal length divisible by 3. From Theorem 3.1, we see that if f(x) = g(x)h(x) where g(x) and h(x) are in $\mathbb{Z}[x]$ with deg g(x) > 0, then the total horizontal length of the Newton polygon of g(x) with respect p must be 2, 4, or 6; and the total horizontal length of the Newton polygon of g(x) with respect to q must be 3 or 6. The only case that these two Newton polygons agree are when the total lengths are 6, which means that g(x) has degree 6. Thus, f(x) must be irreducible over \mathbb{Q} .

To prove Theorem 1.3, we utilize work by R. Stauduhar in [37] on computational Galois theory. In particular we have the following definition related to finding the Galois group of a polynomial.

Definition 3.2. Let $F(x_1, \ldots, x_n)$ be a polynomial with integer coefficients in the indeterminants x_1, \ldots, x_n . Let G be a group of permutations on $1, \ldots, n$. If F is left unchanged by precisely the permutations of G, we say that F belongs to G.

The following Theorem combines Theorems 4 and 5 from [37].

Theorem 3.3. Let p(x) be a monic irreducible polynomial of degree n with integer coefficients. Let r_1, r_2, \ldots, r_n be a fixed ordering of the roots of p(x). Suppose H is a transitive subgroup of S_n , and suppose that, with respect to the given ordering of the roots, the Galois group Γ of p(x) is a subgroup of H. Let G be a subgroup of H and $F(x_1, \ldots, x_n)$ a function belonging to G in H. Let π_1, \ldots, π_k be representative for the right cosets of G in H. Then the resolvent polynomial

$$Q_{(H,G)}(y) = \prod_{i=1}^{k} (y - \pi_i(F(r_1, \dots, r_n)))$$

has integer coefficients with $F(r_1, \ldots, r_n)$ a root. Moreover, if we assume $F(r_1, \ldots, r_n)$ is not a repeated root of $Q_{(H,G)}(y)$, then $\Gamma \subset G$ if and only if $F(r_1, \ldots, r_n)$ is a rational integer.

Recall from Section 1.2 with r = 6 that for t a non-negative integer the polynomials

$$p_{6,t}(x) = \sum_{j=0}^{6} {\binom{t+j}{j}} x^j, \qquad \widetilde{p}_{6,t}(x) = \sum_{j=0}^{6} {\binom{t+j}{j}} x^{6-j},$$

and $\widetilde{p}_{6,t}(x+1) = \sum_{j=0}^{6} {\binom{t+7}{j}} x^{6-j}$

each have the same Galois group over \mathbb{Q} since the roots for each generate the same number field. To prove Theorem 1.3, we focus on the polynomials $\tilde{p}_{6,t}(x)$ and $\tilde{p}_{6,t}(x+1)$.

Our goal is to utilize the first part of Theorem 3.3 to construct the resolvent polynomial to then use the latter half of Theorem 3.3 to say something about the Galois group of $p_{6,t}(x)$ over \mathbb{Q} . In order to do so, we must have the conditions of Theorem 3.3 hold; in particular, we will want $p_{6,t}(x)$ to be irreducible for all values of t. Notice that the irreducibility over \mathbb{Q} of one of $p_{6,t}(x)$, $\tilde{p}_{6,t}(x)$, and $\tilde{p}_{6,t}(x+1)$ implies the irreducibility of the other two. For example, if $\tilde{p}_{6,t}(x+1)$ is irreducible, then so is $p_{6,t}(x)$. Indeed, if $p_{6,t}(x) = g_t(x)h_t(x)$, then $\tilde{p}_{6,t}(x+1) = \tilde{g}_t(x+1)\tilde{h}_t(x+1)$. Similarly, if $\tilde{p}_{6,t}(x)$ is irreducible, then so is $p_{6,t}(x)$.

3.2 IRREDUCIBILITY OF $p_{6,t}(x)$

We start by considering the polynomials with integer coefficients defined by

$$q(x,t) = 6! \tilde{p}_{6,t}(x) = 6! \sum_{j=0}^{6} \binom{t+j}{j} x^{6-j}$$

and

$$q(x+1,t) = 6! \tilde{p}_{6,t}(x+1) = 6! \sum_{j=0}^{6} \binom{t+7}{j} x^{6-j}$$

To make our argument easier to follow, we write out the terms of each polynomial below.

$$q(x,t) = 6! \, \tilde{p}_{6,t}(x) = 6! \, x^6 + 6! \, (t+1)x^5 + 3 \cdot 5! \, (t+2)(t+1)x^4 + 5! \, (t+3)(t+2)(t+1)x^3 + 6 \cdot 5(t+4)(t+3)(t+2)(t+1)x^2 + 6(t+5)(t+4)(t+3)(t+2)(t+1)x + (t+6)(t+5)(t+4)(t+3)(t+2)(t+1),$$

and

$$q(x+1,t) = 6! \, \tilde{p}_{6,t}(x+1) = 6! \, x^6 + 6! \, (t+7)x^5 + 3 \cdot 5! \, (t+6)(t+7)x^4 + 5! \, (t+5)(t+6)(t+7)x^3 + 6 \cdot 5(t+4)(t+5)(t+6)(t+7)x^2 + 6(t+3)(t+4)(t+5)(t+6)(t+7)x + (t+2)(t+3)(t+4)(t+5)(t+6)(t+7).$$

Let $t + 7 = p_1^{n_1} p_2^{n_2} \dots p_{j_t}^{n_{j_t}} P_t$ where the p_k , for $1 \le k \le j_t$, are the distinct primes greater than 5 dividing t + 7 and $P_t = 2^{e_2} 3^{e_3} 5^{e_5}$ with $e_i \ge 0$. The choice of letting $p_k > 5$ is to ensure that the 6! and the other constant factors shown in the terms above do not affect the Newton polygon of q(x + 1, t) with respect to the primes p_k for each k. If there is a k such that $p_k \mid (t + 7)$ while $p_k^2 \nmid (t + 7)$, then q(x + 1, t)is Eisenstein with respect to p and hence irreducible. So we do not need to consider the case that t + 7 has a prime divisor > 5 with multiplicity 1; thus, we suppose that for each k, we have $n_k > 1$. The Newton polygons of q(x + 1, t) with respect to the primes p_k will each have vertices (0,0) and $(6, n_k)$. If there is a k such that $gcd(n_k, 6) = 1$, then the Newton polygon of q(x+1, t) with respect to p_k will contain only two lattice points, (0, 0) and $(6, n_k)$. In this case, q(x+1, t) will be irreducible for such values of t.

Thus, if t + 7 has prime factors p_k larger than 5 with multiplicity n_k at least 2, we know that q(x+1,t) will be irreducible unless $gcd(n_k, 6) > 1$ for each such k. We have three remaining cases when t + 7 has a prime factor larger than 5: n_k is divisible by 2 for each k; n_k is divisible by 3 for each k; or there is at least one prime p_k satisfying $gcd(n_k, 6) = 2$ and at least one prime p_ℓ satisfying $gcd(n_\ell, 6) = 3$. While the first two cases are not mutually exclusive, the fact that they could overlap is irrelevant for our argument.

Consider the third case. In this case, write $n_k = 2a$ with $3 \nmid a$, and $n_\ell = 3b$ with $2 \nmid b$. The Newton polygon of q(x + 1, t) with respect to p_k is a line segment with endpoints (0,0) and (6,2a), containing the lattice points (0,0), (3,a), and (6,2a). Similarly, the Newton polygon of q(x + 1, t) with respect to p_ℓ is a line segment with endpoints (0,0) and (6,3b), containing the lattice points (0,0), (2,b), (4,2b), and (6,3b). Using Theorem 3.1, we have that such a q(x + 1,t) is irreducible over \mathbb{Q} . Thus, when t + 7 has at least one prime factor $p_k^{n_k}$ with $p_k > 5$, we have shown that q(x + 1, t) is irreducible except possibly when n_k is divisible by 2 for each such k or when n_k is divisible by 3 for each such k.

For these two cases, we look at the Newton polygons of q(x,t) with respect to various primes dividing t + 1. Notice that the same arguments hold for q(x,t) and t + 1. That is, let $t + 1 = q_1^{m_1} q_2^{m_2} \dots q_{r_t}^{m_{r_t}} Q_t$ where the q_k are distinct primes greater than 5 with $m_k > 1$ for each $k \in \{1, 2, \dots, r_t\}$ and $Q_t = 2^{f_2} 3^{f_3} 5^{f_5}$ for some $f_i \ge 0$. Similar to the argument for q(x + 1, t) above, we obtain that if $r_t > 0$, then q(x, t) is irreducible except possibly when m_k is divisible by 2 for each k or when m_k is divisible by 3 for each k. Since q(x, t) is irreducible for a given t exactly when q(x + 1, t) is irreducible for the same values of t, we are interested in the values of t where these cases occur simultaneously for q(x,t) and q(x+1,t). That is, denoting the horizontal lengths between lattice points along a Newton polygon as a list, we have the four cases where q(x,t) has a Newton polygon with horizontal lengths either [2, 2, 2] or [3, 3], and q(x+1,t) has a Newton polygon with horizontal lengths either [2, 2, 2] or [3, 3].

Assume that we are in one of these four cases. We now shift our focus from the coefficients of x^5 to the coefficients of x^4 . Using many of the same ideas as before, if p > 3 is a prime such that $p^n \mid (t+6)$ but $p^{n+1} \nmid (t+6)$, then the Newton polygon of q(x+1,t) with respect to the prime p has vertices $(0,\epsilon)$, $(1,\epsilon)$, and $(6, n+\epsilon)$ where $\epsilon = 0$ if p > 5, and $\epsilon = 1$ if p = 5. Here, we are able to include the prime 5 because the constant term will not add an additional power of 5 since t + 1 is not a factor. If n is not divisible by 5, then their will be no other lattice points on the Newton polygon, except in the case that 5 strictly divides t + 6. When this happens, the Newton polygon is a horizontal line segment from (0,1) to (6,1) and we can not conclude that q(x+1,t) is irreducible. For $p^n \neq 5$, the horizontal distance between lattice points on the Newton polygon of q(x + 1, t) with respect to p will be [1, 5]. Combining this with the fact that the Newton polygon with respect to a different prime will have horizontal distances between lattice points [2, 2, 2] or [3, 3], we conclude that the polynomial q(x + 1, t) will be irreducible by Theorem 3.1. If, however, there is a prime p > 3 such that $p^{5n} \mid (t+6)$ but $p^{5n+1} \nmid (t+6)$, the lattice points on the Newton Polygon with respect to p will have horizontal lengths [1, 1, 1, 1, 1, 1]. When this happens we can not conclude that q(x+1, t) is irreducible.

Again, the same arguments hold when looking at q(x,t) and t+2. The only instances where q(x,t) can factor occur when there is a prime q > 3 such that $q^{5m} \mid (t+2)$ but $q^{5m+1} \nmid (t+2)$, or when 5 strictly divides t+2. Since q(x,t) is irreducible for a given t exactly when q(x+1,t) is irreducible for the same t, we need only consider the values of t where the exponents of each prime divisor greater than 3 for both t + 2 and t + 6 are each divisible by 5. Notice that both t + 6 and t + 2 are not divisible by 5. Thus, we reduce the four cases above to the case that $t + 6 = ax^5$ and $t + 2 = by^5$ with $a = 2^{e_2}3^{e_3}5^{\delta_1}$ and $b = 2^{f_2}3^{f_3}5^{\delta_1}$ where $e_j \in \{0, 1, 2, 3, 4\}$, $f_j \in \{0, 1, 2, 3, 4\}, \ \delta_i \in \{0, 1\}, \ \text{and} \ \delta_1 \delta_2 \neq 1$. Since these two conditions must be satisfied simultaneously for q(x, t), and thus q(x + 1, t), to potentially factor, we subtract the two and find the integer solutions to the Thue equations

$$ax^5 - by^5 = 4.$$

Using built-in programs to find integer solutions to Thue equations in Magma V2.22, we obtain integer solutions to these 1875 Thue equations. Notice that since $t \ge 0$, we must have $ax^5 \ge 6$ and $by^5 \ge 2$. Of the 1875 Thue equations, only 126 have integer solutions, with only 12 having solutions where $t \ge 0$. Table 3.1 exhibits these 12 Thue equations, along with their solution that corresponds to a non-negative t. A computation shows for each of these 12 values of t, the sextic polynomial q(x, t) is irreducible.

Table 3.1 Solutions to $ax^5 - by^5 = 4$ corresponding to positive t

Thue Equation	Solution	t
$8x^5 - 4y^5 = 4$	(1, 1)	2
$36x^5 - y^5 = 4$	(1, 2)	30
$6x^5 - 2y^5 = 4$	(1, 1)	0
$16x^5 - 12y^5 = 4$	(1, 1)	10
$12x^5 - 8y^5 = 4$	(1, 1)	6
$10x^5 - 6y^5 = 4$	(1, 1)	4

Thue Equation	Solution	t
$40x^5 - 36y^5 = 4$	(1,1)	34
$20x^5 - 16y^5 = 4$	(1,1)	14
$9x^5 - 5y^5 = 4$	(1,1)	3
$324x^5 - 10y^5 = 4$	(1,2)	318
$2x^5 - 60y^5 = 4$	(2,1)	58
$24x^5 - 20y^5 = 4$	(1,1)	18

Notice that we are looking at values of t such that t + 6 and t + 2 each have a prime factor greater than 3. The Thue equations above also include the case that t + 6 or t + 2 do not have any prime factors greater than 3. When this happens, $t + 6 = 2^{a_2}3^{a_3}$ or $t + 2 = 2^{b_2}3^{b_3}$. Taking the difference still results in $ax^5 - by^5 = 4$ with x or y products of powers of 2 and 3. Hence, this completes the case that t + 7and t + 1 each have at least one prime factor greater than 5. We now have two possibilities left; exactly one of t + 7 or t + 1 has at least one prime factor larger than 5, and neither t + 7 nor t + 1 have a prime factor larger than 5. In the case that t + 7 and t + 1 each do not have a prime divisor larger than 5, write $t + 7 = 2^{e_2}3^{e_3}5^{e_5}$ and $t + 1 = 2^{f_2}3^{f_3}5^{f_5}$. Subtracting the two, we get the Thue equations

$$ax^3 - by^3 = 6,$$

where $ax^3 = t + 7 = 2^{e_2}3^{e_3}5^{e_5}$ and $by^3 = t + 1 = 2^{f_2}3^{f_3}5^{f_5}$, with $e_j \in \{0, 1, 2\}$ and $f_j \in \{0, 1, 2\}$ for each j. Using Magma V2.22, we obtain integer solutions to these 729 Thue equations. Notice that since $t \ge 0$, we must have $ax^3 \ge 7$ and $by^3 \ge 1$. Of the 729 Thue equations, only 86 have integer solutions, with only 18 having solutions with $t \ge 0$. Table 3.2 exhibits these 18 Thue equations, along with their solution that corresponds to a positive t. A computation shows for each of these 18 values of t, the sextic polynomial q(x, t) is irreducible.

Table 3.2 Solutions to $ax^3 - by^3 = 6$ corresponding to positive t

Thue Equation	Solution	t	Thue Ec
$x^3 - 2y^3 = 6$	(2,1)	1	$12x^3 - 9$
$2x^3 - 6y^3 = 6$	(3, 2)	47	$15x^3 - 6$
$2x^3 - 10y^3 = 6$	(2,1)	9	$15x^3 - 9$
$3x^3 - 18y^3 = 6$	(2,1)	17	$18x^3 - 1$
$3x^3 - 75y^3 = 6$	(3,1)	74	$18x^3 - 6$
$4x^3 - 2y^3 = 6$	(4,5)	249	$30x^3 - 3$
$9x^3 - 3y^3 = 6$	(1,1)	2	$36x^3 - 3$
$10x^3 - 4y^3 = 6$	(1,1)	3	$60x^3 - 2$
$12x^3 - 6y^3 = 6$	(1, 1)	5	$150x^3 - 1$

Thue Equation	Solution	t
$12x^3 - 90y^3 = 6$	(2,1)	89
$15x^3 - 6y^3 = 6$	(14, 19)	41153
$15x^3 - 9y^3 = 6$	(1, 1)	8
$18x^3 - 12y^3 = 6$	(1, 1)	11
$18x^3 - 60y^3 = 6$	(3, 2)	479
$30x^3 - 3y^3 = 6$	(1, 2)	23
$36x^3 - 30y^3 = 6$	(1, 1)	29
$60x^3 - 2y^3 = 6$	(1, 3)	53
$150x^3 - 18y^3 = 6$	(1,2)	143

In the case that exactly one of t + 7 or t + 1 has a prime factor larger than 5, we use much of what was discussed above. That is, if t + 7 is divisible by a prime larger than 5, we have shown that q(x+1,t) is irreducible except possibly when each of the primes larger than 5 dividing t + 7 have exponents divisible by 2 or when each of the primes larger than 5 dividing t + 7 have exponents divisible by 3. That is, we can write t + 7 as either $t + 7 = a_1x^2$ or $t + 7 = a_2x^3$ for $a_1 = 2^{e_2}3^{e_3}5^{e_5}$ and $a_2 = 2^{f_2}3^{f_3}5^{f_5}$ with $e_j \in \{0,1\}$ and $f_j \in \{0,1,2\}$. In either case, since now t+1 has no prime divisors > 5, we can write $t+1 = by^3$ with $b = 2^{g_2}3^{g_3}5^{g_5}$ where $g_j \in \{0,1,2\}$ and y is divisible by no primes larger than 5. Taking the difference, the only possibilities for q(x,t) to factor occur at integer solutions to

$$a_1x^2 - by^3 = 6$$
 or $a_2x^3 - by^3 = 6$

The same must be true for the case that t + 1 is divisible by a prime larger than 5 while t + 7 is not. That is, for $b_1 = 2^{e_2} 3^{e_3} 5^{e_5}$ and $b_2 = 2^{f_2} 3^{f_3} 5^{f_5}$ with $e_j \in \{0, 1\}$ and $f_j \in \{0, 1, 2\}$, and when $a = 2^{g_2} 3^{g_3} 5^{g_5}$, we look for integer solutions to

$$ax^3 - b_1y^2 = 6$$
 and $ax^3 - b_2y^3 = 6$

We have already exhibited solutions to $a_2x^3 - by^3 = 6$ and $ax^3 - b_2y^3 = 6$. Using built-in programs to find integer points on elliptic curves in Magma V2.22, out of the 216 elliptic curves of the form $a_1x^2 - by^3 = 6$, only 50 have integer solutions, with just 23 satisfying $t \ge 0$. Of these 23 equations, only 7 have solutions that correspond to tvalues such that t + 7 is divisible by at least one prime > 5 and t + 1 is divisible by only primes ≤ 5 . And out of the 216 elliptic curves of the form $ax^3 - b_1y^2 = 6$, only 29 have integer solutions, with just 21 satisfying $t \ge 0$. Of these 21 equations, only 2 have solutions that correspond to t values such that t + 7 has no large prime divisor and t + 1 has at least one large prime divisor. Table 3.3 displays these equations along with their solutions that correspond to appropriate t. For convenience, we list only the solutions (x, y) such that $x \ge 0$ and $y \ge 0$.

In the way of some details, observe that the equation $ax^2 - by^3 = 6$ is equivalent to $X^2 - Y^3 = 6a^3b^2$ for $X = a^2bx$ and Y = aby for $ab \neq 0$. Using Magma V2.22, we find integer solutions to $X^2 - Y^3 = 6a^3b^2$, then make the substitution $x = X/(ba^2)$ and y = Y/(ab). Notice that not all integer solutions of $X^2 - Y^3 = 6a^3b^2$ are equivalent to integer solutions to $ax^2 - by^3 = 6$; however, if (x, y) is an integer solution of $ax^2 - by^3 = 6$, then (a^2bx, aby) is an integer solution to $X^2 - Y^3 = 6a^3b^2$. Thus we do

Equation	Solutions (x, y)	t
$2x^3 - 3y^2 = 6$	(9, 22)	1451
$6x^2 - y^3 = 6$	(17, 12)	1727
$6x^2 - 10y^3 = 6$	(19, 6)	2159
$6x^2 - 36y^3 = 6$	(7, 2)	287
$6x^2 - 90y^3 = 6$	(31, 4), (11, 2), (161, 12)	5759, 719, 155519
$6x^2 - 150y^3 = 6$	(26, 3)	4049
$6x^2 - 225y^3 = 6$	(49, 4)	14399
$15x^2 - y^3 = 6$	(7,9)	728
$300x^3 - 6y^2 = 6$	(1,7)	293

Table 3.3 Solutions to $a_1x^2 - by^3 = 6$ and $ax^3 - b_1y^2 = 6$

not exclude any integer solutions of $ax^2 - by^3 = 6$ by making these substitutions. For $ax^3 - by^2 = 6$, we consider the equation $Y^2 - X^3 = -6a^2b^3$ for X = abx and $Y = ab^2y$. For each of these values for t, we show that q(x,t) or q(x+1,t) is irreducible by a direct computation.

3.3 The Galois group of $p_{6,t}(x)$

The rest of the proof of Theorem 1.3 is dedicated to showing that there are only finitely many values of $t \in \mathbb{Z}_{\geq 0}$ such that $p_{6,t}(x)$ has Galois group $PGL_2(5)$. Since the ploynomials $p_{6,t}(x)$, $\tilde{p}_{6,t}(x)$, and $\tilde{p}_{6,t}(x+1)$ each have the same Galois group, we choose to work with $\tilde{p}_{6,t}(x)$. We make use of the following lemma from [6] and [5].

Lemma 3.4. Let f(x) be an irreducible polynomial of degree $r \ge 2$. If the Galois group of f(x) over \mathbb{Q} contains a 2-cycle and a q-cycle for some prime q > r/2, then the Galois group is S_r . Alternatively, if the Galois group of f(x) over \mathbb{Q} contains a 3-cycle and a q-cycle for some prime q > r/2, then the Galois group is either the alternating group A_r or the symmetric group S_r .

Using Lemma 3.4, we obtain the following Lemma which we will use to construct the resolvent polynomial. **Lemma 3.5.** Let H be the subgroup $PGL_2(5)$ in S_6 . Let G be the subgroup generated by the 2-cycle (1,2) and the 3-cycle (1,2,3) in S_6 . Then the elements of G can be used as representatives for the 6 distinct cosets of H in S_6 .

Proof. From [16], we know that the Galois group of $\tilde{p}_{6,t}(x)$ is either S_6 or $PGL_2(5)$. Assume that it is $PGL_2(5)$. From Section 3.2, the polynomial $\tilde{p}_{6,t}(x)$ is irreducible with degree 6 for every $t \in \mathbb{Z}_{\geq 0}$.

Since any *n*-cycle and a 2-cycle generate S_n , we see that $G = S_3$; thus, the size of G is 6. It is not difficult to check that

$$G = \{(1), (1, 2), (2, 3), (1, 3), (1, 2, 3), (1, 3, 2)\}.$$

To show that the six cosets H, (1,2)H, (2,3)H, (1,3)H, (1,2,3)H, (1,3,2)H are distinct, we show that $H \cap G = \{(1)\}.$

By Cauchy's Theoreom, since 5 divides 120 = |H|, H has an element of order 5. Since $H \subset S_6$ and 5 is prime, this element must be a 5-cycle. Since H contains a 5-cycle, if any of (1,2), (2,3) or (1,3) are in H, then $H = S_6$ by Lemma 3.4, which contradicts $H = PGL_2(5)$. Similarly, if (1,2,3) or (1,3,2) are in H, then Lemma 3.4 states that H is either A_6 or S_6 , neither of which is $PGL_2(5)$. Thus it must be the case that $H \cap G = \{(1)\}$.

To finish the proof, if $a, b \in G$ and aH = bH, then $a^{-1}b \in H$. Since $a^{-1}b$ is also in G, we have that $a^{-1}b = (1)$ because $H \cap G = \{(1)\}$. Thus, a = b implying that aH = bH only if a = b. Hence the six cosets represented by the elements in G are distinct.

Using Lemma 3.5, we follow [37] closely to finish Theorem 1.3. We start by finding the polynomial that belongs to $PGL_2(5)$; that is, the polynomial that is fixed by precisely $PGL_2(5)$. Following the proof of [37, Theorem 1], set $F^* = \alpha_2 \alpha_3^2 \alpha_4^3 \alpha_5^4 \alpha_6^5$. Then

$$F = F(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6) = \sum_{\sigma \in PGL_2(5)} \sigma(F^*) = \sum_{\sigma \in PGL_2(5)} \alpha_{\sigma(2)} \alpha_{\sigma(3)}^2 \alpha_{\sigma(4)}^3 \alpha_{\sigma(5)}^4 \alpha_{\sigma(6)}^5 \alpha_{\sigma(6)$$

belongs to $PGL_2(5)$. Notice that F, by definition, is not a symmetric polynomial in the α'_i s.

We now construct the resolvent polynomial $Q(x,t) = Q_{(S_6,PGL_2(5))}(x,t)$ using Theorem 3.3. Let π_i be representatives for the right cosets of $PGL_2(5)$ in S_6 , and r_1, \ldots, r_6 be the roots of $\tilde{p}_{6,t}(x)$. By Lemma 3.5, we know that the right cosets of $PGL_2(5)$ can be represented by elements in the subgroup generated by (1,2) and (1,2,3). Then Q(x) is defined by

$$Q(x,t) = \prod_{i=1}^{6} (x - F(r_{\pi_i(1)}, r_{\pi_i(2)}, r_{\pi_i(3)}, r_{\pi_i(4)}, r_{\pi_i(5)}, r_{\pi_i(6)}))$$

Notice that Q(x,t) is a symmetric polynomial in the roots $r_1, ..., r_6$ of $\tilde{p}_{6,t}(x)$. Using the fundamental theorem of symmetric polynomials, we can write Q(x,t) in terms of the elementary symmetric polynomials in the variables $r_1, ..., r_6$, and use the correlation between the elementary symmetric polynomials and the coefficients of $\tilde{p}_{6,t}(x)$ to get a closed form for the resolvent Q(x,t). This calculation proved too cumbersome for Maple 2019. Instead, we define a family of symmetric polynomials that also relate to the coefficients of $\tilde{p}_{6,t}(x)$. Let $\sigma_{i,j}$ be the sum of all possible *i*-tuples of x_k for $k \leq n$ raised to the *j*-th power where $i \leq m$ and *j* is a positive integer. For example, for n = 4 we have the four variables x_1, x_2, x_3 , and x_4 , and we have the symmetric polynomials

$$\begin{split} \sigma_{1,1} &= x_1 + x_2 + x_3 + x_4, \\ \sigma_{1,2} &= x_1^2 + x_2^2 + x_3^2 + x_4^2, \\ \sigma_{2,1} &= x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4, \\ \sigma_{2,2} &= x_1^2 x_2^2 + x_1^2 x_3^2 + x_1^2 x_4^2 + x_2^2 x_3^2 + x_2^2 x_4^2 + x_3^2 x_4^2, \\ \sigma_{4,3} &= x_1^3 x_2^3 x_3^3 x_4^3, \quad \text{etc.} \end{split}$$

Since we have the six variables r_1, \ldots, r_6 , we will let *i* range from 1 to 6. Notice that if j = 1, the polynomials $\sigma_{i,1}$ for $i \in \{1, 2, \ldots, 6\}$ are the elementary symmetric polynomials, and are thus the coefficients of $\tilde{p}_{6,t}(x)$ up to sign. Also notice that $\sigma_{6,j} = \sigma_{6,1}^j$, so $\sigma_{6,j}$ is $\tilde{p}_{6,t}(0)^j$. To get $\sigma_{1,j}$, we use Newton's power sum formulas. That is, we relate each $\sigma_{1,j}$ to the elementary symmetric polynomials and $\sigma_{1,k}$ for k < j by

$$\sigma_{1,2} = \sigma_{1,1}^2 - 2\sigma_{2,1},$$

$$\sigma_{1,3} = \sigma_{1,1}\sigma_{1,2} - \sigma_{2,1}\sigma_{1,1} + 3\sigma_{3,1},$$

$$\sigma_{1,4} = \sigma_{1,1}\sigma_{1,3} - \sigma_{2,1}\sigma_{1,2} + \sigma_{3,1}\sigma_{1,1} - 4\sigma_{4,1},$$

$$\sigma_{1,5} = \sigma_{1,1}\sigma_{1,4} - \sigma_{2,1}\sigma_{1,3} + \sigma_{3,1}\sigma_{1,2} - \sigma_{4,1}\sigma_{1,1} + 5\sigma_{5,1},$$

$$\sigma_{1,j} = \sum_{k=1}^{6} (-1)^{k+1} \sigma_{k,1}\sigma_{1,j-k} \text{ for } j \ge 6.$$

Working sequentially, we are able to use these formulas to write $\sigma_{1,j}$ in terms of the coefficients of $\tilde{p}_{6,t}(x)$ for any positive integer j.

For $\sigma_{2,j}$, we write $\sigma_{1,2}$ in terms of the elementary symmetric polynomials

$$\sigma_{1,2} = \sigma_{1,1}^2 - 2\sigma_{2,1}$$
 or $\sigma_{2,1} = \frac{\sigma_{1,1}^2 - \sigma_{1,2}}{2}$

Replacing r_i with r_i^n gives us the formula

$$\sigma_{2,n} = \frac{\sigma_{1,n}^2 - \sigma_{1,2n}}{2}$$

that we use to write $\sigma_{2,n}$ in terms of the coefficients of $\tilde{p}_{6,t}(x)$ for any positive integer *j*. Using the same approach, we can express $\sigma_{3,n}$, $\sigma_{4,n}$, and $\sigma_{5,n}$ in terms of the elementary symmetric polynomials and the $\sigma_{i,j}$ that we have already calculated using

$$\sigma_{3,n} = \frac{\sigma_{1,3n} - \sigma_{1,1}^3 + 3\sigma_{1,n}\sigma_{2,n}}{3},$$

$$\sigma_{4,n} = \frac{\sigma_{1,n}^4 - 4\sigma_{1,n}^2\sigma_{2,n} + 4\sigma_{1,n}\sigma_{3,n} + 2\sigma_{2,n}^2 - \sigma_{1,4n}}{4}, \text{ and}$$

$$\sigma_{5,n} = \frac{\sigma_{1,5n} - \sigma_{1,n}^5 + 5\sigma_{1,n}^3\sigma_{2,n} - 5\sigma_{1,n}^2\sigma_{3,n} - 5\sigma_{1,n}\sigma_{2,n}^2 + 5\sigma_{1,n}\sigma_{4,n} + 5\sigma_{2,n}\sigma_{3,n}}{5}.$$

Thus, we are able to get all the $\sigma_{i,j}$ in terms of the coefficients of $\tilde{p}_{6,t}(x)$. Instead of writing Q(x,t) in terms of the elementary symmetric polynomials, we write it in terms of these $\sigma_{i,j}$. When writing Q(x,t) in terms of these $\sigma_{i,j}$, we go out to $\sigma_{6,17}$, which requires calculating up to $\sigma_{1,90}$. To mitigate the work for Maple, we write the $\sigma_{i,j}$ in terms of the coefficients of $\tilde{p}_{6,t-3}(x)$ instead of $\tilde{p}_{6,t}(x)$ as this makes the coefficients have fewer terms. For example, the coefficient of x becomes $t(t^2 - 1)(t^2 - 4)/120$ instead of $(t+5)(t+4) \dots (t+1)$. Hence, we are able to write the resolvent Q(x,t-3)in terms of x and t, which can be found in Appendix C.

To finish the proof of Theorem 1.3, we utilize the second half of Theorem 3.3. Notice that $F(r_1, ..., r_6)$ is a root of Q(x, t-3) since the identity element is a representative of the right cosets of $PGL_2(5)$ in S_6 . Using Maple 2019, one can check that $gcd\left(\frac{\partial Q(x, t-3)}{\partial x}, Q(x, t-3)\right) = 1$, so Q(x, t-3) has no repeated roots. Theorem 3.3 states that the Galois group of $\tilde{p}_{6,t-3}(x)$ is a subset of $PGL_2(5)$ if and only if $F(r_1, ..., r_6)$ is a rational integer. Since we know from [16] that $\tilde{p}_{6,t-3}(x)$ has Galois group either S_6 or $PGL_2(5)$, we actually have that $F(r_1, ..., r_6)$ is a rational integer if and only if the Galois group of $\tilde{p}_{6,t-3}(x)$ is $PGL_2(5)$. Using Siegel's Theorem [34], the curve Q(x, t-3) = 0 of genus 7 has only a finite number of integer solutions. Since $F(r_1, ..., r_6)$ is a solution to Q(x, t-3) = 0, there are only finitely many values for $t \in \mathbb{Z}$ such that $F(r_1, ..., r_6)$ is an integer, so there are finitely many integers t such that $\tilde{p}_{6,t-3}(x)$ has Galois group $PGL_2(5)$. This concludes the proof of Theorem 1.3.

In theory, one can find the integer values of t such that Q(x, t - 3) = 0; however, this is quite difficult in practice. In the context of our problem, we are more restrictive than finding integer values of t; we want integer values of t such that $t \ge 3$ so that t - 3 is nonnegative.

Chapter 4

WIDELY DIGITALLY STABLE COMPOSITE NUMBERS

4.1 Preliminaries

We begin by considering

$$N = 7 \cdot \frac{10^n - 1}{9} + M$$

where n and M are large natural numbers to be determined and n is large enough that the left-most digit of N is 7. Notice that N can be written as

$$N = 00\dots00\underbrace{77\dots77}_{n \text{ total 7's}} + M,$$

where $77 \dots 77$ is a string of *n* digits that are all 7's.

To prove Theorem 1.5, we will determine a positive integer M and a set of primes \mathcal{P} such that for infinitely many choices of the positive integer n, when we insert any $x \in \{0, 1, \ldots, 9\}$ between any two digits of N, including any of the infinitely many leading zeros, or to the right of the right-most digit of N, the resulting number will be divisible by at least one prime in \mathcal{P} . We will do so by forming covering systems of the integers where the moduli of the congruences in the coverings correspond to unique primes.

The role of 7 above is motivated by the idea of taking $7 \in \mathcal{P}$ and $M \equiv 0 \pmod{7}$ so that any insertion of the digit 0 or the digit 7 into the leading 0's or leading 7's of N will produce a number divisible by 7. Thus, we do not need to worry about these particular insertions. We will also require M to be congruent to one of 0, 2, 4 or 6 modulo 10 to ensure gcd(N, 10) = 1. For a nonnegative integer k, let $N^{(k)}(x)$ denote inserting a digit $x \in \{0, ..., 9\}$ to the right of the $k + 1^{st}$ digit of N, that is to the right of d_k . For example,

$$N^{(2)}(x) = 00 \dots 00d_{n-1}d_{n-2} \dots d_2 x d_1 d_0.$$

We set K to be the number of digits of M; thus, initially, K is unknown to us. Observe that $d_k = 7$ for $K \le k \le n - 1$. We will break the argument up into three cases: $k \ge n$ corresponding to the leading zeros, $K \le k \le n - 1$ corresponding to the leading sevens, and $0 \le k < K$ corresponding to M. We can formulate $N^{(k)}(x)$ above nicely for the first two cases. Specifically, with $x \in \{0, 1, ..., 9\}$, for $k \ge n$, the value of $N^{(k)}(x)$ takes the form

$$N_0^{(k)}(x) = 7 \cdot \frac{10^n - 1}{9} + M + x \cdot 10^k;$$

and for $K \leq k < n$, the value of $N^{(k)}(x)$ takes the form

$$N_7^{(k)}(x) = 7 \cdot 10^n + 7 \cdot \frac{10^n - 1}{9} + M + (x - 7) \cdot 10^k.$$

For $k \ge n$, we see that $N_0^{(k)}(x)$ is the result of inserting the digit x to the right of a leading zero; for $K \le k < n$, we see that $N_7^{(k)}(x)$ is the result of inserting the digit x to the right of a leading seven.

Recall that by taking $M \equiv 0 \pmod{7}$, we have that both $N^{(k)}(0)$ and $N^{(k)}(7)$ are divisible by the prime $7 \in \mathcal{P}$ for all $k \geq K$. We now also take $3 \in \mathcal{P}$ and $M \equiv 1$ (mod 3). Then if in addition $n \equiv 0 \pmod{3}$, one checks that

$$N^{(k)}(2) \equiv N^{(k)}(5) \equiv N^{(k)}(8) \equiv 0 \pmod{3}$$

for every nonnegative integer k. Thus, inserting an $x \in \{2, 5, 8\}$ into the number N results in a number divisible by 3. At this point, we have that inserting an $x \in \{0, 2, 5, 7, 8\}$ into the number N produces a number divisible by a prime in $\{3, 7\} \subseteq \mathcal{P}$.

To handle $x \in \{1, 3, 4, 6, 9\}$, we will do a bit more work, and this is where we will consider $N_0^{(k)}(x)$ and $N_7^{(k)}(x)$ separately, as well as inserting x in the right-most K digits of N. We begin with the following definition.

Definition 4.1. A finite system of congruences $x \equiv a_i \pmod{m_i}$, $1 \leq i \leq t$, is called a *covering of the integers* (or simply a *covering*) if each integer satisfies at least one congruence in the system.

For example, one can check that the system

$$x \equiv 1 \pmod{2} \qquad \qquad x \equiv 0 \pmod{3}$$
$$x \equiv 2 \pmod{6} \qquad \qquad x \equiv 4 \pmod{9}$$
$$x \equiv 10 \pmod{18} \qquad \qquad x \equiv 16 \pmod{18}$$

is a covering of the integers. This covering, as well as the coverings used in this dissertation, will not require that the moduli be distinct.

The following lemma is similar to [14, Lemma 1] and clarifies our use of covering systems. This lemma will be used for inserting a digit in the leading zeros. By way of notation, we define c(p) to be the multiplicative order of 10 modulo a prime with gcd(10, p) = 1.

Lemma 4.2. Let N and M be natural numbers such that

$$N = 7 \cdot \frac{10^n - 1}{9} + M,$$

where N has the decimal expansion

$$N = d_{n-1}d_{n-2}\dots d_1d_0, \quad d_i \in \{0, 1, \dots, 9\} \quad n \ge 1, \quad d_{n-1} = 7.$$

Let K be a nonnegative integer such that $d_k = 7$ for $K \le k \le n - 1$, and set $d_k = 0$ for $k \ge n$. For a fixed $x \in \{0, 1, ..., 9\}$, suppose we have distinct primes $p_1, ..., p_t$, each > 5, for which (i) there exists a covering of the integers

$$k \equiv b_i \pmod{c(p_i)}, \quad 1 \le i \le t,$$

(*ii*) $n \equiv 0 \pmod{lcm(c(p_1), \ldots, c(p_t))}$

(iii) M is a solution to the system of congruences

$$M \equiv -x \cdot 10^{b_i} \pmod{p_i}, \quad 1 \le i \le t.$$

Then, for all nonnegative integers k, we have

$$N_0^{(k)}(x) = 7 \cdot \frac{10^n - 1}{9} + M + x \cdot 10^k$$

is divisible by at least one of the primes p_i where $1 \le i \le t$.

Proof. Suppose the conditions in the lemma hold and let $k \ge n$. By (i), there is an $i \in \{1, \ldots, t\}$ such that $k \equiv b_i \pmod{c(p_i)}$. Since $c(p_i)$ is the order of 10 modulo the prime p_i , and $n \equiv 0 \pmod{c(p_1), \ldots, c(p_t)}$, we have $10^n - 1 \equiv 0 \pmod{p_i}$ and thus $(10^n - 1)/9 \equiv 0 \pmod{p_i}$ since $p_i > 5$. Thus

$$N_0^{(k)}(x) = 7 \cdot \frac{10^n - 1}{9} + M + x \cdot 10^k \equiv M + x \cdot 10^{b_i} \pmod{p_i}.$$

From (iii), we deduce that $N_0^{(k)}(x) \equiv 0 \pmod{p_i}$.

Although the conclusion holds for all nonnegative integers k, we are interested only in the case $k \ge n$ of the lemma.

Recall that we previously took $M \equiv 1 \pmod{3}$, $3 \in \mathcal{P}$, and $n \equiv 0 \pmod{3}$ to handle inserting an $x \in \{2, 5, 8\}$ into the number N. This corresponds to taking t = 1and $p_1 = 3$ in Lemma 4.2. As c(3) = 1, we take $b_1 = 0$. Observe then that (i) of Lemma 4.2 hold. This application of Lemma 4.2 can be viewed as a degenerate case, where the covering of the integers in (i) is the single congruence $k \equiv 0 \pmod{1}$ and taking $n \equiv 0 \pmod{3}$ is in lieu of having the prime $p_1 = 3 < 5$.

For each $x \in \{1, 3, 4, 6, 9\}$, we want to create a covering system to use with Lemma 4.2. The covering system will be of the form given in (i) corresponding to inserting x to the right of the digit d_k . This lemma is specifically to address the insertion of x into the leading 0's; we will want a similar but different lemma to address inserting a digit into the leading 7's and yet a different argument for inserting a digit to the right of d_k for k < K. To obtain the primes p of a given order c = c(p), one merely needs to look at the primes p which divide $\Phi_c(10)$, where $\Phi_c(x)$ is the c^{th} cyclotomic polynomial. Every prime divisor p of $\Phi_c(10)$ either will be such that the order of 10 modulo p is c or will be equal to the largest prime divisor of c. In [3, p. III C 1] it is discussed that the largest prime divisor of c can only divide $\Phi_c(10)$ to the first power. There are also no other primes besides those primes dividing $\Phi_c(10)$ for which the order of 10 modulo p is c. It follows that for the covering system given in (i), we can use the modulus c multiple times, where the multiplicity is equal to the number of distinct prime divisors of $\Phi_c(10)$ other than the largest prime divisor of c. What complicates the covering systems as we proceed is that the primes considered in general cannot be used for different $x \in \{1, 3, 4, 6, 9\}$. More precisely, a congruence involving a prime p_i in (i) can only be used for two different values of x if the congruence condition on M in (iii) is the same for those values of x. In practice, this rarely happens, but we will definitely take advantage of some instances where this is the case.

The prime divisors of $\Phi_c(10)$ were obtained through factorizations or partial factorizations largely using Magma V2.22 and checked using Maple 2019. To clarify, we can use the modulus c, L(c) times where L(c) is the number of distinct prime divisors of $\Phi_c(10)$ found, minus 1 if the largest prime factor of c divides $\Phi_c(10)$, plus τ , where $\tau = 0$ if the prime factorization we obtained was a complete factorization, $\tau = 1$ if the prime factorization we obtained was incomplete and the remaining factor is relatively prime to the product of the known prime divisors of $\Phi_c(10)$ and c and
the remaining factor is a probable prime, and $\tau = 2$ if the prime factorization we obtained was incomplete and the remaining factor is relatively prime to the product of the known prime divisors of $\Phi_c(10)$ and c and the remaining factor is neither a probable prime nor a prime power.

4.2 INSERTING A DIGIT INTO THE LEADING ZEROS

Set $\mathcal{P}_2 = \mathcal{P}_5 = \mathcal{P}_8 = \{3\}$ and $\mathcal{P}_0 = \mathcal{P}_7 = \{7\}$. For $x \in \{1, 3, 4, 6, 9\}$, let \mathcal{P}_x be a set of primes, to be determined, as in Lemma 4.2.

For this section, we make use of covering systems developed in [14] and [17], with some minor modifications. Thus, the tables given in this section are not identical to the tables in [14] and [17]. Some minor edits to the congruences were made so that some of the same moduli can be used for more congruences when we look at inserting a digit into the leading sevens in the next section.

Table 4.1 Covering used in Lemma 4.2 (i) for x = 9

row	congruence	prime p_i]	row	congruence	prime p_i
1	$k \equiv 0 \pmod{2}$	11]	3	$k \equiv 1 \pmod{8}$	73
2	$k \equiv 3 \pmod{4}$	101	1	4	$k \equiv 5 \pmod{8}$	137

When x = 9, the covering system used is given in Table 4.1. To clarify, the covering system consists of the congruences in the middle columns. One checks that this is a covering of the integers. One can also see that

$$2 = c(11) = \operatorname{ord}_{11}(10), \qquad 4 = c(101) = \operatorname{ord}_{101}(10),$$
$$8 = c(73) = \operatorname{ord}_{73}(10), \qquad 8 = c(137) = \operatorname{ord}_{137}(10).$$

What Table 4.1 is indicating is that

$$N_0^{(k)}(9) = 7 \cdot \frac{10^n - 1}{9} + M + 9 \cdot 10^k \equiv 0 \pmod{p},$$

for some $p \in \{11, 101, 73, 137\}$, depending on which congruence k satisfies from the covering. With regard to Lemma 4.2, we take

$$t = 4, \quad p_i \in \mathcal{P}_9 = \{11, 73, 101, 137\}, \quad n \equiv 0 \pmod{8},$$

and M satisfying all the congruences

$$M \equiv -9 \cdot 10^0 \equiv 2 \pmod{11}, \qquad M \equiv -9 \cdot 10^3 \equiv 90 \pmod{101}$$

 $M \equiv -9 \cdot 10^1 \equiv 56 \pmod{73}, \qquad M \equiv -9 \cdot 10^5 \equiv 90 \pmod{137}.$

Since we have different prime moduli above, the Chinese Remainder Theorem ensures us that there is a single congruence for M modulo $11 \cdot 101 \cdot 73 \cdot 137$ that is equivalent to the above congruences on M. Thus, Lemma 4.2 says that under these conditions, the number $N_0^{(k)}(9)$ is composite for all $k \ge n$.

Combining the information so far, we see that if $n \equiv 0 \pmod{24}$ and M satisfies all of the congruences on M modulo 11, 101, 73 and 137 above as well as $M \equiv 0$ $\pmod{7}$ and $M \equiv 1 \pmod{3}$, then $N_0^{(k)}(x)$ will be divisible by at least one prime in $\{3, 7, 11, 73, 101, 137\}$ for each $x \in \{0, 2, 5, 7, 8, 9\}$ and $k \ge n$.

For x = 3, we use the primes found in [14, Table 1]. While the covering is similar to that of [14, Table 1], we have again made some modifications to the congruences so that some of the same moduli can be used for more congruences when we look at inserting a digit into the leading sevens in the next section. Table 4.2 exhibits the covering used for x = 3 where we have made use of the notation

$$p_7 = 440334654777631, \quad p_{14} = 3199044596370769$$

The set \mathcal{P}_3 is the set of 14 primes in the columns "prime p_i ". One can check that the congruences in the columns "congruence" form a covering of the integers. The least common multiple of the moduli found in Table 4.2 is 216, so verifying that the congruneces in Table 4.2 form a covering amounts to verifying that each of 0, 1, ..., 215 satisfies at least one of the congruences. One further checks that each prime p listed in the "prime p_i " columns of Table 4.2 has c(p) equal to the corresponding modulus in that row. We can then apply Lemma 4.2 as was done previously to see that the number $N_0^{(k)}(3)$ is composite for all $k \ge n$.

row	congruence	prime p_i		row	congruence	prime p_i
1	$k \equiv 0 \pmod{3}$	37]	8	$k \equiv 53 \pmod{54}$	70541929
2	$k \equiv 1 \pmod{6}$	13		9	$k \equiv 26 \pmod{54}$	14175966169
3	$k \equiv 2 \pmod{9}$	333667		10	$k \equiv 4 \pmod{12}$	9901
4	$k \equiv 14 \pmod{18}$	19		11	$k \equiv 10 \pmod{24}$	99990001
5	$k \equiv 5 \pmod{18}$	52579	1	12	$k \equiv 22 \pmod{72}$	3169
6	$k \equiv 17 \pmod{27}$	757	1	13	$k \equiv 46 \pmod{72}$	98641
7	$k \equiv 8 \pmod{27}$	p_7		14	$k \equiv 70 \pmod{72}$	p_{14}

Table 4.2 Covering used in Lemma 4.2 (i) for x = 3

We use the same technique for $x \in \{1, 4, 6\}$. For $x \in \{1, 6\}$, we use similar coverings to those found in [14], and for x = 4 we use a similar covering to that found in Tables 6 and 7 from [17], which we reproduce here.

In general, one can verify that the congruences given in a table for a given x is a covering by setting ℓ to be the least common multiple of the moduli in the set of congruences and verifying that each integer in $[0, \ell-1]$ satisfies one of the congruences. Then it is not difficult to see that every integer will satisfy one of the congruences.

For x = 6, we use the covering found in Table 4.3, and for x = 1 we use the covering found in Table 4.4. The following notation for primes is used in these tables:

 $p_{10} = 3199044596370769, \quad p_{11} = 102598800232111471,$

 $p_{13} = 265212793249617641, \quad p_{14} = 30703738801, \quad p_{15} = 625437743071,$

 $p_{16} = 57802050308786191965409441, \quad p_{17} = 4185502830133110721$

 $p_{21} = 4458192223320340849, \quad p_{27} = 127522001020150503761, \quad p_{31} = 60368344121,$

 $p_{32} = 848654483879497562821, \quad p_{34} = 73765755896403138401,$

 $p_{35} = 11189053009, \quad p_{36} = 603812429055411913, \quad p_{37} = 148029423400750506553.$

row	congruence	prime p_i
1	$k \equiv 0 \pmod{5}$	41
2	$k \equiv 1 \pmod{5}$	271
3	$k \equiv 2 \pmod{10}$	9091
4	$k \equiv 3 \pmod{20}$	3541
5	$k \equiv 13 \pmod{20}$	27961
6	$k \equiv 7 \pmod{30}$	211
7	$k \equiv 17 \pmod{30}$	241
8	$k \equiv 27 \pmod{30}$	2161
9	$k \equiv 8 \pmod{40}$	1676321
10	$k \equiv 28 \pmod{40}$	p_{10}

prime p_i row congruence 11 $k \equiv 18 \pmod{60}$ 61 $k \equiv 58 \pmod{60}$ 124188901 $k \equiv 38 \pmod{60}$ 395267411314 $k \equiv 9 \pmod{15}$ 31 15 $k \equiv 4 \pmod{15}$ 2906161 16 $k \equiv 29 \pmod{45}$ 238681 17 $k \equiv 14 \pmod{45}$ p_{17} 18 $k \equiv 89 \pmod{90}$ 2961119 $k \equiv 44 \pmod{90}$ 3762091

Table 4.3 Covering used in Lemma 4.2 (i) for x = 6

Table 4.4 Covering used in Lemma 4.2 (i) for x = 1

row	congruence	nrime n				
100	$\frac{1}{1-0} \left(\frac{1}{1-1} \right)$	p_i]]	row	congruence	prime p_i
	$k \equiv 0 \pmod{7}$	239		20	$k \equiv 33 \pmod{84}$	226549
2	$k \equiv 1 \pmod{7}$	4649		21	$k \equiv 75 \pmod{84}$	p_{21}
3	$k \equiv 9 \pmod{21}$	43		22	$k \equiv 19 \pmod{63}$	10837
4	$k \equiv 2 \pmod{21}$	1933		23	$k = 40 \pmod{63}$	23311
5	$k \equiv 16 \pmod{21}$	10838689		24	$k = 61 \pmod{63}$	45613
6	$k \equiv 3 \pmod{14}$	909091		24	$k = 6 \pmod{98}$	191400440
7	$k \equiv 10 \pmod{28}$	29	1	20	$k \equiv 0 \pmod{26}$ $k \equiv 12 \pmod{26}$	121499449
8	$k \equiv 24 \pmod{28}$	281	1	20	$\kappa \equiv 13 \pmod{50}$	/841
9	$k \equiv 4 \pmod{35}$	71	1	27	$k \equiv 41 \pmod{56}$	p_{27}
10	$k = 11 \pmod{35}$	123551		28	$k \equiv 20 \pmod{140}$	421
11	$k \equiv 11 \pmod{35}$ $k \equiv 18 \pmod{35}$	n		29	$k \equiv 48 \pmod{140}$	3471301
19	$k = 10 \pmod{50}$ $k = 25 \pmod{70}$	P^{11} $A1A7571$	{	30	$k \equiv 76 \pmod{140}$	13489841
12	$k \equiv 20 \pmod{70}$ $k \equiv 60 \pmod{70}$	4147071		31	$k \equiv 104 \pmod{140}$	p_{31}
13	$\kappa = 00 \pmod{70}$	p_{13}		32	$k \equiv 132 \pmod{140}$	p_{32}
14	$k \equiv 32 \pmod{105}$	p_{14}		33	$k \equiv 27 \pmod{112}$	113
15	$k \equiv 67 \pmod{105}$	p_{15}		34	$k \equiv 83 \pmod{112}$	p_{24}
16	$k \equiv 102 \pmod{105}$	p_{16}		35	$k = 55 \pmod{168}$	n25
17	$k \equiv 5 \pmod{42}$	127		36	$k \equiv 100 \pmod{100}$ $k \equiv 111 \pmod{168}$	p_{33}
18	$k \equiv 26 \pmod{42}$	2689		27	$k = 167 \pmod{100}$	<i>P</i> 36
19	$k \equiv 12 \pmod{42}$	459691	1	57	$\kappa = 107 \pmod{100}$	p_{37}

For inserting a 4 in the leading zeros, we turn to Tables 6 and 7 in [17]. Rows 1 and 2 of [17, Table 6] utilize the primes 73 and 7, which we have already used for x = 9 in Table 4.1 and when inserting a 0 or 7 in the number N, respectively. Hence,

we must replace these congruences with congruences that correspond to primes that we have yet to use.

For x = 4 we use the covering found in Table 4.6. For this table, and future tables, we utilize partial factorizations of $\Phi_n(10)$. Table 4.5 displays such partial factorizations, as well as some full factorizations of $\Phi_n(10)$ as a way to exhibit large primes. In Table 4.5, we write $\Phi_n(10) = p_1 p_2 \cdots p_r C_n$, where C_n is a composite factor of $\Phi_n(10)$ having at least 2 distinct prime divisors different from p_1, p_2, \ldots, p_r and n. We write $\Phi_n(10) = p_1 p_2 \cdots p_r P_n$, where P_n is a prime factor of $\Phi_n(10)$ different from p_1, p_2, \ldots, p_r . Computationally, P_n was determined to be a prime power and then verified to be a prime. For these tables, and future tables, we denote P_x to be a probable prime too large to include comfortably where $\operatorname{ord}_{P_x}(10) = x$. We also use $c_{x,1}$ to denote one prime factor from the composite number C_x where $\operatorname{ord}_{c_{x,1}}(10) = x$ that we were unable to factor, and $c_{x,2}$ to denote the other prime factor from the same composite number. We did not compute the values of $c_{n,1}$ and $c_{n,2}$, but we know they exist.

n	Factorization of $\Phi_n(10)$
121	$15973 \cdot 38237 \cdot 274187 \cdot P_{121}$
242	$11\cdot 4357\cdot 25169\cdot 1485397\cdot 102502981431359171598893\cdot P_{242}$
275	$7151 \cdot 15401 \cdot 59951 \cdot C_{275}$
363	$622001227 \cdot 1830142890743707 \cdot C_{363}$
396	$79082656489 \cdot 1538607523068637497164701 \cdot P_{396}$
484	$56629 \cdot 170369 \cdot 29606281 \cdot 1491164086760128255001869 \cdot C_{484}$
528	$75675153541982860202858401 \cdot 11786300284844910479546815969 \cdot P_{528}$
605	$9666954991 \cdot C_{605}$
726	$727 \cdot 1453 \cdot 3481311540961 \cdot C_{726}$
1210	$10891 \cdot 131891 \cdot C_{1210}$
1452	P_{1452}
1584	$249357075126193 \cdot C_{1584}$
2904	C_{2904}
4356	$949609\cdot 384538969\cdot C_{4356}$

Table 4.5 Partial/Full factorizations of $\Phi_n(10)$ for large n

To conserve space, we denote

$$\begin{split} p_{1c} &= 283830826522232279893972777, \quad p_{1e} = 11786300284844910479546815969, \\ p_{18} &= 16205834846012967584927082656402106953, \\ p_{42} &= 138267770127916457629034873443951, \\ p_{43} &= 1703548913892494075097664562023844278044121, \\ p_{44} &= 1395900370916327245555441901, \\ p_{45} &= 36380545029953205956377406702261, \\ p_{48} &= 1112314101311286003379752617807870409611285281, \\ p_{52} &= 136614668576002329371496447555915740910181043, \\ p_{62} &= 362853724342990469324766235474268869786311886053883, \\ p_{64} &= 141122524877886182282233539317796144938305111168717, \\ p_{75} &= 7907009307594694001053552000588658391100974093457603716419437, \\ p_{77} &= 8927244623941181398233253, \quad p_{78} &= 1866763546567680996103417376059, \\ p_{79} &= 112970308382439859401726947341740704554951737408511354573, \\ p_{80} &= 74507557122096964531006066514788984423438931950911932421947947339. \end{split}$$

For $x \in \{1, 3, 4, 6, 9\}$, the set of primes \mathcal{P}_x corresponding to a given x used in Lemma 4.2 is the set of primes appearing in the last column of the table given for x. For example, as noted earlier, $\mathcal{P}_9 = \{11, 73, 101, 137\}$. We now have a congruence condition on M of the form given in Lemma 4.2 (iii) for each prime in $\mathcal{P}_1 \cup \mathcal{P}_2 \cup \cdots \cup \mathcal{P}_9$. In the next section, we will develop more congruence conditions on M to handle inserting a digit into one of the leading sevens of N.

row	congruence	prime p_i
1a	$k \equiv 16 \pmod{66}$	183411838171
1b	$k \equiv 136 \pmod{264}$	126197002179733470481
1c	$k \equiv 202 \pmod{264}$	p_{1c}
1d	$k \equiv 70 \pmod{528}$	75675153541982860202858401
1e	$k \equiv 268 \pmod{528}$	p_{1e}
1f	$k \equiv 334 \pmod{528}$	P_{528}
1g	$k \equiv 532 \pmod{1584}$	249357075126193
1h	$k \equiv 1060 \pmod{1584}$	$c_{1584,1}$
1i	$k \equiv 4 \pmod{1584}$	$C_{1584,2}$
2a	$k \equiv 3 \pmod{16}$	5882353
2b	$k \equiv 11 \pmod{32}$	353
2c	$k \equiv 27 \pmod{32}$	449
3	$k \equiv 0 \pmod{11}$	21649
4	$k \equiv 1 \pmod{11}$	513239
5	$k \equiv 10 \pmod{16}$	17
6	$k \equiv 2 \pmod{22}$	23
7	$k \equiv 13 \pmod{22}$	4093
8	$k \equiv 3 \pmod{22}$	8779
9	$k \equiv 14 \pmod{44}$	89
10	$k \equiv 36 \pmod{44}$	1052788969
11	$k \equiv 15 \pmod{33}$	67
12	$k \equiv 26 \pmod{33}$	1344628210313298373

row	congruence	prime p_i
13	$k \equiv 37 \pmod{66}$	599144041
14	$k \equiv 38 \pmod{132}$	5419170769
15	$k \equiv 126 \pmod{132}$	789390798020221
16	$k \equiv 60 \pmod{132}$	2361000305507449
17	$k \equiv 5 \pmod{88}$	617
18	$k \equiv 49 \pmod{88}$	p_{18}
19	$k \equiv 104 \pmod{264}$	2377
20	$k \equiv 236 \pmod{264}$	16369
21	$k \equiv 71 \pmod{264}$	432961
22	$k \equiv 159 \pmod{264}$	6796152793
23	$k \equiv 247 \pmod{264}$	24387741577
24	$k \equiv 6 \pmod{55}$	1321
25	$k \equiv 17 \pmod{55}$	62921
26	$k \equiv 28 \pmod{55}$	83251631
27	$k \equiv 39 \pmod{55}$	1300635692678058358830121
28	$k \equiv 50 \pmod{110}$	331
29	$k \equiv 105 \pmod{110}$	5171
30	$k \equiv 7 \pmod{110}$	20163494891
31	$k \equiv 62 \pmod{110}$	318727841165674579776721
32	$k \equiv 18 \pmod{220}$	661
33	$k \equiv 73 \pmod{220}$	18041
34	$k \equiv 128 \pmod{220}$	148721

Table 4.6 Covering used in Lemma 4.2 (i) for x = 4

row	congruence	prime p_i
35	$k \equiv 183 \pmod{220}$	1121407321
36	$k \equiv 40 \pmod{275}$	7151
37	$k \equiv 95 \pmod{275}$	15401
38	$k \equiv 150 \pmod{275}$	59951
39	$k \equiv 205 \pmod{275}$	$c_{275,1}$
40	$k \equiv 260 \pmod{275}$	C _{275,2}
41	$k \equiv 29 \pmod{165}$	471241
42	$k \equiv 84 \pmod{165}$	p_{42}
43	$k \equiv 139 \pmod{165}$	p_{43}
44	$k \equiv 51 \pmod{220}$	p_{44}
45	$k \equiv 161 \pmod{220}$	p_{45}
46	$k \equiv 106 \pmod{330}$	4124507971
47	$k \equiv 216 \pmod{330}$	19835636682880495867311241
48	$k \equiv 326 \pmod{330}$	p_{48}
49	$k \equiv 8 \pmod{77}$	5237
50	$k \equiv 19 \pmod{77}$	42043
51	$k \equiv 30 \pmod{77}$	29920507
52	$k \equiv 41 \pmod{77}$	p_{52}
53	$k \equiv 52 \pmod{154}$	463
54	$k \equiv 129 \pmod{154}$	24179
55	$k \equiv 63 \pmod{154}$	590437
56	$k \equiv 140 \pmod{154}$	7444361

row	congruence	prime p_i
57	$k \equiv 74 \pmod{154}$	4539402627853030477
58	$k \equiv 151 \pmod{154}$	4924630160315726207887
59	$k \equiv 9 \pmod{99}$	199
60	$k \equiv 20 \pmod{99}$	397
61	$k \equiv 31 \pmod{99}$	34849
62	$k \equiv 42 \pmod{99}$	p_{62}
63	$k \equiv 53 \pmod{198}$	7093127053
64	$k \equiv 152 \pmod{198}$	p_{64}
65	$k \equiv 64 \pmod{396}$	79082656489
66	$k \equiv 163 \pmod{396}$	1538607523068637497164701
67	$k \equiv 262 \pmod{396}$	P_{396}
68	$k \equiv 361 \pmod{792}$	761113
69	$k \equiv 757 \pmod{792}$	440718109921
70	$k \equiv 75 \pmod{297}$	55243
71	$k \equiv 174 \pmod{297}$	198397
72	$k \equiv 273 \pmod{297}$	1981560241
73	$k \equiv 86 \pmod{297}$	31600574312077
74	$k \equiv 185 \pmod{297}$	165426670443186506567467
75	$k \equiv 284 \pmod{297}$	p_{75}
76	$k \equiv 97 \pmod{594}$	7129
77	$k \equiv 196 \pmod{594}$	p_{77}
78	$k \equiv 295 \pmod{594}$	<i>p</i> ₇₈

Table 4.6 cont.	Covering used in Lemma	a 4.2 (i) for $x = 4$
-----------------	------------------------	-----------------------

row	congruence	prime p_i
79	$k \equiv 394 \pmod{594}$	p_{79}
80	$k \equiv 493 \pmod{594}$	p_{80}
81	$k \equiv 592 \pmod{1188}$	765144469
82	$k \equiv 1186 \pmod{1188}$	3205591041505249
83	$k \equiv 10 \pmod{121}$	15973
84	$k \equiv 21 \pmod{121}$	38237
85	$k \equiv 32 \pmod{121}$	274187
86	$k \equiv 43 \pmod{121}$	P_{121}
87	$k \equiv 54 \pmod{242}$	4357
88	$k \equiv 175 \pmod{242}$	25169
89	$k \equiv 65 \pmod{242}$	1485397
90	$k \equiv 186 \pmod{242}$	P_{242}
91	$k \equiv 76 \pmod{242}$	102502981431359171598893
92	$k \equiv 197 \pmod{484}$	56629
93	$k \equiv 439 \pmod{484}$	170369
94	$k \equiv 87 \pmod{484}$	29606281
95	$k \equiv 208 \pmod{484}$	1491164086760128255001869
96	$k \equiv 329 \pmod{484}$	$c_{484,1}$
97	$k \equiv 450 \pmod{484}$	$C_{484,2}$
98	$k \equiv 98 \pmod{363}$	622001227
99	$k \equiv 219 \pmod{363}$	1830142890743707
100	$k \equiv 340 \pmod{363}$	C _{363,1}
101	$k \equiv 109 \pmod{726}$	727

Table 4.6 cont. Covering used in Lemma 4.2 (i) for x = 4

row	congruence	prime p_i
102	$k \equiv 230 \pmod{726}$	1453
103	$k \equiv 351 \pmod{726}$	3481311540961
104	$k \equiv 472 \pmod{726}$	C _{726,1}
105	$k \equiv 593 \pmod{1452}$	P_{1452}
106	$k \equiv 1319 \pmod{4356}$	949609
107	$k \equiv 2771 \pmod{4356}$	384538969
108	$k \equiv 4223 \pmod{4356}$	$c_{4356,1}$
109	$k \equiv 714 \pmod{2904}$	$c_{2904,1}$
110	$k \equiv 1440 \pmod{2904}$	$c_{2904,2}$
111	$k \equiv 2166 \pmod{5808}$	21582529
112	$k \equiv 5070 \pmod{5808}$	114690577
113	$k \equiv 2892 \pmod{5808}$	107045999862591744769
114	$k \equiv 5796 \pmod{5808}$	48098483178241
115	$k \equiv 120 \pmod{605}$	9666954991
116	$k \equiv 241 \pmod{605}$	$C_{605,1}$
117	$k \equiv 362 \pmod{1210}$	10891
118	$k \equiv 967 \pmod{1210}$	131891
119	$k \equiv 483 \pmod{1210}$	$c_{1210,1}$
120	$k \equiv 1088 \pmod{1210}$	$c_{1210,2}$
121	$k \equiv 604 \pmod{2420}$	1006721
122	$k \equiv 1209 \pmod{2420}$	2323201
123	$k \equiv 1814 \pmod{2420}$	1754328181
124	$k \equiv 2419 \pmod{2420}$	151620139001

4.3 Inserting a digit into the leading sevens

We now work on an analogous argument for inserting a digit x in the string of leading sevens. Recall that the case $x \in \{0, 2, 5, 7, 8\}$ has already been handled; given that $M \equiv 7 \pmod{21}$, inserting any one of the digits in $\{0, 2, 5, 7, 8\}$ anywhere in Nwill produce a number divisible by 3 or 7. So now we are interested in the case where one of $x \in \{1, 3, 4, 6, 9\}$ is inserted in the leading sevens. We start with a Lemma similar to Lemma 4.2.

Lemma 4.3. Let N and M be natural numbers such that

$$N = 7 \cdot \frac{10^n - 1}{9} + M,$$

where N has the decimal expansion

$$N = d_{n-1}d_{n-2}\dots d_1d_0, \quad d_i \in \{0, 1, \dots, 9\} \quad n \ge 1, \quad d_{n-1} = 7.$$

Let K be a nonnegative integer such that $d_k = 7$ for $K \le k \le n - 1$, and set $d_k = 0$ for $k \ge n$. For a fixed $d \in \{0, 1, ..., 9\}$, suppose we have distinct primes $p_1, ..., p_t$, each > 5, for which

(i) there exists a covering of the integers

$$k \equiv b_i \pmod{c(p_i)}, \quad 1 \le i \le t,$$

(*ii*) $n \equiv 0 \pmod{lcm(c(p_1),\ldots,c(p_t))},$

(iii) M is a solution to the system of congruences

$$M \equiv -7 - (d - 7) \cdot 10^{b_i} \pmod{p_i}, \quad 1 \le i \le t.$$

Then, for all nonnegative integers k, we have

$$N_7^{(k)}(d) = 7 \cdot 10^n + 7 \cdot \frac{10^n - 1}{9} + M + (d - 7) \cdot 10^k$$

is divisible by at least one of the primes p_i where $1 \le i \le t$.

We omit the details of the proof as it is similar to the proof of Lemma 4.2. We are interested in the conclusion of the lemma for $K \leq k \leq n-1$, though as indicated the conclusion follows for all nonnegative integers k. Notice that in Lemma 4.3, we refer to the digit to be inserted as d rather than x. From now forward, this will help clarify when we are talking about tables where the digit d is inserted into the leading sevens (for applying Lemma 4.3) and when we are talking about tables where the digit x is inserted into the leading zeros (for applying Lemma 4.2).

In the previous section, when making our coverings for $x \in \{1, 3, 4, 6, 9\}$, we wanted the primes considered to be distinct so that we could apply the Chinese Remainder Theorem to justify the existence of M satisfying the congruences simultaneously that arise in Lemma 4.2 (iii). Due to the fact that $N_7^{(k)}(d)$ has the additional $7 \cdot 10^n$ term and d-7 instead of x, we can reuse some primes for $d \in \{1, 3, 4, 6, 9\}$ as long as we use them in a specific way. For example, consider the prime 101. We used this prime in Table 4.1 for inserting a 9 into the leading zeros via the congruence $k \equiv 3 \pmod{4}$. From this, we get that

$$n \equiv 0 \pmod{4}$$
 and $M \equiv -9 \cdot 10^3 \equiv 90 \pmod{101}$.

When this happens, $N_0^{(k)}(9) \equiv 0 \pmod{101}$. Looking at $N_7^{(k)}(d)$, if

$$k \equiv 2 \pmod{4}, \quad n \equiv 0 \pmod{4}, \quad \text{and} \quad d = 3,$$

then using $M \equiv 90 \pmod{101}$, we have

$$N_7^{(k)}(3) \equiv 7 + 0 + 90 + (3 - 7) \cdot 10^2 \equiv 97 - 400 \equiv 0 \pmod{101}.$$

Thus, we can reuse the prime 101 assuming we use it via the congruence $k \equiv 2 \pmod{4}$ for d = 3. Table 4.7 lists the primes that we will use again and how we will use them when making coverings for various values of d.

The coverings used for inserting the digits $d \in \{1, 3, 4, 6, 9\}$ in the leading sevens using Lemma 4.3 can be found in Appendix A. In the way of some details, we note

prime p_i	x	x congruence	$M \pmod{p_i}$	d	d congruence
11	9	$k \equiv 0 \pmod{2}$	$M \equiv 2 \pmod{11}$	9	$k \equiv 0 \pmod{2}$
13	3	$k \equiv 1 \pmod{6}$	$M \equiv 9 \pmod{13}$	3	$k \equiv 5 \pmod{6}$
13	3	$k \equiv 1 \pmod{6}$	$M \equiv 9 \pmod{13}$	4	$k \equiv 0 \pmod{6}$
19	3	$k \equiv 14 \pmod{18}$	$M \equiv 9 \pmod{19}$	4	$k \equiv 9 \pmod{18}$
29	1	$k \equiv 10 \pmod{28}$	$M \equiv 23 \pmod{29}$	1	$k \equiv 18 \pmod{28}$
31	6	$k \equiv 9 \pmod{15}$	$M \equiv 28 \pmod{31}$	6	$k \equiv 12 \pmod{15}$
37	3	$k \equiv 0 \pmod{3}$	$M \equiv 34 \pmod{37}$	3	$k \equiv 0 \pmod{3}$
37	3	$k \equiv 0 \pmod{3}$	$M \equiv 34 \pmod{37}$	4	$k \equiv 2 \pmod{3}$
41	6	$k \equiv 0 \pmod{5}$	$M \equiv 35 \pmod{41}$	6	$k \equiv 0 \pmod{5}$
43	1	$k \equiv 9 \pmod{21}$	$M \equiv 2 \pmod{43}$	1	$k \equiv 10 \pmod{21}$
61	6	$k \equiv 18 \pmod{60}$	$M \equiv 59 \pmod{61}$	3	$k \equiv 40 \pmod{60}$
71	1	$k \equiv 4 \pmod{35}$	$M \equiv 11 \pmod{71}$	1	$k \equiv 9 \pmod{35}$
101	9	$k \equiv 3 \pmod{4}$	$M \equiv 90 \pmod{101}$	3	$k \equiv 2 \pmod{4}$
137	9	$k \equiv 5 \pmod{8}$	$M \equiv 90 \pmod{137}$	3	$k \equiv 5 \pmod{8}$
211	6	$k \equiv 7 \pmod{30}$	$M \equiv 171 \pmod{211}$	3	$k \equiv 26 \pmod{30}$
239	1	$k \equiv 0 \pmod{7}$	$M \equiv 238 \pmod{239}$	1	$k \equiv 0 \pmod{7}$

 Table 4.7
 Reusable primes for inserting a digit in the leading sevens

that in Table A.2 for d = 1, the least common multiple of the moduli is

 $78218300160 = 2^8 \cdot 3^3 \cdot 5 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19.$

Checking directly that every integer in the interval [0, 78218300160) satisfies one of the 358 congruences in Table A.2 is unreasonable. A more indirect approach is as follows. We check the covering by addressing k separately depending on its residue class modulo some factor of the least common multiple of the moduli. The choice for such a factor is arbitrary, but in general we used the product of the largest prime used and some of the smaller primes used. For d = 1 we consider the residue classes modulo 3990 = $19 \cdot 7 \cdot 5 \cdot 3 \cdot 2$. Fix r from 0 to 3989. We don't want to look at all of the congruences in Table A.2 as most of them will be inconsistent with being $r \pmod{3990}$. For each r, define the set C_r to be the set of congruences that are consistent with $r \pmod{3990}$. That is, let C be the complete set of 358 congruences $k \equiv b \pmod{c}$ in Table A.2. Then

$$\mathcal{C}' = \{k \equiv b \pmod{c} : k \equiv b \pmod{c} \text{ is in } \mathcal{C}, 3990 \nmid c\},\$$

and, for $r \in \{0, 1, ..., 3989\},\$

$$\mathcal{C}'_r = \{k \equiv b \pmod{c} : k \equiv b \pmod{c} \text{ is in } \mathcal{C}, 3990 | c \text{ and } b \equiv r \pmod{3990} \}.$$

Hence $C_r = C'_r \cup C'$. For each $r \in \{0, 1, \ldots, 3989\}$, we computed the least common multiple ℓ_r of the moduli in C_r . The goal now is to determine whether, for each r, every integer in the interval $[0, \ell_r)$ that is r modulo 3990 satisfies one of the congruences in C_r . The largest value of ℓ_r is $\ell_{25} = 286513920$. We only need to look at the integers in $[0, \ell_{25})$ that are 25 modulo 3990, so we are left with 71808 integers to verify satisfy one of the congruences in C_{25} and then to do a similar but smaller computation with the other values of $r \in \{0, 1, \ldots, 3989\}$. After the analogous computation for each $r \in \{0, 1, \ldots, 3989\}$, the verification that the congruences in Table A.2 form a covering is justified.

For the case d = 3 in Table A.4, there are 74 congruences and the least common multiple of the moduli for these congruences is 299520. A direct analysis as done with inserting a digit x into the leading zeros can be done in this case. This is also true for Table A.6 that corresponds to d = 4, where there are 126 congruences and the least common multiple of the moduli is 8648640.

When d = 6, we have the covering found in Table A.8 containing 291 congruences with least common multiple of the moduli for these congruences being 1272348000. An analysis similar to that above for d = 1 can be done where the largest prime dividing the least common multiple of the moduli is 17 instead of 19.

For d = 9 and Table A.10, there are 329 congruences and the least common multiple of the moduli for these congruences is 127242949680. To verify that the 329 congruences are indeed a covering, we found it easier to look at how we constructed the covering. When constructing this covering we considered the smaller covering defined by the congruences

$$x \equiv 0 \pmod{2}, \quad x \equiv 1 \pmod{6}, \quad x \equiv 5 \pmod{6},$$

 $x \equiv 3 \pmod{12}, \quad \text{and} \quad x \equiv 9 \pmod{12}.$

We then found a collection of congruences that is equivalent to each of the above congruences in the smaller covering. Observe that $k \equiv 0 \pmod{2}$ is the first congruence listed in Table A.10, so every integer satisfying the first of the five congruences above (the even integers) satisfy a congruence in Table A.10. Now, we want to consider each of the four remaining congruences above and show that the integers satisfying each of these also satisfy a congruence in Table A.10. One can accomplish this as follows. First, we check that every integer satisfying $x \equiv 1 \pmod{6}$ satisfies one of the congruences in rows 1-57 of Table A.10. These congruences have moduli dividing 57960. Observe that 57960 is divisible by 6 and since every integer congruent to 1 modulo 6 in [0, 57960) satisfies one of these 57 congruences, we can deduce every integer congruent to 1 modulo 6 not in [0, 57960) also does. Indeed, if $k \ge 57960$ with $k \equiv 1 \pmod{6}$ and $k \equiv k_0 \pmod{57960}$, then $k_0 \equiv 1 \pmod{6}$ and thus satisfies one of the 57 congruences in Table A.10. Hence, $k_0 \equiv b \pmod{c}$ for some c dividing 57960, then $k \equiv b \pmod{c}$ also. Thus, every integer satisfying $x \equiv 1 \pmod{6}$ also satisfies a congruence in Table A.10. Similarly, one can check that every integer satisfying $x \equiv 5 \pmod{6}$ satisfies one of the 87 congruences in rows 58-144 of Table A.10 with moduli dividing 438480; every integer satisfying $x \equiv 3 \pmod{12}$ satisfies one of the 81 congruences in rows 145-225 of Table A.10 with moduli dividing 468720; and every integer satisfying $x \equiv 9 \pmod{12}$ satisfies one of the 103 congruences in rows 226-328 of Table A.10 with moduli dividing 2051280. Thus, the 329 congruences in Table A.10 form a covering.

4.4 The right-most digits

Define B to be the least common multiple of the moduli appearing in the congruences $k \equiv b \pmod{c}$ in the tables obtained from using Lemma 4.2 (i) in Section 4.2 and from using Lemma 4.3 (i) in Section 4.3. Note that from Table 4.2, we see that 6 divides B; in particular, the order of 10 modulo 3 and 7 also divides B. For Lemma 4.2 (ii) and Lemma 4.3 (ii), we take $n \equiv 0 \pmod{B}$.

Let \mathcal{P}'_d be the set of primes appearing in the tables associated with $d \in \{1, 3, 4, 6, 9\}$ in the previous section. Recalling the sets \mathcal{P}_j in the previous section, we set

$$\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2 \cup \cdots \cup \mathcal{P}_9 \cup \mathcal{P}'_1 \cup \mathcal{P}'_3 \cup \mathcal{P}'_4 \cup \mathcal{P}'_6 \cup \mathcal{P}'_9,$$

and let P denote the product of the primes in \mathcal{P} .

From Lemma 4.2 (iii) and Lemma 4.3 (iii), we have congruence conditions on Mwhere the moduli are the primes $p \in \mathcal{P}$. We deduce from these lemmas that if any digit is inserted in any of the leading zeros or leading sevens, then N is divisible by a prime in \mathcal{P} . We impose the further condition on M that $M \equiv 0 \pmod{10}$. From the definition of N in Lemma 4.2 and Lemma 4.3, we see then that $N \equiv 7 \pmod{10}$ so that N is coprime to 10.

We fix M as above, and modify n, using an argument similar to that used in [14], to obtain an N for which inserting a digit in the remaining right-most digits of N also results in a composite number. The basic strategy we describe next is to consider primes, possibly not in \mathcal{P} , that divide the number we obtain after inserting a digit in the remaining right-most digits of N. Each insertion will correspond to a prime, though these primes need not be distinct. As M is fixed, there are a fixed number of such insertions and hence a fixed number of these primes to consider.

Recall that $N^{(k)}(x)$ is the number obtained by inserting a digit $x \in \{0, 1, ..., 9\}$ to the right of the $(k + 1)^{\text{st}}$ digit of N. We are now interested in the case that $k \in \{0, ..., K - 1\}$, where M is fixed as above and K is the number of digits of M. Fix $n_0 \equiv 0 \pmod{B}$ satisfying $10^{n_0-2} > M$. We let *n* vary with $n \equiv 0 \pmod{B}$ and $n \ge n_0$. For any such *n*, the number *N* has a string of leading sevens. Since *M* is fixed, the natural number *K* is also fixed and does not vary as *n* varies. Therefore, there are finitely many ways to insert a digit in *M*; that is, there are finitely many choices of $k \in \{0, 1, \ldots, K-1\}$ and $x \in \{0, 1, \ldots, 9\}$ independent of *n*.

Recall M and n_0 are fixed. Momentarily, fix also $k \in \{0, 1, \dots, K-1\}$ and $x \in \{0, 1, \dots, 9\}$. Set

$$\overline{N} = 7 \cdot \frac{10^{n_0} - 1}{9} + M.$$

Observe that \overline{N} is coprime to 10 since, as noted above, we take $M \equiv 0 \pmod{10}$. We denote by $\overline{N}^{(k)}(x)$ the number obtained by inserting $x \in \{0, 1, \dots, 9\}$ to the right of the $(k+1)^{\text{st}}$ digit of \overline{N} . Let q = q(k, x) denote the least prime q = q(k, x) dividing $\overline{N}^{(k)}(x)$. If $q \notin \{2, 5\}$ and $n \equiv n_0 \pmod{c(q)}$, then

$$N^{(k)}(x) - \overline{N}^{(k)}(x) = 7 \cdot 10^{n_0} \cdot \frac{10^{n-n_0} - 1}{9} \equiv 0 \pmod{q}.$$

Thus, we also have q divides $N^{(k)}(x)$ whenever $n \equiv n_0 \pmod{c(q)}$. If $q \in \{2, 5\}$, then the units digit of $\overline{N}^{(k)}(x)$ will be even or 5, which implies that, for $n \geq n_0$, the units digit of $N^{(k)}(x)$ is even or 5. Thus, in this case, $N^{(k)}(x)$ is composite.

Letting $k \in \{0, 1, ..., K - 1\}$ and $x \in \{0, 1, ..., 9\}$ vary, we let B' be the least common multiple of B and the numbers c(q) where q varies over the primes q(k, x). Taking $n \equiv n_0 \pmod{B'}$, we see that after inserting any digit anywhere in N, including the leading zeros and to the right of the units digit, the resulting number will be divisible by one of the primes q(k, x) above or one of the primes $p \in \mathcal{P}$. Theorem 1.5 follows from the fact that N goes to infinity as n increases, while the primes q(k, x)and \mathcal{P} remain finite.

4.5 Related topics and open problems

Questions related to Theorem 1.5 are abundant. One such question looks at combining the notion of replacing a digit as mentioned in the introduction with widely digitally stable composite numbers. Consider the following theorem.

Theorem 4.4. There exist infinitely many widely digitally stable composite numbers, N, coprime to 10, that remain composite when we replace any digit in the decimal expansion of N, including any of the infinitely many leading zeros.

We expect Theorem 4.4 to hold for base 10. In the way of some details, we provide two outlines for such a proof. Both outlines follow the same process as was used for Theorem 1.5, but will be looking at different starting composite numbers, N.

Approach 1 considers N, $N_0^{(k)}(x)$, and $N_7^{(k)}(d)$ as was used in the proof of Theorem 1.5. That is,

$$N = 7 \cdot \frac{10^n - 1}{9} + M,$$

with $N_0^{(k)}(x)$ defined as

$$N_0^{(k)}(x) = 7 \cdot \frac{10^n - 1}{9} + M + x \cdot 10^k,$$

and

$$N_7^{(k)}(d) = 7 \cdot 10^n + 7 \cdot \frac{10^n - 1}{9} + M + (d - 7) \cdot 10^k.$$

In Sections 4.1 and 4.2 we require $k \ge n$ to ensure that we are inserting a digit in the leading zeros; however, the conclusions of Lemmas 4.2 and 4.3 hold for all k. If we drop this requirement we see that $N_0^{(k)}(x)$ accomplishes three things. If $x \in \{0, 1, \ldots, 9\}$ and $k \ge n$ corresponding to the leading zeros, then $N_0^{(k)}(x)$ represents inserting a digit to the right of the $k + 1^{st}$ digit of N; if $x \in \{-7, -6, \ldots, 2\}$ and $K \le k \le n$ corresponding to the leading sevens, then $N_0^{(k)}(x)$ represents replacing the $k + 1^{st}$ digit of N with $x \in \{0, 1, \ldots, 9\}$; and if $x \in \{0, 1, \ldots, 9\}$ and k > n, then $N_0^{(k)}(x)$ represents replacing the $k + 1^{st}$ digit of N with x. To prove Theorem 4.4, we need coverings for $x \in \{-7, -6, \dots, 9\}$ and $d \in \{0, 1, \dots, 9\}$.

Taking $M \equiv 1 \pmod{3}$ and $n \equiv 0 \pmod{3}$, we have $N_0^{(k)}(x) \equiv 0 \pmod{3}$ for $x \equiv 2 \pmod{3}$ and $N_7^{(k)}(d) \equiv 0 \pmod{3}$ for $d \equiv 2 \pmod{3}$. That is, we do not need coverings for $x \in \{-7, -4, -1, 2, 5, 8\}$ or $d \in \{2, 5, 8\}$. Utilizing the prime 7 in the same way as in Section 4.2, we also do not need coverings for $x, d \in \{0, 7\}$. Using the ten coverings in the same way as in the previous sections, we need only provide coverings for $x \in \{-6, -5, -3, -2\}$.

For approach 2, consider N to contain a string of leading ones. That is,

$$N = \frac{10^n - 1}{9} + M$$

with $N_0^{(k)}(x)$ defined by

$$N_0^{(k)}(x) = \frac{10^n - 1}{9} + M + x \cdot 10^k,$$

and $N_1^{(k)}(d)$ defined by

$$N_1^{(k)}(d) = 10^n + \frac{10^n - 1}{9} + M + (d - 1) \cdot 10^k.$$

We use the same idea as in method 1. That is, if $x \in \{0, 1, \ldots, 9\}$ and $k \ge n$, then $N_0^{(k)}(x)$ represents inserting a digit to the right of the $k + 1^{st}$ digit of N; if $x \in \{-1, 0, \ldots, 8\}$ and $K \le k \le n$, corresponding to the leading ones, then $N_0^{(k)}(x)$ represents replacing the $k+1^{st}$ digit of N with $x \in \{0, 1, \ldots, 9\}$; and if $x \in \{0, 1, \ldots, 9\}$ and k > n, then $N_0^{(k)}(x)$ represents replacing the $k+1^{st}$ digit of N with x. Thus, we want coverings for $x \in \{-1, 0, \ldots, 9\}$ and $d \in \{0, 1, \ldots, 9\}$.

Taking $M \equiv 1 \pmod{3}$ and $n \equiv 0 \pmod{3}$, we have $N_0^{(k)}(x) \equiv 0 \pmod{3}$ for $x \equiv 2 \pmod{3}$ and $N_1^{(k)}(d) \equiv 0 \pmod{3}$ for $d \equiv 2 \pmod{3}$. That is, we now need coverings for $x \in \{0, 1, 3, 4, 6, 7, 9\}$ and $d \in \{0, 1, 3, 4, 6, 7, 9\}$. Notice that $N_0^{(k)}(0) = N$ for all k. Thus, we do not need a full covering for x = 0. We will instead use a prime not used in any covering to guarantee that N is composite.

We outlined two approaches as they both have their merits. Approach 1 requires four more coverings, for a total of 14, but we do not have to modify the coverings used for Theorem 1.5. The downside, however, is that we will likely be able to reuse very few of the smaller primes when constructing the four new coverings. The second method requires one less covering for a total of 13 coverings. Since the N used in approach 2 has a string of leading ones instead of sevens, we will not be able to reuse the same primes in the same way as in Section 4.3. Hence, we will have to recreate the coverings used for $d \in \{0, 1, 3, 4, 6, 7, 9\}$. Fortunately, the second method allows us to include the prime 7, which will likely be usable in multiple coverings. Both approaches will require a modified approach when looking at insertions and replacements in the right most digits.

In [17], a positive proportion of prime numbers, n, were shown to have the property that if you replace an arbitrary digit of n, including any of the infinitely many leading zeros, then the resulting number is composite. This leads to several questions. Originally appearing in [14], one could ask if there are infinitely many primes p, or a positive proportion of primes p, such that if an arbitrary digit is inserted between any two digits of p, or to the right of the units digit of p, then the resulting number is composite. Are a positive proportion of composite numbers widely digitally stable? We do not know the answers to these questions and expect that methods different than those used in this dissertation are required to establish such results.

Bibliography

- Alexander Borisov, Michael Filaseta, Tsit Yuen Lam, and Ognian Trifonov. "Classes of polynomials having only one non-cyclotomic irreducible factor". In: *Acta Arithmetica* 90.2 (1999), pp. 121–153.
- [2] John Brillhart, Michael Filaseta, and Andrew Odlyzko. "On an irreducibility theorem of A. Cohn". In: *Canadian J. Math.* 33.5 (1981), pp. 1055–1059.
- [3] John Brillhart, Derrick Lehmer, John Selfridge, Bryant Tuckerman, and Samuel Wagstaff Jr. *Factorizations of* $b^n \pm 1$. Third. Vol. 22. Contemporary Mathematics. b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. American Mathematical Society, Providence, RI, 2002, pp. xcvi+236.
- [4] Morgan Cole, Scott Dunn, and Michael Filaseta. "Further irreducibility criteria for polynomials with non-negative coefficients". In: *Acta Arith.* 175.2 (2016), pp. 137–181.
- [5] Keith Conrad, ed. Recognizing Galois groups Sn and An. URL: https:// citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.691.9929& rep=rep1&type=pdf (visited on 03/03/2021).
- [6] John D. Dixon and Brian Mortimer. *Permutation Groups*. Vol. 163. Graduate Texts in Mathematics. Springer-Verlag, New York, 1996.
- [7] Gustave Dumas. "Sur quelques cas d'irréductibilité des polynômes à coefficients rationnels". In: Journal de Mathématiques Pures et Appliquées 2 (1906), pp. 191–258.
- [8] Paul Erdős. "Solution to problem 1029: Erdős and the computer". In: Math. Mag 52 (1979), pp. 180–181.
- [9] Michael Filaseta. "A further generalization of an irreducibility theorem of A. Cohn". In: Canad. J. Math. 34.6 (1982), pp. 1390–1395.
- [10] Michael Filaseta. "Irreducibility criteria for polynomials with nonnegative coefficients". In: *Canad. J. Math.* 40.2 (1988), pp. 339–351.

- [11] Michael Filaseta, Carrie Finch, and Mark Kozek. "On powers associated with Sierpiński numbers, Riesel numbers and Polignac's conjecture". In: *Journal of Number Theory* 128 (July 2008), pp. 1916–1940.
- [12] Michael Filaseta and Samuel Gross. "49598666989151226098104244512918". In: J. Number Theory 137 (2014), pp. 16–49.
- [13] Michael Filaseta and Jacob Juillerat. "Consecutive primes which are widely digitally delicate". In: *arXiv preprint arXiv:2101.08898* (2021).
- [14] Michael Filaseta, Mark Kozek, Charles Nicol, and John Selfridge. "Composites that remain composite after changing a digit". In: J. Comb. Number Theory 2.1 (2010), pp. 25–36.
- [15] Michael Filaseta, Angel Kumchev, and Dmitrii V. Pasechnik. "On the irreducibility of a truncated binomial expansion". In: *The Rocky Mountain Journal* of Mathematics 37.2 (2007), pp. 455–464.
- [16] Michael Filaseta and Richard Moy. "On the Galois group over Q of a truncated binomial expansion". In: *Colloquium Mathematicum*. Vol. 154. Instytut Matematyczny Polskiej Akademii Nauk. 2018, pp. 295–308.
- [17] Michael Filaseta and Jeremiah Southwick. "Primes that become composite after changing an arbitrary digit". In: *Mathematics of Computation* 90.328 (2021), pp. 979–993.
- [18] Arlington M. Fink. "Two inequalities". In: Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 6 (1995), pp. 48–49.
- [19] Joseph Foster, Jacob Juillerat, and Jeremiah Southwick. "The irreducibility of polynomials arising from the study of Fourier coefficients of powers of the Dedekind-eta function". In: *Journal of Combinatorics and Number Theory* 10.3 (2018), pp. 161–167.
- [20] Bernhard Heim, Florian Luca, and Markus Neuhauser. "Recurrence relations for polynomials obtained by arithmetic functions". In: Int. J. Number Theory 15.6 (2019), pp. 1291–1303.
- [21] Bernhard Heim, Markus Neuhauser, and PC Athaibah. "Log-Concavity of Recursively Defined Polynomials." In: J. Integer Seq. 22.1 (2019), pp. 19–1.
- [22] Bernhard Heim, Markus Neuhauser, and Florian Rupp. "Fourier coefficients of powers of the Dedekind eta function". In: *The Ramanujan Journal* 48.1 (2019), pp. 1–11.

- [23] Jackson Hopper and Paul Pollack. "Digitally delicate primes". In: J. Number Theory 168 (2016), pp. 247–256.
- [24] Murray S. Klamkin. "Problem 1029". In: Mathematics Magazine 51 (1978), p. 69.
- [25] Sergei Konyagin. "Numbers that become composite after changing one or two digits". In: *Pioneer Jour. of Algebra, Number Theory and Appl* 6 (2013), pp. 1–7.
- [26] Melvyn Nathanson. Combinatorial and Additive Number Theory IV. Springer, 2021.
- [27] Ken Ono. The web of modularity: arithmetic of the coefficients of modular forms and q-series. Vol. 102. CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004, pp. viii+216. ISBN: 0-8218-3368-5.
- [28] Georg Pólya and Gabor Szegő. Aufgaben und Lehrsätze aus der Analysis. Band II: Funktionentheorie, Nullstellen, Polynome Determinanten, Zahlentheorie. Vierte Auflage, Heidelberger Taschenbücher, Band 74. Springer-Verlag, Berlin-New York, 1971, xii+407 pp. (loose errata).
- [29] Victor V. Prasolov. Polynomials. Vol. 11. Algorithms and Computation in Mathematics. Springer-Verlag, New York, 2004.
- [30] Maruti Ram Murty. "Prime numbers and irreducible polynomials". In: Amer. Math. Monthly 109.5 (2002), pp. 452–458.
- [31] Issai Schur. "Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome". In: J Reine Angew. Math. 165 (1931), pp. 52–58.
- [32] Robert E. Shafer. "Problem E 1867". In: Amer. Math. Monthly 73 (1966), p. 309.
- [33] Daniel Shiu. "Strings of congruent primes". In: Journal of the London Mathematical Society 61.2 (2000), pp. 359–373.
- [34] Carl Ludwig Siegel. "Uber einige anwendungen diophantischer approximationen". In: Abh. Pruess. Akad. Wiss., Phsy.-Math. Kl. 1 (1929), pp. 14–72.
- [35] Neil J. A. Sloane, ed. The On-Line Encyclopedia of Integer Sequences. URL: https://oeis.org/A076336 (visited on 03/06/2020).

- [36] Jeremiah Southwick. "Two inquiries related to the digits of prime numbers". In: *Doctoral Dissertation* (2020).
- [37] Richard P. Stauduhar. "The determination of Galois groups". In: *Mathematics of computation* 27.124 (1973), pp. 981–996.
- [38] Terence Tao. "A remark on primality testing and decimal expansions". In: J. Aust. Math. Soc. 91.3 (2011), pp. 405–413.

APPENDIX A

Coverings for inserting a digit in the leading sevens in base 10

We produce the coverings used in Lemma 4.3 for inserting a digit $d \in \{1, 3, 4, 6, 9\}$ into the leading sevens. As with Table 4.6, we will make use of partial factorizations of $\Phi_n(10)$ for inserting a digit into the leading sevens. Recall that if we are unable to fully factor $\Phi_n(10)$, then we write $\Phi_n(10) = p_1 p_2 \cdots p_r C_n$, where C_n is a composite factor of $\Phi_n(10)$ having at least 2 distinct prime divisors different from p_1, p_2, \ldots, p_r and n. We also write $\Phi_n(10) = p_1 p_2 \cdots p_r P_n$, where P_n is a prime factor of $\Phi_n(10)$ different from p_1, p_2, \ldots, p_r . Computationally, P_n was determined to be a prime power and then verified to be a prime. For these tables, and future tables, we denote P_x to be a probable prime too large to include comfortably where $\operatorname{ord}_{P_x}(10) = x$. We also use $c_{x,1}$ to denote one prime factor from the composite number C_x where $\operatorname{ord}_{c_{x,1}}(10) = x$ that we were unable to factor, and $c_{x,2}$ to denote the other prime factor from the same composite number. We did not compute the values of $c_{n,1}$ and $c_{n,2}$, but we know they exist.

For d = 1 we use the covering in Table A.2, where the letter rows arise from reusing a prime shown in Table 4.7. Table A.1 provides the partial factorizations of $\Phi_n(10)$ for large *n* used in these coverings, as well as some full factorizations as a way to exhibit large primes. Some of the composite numbers and large primes that appear in Table A.2 are not included in Table A.1. These composite numbers can be determined by dividing $\Phi_n(10)$ by the primes associated with *n* that can be found in adjacent rows in the table. For example, rows 35 and 36 of Table A.2 utilize the composite number associated with n = 245. This means that C_{245} is $\Phi_{245}(10)$ divided by the primes 336737801, 23609565631, and 8274923251622825388807721, corresponding to rows 32, 33, and 34, respectively. The same is used for the large primes P_n that do not appear in Table A.1. To save space we denote some of the larger primes that still fit comfortably below.

 $p_4 = 189772422673235585874485732659,$

 $p_{21} = 1976730144598190963568023014679333,$

 $p_{23} = 5076141624365532994918781726395939035533,$

 $p_{28} = 4769337181464959147997704753876850429427,$

 $p_{69} = 36942048382668980544619913561,$

 $p_{96} = 282448028612066894256984424869264385801,$

 $p_{134} = 6717658458758041138199521, \quad p_{284} = 965194617121640791456070347951751,$

 $p_{286} = 753201806271328462547977919407,$

 $p_{310} = 18449288550044654139241919401, \quad p_{320} = 307010852070382484317401373.$

Table A.1 Partial/Full factorizations of $\Phi_n(10)$ for d = 1

n	Factorization of $\Phi_n(10)$	n	Fac
294	$7 \cdot P_{294}$	665	
448	C_{448}	1064	260
456	$27817 \cdot 376102873$	1197	
	$\cdot 36120612721 \cdot C_{456}$	1596	5394
588	C_{588}	2394	
616	C_{616}	3192	

n	Factorization of $\Phi_n(10)$
665	C_{665}
1064	$260827749862793 \cdot C_{1064}$
1197	C_{1197}
1596	$539449 \cdot 3301756921 \cdot C_{1596}$
2394	C_{2394}
3192	C_{3192}

row	congruence	prime p_i
a	$k \equiv 0 \pmod{7}$	239
b	$k \equiv 10 \pmod{21}$	43
с	$k \equiv 18 \pmod{28}$	29
d	$k \equiv 9 \pmod{35}$	71
1	$k \equiv 59 \pmod{63}$	45121231
2	$k \equiv 45 \pmod{63}$	1921436048294281
3	$k \equiv 38 \pmod{126}$	5274739
4	$k \equiv 101 \pmod{126}$	p_4
5	$k \equiv 213 \pmod{252}$	1009
6	$k \equiv 150 \pmod{252}$	43266855241
7	$k \equiv 87 \pmod{252}$	P_{252}
8	$k \equiv 24 \pmod{504}$	41593295521
9	$k \equiv 276 \pmod{504}$	7064204436768358634702473
10	$k \equiv 17 \pmod{189}$	878075126908698927928483
11	$k \equiv 80 \pmod{189}$	33030636037992147205820927521
12	$k \equiv 143 \pmod{189}$	P ₁₈₉
13	$k \equiv 255 \pmod{315}$	631
14	$k \equiv 192 \pmod{315}$	142809770881
15	$k \equiv 129 \pmod{315}$	P_{315}
16	$k \equiv 381 \pmod{630}$	131041
17	$k \equiv 66 \pmod{630}$	525326613841
18	$k \equiv 318 \pmod{630}$	2521
19	$k \equiv 3 \pmod{630}$	C _{630,1}
20	$k \equiv 48 \pmod{49}$	505885997
21	$k \equiv 41 \pmod{49}$	<i>p</i> ₂₁

Table A.2 Covering used in Lemma 4.3 (i) for d = 1

row	congruence	prime p_i
22	$k \equiv 34 \pmod{98}$	197
23	$k \equiv 83 \pmod{98}$	p_{23}
24	$k \equiv 27 \pmod{147}$	63799
25	$k \equiv 76 \pmod{147}$	4715467
26	$k \equiv 125 \pmod{147}$	267652966241599
27	$k \equiv 118 \pmod{147}$	2603941883787374089
28	$k \equiv 69 \pmod{147}$	p_{28}
29	$k \equiv 167 \pmod{294}$	P_{294}
30	$k \equiv 314 \pmod{588}$	$C_{588,1}$
31	$k \equiv 20 \pmod{588}$	C _{588,2}
32	$k \equiv 209 \pmod{245}$	336737801
33	$k \equiv 160 \pmod{245}$	23609565631
34	$k \equiv 111 \pmod{245}$	8274923251622825388807721
35	$k \equiv 62 \pmod{245}$	C _{245,1}
36	$k \equiv 13 \pmod{245}$	$c_{245,2}$
37	$k \equiv 153 \pmod{196}$	P_{196}
38	$k \equiv 104 \pmod{392}$	52781463673
39	$k \equiv 300 \pmod{392}$	$c_{392,1}$
40	$k \equiv 251 \pmod{784}$	54881
41	$k \equiv 447 \pmod{784}$	403539336813078648113
42	$k \equiv 643 \pmod{784}$	C _{784,1}
43	$k \equiv 55 \pmod{784}$	$c_{784,2}$
44	$k \equiv \overline{986} \pmod{1176}$	737353
45	$k \equiv 790 \pmod{1176}$	1482937
46	$k \equiv \overline{594} \pmod{1176}$	70251889

row	congruence	prime p_i		row	congruence	prime p_i
47	$k \equiv 398 \pmod{1176}$	14498348929]	69	$k \equiv 110 \pmod{455}$	p_{69}
48	$k \equiv 202 \pmod{1176}$	3343677109249		70	$k \equiv 201 \pmod{455}$	911
49	$k \equiv 6 \pmod{1176}$	604681084564369	1	71	$k \equiv 292 \pmod{455}$	$C_{455,1}$
50	$k \equiv 89 \pmod{91}$	547	1	72	$k \equiv 383 \pmod{455}$	$C_{455,2}$
51	$k \equiv 82 \pmod{91}$	14197		73	$k \equiv 285 \pmod{364}$	654721485601
52	$k \equiv 75 \pmod{91}$	17837		74	$k \equiv 194 \pmod{364}$	$c_{364,1}$
53	$k \equiv 68 \pmod{91}$	4262077		75	$k \equiv 103 \pmod{364}$	$c_{364,2}$
54	$k \equiv 61 \pmod{91}$	43442141653		76	$k \equiv 12 \pmod{728}$	C728,1
55	$k \equiv 54 \pmod{91}$	316877365766624209	1	77	$k \equiv 376 \pmod{728}$	$c_{728,2}$
56	$k \equiv 47 \pmod{91}$	110742186470530054291318013		78	$k \equiv 642 \pmod{728}$	574393
57	$k \equiv 40 \pmod{182}$	21705503]	79	$k \equiv 551 \pmod{728}$	10727809
58	$k \equiv 131 \pmod{182}$	P_{182}]	80	$k \equiv 460 \pmod{728}$	286569193
59	$k \equiv 33 \pmod{273}$	32786209	1	81	$k \equiv 733 \pmod{1092}$	37275014869
60	$k \equiv 124 \pmod{273}$	139708570703521	1	82	$k \equiv 369 \pmod{1092}$	428085457801
61	$k \equiv 215 \pmod{273}$	1093		83	$k \equiv 5 \pmod{1092}$	4902137591818741
62	$k \equiv 117 \pmod{273}$	C _{273,1}		84	$k \equiv 278 \pmod{1456}$	10193
63	$k \equiv 208 \pmod{273}$	C _{273,2}		85	$k \equiv 1006 \pmod{1456}$	436801
64	$k \equiv 572 \pmod{819}$	31123		86	$k \equiv 187 \pmod{1456}$	64348368449
65	$k \equiv 299 \pmod{819}$	P_{819}		87	$k \equiv 915 \pmod{1456}$	$c_{1456,1}$
66	$k \equiv \overline{845 \pmod{1638}}$	24571		88	$k \equiv \overline{1552 \pmod{2184}}$	3624275167969
67	$k \equiv 26 \pmod{1638}$	280099]	89	$k \equiv 824 \pmod{2184}$	64365563809
68	$k \equiv 19 \pmod{455}$	175631		90	$k \equiv 96 \pmod{2184}$	C _{2184,1}

Table A.2 cont. Covering used in Lemma 4.3 (i) for d = 1

row	congruence	prime p_i		row	congruence	prime p_i
91	$k \equiv 32 \pmod{112}$	119968369144846370226083377]	113	$k \equiv 1369 \pmod{1680}$	$c_{1680,2}$
92	$k \equiv 81 \pmod{420}$	1384194841	1	114	$k \equiv 193 \pmod{2016}$	2017
93	$k \equiv 165 \pmod{420}$	42681134161	1	115	$k \equiv 865 \pmod{2016}$	518113
94	$k \equiv 249 \pmod{420}$	424451728681]	116	$k \equiv 1537 \pmod{2016}$	56763828581443201
95	$k \equiv 333 \pmod{420}$	139790941013628227711346421	1	117	$k \equiv 95 \pmod{224}$	673
96	$k \equiv 417 \pmod{420}$	p_{96}]	118	$k \equiv 207 \pmod{224}$	43735845217
97	$k \equiv 179 \pmod{210}$	29970369241]	119	$k \equiv 88 \pmod{224}$	$c_{224,1}$
98	$k \equiv 95 \pmod{210}$	1661378260814161	1	120	$k \equiv 200 \pmod{224}$	$c_{224,2}$
99	$k \equiv 11 \pmod{210}$	18276168846821336356291]	121	$k \equiv 39 \pmod{336}$	337
100	$k \equiv 137 \pmod{840}$	134401]	122	$k \equiv 151 \pmod{336}$	$c_{336,1}$
101	$k \equiv 557 \pmod{840}$	575794801]	123	$k \equiv 263 \pmod{336}$	$c_{336,2}$
102	$k \equiv 53 \pmod{840}$	67501680066009758096678991121]	124	$k \equiv 67 \pmod{448}$	$c_{448,1}$
103	$k \equiv 473 \pmod{840}$	$c_{840,1}$		125	$k \equiv 179 \pmod{448}$	$c_{448,2}$
104	$k \equiv 109 \pmod{672}$	1454209		126	$k \equiv 291 \pmod{1344}$	205633
105	$k \equiv 277 \pmod{672}$	9396577]	127	$k \equiv 739 \pmod{1344}$	4546753
106	$k \equiv 445 \pmod{672}$	77700458351603754241]	128	$k \equiv 1187 \pmod{1344}$	1342657
107	$k \equiv 613 \pmod{672}$	465149401935712615628055361]	129	$k \equiv 403 \pmod{1344}$	10418689
108	$k \equiv 529 \pmod{672}$	C _{672,1}		130	$k \equiv 851 \pmod{1344}$	$c_{1344,1}$
109	$k \equiv 25 \pmod{1680}$	3361		131	$k \equiv 1299 \pmod{1344}$	$c_{1344,2}$
110	$k \equiv \overline{361 \pmod{1680}}$	20161		132	$k \equiv 60 \pmod{560}$	1378721
111	$k \equiv \overline{697} \pmod{1680}$	75500478859681		133	$k \equiv 172 \pmod{560}$	5758943337281
112	$k \equiv 1033 \pmod{1680}$	C1680,1		134	$k \equiv 284 \pmod{560}$	p_{134}

Table A.2 cont. Covering used in Lemma 4.3 (i) for d = 1

			_			
row	congruence	prime p_i		row	congruence	prime p_i
135	$k \equiv 396 \pmod{560}$	$c_{560,1}$]	157	$k \equiv 74 \pmod{231}$	22187551
136	$k \equiv 508 \pmod{560}$	$c_{560,2}$		158	$k \equiv 151 \pmod{231}$	535212994471849
137	$k \equiv 459 \pmod{896}$	105528193	1	159	$k \equiv 1348 \pmod{2464}$	29569
138	$k \equiv 683 \pmod{896}$	$c_{896,1}$		160	$k \equiv 116 \pmod{2464}$	232722337
139	$k \equiv 123 \pmod{1120}$	48102033281		161	$k \equiv 1236 \pmod{2464}$	11229398470301331937
140	$k \equiv 347 \pmod{1120}$	555204874561		162	$k \equiv 4 \pmod{2464}$	210732524523217313
141	$k \equiv 571 \pmod{1120}$	29232317046703681		163	$k \equiv 113 \pmod{119}$	923441
142	$k \equiv 795 \pmod{1120}$	$c_{1120,1}$		164	$k \equiv 106 \pmod{119}$	3924966376871
143	$k \equiv 1019 \pmod{1120}$	$c_{1120,2}$		165	$k \equiv 99 \pmod{119}$	$c_{119,1}$
144	$k \equiv 235 \pmod{1792}$	7710977		166	$k \equiv 92 \pmod{119}$	C _{119,2}
145	$k \equiv 1131 \pmod{1792}$	12939800833		167	$k \equiv 85 \pmod{238}$	1868879293
146	$k \equiv 907 \pmod{1792}$	45501964033		168	$k \equiv 204 \pmod{238}$	5673320472670315859129
147	$k \equiv 11 \pmod{1792}$	$c_{1792,1}$		169	$k \equiv 197 \pmod{238}$	P_{238}
148	$k \equiv 1124 \pmod{1232}$	30357713		170	$k \equiv 316 \pmod{476}$	$c_{476,1}$
149	$k \equiv 1012 \pmod{1232}$	3697		171	$k \equiv 78 \pmod{476}$	$C_{476,2}$
150	$k \equiv 900 \pmod{1232}$	$c_{1232,1}$		172	$k \equiv 428 \pmod{476}$	2381
151	$k \equiv 788 \pmod{1232}$	$c_{1232,2}$		173	$k \equiv 309 \pmod{476}$	275855329893529
152	$k \equiv 60 \pmod{308}$	39511854229		174	$k \equiv 190 \pmod{476}$	20087794479102305428621
153	$k \equiv 256 \pmod{308}$	P_{308}		175	$k \equiv 547 \pmod{952}$	$c_{952,1}$
154	$k \equiv 452 \pmod{616}$	C _{616,1}		176	$k \equiv 71 \pmod{952}$	C952,2
155	$k \equiv 340 \pmod{616}$	$C_{616,2}$		177	$k \equiv 302 \pmod{952}$	371281
156	$k \equiv 228 \pmod{231}$	2311		178	$k \equiv 540 \pmod{952}$	6514537

Table A.2 cont. Covering used in Lemma 4.3 (i) for d = 1

			_			
row	congruence	prime p_i		row	congruence	prime p_i
179	$k \equiv 778 \pmod{952}$	953		201	$k \equiv 43 \pmod{1428}$	$c_{1428,2}$
180	$k \equiv 1016 \pmod{1904}$	7024789118033		202	$k \equiv 512 \pmod{595}$	10711
181	$k \equiv 64 \pmod{1904}$	46502552676497		203	$k \equiv 393 \pmod{595}$	9521
182	$k \equiv 1135 \pmod{1190}$	42841		204	$k \equiv 274 \pmod{595}$	$c_{595,1}$
183	$k \equiv 897 \pmod{1190}$	14281		205	$k \equiv 155 \pmod{595}$	$c_{595,2}$
184	$k \equiv 659 \pmod{1190}$	674731		206	$k \equiv 1226 \pmod{1785}$	149866505006632681
185	$k \equiv 421 \pmod{1190}$	$c_{1190,1}$		207	$k \equiv 631 \pmod{1785}$	$c_{1785,1}$
186	$k \equiv 183 \pmod{1190}$	$c_{1190,2}$		208	$k \equiv 36 \pmod{1785}$	$c_{1785,2}$
187	$k \equiv 295 \pmod{357}$	4999		209	$k \equiv 743 \pmod{833}$	17241400681
188	$k \equiv 176 \pmod{357}$	143556841		210	$k \equiv 624 \pmod{833}$	1667
189	$k \equiv 57 \pmod{357}$	3329808692827		211	$k \equiv 505 \pmod{833}$	$C_{833,1}$
190	$k \equiv 288 \pmod{357}$	43451713720907517733		212	$k \equiv 386 \pmod{833}$	$C_{833,2}$
191	$k \equiv 169 \pmod{357}$	$C_{357,1}$		213	$k \equiv 1100 \pmod{1666}$	609757
192	$k \equiv 50 \pmod{357}$	$C_{357,2}$		214	$k \equiv 267 \pmod{1666}$	548804832033845773
193	$k \equiv 638 \pmod{714}$	17851		215	$k \equiv 981 \pmod{1666}$	$c_{1666,1}$
194	$k \equiv 281 \pmod{714}$	P_{714}		216	$k \equiv 148 \pmod{1666}$	$c_{1666,2}$
195	$k \equiv 876 \pmod{1071}$	43834194307		217	$k \equiv 1695 \pmod{2499}$	2962284613
196	$k \equiv 519 \pmod{1071}$	7094621664153616951		218	$k \equiv 862 \pmod{2499}$	$c_{2499,1}$
197	$k \equiv 162 \pmod{1071}$	6427		219	$k \equiv 29 \pmod{2499}$	$c_{2499,2}$
198	$k \equiv 1114 \pmod{1428}$	898827469		220	$k \equiv 5 \pmod{17}$	5363222357
199	$k \equiv 757 \pmod{1428}$	1429		221	$k \equiv 15 \pmod{17}$	2071723
200	$k \equiv 400 \pmod{1428}$	$c_{1428,1}$		222	$k \equiv 8 \pmod{34}$	103

Table A.2 cont. Covering used in Lemma 4.3 (i) for d = 1

Г

row	congruence	prime p_i	row	congruence	prime p_i
223	$k \equiv 25 \pmod{34}$	21993833369	245	$k \equiv 79 \pmod{532}$	14691812549
224	$k \equiv 18 \pmod{34}$	4013	246	$k \equiv 212 \pmod{532}$	2129
225	$k \equiv 35 \pmod{68}$	2324557465671829	247	$k \equiv 345 \pmod{532}$	1728095716605342484009
226	$k \equiv 1 \pmod{68}$	1491383821	248	$k \equiv 478 \pmod{532}$	C _{532,1}
227	$k \equiv 128 \pmod{133}$	1597	249	$k \equiv 471 \pmod{532}$	C _{532,2}
228	$k \equiv 121 \pmod{133}$	2021015460335957	250	$k \equiv 338 \pmod{1064}$	$c_{1064,1}$
229	$k \equiv 114 \pmod{133}$	P_{133}	251	$k \equiv 870 \pmod{1064}$	$c_{1064,2}$
230	$k \equiv 107 \pmod{266}$	247025236977306025681323889	252	$k \equiv 205 \pmod{1596}$	3301756921
231	$k \equiv 240 \pmod{266}$	$C_{266,1}$	253	$k \equiv 737 \pmod{1596}$	$c_{1596,1}$
232	$k \equiv 233 \pmod{266}$	$C_{266,2}$	254	$k \equiv 1269 \pmod{1596}$	$c_{1596,2}$
233	$k \equiv 100 \pmod{798}$	425991366045253	255	$k \equiv 1668 \pmod{2128}$	57457
234	$k \equiv 366 \pmod{798}$	C _{798,1}	256	$k \equiv 1136 \pmod{2128}$	1676106728215569889
235	$k \equiv 632 \pmod{798}$	C _{798,2}	257	$k \equiv 604 \pmod{2128}$	$c_{2128,1}$
236	$k \equiv 93 \pmod{399}$	6316969	258	$k \equiv 72 \pmod{2128}$	$c_{2128,2}$
237	$k \equiv 226 \pmod{399}$	34282879	259	$k \equiv 863 \pmod{931}$	16759
238	$k \equiv 359 \pmod{399}$	1473464802559	260	$k \equiv 730 \pmod{931}$	83791
239	$k \equiv 352 \pmod{399}$	$c_{399,1}$	261	$k \equiv 597 \pmod{931}$	13071241
240	$k \equiv 219 \pmod{399}$	$C_{399,2}$	262	$k \equiv 464 \pmod{931}$	7645033117
241	$k \equiv 485 \pmod{1197}$	$C_{1197,1}$	263	$k \equiv 331 \pmod{931}$	65385402019201951
242	$k \equiv 884 \pmod{1197}$	$c_{1197,2}$	264	$k \equiv 198 \pmod{931}$	C931,1
243	$k \equiv 86 \pmod{2394}$	$c_{2394,1}$	265	$k \equiv 65 \pmod{931}$	C _{931,2}
244	$k \equiv 1283 \pmod{2394}$	C _{2394,2}	266	$k \equiv 541 \pmod{665}$	C665,1

Table A.2 cont. Covering used in Lemma 4.3 (i) for d = 1

row	congruence	prime p_i	row	congruence	prime p_i
267	$k \equiv 408 \pmod{665}$	C _{665,2}	289	$k \equiv 30 \pmod{152}$	P_{152}
268	$k \equiv 275 \pmod{1330}$	1258323641	290	$k \equiv 68 \pmod{152}$	5240808656722481737
269	$k \equiv 940 \pmod{1330}$	C _{1330,1}	291	$k \equiv 106 \pmod{152}$	1403417
270	$k \equiv 1472 \pmod{1995}$	496774951	292	$k \equiv 144 \pmod{152}$	457
271	$k \equiv 807 \pmod{1995}$	127681	293	$k \equiv 156 \pmod{190}$	1812604116731
272	$k \equiv 142 \pmod{1995}$	$C_{1995,1}$	294	$k \equiv 118 \pmod{190}$	121450506296081
273	$k \equiv 1 \pmod{19}$	111111111111111111111	295	$k \equiv 80 \pmod{190}$	P_{190}
274	$k \equiv 32 \pmod{38}$	909090909090909091	296	$k \equiv 4 \pmod{380}$	417332341
275	$k \equiv 51 \pmod{76}$	1369778187490592461	297	$k \equiv 190 \pmod{380}$	74861
276	$k \equiv 13 \pmod{76}$	722817036322379041	298	$k \equiv 42 \pmod{380}$	761
277	$k \equiv 44 \pmod{57}$	21319	299	$k \equiv 232 \pmod{380}$	1901
278	$k \equiv 6 \pmod{57}$	10749631	300	$k \equiv 213 \pmod{228}$	229
279	$k \equiv 25 \pmod{57}$	3931123022305129377976519	301	$k \equiv 175 \pmod{228}$	2281
280	$k \equiv 18 \pmod{95}$	191	302	$k \equiv 137 \pmod{228}$	4789
281	$k \equiv 37 \pmod{95}$	59281	303	$k \equiv 99 \pmod{228}$	304077901
282	$k \equiv 56 \pmod{95}$	63841	304	$k \equiv 61 \pmod{228}$	52875286008709
283	$k \equiv 75 \pmod{95}$	1289981231950849543985493631	305	$k \equiv 23 \pmod{456}$	$c_{456,1}$
284	$k \equiv 94 \pmod{95}$	p_{284}	306	$k \equiv 251 \pmod{456}$	$c_{456,2}$
285	$k \equiv 87 \pmod{114}$	1458973	307	$k \equiv 54 \pmod{171}$	229162071140015324614111
286	$k \equiv 49 \pmod{114}$	p_{286}	308	$k \equiv 111 \pmod{171}$	C _{171,1}
287	$k \equiv 11 \pmod{228}$	$3395\overline{0736420661075851541}$	309	$k \equiv 168 \pmod{171}$	C _{171,2}
288	$k \equiv 125 \pmod{228}$	$7\overline{39653893349540289}$	310	$k \equiv \overline{263 \pmod{285}}$	p ₃₁₀

Table A.2 cont.	Covering	used in	Lemma 4	4.3 (i)	for d	= 1
-----------------	----------	---------	---------	---------	---------	-----

	1	Г			1	1
row	congruence	prime p_i	r	OW	congruence	prime p_i
311	$k \equiv 206 \pmod{285}$	C _{285,1}	3	33	$k \equiv 268 \pmod{4788}$	71821
312	$k \equiv 149 \pmod{285}$	C _{285,2}	3	34	$k \equiv 1864 \pmod{4788}$	682320298511881
313	$k \equiv 35 \pmod{570}$	571	3	35	$k \equiv 3460 \pmod{4788}$	C4788,1
314	$k \equiv 320 \pmod{570}$	11382273828031938028891	3	36	$k \equiv 667 \pmod{1064}$	260827749862793
315	$k \equiv 92 \pmod{570}$	43135513763991692454656851	3	37	$k \equiv 135 \pmod{456}$	27817
316	$k \equiv 377 \pmod{570}$	P_{570}	3	38	$k \equiv 287 \pmod{456}$	376102873
317	$k \equiv 301 \pmod{342}$	2053	3	39	$k \equiv 439 \pmod{456}$	36120612721
318	$k \equiv 244 \pmod{342}$	4410785971	3	40	$k \equiv 534 \pmod{608}$	3031489
319	$k \equiv 187 \pmod{342}$	2911579215499	3	41	$k \equiv 458 \pmod{608}$	C _{608,1}
320	$k \equiv 130 \pmod{342}$	p_{320}	3	42	$k \equiv 382 \pmod{608}$	C _{608,2}
321	$k \equiv 73 \pmod{342}$	P_{342}	3	43	$k \equiv 306 \pmod{1216}$	665153
322	$k \equiv 16 \pmod{684}$	126541	3	44	$k \equiv 914 \pmod{1216}$	1601473
323	$k \equiv 358 \pmod{684}$	2050658332436114459080741	3	45	$k \equiv 230 \pmod{1216}$	65384321
324	$k \equiv 2529 \pmod{2660}$	85121	3	46	$k \equiv 838 \pmod{1216}$	911712031611457
325	$k \equiv 1997 \pmod{2660}$	73700621	3	47	$k \equiv 154 \pmod{1216}$	1217
326	$k \equiv 1465 \pmod{2660}$	$C_{2660,1}$	3	48	$k \equiv 762 \pmod{1216}$	$c_{1216,1}$
327	$k \equiv 933 \pmod{2660}$	$C_{2660,2}$	3	49	$k \equiv 686 \pmod{1216}$	$c_{1216,2}$
328	$k \equiv 401 \pmod{5320}$	202797315945355601	3	50	$k \equiv 1294 \pmod{2432}$	7297
329	$k \equiv 3061 \pmod{5320}$	$c_{5320,1}$	3	51	$k \equiv 78 \pmod{2432}$	$c_{2432,1}$
330	$k \equiv 1332 \pmod{1596}$	539449	3	52	$k \equiv 1218 \pmod{1824}$	1252017313
331	$k \equiv 800 \pmod{3192}$	$c_{3192,1}$	3	53	$k \equiv 610 \pmod{1824}$	524026007884633812193
332	$k \equiv 2396 \pmod{3192}$	$c_{3192,2}$	3	54	$k \equiv 2 \pmod{18}{24}$	c _{1824,1}

Table A.2 cont. Covering used in Lemma 4.3 (i) for d = 1

Notable factorizations of $\Phi_n(10)$ for large *n* used in the covering for d = 3 can be found in Table A.3. Table A.4 is the covering used for d = 3. Here we note some primes that did not fit into the table while maintaining proper formatting guidelines.

 $p_6 = 10000999999999999999999000000010001,$ $p_{13} = 15343168188889137818369,$ $p_{14} = 515217525265213267447869906815873,$ $p_{40} = 53763491189967221358575546107279034709697,$ $p_{64} = 7323941687838105624847742701467683590147273.$

Table A.3 Partial/Full factorizations of $\Phi_n(10)$ for d = 3

n	Factorization of $\Phi_n(10)$
256	$257 \cdot 15361 \cdot 453377 \cdot P_{256}$
288	$13249 \cdot 1067329 \cdot P_{288}$
384	$3457 \cdot 12289 \cdot 418725889 \cdot C_{384}$
480	$177601 \cdot C_{480}$
624	$148068337 \cdot 10662171313 \cdot 325807801400017 \cdot C_{624}$
936	$937 \cdot 368255828264024377 \cdot 5030608786526082241$
	$\cdot 22088303808535743236641 \cdot P_{936}$
1560	$66365521 \cdot 4487398067478973921 \cdot C_{1560}$

row	congruence	prime p_i		row	congruence	prime p_i
a	$k \equiv 2 \pmod{4}$	101] [13	$k \equiv 100 \pmod{128}$	p_{13}
b	$k \equiv 5 \pmod{8}$	137		14	$k \equiv 84 \pmod{128}$	p_{14}
с	$k \equiv 0 \pmod{3}$	37		15	$k \equiv 196 \pmod{256}$	257
d	$k \equiv 5 \pmod{6}$	13		16	$k \equiv 68 \pmod{256}$	15361
e	$k \equiv 26 \pmod{30}$	211		17	$k \equiv 180 \pmod{256}$	453377
f	$k \equiv 40 \pmod{60}$	61] [18	$k \equiv 52 \pmod{256}$	P_{256}
1	$k \equiv 1 \pmod{96}$	97		19	$k \equiv 420 \pmod{512}$	10753
2	$k \equiv 25 \pmod{96}$	206209		20	$k \equiv 292 \pmod{512}$	8253953
3	$k \equiv 49 \pmod{96}$	66554101249		21	$k \equiv 164 \pmod{512}$	9524994049
4	$k \equiv 73 \pmod{96}$	75118313082913		22	$k \equiv 36 \pmod{512}$	73171503617
5	$k \equiv 7 \pmod{48}$	999999990000001		23	$k \equiv 276 \pmod{384}$	3457
6	$k \equiv 31 \pmod{120}$	p_6		24	$k \equiv 148 \pmod{384}$	12289
7	$k \equiv 79 \pmod{240}$	281259985248437790051014401		25	$k \equiv 20 \pmod{384}$	418725889
8	$k \equiv 127 \pmod{240}$	31388506438433752927908678241		26	$k \equiv 260 \pmod{384}$	$c_{384,1}$
9	$k \equiv 175 \pmod{240}$	1132716961		27	$k \equiv 132 \pmod{384}$	$C_{384,2}$
10	$k \equiv 223 \pmod{480}$	177601		28	$k \equiv 388 \pmod{768}$	434689
11	$k \equiv \overline{463 \pmod{480}}$	C _{480,1}		29	$k \equiv 4 \pmod{768}$	859393
12	$k \equiv 116 \pmod{128}$	1265011073		30	$k \equiv 16 \pmod{32}$	641

Table A.4 Covering used in Lemma 4.3 (1) for d = 3

row	congruence	prime p_i	row	congruence	prime p_i
31	$k \equiv 28 \pmod{32}$	1409	50	$k \equiv 907 \pmod{1872}$	1873
32	$k \equiv 12 \pmod{32}$	69857	51	$k \equiv 1843 \pmod{1872}$	7489
33	$k \equiv 8 \pmod{64}$	834427406578561	52	$k \equiv 595 \pmod{936}$	937
34	$k \equiv 40 \pmod{64}$	976193	53	$k \equiv 283 \pmod{936}$	368255828264024377
35	$k \equiv 24 \pmod{64}$	6187457	54	$k \equiv 883 \pmod{936}$	5030608786526082241
36	$k \equiv 56 \pmod{64}$	19841	55	$k \equiv 571 \pmod{936}$	22088303808535743236641
37	$k \equiv 0 \pmod{192}$	193	56	$k \equiv 259 \pmod{936}$	P_{936}
38	$k \equiv 96 \pmod{192}$	769	57	$k \equiv 235 \pmod{624}$	148068337
39	$k \equiv 32 \pmod{192}$	1253224535459902849	58	$k \equiv 523 \pmod{624}$	325807801400017
40	$k \equiv 128 \pmod{192}$	p_{40}	59	$k \equiv 211 \pmod{624}$	10662171313
41	$k \equiv 64 \pmod{288}$	13249	60	$k \equiv 547 \pmod{624}$	$c_{624,1}$
42	$k \equiv 160 \pmod{288}$	1067329	61	$k \equiv 19 \pmod{156}$	3121
43	$k \equiv 256 \pmod{288}$	P_{288}	62	$k \equiv 43 \pmod{156}$	6060517860310398033985611921721
44	$k \equiv 3115 \pmod{3120}$	38609381516161	63	$k \equiv 67 \pmod{156}$	53397071018461
45	$k \equiv 1555 \pmod{3120}$	686402214033121	64	$k \equiv 91 \pmod{312}$	p_{64}
46	$k \equiv 307 \pmod{1560}$	66365521	65	$k \equiv 163 \pmod{312}$	291593563046646669491593
47	$k \equiv 619 \pmod{1560}$	4487398067478973921	66	$k \equiv 115 \pmod{312}$	1358074433371719716641
48	$k \equiv 931 \pmod{1560}$	$c_{1560,1}$	67	$k \equiv 187 \pmod{312}$	1101673
49	$k \equiv 1243 \pmod{1560}$	$c_{1560,2}$	68	$k \equiv 139 \pmod{312}$	313

Table A.4 cont. Covering used in Lemma 4.3 (i) for d = 3
We produce the coverings used in Lemma 4.3 for inserting d = 4 into the leading sevens. Table A.5 provides notable factorizations of $\Phi_n(10)$ for large *n* used in the congruences found in Table A.6. The following primes are used.

 $p_{17} = 754309323029578981494450523147961,$

 $p_{18} = 4832227158939716614468345433242909, \\$

 $p_{84} = 36096800156828895568286578224818258719817914995401933354161,$

 $p_{89} = 632527440202150745090622412245443923049201,$

 $p_{96} = 5538396997364024056286510640780600481,$

 $p_{98} = 8396862596258693901610602298557167100076327481,$

 $p_{119} = 8610583349234340055547908764091017276717091.$

Table A.5 Pa	artial/Full	factorizations	of Φ_n	(10) for	d = 4
--------------	-------------	----------------	-------------	----------	-------

n	Factorization of $\Phi_n(10)$
143	$2823679 \cdot 180523201 \cdot C_{143}$
286	$51767 \cdot 22144088539 \cdot 264752347289 \cdot 104730101107272149081 \cdot P_{286}$
360	$265183201 \cdot C_{360}$
390	$15601 \cdot 925081 \cdot P_{390}$
429	$5018491662756 \cdot C_{429}$
468	$11761957262582764997761 \cdot C_{468}$
546	$102103\cdot P_{546}$
572	$17576772101461 \cdot 754309323029578981494450523147961$
	$\cdot \ 4832227158939716614468345433242909 \cdot C_{572}$
715	C_{715}
780	$19501 \cdot 9160020509281917601 \cdot 201721695849323521 \cdot C_{780}$
858	$6007 \cdot 210991557708361 \cdot 80216851991399964961367677 \cdot C_{858}$
1170	$1171 \cdot 75417940111411 \cdot C_{1170}$
1248	$57653857 \cdot 4694971009 \cdot 4155351649525441 \cdot C_{1248}$
1430	$708433441 \cdot 146582316035503921 \cdot C_{1430}$
2730	$2731 \cdot 5528251 \cdot 6097697971 \cdot C_{2730}$

row	congruence	prime p_i	row	congruence	prime p_i
a	$k \equiv 2 \pmod{3}$	37	19	$k \equiv 191 \pmod{572}$	C572,1
b	$k \equiv 0 \pmod{6}$	13	20	$k \equiv 48 \pmod{572}$	C572,2
с	$k \equiv 9 \pmod{18}$	19	21	$k \equiv 633 \pmod{1144}$	119424449
1	$k \equiv 11 \pmod{13}$	53	22	$k \equiv 61 \pmod{1144}$	503186110849316156410721
2	$k \equiv 8 \pmod{13}$	79	23	$k \equiv 321 \pmod{429}$	5018491662756
3	$k \equiv 5 \pmod{13}$	265371653	24	$k \equiv 178 \pmod{429}$	C _{429,1}
4	$k \equiv 28 \pmod{39}$	900900900900990990990991	25	$k \equiv 35 \pmod{429}$	C _{429,2}
5	$k \equiv 12 \pmod{26}$	859	26	$k \equiv 737 \pmod{858}$	210991557708361
6	$k \equiv 25 \pmod{26}$	1058313049	27	$k \equiv 594 \pmod{858}$	80216851991399964961367677
7	$k \equiv 139 \pmod{143}$	2823679	28	$k \equiv 451 \pmod{858}$	6007
8	$k \equiv 126 \pmod{143}$	180523201	29	$k \equiv 308 \pmod{858}$	C _{858,1}
9	$k \equiv 113 \pmod{143}$	C _{143,1}	30	$k \equiv 165 \pmod{858}$	C _{858,2}
10	$k \equiv 100 \pmod{143}$	C _{143,2}	31	$k \equiv 880 \pmod{1716}$	1063921
11	$k \equiv 87 \pmod{286}$	51767	32	$k \equiv 22 \pmod{1716}$	152980598629
12	$k \equiv 230 \pmod{286}$	22144088539	33	$k \equiv 581 \pmod{715}$	C715,1
13	$k \equiv 74 \pmod{286}$	264752347289	34	$k \equiv 438 \pmod{715}$	C _{715,2}
14	$k \equiv 217 \pmod{286}$	104730101107272149081	35	$k \equiv 1010 \pmod{1430}$	708433441
15	$k \equiv 204 \pmod{286}$	p_{15}	36	$k \equiv 295 \pmod{1430}$	146582316035503921
16	$k \equiv 347 \pmod{572}$	17576772101461	37	$k \equiv 867 \pmod{1430}$	C _{1430,1}
17	$k \equiv 477 \pmod{572}$	<i>p</i> ₁₇	38	$k \equiv 152 \pmod{1430}$	C1430,2
18	$k \equiv 334 \pmod{572}$	<i>p</i> ₁₈	39	$k \equiv 1439 \pmod{2145}$	51481

Table A.6 Covering used in Lemma 4.3 (i) for d = 4

row	congruence	prime p_i	row	congruence	prime p_i
40	$k \equiv 724 \pmod{2145}$	6224791	61	$k \equiv 1027 \pmod{1248}$	4694971009
41	$k \equiv 9 \pmod{2145}$	2832665551	62	$k \equiv 871 \pmod{1248}$	4155351649525441
42	$k \equiv 331 \pmod{390}$	15601	63	$k \equiv 715 \pmod{1248}$	C1248,1
43	$k \equiv 253 \pmod{390}$	925081	64	$k \equiv 559 \pmod{1248}$	$C_{1248,2}$
44	$k \equiv 175 \pmod{390}$	P ₃₉₀	65	$k \equiv 1651 \pmod{2496}$	192193
45	$k \equiv 97 \pmod{1170}$	75417940111411	66	$k \equiv 403 \pmod{2496}$	965953
46	$k \equiv 487 \pmod{1170}$	1171	67	$k \equiv 1495 \pmod{2496}$	22389121
47	$k \equiv 877 \pmod{1170}$	$c_{1170,1}$	68	$k \equiv 247 \pmod{2496}$	199369365313
48	$k \equiv 175 \pmod{546}$	102103	69	$k \equiv 1339 \pmod{2496}$	324200647681
49	$k \equiv 331 \pmod{546}$	P_{546}	70	$k \equiv 91 \pmod{2496}$	4969602289694017
50	$k \equiv 1579 \pmod{2730}$	5528251	71	$k \equiv 169 \pmod{780}$	19501
51	$k \equiv 1189 \pmod{2730}$	6097697971	72	$k \equiv 325 \pmod{780}$	9160020509281917601
52	$k \equiv 799 \pmod{2730}$	2731	73	$k \equiv 481 \pmod{780}$	201721695849323521
53	$k \equiv 409 \pmod{2730}$	$c_{2730,1}$	74	$k \equiv 637 \pmod{780}$	C _{780,1}
54	$k \equiv 474 \pmod{910}$	2475034612051	75	$k \equiv 13 \pmod{2340}$	25741
55	$k \equiv 19 \pmod{910}$	1081846114760321	76	$k \equiv 793 \pmod{2340}$	257764562641
56	$k \equiv 58 \pmod{78}$	157	77	$k \equiv 1573 \pmod{2340}$	6253963297921
57	$k \equiv 16 \pmod{78}$	388847808493	78	$k \equiv 10 \pmod{117}$	240396841140769
58	$k \equiv 55 \pmod{78}$	216451	79	$k \equiv 49 \pmod{117}$	537947698126879
59	$k \equiv 52 \pmod{78}$	6397	80	$k \equiv 88 \pmod{117}$	3352825314499987
60	$k \equiv 1183 \pmod{1248}$	57653857	81	$k \equiv 85 \pmod{117}$	2304017384484085131816292573

Table A.6 cont. Covering used in Lemma 4.3 (i) for d = 4

row	congruence	prime p_i	row	congruence	prime p_i
82	$k \equiv 46 \pmod{234}$	461917	103	$k \equiv 1 \pmod{195}$	1951
83	$k \equiv 163 \pmod{234}$	60034573	104	$k \equiv 66 \pmod{195}$	35081393881
84	$k \equiv 124 \pmod{234}$	p_{84}	105	$k \equiv 131 \pmod{195}$	360924572424391
85	$k \equiv 7 \pmod{468}$	11761957262582764997761	106	$k \equiv 21 \pmod{36}$	999999000001
86	$k \equiv 241 \pmod{468}$	C _{468,1}	107	$k \equiv 3 \pmod{108}$	109
87	$k \equiv 30 \pmod{52}$	521	108	$k \equiv 39 \pmod{108}$	59779577156334533866654838281
88	$k \equiv 43 \pmod{52}$	1900381976777332243781	109	$k \equiv 75 \pmod{108}$	153469
89	$k \equiv 17 \pmod{104}$	p_{89}	110	$k \equiv 87 \pmod{90}$	8985695684401
90	$k \equiv 69 \pmod{104}$	1580801	111	$k \equiv 69 \pmod{180}$	181
91	$k \equiv 4 \pmod{208}$	1249	112	$k \equiv 159 \pmod{180}$	4999437541453012143121
92	$k \equiv 56 \pmod{208}$	49297	113	$k \equiv 141 \pmod{180}$	1105097795002994798105101
93	$k \equiv 108 \pmod{208}$	300977	114	$k \equiv 51 \pmod{360}$	265183201
94	$k \equiv 160 \pmod{208}$	648961	115	$k \equiv 231 \pmod{360}$	C _{360,1}
95	$k \equiv 40 \pmod{65}$	162503518711	116	$k \equiv 33 \pmod{270}$	6481
96	$k \equiv 53 \pmod{65}$	p_{96}	117	$k \equiv 123 \pmod{270}$	577603663291
97	$k \equiv 27 \pmod{130}$	131	118	$k \equiv 213 \pmod{270}$	31023833790241
98	$k \equiv 92 \pmod{130}$	p_{98}	119	$k \equiv 195 \pmod{270}$	p_{119}
99	$k \equiv 14 \pmod{260}$	2311921	120	$k \equiv 105 \pmod{540}$	329941
100	$k \equiv 79 \pmod{260}$	1031498834064949381	121	$k \equiv 375 \pmod{540}$	68189581
101	$k \equiv 144 \pmod{260}$	12763852652999774041	122	$k \equiv 15 \pmod{540}$	49229101
102	$k \equiv 209 \pmod{260}$	12119730504567977254081	123	$k \equiv 285 \pmod{540}$	13029637224192121671301

Table A.6 cont. Covering used in Lemma 4.3 (i) for d = 4

We use the covering found in Table A.8 for inserting the digit d = 6 into the leading sevens. Table A.7 provides notable factorizations of $\Phi_n(10)$ for large n used in these coverings. As with the previous tables, we omit the factorizations corresponding to the composite numbers and large primes in Table A.7 that can be determined by dividing $\Phi_n(10)$ by the nearby primes included in Table A.8. To save space we denote some of the larger primes below.

 $p_{6} = 15763985553739191709164170940063151,$ $p_{59} = 483418418597220677238517353915231961831,$ $p_{104} = 1000009999999999999999999999000000000100001,$ $p_{110} = 38654658795718156456729958859629701,$ $p_{192} = 846160494149365798478410729, \quad p_{193} = 112544281755782732673671367061,$ $p_{196} = 34194473116159546979818689031,$ $p_{262} = 37932032823724801, \quad p_{269} = 10527797306161,$ $p_{276} = 6315203673292075607, \quad p_{277} = 125797399492676917721,$ $p_{280} = 111262583033346559, \quad p_{281} = 155623169021.$

Table A.7 Partial/Full factorizations of $\Phi_n(10)$ for d = 6

n	Factorization of $\Phi_n(10)$
250	$21001 \cdot 162251 \cdot 10893295001 \cdot P_{250}$
272	$17 \cdot 13355595217 \cdot P_{272}$
765	C_{765}
816	$54673 \cdot 5637065089 \cdot C_{816}$
1530	$1531 \cdot 7947357582331 \cdot 40984651817371 \cdot 12804651623971 \cdot C_{1530}$
1575	C_{1575}
1870	C_{1870}

row	congruence	prime p_i	row	congruence	prime p_i
a	$k \equiv 0 \pmod{5}$	41	24	$k \equiv 208 \pmod{225}$	2002877551
b	$k \equiv 12 \pmod{15}$	31	25	$k \equiv 133 \pmod{225}$	2636899200194401
1	$k \equiv 21 \pmod{25}$	21401	26	$k \equiv 58 \pmod{225}$	97671987485517534751
2	$k \equiv 16 \pmod{25}$	25601	27	$k \equiv 183 \pmod{225}$	$c_{225,1}$
3	$k \equiv 11 \pmod{25}$	182521213001	28	$k \equiv 108 \pmod{225}$	$c_{225,2}$
4	$k \equiv 6 \pmod{75}$	151	29	$k \equiv 483 \pmod{675}$	40588518151
5	$k \equiv 31 \pmod{75}$	4201	30	$k \equiv 258 \pmod{675}$	$c_{675,1}$
6	$k \equiv 56 \pmod{75}$	p_6	31	$k \equiv 33 \pmod{675}$	$c_{675,2}$
7	$k \equiv 76 \pmod{100}$	60101	32	$k \equiv 308 \pmod{375}$	21751
8	$k \equiv 51 \pmod{100}$	7019801	33	$k \equiv 233 \pmod{375}$	47001751
9	$k \equiv 26 \pmod{100}$	14103673319201	34	$k \equiv 158 \pmod{375}$	4471031976001
10	$k \equiv 1 \pmod{100}$	1680588011350901	35	$k \equiv 83 \pmod{375}$	C _{375,1}
11	$k \equiv 23 \pmod{50}$	251	36	$k \equiv 8 \pmod{375}$	C _{375,2}
12	$k \equiv 48 \pmod{50}$	5051	37	$k \equiv 153 \pmod{175}$	18525843918490695886751
13	$k \equiv 13 \pmod{50}$	78875943472201	38	$k \equiv 128 \pmod{175}$	991474271662986957800680951
14	$k \equiv 188 \pmod{200}$	401	39	$k \equiv 103 \pmod{175}$	P_{175}
15	$k \equiv 138 \pmod{200}$	1201	40	$k \equiv 228 \pmod{350}$	3612546001
16	$k \equiv 88 \pmod{200}$	1601	41	$k \equiv 253 \pmod{350}$	299547376801
17	$k \equiv 38 \pmod{200}$	P_{200}	42	$k \equiv 78 \pmod{350}$	P_{350}
18	$k \equiv 118 \pmod{125}$	751	43	$k \equiv 403 \pmod{700}$	422100001
19	$k \equiv 93 \pmod{125}$	1797655751	44	$k \equiv 53 \pmod{700}$	701
20	$k \equiv 68 \pmod{125}$	176144543406001	45	$k \equiv 378 \pmod{525}$	79801
22	$k \equiv 43 \pmod{125}$	P_{125}	46	$k \equiv 203 \pmod{525}$	35120401
22	$k \equiv 143 \pmod{250}$	21001	47	$k \equiv 28 \pmod{525}$	435288001
23	$k \equiv 18 \pmod{250}$	162251	48	$k \equiv 353 \pmod{525}$	C525,1

Table A.8 Covering used in Lemma 4.3 (i) for d = 6

row	congruence	prime p_i		row	congruence	prime p_i
49	$k \equiv 178 \pmod{525}$	$c_{525,2}$]	73	$k \equiv 22 \pmod{1620}$	119881
50	$k \equiv 1053 \pmod{1575}$	$c_{1575,1}$	1	74	$k \equiv 1492 \pmod{1620}$	68041
51	$k \equiv 528 \pmod{1575}$	$c_{1575,2}$	1	75	$k \equiv 1087 \pmod{1620}$	29639179139212862101
52	$k \equiv 3153 \pmod{4725}$	286826401	1	76	$k \equiv 682 \pmod{1620}$	8101
53	$k \equiv 1578 \pmod{4725}$	918984151		77	$k \equiv 277 \pmod{1620}$	$C_{1620,1}$
54	$k \equiv 3 \pmod{4725}$	7650670784401	1	78	$k \equiv 952 \pmod{1215}$	369361
55	$k \equiv 127 \pmod{135}$	1577071]	79	$k \equiv 547 \pmod{1215}$	$c_{1215,1}$
56	$k \equiv 112 \pmod{135}$	16357951]	80	$k \equiv 142 \pmod{1215}$	$c_{1215,2}$
57	$k \equiv 97 \pmod{135}$	310362841]	81	$k \equiv 1627 \pmod{2025}$	180860878351
58	$k \equiv 82 \pmod{135}$	258360989311		82	$k \equiv 1222 \pmod{2025}$	$C_{2025,1}$
59	$k \equiv 67 \pmod{135}$	p_{59}		83	$k \equiv 817 \pmod{2025}$	$c_{2025,2}$
60	$k \equiv 52 \pmod{405}$	21871		84	$k \equiv 2437 \pmod{4050}$	4051
61	$k \equiv 187 \pmod{405}$	61561		85	$k \equiv 412 \pmod{4050}$	1931851
62	$k \equiv 322 \pmod{405}$	5222071]	86	$k \equiv 2032 \pmod{4050}$	71764372708675651
63	$k \equiv 37 \pmod{405}$	40435201		87	$k \equiv 7 \pmod{4050}$	$c_{4050,1}$
64	$k \equiv 172 \pmod{405}$	$c_{405,1}$		88	$k \equiv 237 \pmod{250}$	10893295001
65	$k \equiv 307 \pmod{405}$	$C_{405,2}$		89	$k \equiv 162 \pmod{250}$	P_{250}
66	$k \equiv 697 \pmod{810}$	811	1	90	$k \equiv 87 \pmod{500}$	4001
67	$k \equiv 562 \pmod{810}$	213872067091]	91	$k \equiv 337 \pmod{500}$	76001
68	$k \equiv 427 \pmod{810}$	$c_{810,1}$	1	92	$k \equiv 12 \pmod{500}$	1610501
69	$k \equiv 292 \pmod{810}$	$c_{810,2}$		93	$k \equiv 262 \pmod{500}$	C _{500,1}
70	$k \equiv \overline{967} \pmod{1620}$	1621		94	$k \equiv 437 \pmod{500}$	C500,2
71	$k \equiv \overline{157} \pmod{1620}$	19441		95	$k \equiv 362 \pmod{750}$	$25005\overline{172023963824973001}$
72	$k \equiv \overline{832} \pmod{1620}$	27541		96	$k \equiv 287 \pmod{750}$	C750,1

Table A.8 cont. Covering used in Lemma 4.3 (i) for d = 6

row	congruence	prime p_i	row	congruence	prime p_i
97	$k \equiv 212 \pmod{750}$	$c_{750,2}$	121	$k \equiv 32 \pmod{1350}$	C _{1350,2}
98	$k \equiv 687 \pmod{1000}$	24001	122	$k \equiv 917 \pmod{1050}$	1051
99	$k \equiv 187 \pmod{1000}$	1378001	123	$k \equiv 767 \pmod{1050}$	22771401850597648936801
100	$k \equiv 887 \pmod{1500}$	3001	124	$k \equiv 617 \pmod{1050}$	3146327779391852182051
101	$k \equiv 137 \pmod{1500}$	473217092140501	125	$k \equiv 17 \pmod{1050}$	17911809459808314248342142601
102	$k \equiv 812 \pmod{1500}$	89285503565971501	126	$k \equiv 167 \pmod{1050}$	$c_{1050,1}$
103	$k \equiv 62 \pmod{1500}$	$c_{1500,1}$	127	$k \equiv 1517 \pmod{2100}$	1194901
104	$k \equiv 122 \pmod{150}$	p_{104}	128	$k \equiv 467 \pmod{2100}$	62134801
105	$k \equiv 257 \pmod{300}$	601	129	$k \equiv 1367 \pmod{2100}$	219345525001
106	$k \equiv 107 \pmod{300}$	261301	130	$k \equiv 317 \pmod{2100}$	5455568729101
107	$k \equiv 242 \pmod{300}$	3903901	131	$k \equiv 452 \pmod{600}$	32401
108	$k \equiv 92 \pmod{300}$	168290119201	132	$k \equiv 302 \pmod{600}$	$C_{600,1}$
109	$k \equiv 227 \pmod{300}$	25074091038628125301	133	$k \equiv 152 \pmod{600}$	C _{600,2}
110	$k \equiv 77 \pmod{300}$	p_{110}	134	$k \equiv 602 \pmod{1200}$	32233075296001
111	$k \equiv 797 \pmod{900}$	1801	135	$k \equiv 2 \pmod{1200}$	$c_{1200,1}$
112	$k \equiv 647 \pmod{900}$	139501	136	$k \equiv 84 \pmod{85}$	262533041
113	$k \equiv 497 \pmod{900}$	33301	137	$k \equiv 79 \pmod{85}$	8119594779271
114	$k \equiv 347 \pmod{900}$	560701	138	$k \equiv 74 \pmod{85}$	P_{85}
115	$k \equiv 197 \pmod{900}$	5030101	139	$k \equiv 69 \pmod{170}$	87211
116	$k \equiv 47 \pmod{900}$	$c_{900,1}$	140	$k \equiv 154 \pmod{170}$	787223761
117	$k \equiv 332 \pmod{450}$	270001	141	$k \equiv 149 \pmod{170}$	P ₁₇₀
118	$k \equiv 182 \pmod{450}$	P ₄₅₀	142	$k \equiv 574 \pmod{680}$	1361
119	$k \equiv \overline{932} \pmod{1350}$	371251	143	$k \equiv 404 \pmod{680}$	787131281
120	$k \equiv \overline{482 \pmod{1350}}$	$c_{1350,1}$	144	$k \equiv 234 \pmod{680}$	<i>C</i> _{680,1}

Table A.8 cont. Covering used in Lemma 4.3 (i) for d = 6

row	congruence	prime p_i
145	$k \equiv 64 \pmod{680}$	C _{680,2}
146	$k \equiv 25 \pmod{68}$	28559389
147	$k \equiv 127 \pmod{136}$	152533657
148	$k \equiv 59 \pmod{136}$	P_{136}
149	$k \equiv 178 \pmod{204}$	409
150	$k \equiv 144 \pmod{204}$	3061
151	$k \equiv 110 \pmod{204}$	5969449
152	$k \equiv 76 \pmod{204}$	134703241
153	$k \equiv 42 \pmod{204}$	225974065503889
154	$k \equiv 8 \pmod{204}$	44398000479007997569751764249
155	$k \equiv 37 \pmod{51}$	613
156	$k \equiv 20 \pmod{51}$	210631
157	$k \equiv 3 \pmod{51}$	52986961
158	$k \equiv 49 \pmod{51}$	13168164561429877
159	$k \equiv 83 \pmod{102}$	291078844423
160	$k \equiv 32 \pmod{102}$	377526955309799110357
161	$k \equiv 270 \pmod{408}$	2857
162	$k \equiv 219 \pmod{408}$	13266937
163	$k \equiv 168 \pmod{408}$	1119527384827710553
164	$k \equiv 117 \pmod{408}$	53043011765949537815976769
165	$k \equiv 66 \pmod{408}$	P ₄₀₈
166	$k \equiv 423 \pmod{816}$	54673
167	$k \equiv 15 \pmod{816}$	5637065089
168	$k \equiv 372 \pmod{1224}$	282803977

row	congruence	prime p_i
169	$k \equiv 780 \pmod{1224}$	3777811937749537921
170	$k \equiv 1188 \pmod{1224}$	$c_{1224,1}$
171	$k \equiv 1137 \pmod{1224}$	$c_{1224,2}$
172	$k \equiv 3177 \pmod{3672}$	3673
173	$k \equiv 1953 \pmod{3672}$	1813969
174	$k \equiv 729 \pmod{3672}$	161569
175	$k \equiv 2769 \pmod{3672}$	87140233
176	$k \equiv 1545 \pmod{3672}$	322941468457
177	$k \equiv 321 \pmod{3672}$	629674149824204775337
178	$k \equiv 146 \pmod{153}$	307
179	$k \equiv 129 \pmod{153}$	18973
180	$k \equiv 112 \pmod{153}$	11910133
181	$k \equiv 95 \pmod{153}$	25332185271529
182	$k \equiv 78 \pmod{153}$	41331541464123787
183	$k \equiv 61 \pmod{153}$	P_{153}
184	$k \equiv 350 \pmod{459}$	12853
185	$k \equiv 197 \pmod{459}$	919
186	$k \equiv 44 \pmod{459}$	2735641
187	$k \equiv 486 \pmod{612}$	54469
188	$k \equiv 333 \pmod{612}$	158963941
189	$k \equiv 180 \pmod{612}$	2709009355501
190	$k \equiv 27 \pmod{612}$	3626707988341
191	$k \equiv 469 \pmod{612}$	157538980319816607121
192	$k \equiv 316 \pmod{612}$	p_{192}

Table A.8 cont. Covering used in Lemma 4.3 (i) for d = 6

row	congruence	prime p_i		row	congruence	
193	$k \equiv 163 \pmod{612}$	p_{193}		217	$k \equiv 534 \pmod{1700}$	
194	$k \equiv 10 \pmod{612}$	P_{612}		218	$k \equiv 194 \pmod{1700}$	
195	$k \equiv 209 \pmod{255}$	77967508765681		219	$k \equiv 1129 \pmod{1360}$	
196	$k \equiv 124 \pmod{255}$	p_{196}		220	$k \equiv 789 \pmod{1360}$	
197	$k \equiv 39 \pmod{255}$	$C_{255,1}$		221	$k \equiv 449 \pmod{1360}$	
198	$k \equiv 204 \pmod{255}$	$C_{255,2}$		222	$k \equiv 109 \pmod{1360}$	
199	$k \equiv 374 \pmod{765}$	C _{765,1}		223	$k \equiv 228 \pmod{272}$	
200	$k \equiv 629 \pmod{765}$	C _{765,2}		224	$k \equiv 160 \pmod{272}$	
201	$k \equiv 884 \pmod{1530}$	$c_{1530,1}$		225	$k \equiv 364 \pmod{544}$	
202	$k \equiv 119 \pmod{1530}$	$c_{1530,2}$		226	$k \equiv 92 \pmod{544}$	
203	$k \equiv 289 \pmod{306}$	2142001		227	$k \equiv 568 \pmod{816}$	
204	$k \equiv 238 \pmod{306}$	5364487		228	$k \equiv 296 \pmod{816}$	
205	$k \equiv 187 \pmod{306}$	832339891		229	$k \equiv 840 \pmod{1632}$	
206	$k \equiv 136 \pmod{306}$	276402747619		230	$k \equiv 24 \pmod{1632}$	
207	$k \equiv 85 \pmod{306}$	2405782797823		231	$k \equiv 359 \pmod{425}$	
208	$k \equiv 34 \pmod{306}$	P ₃₀₆		232	$k \equiv 274 \pmod{425}$	
209	$k \equiv 284 \pmod{340}$	26861		233	$k \equiv 189 \pmod{425}$	
210	$k \equiv 199 \pmod{340}$	7568346838961		234	$k \equiv 529 \pmod{850}$	
211	$k \equiv 114 \pmod{340}$	237612993541791006121	1	235	$k \equiv 104 \pmod{850}$	
212	$k \equiv 29 \pmod{340}$	C _{340,1}	1	236	$k \equiv 869 \pmod{1275}$	
213	$k \equiv 279 \pmod{340}$	C340,2		237	$k \equiv 444 \pmod{1275}$	
214	$k \equiv 1554 \pmod{1700}$	5101	1	238	$k \equiv 19 \pmod{1275}$	
215	$k \equiv 1214 \pmod{1700}$	3221501	1	239	$k \equiv 439 \pmod{510}$	
216	$k \equiv 874 \pmod{1700}$	7239775671637271201]	240	$k \equiv 354 \pmod{510}$	

Table A.8 cont. Covering used in Lemma 4.3 (i) for d = 6

217	$k \equiv 534 \pmod{1700}$	$c_{1700,1}$
218	$k \equiv 194 \pmod{1700}$	$c_{1700,2}$
219	$k \equiv 1129 \pmod{1360}$	72547841
220	$k \equiv 789 \pmod{1360}$	174323368765921
221	$k \equiv 449 \pmod{1360}$	325944528033956870561
222	$k \equiv 109 \pmod{1360}$	3031447252741466336597441
223	$k \equiv 228 \pmod{272}$	13355595217
224	$k \equiv 160 \pmod{272}$	P_{272}
225	$k \equiv 364 \pmod{544}$	58627969
226	$k \equiv 92 \pmod{544}$	C544,1
227	$k \equiv 568 \pmod{816}$	C _{816,1}
228	$k \equiv 296 \pmod{816}$	C _{816,2}
229	$k \equiv 840 \pmod{1632}$	3156663361
230	$k \equiv 24 \pmod{1632}$	$c_{1632,1}$
231	$k \equiv 359 \pmod{425}$	2551
232	$k \equiv 274 \pmod{425}$	1076120401
233	$k \equiv 189 \pmod{425}$	P_{425}
234	$k \equiv 529 \pmod{850}$	2254201
235	$k \equiv 104 \pmod{850}$	C _{850,1}
236	$k \equiv 869 \pmod{1275}$	122401
237	$k \equiv 444 \pmod{1275}$	4029001
238	$k \equiv 19 \pmod{1275}$	10947151
239	$k \equiv 439 \pmod{510}$	102001
240	$k \equiv 354 \pmod{510}$	5516286288241

prime p_i

row	congruence	prime p_i
241	$k \equiv 269 \pmod{510}$	4270914986978327797975291
242	$k \equiv 184 \pmod{510}$	C _{510,1}
243	$k \equiv 99 \pmod{510}$	C _{510,2}
244	$k \equiv 524 \pmod{1020}$	1021
245	$k \equiv 14 \pmod{1020}$	855781
246	$k \equiv 944 \pmod{1020}$	2586721
247	$k \equiv 774 \pmod{1020}$	5071197096181
248	$k \equiv 604 \pmod{1020}$	8161
249	$k \equiv 434 \pmod{1020}$	$c_{1020,1}$
250	$k \equiv 1284 \pmod{2040}$	1664644599118801
251	$k \equiv 264 \pmod{2040}$	10122798208400401
252	$k \equiv 1114 \pmod{2040}$	$c_{2040,1}$
253	$k \equiv 94 \pmod{2040}$	$c_{2040,2}$
254	$k \equiv 1369 \pmod{1530}$	1531
255	$k \equiv 1199 \pmod{1530}$	7947357582331
256	$k \equiv 1029 \pmod{1530}$	40984651817371
257	$k \equiv 859 \pmod{1530}$	12804651623971
258	$k \equiv 2219 \pmod{3060}$	9181
259	$k \equiv 689 \pmod{3060}$	302941
260	$k \equiv 2049 \pmod{3060}$	49281384122461
261	$k \equiv 519 \pmod{3060}$	239693526486549721
262	$k \equiv 1879 \pmod{3060}$	p_{262}
263	$k \equiv \overline{349 \pmod{3060}}$	6121
264	$k \equiv \overline{1709 \pmod{3060}}$	$C_{3060,1}$

row	congruence	prime p_i
265	$k \equiv 3239 \pmod{6120}$	36721
266	$k \equiv 179 \pmod{6120}$	24481
267	$k \equiv 4599 \pmod{6120}$	12241
268	$k \equiv 3069 \pmod{6120}$	1211761
269	$k \equiv 1539 \pmod{6120}$	p_{269}
270	$k \equiv 9 \pmod{6120}$	$c_{6120,1}$
271	$k \equiv 106 \pmod{187}$	143899867
272	$k \equiv 21 \pmod{187}$	C _{187,1}
273	$k \equiv 123 \pmod{187}$	C _{187,2}
274	$k \equiv 225 \pmod{374}$	192611
275	$k \equiv 38 \pmod{374}$	1284680342573
276	$k \equiv 327 \pmod{374}$	p_{276}
277	$k \equiv 140 \pmod{374}$	p_{277}
278	$k \equiv 242 \pmod{561}$	1123
279	$k \equiv 55 \pmod{561}$	51613
280	$k \equiv 429 \pmod{561}$	p_{280}
281	$k \equiv 718 \pmod{748}$	p_{281}
282	$k \equiv 531 \pmod{748}$	7481
283	$k \equiv 344 \pmod{748}$	$C_{748,1}$
284	$k \equiv 157 \pmod{748}$	$C_{748,2}$
285	$k \equiv 259 \pmod{935}$	1871
286	$k \equiv 174 \pmod{935}$	82986894209449271801
287	$k \equiv 89 \pmod{935}$	189055214380376875384151
288	$k \equiv \overline{939 \pmod{1870}}$	C _{1870,1}
289	$k \equiv 4 \pmod{1870}$	C _{1870,2}

Table A.8 cont.	Covering	used in	Lemma	4.3 (i) for	d = 6
-----------------	----------	---------	-------	--------	-------	-------

For inserting the last digit, d = 9, into the leading sevens, we use the covering found in Table A.10. Table A.9 provides the notable factorizations of $\Phi_n(10)$ for large n used in these coverings. As with the previous tables, we omit the factorizations corresponding to the composite numbers and primes in Table A.9 that can be determined by dividing $\Phi_n(10)$ by the nearby primes included in Table A.10. To save space we list some of the larger primes below.

 $p_{27} = 23391028206417273637358380573, \quad p_{64} = 154083204930662557781201849,$

 $p_{234} = 90077814396055017938257237117, \quad p_{240} = 40548140514062774758071840361,$

 $p_{243} = 21606064498691505246200058094681,$

 $p_{244} = 48911689110891303706174193415115219.$

n	Factorization of $\Phi_n(10)$
93	P_{93}
161	$6763 \cdot 472341157 \cdot 11273170771131750391 \cdot C_{161}$
203	$18620680471 \cdot 68616805173400502243 \cdot 223072327648229020879 \cdot P_{203}$
259	$2591 \cdot 64638631 \cdot 3663802449983927390483 \cdot C_{259}$
290	$1450 \cdot 30104611 \cdot 58765601 \cdot 2433146345771 \cdot 17996132431060961 \cdot P_{290}$
465	$31 \cdot 50718862231 \cdot 151063549389365288761 \cdot C_{465}$
518	C_{518}
558	$1117 \cdot C_{558}$
620	C_{620}
783	C_{783}
1116	$4967159761 \cdot 28975286089 \cdot 206251228717780861 \cdot P_{1116}$
2232	P_{2232}
4464	C_{4464}

Table A.9 Partial/Full factorizations of $\Phi_n(10)$ for d = 9

row	congruence	prime p_i	ro	W	congruence	prime p_i
a	$k \equiv 0 \pmod{2}$	11	24	1	$k \equiv 279 \pmod{322}$	967
1	$k \equiv 18 \pmod{23}$	111111111111111111111111111111111111111	25	5	$k \equiv 233 \pmod{322}$	1569936761
2	$k \equiv 35 \pmod{46}$	47	20	3	$k \equiv 187 \pmod{322}$	1203881882727712699967
3	$k \equiv 29 \pmod{46}$	139	27	7	$k \equiv 141 \pmod{322}$	p_{27}
4	$k \equiv 23 \pmod{46}$	2531	28	3	$k \equiv 95 \pmod{322}$	C322,1
5	$k \equiv 17 \pmod{46}$	549797184491917	29)	$k \equiv 181 \pmod{207}$	109908191603107
6	$k \equiv 34 \pmod{69}$	277	- 30)	$k \equiv 112 \pmod{207}$	C _{207,1}
7	$k \equiv 28 \pmod{69}$	203864078068831	31	1	$k \equiv 43 \pmod{207}$	C _{207,2}
8	$k \equiv 22 \pmod{69}$	1595352086329224644348978893	32	2	$k \equiv 175 \pmod{276}$	829
9	$k \equiv 39 \pmod{92}$	1289	33	3	$k \equiv 37 \pmod{276}$	1569889
10	$k \equiv 85 \pmod{92}$	18371524594609	34	1	$k \equiv 169 \pmod{276}$	536430531035337769
11	$k \equiv 79 \pmod{92}$	4181003300071669867932658901	35	5	$k \equiv 31 \pmod{276}$	757108543129939106221
12	$k \equiv 125 \pmod{184}$	2393	- 36	3	$k \equiv 157 \pmod{276}$	P_{276}
13	$k \equiv 33 \pmod{184}$	P ₁₈₄	37	7	$k \equiv 295 \pmod{552}$	1657
14	$k \equiv 96 \pmod{115}$	31511	- 38	3	$k \equiv 19 \pmod{552}$	1469409649
15	$k \equiv 73 \pmod{115}$	19707665921	- 39)	$k \equiv 301 \pmod{345}$	5521
16	$k \equiv 50 \pmod{115}$	20414137203567631	40)	$k \equiv 232 \pmod{345}$	74521
17	$k \equiv 27 \pmod{115}$	5799951513941382144830754391	4	1	$k \equiv 163 \pmod{345}$	487831
18	$k \equiv 4 \pmod{115}$	122403569491783662720773144041	42	2	$k \equiv 94 \pmod{345}$	19277911
19	$k \equiv 67 \pmod{138}$	31051	43	3	$k \equiv 25 \pmod{345}$	C _{345,1}
20	$k \equiv 61 \pmod{138}$	143574021480139	44	1	$k \equiv 289 \pmod{414}$	37916801893
21	$k \equiv 55 \pmod{138}$	24649445347649059192745899	45	5	$k \equiv 151 \pmod{414}$	143409436964525899
22	$k \equiv 3 \pmod{161}$	6763	40	3	$k \equiv 13 \pmod{414}$	831759677425747570837717
23	$k \equiv 49 \pmod{161}$	472341157	4	7	$k \equiv 283 \pmod{414}$	C414,1

Table A.10 Covering used in Lemma 4.3 (i) for d = 9

row	congruence	prime p_i	row	congruence	prime p_i
48	$k \equiv 145 \pmod{414}$	$C_{414,2}$	72	$k \equiv 101 \pmod{174}$	638453709757
49	$k \equiv 421 \pmod{828}$	4969	73	$k \equiv 95 \pmod{174}$	135080726389891
50	$k \equiv 7 \pmod{828}$	111781	74	$k \equiv 89 \pmod{174}$	1274194732898148471766404179653
51	$k \equiv 415 \pmod{483}$	14461987	75	$k \equiv 257 \pmod{348}$	997369
52	$k \equiv 346 \pmod{483}$	176686231	76	$k \equiv 83 \pmod{348}$	15565833747318241
53	$k \equiv 277 \pmod{483}$	4828646712337104427	77	$k \equiv 251 \pmod{348}$	157002934023127338801841
54	$k \equiv 208 \pmod{483}$	575760557843831535447049	78	$k \equiv 77 \pmod{348}$	$c_{348,1}$
55	$k \equiv 139 \pmod{483}$	$c_{483,1}$	79	$k \equiv 593 \pmod{696}$	13921
56	$k \equiv 70 \pmod{161}$	11273170771131750391	80	$k \equiv 419 \pmod{696}$	11090099157944399977
57	$k \equiv 1 \pmod{161}$	$C_{161,1}$	81	$k \equiv 245 \pmod{696}$	$c_{696,1}$
58	$k \equiv 28 \pmod{29}$	3191	82	$k \equiv 71 \pmod{696}$	$c_{696,2}$
59	$k \equiv 22 \pmod{29}$	16763	83	$k \equiv 413 \pmod{522}$	155557
60	$k \equiv 16 \pmod{29}$	43037	84	$k \equiv 239 \pmod{522}$	2762580729671077856014459
61	$k \equiv 10 \pmod{29}$	62003	85	$k \equiv 65 \pmod{522}$	$c_{522,1}$
62	$k \equiv 4 \pmod{29}$	77843839397	86	$k \equiv 349 \pmod{406}$	19489
63	$k \equiv 27 \pmod{58}$	59	87	$k \equiv 291 \pmod{406}$	243720583
64	$k \equiv 21 \pmod{58}$	p_{64}	88	$k \equiv 233 \pmod{406}$	2563963356465898129
65	$k \equiv 44 \pmod{87}$	4003	89	$k \equiv 175 \pmod{406}$	13569612563320403017443683179
66	$k \equiv 38 \pmod{87}$	72559	90	$k \equiv 117 \pmod{406}$	P_{406}
67	$k \equiv 32 \pmod{87}$	p_{67}	91	$k \equiv 59 \pmod{203}$	18620680471
68	$k \equiv 113 \pmod{116}$	349	92	$k \equiv 1 \pmod{203}$	68616805173400502243
69	$k \equiv 55 \pmod{116}$	38861	93	$k \equiv 227 \pmod{232}$	233
70	$k \equiv 107 \pmod{116}$	618049	94	$k \equiv 169 \pmod{232}$	355193
71	$k \equiv 49 \pmod{116}$	<i>p</i> 71	95	$k \equiv 111 \pmod{232}$	21591416633

Table A.10 cont. Covering used in Lemma 4.3 (i) for d = 9

	Ũ					
row	congruence	prime p_i		row	congruence	prime p_i
96	$k \equiv 53 \pmod{232}$	$c_{232,1}$]	120	$k \equiv 197 \pmod{290}$	30104611
97	$k \equiv 221 \pmod{232}$	$c_{232,2}$		121	$k \equiv 139 \pmod{290}$	58765601
98	$k \equiv 395 \pmod{464}$	929	1	122	$k \equiv 81 \pmod{290}$	2433146345771
99	$k \equiv 163 \pmod{464}$	23201		123	$k \equiv 23 \pmod{290}$	17996132431060961
100	$k \equiv 337 \pmod{464}$	182353	1	124	$k \equiv 133 \pmod{145}$	9605671
101	$k \equiv 105 \pmod{464}$	4465073		125	$k \equiv 104 \pmod{145}$	15589280974996818911
102	$k \equiv 279 \pmod{464}$	$c_{464,1}$		126	$k \equiv 75 \pmod{145}$	$C_{145,1}$
103	$k \equiv 47 \pmod{464}$	$c_{464,2}$		127	$k \equiv 46 \pmod{145}$	$c_{145,2}$
104	$k \equiv 215 \pmod{261}$	523		128	$k \equiv 162 \pmod{290}$	P_{290}
105	$k \equiv 128 \pmod{261}$	670249]	129	$k \equiv 307 \pmod{580}$	1767955366388381478541
106	$k \equiv 41 \pmod{261}$	44974999		130	$k \equiv 17 \pmod{580}$	C580,1
107	$k \equiv 209 \pmod{261}$	9113995243]	131	$k \equiv 359 \pmod{435}$	80911
108	$k \equiv 122 \pmod{261}$	7299238406959	1	132	$k \equiv 272 \pmod{435}$	102019681
109	$k \equiv 35 \pmod{261}$	$c_{261,1}$		133	$k \equiv 185 \pmod{435}$	8538216023012034296071
110	$k \equiv 203 \pmod{261}$	$c_{261,2}$		134	$k \equiv 98 \pmod{435}$	P_{435}
111	$k \equiv 638 \pmod{783}$	$c_{783,1}$		135	$k \equiv 446 \pmod{870}$	33931
112	$k \equiv 377 \pmod{783}$	C _{783,2}]	136	$k \equiv 11 \pmod{870}$	70350656881
113	$k \equiv 899 \pmod{1566}$	1567		137	$k \equiv 527 \pmod{609}$	41413
114	$k \equiv 116 \pmod{1566}$	32887]	138	$k \equiv 440 \pmod{609}$	1840603883162311
115	$k \equiv 812 \pmod{1044}$	2089	1	139	$k \equiv 353 \pmod{609}$	C _{609,1}
116	$k \equiv 551 \pmod{1044}$	31753261		140	$k \equiv 266 \pmod{609}$	C _{609,2}
117	$k \equiv \overline{290 \pmod{1044}}$	1452031741		141	$k \equiv \overline{788} \pmod{1218}$	2437
118	$k \equiv 29 \pmod{1044}$	803137587589		142	$k \equiv \overline{179 \pmod{1218}}$	4315282651
119	$k \equiv 255 \pmod{290}$	1451]	143	$k \equiv 92 \pmod{203}$	223072327648229020879

Table A.10 cont. Covering used in Lemma 4.3 (i) for d = 9

row	congruence	prime p_i	row	congruence	prime p_i
144	$k \equiv 5 \pmod{203}$	P ₂₀₃	168	$k \equiv 66 \pmod{279}$	$c_{279,2}$
145	$k \equiv 22 \pmod{31}$	2791	169	$k \equiv 271 \pmod{310}$	11161
146	$k \equiv 10 \pmod{31}$	6943319	170	$k \equiv 209 \pmod{310}$	3925963357681
147	$k \equiv 29 \pmod{31}$	57336415063790604359	171	$k \equiv 147 \pmod{310}$	5167617497664851
148	$k \equiv 17 \pmod{62}$	9090909090909090909090909090909091	172	$k \equiv 85 \pmod{310}$	P ₃₁₀
149	$k \equiv 36 \pmod{93}$	P_{93}	173	$k \equiv 333 \pmod{620}$	C _{620,1}
150	$k \equiv 55 \pmod{124}$	2049349	174	$k \equiv 23 \pmod{620}$	$C_{620,2}$
151	$k \equiv 43 \pmod{124}$	p_{151}	175	$k \equiv 507 \pmod{744}$	700849
152	$k \equiv 93 \pmod{186}$	373	176	$k \equiv 135 \pmod{744}$	11110153
153	$k \equiv 81 \pmod{186}$	44641	177	$k \equiv 495 \pmod{744}$	1220725699657
154	$k \equiv 69 \pmod{186}$	3590254957	178	$k \equiv 123 \pmod{744}$	5419392721
155	$k \equiv 57 \pmod{186}$	p_{155}	179	$k \equiv 483 \pmod{744}$	42367299139993
156	$k \equiv 231 \pmod{372}$	5209	180	$k \equiv 111 \pmod{744}$	$c_{744,1}$
157	$k \equiv 219 \pmod{372}$	C _{372,1}	181	$k \equiv 471 \pmod{744}$	$c_{744,2}$
158	$k \equiv 207 \pmod{372}$	C _{372,2}	182	$k \equiv 843 \pmod{1488}$	7573921
159	$k \equiv 195 \pmod{248}$	1489	183	$k \equiv 99 \pmod{1488}$	$c_{1488,1}$
160	$k \equiv 71 \pmod{248}$	640543322297	184	$k \equiv 831 \pmod{868}$	8681
161	$k \equiv 183 \pmod{248}$	27908132670449	185	$k \equiv 707 \pmod{868}$	106300489
162	$k \equiv 59 \pmod{248}$	384705444182230291105649	186	$k \equiv 583 \pmod{868}$	120995729
163	$k \equiv 171 \pmod{248}$	P_{248}	187	$k \equiv 459 \pmod{868}$	363981764441
164	$k \equiv 295 \pmod{496}$	789592121167489	188	$k \equiv 335 \pmod{868}$	C868,1
165	$k \equiv 47 \pmod{496}$	C496,1	189	$k \equiv 211 \pmod{868}$	C868,2
166	$k \equiv 252 \pmod{279}$	18989357081041	190	$k \equiv 87 \pmod{434}$	240437
167	$k \equiv 159 \pmod{279}$	C279,1	191	$k \equiv 385 \pmod{434}$	1142669053

Table A.10 cont. Covering used in Lemma 4.3 (i) for d = 9

row	congruence	prime p_i
192	$k \equiv 323 \pmod{434}$	313360308665807383
193	$k \equiv 261 \pmod{434}$	579210707460230341693
194	$k \equiv 199 \pmod{434}$	P ₄₃₄
195	$k \equiv 137 \pmod{217}$	3662093
196	$k \equiv 75 \pmod{217}$	$c_{217,1}$
197	$k \equiv 13 \pmod{217}$	$c_{217,2}$
198	$k \equiv 435 \pmod{465}$	50718862231
199	$k \equiv 342 \pmod{465}$	151063549389365288761
200	$k \equiv 249 \pmod{465}$	$C_{465,1}$
201	$k \equiv 156 \pmod{465}$	$C_{465,2}$
202	$k \equiv 63 \pmod{155}$	311
203	$k \equiv 423 \pmod{558}$	$c_{558,1}$
204	$k \equiv 237 \pmod{558}$	$c_{558,2}$
205	$k \equiv 1167 \pmod{1674}$	5023
206	$k \equiv 609 \pmod{1674}$	261315626851
207	$k \equiv 51 \pmod{1674}$	$C_{1674,1}$
208	$k \equiv 783 \pmod{1116}$	4967159761
209	$k \equiv 411 \pmod{1116}$	28975286089
210	$k \equiv 39 \pmod{1116}$	206251228717780861
211	$k \equiv 1515 \pmod{1860}$	1861
212	$k \equiv 1143 \pmod{1860}$	459421
213	$k \equiv 771 \pmod{1860}$	105966383429834881
214	$k \equiv 399 \pmod{1860}$	26482637738395021
215	$k \equiv 27 \pmod{1860}$	306993468333255153181

Table A.10 cont.	Covering used in Lemma 4.3 (i) for $d = 9$	
		_

row	congruence	prime p_i
216	$k \equiv 1503 \pmod{1860}$	$C_{1860,1}$
217	$k \equiv 1131 \pmod{1860}$	C _{1860,2}
218	$k \equiv 759 \pmod{930}$	22672589441232691
219	$k \equiv 387 \pmod{930}$	C _{930,1}
220	$k \equiv 15 \pmod{930}$	C _{930,2}
221	$k \equiv 747 \pmod{1116}$	P_{1116}
222	$k \equiv 375 \pmod{558}$	1117
223	$k \equiv 1119 \pmod{2232}$	P_{2232}
224	$k \equiv 2235 \pmod{4464}$	$c_{4464,1}$
225	$k \equiv 3 \pmod{4464}$	$c_{4464,2}$
226	$k \equiv 34 \pmod{37}$	2028119
227	$k \equiv 22 \pmod{37}$	247629013
228	$k \equiv 10 \pmod{37}$	2212394296770203368013
229	$k \equiv 35 \pmod{74}$	7253
230	$k \equiv 23 \pmod{74}$	422650073734453
231	$k \equiv 11 \pmod{74}$	296557347313446299
232	$k \equiv 36 \pmod{111}$	30557051518647307
233	$k \equiv 24 \pmod{111}$	8845981170865629119271997
234	$k \equiv 12 \pmod{111}$	p_{234}
235	$k \equiv 37 \pmod{148}$	149
236	$k \equiv 25 \pmod{148}$	3109
237	$k \equiv 13 \pmod{148}$	111149
238	$k \equiv 1 \pmod{148}$	708840373781
239	$k \equiv 137 \pmod{148}$	669031686661427842829

row	congrijence	prime n_{\cdot}	row	congruence	prime p_i
240	l = 105 (m + 1.16)		264	$k \equiv 117 \pmod{185}$	1936570114827069923550119591
240	$\kappa = 125 \pmod{148}$	p_{240}	265	$k \equiv 80 \pmod{185}$	C _{185.1}
241	$k \equiv 39 \pmod{222}$	223	266	$k \equiv 43 \pmod{185}$	C185.2
242	$k \equiv 27 \pmod{222}$	4663	267	$k \equiv 191 \pmod{370}$	49173925574833481
243	$k \equiv 15 \pmod{222}$	<i>p</i> ₂₄₃	268	$k \equiv 6 \pmod{370}$	P270
244	$k \equiv 3 \pmod{222}$	<i>p</i> ₂₄₄	269	$k = 253 \pmod{296}$	61544617
245	$k \equiv 213 \pmod{444}$	23653713304547869	270	$k \equiv 205 \pmod{296}$ $k \equiv 105 \pmod{296}$	16///7658/8115921
246	$k \equiv 201 \pmod{444}$	$c_{444,1}$	210	$k = 105 \pmod{230}$ $k = 215 \pmod{232}$	06455440
247	$k \equiv 189 \pmod{444}$	$c_{444,2}$	271	$h \equiv 310 \pmod{333}$ $h = 204 \pmod{322}$	90400449
248	$k \equiv 621 \pmod{888}$	54615849443593	212	$\kappa = 204 \pmod{555}$	C333,1
249	$k \equiv 177 \pmod{888}$	31495401976675753	273	$k \equiv 93 \pmod{333}$	
250	$k \equiv 609 \pmod{888}$	C888 1	274	$k \equiv 525 \pmod{555}$	14431
251	$k \equiv 165 \pmod{888}$	C888.2	275	$k \equiv 414 \pmod{555}$	169831
$\frac{-3}{252}$	$k \equiv 1041 \pmod{1332}$	38629	276	$k \equiv 303 \pmod{555}$	994561
253	$k = 597 \pmod{1332}$	215018101	277	$k \equiv 192 \pmod{555}$	5153778841
250	$k \equiv 057 \pmod{1002}$ $k \equiv 153 \pmod{1332}$	1/003835/81	278	$k \equiv 81 \pmod{555}$	20786617240933593976831
254	$k = 100 \pmod{1002}$ $k = 1020 \pmod{1002}$	14003030401	279	$k \equiv 513 \pmod{666}$	902659997773
255	$h = 1029 \pmod{1332}$	C _{1332,1}	280	$k \equiv 291 \pmod{666}$	7116181512528105949933
250	$k = 360 \pmod{1552}$	7002	281	$k \equiv 69 \pmod{666}$	62562101977662753776437
207	$\kappa = 1473 \pmod{2004}$	(995	282	$k \equiv 649 \pmod{740}$	1481
258	$k \equiv 141 \pmod{2664}$	6920827178401	283	$k \equiv 501 \pmod{740}$	15541
259	$k \equiv 1461 \pmod{1776}$	1777	284	$k \equiv 353 \pmod{740}$	68821
260	$k \equiv 1017 \pmod{1776}$	7228321	285	$k = 205 \pmod{740}$	6336499381
261	$k \equiv 573 \pmod{1776}$	14645119755678294049	286	$k = 57 \pmod{740}$	4098464044501
262	$k \equiv 129 \pmod{1776}$	C ₁₇₇₆	287	$k = 637 \pmod{740}$	74615611921
263	$k \equiv 154 \pmod{185}$	6511230041186560022095681	201	$k = 480 \pmod{740}$	107771245624710291
			200	$\kappa = 469 (1100 (40))$	10///1040024/19521

prime p_i

Table A.10 cont. Covering used in Lemma 4.3 (i) for d = 9

row	congruence	prime p_i	r
289	$k \equiv 341 \pmod{740}$	16206170837408945509907221	3
290	$k \equiv 193 \pmod{740}$	C _{740,1}	3
291	$k \equiv 45 \pmod{740}$	C740,2	3
292	$k \equiv 699 \pmod{777}$	79003664587	3
293	$k \equiv 588 \pmod{777}$	531660478441	3
294	$k \equiv 477 \pmod{777}$	31505041755035521	3
295	$k \equiv 366 \pmod{777}$	C _{777,1}	3
296	$k \equiv 255 \pmod{777}$	C777,2	3
297	$k \equiv 144 \pmod{259}$	$c_{259,1}$	3
298	$k \equiv 33 \pmod{259}$	$C_{259,2}$	3
299	$k \equiv 909 \pmod{1036}$	9392332326728043169	3
300	$k \equiv 761 \pmod{1036}$	$c_{1036,1}$	3
301	$k \equiv 613 \pmod{1036}$	$c_{1036,2}$	3
302	$k \equiv 465 \pmod{518}$	$c_{518,1}$	3
303	$k \equiv 58 \pmod{259}$	2591	3
304	$k \equiv 169 \pmod{259}$	64638631	3
305	$k \equiv 21 \pmod{259}$	3663802449983927390483	3
306	$k \equiv 379 \pmod{407}$	46399	3
307	$k \equiv 342 \pmod{407}$	390721	3
308	$k \equiv 305 \pmod{407}$	2377517312347	3

Table A.10 cont. Covering used in Lemma 4.3 (i) for d = 9

row	congruence	prime p_i
309	$k \equiv 268 \pmod{407}$	14922184078787276001107
310	$k \equiv 231 \pmod{407}$	$c_{407,1}$
311	$k \equiv 194 \pmod{407}$	$c_{407,2}$
312	$k \equiv 564 \pmod{814}$	409038414731
313	$k \equiv 157 \pmod{814}$	$c_{814,1}$
314	$k \equiv 527 \pmod{814}$	$c_{814,2}$
315	$k \equiv 934 \pmod{1628}$	24421
316	$k \equiv 120 \pmod{1628}$	115589
317	$k \equiv 1304 \pmod{1628}$	7716573481
318	$k \equiv 897 \pmod{1628}$	26860773000292529
319	$k \equiv 490 \pmod{1628}$	$c_{1628,1}$
320	$k \equiv 1711 \pmod{3256}$	3257
321	$k \equiv 83 \pmod{3256}$	165553216084681453513
322	$k \equiv 860 \pmod{1221}$	3306121237
323	$k \equiv 453 \pmod{1221}$	37232500009
324	$k \equiv 46 \pmod{1221}$	171055055020477
325	$k \equiv 823 \pmod{1221}$	$c_{1221,1}$
326	$k \equiv 416 \pmod{1221}$	$c_{1221,2}$
327	$k \equiv \overline{1230 \pmod{2442}}$	$1821\overline{60098613913582339}$
328	$k \equiv 9 \pmod{2442}$	C2442,1

Appendix B

Coverings for bases other than 10

For bases other than 10, we wish to establish a statement analogous to Theorem 1.5. While Theorem 1.5 requires the widely digitally stable composite number, N, to be coprime to 10, we will require N to be coprime to the base, b. We generalize much of the notation used in Chapter 4. For any base b, consider the number

$$N = a \cdot \frac{b^n - 1}{b - 1} + M,$$

with $a \in \{1, 2, ..., b - 1\}$ and where n and M are large natural numbers to be determined with n large enough that the left-most digit of N is a. Notice that the base b representation of N can be written as

$$N = 00\dots 00 \underbrace{aa\dots aa}_{n \text{ total } a's} + M,$$

where $aa \dots aa$ is a string of n digits that are all a's.

For a nonnegative integer k, let $N^{(k)}(x)$ denote inserting a digit $x \in \{0, ..., b-1\}$ to the right of the $k + 1^{st}$ digit of N. We set K to be the number of digits of M; thus, initially, K is unknown to us. Similar to the method used in Chapter 4, we break the argument up into three cases: $k \ge n$ corresponding to the leading zeros, $K \le k \le n - 1$ corresponding to the leading a's, and $0 \le k < K$ corresponding to M. We can formulate $N^{(k)}(x)$ above nicely for the first two cases. Specifically, with $x \in \{0, 1, ..., b-1\}$, for $k \ge n$, the value of $N^{(k)}(x)$, representing inserting x into the leading zeros, takes the form

$$N_0^{(k)}(x) = a \cdot \frac{b^n - 1}{b - 1} + M + x \cdot b^k;$$

and for $K \leq k < n$, the value of $N^{(k)}(d)$, representing inserting d into the leading a's, takes the form

$$N_a^{(k)}(d) = a \cdot b^n + a \cdot \frac{b^n - 1}{b - 1} + M + (d - a) \cdot b^k,$$

where we use d to indicate that we are looking at the leading a's and x to indicate that we are looking at the leading zeros. For base 10 we let b = 10 and a = 7; however, we will pick different values for a to better utilize small primes for each base.

To prove an analogous statement to Theorem 1.5 for base b, we will follow the same method outlined in Chapter 4. We will exhibit coverings of the integers corresponding to the following generalizations of Lemma 4.2 and Lemma 4.3. Each covering corresponds to inserting a digit x in the leading zeros or inserting a digit din the leading a's. By way of notation, we define c(p) to be the multiplicative order of b modulo a prime with gcd(p, b) = 1.

Lemma B.1. Fix an integer b > 1. Let N and M be natural numbers, and $a \in \{1, 2, ..., b-1\}$, such that

$$N = a \cdot \frac{b^n - 1}{b - 1} + M,$$

where N has base b expansion

$$N = d_{n-1}d_{n-2}\dots d_1d_0, \quad d_i \in \{0, 1, \dots, b\} \quad n \ge 1, \quad d_{n-1} = a.$$

Let K be a nonnegative integer such that $d_k = a$ for $K \le k \le n - 1$, and set $d_k = 0$ for $k \ge n$. For a fixed $x \in \{0, 1, ..., b-1\}$, suppose we have distinct primes $p_1, ..., p_t$, each coprime to b, for which

- (i) there exists a covering of the integers $k \equiv b_i \pmod{c(p_i)}$, for $1 \le i \le t$,
- (*ii*) $n \equiv 0 \pmod{lcm(c(p_1), \ldots, c(p_t))}$
- (iii) M is a solution to the system of congruences

$$M \equiv -x \cdot b^{b_i} \pmod{p_i}, \quad 1 \le i \le t.$$

Then, for all nonnegative integers k, we have

$$N_0^{(k)}(x) = a \cdot \frac{b^n - 1}{b - 1} + M + x \cdot b^k$$

is divisible by at least one of the primes p_i where $1 \le i \le t$.

Lemma B.2. Fix an integer b > 1. Let N and M be natural numbers, and $a \in \{1, 2, ..., b - 1\}$, such that

$$N = a \cdot \frac{b^n - 1}{b - 1} + M,$$

where N has base b expansion

$$N = d_{n-1}d_{n-2}\dots d_1d_0, \quad d_i \in \{0, 1, \dots, b\} \quad n \ge 1, \quad d_{n-1} = a.$$

Let K be a nonnegative integer such that $d_k = a$ for $K \le k \le n - 1$, and set $d_k = 0$ for $k \ge n$. For a fixed $d \in \{0, 1, ..., b-1\}$, suppose we have distinct primes $p_1, ..., p_t$, each coprime to b, for which

- (i) there exists a covering of the integers $k \equiv b_i \pmod{c(p_i)}$, for $1 \le i \le t$,
- (*ii*) $n \equiv 0 \pmod{lcm(c(p_1),\ldots,c(p_t))}$
- (iii) M is a solution to the system of congruences

$$M \equiv -a - (d - a) \cdot b^{b_i} \pmod{p_i}, \quad 1 \le i \le t.$$

Then, for all nonnegative integers k, we have

$$N_a^{(k)}(d) = a \cdot b^n + a \cdot \frac{b^n - 1}{b - 1} + M + (d - a) \cdot b^k$$

is divisible by at least one of the primes p_i where $1 \le i \le t$.

The proofs of Lemma B.1 and Lemma B.2 are identical to that of Lemma 4.2. For the right-most digits, M, the same argument used in Section 4.4 of Chapter 4 is used with the role of a and b replacing that of 7 and 10. The rest of this appendix will be used to exhibit the coverings used in (i) of Lemmas B.1 and B.2 for each base. Many of the coverings used in this appendix can be found in Jeremiah Southwick's dissertation, [36], but with slight modifications. We will use the same notation for displaying the coverings as was used in Chapter 4 and Appendix A. We have at times truncated the presentation of the congruences chosen so as to meet formatting guidelines. For example, in Table B.12 we have removed the columns with heading 'row' to allow for more horizontal space and have also shortened the presentation of each residue class chosen. Notice that to obtain the primes p of a given order c = c(p) for a given base, one looks at the primes pwhich divide $\Phi_c(b)$, where $\Phi_c(x)$ is the c^{th} cyclotomic polynomial.

B.1 Covering systems for b = 2

For base 2, we let b = 2 and a = 1. That is, we consider

$$N = 2^n - 1 + M,$$

where the digit insertions are

$$N_0^{(k)}(x) = 2^n - 1 + M + x \cdot 2^k$$
 and $N_1^{(k)}(d) = 2^{n+1} - 1 + M + (d-1) \cdot 2^k$.

We want coverings for $x \in \{0, 1\}$ and $d \in \{0, 1\}$; however, inserting a zero into the leading zeros does not change N. That is, we do not need a covering for x = 0. To guarantee that N is composite, we use a single congruence instead of a full covering.

Table B.1 is the covering used for x = 1, and Table B.2 is the covering used for d = 0. Recall that we can use a prime p more than once as long as the congruence condition on M from (iii) of Lemmas B.1 and B.2 are equivalent. For d = 0, we do not reuse any primes from Table B.1. We reuse the prime 3 in the congruence $k \equiv 0 \pmod{2}$ for the covering found in Table B.3 corresponding to d = 1. One can check that the congruences involving the prime 3 correspond to the congruence condition $M \equiv 2 \pmod{3}$.

row	congruence	prime p_i
1	$k \equiv 0 \pmod{2}$	3
2	$k \equiv 1 \pmod{4}$	5
3	$k \equiv 3 \pmod{8}$	17
4	$k \equiv 7 \pmod{16}$	257
5	$k \equiv 15 \pmod{32}$	65537
6	$k \equiv 31 \pmod{64}$	641
7	$k \equiv 63 \pmod{64}$	6700417

Table B.1 Covering for x = 1 in Base 2

Table B.2 Covering for d = 0 in Base 2

row	congruence	prime p_i
1	$k \equiv 0 \pmod{3}$	7
2	$k \equiv 7 \pmod{9}$	73
3	$k \equiv 13 \pmod{18}$	19
4	$k \equiv 4 \pmod{36}$	37
5	$k \equiv 22 \pmod{36}$	109
6	$k \equiv 19 \pmod{27}$	262657
7	$k \equiv 37 \pmod{54}$	87211
8	$k \equiv 10 \pmod{108}$	246241
9	$k \equiv 64 \pmod{108}$	279073
10	$k \equiv 1 \pmod{81}$	2593
11	$k \equiv 28 \pmod{81}$	71119

row	congruence	prime p_i
12	$k \equiv 55 \pmod{81}$	97685839
13	$k \equiv 11 \pmod{12}$	13
14	$k \equiv 17 \pmod{24}$	241
15	$k \equiv 5 \pmod{48}$	97
16	$k \equiv 29 \pmod{48}$	673
17	$k \equiv 2 \pmod{5}$	31
18	$k \equiv 8 \pmod{10}$	11
19	$k \equiv 14 \pmod{15}$	151
20	$k \equiv 20 \pmod{30}$	331
21	$k \equiv 26 \pmod{60}$	61
22	$k \equiv 56 \pmod{60}$	1321

Table B.3 Covering for d = 1 in Base 2

congruence	prime p_i
$k \equiv 0 \pmod{2}$	3
$k \equiv 19 \pmod{20}$	41
$k \equiv 29 \pmod{40}$	61681
$k \equiv 49 \pmod{80}$	4278255361
$k \equiv 89 \pmod{160}$	414721
$k \equiv 9 \pmod{160}$	44479210368001
$k \equiv 67 \pmod{70}$	281
$k \equiv 57 \pmod{70}$	86171
$k \equiv 117 \pmod{140}$	7416361
$k \equiv 47 \pmod{140}$	47392381
$k \equiv 177 \pmod{210}$	211
$k \equiv 107 \pmod{210}$	664441
$k \equiv 37 \pmod{210}$	1564921
$k \equiv 6 \pmod{7}$	127

congruence	prime p_i
$k \equiv 10 \pmod{14}$	43
$k \equiv 17 \pmod{28}$	29
$k \equiv 3 \pmod{28}$	113
$k \equiv 14 \pmod{21}$	337
$k \equiv 28 \pmod{42}$	5419
$k \equiv 49 \pmod{84}$	1429
$k \equiv 7 \pmod{84}$	14449
$k \equiv 42 \pmod{63}$	92737
$k \equiv 21 \pmod{63}$	649657
$k \equiv 63 \pmod{126}$	77158673929
$k \equiv 126 \pmod{252}$	40388473189
$k \equiv 0 \pmod{252}$	118750098349
$k \equiv 43 \pmod{50}$	251
$k \equiv 33 \pmod{50}$	4051

	congritonco	nrime n.		
			congruence	prime p_i
K	$x \equiv 23 \pmod{25}$	601	$k \equiv 301 \pmod{350}$	1051
K	$x \equiv 13 \pmod{25}$	1801	$k \equiv 251 \pmod{350}$	110251
K	$r \equiv 53 \pmod{75}$	100801	$k \equiv 201 \pmod{350}$	347833278451
K	$\frac{x \equiv 28 \pmod{75}}{152 \pmod{75}}$	10507201	$k \equiv 151 \pmod{350}$	34010032331525251
κ	$\equiv 153 \pmod{225}$	115201	$k \equiv 31 \pmod{35}$	71
k	$\equiv 78 \pmod{225}$	617401	$k \equiv 16 \pmod{35}$	122921
k	$x \equiv 3 \pmod{225}$	1348206751	$k = 71 \pmod{105}$	29191
k	$\equiv 91 \pmod{100}$	101	$k \equiv 36 \pmod{105}$	106681
k	$\equiv 41 \pmod{100}$	8101	$k \equiv 1 \pmod{105}$	1520/1
k	$\equiv 81 \pmod{100}$	268501	$\frac{k = 1 \pmod{100}}{k = 6 \pmod{11}}$	23
k	$\equiv 231 \pmod{300}$	1201	$\frac{k \equiv 0 \pmod{11}}{k \equiv 7 \pmod{11}}$	80
k	$\equiv 131 \pmod{300}$	63901	$\frac{k \equiv l \pmod{11}}{k \equiv 10 \pmod{22}}$	692
k	$\equiv 31 \pmod{300}$	13334701	$k \equiv 19 \pmod{22}$	005
k	$\equiv 121 \pmod{150}$	1133836730401	$\frac{\kappa = 51 \pmod{44}}{1 + 0 \binom{1}{1} + 4}$	097
k	$\equiv 371 \pmod{450}$	4714696801	$\frac{k \equiv 9 \pmod{44}}{10 \pmod{455}}$	2113
k	$\equiv 221 \pmod{450}$	281941472953710177758647201	$\frac{k \equiv 10 \pmod{55}}{10 \pmod{55}}$	881
k	$\equiv 521 \pmod{900}$	695701	$k \equiv 0 \pmod{55}$	3191
k	$\equiv 71 \pmod{900}$	307116398490301	$k \equiv 45 \pmod{55}$	201961
k	$\equiv 171 \pmod{300}$	1182468601	$k \equiv 57 \pmod{66}$	67
k	$\equiv 621 \pmod{900}$	413150254353901	$k \equiv 35 \pmod{66}$	20857
$\frac{k}{k}$	$= 321 \pmod{900}$	6269989892198401	$k \equiv 79 \pmod{132}$	312709
$\frac{k}{k}$	$= 21 \pmod{900}$	3192261504216112476901	$k \equiv 13 \pmod{132}$	4327489
$\frac{k}{k}$	$= 161 \pmod{900}$	401	$k \equiv 25 \pmod{110}$	2971
$\frac{n}{k}$	$= 101 \pmod{200}$ = 111 (mod 200)	340801	$k \equiv 15 \pmod{110}$	48912491
	$= 61 \pmod{200}$	2787601	$k \equiv 115 \pmod{220}$	415878438361
$\frac{h}{L}$	$= 01 \pmod{200}$ = 11 (mod 200)	2101001	$k \equiv 5 \pmod{220}$	3630105520141
κ	\equiv 11 (mod 200)	0110000001		

_

Table B.3 cont. Covering for d = 1 in Base 2

For the case x = 1 in Table B.1, the least common multiple of the moduli for the congruences is 64. A direct analysis as done in Section 4.2 for base 10 can be done in this case to verify the covering. That is, one can check that every integer in [0, 63) satisfies at least one congruence in Table B.1. This is also true for d = 0, where the least common multiple of the moduli is 6480; and d = 1, where the least common multiple of the moduli is 554400.

To guarantee that N is composite, we use the prime 47 which satisfies $\operatorname{ord}_{47}(2) = 23$ and does not appear in any of the coverings used for the other insertions. Let n satisfy the congruences in (ii) of Lemmas B.1 and B.2, as well as $n \equiv 0 \pmod{23}$, and let M satisfy the congruences in (iii) of Lemmas B.1 and B.2, as well as $M \equiv 0 \pmod{47}$. Then $N \equiv 0 \pmod{47}$, and hence is composite.

B.2 Covering systems for b = 3

For base 3, we let b = 3 and a = 2. That is, we consider

$$N = 3^n - 1 + M,$$

where the digit insertions are

$$N_0^{(k)}(x) = 3^n - 1 + M + x \cdot 3^k$$
 and $N_2^{(k)}(d) = 3^{n+1} - 1 + M + (d-2) \cdot 3^k$

We want coverings for $x \in \{0, 1, 2\}$ and $d \in \{0, 1, 2\}$. We start by utilizing smaller primes. Notice that if $M \equiv 0 \pmod{2}$, then both $N_0^{(k)}(x) \equiv 0 \pmod{2}$ and $N_2^{(k)}(d) \equiv$ $0 \pmod{2}$ for $x \equiv 0 \pmod{2}$ and $d \equiv 0 \pmod{2}$. Thus, we only need to find coverings for x = 1 and d = 1. Notice that inserting a 0 into the leading zeros does not change the number, so N is a composite number.

Table B.4 is the covering used for x = 1, and Table B.5 is the covering used for d = 1. Table B.5 reuses the primes 13 and 19 from Table B.4 in the congruences $k \equiv 0 \pmod{3}$ and $k \equiv 5 \pmod{18}$. One checks that these are equivalent to the congruences $M \equiv 12 \pmod{13}$ and $M \equiv 13 \pmod{19}$.

prime p_i	congruence	prime p_i	
13	$k \equiv 17 \pmod{72}$	282429005041	
7	$k \equiv 53 \pmod{144}$	1418632417	
757	$k \equiv 125 \pmod{144}$	56227703611393	
19	$k \equiv 23 \pmod{216}$	2161	
37	$k \equiv 95 \pmod{216}$	15121	
5	$k \equiv 167 \pmod{216}$	10512289	
73	$k \equiv 71 \pmod{108}$	150094634909578633	
530713	$k \equiv 143 \pmod{216}$	16569793	
41	$k \equiv 215 \pmod{216}$	3958044610033	
	$ prime p_i 13 7 757 19 37 5 73 530713 41 $	prime p_i congruence13 $k \equiv 17 \pmod{72}$ 7 $k \equiv 53 \pmod{144}$ 757 $k \equiv 125 \pmod{144}$ 757 $k \equiv 23 \pmod{144}$ 19 $k \equiv 23 \pmod{216}$ 37 $k \equiv 95 \pmod{216}$ 5 $k \equiv 167 \pmod{216}$ 73 $k \equiv 143 \pmod{216}$ 41 $k \equiv 215 \pmod{216}$	

Table B.4 Covering for x = 1 in Base 3

Table B.5 Covering for d = 1 in Base 3

congruence	prime p_i		congruence	prime p_i
$k \equiv 0 \pmod{3}$	13]	$k \equiv 50 \pmod{54}$	19441
$k \equiv 5 \pmod{18}$	19		$k \equiv 32 \pmod{54}$	19927
$k \equiv 3 \pmod{5}$	11		$k \equiv 122 \pmod{162}$	163
$k \equiv 5 \pmod{10}$	61		$k \equiv 68 \pmod{162}$	1297
$k \equiv 10 \pmod{20}$	1181		$k \equiv 14 \pmod{162}$	208657
$k \equiv 20 \pmod{40}$	42521761		$k \equiv 0 \pmod{7}$	1093
$k \equiv 40 \pmod{80}$	14401		$k \equiv 12 \pmod{14}$	547
$k \equiv 0 \pmod{80}$	128653413121		$k \equiv 19 \pmod{28}$	29
$k \equiv 7 \pmod{15}$	4561		$k \equiv 5 \pmod{28}$	16493
$k \equiv 19 \pmod{30}$	31		$k \equiv 17 \pmod{21}$	368089
$k \equiv 4 \pmod{30}$	271		$k \equiv 29 \pmod{42}$	43
$k \equiv 31 \pmod{45}$	181		$k \equiv 8 \pmod{42}$	2269
$k \equiv 16 \pmod{45}$	1621		$k \equiv 20 \pmod{63}$	144542918285300809
$k \equiv 1 \pmod{45}$	927001		$k \equiv 74 \pmod{126}$	127
$k \equiv 26 \pmod{27}$	109		$k \equiv 11 \pmod{126}$	883
$k \equiv 17 \pmod{27}$	433		$k \equiv 65 \pmod{126}$	2521
$k \equiv 8 \pmod{27}$	8209		$k \equiv 2 \pmod{126}$	550554229

For the case x = 1 in Table B.4, the least common multiple of the moduli for the congruences is 432. The least common multiple of the moduli for the 34 congruences found in Table B.5 is 45360. A direct analysis can be done to verify these coverings.

B.3 Covering systems for b = 4

For base 4, we let b = 4 and a = 1. That is, we consider

$$N = \frac{4^n - 1}{3} + M,$$

where the digit insertions are

$$N_0^{(k)}(x) = \frac{4^n - 1}{3} + M + x \cdot 4^k \quad \text{and} \quad N_1^{(k)}(d) = 4^n + \frac{4^n - 1}{3} + M + (d - 1) \cdot 4^k.$$

We want coverings for $x, d \in \{0, 1, 2, 3\}$. Setting $M \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$, we see that both $N_0^{(k)}(x)$ and $N_1^{(k)}(d)$ are divisible by 3 for $x, d \equiv 0 \pmod{3}$. Thus, we only need to find coverings for $x, d \in \{1, 2\}$.

One checks that the congruences involving the primes 5 and 7 correspond to the congruence conditions $M \equiv 4 \pmod{5}$ and $M \equiv 5 \pmod{7}$, respectively. The largest of the least common multiples of the moduli for the coverings is 7560. A direct analysis on each covering can be used for verification. For d = 2, we use the covering found in Table B.9. To preserve space, denote $p_{25} = 469775495062434961$.

Table B.6 Covering for x = 1 in Base 4

row	congruence	prime p_i
1	$k \equiv 0 \pmod{2}$	5
2	$k \equiv 1 \pmod{4}$	17
3	$k \equiv 3 \pmod{8}$	257

row	congruence	prime p_i
4	$k \equiv 7 \pmod{16}$	65537
5	$k \equiv 15 \pmod{32}$	641
6	$k \equiv 31 \pmod{32}$	6700417

Table B.7 Covering for x = 2 in Base 4

row	congruence	prime p_i
1	$k \equiv 0 \pmod{3}$	7
2	$k \equiv 1 \pmod{6}$	13
3	$k \equiv 4 \pmod{12}$	241
4	$k \equiv 10 \pmod{24}$	97

row	congruence	prime p_i
5	$k \equiv 22 \pmod{24}$	673
6	$k \equiv 2 \pmod{9}$	19
7	$k \equiv 5 \pmod{9}$	73
8	$k \equiv 8 \pmod{18}$	37
9	$k \equiv 17 \pmod{18}$	109

row	congruence	prime p_i	row	congruence
a	$k \equiv 0 \pmod{2}$	5	6	$k \equiv 18 \pmod{30}$
1	$k \equiv 4 \pmod{5}$	11	7	$k \equiv 3 \pmod{30}$
2	$k \equiv 2 \pmod{5}$	31	8	$k \equiv 11 \pmod{20}$
3	$k \equiv 5 \pmod{10}$	41	9	$k \equiv 21 \pmod{40}$
4	$k \equiv 13 \pmod{15}$	151	10	$k \equiv 41 \pmod{80}$
5	$k \equiv 8 \pmod{15}$	331	11	$k \equiv 1 \pmod{80}$

Table B.8 Covering for d = 1 in Base 4

od 20) 61681 od 40) 4278255361 414721 od 80) d 80) 44479210368001

prime p_i

61

1321

Table B.9 Covering for d = 2 in Base 4

row	congruence	prime p_i
a	$k \equiv 0 \pmod{3}$	7
1	$k \equiv 40 \pmod{42}$	1429
2	$k \equiv 34 \pmod{42}$	14449
3	$k \equiv 70 \pmod{84}$	3361
4	$k \equiv 28 \pmod{84}$	88959882481
5	$k \equiv 106 \pmod{126}$	40388473189
6	$k \equiv 64 \pmod{126}$	118750098349
7	$k \equiv 148 \pmod{252}$	1009
8	$k \equiv 22 \pmod{252}$	21169
9	$k \equiv 2 \pmod{14}$	29

Covering systems for b = 5B.4

For base 5, let b = 5 and a = 3. That is, we consider

$$N = 3 \cdot \frac{5^n - 1}{4} + M,$$

where the digit insertions are

$$N_0^{(k)}(x) = 3 \cdot \frac{5^n - 1}{4} + M + x \cdot 5^k \quad \text{and} \quad N_3^{(k)}(d) = 3 \cdot 5^n + 3 \cdot \frac{5^n - 1}{4} + M + (d - 3) \cdot 5^k.$$

We want coverings for $x, d \in \{0, 1, 2, 3, 4\}$. Setting $M \equiv 0 \pmod{3}$, we see that both $N_0^{(k)}(x) \equiv 0 \pmod{3}$ and $N_3^{(k)}(d) \equiv 0 \pmod{3}$ for $x, d \equiv 0 \pmod{3}$. Thus, we only need to find coverings for $x, d \in \{1, 2, 4\}$. Moreover, setting $M \equiv 0 \pmod{2}$ and $n \equiv 0 \pmod{2}$, we see that both $N_0^{(k)}(x) \equiv 0 \pmod{2}$ and $N_3^{(k)}(d) \equiv 0 \pmod{2}$ for $x, d \equiv 0 \pmod{2}$. So we need only find coverings for x = 1 and d = 1.

row	congruence	prime p_i	ro
10	$k \equiv 10 \pmod{14}$	113	3
11	$k \equiv 18 \pmod{28}$	15790321	34
12	$k \equiv 32 \pmod{56}$	5153	3.
13	$k \equiv 4 \pmod{56}$	54410972897	3
14	$k \equiv 26 \pmod{27}$	87211	3'
15	$k \equiv 17 \pmod{27}$	262657	38
16	$k \equiv 35 \pmod{54}$	246241	39
17	$k \equiv 8 \pmod{54}$	279073	4
18	$k \equiv 41 \pmod{45}$	631	4
19	$k \equiv 32 \pmod{45}$	23311	42
20	$k \equiv 23 \pmod{45}$	18837001	4
21	$k \equiv 59 \pmod{90}$	181	4
22	$k \equiv 14 \pmod{90}$	54001	4
23	$k \equiv 50 \pmod{90}$	29247661	4
24	$k \equiv 95 \pmod{180}$	168692292721	4
25	$k \equiv 5 \pmod{180}$	469775495062434961	48
26	$k \equiv 56 \pmod{63}$	92737	4
27	$k \equiv 47 \pmod{63}$	649657	5
28	$k \equiv 38 \pmod{63}$	77158673929	5
29	$k \equiv 1 \pmod{7}$	43	5
30	$k \equiv 6 \pmod{7}$	127	5
31	$k \equiv 11 \pmod{21}$	337	5
32	$k \equiv 2 \pmod{21}$	5419	5

Table B.9 cont.	Covering for $d = 2$ in Base 4

row	congruence	prime p_i
33	$k \equiv 31 \pmod{36}$	433
34	$k \equiv 25 \pmod{36}$	38737
35	$k \equiv 55 \pmod{72}$	577
36	$k \equiv 19 \pmod{72}$	487824887233
37	$k \equiv 85 \pmod{108}$	33975937
38	$k \equiv 49 \pmod{108}$	138991501037953
39	$k \equiv 121 \pmod{216}$	209924353
40	$k \equiv 13 \pmod{216}$	4261383649
41	$k \equiv 115 \pmod{144}$	1153
42	$k \equiv 79 \pmod{144}$	6337
43	$k \equiv 43 \pmod{144}$	38941695937
44	$k \equiv 7 \pmod{144}$	278452876033
45	$k \equiv 289 \pmod{324}$	1297
46	$k \equiv 253 \pmod{324}$	3889
47	$k \equiv 217 \pmod{324}$	30433969
48	$k \equiv 181 \pmod{324}$	1164777409
49	$k \equiv 145 \pmod{324}$	3718266498433
50	$k \equiv 109 \pmod{324}$	134921168163073
51	$k \equiv 73 \pmod{324}$	1174029487714513
52	$k \equiv 361 \pmod{648}$	10369
53	$k \equiv 37 \pmod{648}$	259201
54	$k \equiv 325 \pmod{648}$	$18240453661459097\overline{7}5041$
55	$k \equiv 1 \pmod{648}$	524833094849624730914401

One checks that the congruences involving the prime 7 correspond to the congruence condition $M \equiv 1 \pmod{7}$. The least common multiple of the moduli in the covering found in Table B.10 is 1800 and the least common multiple of the module found in Table B.11 is 288. A direct analysis on each covering can be used for verification.

Table D.10 Covering for $x = 1$ in Dase 6	Table B.10	Covering	for $x =$	1 in	Base 5
---	------------	----------	-----------	-------	--------

congruence	prime p_i	congruence	prime p_i
$k \equiv 0 \pmod{5}$	11	$k \equiv 23 \pmod{150}$	118801
$k \equiv 1 \pmod{5}$	71	$k \equiv 53 \pmod{150}$	20775901
$k \equiv 3 \pmod{6}$	7	$k \equiv 83 \pmod{150}$	24665701
$k \equiv 2 \pmod{15}$	181	$k \equiv 113 \pmod{150}$	149439601
$k \equiv 7 \pmod{15}$	1741	$k \equiv 143 \pmod{300}$	14401
$k \equiv 4 \pmod{10}$	521	$k \equiv 293 \pmod{300}$	299541552154912341601
$k \equiv 8 \pmod{20}$	41	$k \equiv 29 \pmod{90}$	60081451169922001
$k \equiv 18 \pmod{20}$	9161	$k \equiv 59 \pmod{180}$	20478961
$k \equiv 12 \pmod{30}$	61	$k \equiv 149 \pmod{180}$	6794091374761
$k \equiv 13 \pmod{30}$	7621	$k \equiv 89 \pmod{180}$	25535754811081
$k \equiv 19 \pmod{60}$	2281	$k \equiv 179 \pmod{360}$	8641
$k \equiv 49 \pmod{60}$	69566521	$k \equiv 359 \pmod{360}$	440641

Table B.11 Covering for d = 1 in Base 5

row	congruence	prime p_i	
a	$k \equiv 4 \pmod{6}$	7	
1	$k \equiv 2 \pmod{3}$	31	
2	$k \equiv 7 \pmod{12}$	601	
3	$k \equiv 13 \pmod{24}$	390001	
4	$k \equiv 25 \pmod{48}$	152587 -	
		500001	
5	$k \equiv 49 \pmod{96}$	97	

row	congruence	prime p_i
6	$k \equiv 1 \pmod{96}$	2400315913 -
		94168814433
7	$k \equiv 6 \pmod{9}$	19
8	$k \equiv 3 \pmod{9}$	829
9	$k \equiv 9 \pmod{18}$	5167
10	$k \equiv 18 \pmod{36}$	37
11	$k \equiv 0 \pmod{36}$	6597973

B.5 Covering systems for b = 6

For base 6, let b = 6 and a = 1. That is, we consider

$$N = \frac{6^n - 1}{5} + M,$$

where the digit insertions are

$$N_0^{(k)}(x) = \frac{6^n - 1}{5} + M + x \cdot 6^k \quad \text{and} \quad N_1^{(k)}(d) = 6^n + \frac{6^n - 1}{5} + M + (d - 1) \cdot 6^k.$$

We want coverings for $x, d \in \{0, 1, 2, 3, 4, 5\}$. Setting $M \equiv 0 \pmod{5}$ and $n \equiv 0 \pmod{5}$, we see that both $N_0^{(k)}(x) \equiv 0 \pmod{5}$ and $N_1^{(k)}(d) \equiv 0 \pmod{5}$ for $x, d \equiv 0 \pmod{5}$. Thus, we only need to find coverings for $x, d \in \{1, 2, 3, 4\}$.

The coverings used for $x \in \{1, 2, 3, 4\}$ can each be verified using a direct analysis. The largest of the least common multiples of the moduli for the four coverings is that used for x = 4, which has 75 congruences with the least common multiple of the moduli being 176400.

As this base has more complicated coverings, we recall some notation used in Appendix A. Recall that if we are unable to fully factor $\Phi_n(b)$, then we write $\Phi_n(b) = p_1 p_2 \cdots p_r C_n$, where C_n is a composite factor of $\Phi_n(b)$ having at least 2 distinct prime divisors different from p_1, p_2, \ldots, p_r and n. If we are able to fully factor $\Phi_n(b)$, then we write $\Phi_n(b) = p_1 p_2 \cdots p_r P_n$, where P_n is a large prime factor of $\Phi_n(b)$ different from p_1, p_2, \ldots, p_r . Computationally, P_n is determined to be a prime power and then verified to be a prime. We denote P_n to be a probable prime too large to include comfortably where $\operatorname{ord}_{P_n}(b) = n$. We also use $c_{n,1}$ to denote one prime factor from the composite number C_n where $\operatorname{ord}_{c_{n,1}}(b) = n$ that we were unable to factor, and $c_{n,2}$ to denote the other prime factor from the same composite number. We did not compute the values of $c_{n,1}$ and $c_{n,2}$, but we know they exist.

When necessary, we provide a table of notable factorizations of $\Phi_n(b)$ used in the covering that follows. It can be assumed that the large primes P_n and composite numbers C_n that do not appear in a table or list of large primes can be determined by dividing $\Phi_n(b)$ by the primes associated with n that can be found in adjacent rows in the tables.

congruence	nrime n_i	congruence	prime p_i
	prime p_i	$46 \pmod{60}$	181
$0 \pmod{5}$	311	$4 \pmod{25}$	18198701
$3 \pmod{10}$	11	$\frac{4 \pmod{20}}{0 \pmod{25}}$	40195601
8 (mod 10)	101	9 (mod 25)	40183001
$\frac{2 \pmod{15}}{2 \pmod{15}}$	1171	$14 \pmod{50}$	3655688315536801
$\frac{2 \pmod{10}}{7 \left(110 \times 15\right)}$	1001	$39 \pmod{100}$	343801
7 (mod 15)	1201	89 (mod 100)	22243201
$12 \pmod{45}$	2161	$10 \pmod{75}$	601
$27 \pmod{45}$	112771	$13 \pmod{75}$	001
$42 \pmod{45}$	19353635731	44 (mod 75)	82051
$\frac{12 \pmod{10}}{16 \pmod{20}}$	2/1	$69 \pmod{75}$	271041511600591342728451
$\frac{10 \pmod{20}}{11 (100 20)}$	241	$24 \pmod{125}$	9536585501
$11 \pmod{20}$	6781	$49 \pmod{125}$	117811792772681609501
$1 \pmod{40}$	41	$74 \pmod{125}$	105875321588567500765751
$21 \pmod{40}$	68754507401	$74 \pmod{120}$	103013521300301339103131
$6 \pmod{60}$	61	99 (mod 125)	1098445767808750903973251
$\frac{6}{26} \pmod{60}$	7/161	$124 \pmod{250}$	251
20 (1100 00)	74101	249 (mod 250)	751

Table B.12 Covering for x = 1 in Base 6

Table B.13 Covering for x = 2 in Base 6

row	congruence	prime p_i
1	$k \equiv 1 \pmod{2}$	7
2	$k \equiv 0 \pmod{4}$	37
3	$k \equiv 6 \pmod{8}$	1297

row	congruence	prime p_i
4	$k \equiv 10 \pmod{16}$	17
5	$k \equiv 2 \pmod{16}$	98801

Table B.14 Covering for x = 3 in Base 6

row	congruence	prime p_i
1	$k \equiv 4 \pmod{6}$	31
2	$k \equiv 2 \pmod{9}$	19
3	$k \equiv 5 \pmod{9}$	2467
4	$k \equiv 1 \pmod{12}$	13

row	congruence	prime p_i
5	$k \equiv 7 \pmod{12}$	97
6	$k \equiv 8 \pmod{18}$	46441
7	$k \equiv 17 \pmod{36}$	73
8	$k \equiv 35 \pmod{36}$	541
9	$k \equiv 0 \pmod{3}$	43

To conserve space we denote some of the larger primes used for the covering found in Table B.15 associated with the digit insertion x = 4.

 $p_{52} = 19100900655540830489319601,$

 $p_{58} = 6151465354203683883830062906173218740292621286631,$

 $p_{60} = 7215934956451622094949379164309254404855094763766767407121,$

$p_{66} = 10189440239012883075423169,$

$p_{68} = 802354924671793395266725600744864562917483072464133108417.$

row	congruence	prime p_i
1	$k \equiv 6 \pmod{7}$	55987
2	$k \equiv 9 \pmod{14}$	29
3	$k \equiv 2 \pmod{14}$	197
4	$k \equiv 18 \pmod{21}$	1822428931
5	$k \equiv 53 \pmod{63}$	379
6	$k \equiv 32 \pmod{63}$	8387947
7	$k \equiv 11 \pmod{63}$	616332907
8	$k \equiv 67 \pmod{84}$	804146449
9	$k \equiv 25 \pmod{84}$	6055984789
10	$k \equiv 88 \pmod{126}$	127
11	$k \equiv 46 \pmod{126}$	154260982009
12	$k \equiv 4 \pmod{126}$	528921402377887
13	$k \equiv 24 \pmod{28}$	421
14	$k \equiv 17 \pmod{28}$	5030761
15	$k \equiv 38 \pmod{56}$	281
16	$k \equiv 10 \pmod{56}$	337
17	$k \equiv 31 \pmod{56}$	617
18	$k \equiv 3 \pmod{56}$	81035189089
19	$k \equiv 33 \pmod{35}$	71
20	$k \equiv 26 \pmod{35}$	37863211
21	$k \equiv 19 \pmod{35}$	1469029031
22	$k \equiv 47 \pmod{70}$	631
23	$k \equiv 12 \pmod{70}$	701
24	$k \equiv 40 \pmod{70}$	2311
25	$k \equiv 5 \pmod{70}$	9241
26	$k \equiv 64 \pmod{70}$	585131

Table B.15 Covering for x = 4 in Base 6

Table B.15 cont. Covering for x = 4 in Base 6

row	congruence	prime p_i		1
27	$k \equiv 99 \pmod{140}$	13509594555661	row	
28	$k \equiv 29 \pmod{140}$	1708114263204222806519161	52	<i>k</i>
29	$k = 92 \pmod{105}$	211	53	<i>k</i> :
30	$k \equiv 52 \pmod{105}$ $k \equiv 57 \pmod{105}$	35281	54	k :
31	$k \equiv 22 \pmod{105}$	58171	55	k
32	$k \equiv 22 \pmod{100}$ $k \equiv 85 \pmod{105}$	61921104791950322094158011	56	<i>k</i> :
33	$k \equiv 155 \pmod{109}$	71101	57	k :
34	$k \equiv 50 \pmod{210}$	271613602077153000640378586566681	58	k
25	$k \equiv 30 \pmod{210}$ $k \equiv 225 \pmod{315}$	493193191	59	k :
36	$k \equiv 220 \pmod{315}$ $k = 120 \pmod{315}$	1076836800070531	60	k
27	$k \equiv 120 \pmod{313}$ $k = 15 \pmod{315}$	72725680608108005121706081	61	
20	$k \equiv 10 \pmod{313}$	2022701	62	1
<u> </u>	$\kappa = 148 \pmod{173}$ $k = 112 \pmod{175}$	3822701	63	k
39	$\kappa = 113 \pmod{175}$	114203201	64	k
40	$k \equiv 78 \pmod{175}$	141218351	65	k
41	$k \equiv 43 \pmod{175}$	7292423951	66	k
42	$k \equiv 8 \pmod{175}$	34840572551	67	$\frac{k}{k}$
43	$k \equiv 141 \pmod{175}$	35107498301	68	$\frac{h}{k}$
44	$k \equiv 106 \pmod{175}$	2370825139201	60	h
45	$k \equiv 71 \pmod{175}$	1830889518750884483049855551	70	h
46	$k \equiv 211 \pmod{350}$	3851	70	κ :
47	$k \equiv 36 \pmod{350}$	12601	(1	κ
48	$k \equiv 176 \pmod{350}$	1305192701	72	κ
49	$k \equiv 1 \pmod{350}$	66631795301	73	k
50	$k \equiv 35 \pmod{42}$	2527867231	74	k
51	$k \equiv 147 \pmod{168}$	1176362433121	75	
	(

row	congruence	prime p_i
52	$k \equiv 63 \pmod{168}$	p_{52}
53	$k \equiv 189 \pmod{252}$	1009
54	$k \equiv 105 \pmod{252}$	17389
55	$k \equiv 21 \pmod{252}$	10339309
56	$k \equiv 259 \pmod{294}$	32670457
57	$k \equiv 217 \pmod{294}$	1152319183
58	$k \equiv 175 \pmod{294}$	p_{58}
59	$k \equiv 133 \pmod{147}$	32093041
60	$k \equiv 91 \pmod{147}$	p_{60}
61	$k \equiv 0 \pmod{49}$	6527977
62	$k \equiv 7 \pmod{49}$	122694573317
63	$k \equiv 98 \pmod{112}$	113
64	$k \equiv 70 \pmod{112}$	4817
65	$k \equiv 42 \pmod{112}$	4048129
66	$k \equiv 14 \pmod{112}$	p_{66}
67	$k \equiv 168 \pmod{196}$	288628033
68	$k \equiv 140 \pmod{196}$	p_{68}
69	$k \equiv 308 \pmod{392}$	352409
70	$k \equiv 112 \pmod{392}$	171103297
71	$k \equiv 280 \pmod{392}$	110495360641
72	$k \equiv 84 \pmod{392}$	P_{392}
73	$k \equiv 56 \pmod{98}$	762332681442053
74	$k \equiv 28 \pmod{98}$	90179616936384011
75	$k \equiv 0 \pmod{49}$	600827908214213

For inserting a digit $d \in \{1, 2, 3, 4\}$, we use the coverings that follow. For d = 1, we use the covering found in Table B.16. This covering has 101 congruences with the least common multiple of the moduli being 720720 and can be verified by a direct analysis. Row a contains the prime 29 which is used in the covering for x = 4. One checks that both congruences correspond to the congruence condition $M \equiv 28$ (mod 29). The following are larger primes that do not fit in the tables comfortably.

 $p_{24} = 57019087134151254061666621717728669167279862151,$

 $p_{39} = 2225208714917658550195227627861513418879,$

 $p_{71} = 1095110988527465328644161,$

 $p_{72} = 1948613642347230963768492935356381,$

 $p_{90} = 618089408508629562797739046557629942711588422796977.$

row	congruence	prime p_i
a	$k \equiv 4 \pmod{14}$	29
1	$k \equiv 9 \pmod{11}$	23
2	$k \equiv 7 \pmod{11}$	3154757
3	$k \equiv 16 \pmod{22}$	51828151
4	$k \equiv 25 \pmod{33}$	67
5	$k \equiv 14 \pmod{33}$	45686117391553
6	$k \equiv 69 \pmod{99}$	16633
7	$k \equiv 36 \pmod{99}$	18380539
8	$k \equiv 3 \pmod{99}$	18414001

Table B.16 Covering for d = 1 in Base 6
row	congruence	prime p_i	row	
9	$k \equiv 34 \pmod{44}$	58477	32	
10	$k \equiv 12 \pmod{44}$	70489	33	1
11	$k \equiv 32 \pmod{44}$	863017	34	
12	$k \equiv 54 \pmod{88}$	89	35	
13	$k \equiv 10 \pmod{88}$	150080764792922988676714149209	36	
14	$k \equiv 41 \pmod{55}$	3675127061	37	
15	$k \equiv 19 \pmod{55}$	3031462959351050977391	38	
16	$k \equiv 52 \pmod{110}$	1031141	39	
17	$k \equiv 30 \pmod{110}$	16336066781	40	
18	$k \equiv 8 \pmod{110}$	84155540944421	41	
19	$k \equiv 50 \pmod{66}$	463	42	
20	$k \equiv 28 \pmod{66}$	72073	43	
21	$k \equiv 6 \pmod{66}$	127236649	44	
22	$k \equiv 59 \pmod{77}$	484847574510970082567	45	
23	$k \equiv 37 \pmod{77}$	84002092056248016278479853	46	
24	$k \equiv 92 \pmod{154}$	p_{24}	47	
25	$k \equiv 224 \pmod{308}$	40590776689	48	
26	$k \equiv 70 \pmod{308}$	P_{308}	49	
27	$k \equiv 202 \pmod{231}$	174090854323	50	
28	$k \equiv 125 \pmod{231}$	1526323866435523	51	
29	$k \equiv 48 \pmod{231}$	C _{231,1}	52	
30	$k \equiv \overline{488} \pmod{616}$	65725969	53	
31	$k \equiv \overline{334} \pmod{616}$	59649652128793520533433	54	

Table B.16 cont.	Covering for $d = 1$ in Base 6
10010 10.10 00110.	

row	congruence	prime p_i
32	$k \equiv 180 \pmod{616}$	P ₆₁₆
33	$k \equiv 642 \pmod{1232}$	3015937
34	$k \equiv 26 \pmod{1232}$	70475637120255553017217
35	$k \equiv 79 \pmod{99}$	226407819331
36	$k \equiv 57 \pmod{99}$	38167293140100433
37	$k \equiv 134 \pmod{198}$	199
38	$k \equiv 112 \pmod{198}$	110881
39	$k \equiv 90 \pmod{198}$	p_{39}
40	$k \equiv 266 \pmod{396}$	397
41	$k \equiv 68 \pmod{396}$	7129
42	$k \equiv 244 \pmod{396}$	23761
43	$k \equiv 46 \pmod{396}$	13705107769
44	$k \equiv 222 \pmod{396}$	697344975757
45	$k \equiv 24 \pmod{396}$	1184960471459158549
46	$k \equiv 200 \pmod{396}$	254253859796489462713
47	$k \equiv 2 \pmod{396}$	12335988891985043955517
48	$k \equiv 110 \pmod{132}$	3037
49	$k \equiv 88 \pmod{132}$	96493
50	$k \equiv 66 \pmod{132}$	622513
51	$k \equiv 44 \pmod{132}$	4629769
52	$k \equiv 22 \pmod{132}$	16266405013
53	$k \equiv 132 \pmod{264}$	602977
54	$k \equiv 0 \pmod{264}$	87917281

congruence	prime p_i	r	OW	congruence	prime p_i
$k \equiv 12 \pmod{13}$	3433		78	$k \equiv 33 \pmod{65}$	22533649654910414281
$k \equiv 10 \pmod{13}$	760891		79	$k \equiv 7 \pmod{130}$	131
$k \equiv 21 \pmod{26}$	53	8	80	$k \equiv 83 \pmod{104}$	192193
$k \equiv 19 \pmod{26}$	937	8	81	$k \equiv 57 \pmod{104}$	14090441
$k \equiv 17 \pmod{26}$	37571	8	82	$k \equiv 31 \pmod{104}$	8284434950526240125727017
$k \equiv 28 \pmod{39}$	3143401	8	83	$k \equiv 109 \pmod{208}$	36265841
$k \equiv 2 \pmod{39}$	1262014275211	8	84	$k \equiv 5 \pmod{208}$	141365953
$k \equiv 15 \pmod{78}$	79	8	85	$k \equiv 133 \pmod{156}$	157
$k \equiv 65 \pmod{78}$	9049	3	86	$k \equiv 107 \pmod{156}$	8893
$k \equiv 39 \pmod{78}$	868999	8	87	$k \equiv 81 \pmod{156}$	197743936282933
$k \equiv 13 \pmod{78}$	8857759	3	88	$k \equiv 55 \pmod{156}$	6429178169720749
$k \equiv 37 \pmod{52}$	313	8	89	$k \equiv 185 \pmod{312}$	816213379522588431707233
$k \equiv 11 \pmod{52}$	2341	(90	$k \equiv 29 \pmod{312}$	p_{90}
$k \equiv 35 \pmod{52}$	6291946695217	(91	$k \equiv 315 \pmod{468}$	21529
$k \equiv 217 \pmod{260}$	425101	(92	$k \equiv 159 \pmod{468}$	1044927469
$k \equiv 165 \pmod{260}$	571140885901	(93	$k \equiv 3 \pmod{468}$	58066129333227697089409
$k \equiv 113 \pmod{260}$	p_{71}	(94	$k \equiv 66 \pmod{91}$	48215910563832798697
$k \equiv 61 \pmod{260}$	p_{72}	(95	$k \equiv 40 \pmod{91}$	1838738460168896001275668872592841923
$k \equiv 269 \pmod{520}$	380641		96	$k \equiv 105 \pmod{182}$	2003
$k \equiv 9 \pmod{520}$	98735521		97	$k \equiv 79 \pmod{182}$	2549
$k \equiv 46 \pmod{65}$	11831	(98	$k \equiv 53 \pmod{182}$	36947
$k \equiv 20 \pmod{65}$	1420901)	99	$k \equiv 27 \pmod{182}$	52769627
$k \equiv 59 \pmod{65}$	49398961	1	.00	$k \equiv 1 \pmod{182}$	$124687028\overline{78009806771287543538567443817}$

Table B.16 cont. Covering for d = 1 in Base 6

row 55

> 56 57

58

59

60

61

62

63

64

65

66 67

68

69

70

71 72

73 74

75

76

77

For the insertion d = 2, we use the covering found in Table B.18. This covering has 224 congruences with the least common multiple of the moduli being 4727479680. One checks that the primes 37 and 13 correspond to the congruence conditions $M \equiv$ 35 (mod 37) and $M \equiv 8 \pmod{13}$, which agree with the previous uses of these primes. To verify that this is indeed a covering, we consider the congruence classes $x \equiv 0 \pmod{2}$ and $x \equiv 1 \pmod{2}$. One can verify that every integer satisfying $x \equiv 0 \pmod{2}$ satisfies one of the congruences in rows a-121 of Table B.18. These congruences have moduli dividing 30898560. Similarly, one can check that every integer satisfying $x \equiv 1 \pmod{2}$ satisfies one of the 101 congruences in rows 122-222 of Table B.18 with moduli dividing 5654880. Thus, the 224 congruences in Table B.18 form a covering. Table B.17 lists notable factorizations of $\Phi_n(6)$ for large n used in the covering for d = 2. We list a few of the larger primes here.

 $p_6 = 2347110840158563816028186318246561,$

 $p_{21} = 26836193435793601023998323852801,$

 $p_{115} = 15186641018595718629290023681,$

 $p_{116} = 3578008788069105048042400002837961114116977849537973223,$

 $p_{148} = 94260123386979283872547675418641,$

 $p_{155} = 51420576374811381403609445473,$

 $p_{172} = 678389915020055546314233943801.$

Table B.17 Partial/Full factorizations of $\Phi_n(6)$ for d = 2

n	Factorization of $\Phi_n(10)$
272	$17\cdot 2376897969771200667937073\cdot P_{272}$
352	C_{352}
1064	C_{1064}

row	congruence	prime p_i
a	$k \equiv 0 \pmod{4}$	37
b	$k \equiv 10 \pmod{12}$	13
1	$k \equiv 78 \pmod{80}$	17761
2	$k \equiv 62 \pmod{80}$	3696985841
3	$k \equiv 46 \pmod{80}$	121206120881
4	$k \equiv 110 \pmod{160}$	9601
5	$k \equiv 30 \pmod{160}$	2810800069601
6	$k \equiv 94 \pmod{160}$	p_6
7	$k \equiv 174 \pmod{320}$	82241
8	$k \equiv 14 \pmod{320}$	15954097282309262360999041
9	$k \equiv 13 \pmod{19}$	191
10	$k \equiv 5 \pmod{19}$	638073026189
11	$k \equiv 16 \pmod{38}$	1787
12	$k \equiv 8 \pmod{38}$	48713705333
13	$k \equiv 30 \pmod{76}$	1030762781149
14	$k \equiv 38 \pmod{76}$	9736145643041809
15	$k \equiv 98 \pmod{152}$	4561
16	$k \equiv 90 \pmod{152}$	355518408146401
17	$k \equiv 82 \pmod{152}$	5028187486478069273
18	$k \equiv 74 \pmod{152}$	13038313680704041577
19	$k \equiv \overline{218} \pmod{304}$	417827633
20	$k \equiv 66 \pmod{304}$	505981859041

row	congruence	prime p_i
21	$k \equiv 210 \pmod{304}$	p_{21}
22	$k \equiv 58 \pmod{304}$	P_{304}
23	$k \equiv 506 \pmod{608}$	440123297
24	$k \equiv 354 \pmod{608}$	$c_{608,1}$
25	$k \equiv 202 \pmod{608}$	$c_{608,2}$
26	$k \equiv 658 \pmod{1216}$	1217
27	$k \equiv 50 \pmod{1216}$	$c_{1216,1}$
28	$k \equiv 650 \pmod{760}$	761
29	$k \equiv 498 \pmod{760}$	689321
30	$k \equiv 346 \pmod{760}$	3939048167443707601
31	$k \equiv 194 \pmod{760}$	$c_{760,1}$
32	$k \equiv 42 \pmod{760}$	$c_{760,2}$
33	$k \equiv 15 \pmod{133}$	11971
34	$k \equiv 129 \pmod{133}$	188861
35	$k \equiv 110 \pmod{133}$	1101773
36	$k \equiv 91 \pmod{133}$	164331230229374083
37	$k \equiv 72 \pmod{133}$	P_{133}
38	$k \equiv 186 \pmod{266}$	1050169
39	$k \equiv 34 \pmod{266}$	27838508435875439051
40	$k \equiv 140 \pmod{266}$	6110613202111672866319
41	$k \equiv 254 \pmod{266}$	P_{266}
42	$k \equiv 102 \pmod{532}$	1597

Table B.18 Covering for d = 2 in Base 6

row	congruence	prime p_i
43	$k \equiv 482 \pmod{532}$	28729
44	$k \equiv 330 \pmod{532}$	181514505515281
45	$k \equiv 178 \pmod{532}$	19900271591604097
46	$k \equiv 26 \pmod{532}$	74795600265930240481
47	$k \equiv 398 \pmod{532}$	$c_{532,1}$
48	$k \equiv 246 \pmod{532}$	$c_{532,2}$
49	$k \equiv 626 \pmod{1064}$	$c_{1064,1}$
50	$k \equiv 474 \pmod{1064}$	$c_{1064,2}$
51	$k \equiv 322 \pmod{399}$	109928491
52	$k \equiv 189 \pmod{399}$	$C_{399,1}$
53	$k \equiv 56 \pmod{399}$	$C_{399,2}$
54	$k \equiv 702 \pmod{798}$	9951571519
55	$k \equiv 436 \pmod{798}$	1268637449760199
56	$k \equiv 170 \pmod{798}$	C _{798,1}
57	$k \equiv 1082 \pmod{1596}$	10453801
58	$k \equiv 550 \pmod{1596}$	26846778030654037
59	$k \equiv 18 \pmod{1596}$	$c_{1596,1}$
60	$k \equiv 770 \pmod{912}$	7297
61	$k \equiv 618 \pmod{912}$	$c_{912,1}$
62	$k \equiv 466 \pmod{912}$	C912,2
63	$k \equiv 1226 \pmod{1824}$	14593
64	$k \equiv 314 \pmod{1824}$	378866839993921

	row	congruence	prime p_i
	65	$k \equiv 1074 \pmod{1824}$	4947871864850689
	66	$k \equiv 162 \pmod{1824}$	$c_{1824,1}$
	67	$k \equiv 59 \pmod{209}$	18873119
	68	$k \equiv 116 \pmod{209}$	84125065520563
	69	$k \equiv 173 \pmod{209}$	414230477
	70	$k \equiv 230 \pmod{418}$	419
	71	$k \equiv 78 \pmod{418}$	87713957
	72	$k \equiv 762 \pmod{836}$	178069
	73	$k \equiv 610 \pmod{836}$	93714790877401
	74	$k \equiv 458 \pmod{1672}$	41801
	75	$k \equiv 306 \pmod{1672}$	45597113
	76	$k \equiv 154 \pmod{1672}$	8627680513
	77	$k \equiv 2 \pmod{1672}$	53686006051666649
	78	$k \equiv 166 \pmod{176}$	9307950433
	79	$k \equiv 150 \pmod{176}$	P_{176}
	80	$k \equiv 310 \pmod{352}$	$c_{352,1}$
	81	$k \equiv 134 \pmod{352}$	$c_{352,2}$
	82	$k \equiv 470 \pmod{528}$	3169
	83	$k \equiv 294 \pmod{528}$	2508001
	84	$k \equiv 118 \pmod{528}$	3537601
	85	$k \equiv 454 \pmod{528}$	8245249
	86	$k \equiv 278 \pmod{528}$	$c_{528,1}$

	Table B.18 co	nt. Cov	vering for	or $d = 2$	2 in	Base (6
--	---------------	---------	------------	------------	------	--------	---

row	congruence	ce prime p_i		congruence	prime p_i
87	$k \equiv 102 \pmod{528}$	C _{528,2}	109	$k \equiv 198 \pmod{220}$	423852369601
88	$k \equiv 614 \pmod{704}$	978494460213024200513	110	$k \equiv 22 \pmod{220}$	P ₂₂₀
89	$k \equiv 438 \pmod{704}$	C704,1	111	$k \equiv 72 \pmod{121}$	4163261521
90	$k \equiv 262 \pmod{704}$	C _{704,2}	112	$k \equiv 17 \pmod{121}$	1304380464883
91	$k \equiv 790 \pmod{1408}$	2889217	113	$k \equiv 83 \pmod{121}$	P ₁₂₁
92	$k \equiv 86 \pmod{1408}$	1409	114	$k \equiv 28 \pmod{242}$	727
93	$k \equiv 246 \pmod{264}$	1581003091009	115	$k \equiv 94 \pmod{242}$	p_{115}
94	$k \equiv 158 \pmod{264}$	332526664667473	116	$k \equiv 160 \pmod{242}$	p_{116}
95	$k \equiv 70 \pmod{264}$	6416538652864923578689	117	$k \equiv 226 \pmod{484}$	1453
96	$k \equiv 758 \pmod{880}$	881	118	$k \equiv 534 \pmod{968}$	68729
97	$k \equiv 582 \pmod{880}$	21121	119	$k \equiv 358 \pmod{968}$	2095721
98	$k \equiv 406 \pmod{880}$	975773245921	120	$k \equiv 182 \pmod{968}$	1771133748439529
99	$k \equiv 230 \pmod{880}$	18444967576384646881	121	$k \equiv 6 \pmod{968}$	4802007937
100	$k \equiv 54 \pmod{880}$	$c_{880,1}$	122	$k \equiv 16 \pmod{17}$	239
101	$k \equiv 742 \pmod{880}$	$c_{880,2}$	123	$k \equiv 14 \pmod{17}$	409
102	$k \equiv 126 \pmod{440}$	8247361	124	$k \equiv 12 \pmod{17}$	1123
103	$k \equiv 390 \pmod{440}$	778055521	125	$k \equiv 10 \pmod{17}$	30839
104	$k \equiv 214 \pmod{440}$	254055515561	126	$k \equiv 25 \pmod{34}$	190537
105	$k \equiv 38 \pmod{440}$	20695248084558521	127	$k \equiv 23 \pmod{34}$	12690943
106	$k \equiv 286 \pmod{440}$	518060072335148988041	128	$k \equiv 89 \pmod{102}$	103
107	$k \equiv 110 \pmod{440}$	6560970004839878965676927281	129	$k \equiv 55 \pmod{102}$	919
108	$k \equiv 374 \pmod{440}$	278651896702502332482621071375321	130	$k \equiv 21 \pmod{102}$	980146969

Table B.18 cont. Covering for d = 2 in Base 6

row	congruence	prime p_i
131	$k \equiv 87 \pmod{102}$	99617785207
132	$k \equiv 2 \pmod{51}$	307
133	$k \equiv 19 \pmod{51}$	927037099
134	$k \equiv 34 \pmod{51}$	23412002806867
135	$k \equiv 119 \pmod{153}$	9757142011
136	$k \equiv 68 \pmod{153}$	12644443230579801886843521019
137	$k \equiv 17 \pmod{153}$	P_{153}
138	$k \equiv 34 \pmod{85}$	26807981
139	$k \equiv 153 \pmod{255}$	1199699502336395787186091
140	$k \equiv 102 \pmod{255}$	P_{255}
141	$k \equiv 306 \pmod{510}$	47431
142	$k \equiv 51 \pmod{510}$	241317924973591
143	$k \equiv 255 \pmod{510}$	C _{510,1}
144	$k \equiv 0 \pmod{510}$	C _{510,2}
145	$k \equiv 49 \pmod{68}$	934117
146	$k \equiv 15 \pmod{68}$	8289713345361373993
147	$k \equiv 64 \pmod{85}$	20891158391
148	$k \equiv 30 \pmod{85}$	p_{148}
149	$k \equiv 81 \pmod{170}$	1383638161
150	$k \equiv 47 \pmod{170}$	72085651321561
151	$k \equiv 13 \pmod{170}$	740797672014674927371043791
152	$k \equiv 113 \pmod{136}$	137
153	$k \equiv 79 \pmod{136}$	5849

row	congruence	prime p_i
154	$k \equiv 45 \pmod{136}$	1536052010629489
155	$k \equiv 11 \pmod{136}$	p_{155}
156	$k \equiv 179 \pmod{204}$	1785001
157	$k \equiv 145 \pmod{204}$	12346985995648844989
158	$k \equiv 111 \pmod{204}$	2953728137900959095135649
159	$k \equiv 281 \pmod{408}$	8715697
160	$k \equiv 77 \pmod{408}$	35540881
161	$k \equiv 247 \pmod{408}$	P_{408}
162	$k \equiv 451 \pmod{816}$	6529
163	$k \equiv 43 \pmod{816}$	70177
164	$k \equiv 621 \pmod{816}$	2823361
165	$k \equiv 417 \pmod{816}$	380776609
166	$k \equiv 213 \pmod{816}$	158141084859073
167	$k \equiv 9 \pmod{816}$	P ₈₁₆
168	$k \equiv 92 \pmod{119}$	16661
169	$k \equiv 58 \pmod{119}$	29032062767
170	$k \equiv 24 \pmod{119}$	103198889691409
171	$k \equiv 109 \pmod{119}$	12405291558509977
172	$k \equiv 75 \pmod{119}$	p_{172}
173	$k \equiv 41 \pmod{238}$	22885730141
174	$k \equiv 7 \pmod{238}$	2681104713967
175	$k \equiv 243 \pmod{272}$	2376897969771200667937073
176	$k \equiv \overline{175 \pmod{272}}$	P_{272}

row	congruence	prime p_i	row	congruence	prime p_i
177	$k \equiv 379 \pmod{544}$	257857	200	$k \equiv 615 \pmod{918}$	4591
178	$k \equiv 107 \pmod{544}$	80189953	201	$k \equiv 309 \pmod{918}$	3673
179	$k \equiv 311 \pmod{544}$	350828321	202	$k \equiv 3 \pmod{918}$	$c_{918,1}$
180	$k \equiv 39 \pmod{544}$	P_{544}	203	$k \equiv 154 \pmod{187}$	382229
181	$k \equiv 277 \pmod{340}$	1021	204	$k \equiv 120 \pmod{187}$	4208612395681
182	$k \equiv 209 \pmod{340}$	372810476994982432801	205	$k \equiv 86 \pmod{187}$	$c_{187,1}$
183	$k \equiv 141 \pmod{340}$	2244807299700346905001	206	$k \equiv 52 \pmod{187}$	$C_{187,2}$
184	$k \equiv 73 \pmod{340}$	41819674674441587529015061	207	$k \equiv 205 \pmod{374}$	480615433
185	$k \equiv 5 \pmod{340}$	115394656437025419824224817341	208	$k \equiv 171 \pmod{374}$	P_{374}
186	$k \equiv 275 \pmod{306}$	147799	209	$k \equiv 511 \pmod{748}$	6733
187	$k \equiv 241 \pmod{306}$	29274753335383	210	$k \equiv 137 \pmod{748}$	6773155698277
188	$k \equiv 207 \pmod{306}$	1888411753890127	211	$k \equiv 477 \pmod{748}$	2501850879498651781
189	$k \equiv 173 \pmod{306}$	P_{306}	212	$k \equiv 103 \pmod{748}$	$c_{748,1}$
190	$k \equiv 445 \pmod{612}$	613	213	$k \equiv 817 \pmod{1122}$	465631
191	$k \equiv 139 \pmod{612}$	6121	214	$k \equiv 443 \pmod{1122}$	2148631
192	$k \equiv 411 \pmod{612}$	12241	215	$k \equiv 69 \pmod{1122}$	52249945639
193	$k \equiv 105 \pmod{612}$	57372656104261	216	$k \equiv 783 \pmod{1122}$	1397005264183
194	$k \equiv 377 \pmod{612}$	C _{612,1}	217	$k \equiv 409 \pmod{1122}$	$c_{1122,1}$
195	$k \equiv 71 \pmod{612}$	C _{612,2}	218	$k \equiv 35 \pmod{1122}$	$c_{1122,2}$
196	$k \equiv 955 \pmod{1224}$	847009	219	$k \equiv 1123 \pmod{1496}$	1319465750666449
197	$k \equiv 649 \pmod{1224}$	2472455165563662277393	220	$k \equiv \overline{749} \pmod{1496}$	202506717689
198	$k \equiv \overline{343} \pmod{1224}$	C _{1224,1}	221	$k \equiv \overline{375} \pmod{1496}$	$c_{1496,1}$
199	$k \equiv 37 \pmod{1224}$	$C_{1224,2}$	222	$k \equiv 1 \pmod{1496}$	$c_{1496,2}$

Table B.18 cont. Covering for d = 2 in Base 6

For d = 3, we use the covering found in Table B.20. This covering has 92 congruences with the least common multiple of the moduli being 9028800. One checks that the primes 43, 31, 13, and 61 correspond to the congruence conditions $M \equiv 40$ (mod 43), $M \equiv 18 \pmod{31}$, $M \equiv 8 \pmod{13}$, and $M \equiv 9 \pmod{61}$, which agree with the previous uses of these primes. For d = 4, we use the covering found in Table B.21 . This covering has 87 congruences with the least common multiple of the moduli being 98167680. One checks that the primes 7, 17, and 13 correspond to the congruence conditions $M \equiv 2 \pmod{7}$, $M \equiv 4 \pmod{17}$, and $M \equiv 8 \pmod{13}$, which agree with the previous uses of these primes. A direct analysis on each can be used to verify that they are indeed coverings. Table B.19 exhibits notable factorizations of $\Phi_n(6)$ for large n used in both the coverings for d = 3 and d = 4. To make the tables fit nicely, we list some of the larger primes used for both the coverings.

> $p_8 = 22452257707354557235348829785471057921,$ $p_{32} = 445813984361506105237664076966721,$ $p_{51} = 46975793563298851302025905551105268509881,$ $p_{58} = 1236385853432057889667843739281,$ $p_{67} = 40752608049190149321816351186154151.$

Table B.19 Partial/Full factorizations of $\Phi_n(6)$ for d = 3 and d = 4

n	Factorization of $\Phi_n(10)$
171	$19 \cdot C_{171}$
360	P_{360}
380	$300961 \cdot 21905019726901 \cdot 347101070179037778781 \cdot P_{380}$
552	C_{552}

row	congruence	prime p_i	
a	$k \equiv 0 \pmod{3}$	43	
b	$k \equiv 1 \pmod{6}$	31	
с	$k \equiv 5 \pmod{12}$	13	
d	$k \equiv 16 \pmod{60}$	61	
1	$k \equiv 23 \pmod{24}$	1678321	
2	$k \equiv 35 \pmod{48}$	5953	
3	$k \equiv 11 \pmod{48}$	473896897	
4	$k \equiv 32 \pmod{36}$	55117	
5	$k \equiv 56 \pmod{72}$	577	
6	$k \equiv 20 \pmod{72}$	3313	
7	$k \equiv 44 \pmod{72}$	2478750186961	
8	$k \equiv 80 \pmod{144}$	p_8	
9	$k \equiv 152 \pmod{288}$	115777	
10	$k \equiv 8 \pmod{288}$	31057921	
11	$k \equiv 98 \pmod{108}$	109	
12	$k \equiv 62 \pmod{108}$	591841	
13	$k \equiv 26 \pmod{108}$	171467713	
14	$k \equiv 86 \pmod{108}$	932461936453	
15	$k \equiv 158 \pmod{216}$	115963921	
16	$k \equiv 50 \pmod{216}$	433	
17	$k \equiv 122 \pmod{216}$	8781208996949976153601	
18	$k \equiv 14 \pmod{216}$	241282001155985351966017	
19	$k \equiv 146 \pmod{180}$	9001	

Table B.20 Covering for d = 3 in Base 6

row	congruence	prime p_i
20	$k \equiv 110 \pmod{180}$	211501
21	$k \equiv 74 \pmod{180}$	2106930961
22	$k \equiv 38 \pmod{180}$	5597780112726834061
23	$k \equiv 362 \pmod{540}$	4861
24	$k \equiv 182 \pmod{540}$	39326041
25	$k \equiv 2 \pmod{540}$	51353541541
26	$k \equiv 106 \pmod{120}$	13441
27	$k \equiv 46 \pmod{120}$	592575109627400042641
28	$k \equiv 28 \pmod{30}$	1950271
29	$k \equiv 82 \pmod{240}$	55201
30	$k \equiv 202 \pmod{240}$	122401
31	$k \equiv 172 \pmod{240}$	21027841
32	$k \equiv 142 \pmod{240}$	p_{32}
33	$k \equiv 352 \pmod{360}$	P_{360}
34	$k \equiv 592 \pmod{720}$	13599361
35	$k \equiv 232 \pmod{720}$	6776234506081
36	$k \equiv 472 \pmod{720}$	$c_{720,1}$
37	$k \equiv 112 \pmod{720}$	$c_{720,2}$
38	$k \equiv 772 \pmod{960}$	31313147521
39	$k \equiv 532 \pmod{960}$	24446522594290613929804801
40	$k \equiv 292 \pmod{960}$	$c_{960,1}$
41	$k \equiv 52 \pmod{960}$	$c_{960,2}$
42	$k \equiv 982 \pmod{1200}$	62401

row	congruence	prime p_i
43	$k \equiv 742 \pmod{1200}$	295201
44	$k \equiv 502 \pmod{1200}$	78180664801
45	$k \equiv 262 \pmod{1200}$	$c_{1200,1}$
46	$k \equiv 22 \pmod{1200}$	$c_{1200,2}$
47	$k \equiv 310 \pmod{330}$	661982172984001
48	$k \equiv 280 \pmod{330}$	p_{48}
49	$k \equiv 85 \pmod{165}$	331
50	$k \equiv 55 \pmod{165}$	13724862774476458441
51	$k \equiv 25 \pmod{165}$	p_{51}
52	$k \equiv 490 \pmod{660}$	661
53	$k \equiv 160 \pmod{660}$	1321
54	$k \equiv 460 \pmod{660}$	144541
55	$k \equiv 130 \pmod{660}$	110221
56	$k \equiv 430 \pmod{660}$	188074921
57	$k \equiv 100 \pmod{660}$	14966414761
58	$k \equiv 400 \pmod{660}$	$c_{660,1}$
59	$k \equiv 70 \pmod{660}$	$C_{660,2}$
60	$k \equiv 370 \pmod{495}$	2971
61	$k \equiv 205 \pmod{495}$	59941224796217491
62	$k \equiv 40 \pmod{495}$	P_{495}
63	$k \equiv 1000 \pmod{1320}$	4812721
64	$k \equiv \overline{670 \pmod{1320}}$	2573249895018001
65	$k \equiv \overline{340 \pmod{1320}}$	$c_{1320,1}$

Table B.20 cont. Covering for d = 3 in Base 6

row	congruence	prime p_i
66	$k \equiv 10 \pmod{1320}$	$c_{1320,2}$
67	$k \equiv 69 \pmod{95}$	571
68	$k \equiv 39 \pmod{95}$	1901
69	$k \equiv 9 \pmod{95}$	825838991
70	$k \equiv 74 \pmod{95}$	1298704628041
71	$k \equiv 44 \pmod{95}$	25425408247171
72	$k \equiv 14 \pmod{95}$	2995523312517361
73	$k \equiv 174 \pmod{190}$	6271
74	$k \equiv 144 \pmod{190}$	2666738161
75	$k \equiv 114 \pmod{190}$	37260330001
76	$k \equiv 84 \pmod{190}$	61671024221
77	$k \equiv 54 \pmod{190}$	3229504809106404383981
78	$k \equiv 214 \pmod{285}$	47562842881
79	$k \equiv 184 \pmod{285}$	270596289241
80	$k \equiv 154 \pmod{285}$	209547179344816511252551051
81	$k \equiv 124 \pmod{285}$	P_{285}
82	$k \equiv 94 \pmod{570}$	40844746349999464436020322521
83	$k \equiv 64 \pmod{570}$	P_{570}
84	$k \equiv 34 \pmod{380}$	300961
85	$k \equiv 224 \pmod{380}$	21905019726901
86	$k \equiv \overline{1144 \pmod{1710}}$	61561
87	$k \equiv 574 \pmod{1710}$	3062755351
88	$k \equiv 4 \pmod{1710}$	$2410\overline{655182800230692840951}$

row	congruence	prime p_i	row	congruence	prime p_i
a	$k \equiv 1 \pmod{2}$	7	19	$k \equiv 97 \pmod{171}$	c _{171,2}
b	$k \equiv 4 \pmod{16}$	17	20	$k \equiv 382 \pmod{513}$	432482774993234980723
с	$k \equiv 2 \pmod{12}$	13	21	$k \equiv 211 \pmod{513}$	697343318106716202287329
1	$k \equiv 28 \pmod{32}$	353	22	$k \equiv 40 \pmod{513}$	C _{513,1}
2	$k \equiv 12 \pmod{32}$	1697	23	$k \equiv 142 \pmod{228}$	229
3	$k \equiv 24 \pmod{32}$	4709377	24	$k \equiv 130 \pmod{228}$	25309
4	$k \equiv 72 \pmod{96}$	193	25	$k \equiv 118 \pmod{228}$	43321
5	$k \equiv 40 \pmod{96}$	8641	26	$k \equiv 106 \pmod{228}$	2197693
6	$k \equiv 8 \pmod{96}$	688490113	27	$k \equiv 94 \pmod{228}$	300537265358917
7	$k \equiv 48 \pmod{64}$	2753	28	$k \equiv 82 \pmod{228}$	659334264781883756771821
8	$k \equiv 32 \pmod{64}$	145601	29	$k \equiv 298 \pmod{456}$	8502577
9	$k \equiv 16 \pmod{64}$	19854979505843329	30	$k \equiv 70 \pmod{456}$	C _{456,1}
10	$k \equiv 64 \pmod{128}$	4926056449	31	$k \equiv 286 \pmod{456}$	$C_{456,2}$
11	$k \equiv 0 \pmod{128}$	447183309836853377	32	$k \equiv 970 \pmod{1368}$	12896362376641
12	$k \equiv 55 \pmod{57}$	47881	33	$k \equiv 514 \pmod{1368}$	48893768514888932017
13	$k \equiv 43 \pmod{57}$	820459	34	$k \equiv 58 \pmod{1368}$	$c_{1368,1}$
14	$k \equiv 31 \pmod{57}$	219815829325921729	35	$k \equiv 502 \pmod{684}$	60204997
15	$k \equiv 76 \pmod{114}$	457	36	$k \equiv 274 \pmod{684}$	4765941001
16	$k \equiv 64 \pmod{114}$	137713	37	$k \equiv 46 \pmod{684}$	37187713
17	$k \equiv 52 \pmod{114}$	190324492938225748951	38	$k \equiv 490 \pmod{684}$	473164737913969822009
18	$k \equiv \overline{154 \pmod{171}}$	C _{171,1}	39	$k \equiv 262 \pmod{684}$	235011794248567117

_ _____

Table B.21 Covering for d = 4 in Base 6

row	congruence	prime p_i
40	$k \equiv 34 \pmod{684}$	C _{684,1}
41	$k \equiv 934 \pmod{1140}$	2281
42	$k \equiv 706 \pmod{1140}$	2358661
43	$k \equiv 478 \pmod{1140}$	6197208621830041
44	$k \equiv 250 \pmod{1140}$	3817262181721
45	$k \equiv 22 \pmod{1140}$	18805516694127001
46	$k \equiv 922 \pmod{1140}$	888066870806284147801
47	$k \equiv 694 \pmod{1140}$	$c_{1140,1}$
48	$k \equiv 466 \pmod{1140}$	$c_{1140,2}$
49	$k \equiv 238 \pmod{380}$	347101070179037778781
50	$k \equiv 10 \pmod{380}$	P_{380}
51	$k \equiv 17 \pmod{23}$	47
52	$k \equiv 5 \pmod{23}$	139
53	$k \equiv 16 \pmod{23}$	3221
54	$k \equiv 4 \pmod{23}$	7505944891
55	$k \equiv 38 \pmod{46}$	113958101
56	$k \equiv 26 \pmod{46}$	990000731
57	$k \equiv 60 \pmod{69}$	11731
58	$k \equiv 48 \pmod{69}$	p_{58}
59	$k \equiv 82 \pmod{92}$	6073
60	$k \equiv 70 \pmod{92}$	2259889
61	$k \equiv 58 \pmod{92}$	9564781

row	congruence	prime p_i
62	$k \equiv 46 \pmod{92}$	128407494947883673
63	$k \equiv 103 \pmod{115}$	461
64	$k \equiv 80 \pmod{115}$	1151
65	$k \equiv 57 \pmod{115}$	44851
66	$k \equiv 34 \pmod{115}$	257917526307345124973861
67	$k \equiv 11 \pmod{115}$	p_{67}
68	$k \equiv 114 \pmod{138}$	24648570768391
69	$k \equiv 102 \pmod{138}$	816214079084081564521
70	$k \equiv 182 \pmod{184}$	14537
71	$k \equiv 90 \pmod{184}$	433176829049
72	$k \equiv 170 \pmod{230}$	23126990778420152651
73	$k \equiv 55 \pmod{230}$	P_{230}
74	$k \equiv 216 \pmod{345}$	691
75	$k \equiv 147 \pmod{345}$	241541401
76	$k \equiv 78 \pmod{345}$	139954341051841
77	$k \equiv 9 \pmod{345}$	P_{345}
78	$k \equiv 66 \pmod{276}$	277
79	$k \equiv 54 \pmod{276}$	12344559539431993
80	$k \equiv 42 \pmod{276}$	14030036355387001
81	$k \equiv 30 \pmod{276}$	23027140435639321
82	$k \equiv 18 \pmod{276}$	279219519230141641
83	$k \equiv 282 \pmod{552}$	<i>c</i> _{552,1}
84	$k \equiv 6 \pmod{552}$	$c_{552,2}$

Table B.21 cont. Covering for d = 4 in Base 6

B.6 COVERING SYSTEMS FOR b = 7

For base 7, let b = 7 and a = 5. That is, we consider

$$N = 5 \cdot \frac{7^n - 1}{6} + M,$$

where the digit insertions are

$$N_0^{(k)}(x) = 5 \cdot \frac{7^n - 1}{6} + M + x \cdot 7^k \quad \text{and} \quad N_5^{(k)}(d) = 5 \cdot 7^n + 5 \cdot \frac{7^n - 1}{6} + M + (d - 5) \cdot 7^k.$$

We want coverings for $x, d \in \{0, 1, 2, 3, 4, 5, 6\}$. Setting $M \equiv 0 \pmod{5}$, we see that both $N_0^{(k)}(x) \equiv 0 \pmod{5}$ and $N_5^{(k)}(d) \equiv 0 \pmod{5}$ for $x, d \equiv 0 \pmod{5}$. Additionally, letting $n \equiv 0 \pmod{2}$ and $M \equiv 0 \pmod{2}$, then both $N_0^{(k)}(x)$ and $N_5^{(k)}(d)$ are even for $x, d \equiv 0 \pmod{2}$. Lastly, setting $n \equiv 0 \pmod{3}$ and $M \equiv 0$ (mod 3), we see that both $N_0^{(k)}(x) \equiv 0 \pmod{3}$ and $N_5^{(k)}(d) \equiv 0 \pmod{3}$ for $x, d \equiv 0$ (mod 3). Thus, we only need to find coverings for x = 1 and d = 1.

The covering used for x = 1 is displayed in Table B.22 with the least common multiple of the moduli being 96. Table B.23 exhibits the covering for d = 1 where $p_{120} = 85560261859655897641$. The least common multiple of the moduli in Table B.23 is 4320. Both coverings can be verified with a direct analysis.

Table B.22 Covering for x = 1 in Base 7

row	congruence	prime p_i
1	$k \equiv 0 \pmod{3}$	19
2	$k \equiv 4 \pmod{8}$	1201
3	$k \equiv 8 \pmod{16}$	17
4	$k \equiv 0 \pmod{16}$	169553
5	$k \equiv 1 \pmod{6}$	43
6	$k \equiv 2 \pmod{12}$	13
7	$k \equiv 10 \pmod{12}$	181

row	congruence	prime p_i
8	$k \equiv 5 \pmod{24}$	73
9	$k \equiv 17 \pmod{24}$	193
10	$k \equiv 11 \pmod{24}$	409
11	$k \equiv 23 \pmod{48}$	33232924804801
12	$k \equiv 47 \pmod{96}$	97
13	$k \equiv 95 \pmod{96}$	104837857

		-		
congruence	prime p_i		congruence	prime p_i
$k \equiv 0 \pmod{3}$	19		$k \equiv 7 \pmod{10}$	191
$k \equiv 11 \pmod{12}$	13		$k \equiv 0 \pmod{5}$	2801
$k \equiv 56 \pmod{60}$	61		$k \equiv 26 \pmod{36}$	13841169553
$k \equiv 44 \pmod{60}$	555915824341		$k \equiv 50 \pmod{72}$	42409
$k \equiv 2 \pmod{30}$	6568801		$k \equiv 14 \pmod{72}$	137089
$k \equiv 5 \pmod{15}$	31		$k \equiv 38 \pmod{72}$	32952799801
$k \equiv 8 \pmod{15}$	159871		$k \equiv 74 \pmod{144}$	129169
$k \equiv 113 \pmod{120}$	12913561		$k \equiv 2 \pmod{144}$	25726609
$k \equiv 53 \pmod{120}$	p_{120}		$k \equiv 7 \pmod{9}$	37
$k \equiv 161 \pmod{180}$	9901		$k \equiv 4 \pmod{9}$	1063
$k \equiv 101 \pmod{180}$	1795168434777002101		$k \equiv 19 \pmod{27}$	109
$k \equiv 41 \pmod{180}$	2065025164427492401		$k \equiv 10 \pmod{27}$	811
$k \equiv 9 \pmod{10}$	11		$k \equiv 1 \pmod{27}$	2377

Table B.23 Covering for d = 1 in Base 7

B.7 COVERING SYSTEMS FOR b = 8

For base 8, let b = 8 and a = 3. That is, we consider

$$N = 3 \cdot \frac{8^n - 1}{7} + M,$$

where the digit insertions are

$$N_0^{(k)}(x) = 3 \cdot \frac{8^n - 1}{7} + M + x \cdot 8^k \quad \text{and} \quad N_3^{(k)}(d) = 3 \cdot 8^n + 3 \cdot \frac{8^n - 1}{7} + M + (d - 3) \cdot 8^k.$$

We want coverings for $x, d \in \{0, 1, 2, 3, 4, 5, 6, 7\}$. Setting $M \equiv 0 \pmod{3}$, we see that both $N_0^{(k)}(x) \equiv 0 \pmod{3}$ and $N_3^{(k)}(d) \equiv 0 \pmod{3}$ for $x, d \equiv 0 \pmod{3}$. Additionally, by letting $n \equiv 0 \pmod{7}$ and $M \equiv 0 \pmod{7}$, both $N_0^{(k)}(x) \equiv 0 \pmod{7}$ and $N_3^{(k)}(d) \equiv 0 \pmod{7}$ for $x, d \equiv 0 \pmod{7}$. Lastly, setting $n \equiv 0 \pmod{4}$ and $M \equiv 0 \pmod{5}$, we see that $N_0^{(k)}(x)$ is divisible by 5 for $x \equiv 0 \pmod{5}$. Thus, we only need to find coverings for $x \in \{1, 2, 4\}$ and $d \in \{1, 2, 4, 5\}$.

For the insertions $x \in \{1, 2, 4\}$, we use the coverings found in Table B.24, B.25, and B.26, respectively. The largest of the least common multiples of the moduli for the coverings is 1440. A direct analysis on each covering can be used for verification. We list a few of the larger primes below.

 $p_{120} = 469775495062434961,$

 $p_{240} = 750016890283777055704738227247474485366338380663681,$

 $p_{360,1} = 1117180440577441,$

 $p_{360,2} = 47322686948898415351505582462576221839235677646571281.$

Table B.24 Covering for x = 1 in Base 8

congruence	prime p_i
$l_{a} = 0 \pmod{4}$	1 10
$\kappa \equiv 0 \pmod{4}$	15
$k \equiv 6 \pmod{8}$	17
$k \equiv 2 \pmod{8}$	241
$k \equiv 13 \pmod{16}$	97
$k \equiv 9 \pmod{16}$	257
$k \equiv 5 \pmod{16}$	673
$k \equiv 17 \pmod{32}$	193
$k \equiv 1 \pmod{32}$	65537
$k \equiv 23 \pmod{24}$	433
$k \equiv 19 \pmod{24}$	38737
$k \equiv 39 \pmod{48}$	577
$k \equiv 15 \pmod{48}$	487824887233
$k \equiv 59 \pmod{72}$	33975937
$k \equiv 35 \pmod{72}$	138991501037953
$k \equiv 83 \pmod{144}$	209924353

congruence	prime p_i
$k \equiv 11 \pmod{144}$	4261383649
$k \equiv 79 \pmod{96}$	1153
$k \equiv 55 \pmod{96}$	6337
$k \equiv 31 \pmod{96}$	38941695937
$k \equiv 7 \pmod{96}$	278452876033
$k \equiv 99 \pmod{120}$	168692292721
$k \equiv 75 \pmod{120}$	p_{120}
$k \equiv 171 \pmod{240}$	8369281
$k \equiv 51 \pmod{240}$	p_{240}
$k \equiv 267 \pmod{360}$	2161
$k \equiv 147 \pmod{360}$	21601
$k \equiv 27 \pmod{360}$	201519653761
$k \equiv 243 \pmod{360}$	$p_{360,1}$
$k \equiv 123 \pmod{360}$	$p_{360,2}$
$k \equiv 3 \pmod{60}$	29247661

Table B.25 Covering for x = 2 in Base 8

row	congruence	prime p_i	row	congruence	prime p_i
1	$k \equiv 4 \pmod{5}$	31	8	$k \equiv 31 \pmod{60}$	181
2	$k \equiv 3 \pmod{5}$	151	9	$k \equiv 1 \pmod{60}$	54001
3	$k \equiv 7 \pmod{10}$	11	10	$k \equiv 15 \pmod{20}$	41
4	$k \equiv 2 \pmod{10}$	331	11	$k \equiv 10 \pmod{20}$	61
5	$k \equiv 11 \pmod{15}$	631	12	$k \equiv 5 \pmod{20}$	1321
6	$k \equiv 6 \pmod{15}$	23311	13	$k \equiv 20 \pmod{40}$	61681
7	$k \equiv 16 \pmod{30}$	18837001	14	$k \equiv 0 \pmod{40}$	4562284561

For d = 1, we use the covering found in Table B.27. The least common multiple of the moduli for this covering is 224, so a direct analysis is used for verification. One

norr	concrition co	nuime n	row	congruence
TOW	congruence	prime p_i	6	$k = 13 \pmod{2}$
1	$k \equiv 0 \pmod{3}$	73	7	$h = 10 \pmod{1}$
2	$k \equiv 5 \pmod{6}$	19	($\kappa = 22 \pmod{6}$
2	$k = 2 \pmod{12}$	37	8	$k \equiv 4 \pmod{3}$
5	$h \equiv 2 \pmod{12}$	100	9	$k \equiv 19 \pmod{2}$
4	$k \equiv 8 \pmod{12}$	109	10	$k = 10 \pmod{6}$
5	$k \equiv 7 \pmod{9}$	262657	11	$h = 10 \pmod{2}$
	1	·]	11	$\kappa = 1 \pmod{2}$

Table B.26 Covering for x = 4 in Base 8

checks that the primes 5, 13, and 17 correspond to the congruence conditions $M \equiv 0$ (mod 5), $M \equiv 12 \pmod{13}$, and $M \equiv 13 \pmod{17}$, which agree with the previous uses of these primes. To conserve space, we denote $p_{224} = 358429848460993$.

prime p_i

87211

246241 279073

2593

71119

97685839

 $\pmod{18}$

 $\pmod{36}$

 $\pmod{36}$ $\pmod{27}$

 $\pmod{27}$

 $\pmod{27}$

Table B.27 Covering for d = 1 in Base 8

congruence	prime p_i	congruence	prime p_i
$k \equiv 2 \pmod{4}$	5	$k \equiv 13 \pmod{224}$	2689
$k \equiv 0 \pmod{4}$	13	$k \equiv 173 \pmod{224}$	47886721
$k \equiv 1 \pmod{8}$	17	$k \equiv 117 \pmod{224}$	183076097
$k \equiv 53 \pmod{56}$	3361	$k \equiv 61 \pmod{224}$	p_{224}
$k \equiv 45 \pmod{56}$	15790321	$k \equiv 5 \pmod{224}$	P_{224}
$k \equiv 37 \pmod{56}$	88959882481	$k \equiv 27 \pmod{28}$	29
$k \equiv 85 \pmod{112}$	2017	$k \equiv 23 \pmod{28}$	113
$k \equiv 29 \pmod{112}$	5153	$k \equiv 19 \pmod{28}$	1429
$k \equiv 77 \pmod{112}$	25629623713	$k \equiv 15 \pmod{28}$	14449
$k \equiv 21 \pmod{112}$	54410972897	$k \equiv 11 \pmod{14}$	43
$k \equiv 69 \pmod{112}$	1538595959564161	$k \equiv 7 \pmod{14}$	5419
$k \equiv 125 \pmod{224}$	449	$k \equiv 3 \pmod{7}$	127

We use the covering found in Table B.28 for d = 2. The least common multiple of the moduli for this covering is 45760, so a direct analysis is used for verification. One checks that the primes 5, 17, and 4562284561 correspond to the congruence conditions $M \equiv 0 \pmod{5}$, $M \equiv 13 \pmod{17}$, and $M \equiv -2 \pmod{4562284561}$, which agree with the previous uses of these primes.

row	congruence prime p_i			row	congruence	prime p_i
a	$k \equiv 1 \pmod{4}$	5]	19	$k \equiv 128 \pmod{220}$	13379250952981
b	$k \equiv 4 \pmod{8}$	17		20	$k \equiv 88 \pmod{110}$	2971
с	$k \equiv 0 \pmod{40}$	4562284561		21	$k \equiv 48 \pmod{110}$	48912491
1	$k \equiv 32 \pmod{80}$	394783681		22	$k \equiv 8 \pmod{110}$	415365721
2	$k \equiv 72 \pmod{80}$	4278255361		23	$k \equiv 42 \pmod{44}$	397
3	$k \equiv 64 \pmod{80}$	46908728641		24	$k \equiv 38 \pmod{44}$	2113
4	$k \equiv 264 \pmod{320}$	4855681		25	$k \equiv 34 \pmod{44}$	312709
5	$k \equiv 184 \pmod{320}$	26881		26	$k \equiv 30 \pmod{44}$	4327489
6	$k \equiv 104 \pmod{320}$	3602561		27	$k \equiv 70 \pmod{88}$	353
7	$k \equiv 24 \pmod{320}$	137603804161	1	28	$k \equiv 26 \pmod{88}$	7393
8	$k \equiv 136 \pmod{160}$	23041		29	$k \equiv 0 \pmod{22}$	67
9	$k \equiv 96 \pmod{160}$	414721		30	$k \equiv 18 \pmod{22}$	683
10	$k \equiv 56 \pmod{160}$	44479210368001	1	31	$k \equiv 14 \pmod{22}$	20857
11	$k \equiv 16 \pmod{160}$	14768784307009061644318236958041601		32	$k \equiv 10 \pmod{11}$	23
12	$k \equiv 188 \pmod{220}$	661		33	$k \equiv 6 \pmod{11}$	89
13	$k \equiv 148 \pmod{220}$	3301		34	$k \equiv 2 \pmod{11}$	599479
14	$k \equiv 108 \pmod{220}$	8581		35	$k \equiv 51 \pmod{52}$	53
15	$k \equiv 68 \pmod{220}$	391249826881	1	36	$k \equiv 47 \pmod{52}$	157
16	$k \equiv 28 \pmod{220}$	415878438361	1	37	$k \equiv 43 \pmod{52}$	313
17	$k \equiv 208 \pmod{220}$	3630105520141	1	38	$k \equiv 39 \pmod{52}$	1249
18	$k \equiv 168 \pmod{220}$	12127627350301	1	39	$k \equiv 35 \pmod{52}$	1613

Table B.28 Covering for d = 2 in Base 8

row	congruence	prime p_i
40	$k \equiv 31 \pmod{52}$	3121
41	$k \equiv 27 \pmod{52}$	21841
42	$k \equiv 75 \pmod{104}$	858001
43	$k \equiv 23 \pmod{104}$	308761441
44	$k \equiv 19 \pmod{26}$	2731

Table B.28	cont.	Covering	for a	l=2	in	Base	8
		0					

row	congruence	prime p_i
45	$k \equiv 15 \pmod{26}$	22366891
46	$k \equiv 11 \pmod{13}$	79
47	$k \equiv 7 \pmod{13}$	8191
48	$k \equiv 3 \pmod{13}$	121369

For d = 4, we use the covering found in Table B.29. The least common multiple of the moduli for this covering is 105840, so a direct analysis is used for verification. One checks that the primes 73, 19, and 109 correspond to the congruence conditions $M \equiv 69 \pmod{73}$, $M \equiv 9 \pmod{19}$, and $M \equiv 38 \pmod{109}$, which agree with the previous uses of these primes. The covering used for d = 5 can be found in Table B.30. The least common multiple of the moduli for this covering is 4200, so a direct analysis is also used for this covering. One checks that the congruence conditions on M arising from the primes 13, 5, and 11, $M \equiv 12 \pmod{13}$, $M \equiv 0 \pmod{5}$, and $M \equiv 7 \pmod{11}$, agree with the previous uses of these primes.

For ease of notation, denote $p_{20} = 29728307155963706810228435378401$ and $p_{22} = 11247702599676505481447137991664348691$.

row	congruence	prime p_i
a	$k \equiv 0 \pmod{3}$	73
b	$k \equiv 2 \pmod{6}$	19
с	$k \equiv 5 \pmod{12}$	109
1	$k \equiv 19 \pmod{21}$	92737
2	$k \equiv 16 \pmod{21}$	649657
3	$k \equiv 55 \pmod{63}$	1560007
4	$k \equiv 34 \pmod{63}$	207617485544258392970753527

Table B.29 Covering for d = 4 in Base 8

row	congruence	prime p_i	row	congruence	prime p_i
5	$k \equiv 76 \pmod{126}$	379	26	$k \equiv 4 \pmod{420}$	17369459529909057773233442461
6	$k \equiv 13 \pmod{126}$	119827	27	$k \equiv 127 \pmod{147}$	126127
7	$k \equiv 31 \pmod{42}$	77158673929	28	$k \equiv 106 \pmod{147}$	309583
8	$k \equiv 94 \pmod{126}$	127391413339	29	$k \equiv 85 \pmod{147}$	5828257
9	$k \equiv 52 \pmod{126}$	56202143607667	30	$k \equiv 64 \pmod{147}$	4487533753346305838985313
10	$k \equiv 262 \pmod{378}$	562873504411	31	$k \equiv 43 \pmod{147}$	7086423574853972147970086088434689
11	$k \equiv 136 \pmod{378}$	4744655685883	32	$k \equiv 22 \pmod{49}$	4432676798593
12	$k \equiv 10 \pmod{378}$	P_{378}	33	$k \equiv 1 \pmod{49}$	2741672362528725535068727
13	$k \equiv 28 \pmod{35}$	71	34	$k \equiv 83 \pmod{84}$	40388473189
14	$k \equiv 21 \pmod{35}$	29191	35	$k \equiv 71 \pmod{84}$	118750098349
15	$k \equiv 14 \pmod{35}$	106681	36	$k \equiv 143 \pmod{168}$	1009
16	$k \equiv 7 \pmod{35}$	122921	37	$k \equiv 59 \pmod{168}$	21169
17	$k \equiv 0 \pmod{35}$	152041	38	$k \equiv 131 \pmod{168}$	2627857
18	$k \equiv 88 \pmod{105}$	870031	39	$k \equiv 47 \pmod{168}$	269389009
19	$k \equiv 67 \pmod{105}$	983431	40	$k \equiv 119 \pmod{168}$	1475204679190128571777
20	$k \equiv 46 \pmod{105}$	p_{20}	41	$k \equiv 203 \pmod{336}$	34273
21	$k \equiv 130 \pmod{210}$	1765891	42	$k \equiv 35 \pmod{336}$	P_{336}
22	$k \equiv 25 \pmod{210}$	p_{22}	43	$k \equiv 191 \pmod{252}$	757
23	$k \equiv \overline{319} \pmod{420}$	2521	44	$k \equiv 107 \pmod{252}$	$456376\overline{431053626339473533320957}$
24	$k \equiv 214 \pmod{420}$	1711081	45	$k \equiv 23 \pmod{252}$	304832756195865229284807891468769
$\overline{25}$	$k \equiv 109 \pmod{420}$	430839361	46	$k \equiv 4 \pmod{7}$	337

Table B.29 cont. Covering for d = 4 in Base 8

row	congruence	prime p_i
a	$k \equiv 2 \pmod{4}$	13
b	$k \equiv 0 \pmod{4}$	5

 $k \equiv 3 \pmod{10}$

 $k \equiv 41 \pmod{50}$

 $k \equiv 31 \pmod{50}$

 $k \equiv 21 \pmod{50}$

 $k \equiv 61 \pmod{100}$

 $k \equiv 11 \pmod{100}$

 $k \equiv 51 \pmod{100}$

 $k \equiv 1 \pmod{100}$

 $k \equiv 20 \pmod{25}$

 $k \equiv 15 \pmod{25}$

 $k \equiv 10 \pmod{25}$

 $k \equiv 5 \pmod{25}$

 $k \equiv 50 \pmod{75}$

 $k \equiv 25 \pmod{75}$

 $k \equiv 0 \pmod{75}$

 \mathbf{c}

Table B.30	Covering for	d = 5 in Base 8
------------	--------------	-----------------

row	congruence	prime p_i
15	$k \equiv 17 \pmod{20}$	61
16	$k \equiv 87 \pmod{100}$	268501
17	$k \equiv 67 \pmod{100}$	13334701
18	$k \equiv 47 \pmod{100}$	1182468601
19	$k \equiv 127 \pmod{200}$	401
20	$k \equiv 27 \pmod{200}$	340801
21	$k \equiv 107 \pmod{200}$	2787601
22	$k \equiv 7 \pmod{200}$	3173389601
23	$k \equiv 69 \pmod{70}$	211
24	$k \equiv 59 \pmod{70}$	281
25	$k \equiv 49 \pmod{70}$	86171
26	$k \equiv 39 \pmod{70}$	664441
27	$k \equiv 29 \pmod{70}$	1564921
28	$k \equiv 89 \pmod{140}$	421
29	$k \equiv 19 \pmod{140}$	7416361
30	$k \equiv 79 \pmod{140}$	47392381
31	$k \equiv 9 \pmod{140}$	146919792181

B.8 COVERING SYSTEMS FOR b = 9

For base 9, let b = 9 and a = 7. That is, we consider

$$N = 7 \cdot \frac{9^n - 1}{8} + M,$$

where the digit insertions are

$$N_0^{(k)}(x) = 7 \cdot \frac{9^n - 1}{8} + M + x \cdot 9^k \quad \text{and} \quad N_7^{(k)}(d) = 7 \cdot 9^n + 3 \cdot \frac{9^n - 1}{8} + M + (d - 7) \cdot 9^k.$$

We want coverings for $x, d \in \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. Setting $M \equiv 1 \pmod{2}$ and $n \equiv 0 \pmod{2}$, we see that both $N_0^{(k)}(x) \equiv 0 \pmod{2}$ and $N_7^{(k)}(d) \equiv 0 \pmod{2}$ for $x, d \equiv 0 \pmod{2}$. Additionally, by letting $M \equiv 0 \pmod{7}$, then both $N_0^{(k)}(x)$ and $N_7^{(k)}(d)$ are divisible by 7 for $x, d \equiv 0 \pmod{7}$. Lastly, setting $n \equiv 0 \pmod{4}$ and $M \equiv 0 \pmod{5}$, we see that both $N_0^{(k)}(x) \equiv 0 \pmod{5}$ and $N_7^{(k)}(d) \equiv 0 \pmod{5}$ for $x, d \equiv 0 \pmod{5}$ and $N_7^{(k)}(d) \equiv 0 \pmod{5}$ for $x \equiv 0 \pmod{5}$. Thus, we only need to find coverings for $x, d \in \{1, 3, 5\}$.

For the insertions $x \in \{1, 3, 5\}$, we use the coverings found in Tables B.31, B.32, and B.33, respectively. The largest of the least common multiples of the moduli for the coverings is 1200. A direct analysis on each covering can be used for verification.

Table B.31 Covering for x = 1 in Base 9

row	congruence	prime p_i	row	congruence	prime p_i
1	$k \equiv 0 \pmod{2}$	5	3	$k \equiv 7 \pmod{8}$	17
2	$k \equiv 1 \pmod{4}$	41	4	$k \equiv 3 \pmod{8}$	193

Table B.32 Covering for x = 3 in Base 9

row	congruence	prime p_i
1	$k \equiv 0 \pmod{3}$	7
2	$k \equiv 1 \pmod{3}$	13
3	$k \equiv 2 \pmod{6}$	73

row	congruence	prime p_i
4	$k \equiv 5 \pmod{12}$	6481
5	$k \equiv 11 \pmod{24}$	97
6	$k \equiv 23 \pmod{24}$	577

We use the coverings found in Tables B.34, B.35, and B.36 for $d \in \{1, 3, 5\}$, respectively. The largest of the least common multiples of the moduli for the coverings is 3960. A direct analysis on each covering can be used for verification.

			-		
row	congruence	prime p_i		row	congruence
1	$k \equiv 0 \pmod{5}$	11]	9	$k \equiv 7 \pmod{15}$
2	$k \equiv 1 \pmod{5}$	61		10	$k \equiv 12 \pmod{15}$
3	$k \equiv 3 \pmod{10}$	1181		11	$k \equiv 4 \pmod{25}$
4	$k \equiv 18 \pmod{20}$	42521761	1	12	$k \equiv 9 \pmod{25}$
5	$k \equiv 8 \pmod{40}$	14401		13	$k \equiv 14 \pmod{25}$
6	$k \equiv 68 \pmod{80}$	8194721		14	$k \equiv 19 \pmod{25}$
7	$k \equiv 28 \pmod{80}$	700984481		15	$k \equiv 24 \pmod{50}$
8	$k \equiv 2 \pmod{15}$	31		16	$k \equiv 49 \pmod{50}$

Table B.33 Covering for x = 5 in Base 9

One checks that the primes 5, 7, and 13 correspond to the congruence conditions $M \equiv 4 \pmod{5}$, $M \equiv 4 \pmod{7}$, and $M \equiv 12 \pmod{13}$, which agree with the previous congruences involving these primes found in Tables B.31 and B.32. Denote $p_{66} = 13490012358249728401$ for Table B.34.

Table B.34 Covering for d = 1 in Base 9

congruence	prime p_i
$k \equiv 0 \pmod{2}$	5
$k \equiv 21 \pmod{22}$	5501
$k \equiv 19 \pmod{22}$	570461
$k \equiv 6 \pmod{11}$	23
$k \equiv 4 \pmod{11}$	67
$k \equiv 2 \pmod{11}$	661
$k \equiv 0 \pmod{11}$	3851
$k \equiv 31 \pmod{33}$	25411
$k \equiv 20 \pmod{33}$	176419
$k \equiv 9 \pmod{33}$	2413941289
$k \equiv 29 \pmod{44}$	89
$k \equiv 7 \pmod{44}$	2382953
$k \equiv 27 \pmod{44}$	56625998353
$k \equiv 49 \pmod{88}$	6922081
$k \equiv 5 \pmod{88}$	15656839738849

congruence	prime p_i
$k \equiv 36 \pmod{55}$	1321
$k \equiv 14 \pmod{55}$	659671
$k \equiv 47 \pmod{55}$	24472341743191
$k \equiv 25 \pmod{55}$	560088668384411
$k \equiv 3 \pmod{110}$	177101
$k \equiv 56 \pmod{66}$	p_{66}
$k \equiv 89 \pmod{132}$	660001
$k \equiv 23 \pmod{132}$	11096576833
$k \equiv 78 \pmod{99}$	199
$k \equiv 45 \pmod{99}$	397
$k \equiv 12 \pmod{99}$	4357
$k \equiv 67 \pmod{99}$	3186217
$k \equiv 34 \pmod{99}$	337448233
$k \equiv 1 \pmod{99}$	378450588583

prime p_i

271

4561

151

8951

391151

22996651

 $\frac{101}{394201}$

congruence	prime p_i
$k \equiv 1 \pmod{2}$	5
$k \equiv 12 \pmod{14}$	29
$k \equiv 10 \pmod{14}$	16493
$k \equiv 1 \pmod{7}$	547
$k \equiv 6 \pmod{7}$	1093
$k \equiv 18 \pmod{28}$	430697
$k \equiv 4 \pmod{28}$	647753
$k \equiv 30 \pmod{35}$	71
$k \equiv 23 \pmod{35}$	2664097031
$k \equiv 16 \pmod{35}$	374857981681
$k \equiv 79 \pmod{105}$	211

Table B.35	Covering	for	d = 3	3 in	Base	9
------------	----------	-----	-------	------	------	---

congruence	prime p_i
$k \equiv 44 \pmod{105}$	421
$k \equiv 9 \pmod{105}$	1051
$k \equiv 72 \pmod{105}$	6301
$k \equiv 37 \pmod{105}$	24151
$k \equiv 2 \pmod{105}$	1616161
$k \equiv 56 \pmod{70}$	28596961
$k \equiv 42 \pmod{70}$	32839661
$k \equiv 28 \pmod{70}$	94373861
$k \equiv 84 \pmod{140}$	281
$k \equiv 14 \pmod{140}$	18481
$k \equiv 70 \pmod{140}$	369879560116990841
$k \equiv 0 \pmod{140}$	P_{140}

Table B.36 Covering for d = 5 in Base 9

congruence	prime p_i	congruence	prime p_i
$k \equiv 1 \pmod{3}$	7	$k \equiv 6 \pmod{63}$	2521
$k \equiv 2 \pmod{3}$	13	$k \equiv 45 \pmod{63}$	550554229
$k \equiv 18 \pmod{21}$	43	$k \equiv 24 \pmod{63}$	144542918285300809
$k \equiv 15 \pmod{21}$	2269	$k \equiv 66 \pmod{126}$	1180369
$k \equiv 12 \pmod{21}$	368089	$k \equiv 3 \pmod{126}$	475110761833
$k \equiv 30 \pmod{42}$	2857	$k \equiv 63 \pmod{84}$	337
$k \equiv 9 \pmod{42}$	109688713	$k \equiv 42 \pmod{84}$	673
$k \equiv 48 \pmod{63}$	127	$k \equiv 21 \pmod{84}$	1009
$k \equiv 27 \pmod{63}$	883	$k \equiv 0 \pmod{84}$	167329

B.9 Covering systems for b = 11

For base 11, let b = 11 and a = 3. That is, we consider

$$N = 3 \cdot \frac{11^n - 1}{10} + M,$$

where the digit insertions are

$$N_0^{(k)}(x) = 3 \cdot \frac{11^n - 1}{10} + M + x \cdot 11^k \quad \text{and} \quad N_3^{(k)}(d) = 3 \cdot 11^n + 3 \cdot \frac{11^n - 1}{10} + M + (d - 3) \cdot 11^k.$$

We want coverings for $x, d \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Setting $M \equiv 0 \pmod{2}$ and $n \equiv 0 \pmod{2}$, we see that both $N_0^{(k)}(x) \equiv 0 \pmod{2}$ and $N_3^{(k)}(d) \equiv 0 \pmod{2}$ for

 $x, d \equiv 0 \pmod{2}$. Additionally, by letting $M \equiv 0 \pmod{3}$, then both $N_0^{(k)}(x)$ and $N_3^{(k)}(d)$ are divisible by 3 for $x, d \equiv 0 \pmod{3}$. Lastly, setting $n \equiv 0 \pmod{5}$ and $M \equiv 0 \pmod{5}$, we see that both $N_0^{(k)}(x) \equiv 0 \pmod{5}$ and $N_3^{(k)}(d) \equiv 0 \pmod{5}$ for $x, d \equiv 0 \pmod{5}$. Thus, we only need to find coverings for $x, d \in \{1, 7\}$.

Tables B.37 through B.40 exhibit these coverings. Each covering can be verified directly where the largest of the least common multiples of the moduli for the coverings is 18480. One checks that the primes 7, 19, and 61 correspond to the congruence conditions $M \equiv 5 \pmod{7}$, $M \equiv 18 \pmod{19}$, and $M \equiv 54 \pmod{61}$. Denote

$$p_{45} = 9842332430037465033595921, \quad p_{112} = 3090443962383595123379137,$$

$$p_{44} = 2649263870814793,$$

$$p_{88} = 1298256794387169996154165633$$
, and $p_{33} = 637265428480297$.

Table B.37	Covering	for $x =$	1	in	Base	11
------------	----------	-----------	---	----	------	----

congruence	prime p_i
$k \equiv 2 \pmod{3}$	7
$k \equiv 0 \pmod{3}$	19
$k \equiv 7 \pmod{9}$	1772893
$k \equiv 13 \pmod{18}$	590077
$k \equiv 22 \pmod{36}$	3138426605161
$k \equiv 40 \pmod{72}$	73
$k \equiv 4 \pmod{72}$	40177
$k \equiv 55 \pmod{63}$	127

congruence	prime p_i
$k \equiv 46 \pmod{63}$	8317
$k \equiv 37 \pmod{63}$	867259
$k \equiv 28 \pmod{63}$	106431697
$k \equiv 19 \pmod{63}$	316825425410373433
$k \equiv 73 \pmod{126}$	3304981
$k \equiv 10 \pmod{126}$	468843103
$k \equiv 64 \pmod{126}$	71596275661
$k \equiv 1 \pmod{126}$	278853374647

Table B.38 Covering for x = 7 in Base 11

row	congruence	prime p_i
1	$k \equiv 0 \pmod{4}$	61
2	$k \equiv 6 \pmod{8}$	7321
3	$k \equiv 10 \pmod{16}$	17
4	$k \equiv 2 \pmod{16}$	6304673
5	$k \equiv 3 \pmod{6}$	37
6	$k \equiv 7 \pmod{12}$	13

row	congruence	prime p_i
7	$k \equiv 1 \pmod{12}$	1117
8	$k \equiv 17 \pmod{24}$	10657
9	$k \equiv 11 \pmod{24}$	20113
10	$k \equiv 29 \pmod{48}$	97
11	$k \equiv 5 \pmod{48}$	241
12	$k \equiv 23 \pmod{48}$	1777
13	$k \equiv 47 \pmod{48}$	1106131489

congruence	prime p_i	congruence	prime p_i
$k \equiv 1 \pmod{3}$	7	$k \equiv 20 \pmod{40}$	41
$k \equiv 0 \pmod{3}$	19	$k \equiv 0 \pmod{40}$	1120648576818041
$k \equiv 14 \pmod{15}$	195019441	$k \equiv 32 \pmod{45}$	p_{45}
$k \equiv 1 \pmod{5}$	3221	$k \equiv 62 \pmod{90}$	181
$k \equiv 23 \pmod{30}$	31	$k \equiv 17 \pmod{90}$	631
$k \equiv 8 \pmod{30}$	7537711	$k \equiv 47 \pmod{90}$	86306335830799838011
$k \equiv 5 \pmod{10}$	13421	$k \equiv 92 \pmod{180}$	9001
$k \equiv 10 \pmod{20}$	212601841	$k \equiv 2 \pmod{180}$	16921

Table B.39 Covering for d = 1 in Base 11

Table B.40 Covering for d = 7 in Base 11

congrijence	prime n	congruence	prime p_i
$\frac{b = 0 \pmod{4}}{b = 0 \pmod{4}}$		$k \equiv 29 \pmod{70}$	17011
$k \equiv 0 \pmod{4}$	01	$k \equiv 15 \pmod{70}$	1649341
$k \equiv 6 \pmod{7}$	43	$k \equiv 1 \pmod{70}$	10047871
$k \equiv 4 \pmod{7}$	45319	$k = 9 \pmod{11}$	15797
$k \equiv 9 \pmod{14}$	1623931	$\frac{h \equiv 5 \pmod{11}}{h \equiv 5 \pmod{11}}$	1906119
$k \equiv 21 \pmod{28}$	29	$k \equiv 0 \pmod{11}$	1000115
$k \equiv 7 \pmod{28}$	1933	$k \equiv 12 \pmod{22}$	23
$k = 19 \pmod{28}$	55527473	$k \equiv 8 \pmod{22}$	89
$k = 89 \pmod{120}$	337	$k \equiv 4 \pmod{22}$	199
$k = 61 \pmod{112}$	204120	$k \equiv 0 \pmod{22}$	58367
$k \equiv 01 \pmod{112}$	094129	$k \equiv 18 \pmod{44}$	251857
$k \equiv 33 \pmod{112}$	236352238647181441	$k \equiv 14 \pmod{44}$	p_{AA}
$k \equiv 5 \pmod{112}$	p_{112}	$k = 54 \pmod{88}$	353
$k \equiv 45 \pmod{56}$	113	$k \equiv 01 \pmod{60}$ $k \equiv 10 \pmod{88}$	72689
$k \equiv 31 \pmod{56}$	449	$h \equiv 10 \pmod{60}$ $h \equiv 50 \pmod{80}$	12505
$k \equiv 17 \pmod{56}$	2521	$\kappa = 50 \pmod{60}$	15565441
$k \equiv 3 \pmod{56}$	77001139434480073	$k \equiv 6 \pmod{88}$	p_{88}
$k = 57 \pmod{70}$	71	$k \equiv 24 \pmod{33}$	661
$k = 43 \pmod{70}$	7561	$k \equiv 13 \pmod{33}$	1453
$h = 40 \pmod{10}$	1501	$k \equiv 2 \pmod{33}$	p_{33}

B.10 Covering systems for b = 31

For base 31, let b = 31 and a = 7. That is, we consider

$$N = 7 \cdot \frac{31^n - 1}{30} + M,$$

where the digit insertions are

$$N_0^{(k)}(x) = 7 \cdot \frac{31^n - 1}{30} + M + x \cdot 31^k \quad \text{and} \quad N_7^{(k)}(d) = 7 \cdot 31^n + 7 \cdot \frac{31^n - 1}{30} + M + (d - 7) \cdot 31^k.$$

We want coverings for $x, d \in \{0, 1, 2, ..., 29, 30\}$. Setting $M \equiv 0 \pmod{2}$ and $n \equiv 0 \pmod{2}$, we see that both $N_0^{(k)}(x) \equiv 0 \pmod{2}$ and $N_7^{(k)}(d) \equiv 0 \pmod{2}$ for $x, d \equiv 0 \pmod{2}$. (mod 2). Additionally, by letting $M \equiv 1 \pmod{3}$ and $n \equiv 0 \pmod{3}$, then both $N_0^{(k)}(x)$ and $N_7^{(k)}(d)$ are divisible by 3 for $x, d \equiv 2 \pmod{3}$. Moreover, by setting $n \equiv 0 \pmod{5}$ and $M \equiv 0 \pmod{5}$, we have that both $N_0^{(k)}(x) \equiv 0 \pmod{5}$ and $N_7^{(k)}(d) \equiv 0 \pmod{5}$ for $x, d \equiv 0 \pmod{5}$. Lastly, setting $n \equiv 0 \pmod{7}$ and $M \equiv 0 \pmod{7}$ for $x, d \equiv 0 \pmod{7}$ and $M \equiv 0 \pmod{7}$. Thus, we only need to find coverings for $x, d \in \{1, 3, 9, 13, 19, 27\}$.

Tables B.41, B.42, and B.43 correspond to the insertions $x \in \{1, 3, 9\}$, respectively. Each of these coverings can be verified using a direct analysis. For Table B.42, let $p_6 = 7499207440683838894753$.

Table B.41 Covering for x = 1 in Base 31

row	congruence	prime p_i	row	congruence	prime p_i
1	$k \equiv 0 \pmod{4}$	13	6	$k \equiv 14 \pmod{16}$	25085030513
2	$k \equiv 3 \pmod{4}$	37	7	$k \equiv 26 \pmod{32}$	1889
3	$k \equiv 5 \pmod{8}$	409	8	$k \equiv 10 \pmod{32}$	1347329
4	$k \equiv 1 \pmod{8}$	1129	9	$k \equiv 18 \pmod{32}$	6139297
5	$k \equiv 6 \pmod{16}$	17	10	$k \equiv 2 \pmod{32}$	23277313

Table B.42 Covering for x = 3 in Base 31

row	congruence	prime p_i	r
1	$k \equiv 0 \pmod{3}$	331	
2	$k \equiv 1 \pmod{6}$	19	
3	$k \equiv 4 \pmod{12}$	922561	
4	$k \equiv 22 \pmod{24}$	852890113921	
5	$k \equiv 10 \pmod{48}$	97	

row	congruence	prime p_i
6	$k \equiv 34 \pmod{48}$	p_6
7	$k \equiv 5 \pmod{9}$	3637
8	$k \equiv 8 \pmod{9}$	81343
9	$k \equiv 2 \pmod{18}$	577
10	$k \equiv 11 \pmod{18}$	1538083

			congruence	prime p_i
congruence	prime p_i	Ì	$k = 44 \pmod{60}$	61
$k \equiv 1 \pmod{5}$	11	-	$h = 44 \pmod{00}$	01
$k \equiv 0 \pmod{5}$	17351	ļ	$k \equiv 14 \pmod{60}$	25621
$k = 0 \pmod{0}$ $k = 2 \pmod{10}$	41		$k \equiv 13 \pmod{25}$	101
$\kappa \equiv 2 \pmod{10}$	41	Ĩ	$k \equiv 18 \pmod{25}$	4951
$k \equiv 7 \pmod{10}$	21821	ŀ	$k = 23 \pmod{25}$	13277801
$k \equiv 4 \pmod{15}$	2521	ŀ	$\frac{n}{20} = \frac{20}{100} (10020)$	00025040001000051
$k \equiv 9 \pmod{15}$	327412201		$k \equiv 8 \pmod{25}$	20235942281002951
$h = 0 \pmod{10}$ $h = 20 \pmod{20}$	<u>990274060191</u>		$k \equiv 28 \pmod{50}$	1901
$\kappa = 29 \pmod{50}$	000374009121	Ì	$k \equiv 3 \pmod{50}$	4726301

Table B.43 Covering for x = 9 in Base 31

Table B.45 forms the covering used for x = 13. The least common multiple of the moduli is 997920 and a direct analysis can be used for verification. Table B.46 forms the covering used for x = 19. The least common multiple of the moduli is 158760 and a direct analysis can also be used for verification.

As this covering, as well as the ones that follow, are more complicated, we recall some notation used in Appendix A and some of the smaller bases. Recall that if we are unable to fully factor $\Phi_n(31)$, then we write $\Phi_n(31) = p_1 p_2 \cdots p_r C_n$, where C_n is a composite factor of $\Phi_n(31)$ having at least 2 distinct prime divisors different from p_1, p_2, \ldots, p_r and n. If we are able to fully factor $\Phi_n(31)$, then we write $\Phi_n(31) =$ $p_1 p_2 \cdots p_r P_n$, where P_n is a large prime factor of $\Phi_n(31)$ different from p_1, p_2, \ldots, p_r . Computationally, P_n is determined to be a prime power and then verified to be a prime. We denote P_n to be a probable prime too large to include comfortably where $\operatorname{ord}_{P_n}(31) = n$. We also use $c_{n,1}$ to denote one prime factor from the composite number C_n where $\operatorname{ord}_{c_{n,1}}(31) = n$ that we were unable to factor, and $c_{n,2}$ to denote the other prime factor from the same composite number. We did not compute the values of $c_{n,1}$ and $c_{n,2}$, but we know they exist.

When necessary, we provide a table of notable factorizations of $\Phi_n(31)$ used in the covering that follows. It can be assumed that the large primes P_n and composite numbers C_n that are omitted from the tables that contain notable factorizations of $\Phi_n(31)$ can be determined by dividing $\Phi_n(31)$ by the primes associated with n that can be found in adjacent rows in the tables. Table B.44 contains notable factorizations of $\Phi_n(31)$ used in the coverings for x = 13 and x = 19, and we list a few primes below that do not fit in the tables comfortably.

 $p_2 = 512616735577, \quad p_{10} = 550469850411853,$

 $p_{19} = 4303134368687145997467938682848881,$

 $p_{20} = 62322419393153627851729037464684263699383389269055382039663,$

 $p_{22} = 147882001432537751112306358052999119715341090542830827,$

 $p_{36} = 104277841808893792264266721,$

 $p_{48} = 728921581954037396189325850537700569.$

Table B.44 Partial/Full factorizations of $\Phi_n(31)$ for x = 13 and x = 19

n	Factorization of $\Phi_n(31)$
81	$3 \cdot 2593 \cdot 13933 \cdot 477739 \cdot 6757669 \cdot 7822981 \cdot P_{81}$
294	$7\cdot 159937\cdot 9561579721\cdot 64636178950385134849\cdot P_{294}$
924	C_{924}
1134	C_{1134}

Table B.45 Covering for x = 13 in Base 31

row	congruence	prime p_i
1	$35 \pmod{36}$	1536553
2	$17 \pmod{36}$	p_2
3	$47 \pmod{54}$	109
4	$29 \pmod{54}$	163
5	$11 \pmod{54}$	541
6	$41 \pmod{54}$	6427
7	$23 \pmod{54}$	18880993
8	$5 \pmod{54}$	599329963
9	$38 \pmod{42}$	211
10	$32 \pmod{42}$	p_{10}
11	$68 \pmod{84}$	163598989

row	congruence	prime p_i
12	$26 \pmod{84}$	4038949965541
13	$62 \pmod{84}$	939903457569889
14	$104 \pmod{168}$	337886977
15	$20 \pmod{168}$	P_{168}
16	$182 \pmod{210}$	13454000701
17	$140 \pmod{210}$	18396393590821
18	$98 \pmod{210}$	350121327433921
19	$56 \pmod{210}$	p_{19}
20	$644 \pmod{840}$	52081
21	$434 \pmod{840}$	30241
22	$224 \pmod{840}$	13842240721

row	congruence	prime p_i	row	congruence	prime p_i
23	$k \equiv 14 \pmod{840}$	$c_{840,1}$	48	$k \equiv 49 \pmod{81}$	7822981
24	$k \equiv 218 \pmod{252}$	37323324288470557	49	$k \equiv 22 \pmod{81}$	P ₈₁
25	$k \equiv 92 \pmod{252}$	C252,1	50	$k \equiv 94 \pmod{108}$	277477787226853
26	$k \equiv 176 \pmod{252}$	$C_{252,2}$	51	$k \equiv 67 \pmod{108}$	91556360840213317
27	$k \equiv 302 \pmod{504}$	241921	52	$k \equiv 40 \pmod{108}$	19235533383829731610441
28	$k \equiv 50 \pmod{504}$	7894153	53	$k \equiv 121 \pmod{216}$	12733754041
29	$k \equiv 260 \pmod{378}$	379	54	$k \equiv 13 \pmod{216}$	$c_{216,1}$
30	$k \equiv 134 \pmod{378}$	C378,1	55	$k \equiv 112 \pmod{135}$	1344742561
31	$k \equiv 8 \pmod{378}$	C _{378,2}	56	$k \equiv 85 \pmod{135}$	302533008751
32	$k \equiv 296 \pmod{336}$	337	57	$k \equiv 58 \pmod{135}$	50358897181
33	$k \equiv 254 \pmod{336}$	2017	58	$k \equiv 31 \pmod{135}$	c _{135,1}
34	$k \equiv 212 \pmod{336}$	555073	59	$k \equiv 4 \pmod{135}$	C _{135,2}
35	$k \equiv 170 \pmod{336}$	48617978950487107729	60	$k \equiv 37 \pmod{45}$	271
36	$k \equiv 128 \pmod{336}$	p_{36}	61	$k \equiv 28 \pmod{45}$	63901
37	$k \equiv 86 \pmod{336}$	P_{336}	62	$k \equiv 19 \pmod{45}$	106291
38	$k \equiv 380 \pmod{672}$	673	63	$k \equiv 10 \pmod{45}$	337048683633480845467801
39	$k \equiv 44 \pmod{672}$	20673051169	64	$k \equiv 46 \pmod{90}$	2065411
40	$k \equiv 338 \pmod{672}$	44084649487496874698401	65	$k \equiv 1 \pmod{90}$	300392264044249601502733598251
41	$k \equiv 2 \pmod{672}$	C _{672,1}	66	$k \equiv 30 \pmod{33}$	650141690025315305584300036801
42	$k \equiv 25 \pmod{27}$	1836205027201	67	$k \equiv 93 \pmod{99}$	199
43	$k \equiv 16 \pmod{27}$	126901881805771	68	$k \equiv 60 \pmod{99}$	991
44	$k \equiv 61 \pmod{81}$	2593	69	$k \equiv 27 \pmod{99}$	204733
45	$k \equiv 34 \pmod{81}$	13933	70	$k \equiv 90 \pmod{99}$	36093579787
46	$k \equiv 7 \pmod{81}$	477739	71	$k \equiv 57 \pmod{99}$	294573316951
47	$k \equiv 76 \pmod{81}$	6757669	72	$k \equiv 24 \pmod{99}$	215792743120601131

Table B.45 cont. Covering for x = 13 in Base 31

row	congruence	prime p_i	row	congruence	prime p_i
73	$k \equiv 87 \pmod{99}$	3763784187326467459	98	$k \equiv 504 \pmod{924}$	c _{924,1}
74	$k \equiv 54 \pmod{99}$	869535983092745596321	99	$k \equiv 42 \pmod{924}$	C _{924,2}
75	$k \equiv 120 \pmod{198}$	8713	100	$k \equiv 9 \pmod{77}$	2927
76	$k \equiv 21 \pmod{198}$	430057	101	$k \equiv 138 \pmod{165}$	1321
77	$k \equiv 183 \pmod{198}$	291207313	102	$k \equiv 105 \pmod{165}$	P_{165}
78	$k \equiv 84 \pmod{198}$	24763965905251	103	$k \equiv 237 \pmod{330}$	2995081
79	$k \equiv 150 \pmod{198}$	P_{198}	104	$k \equiv 72 \pmod{330}$	3173617894921
80	$k \equiv 249 \pmod{396}$	18217	105	$k \equiv 204 \pmod{330}$	13027986803063207491231
81	$k \equiv 51 \pmod{396}$	56629	106	$k \equiv 39 \pmod{330}$	P ₃₃₀
82	$k \equiv 315 \pmod{396}$	312841	107	$k \equiv 336 \pmod{495}$	418771
83	$k \equiv 216 \pmod{396}$	114678696529	108	$k \equiv 171 \pmod{495}$	377475051691
84	$k \equiv 117 \pmod{396}$	9293745221943733	109	$k \equiv 6 \pmod{495}$	C _{495,1}
85	$k \equiv 18 \pmod{396}$	P_{396}	110	$k \equiv 102 \pmod{132}$	4451983606421686827580205284201
86	$k \equiv 48 \pmod{66}$	67	111	$k \equiv 201 \pmod{264}$	183516169
87	$k \equiv 15 \pmod{66}$	297991	112	$k \equiv 69 \pmod{264}$	6542062289677294884725761
88	$k \equiv 45 \pmod{66}$	34731987261785578083133	113	$k \equiv 168 \pmod{264}$	P_{264}
89	$k \equiv 78 \pmod{132}$	599382278617	114	$k \equiv 300 \pmod{528}$	3169
90	$k \equiv 12 \pmod{132}$	169301958609793153	115	$k \equiv 36 \pmod{528}$	10524479059277959777
91	$k \equiv 207 \pmod{231}$	463	116	$k \equiv 531 \pmod{660}$	1149061
92	$k \equiv 174 \pmod{231}$	13780537	117	$k \equiv 399 \pmod{660}$	52061461
93	$k \equiv 141 \pmod{231}$	816786763717	118	$k \equiv 267 \pmod{660}$	$c_{660,1}$
94	$k \equiv 108 \pmod{231}$	P ₂₃₁	119	$k \equiv 135 \pmod{660}$	C _{660,2}
95	$k \equiv 306 \pmod{462}$	427813176370045109029	120	$k \equiv 663 \pmod{1320}$	19801
96	$k \equiv 75 \pmod{462}$	C462,1	121	$k \equiv 3 \pmod{1320}$	215758788030763381958401
97	$k \equiv 273 \pmod{462}$	$C_{462,2}$	122	$k \equiv 0 \pmod{11}$	23

Table B.45 cont. Covering for x = 13 in Base 31

row	congruence	prime p_i
1	$k \equiv 6 \pmod{7}$	917087137
2	$k \equiv 12 \pmod{14}$	11971
3	$k \equiv 5 \pmod{14}$	71821
4	$k \equiv 18 \pmod{21}$	43
5	$k \equiv 11 \pmod{21}$	6301
6	$k \equiv 4 \pmod{21}$	2813432694367
7	$k \equiv 24 \pmod{28}$	29
8	$k \equiv 17 \pmod{28}$	7253
9	$k \equiv 10 \pmod{28}$	13469
10	$k \equiv 3 \pmod{28}$	277739477
11	$k \equiv 30 \pmod{35}$	319061
12	$k \equiv 23 \pmod{35}$	203633641
13	$k \equiv 16 \pmod{35}$	9240957640390889951861
14	$k \equiv 44 \pmod{70}$	71
15	$k \equiv 9 \pmod{70}$	149269961
16	$k \equiv 72 \pmod{105}$	421
17	$k \equiv 37 \pmod{105}$	$c_{105,1}$
18	$k \equiv 2 \pmod{105}$	$c_{105,2}$
19	$k \equiv 43 \pmod{49}$	6959
20	$k \equiv 36 \pmod{49}$	p_{20}
21	$k \equiv 78 \pmod{98}$	2932755253
22	$k \equiv 29 \pmod{98}$	p_{22}
23	$k \equiv 120 \pmod{147}$	883
24	$k \equiv 71 \pmod{147}$	6585932048863895071
25	$k \equiv 22 \pmod{147}$	P ₁₄₇

	row	congruence	prime p_i
	26	$k \equiv 162 \pmod{196}$	197
	27	$k \equiv 113 \pmod{196}$	P ₁₉₆
	28	$k \equiv 260 \pmod{392}$	29401
ĺ	29	$k \equiv 64 \pmod{392}$	946681
	30	$k \equiv 211 \pmod{392}$	50762136041
	31	$k \equiv 15 \pmod{392}$	37737969050722454420873
	32	$k \equiv 204 \pmod{245}$	491
	33	$k \equiv 155 \pmod{245}$	1325489196571
	34	$k \equiv 106 \pmod{245}$	29220445871
	35	$k \equiv 57 \pmod{245}$	$c_{245,1}$
	36	$k \equiv 8 \pmod{245}$	$c_{245,2}$
	37	$k \equiv 246 \pmod{294}$	159937
	38	$k \equiv 197 \pmod{294}$	9561579721
	39	$k \equiv 148 \pmod{294}$	64636178950385134849
	40	$k \equiv 99 \pmod{294}$	P_{294}
	41	$k \equiv 344 \pmod{588}$	270647865962041
	42	$k \equiv 50 \pmod{588}$	492508466593101040661595493
	43	$k \equiv 295 \pmod{588}$	$c_{588,1}$
	44	$k \equiv 1 \pmod{588}$	$c_{588,2}$
	45	$k \equiv 56 \pmod{63}$	127
	46	$k \equiv 49 \pmod{63}$	70309
	47	$k \equiv 42 \pmod{63}$	75077698123
	48	$k \equiv 35 \pmod{63}$	p_{48}
	49	$k \equiv 154 \pmod{189}$	8317
	50	$k \equiv 91 \pmod{189}$	657178775852071573297

Table B.46 Covering for x = 19 in Base 31

row	congruence	prime p_i
51	$k \equiv 28 \pmod{189}$	175189978713624355909
52	$k \equiv 147 \pmod{189}$	C _{189,1}
53	$k \equiv 84 \pmod{189}$	$c_{189,2}$
54	$k \equiv 399 \pmod{567}$	1962171989486844920285764789
55	$k \equiv 210 \pmod{567}$	$C_{567,1}$
56	$k \equiv 21 \pmod{1134}$	$c_{1134,1}$
57	$k \equiv 588 \pmod{1134}$	$c_{1134,2}$
58	$k \equiv 266 \pmod{315}$	631
59	$k \equiv 203 \pmod{315}$	22185451
60	$k \equiv 140 \pmod{315}$	7180239284191
61	$k \equiv 77 \pmod{315}$	11352145269151
62	$k \equiv 14 \pmod{315}$	P_{315}
63	$k \equiv 70 \pmod{126}$	2143
64	$k \equiv 7 \pmod{126}$	45376431752737
65	$k \equiv 63 \pmod{126}$	1652484831253806817
66	$k \equiv 0 \pmod{126}$	3041204060704443103

Table B.46 cont. Covering for x = 19 in Base 31

The covering used for x = 27 is found in Table B.48. The least common multiple of the moduli is 2032800 and verification can be done directly. Table B.47 contains notable factorizations of $\Phi_n(31)$ used in the covering for x = 27. We denote

 $p_4 = 727422334085254365392641, \quad p_6 = 3889436310686727916228493162492361601,$

 $p_{12} = 281887891699576309494931758688962111082311886906752520001,$

 $p_{37} = 24106981477091678423113880081946849059226586740161,$

 $p_{48} = 236661696642275153056980146191674776616380367693641,$

 $p_{53} = 263768160996144192120004532942855021486760529559458116494001319.$

Table B.47 Partial/Full factorizations of $\Phi_n(31)$ for x = 27

n	Factorization of $\Phi_n(31)$	n	Eastorization of Φ (31)
121	C_{121}	<i>n</i> <i>AA</i> 0	$\frac{\Gamma_{actorIZation} \text{ or } \Psi_n(31)}{C}$
176	P ₁₇₆	440	U440

row	congruence	prime p_i		row	congruence	prime p_i
1	$k \equiv 0 \pmod{4}$	13]	21	$k \equiv 102 \pmod{800}$	3540626048818445838401
2	$k \equiv 14 \pmod{20}$	181	1	22	$k \equiv 402 \pmod{800}$	c _{800,1}
3	$k \equiv 18 \pmod{20}$	4707206941]	23	$k \equiv 2 \pmod{800}$	$c_{800,2}$
4	$k \equiv 30 \pmod{40}$	p_4		24	$k \equiv 21 \pmod{22}$	757241
5	$k \equiv 50 \pmod{80}$	136046551681		25	$k \equiv 19 \pmod{22}$	1048563011
6	$k \equiv 10 \pmod{80}$	p_6]	26	$k \equiv 39 \pmod{44}$	2729
7	$k \equiv 46 \pmod{60}$	1529401]	27	$k \equiv 17 \pmod{44}$	245911396799577828131028569
8	$k \equiv 26 \pmod{60}$	304643210761]	28	$k \equiv 81 \pmod{88}$	89
9	$k \equiv 66 \pmod{120}$	35401]	29	$k \equiv 59 \pmod{88}$	414407390867564627396249
10	$k \equiv 6 \pmod{120}$	1546081	1	30	$k \equiv 37 \pmod{88}$	12236290645201501169749559350025041
11	$k \equiv 82 \pmod{100}$	1601]	31	$k \equiv 103 \pmod{176}$	P ₁₇₆
12	$k \equiv 62 \pmod{100}$	p_{12}]	32	$k \equiv 191 \pmod{352}$	353
13	$k \equiv 142 \pmod{200}$	601	1	33	$k \equiv 15 \pmod{352}$	13634440321
14	$k \equiv 42 \pmod{200}$	7137001]	34	$k \equiv 101 \pmod{110}$	661
15	$k \equiv 122 \pmod{200}$	P_{200}]	35	$k \equiv 79 \pmod{110}$	2531
16	$k \equiv 222 \pmod{400}$	401]	36	$k \equiv 57 \pmod{110}$	11551
17	$k \equiv 22 \pmod{400}$	16001]	37	$k \equiv 35 \pmod{110}$	p_{37}
18	$k \equiv 302 \pmod{400}$	593742117601]	38	$k \equiv 123 \pmod{220}$	171161
19	$k \equiv 202 \pmod{400}$	P_{400}	1	39	$k \equiv 13 \pmod{220}$	78101
20	$k \equiv 502 \pmod{800}$	881954401]	40	$k \equiv 209 \pmod{220}$	208121

Table B.48 Covering for x = 27 in Base 31

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	row	congruence	prime p_i	row	con
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	$k \equiv 99 \pmod{220}$	806753201	61	$k \equiv 625$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42	$k \equiv 187 \pmod{220}$	355802443222817085661	62	$k \equiv 9$ (
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	$k \equiv 77 \pmod{220}$	C _{220,1}	63	$k \equiv 106$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	44	$k \equiv 165 \pmod{220}$	C _{220,2}	64	$k \equiv 84$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	$k \equiv 275 \pmod{440}$	C _{440,1}	65	$k \equiv 183$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	$k \equiv 55 \pmod{440}$	$C_{440,2}$	66	$k \equiv 161$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47	$k \equiv 33 \pmod{55}$	167767051	67	$k \equiv 139$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	$k \equiv 11 \pmod{55}$	p_{48}	68	$k \equiv 117$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	$k \equiv 141 \pmod{154}$	818819	69	$k \equiv 95$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	$k \equiv 119 \pmod{154}$	P_{154}	70	$k \equiv 73$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	$k \equiv 20 \pmod{77}$	23503054499	71	$k \equiv 293$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	$k \equiv 75 \pmod{77}$	16169321243923	72	$k \equiv 172$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	$k \equiv 53 \pmod{77}$	p_{53}	73	$k \equiv 51$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	54	$k \equiv 493 \pmod{616}$	3697	74	$k \equiv 271$
56 $k \equiv 185 \pmod{616}$ 1442057 76 $k \equiv 24$ 57 $k \equiv 31 \pmod{616}$ 28459299793 77 $k \equiv 7$ 58 $k \equiv 471 \pmod{616}$ 16461619704377 78 $k \equiv 7$ 59 $k \equiv 163 \pmod{616}$ $c_{616,1}$ 79 $k \equiv 60$ 60 $k \equiv 163 \pmod{616}$ $c_{616,2}$ 80 $k \equiv 60$	55	$k \equiv 339 \pmod{616}$	101641	75	$k \equiv 29$
57 $k \equiv 31 \pmod{616}$ 28459299793 77 $k \equiv 7$ 58 $k \equiv 471 \pmod{616}$ 16461619704377 78 $k \equiv 7$ 59 $k \equiv 317 \pmod{616}$ $c_{616,1}$ 79 $k \equiv 60$ 60 $k \equiv 163 \pmod{616}$ $c_{616,2}$ 80 $k \equiv 60$	56	$k \equiv 185 \pmod{616}$	1442057	76	$k \equiv 249$
58 $k \equiv 471 \pmod{616}$ 16461619704377 78 $k \equiv$ 59 $k \equiv 317 \pmod{616}$ $c_{616,1}$ 79 $k \equiv$ 60 $k \equiv 163 \pmod{616}$ $c_{616,2}$ 80 $k \equiv$	57	$k \equiv 31 \pmod{616}$	28459299793	77	$k \equiv 7$
59 $k \equiv 317 \pmod{616}$ $c_{616,1}$ 79 $k \equiv$ 60 $k \equiv 163 \pmod{616}$ $c_{616,1}$ 80 $k \equiv$	58	$k \equiv 471 \pmod{616}$	16461619704377	78	$k \equiv 5$
$60 k = 163 \pmod{616}$	59	$k \equiv \overline{317} \pmod{616}$	C _{616,1}	79	$k \equiv 3$
$00 n = 100 \pmod{010}$ $C_{010,2}$ $00 n =$	60	$k \equiv 163 \pmod{616}$	C _{616,2}	80	$k \equiv 1$

Table B.48 cont.	Covering for $x =$	27 in Base 31
------------------	--------------------	-----------------

ļ	row	congruence	prime p_i
	61	$k \equiv 625 \pmod{1232}$	15089537
	62	$k \equiv 9 \pmod{1232}$	689761073
	63	$k \equiv 106 \pmod{121}$	<i>c</i> _{121,1}
	64	$k \equiv 84 \pmod{121}$	$c_{121,2}$
	65	$k \equiv 183 \pmod{242}$	1435061
	66	$k \equiv 161 \pmod{242}$	105156503
	67	$k \equiv 139 \pmod{242}$	639322672850027
	68	$k \equiv 117 \pmod{242}$	852408217
	69	$k \equiv 95 \pmod{242}$	$c_{242,1}$
	70	$k \equiv 73 \pmod{242}$	$C_{242,2}$
	71	$k \equiv 293 \pmod{363}$	2546083
	72	$k \equiv 172 \pmod{363}$	1217678565551454550039
	73	$k \equiv 51 \pmod{363}$	96434389858446847859653
	74	$k \equiv 271 \pmod{484}$	2186713
	75	$k \equiv 29 \pmod{484}$	8547867857
	76	$k \equiv 249 \pmod{484}$	6045052521839057
	77	$k \equiv 7 \pmod{484}$	608118746691712443682529
	78	$k \equiv 5 \pmod{11}$	397
	$\overline{79}$	$k \equiv 3 \pmod{11}$	617
	80	$k \equiv 1 \pmod{11}$	150332843

We use the covering found in Table B.50 for d = 1. The least common multiple of the moduli for the covering is 4233600, and a direct analysis can be used for verification. The first six rows in Table B.50 correspond to primes that appear in the coverings for $x \in \{1, 3, 9\}$. These congruences correspond to

$$M \equiv 12 \pmod{13},$$
 $M \equiv 46 \pmod{61},$ $M \equiv 31 \pmod{37},$ $M \equiv 2 \pmod{17},$ $M \equiv 2 \pmod{19},$ $M \equiv 25 \pmod{97},$

which agree with the congruence conditions on M arising from the congruences in Tables B.41, B.42, and B.43. Table B.49 contains notable factorizations of $\Phi_n(31)$ for large n used in the covering for d = 1. For convenience, denote

 $p_7 = 26025995205783527409515597671014410919889,$

 $p_{18} = 9667783133425605119410155998541192601,$

 $p_{25} = 1637872091108040680148042294721,$

 $p_{35} = 2121734092665157406108976641321341571103440372921057,$

 $p_{71} = 18596395822328738537384956455041.$

Table B.49 Partial/Full factorizations of $\Phi_n(31)$ for d = 1

n	Factorization of $\Phi_n(31)$
192	$3457 \cdot 25537 \cdot 4067137 \cdot 8874745729 \cdot C_{192}$
360	C_{360}
864	C_{864}

Table B.50 Covering for d = 1 in Base 31

row	congruence	prime p_i
a	$k \equiv 0 \pmod{4}$	13
b	$k \equiv 1 \pmod{4}$	37
с	$k \equiv 2 \pmod{6}$	19

	row	congruence	prime p_i		
ſ	d	$k \equiv 34 \pmod{60}$	61		
	е	$k \equiv 11 \pmod{16}$	17		
	f	$k \equiv 39 \pmod{48}$	97		
	1	$k \equiv 66 \pmod{72}$	73		
Table D.50 cont. Covering for $a = 1$ in Dase 5	Table B.50 cont.	Covering	g for $d =$	= 1 in Base 3	31
---	------------------	----------	-------------	---------------	----
---	------------------	----------	-------------	---------------	----

row	congruence	prime p_i
2	$k \equiv 54 \pmod{72}$	4683817
3	$k \equiv 42 \pmod{72}$	1814503763676130449408979921
4	$k \equiv 102 \pmod{144}$	1704673
5	$k \equiv 30 \pmod{144}$	476428033
6	$k \equiv 90 \pmod{144}$	18210235769136721
7	$k \equiv 18 \pmod{144}$	p_7
8	$k \equiv 366 \pmod{432}$	433
9	$k \equiv 222 \pmod{432}$	12097
10	$k \equiv 78 \pmod{432}$	262798661953
11	$k \equiv 294 \pmod{432}$	$C_{432,1}$
12	$k \equiv 150 \pmod{432}$	$c_{432,2}$
13	$k \equiv 438 \pmod{864}$	C _{864,1}
14	$k \equiv 6 \pmod{864}$	$c_{864,2}$
15	$k \equiv 178 \pmod{180}$	8728381
16	$k \equiv 118 \pmod{180}$	14398921
17	$k \equiv 58 \pmod{180}$	P_{180}
18	$k \equiv 106 \pmod{120}$	p_{18}
19	$k \equiv 286 \pmod{360}$	1259350392569520313706401
20	$k \equiv 202 \pmod{240}$	241
21	$k \equiv 142 \pmod{240}$	32360641
22	$k \equiv 82 \pmod{240}$	362634922081
23	$k \equiv 22 \pmod{240}$	69916284426778163281
24	$k \equiv 190 \pmod{240}$	864542404017920606719201
25	$k \equiv 130 \pmod{240}$	p_{25}
26	$k \equiv 310 \pmod{480}$	20641

row	congruence	prime p_i
27	$k \equiv 70 \pmod{480}$	330991018976905188481
28	$k \equiv 250 \pmod{480}$	11282208020367154665601
29	$k \equiv 10 \pmod{480}$	P_{480}
30	$k \equiv 166 \pmod{360}$	C _{360,1}
31	$k \equiv 46 \pmod{360}$	$C_{360,2}$
32	$k \equiv 99 \pmod{112}$	2129
33	$k \equiv 83 \pmod{112}$	27329
34	$k \equiv 67 \pmod{112}$	3117962927633
35	$k \equiv 51 \pmod{112}$	p_{35}
36	$k \equiv 147 \pmod{224}$	523694468332725375841
37	$k \equiv 35 \pmod{224}$	P_{224}
38	$k \equiv 691 \pmod{784}$	18555784913
39	$k \equiv 579 \pmod{784}$	362194685329
40	$k \equiv 467 \pmod{784}$	861423109554113
41	$k \equiv 355 \pmod{784}$	$C_{784,1}$
42	$k \equiv 243 \pmod{784}$	$c_{784,2}$
43	$k \equiv 915 \pmod{1568}$	2312801
44	$k \equiv 131 \pmod{1568}$	$c_{1568,1}$
45	$k \equiv 803 \pmod{1568}$	$c_{1568,2}$
46	$k \equiv 1587 \pmod{3136}$	3137
47	$k \equiv 19 \pmod{3136}$	$c_{3136,1}$
48	$k \equiv 899 \pmod{1008}$	1009
49	$k \equiv \overline{563} \pmod{1008}$	c _{1008,1}
50	$k \equiv 227 \pmod{1008}$	C _{1008,2}
51	$k \equiv 1795 \pmod{2016}$	1135009

row	congruence	prime p_i	row	congruence	prime p_i
52	$k \equiv 787 \pmod{2016}$	86689	77	$k \equiv 679 \pmod{720}$	55441
53	$k \equiv 1459 \pmod{2016}$	21615553	78	$k \equiv 439 \pmod{720}$	121731121
54	$k \equiv 451 \pmod{2016}$	C _{2016,1}	79	$k \equiv 199 \pmod{720}$	1034802677322639156706561
55	$k \equiv 2131 \pmod{3024}$	794882457090289	80	$k \equiv 631 \pmod{720}$	C _{720,1}
56	$k \equiv 1123 \pmod{3024}$	c _{3024,1}	81	$k \equiv 391 \pmod{720}$	C _{720,2}
57	$k \equiv 115 \pmod{3024}$	$c_{3024,2}$	82	$k \equiv 871 \pmod{1440}$	120879361
58	$k \equiv 1347 \pmod{1680}$	104161	83	$k \equiv 151 \pmod{1440}$	706194721
59	$k \equiv 1011 \pmod{1680}$	356346481	84	$k \equiv 1303 \pmod{1440}$	218070064800374401
60	$k \equiv 675 \pmod{1680}$	1389156854401	85	$k \equiv 583 \pmod{1440}$	c _{1440,1}
61	$k \equiv 2019 \pmod{3360}$	3361	86	$k \equiv 1063 \pmod{1440}$	C _{1440,2}
62	$k \equiv 339 \pmod{3360}$	13441	87	$k \equiv 1783 \pmod{2880}$	152989623361
63	$k \equiv 1683 \pmod{3360}$	C _{3360,1}	88	$k \equiv 343 \pmod{2880}$	C _{2880,1}
64	$k \equiv 3 \pmod{3360}$	C _{3360,2}	89	$k \equiv 1543 \pmod{2160}$	2161
65	$k \equiv 127 \pmod{128}$	257	90	$k \equiv 823 \pmod{2160}$	425521
66	$k \equiv 111 \pmod{128}$	641	91	$k \equiv 103 \pmod{2160}$	5398792227695761201
67	$k \equiv 95 \pmod{128}$	2689	92	$k \equiv 775 \pmod{960}$	2510401
68	$k \equiv 79 \pmod{128}$	9601	93	$k \equiv 535 \pmod{960}$	13996242437782818818465281
69	$k \equiv 63 \pmod{128}$	13768516609	94	$k \equiv 295 \pmod{960}$	C960,1
70	$k \equiv 47 \pmod{128}$	17777097601059636481	95	$k \equiv 55 \pmod{960}$	C960,2
71	$k \equiv 31 \pmod{128}$	7231746495781123585793	96	$k \equiv 967 \pmod{1200}$	1201
72	$k \equiv 15 \pmod{128}$	p_{72}	97	$k \equiv 727 \pmod{1200}$	573602076001
73	$k \equiv 167 \pmod{192}$	3457	98	$k \equiv 487 \pmod{1200}$	$c_{1200,1}$
74	$k \equiv 119 \pmod{192}$	25537	99	$k \equiv 247 \pmod{1200}$	C _{1200,2}
75	$k \equiv 71 \pmod{192}$	C _{192,1}	100	$k \equiv 1207 \pmod{2400}$	8937715783648801
76	$k \equiv 23 \pmod{192}$	C192,2	101	$k \equiv 7 \pmod{2400}$	C2400,1

Table B.50 cont. Covering for d = 1 in Base 31

We use the covering found in Table B.52 for d = 3. The least common multiple of the moduli for the covering is 244823040. To verify that the 157 congruences are indeed a covering, we use a similar method to the method used for verifying the covering found in Table A.10 when inserting the digit d = 9 into the leading sevens in base 10. That is, we consider the congruence classes modulo three. Observe that $k \equiv 0 \pmod{3}$ is the first congruence listed in Table B.52, so every integer that is divisible by three satisfies a congruence in Table B.52. One can check that every integer satisfying $x \equiv 1 \pmod{3}$ satisfies one of the congruences in rows b-23 of Table B.52. These congruences have moduli dividing 9216. Observe that 9216 is divisible by 3 and since every integer congruent to 1 modulo 3 in [0, 9216) satisfies one of these 25 congruences, we can deduce every integer congruent to 1 modulo 3 not in [0, 9216) also does. Similarly, one can check that every integer satisfying $x \equiv 2$ (mod 3) satisfies one of the 131 congruences in rows 24-154 of Table B.52 with moduli dividing 3825360. Thus, the 157 congruences in Table B.52 form a covering.

One checks that the primes 331, 19, and 13 correspond to the congruence conditions $M \equiv -3 \pmod{331}$, $M \equiv 2 \pmod{19}$, and $M \equiv 12 \pmod{13}$, which agree with the previous congruences involving these primes. Table B.51 contains notable factorizations of $\Phi_n(31)$ for large n used in the covering for d = 3. Denote

 $p_{34}=605108647823401001709236169890011342691833949935122187,$

 $p_{148} = 93982443075414692613761, \quad p_{154} = 611241183169.$

Table B.51	Partial	/Full fa	actorizations	of Φ_n	(31)) for d	=3
------------	---------	----------	---------------	-------------	------	-----------	----

n	Factorization of $\Phi_n(31)$
253	$23 \cdot 36364703 \cdot 82982989 \cdot 1975800971 \cdot C_{253}$
690	C_{690}
1536	C_{1536}

row	congruence	prime p_i	row	congruence	prime p_i
a	$k \equiv 0 \pmod{3}$	331	23	$k \equiv 1537 \pmod{3072}$	$c_{3072,1}$
b	$k \equiv 4 \pmod{6}$	19	24	$k \equiv 1 \pmod{3072}$	C _{3072,2}
с	$k \equiv 3 \pmod{4}$	13	25	$k \equiv 22 \pmod{23}$	1509997
1	$k \equiv 85 \pmod{96}$	193	26	$k \equiv 19 \pmod{23}$	61562537
2	$k \equiv 73 \pmod{96}$	7393	27	$k \equiv 16 \pmod{23}$	7176374761323733117
3	$k \equiv 61 \pmod{96}$	27333034608226177	28	$k \equiv 59 \pmod{69}$	139
4	$k \equiv 49 \pmod{96}$	13567765732542221348764897	29	$k \equiv 56 \pmod{69}$	1164859
5	$k \equiv 133 \pmod{192}$	4067137	30	$k \equiv 53 \pmod{69}$	2553526979752336381
6	$k \equiv 37 \pmod{192}$	8874745729	31	$k \equiv 50 \pmod{69}$	P_{69}
7	$k \equiv 313 \pmod{384}$	769	32	$k \equiv 116 \pmod{138}$	6073
8	$k \equiv 217 \pmod{384}$	1366657	33	$k \equiv 47 \pmod{138}$	117071611
9	$k \equiv 121 \pmod{384}$	321034406401	34	$k \equiv 113 \pmod{138}$	p_{34}
10	$k \equiv 25 \pmod{384}$	C _{384,1}	35	$k \equiv 458 \pmod{552}$	118681
11	$k \equiv 289 \pmod{384}$	C _{384,2}	36	$k \equiv 320 \pmod{552}$	225769
12	$k \equiv 205 \pmod{288}$	1829797906352833	37	$k \equiv 182 \pmod{552}$	C552,1
13	$k \equiv 109 \pmod{288}$	C _{288,1}	38	$k \equiv 44 \pmod{552}$	$c_{552,2}$
14	$k \equiv 13 \pmod{288}$	$c_{288,2}$	39	$k \equiv 179 \pmod{207}$	15733
15	$k \equiv 577 \pmod{768}$	64513	40	$k \equiv 110 \pmod{207}$	16798026051215317
16	$k \equiv 193 \pmod{768}$	91276251112682001409	41	$k \equiv 41 \pmod{207}$	$c_{207,1}$
17	$k \equiv 481 \pmod{768}$	C768,1	42	$k \equiv 176 \pmod{207}$	$c_{207,2}$
18	$k \equiv 97 \pmod{768}$	C _{768,2}	43	$k \equiv 521 \pmod{621}$	78688153
19	$k \equiv 1153 \pmod{1536}$	$c_{1536,1}$	44	$k \equiv 314 \pmod{621}$	86221120498695683587
20	$k \equiv 769 \pmod{1536}$	$c_{1536,2}$	45	$k \equiv 107 \pmod{621}$	C _{621,1}
21	$k \equiv 1921 \pmod{3072}$	18433	46	$k \equiv 452 \pmod{621}$	C _{621,2}
22	$k \equiv 385 \pmod{3072}$	750412801	47	$k \equiv 866 \pmod{1242}$	3727

Table B.52 Covering for d = 3 in Base 31

row	congruence	prime p_i
48	$k \equiv 245 \pmod{1242}$	223927728227677
49	$k \equiv 659 \pmod{1242}$	$c_{1242,1}$
50	$k \equiv 38 \pmod{1242}$	$c_{1242,2}$
51	$k \equiv 311 \pmod{345}$	6211
52	$k \equiv 242 \pmod{345}$	9661
53	$k \equiv 173 \pmod{345}$	342241
54	$k \equiv 104 \pmod{345}$	1447263271
55	$k \equiv 35 \pmod{345}$	452067372560611411171
56	$k \equiv 308 \pmod{345}$	P_{345}
57	$k \equiv 9 \pmod{115}$	176542021
58	$k \equiv 55 \pmod{115}$	524818601
59	$k \equiv 101 \pmod{115}$	P_{115}
60	$k \equiv 722 \pmod{1035}$	440911
61	$k \equiv 377 \pmod{1035}$	25932961
62	$k \equiv 32 \pmod{1035}$	$c_{1035,1}$
63	$k \equiv 75 \pmod{92}$	829
64	$k \equiv 52 \pmod{92}$	1955865713101
65	$k \equiv 29 \pmod{92}$	23856848059764277
66	$k \equiv 6 \pmod{92}$	P_{92}
67	$k \equiv 233 \pmod{276}$	277
68	$k \equiv 164 \pmod{276}$	7177
69	$k \equiv 95 \pmod{276}$	21060989233
70	$k \equiv 26 \pmod{276}$	P ₂₇₆
71	$k \equiv 138 \pmod{161}$	3221
72	$k \equiv \overline{115 \pmod{161}}$	118492459

row	congruence	prime p_i
73	$k \equiv 92 \pmod{161}$	C _{161,1}
74	$k \equiv 69 \pmod{161}$	C _{161,2}
75	$k \equiv 207 \pmod{322}$	5153
76	$k \equiv 46 \pmod{322}$	25439
77	$k \equiv 184 \pmod{322}$	2958859
78	$k \equiv 23 \pmod{322}$	9473287662796931849
79	$k \equiv 161 \pmod{322}$	12553064438530403425347011
80	$k \equiv 0 \pmod{322}$	$c_{322,1}$
81	$k \equiv 434 \pmod{483}$	967
82	$k \equiv 365 \pmod{483}$	4971037
83	$k \equiv 296 \pmod{483}$	8738437
84	$k \equiv 227 \pmod{483}$	4310628169
85	$k \equiv 158 \pmod{483}$	35650574938306948573438213
86	$k \equiv 89 \pmod{483}$	$c_{483,1}$
87	$k \equiv 503 \pmod{966}$	32805361
88	$k \equiv 20 \pmod{966}$	$c_{966,1}$
89	$k \equiv 638 \pmod{690}$	$C_{690,1}$
90	$k \equiv 569 \pmod{690}$	$C_{690,2}$
91	$k \equiv 40 \pmod{230}$	691
92	$k \equiv 201 \pmod{230}$	96601
93	$k \equiv 132 \pmod{230}$	114311
94	$k \equiv 63 \pmod{230}$	195271
95	$k \equiv 224 \pmod{230}$	109284961
96	$k \equiv 155 \pmod{230}$	24049043219391687361
97	$k \equiv 86 \pmod{230}$	P_{230}

Table B.52 cont. Covering for d = 3 in Base 31

	row	congruence	prime p_i	row	congruence	prime p_i
	98	$k \equiv 247 \pmod{460}$	461	123	$k \equiv 8 \pmod{2277}$	19253961343
	99	$k \equiv 17 \pmod{460}$	1381	124	$k \equiv 764 \pmod{828}$	1657
Ì	100	$k \equiv 37 \pmod{46}$	47	125	$k \equiv 626 \pmod{828}$	835453
	101	$k \equiv 14 \pmod{46}$	45414448613	126	$k \equiv 488 \pmod{828}$	163178101
	102	$k \equiv 34 \pmod{46}$	293006379555093281221	127	$k \equiv 350 \pmod{828}$	101649383628292477
	103	$k \equiv 333 \pmod{368}$	59617	128	$k \equiv 212 \pmod{828}$	$c_{828,1}$
	104	$k \equiv 287 \pmod{368}$	31301824241	129	$k \equiv 74 \pmod{828}$	$c_{828,2}$
	105	$k \equiv 241 \pmod{368}$	1487662250017	130	$k \equiv 281 \pmod{414}$	1234978860270061
	106	$k \equiv 195 \pmod{368}$	2408066513	131	$k \equiv 143 \pmod{414}$	$c_{414,1}$
	107	$k \equiv 149 \pmod{368}$	1836839958020962733249	132	$k \equiv 5 \pmod{414}$	$c_{414,2}$
	108	$k \equiv 103 \pmod{368}$	1515842933140177198097	133	$k \equiv 1037 \pmod{1104}$	10882129
ĺ	109	$k \equiv 57 \pmod{368}$	C368,1	134	$k \equiv 761 \pmod{1104}$	30643732417
Ì	110	$k \equiv 11 \pmod{368}$	C368,2	135	$k \equiv 485 \pmod{1104}$	$c_{1104,1}$
	111	$k \equiv 192 \pmod{253}$	36364703	136	$k \equiv 209 \pmod{1104}$	$c_{1104,2}$
	112	$k \equiv 123 \pmod{253}$	82982989	137	$k \equiv 1175 \pmod{1380}$	14403061
	113	$k \equiv 54 \pmod{253}$	1975800971	138	$k \equiv 899 \pmod{1380}$	27224010721
	114	$k \equiv 238 \pmod{253}$	$C_{253,1}$	139	$k \equiv 623 \pmod{1380}$	3063980621941
	115	$k \equiv 169 \pmod{253}$	$C_{253,2}$	140	$k \equiv 347 \pmod{1380}$	20426703986910901
	116	$k \equiv 353 \pmod{759}$	28843	141	$k \equiv 71 \pmod{1380}$	$c_{1380,1}$
	117	$k \equiv 284 \pmod{759}$	121673117409559	142	$k \equiv 1382 \pmod{1518}$	3069397
	118	$k \equiv 215 \pmod{759}$	125868759920773	143	$k \equiv 1244 \pmod{1518}$	42826631868636661
	119	$k \equiv 146 \pmod{759}$	$C_{759,1}$	144	$k \equiv 1106 \pmod{1518}$	1633831932326535943
	120	$k \equiv 77 \pmod{759}$	C _{759,2}	145	$k \equiv \overline{968 \pmod{1518}}$	$c_{1518,1}$
	121	$k \equiv \overline{1526 \pmod{2277}}$	45541	146	$k \equiv \overline{830 \pmod{1518}}$	$c_{1518,2}$
	122	$k \equiv 767 \pmod{2277}$	204931	147	$k \equiv 186 \pmod{506}$	20236060635541385933

Table B.52 cont. Covering for d = 3 in Base 31

row	congruence	prime p_i
148	$k \equiv 48 \pmod{506}$	p_{148}
149	$k \equiv 416 \pmod{506}$	$c_{506,1}$
150	$k \equiv 278 \pmod{506}$	$c_{506,2}$

Table B.52 cont. Covering for d = 3 in Base 31

row	congruence	prime p_i
151	$k \equiv 1658 \pmod{3036}$	3037
152	$k \equiv 140 \pmod{3036}$	9109
153	$k \equiv 1520 \pmod{3036}$	2398441
154	$k \equiv 2 \pmod{3036}$	p_{154}

For d = 9, we use the covering found in Table B.55. The least common multiple of the moduli for the covering is 188496000. To verify that the 186 congruences are indeed a covering, we consider the congruence classes modulo five. Observe that $k \equiv 0 \pmod{5}$ and $k \equiv 2 \pmod{5}$ are the first two congruences listed in Table B.55, so every integer satisfying $x \equiv 0 \pmod{5}$ or $x \equiv 2 \pmod{5}$ satisfies a congruence in Table B.55. One can check that every integer satisfying $x \equiv 1 \pmod{5}$ satisfies one of the 33 congruences in rows d and 31-62 of Table B.55 with moduli dividing 63000; every integer satisfying $x \equiv 3 \pmod{5}$ satisfies one of the 31 congruences in rows c and 1-30 of Table B.55 with moduli dividing 67200; and every integer satisfying $x \equiv 4 \pmod{5}$ satisfies one of the 120 congruences in rows 63-182 of Table B.55 form a covering.

One checks that the primes 11, 17351, 41, and 101 correspond to the congruence conditions $M \equiv 7 \pmod{11}$, $M \equiv -9 \pmod{17351}$, $M \equiv 2 \pmod{41}$, and $M \equiv$ 84 (mod 101), which agree with the previous congruences involving these primes. Table B.53 contains notable factorizations of $\Phi_n(31)$ for large n used in the covering for d = 9. Denote

 $p_{33} = 2994938361626916310097900969699892125851,$ $p_{34} = 605108647823401001709236169890011342691833949935122187,$ $p_{41} = 100114014709900409694207758978066381032100274063451,$ $p_{67} = 292415865518548212725264181682005402545390163298379652017348311.$

n	Factorization of $\Phi_n(31)$]	n	Factorization of $\Phi_n(31)$
125	$5 \cdot 251 \cdot 129001 \cdot 12181751 \cdot C_{125}$		600	C_{600}
272	$17 \cdot 3266233389553$	1	700	$33601 \cdot C_{700}$
	$\cdot 19220209997787857 \cdot C_{272}$		3060	C_{3060}
425	C_{425}		3740	C_{3740}

Table B.53 Partial/Full factorizations of $\Phi_n(31)$ for d = 9

For d = 13, we use the covering found in Table B.56. The least common multiple of the moduli for the covering is 10167474240. To verify that the 196 congruences are indeed a covering, we consider the congruence classes modulo four. Observe that $k \equiv 2 \pmod{4}$ and $k \equiv 3 \pmod{4}$ are the first two congruences listed in Table B.56. One can check that every integer satisfying $x \equiv 0 \pmod{4}$ satisfies one of the 33 congruences in rows 80-193 of Table B.56 with moduli dividing 19293120; and every integer satisfying $x \equiv 1 \pmod{4}$ satisfies one of the 31 congruences in rows c-79 of Table B.56 with moduli dividing 1062432. Thus, the 196 congruences in Table B.56 form a covering.

One checks that the primes 13, 37, and 19 correspond to the congruence conditions $M \equiv 12 \pmod{13}$, $M \equiv 31 \pmod{37}$, and $M \equiv 2 \pmod{19}$, which agree with the previous congruences involving these primes. Table B.54 contains notable factorizations of $\Phi_n(31)$ for large n used in the covering for d = 13. Denote

 $p_{18} = 261116663697161542351918133573442849307,$

 $p_{26} = 568972471024107865287021434301977158534824481,$

 $p_{173} = 314649720553734227827122232080103478692310043172063.$

Table B.54 Partial/Full factorizations of $\Phi_n(31)$ for d = 13

n	Factorization of $\Phi_n(31)$		Examination of Φ (21)
203	$53780507732292545931217 \cdot C_{203}$	$\frac{n}{1202}$	C
812	$29 \cdot C_{812}$	1692	C_{1392}
1160	C_{1160}	1052	\cup_{1632}

row	congruence	prime p_i] [row	congruence	prime p_i
a	$k \equiv 2 \pmod{5}$	11] [21	$k \equiv 1123 \pmod{1400}$	1499068201
b	$k \equiv 0 \pmod{5}$	17351		22	$k \equiv 423 \pmod{1400}$	546521676404201
с	$k \equiv 8 \pmod{10}$	41		23	$k \equiv 983 \pmod{1400}$	$c_{1400,1}$
d	$k \equiv 11 \pmod{25}$	101		24	$k \equiv 283 \pmod{1400}$	$c_{1400,2}$
1	$k \equiv 153 \pmod{160}$	380641		25	$k \equiv 1543 \pmod{2100}$	4201
2	$k \equiv 133 \pmod{160}$	1176641		26	$k \equiv 843 \pmod{2100}$	287701
3	$k \equiv 113 \pmod{160}$	8084410241		27	$k \equiv 143 \pmod{2100}$	1569015001
4	$k \equiv 93 \pmod{160}$	$c_{160,1}$		28	$k \equiv 1403 \pmod{2100}$	3321889201
5	$k \equiv 73 \pmod{160}$	$c_{160,2}$		29	$k \equiv 703 \pmod{2100}$	67545126601
6	$k \equiv 213 \pmod{320}$	259201		30	$k \equiv 3 \pmod{2100}$	91052684101
7	$k \equiv 53 \pmod{320}$	59826881		31	$k \equiv 71 \pmod{75}$	151
8	$k \equiv 193 \pmod{320}$	177285860161		32	$k \equiv 46 \pmod{75}$	997936488044528101
9	$k \equiv 33 \pmod{320}$	P_{320}		33	$k \equiv 21 \pmod{75}$	p_{33}
10	$k \equiv 493 \pmod{640}$	4481		34	$k \equiv 116 \pmod{125}$	251
11	$k \equiv 333 \pmod{640}$	75465910527404161		35	$k \equiv 91 \pmod{125}$	129001
12	$k \equiv 173 \pmod{640}$	C _{640,1}		36	$k \equiv 66 \pmod{125}$	12181751
13	$k \equiv 13 \pmod{640}$	$c_{640,2}$		37	$k \equiv 41 \pmod{125}$	$c_{125,1}$
14	$k \equiv 123 \pmod{140}$	281		38	$k \equiv 16 \pmod{125}$	$c_{125,2}$
15	$k \equiv 103 \pmod{140}$	106261		39	$k \equiv 131 \pmod{150}$	21001
16	$k \equiv 83 \pmod{140}$	107941		40	$k \equiv 106 \pmod{150}$	214651
17	$k \equiv 63 \pmod{140}$	77890519715454496560396129461		41	$k \equiv 81 \pmod{150}$	p_{41}
18	$k \equiv 43 \pmod{140}$	1534835130260968837905730005181		42	$k \equiv 206 \pmod{300}$	29777432504101
19	$k \equiv 23 \pmod{70}$	60427990638165876546967231		43	$k \equiv 56 \pmod{300}$	C _{300,1}
20	$k \equiv \overline{563} \pmod{700}$	33601		44	$k \equiv 181 \pmod{300}$	C _{300,2}

Table B.55 Covering for d = 9 in Base 31

row	congruence	prime p_i	row	congruence	prime p_i
45	$k \equiv 331 \pmod{600}$	C _{600,1}	68	$k \equiv 144 \pmod{170}$	232122807601
46	$k \equiv 31 \pmod{600}$	C _{600,2}	69	$k \equiv 59 \pmod{170}$	P ₁₇₀
47	$k \equiv 306 \pmod{450}$	43201	70	$k \equiv 224 \pmod{255}$	934831
48	$k \equiv 156 \pmod{450}$	$C_{450,1}$	71	$k \equiv 139 \pmod{255}$	C _{255,1}
49	$k \equiv 6 \pmod{450}$	C _{450,2}	72	$k \equiv 54 \pmod{255}$	C _{255,2}
50	$k \equiv 151 \pmod{175}$	161408801	73	$k \equiv 304 \pmod{340}$	1361
51	$k \equiv 126 \pmod{175}$	$c_{175,1}$	74	$k \equiv 219 \pmod{340}$	3061
52	$k \equiv 101 \pmod{175}$	C _{175,2}	75	$k \equiv 134 \pmod{340}$	30941
53	$k \equiv 251 \pmod{350}$	701	76	$k \equiv 49 \pmod{340}$	2964461
54	$k \equiv 76 \pmod{350}$	224351	77	$k \equiv 299 \pmod{340}$	5153381
55	$k \equiv 226 \pmod{350}$	757751	78	$k \equiv 214 \pmod{340}$	C340,1
56	$k \equiv 51 \pmod{350}$	2418095051	79	$k \equiv 129 \pmod{340}$	C340,2
57	$k \equiv 201 \pmod{350}$	P_{350}	80	$k \equiv 384 \pmod{680}$	3576121
58	$k \equiv 376 \pmod{700}$	C700,1	81	$k \equiv 44 \pmod{680}$	C _{680,1}
59	$k \equiv 26 \pmod{700}$	C _{700,2}	82	$k \equiv 549 \pmod{595}$	108837401
60	$k \equiv 351 \pmod{525}$	316521451	83	$k \equiv 464 \pmod{595}$	89278561
61	$k \equiv 176 \pmod{525}$	63337748513662351	84	$k \equiv 379 \pmod{595}$	42498121331
62	$k \equiv 1 \pmod{525}$	C525,1	85	$k \equiv 294 \pmod{595}$	3933848803218900604400041
63	$k \equiv 16 \pmod{17}$	751670559138758105956097	86	$k \equiv 209 \pmod{595}$	C595,1
64	$k \equiv 79 \pmod{85}$	108971	87	$k \equiv 124 \pmod{595}$	C595,2
65	$k \equiv 74 \pmod{85}$	391206807721	88	$k \equiv \overline{634} \pmod{1190}$	2381
66	$k \equiv 69 \pmod{85}$	21736504684553261	89	$k \equiv 39 \pmod{1190}$	6294558137071
67	$k \equiv 64 \pmod{85}$	p_{67}	90	$k \equiv 374 \pmod{425}$	C _{425,1}

Table B.55 cont. Covering for d = 9 in Base 31

row	congruence	prime p_i	row	
91	$k \equiv 289 \pmod{425}$	$c_{425,2}$	114	k
92	$k \equiv 629 \pmod{850}$	40801	115	k
93	$k \equiv 204 \pmod{850}$	82388290001	116	k
94	$k \equiv 544 \pmod{850}$	C _{850,1}	117	k :
95	$k \equiv 969 \pmod{1700}$	630701	118	k
96	$k \equiv 119 \pmod{1700}$	865301	119	k :
97	$k \equiv 884 \pmod{1275}$	845686732801	120	k
98	$k \equiv 459 \pmod{1275}$	45815896553375206051	121	k :
99	$k \equiv 34 \pmod{1275}$	$c_{1275,1}$	122	k :
100	$k \equiv 709 \pmod{765}$	1531	123	k :
101	$k \equiv 624 \pmod{765}$	6121	124	k
102	$k \equiv 539 \pmod{765}$	1074061	125	k :
103	$k \equiv 454 \pmod{765}$	8197741	126	<i>k</i> =
104	$k \equiv 369 \pmod{765}$	61624160936101	127	k :
105	$k \equiv 284 \pmod{765}$	1761543429003124265251	128	$k \equiv$
106	$k \equiv 199 \pmod{765}$	C765,1	129	$k \equiv$
107	$k \equiv 879 \pmod{1530}$	1656910504456939277461	130	$k \equiv$
108	$k \equiv 114 \pmod{1530}$	$c_{1530,1}$	131	$k \equiv$
109	$k \equiv 794 \pmod{1530}$	$c_{1530,2}$	132	$k \equiv$
110	$k \equiv 1559 \pmod{3060}$	$c_{3060,1}$	133	<i>k</i> =
111	$k \equiv 29 \pmod{3060}$	C _{3060,2}	134	k :
112	$k \equiv 126 \pmod{136}$	137	135	k
113	$k \equiv 109 \pmod{136}$	953	136	k

Table B.55 cont. Covering for d = 9 in Base 31

row	congruence	prime p_i
114	$k \equiv 92 \pmod{136}$	11833
115	$k \equiv 75 \pmod{136}$	63574561
116	$k \equiv 58 \pmod{136}$	P_{136}
117	$k \equiv 177 \pmod{272}$	3266233389553
118	$k \equiv 41 \pmod{272}$	19220209997787857
119	$k \equiv 160 \pmod{272}$	$c_{272,1}$
120	$k \equiv 24 \pmod{272}$	$c_{272,2}$
121	$k \equiv 415 \pmod{544}$	49824961
122	$k \equiv 279 \pmod{544}$	3688708633601
123	$k \equiv 143 \pmod{544}$	72338290404869473
124	$k \equiv 7 \pmod{544}$	$c_{544,1}$
125	$k \equiv 444 \pmod{510}$	3745479278144701
126	$k \equiv 359 \pmod{510}$	12939956633160901
127	$k \equiv 274 \pmod{510}$	P_{510}
128	$k \equiv 699 \pmod{1020}$	1021
129	$k \equiv 189 \pmod{1020}$	5101
130	$k \equiv 614 \pmod{1020}$	408350881
131	$k \equiv 104 \pmod{1020}$	28830845215221541
132	$k \equiv 529 \pmod{1020}$	$c_{1020,1}$
133	$k \equiv 19 \pmod{1020}$	$c_{1020,2}$
134	$k \equiv 116 \pmod{119}$	239
135	$k \equiv 99 \pmod{119}$	2857
136	$k \equiv 82 \pmod{119}$	78541

row	congruence	prime p_i	
137	$k \equiv 65 \pmod{119}$	P_{119}	
138	$k \equiv 167 \pmod{238}$	11781795397	
139	$k \equiv 48 \pmod{238}$	2744226674742050863	
140	$k \equiv 150 \pmod{238}$	$c_{238,1}$	
141	$k \equiv 31 \pmod{238}$	$c_{238,2}$	
142	$k \equiv 371 \pmod{476}$	5237	
143	$k \equiv 252 \pmod{476}$	$C_{476,1}$	
144	$k \equiv 133 \pmod{476}$	$c_{476,2}$	
145	$k \equiv 490 \pmod{952}$	9521	
146	$k \equiv 14 \pmod{952}$	$c_{952,1}$	
147	$k \equiv 43 \pmod{51}$	1961163283	
148	$k \equiv 281 \pmod{306}$	307	
149	$k \equiv 230 \pmod{306}$	78198146102753533	
150	$k \equiv 179 \pmod{306}$	$C_{306,1}$	
151	$k \equiv 128 \pmod{306}$	$c_{306,2}$	
152	$k \equiv 383 \pmod{612}$	15913	
153	$k \equiv 77 \pmod{612}$	34273	
154	$k \equiv 332 \pmod{612}$	$c_{612,1}$	
155	$k \equiv 26 \pmod{612}$	$C_{612,2}$	
156	$k \equiv 315 \pmod{357}$	637603	
157	$k \equiv \overline{264} \pmod{357}$	2112727	
158	$k \equiv \overline{213 \pmod{357}}$	2346688669627	
159	$k \equiv 162 \pmod{357}$	4299055873813	

Table D.55 cont. Covering for $a = 5$ in Dase 5.
--

row	congruence	prime p_i
160	$k \equiv 111 \pmod{357}$	2563210372003
161	$k \equiv 60 \pmod{357}$	55648343218960782949
162	$k \equiv 9 \pmod{357}$	$c_{357,1}$
163	$k \equiv 106 \pmod{187}$	1871
164	$k \equiv 21 \pmod{187}$	P_{187}
165	$k \equiv 684 \pmod{935}$	447732031781
166	$k \equiv 599 \pmod{935}$	$c_{935,1}$
167	$k \equiv 514 \pmod{935}$	$c_{935,2}$
168	$k \equiv 1364 \pmod{1870}$	796776797560835338501
169	$k \equiv 429 \pmod{1870}$	$c_{1870,1}$
170	$k \equiv 1279 \pmod{1870}$	$c_{1870,2}$
171	$k \equiv 2214 \pmod{3740}$	$c_{3740,1}$
172	$k \equiv 344 \pmod{3740}$	$c_{3740,2}$
173	$k \equiv 2129 \pmod{2805}$	28051
174	$k \equiv 1194 \pmod{2805}$	1716661
175	$k \equiv 259 \pmod{2805}$	$c_{2805,1}$
176	$k \equiv 361 \pmod{374}$	1123
177	$k \equiv 174 \pmod{374}$	8752362848923
178	$k \equiv 276 \pmod{374}$	$C_{374,1}$
179	$k \equiv 89 \pmod{374}$	$c_{374,2}$
180	$k \equiv 378 \pmod{561}$	29173
181	$k \equiv 191 \pmod{561}$	61694865343
182	$k \equiv 4 \pmod{561}$	$C_{561,1}$

row	congruence	prime p_i	row	congruence	prime p_i
a	$k \equiv 2 \pmod{4}$	13	23	$k \equiv 213 \pmod{816}$	C _{816,2}
b	$k \equiv 3 \pmod{4}$	37	24	$k \equiv 825 \pmod{1632}$	$c_{1632,1}$
с	$k \equiv 5 \pmod{6}$	19	25	$k \equiv 9 \pmod{1632}$	$c_{1632,2}$
1	$k \equiv 201 \pmod{204}$	613	26	$k \equiv 20 \pmod{31}$	p_{26}
2	$k \equiv 189 \pmod{204}$	1429	27	$k \equiv 39 \pmod{62}$	373
3	$k \equiv 177 \pmod{204}$	2157381990573913	28	$k \equiv 27 \pmod{62}$	1613
4	$k \equiv 165 \pmod{204}$	352607991704483661973	29	$k \equiv 15 \pmod{62}$	62869
5	$k \equiv 153 \pmod{204}$	P_{204}	30	$k \equiv 3 \pmod{62}$	145577
6	$k \equiv 345 \pmod{408}$	8161	31	$k \equiv 53 \pmod{62}$	35789156484227
7	$k \equiv 141 \pmod{408}$	27031633	32	$k \equiv 41 \pmod{62}$	2706690202468649
8	$k \equiv 333 \pmod{408}$	12842210852731378177	33	$k \equiv 91 \pmod{93}$	15799367012336491417
9	$k \equiv 129 \pmod{408}$	P_{408}	34	$k \equiv 79 \pmod{93}$	$c_{93,1}$
10	$k \equiv 15 \pmod{102}$	2796214962413636917873	35	$k \equiv 67 \pmod{93}$	$c_{93,2}$
11	$k \equiv 3 \pmod{102}$	195333779873358973907838097	36	$k \equiv 117 \pmod{124}$	415153
12	$k \equiv 144 \pmod{153}$	17137	37	$k \equiv 105 \pmod{124}$	P_{124}
13	$k \equiv 93 \pmod{153}$	42834601810502407	38	$k \equiv 31 \pmod{186}$	23251
14	$k \equiv 42 \pmod{153}$	P_{153}	39	$k \equiv 19 \pmod{186}$	53780227
15	$k \equiv 13 \pmod{68}$	1399577	40	$k \equiv 7 \pmod{186}$	23171696419
16	$k \equiv 1 \pmod{68}$	224499664484159761	41	$k \equiv 181 \pmod{186}$	7513329295414649737
17	$k \equiv 57 \pmod{68}$	1682325489672499143634073	42	$k \equiv 169 \pmod{186}$	7255587057776337278077
18	$k \equiv 45 \pmod{51}$	p_{18}	43	$k \equiv 157 \pmod{186}$	198129096248543967569450023
19	$k \equiv 33 \pmod{34}$	103	44	$k \equiv 145 \pmod{372}$	44641
20	$k \equiv 21 \pmod{34}$	6841661642646463343047	45	$k \equiv 133 \pmod{372}$	238369488913
21	$k \equiv 621 \pmod{816}$	1410099665109361	46	$k \equiv 121 \pmod{372}$	C _{372,1}
22	$k \equiv 417 \pmod{816}$	C _{816,1}	47	$k \equiv 109 \pmod{372}$	C _{372,2}

Table B.56 Covering for d = 13 in Base 31

row	congruence	prime p_i
48	$k \equiv 469 \pmod{744}$	1489
49	$k \equiv 97 \pmod{744}$	C _{744,1}
50	$k \equiv 457 \pmod{744}$	C744,2
51	$k \equiv 85 \pmod{248}$	1859009
52	$k \equiv 197 \pmod{248}$	12703553
53	$k \equiv 73 \pmod{248}$	3938289601
54	$k \equiv 185 \pmod{248}$	$c_{248,1}$
55	$k \equiv 61 \pmod{248}$	$c_{248,2}$
56	$k \equiv 204 \pmod{217}$	1093681
57	$k \equiv 173 \pmod{217}$	347201
58	$k \equiv 142 \pmod{217}$	68657933
59	$k \equiv 111 \pmod{217}$	5978703277
60	$k \equiv 80 \pmod{217}$	3430295651021
61	$k \equiv 49 \pmod{217}$	C _{217,1}
62	$k \equiv 18 \pmod{217}$	C _{217,2}
63	$k \equiv 409 \pmod{434}$	14323
64	$k \equiv 347 \pmod{434}$	1547154449
65	$k \equiv 285 \pmod{434}$	70144817
66	$k \equiv 223 \pmod{434}$	37591116739373
67	$k \equiv 161 \pmod{434}$	252205554844994564166739
68	$k \equiv 99 \pmod{434}$	C _{434,1}
69	$k \equiv 37 \pmod{434}$	C434,2
70	$k \equiv 211 \pmod{279}$	1117
71	$k \equiv 118 \pmod{279}$	45757
72	$k \equiv 25 \pmod{279}$	2301193

row	congruence	prime p_i
73	$k \equiv 199 \pmod{279}$	$C_{279,1}$
74	$k \equiv 106 \pmod{279}$	C _{279,2}
75	$k \equiv 292 \pmod{558}$	5023
76	$k \equiv 13 \pmod{558}$	2791
77	$k \equiv 373 \pmod{558}$	320852851939
78	$k \equiv 187 \pmod{558}$	1024143471271
79	$k \equiv 1 \pmod{558}$	14301952851224827
80	$k \equiv 25 \pmod{29}$	349
81	$k \equiv 21 \pmod{29}$	10789
82	$k \equiv 17 \pmod{29}$	49823
83	$k \equiv 13 \pmod{29}$	1482570191
84	$k \equiv 9 \pmod{29}$	11242578713
85	$k \equiv 5 \pmod{29}$	189343400041
86	$k \equiv 30 \pmod{58}$	59
87	$k \equiv 26 \pmod{58}$	1838659
88	$k \equiv 22 \pmod{58}$	1671541885847
89	$k \equiv 18 \pmod{58}$	3061037680116618496603
90	$k \equiv 72 \pmod{116}$	233
91	$k \equiv 68 \pmod{116}$	18329
92	$k \equiv 64 \pmod{116}$	646550190571213
93	$k \equiv 60 \pmod{116}$	P_{116}
94	$k \equiv 172 \pmod{232}$	1176937
95	$k \equiv 56 \pmod{232}$	35029132682927321593
96	$k \equiv 168 \pmod{232}$	$c_{232,1}$
97	$k \equiv 52 \pmod{232}$	C232 2

Table B.56 cont. Covering for d = 13 in Base 31

row	congruence	prime p_i		row	congrue
98	$k \equiv 280 \pmod{348}$	10438779913] [122	$k \equiv 1420 \pmod{14}$
99	$k \equiv 164 \pmod{348}$	1602846874753		123	$k \equiv 28 \pmod{100}$
100	$k \equiv 48 \pmod{348}$	$c_{348,1}$		124	$k \equiv 488 \pmod{4}$
101	$k \equiv 276 \pmod{348}$	$c_{348,2}$		125	$k \equiv 372 \pmod{4}$
102	$k \equiv 160 \pmod{174}$	208898666650411		126	$k \equiv 256 \pmod{10}$
103	$k \equiv 44 \pmod{174}$	5155437699613779037		127	$k \equiv 720 \pmod{100}$
104	$k \equiv 69 \pmod{87}$	2437		128	$k \equiv 140 \pmod{140}$
105	$k \equiv 40 \pmod{87}$	29581] [129	$k \equiv 24 \pmod{10}$
106	$k \equiv 11 \pmod{87}$	6226417		130	$k \equiv 252 \pmod{10}$
107	$k \equiv 65 \pmod{87}$	24589681] [131	$k \equiv 194 \pmod{10}$
108	$k \equiv 36 \pmod{87}$	19442411479		132	$k \equiv 136 \pmod{10}$
109	$k \equiv 7 \pmod{87}$	P_{87}		133	$k \equiv 78 \pmod{100}$
110	$k \equiv 380 \pmod{464}$	5569		134	$k \equiv 20 \pmod{10}$
111	$k \equiv 264 \pmod{464}$	182353		135	$k \equiv 712 \pmod{4}$
112	$k \equiv 148 \pmod{464}$	1658801] [136	$k \equiv 596 \pmod{10}$
113	$k \equiv 32 \pmod{464}$	$c_{464,1}$] [137	$k \equiv 74 \pmod{4}$
114	$k \equiv 376 \pmod{464}$	$c_{464,2}$		138	$k \equiv 364 \pmod{10}$
115	$k \equiv 724 \pmod{928}$	929] [139	$k \equiv 248 \pmod{4}$
116	$k \equiv 260 \pmod{928}$	$c_{928,1}$		140	$k \equiv 132 \pmod{132}$
117	$k \equiv 608 \pmod{928}$	$c_{928,2}$] [141	$k \equiv 828 \pmod{100}$
118	$k \equiv 1072 \pmod{1856}$	261697] [142	$k \equiv 16 \pmod{10}$
119	$k \equiv 144 \pmod{1856}$	5189377		143	$k \equiv 940 \pmod{100}$
120	$k \equiv \overline{956} \pmod{1392}$	$c_{1392,1}$		144	$k \equiv 824 \pmod{100}$
121	$k \equiv 492 \pmod{1392}$	$c_{1392,2}$		145	$k \equiv 708 \pmod{100}$

Table B.56 cont. Covering for $d = 13$ in Base	e 31	1
--	------	---

row	congruence	prime p_i
122	$k \equiv 1420 \pmod{2784}$	19489
123	$k \equiv 28 \pmod{2784}$	101952662530273
124	$k \equiv 488 \pmod{580}$	1330512111189514381
125	$k \equiv 372 \pmod{580}$	C _{580,1}
126	$k \equiv 256 \pmod{580}$	C _{580,2}
127	$k \equiv 720 \pmod{1160}$	C _{1160,1}
128	$k \equiv 140 \pmod{1160}$	C _{1160,2}
129	$k \equiv 24 \pmod{290}$	95543420591
130	$k \equiv 252 \pmod{290}$	$c_{290,1}$
131	$k \equiv 194 \pmod{290}$	$C_{290,2}$
132	$k \equiv 136 \pmod{145}$	140071
133	$k \equiv 78 \pmod{145}$	359311
134	$k \equiv 20 \pmod{145}$	P_{145}
135	$k \equiv 712 \pmod{812}$	C _{812,1}
136	$k \equiv 596 \pmod{812}$	c _{812,2}
137	$k \equiv 74 \pmod{406}$	404783
138	$k \equiv 364 \pmod{406}$	$c_{406,1}$
139	$k \equiv 248 \pmod{406}$	$c_{406,2}$
140	$k \equiv 132 \pmod{203}$	53780507732292545931217
141	$k \equiv 828 \pmod{1624}$	1781363977
142	$k \equiv 16 \pmod{1624}$	$C_{1624,1}$
143	$k \equiv 940 \pmod{1044}$	78301
144	$k \equiv 824 \pmod{1044}$	26378749
145	$k \equiv 708 \pmod{1044}$	20472841

row	congruence	prime p_i	row	
146	$k \equiv 592 \pmod{1044}$	9794139325309	170	$k \equiv$
147	$k \equiv 476 \pmod{1044}$	725241266624577322441	171	$k \equiv$
148	$k \equiv 360 \pmod{1044}$	C _{1044,1}	172	<i>k</i> =
149	$k \equiv 244 \pmod{1044}$	C _{1044,2}	173	$k \equiv$
150	$k \equiv 128 \pmod{522}$	525763621	174	$k \equiv$
151	$k \equiv 12 \pmod{522}$	102182193014509	175	<i>k</i> =
152	$k \equiv 472 \pmod{522}$	78984406417023018433	176	$k \equiv$
153	$k \equiv 414 \pmod{522}$	P_{522}	177	$k \equiv$
154	$k \equiv 95 \pmod{261}$	523	178	$k \equiv$
155	$k \equiv 37 \pmod{261}$	202338644001987940129	179	<i>k</i> =
156	$k \equiv 240 \pmod{261}$	$c_{261,1}$	180	$k \equiv$
157	$k \equiv 182 \pmod{261}$	$c_{261,2}$	181	<i>k</i> =
158	$k \equiv 646 \pmod{783}$	1567	182	$k \equiv$
159	$k \equiv 385 \pmod{783}$	20359	183	<i>k</i> =
160	$k \equiv 124 \pmod{783}$	25057	184	$k \equiv$
161	$k \equiv 588 \pmod{783}$	6251973555615521347	185	$k \equiv$
162	$k \equiv 327 \pmod{783}$	C _{783,1}	186	<i>k</i> =
163	$k \equiv 66 \pmod{783}$	C _{783,2}	187	$k \equiv$
164	$k \equiv 1052 \pmod{1566}$	34638908812126561	188	$k \equiv$
165	$k \equiv 530 \pmod{1566}$	1999886726073043	189	$k \equiv$
166	$k \equiv 8 \pmod{1566}$	$C_{1566,1}$	190	$k \equiv$
167	$k \equiv 410 \pmod{435}$	1741	191	$k \equiv$
168	$k \equiv 323 \pmod{435}$	19141	192	$k \equiv$
169	$k \equiv 236 \pmod{435}$	$C_{435,1}$	193	k =

Table B.56 cont. Covering for d = 13 in Base 31

row	congruence	prime p_i
170	$k \equiv 149 \pmod{435}$	$c_{435,2}$
171	$k \equiv 497 \pmod{870}$	270295951
172	$k \equiv 62 \pmod{870}$	510393218641
173	$k \equiv 120 \pmod{174}$	p_{173}
174	$k \equiv 120 \pmod{203}$	$c_{203,1}$
175	$k \equiv 33 \pmod{203}$	$c_{203,2}$
176	$k \equiv 352 \pmod{609}$	32887
177	$k \equiv 265 \pmod{609}$	1387480939340959
178	$k \equiv 178 \pmod{609}$	$c_{609,1}$
179	$k \equiv 91 \pmod{609}$	$c_{609,2}$
180	$k \equiv 613 \pmod{1218}$	173678036123955341833
181	$k \equiv 4 \pmod{1218}$	$C_{1218,1}$
182	$k \equiv 203 \pmod{319}$	19637641
183	$k \equiv 87 \pmod{319}$	$c_{319,1}$
184	$k \equiv 290 \pmod{319}$	$c_{319,2}$
185	$k \equiv 174 \pmod{638}$	4319022352657
186	$k \equiv 58 \pmod{638}$	$c_{638,1}$
187	$k \equiv 580 \pmod{638}$	$c_{638,2}$
188	$k \equiv 464 \pmod{1276}$	1277
189	$k \equiv 348 \pmod{1276}$	38775089
190	$k \equiv 232 \pmod{1276}$	$c_{1276,1}$
191	$k \equiv \overline{116 \pmod{1276}}$	$c_{1276,2}$
192	$k \equiv 1276 \pmod{2552}$	20453336796945534241
193	$k \equiv 0 \pmod{2552}$	C2552,1

We use the covering found in Table B.58 for d = 19. The least common multiple of the moduli for this covering is 720720. A direct analysis can be used for verification. One checks that the prime 23 corresponds to the congruence condition $M \equiv 10$ (mod 23), which agrees with the congruence condition on M from the congruence in Table B.45. Table B.57 contains notable factorizations of $\Phi_n(31)$ for large n used in the covering for d = 19. To conserve space, denote the following primes appearing in Table B.58 as follows.

 $p_{26} = 1129363636895809892086303692627113871721, \\$

 $p_{32} = 224721202412918666334576819250523191369,$

 $p_{54} = 2726200542741119966575177261557485131084188663722754554972281,$

 $p_{80} = 29510535204545262157687088665468191183896988343413667225871.$

n	Factorization of $\Phi_n(31)$			
182	$547 \cdot 1093 \cdot 647011 \cdot 14407667 \cdot 669665808855863 \cdot P_{182}$			
273	$506689 \cdot 21117399147447 \cdot 36431906368440493$			
	$\cdot 81651312342656239 \cdot P_{273}$			
312	$313 \cdot 4292809 \cdot 135272593 \cdot 115436220433 \cdot P_{312}$			
390	$188431581362701 \cdot 9708046814116951 \cdot C_{390}$			
468	$937 \cdot 1015561$			
	$\cdot \ 880289895387859281 \cdot 6044477991266432066612797$			
	$\cdot \ 37728054414298007823493 \cdot C_{468}$			
715	C_{715}			
1716	$32312281 \cdot 4296187082124305941$			
	$\cdot \ 1852852357362091801 \cdot C_{1716}$			

Table B.57 Partial/Full factorizations of $\Phi_n(31)$ for d = 19

row	congruence	prime p_i
a	$k \equiv 7 \pmod{11}$	23
1	$k \equiv 12 \pmod{13}$	42407
2	$k \equiv 11 \pmod{13}$	2426789
3	$k \equiv 10 \pmod{13}$	7908811
4	$k \equiv 22 \pmod{26}$	17863
5	$k \equiv 9 \pmod{26}$	42716694944587
6	$k \equiv 47 \pmod{52}$	53
7	$k \equiv 34 \pmod{52}$	116337521
8	$k \equiv 21 \pmod{52}$	76037563733
9	$k \equiv 8 \pmod{52}$	101686136508893
10	$k \equiv 32 \pmod{39}$	79
11	$k \equiv 19 \pmod{39}$	13807
12	$k \equiv 6 \pmod{39}$	39703
13	$k \equiv 31 \pmod{39}$	175500339130677572941801
14	$k \equiv 96 \pmod{117}$	2534689
15	$k \equiv 57 \pmod{117}$	4618898267815261
16	$k \equiv 18 \pmod{117}$	$c_{117,1}$
17	$k \equiv 83 \pmod{117}$	C _{117,2}
18	$k \equiv 161 \pmod{234}$	4447
19	$k \equiv 44 \pmod{234}$	7776289
20	$k \equiv 122 \pmod{234}$	21931507729
21	$k \equiv 5 \pmod{234}$	903087677909176579
22	$k \equiv 56 \pmod{65}$	911

Table B.58	Covering	for $d =$	19	in	Base 31	
------------	----------	-----------	----	----	---------	--

row	congruence	prime p_i
23	$k \equiv 43 \pmod{65}$	1951
24	$k \equiv 30 \pmod{65}$	31035996941
25	$k \equiv 17 \pmod{65}$	5979236519649901
26	$k \equiv 4 \pmod{65}$	p_{26}
27	$k \equiv 68 \pmod{78}$	157
28	$k \equiv 42 \pmod{78}$	238213
29	$k \equiv 16 \pmod{78}$	17123370267331917425544180721
30	$k \equiv 81 \pmod{104}$	305688893141113
31	$k \equiv 55 \pmod{104}$	5603212901768856193
32	$k \equiv 29 \pmod{104}$	p_{32}
33	$k \equiv 107 \pmod{208}$	6060328173121
34	$k \equiv 3 \pmod{208}$	P_{208}
35	$k \equiv 80 \pmod{91}$	2549
36	$k \equiv 67 \pmod{91}$	1661479
37	$k \equiv 54 \pmod{91}$	473516688426601
38	$k \equiv 41 \pmod{91}$	$c_{91,1}$
39	$k \equiv 28 \pmod{91}$	$c_{91,2}$
40	$k \equiv 106 \pmod{182}$	547
41	$k \equiv 15 \pmod{182}$	1093
42	$k \equiv 93 \pmod{182}$	647011
43	$k \equiv 2 \pmod{182}$	14407667
44	$k \equiv 261 \pmod{273}$	506689
45	$k \equiv 222 \pmod{273}$	211173991474447

row	congruence	prime p_i
46	$k \equiv 183 \pmod{273}$	36431906368440493
47	$k \equiv 144 \pmod{273}$	81651312342656239
48	$k \equiv 105 \pmod{273}$	P_{273}
49	$k \equiv 157 \pmod{182}$	669665808855863
50	$k \equiv 66 \pmod{182}$	P_{182}
51	$k \equiv 300 \pmod{546}$	30437088338336269167943
52	$k \equiv 27 \pmod{546}$	$c_{546,1}$
53	$k \equiv 131 \pmod{156}$	141336778441
54	$k \equiv 53 \pmod{156}$	p_{54}
55	$k \equiv 248 \pmod{312}$	313
56	$k \equiv 170 \pmod{312}$	4292809
57	$k \equiv 92 \pmod{312}$	135272593
58	$k \equiv 14 \pmod{312}$	115436220433
59	$k \equiv 430 \pmod{468}$	937
60	$k \equiv 352 \pmod{468}$	1015561
61	$k \equiv 274 \pmod{468}$	1880289895387859281
62	$k \equiv 196 \pmod{468}$	37728054414298007823493
63	$k \equiv 118 \pmod{468}$	6044477991266432066612797
64	$k \equiv 40 \pmod{468}$	$c_{468,1}$
65	$k \equiv 547 \pmod{624}$	1249
66	$k \equiv \overline{391 \pmod{624}}$	1873
67	$k \equiv \overline{235 \pmod{624}}$	275937793
68	$k \equiv 79 \pmod{624}$	C _{624,1}

row	congruence	prime p_i
69	$k \equiv 313 \pmod{468}$	$c_{468,2}$
70	$k \equiv 781 \pmod{936}$	7489
71	$k \equiv 625 \pmod{936}$	P_{936}
72	$k \equiv 157 \pmod{312}$	P_{312}
73	$k \equiv 1093 \pmod{1872}$	282419281
74	$k \equiv 157 \pmod{1872}$	12517991911153
75	$k \equiv 937 \pmod{1872}$	$c_{1872,1}$
76	$k \equiv 1 \pmod{1872}$	$c_{1872,2}$
77	$k \equiv 117 \pmod{130}$	131
78	$k \equiv 52 \pmod{130}$	521
79	$k \equiv 104 \pmod{130}$	197271101
80	$k \equiv 39 \pmod{130}$	p_{80}
81	$k \equiv 156 \pmod{195}$	35956831
82	$k \equiv 91 \pmod{195}$	617235858721
83	$k \equiv 26 \pmod{195}$	P_{195}
84	$k \equiv 260 \pmod{390}$	$C_{390,1}$
85	$k \equiv 65 \pmod{390}$	$C_{390,2}$
86	$k \equiv 208 \pmod{260}$	1301
87	$k \equiv 143 \pmod{260}$	22765081
88	$k \equiv 78 \pmod{260}$	P_{260}
89	$k \equiv 273 \pmod{520}$	995048024881
90	$k \equiv 13 \pmod{520}$	P_{520}
91	$k \equiv 325 \pmod{390}$	188431581362701

Table B.58 cont. Covering for d = 19 in Base 31

row	congruence	prime p_i	row	congruence	prime p_i
92	$k \equiv 130 \pmod{390}$	9708046814116951	114	$k \equiv 332 \pmod{1144}$	4728211489
93	$k \equiv 390 \pmod{585}$	1171	115	$k \equiv 761 \pmod{1144}$	$c_{1144,1}$
94	$k \equiv 195 \pmod{585}$	633950284120305126391	116	$k \equiv 189 \pmod{1144}$	$c_{1144,2}$
95	$k \equiv 0 \pmod{585}$	$C_{585,1}$	117	$k \equiv 1190 \pmod{1716}$	32312281
96	$k \equiv 137 \pmod{143}$	3719	118	$k \equiv 618 \pmod{1716}$	4296187082124305941
97	$k \equiv 124 \pmod{143}$	P_{143}	119	$k \equiv 46 \pmod{1716}$	1852852357362091801
98	$k \equiv 254 \pmod{286}$	2861	120	$k \equiv 605 \pmod{715}$	$C_{715,1}$
99	$k \equiv 111 \pmod{286}$	161769686049971436885163	121	$k \equiv 462 \pmod{715}$	$C_{715,2}$
100	$k \equiv 241 \pmod{286}$	24324654055543532347208267	122	$k \equiv 1034 \pmod{1430}$	8581
101	$k \equiv 98 \pmod{286}$	C _{286,1}	123	$k \equiv 319 \pmod{1430}$	97241
102	$k \equiv 371 \pmod{429}$	859	124	$k \equiv 891 \pmod{1430}$	$c_{1430,1}$
103	$k \equiv 228 \pmod{429}$	17065706659	125	$k \equiv 176 \pmod{1430}$	$c_{1430,2}$
104	$k \equiv 85 \pmod{429}$	53096473	126	$k \equiv 1463 \pmod{2145}$	1184940901
105	$k \equiv 358 \pmod{429}$	205040647813	127	$k \equiv 748 \pmod{2145}$	$c_{2145,1}$
106	$k \equiv 215 \pmod{429}$	$C_{429,1}$	128	$k \equiv 33 \pmod{2145}$	$c_{2145,2}$
107	$k \equiv 72 \pmod{429}$	$C_{429,2}$	129	$k \equiv 735 \pmod{858}$	495067
108	$k \equiv 488 \pmod{572}$	14820521	130	$k \equiv 592 \pmod{858}$	23441183753571013
109	$k \equiv 345 \pmod{572}$	152830062529	131	$k \equiv 449 \pmod{858}$	672557508032103409
110	$k \equiv 202 \pmod{572}$	11035333453	132	$k \equiv 306 \pmod{858}$	$c_{858,1}$
111	$k \equiv 59 \pmod{572}$	C572,1	133	$k \equiv 163 \pmod{858}$	$C_{858,2}$
112	$k \equiv 475 \pmod{572}$	C _{572,2}	134	$k \equiv \overline{878} \pmod{1716}$	$c_{1716,1}$
113	$k \equiv \overline{904 \pmod{1144}}$	243673	135	$k \equiv 20 \pmod{1716}$	$c_{1716,2}$

Table B.58 cont. Covering for d = 19 in Base 31

We use the covering found in Table B.60 for d = 27. The least common multiple of the moduli for this covering is 18404305920. To verify that the 333 congruences are indeed a covering, we consider the way in which we constructed the covering. When constructing this covering we considered the smaller covering defined by the congruences

$$x \equiv 1 \pmod{2}, \quad x \equiv 0 \pmod{4},$$

 $x \equiv 2 \pmod{8}, \quad \text{and} \quad x \equiv 6 \pmod{8}.$

Observe that $k \equiv 0 \pmod{4}$ is the first congruence listed in Table B.60. One can check that every integer satisfying $x \equiv 1 \pmod{2}$ satisfies one of the 146 congruences in rows 187-332 of Table B.60 with moduli dividing 12640320; every integer satisfying $x \equiv 2 \pmod{8}$ satisfies one of the 100 congruences in rows 87-186 of Table B.60 with moduli dividing 138378240; and every integer satisfying $x \equiv 6 \pmod{8}$ satisfies one of the 86 congruences in rows 1-86 of Table B.60 with moduli dividing 3669120. Thus, the 333 congruences in Table B.60 form a covering.

One checks that the prime 13 corresponds to the congruence condition $M \equiv 12$ (mod 13), which agrees with the congruence condition on M from the congruence in Table B.41. Table B.59 contains notable factorizations of $\Phi_n(31)$ for large n used in the covering for d = 27. To conserve space, we write

 $p_{88} = 55107727353928381036964167246494350909954881,$

 $p_{89} = 7181521717145072083078608601358856159842333085909766829569,$

 $p_{218} = 1434879358379433691210638778172176147818557361098186883210580561,$

 $p_{246} = 1716439847900062900800798410166938893.$

n	Factorization of $\Phi_n(31)$
95	$793926617318201\cdot P_{95}$
190	C_{190}
256	$2 \cdot p_{89} \cdot P_{256}$
342	C_{342}
352	$353 \cdot 136344440321 \cdot 6766051802154664547351297 \cdot C_{352}$
399	C_{399}
512	$2\cdot 23583164929\cdot 99578469377\cdot P_{512}$
532	C_{532}
672	$673 \cdot 20673051169 \cdot 44084649487496874698401 \cdot C_{672}$
840	$52081 \cdot 30241 \cdot 13842240721 \cdot C_{840}$
912	C_{912}
1232	$15089537 \cdot 689761073 \cdot C_{1232}$
1330	C_{1330}
1344	$71233 \cdot 3444673 \cdot C_{1344}$
1520	C_{1520}
1680	$104161 \cdot 356346481 \cdot 1389156854401 \cdot C_{1680}$
1995	C_{1995}
2016	$1135009 \cdot 86689 \cdot 21615553 \cdot C_{2016}$
2184	C_{2184}
2304	C_{2304}
2520	C_{2520}
2736	C_{2736}
3192	C_{3192}

Table B.59 Partial/Full factorizations of $\Phi_n(31)$ for d = 27

row	congruence	prime p_i			
a	$k \equiv 0 \pmod{4}$	13			
1	$k \equiv 902 \pmod{1176}$	1354007961222841			
2	$k \equiv 566 \pmod{1176}$	$C_{1176,1}$			
3	$k \equiv 230 \pmod{1176}$	$c_{1176,2}$			
4	$k \equiv 1070 \pmod{2352}$	48602776993			
5	$k \equiv 902 \pmod{2352}$	$c_{2352,1}$			
6	$k \equiv 902 \pmod{2352}$	$c_{2352,2}$			
7	$k \equiv 2414 \pmod{4704}$	1354007961222841			
8	$k \equiv 62 \pmod{4704}$	1354007961222841			
9	$k \equiv 54 \pmod{56}$	113			
10	$k \equiv 46 \pmod{56}$	36004683284137			
11	$k \equiv 38 \pmod{56}$	152490484148901066281			
12	$k \equiv 422 \pmod{448}$	449			
13	$k \equiv 366 \pmod{448}$	2107875850753			
14	$k \equiv 310 \pmod{448}$	28546195913899558273			
15	$k \equiv 254 \pmod{448}$	102910619004244172801			
16	$k \equiv 198 \pmod{448}$	P_{448}			
17	$k \equiv 590 \pmod{896}$	9857			
18	$k \equiv 142 \pmod{896}$	72577			
19	$k \equiv 534 \pmod{896}$	$c_{896,1}$			
20	$k \equiv 86 \pmod{896}$	$c_{896,2}$			
21	$k \equiv 926 \pmod{1344}$	71233			
22	$k \equiv \overline{478} \pmod{1344}$	3444673			
23	$k \equiv 30 \pmod{1344}$	$c_{1344,1}$			
24	$k \equiv 246 \pmod{280}$	2331436501821281			

row	congruence	prime p_i			
25	$k \equiv 190 \pmod{280}$	$c_{280,1}$			
26	$k \equiv 134 \pmod{280}$	$c_{280,2}$			
27	$k \equiv 638 \pmod{840}$	$c_{840,1}$			
28	$k \equiv 1198 \pmod{1680}$	$C_{1680,1}$			
29	$k \equiv 358 \pmod{1680}$	$C_{1680,2}$			
30	$k \equiv 1758 \pmod{2520}$	$c_{2520,1}$			
31	$k \equiv 918 \pmod{2520}$	$C_{2520,2}$			
32	$k \equiv 2598 \pmod{5040}$	35281			
33	$k \equiv 78 \pmod{5040}$	34206481			
34	$k \equiv 862 \pmod{980}$	10781			
35	$k \equiv 722 \pmod{980}$	245981			
36	$k \equiv 582 \pmod{980}$	$c_{980,1}$			
37	$k \equiv 442 \pmod{980}$	$c_{980,2}$			
38	$k \equiv 1282 \pmod{1960}$	78401			
39	$k \equiv 302 \pmod{1960}$	3782988161			
40	$k \equiv 1142 \pmod{1960}$	1631987626081			
41	$k \equiv 162 \pmod{1960}$	$C_{1960,1}$			
42	$k \equiv 1982 \pmod{2940}$	135241			
43	$k \equiv 1002 \pmod{2940}$	126421			
44	$k \equiv 22 \pmod{2940}$	840841			
45	$k \equiv 322 \pmod{364}$	17837			
46	$k \equiv 266 \pmod{364}$	252253			
47	$k \equiv 210 \pmod{364}$	512282817027138260652277			
48	$k \equiv 154 \pmod{364}$	$c_{364,1}$			

Table B.60 Covering for d = 27 in Base 31

row	congruence	prime p_i		row	congruence	prime p_i
49	$k \equiv 462 \pmod{728}$	6553]	73	$k \equiv 510 \pmod{672}$	$c_{672,1}$
50	$k \equiv 406 \pmod{728}$	103196556946426217	1	74	$k \equiv 846 \pmod{1344}$	$c_{1344,1}$
51	$k \equiv 350 \pmod{728}$	1602836404032137	1	75	$k \equiv 1518 \pmod{2688}$	26881
52	$k \equiv 294 \pmod{728}$	C _{728,1}]	76	$k \equiv 174 \pmod{2688}$	29569
53	$k \equiv 238 \pmod{728}$	C728,2]	77	$k \equiv 2638 \pmod{2688}$	900481
54	$k \equiv 910 \pmod{1456}$	48049]	70	$k \equiv 1966 \pmod{2688}$	6128668785793
55	$k \equiv 182 \pmod{1456}$	277029717329]	79	$k \equiv 1294 \pmod{2688}$	1672482152742913
56	$k \equiv 854 \pmod{1456}$	1137160855847448433]	80	$k \equiv 622 \pmod{2688}$	$c_{2688,1}$
57	$k \equiv 126 \pmod{1456}$	C _{1456,1}]	81	$k \equiv 1630 \pmod{2016}$	$c_{2016,1}$
58	$k \equiv 798 \pmod{1456}$	$C_{1456,2}$]	82	$k \equiv 2974 \pmod{4032}$	508033
59	$k \equiv 1526 \pmod{2912}$	953776097]	83	$k \equiv 958 \pmod{4032}$	$c_{4032,1}$
60	$k \equiv 70 \pmod{2912}$	41143649		84	$k \equiv 2302 \pmod{4032}$	$c_{4032,2}$
61	$k \equiv 1470 \pmod{2184}$	$c_{2184,1}$		85	$k \equiv 4318 \pmod{8064}$	234385062913
62	$k \equiv 742 \pmod{2184}$	$c_{2184,2}$		86	$k \equiv 286 \pmod{8064}$	$c_{8064,1}$
63	$k \equiv 2198 \pmod{4368}$	4333457267176361565697		87	$k \equiv 58 \pmod{64}$	4801
64	$k \equiv 14 \pmod{4368}$	$c_{4368,1}$		88	$k \equiv 26 \pmod{64}$	p_{88}
65	$k \equiv 454 \pmod{560}$	42645904104721		89	$k \equiv 242 \pmod{256}$	p_{89}
66	$k \equiv 342 \pmod{560}$	$c_{560,1}$		90	$k \equiv 178 \pmod{256}$	P_{256}
67	$k \equiv 230 \pmod{560}$	C560,2		91	$k \equiv 370 \pmod{512}$	23583164929
68	$k \equiv 678 \pmod{1120}$	54881		92	$k \equiv 114 \pmod{512}$	99578469377
69	$k \equiv 118 \pmod{1120}$	$c_{1120,1}$		93	$k \equiv 306 \pmod{512}$	P_{512}
70	$k \equiv 566 \pmod{1120}$	C _{1120,2}		94	$k \equiv 562 \pmod{1024}$	25601
71	$k \equiv 1126 \pmod{2240}$	23109132481		95	$k \equiv 50 \pmod{1024}$	$c_{1024,1}$
72	$k \equiv 6 \pmod{2240}$	498077325761		96	$k \equiv 530 \pmod{576}$	20161

Table B.60 cont. Covering for d = 27 in Base 31

row	congruence	prime p_i	row	congruence	prime p_i
97	$k \equiv 466 \pmod{576}$	125962561	121	$k \equiv 874 \pmod{1408}$	$c_{1408,2}$
98	$k \equiv 402 \pmod{576}$	110342617306477541186689	122	$k \equiv 1930 \pmod{2816}$	77722149121
99	$k \equiv 338 \pmod{576}$	C576,1	123	$k \equiv 522 \pmod{2816}$	7163844781274369
100	$k \equiv 274 \pmod{576}$	C576,2	124	$k \equiv 1578 \pmod{2816}$	$c_{2816,1}$
101	$k \equiv 786 \pmod{1152}$	1153	125	$k \equiv 170 \pmod{2816}$	$c_{2816,2}$
102	$k \equiv 210 \pmod{1152}$	$c_{1152,1}$	126	$k \equiv 842 \pmod{1056}$	2113
103	$k \equiv 722 \pmod{1152}$	$c_{1152,2}$	127	$k \equiv 490 \pmod{1056}$	47521
104	$k \equiv 1298 \pmod{2304}$	$c_{2304,1}$	128	$k \equiv 138 \pmod{1056}$	18997250623975009
105	$k \equiv 146 \pmod{2304}$	$c_{2304,2}$	129	$k \equiv 810 \pmod{1056}$	$c_{1056,1}$
106	$k \equiv 1234 \pmod{1728}$	8641	130	$k \equiv 458 \pmod{1056}$	$c_{1056,2}$
107	$k \equiv 658 \pmod{1728}$	36844417	131	$k \equiv 1162 \pmod{2112}$	6337
108	$k \equiv 82 \pmod{1728}$	882800641	132	$k \equiv 106 \pmod{2112}$	$c_{2112,1}$
109	$k \equiv 1170 \pmod{1728}$	14328577	133	$k \equiv 602 \pmod{880}$	881
110	$k \equiv 594 \pmod{1728}$	50090204323009	134	$k \equiv 250 \pmod{880}$	$c_{880,1}$
111	$k \equiv 18 \pmod{1728}$	722221930117206721	135	$k \equiv 778 \pmod{880}$	$c_{880,2}$
112	$k \equiv 330 \pmod{352}$	6766051802154664547351297	136	$k \equiv 2186 \pmod{2640}$	17732881
113	$k \equiv 298 \pmod{352}$	C _{352,1}	137	$k \equiv 1306 \pmod{2640}$	$C_{2640,1}$
114	$k \equiv 266 \pmod{352}$	$C_{352,2}$	138	$k \equiv 426 \pmod{2640}$	$c_{2640,2}$
115	$k \equiv 586 \pmod{704}$	1409	139	$k \equiv 1834 \pmod{3520}$	394241
116	$k \equiv 234 \pmod{704}$	127953409	140	$k \equiv 74 \pmod{3520}$	$c_{3520,1}$
117	$k \equiv 554 \pmod{704}$	P_{704}	141	$k \equiv 1450 \pmod{1760}$	29921
118	$k \equiv \overline{906 \pmod{1408}}$	34300289	142	$k \equiv 1098 \pmod{1760}$	14081
119	$k \equiv \overline{202 \pmod{1408}}$	4391075736961	143	$k \equiv \overline{746} \pmod{1760}$	11398257501944797441
120	$k \equiv 1226 \pmod{1408}$	C1408,1	144	$k \equiv 394 \pmod{1760}$	$c_{1760,1}$

Table B.60 cont. Covering for d = 27 in Base 31

row	congruence	prime p_i		row	congruence	prime p_i
145	$k \equiv 42 \pmod{1760}$	$c_{1760,2}$		169	$k \equiv 962 \pmod{3328}$	C _{3328,1}
146	$k \equiv 890 \pmod{1232}$	$c_{1232,1}$		170	$k \equiv 130 \pmod{3328}$	C _{3328,2}
147	$k \equiv 538 \pmod{1232}$	$c_{1232,2}$		171	$k \equiv 930 \pmod{1248}$	4993
148	$k \equiv 1418 \pmod{2464}$	985601		172	$k \equiv 514 \pmod{1248}$	2215201
149	$k \equiv 1066 \pmod{2464}$	$c_{2464,1}$		173	$k \equiv 98 \pmod{1248}$	171684299503393
150	$k \equiv 714 \pmod{2464}$	$c_{2464,2}$		174	$k \equiv 898 \pmod{1248}$	$c_{1248,1}$
151	$k \equiv 2826 \pmod{4928}$	896897		175	$k \equiv 482 \pmod{1248}$	$c_{1248,2}$
152	$k \equiv 362 \pmod{4928}$	265693121		176	$k \equiv 1314 \pmod{2496}$	5571073
153	$k \equiv 2474 \pmod{4928}$	$c_{4928,1}$		177	$k \equiv 66 \pmod{2496}$	5880834036481
154	$k \equiv 10 \pmod{4928}$	$c_{4928,2}$		178	$k \equiv 1282 \pmod{1664}$	632321
155	$k \equiv 386 \pmod{416}$	1404631073		179	$k \equiv 866 \pmod{1664}$	127471781962809857
156	$k \equiv 354 \pmod{416}$	11014021409		180	$k \equiv 450 \pmod{1664}$	C1664,1
157	$k \equiv 322 \pmod{416}$	7480641128031875233		181	$k \equiv 34 \pmod{1664}$	$c_{1664,2}$
158	$k \equiv 290 \pmod{416}$	$c_{416,1}$		182	$k \equiv 834 \pmod{1040}$	2081
159	$k \equiv 258 \pmod{416}$	$c_{416,2}$		183	$k \equiv 626 \pmod{1040}$	2057345681
160	$k \equiv 642 \pmod{832}$	13313		184	$k \equiv 418 \pmod{1040}$	1603690683419761
161	$k \equiv 226 \pmod{832}$	23297		185	$k \equiv 210 \pmod{1040}$	C _{1040,1}
162	$k \equiv 610 \pmod{832}$	887792562487169		186	$k \equiv 2 \pmod{1040}$	$c_{1040,2}$
163	$k \equiv 194 \pmod{832}$	800764356289		187	$k \equiv 18 \pmod{19}$	571
164	$k \equiv 578 \pmod{832}$	1373547339841		188	$k \equiv 16 \pmod{19}$	14251
165	$k \equiv 162 \pmod{832}$	C _{832,1}		189	$k \equiv 14 \pmod{19}$	88770666332610762169
166	$k \equiv 546 \pmod{832}$	C _{832,2}		190	$k \equiv 31 \pmod{38}$	191
167	$k \equiv 2626 \pmod{3328}$	3329	1	191	$k \equiv 29 \pmod{38}$	3545592640701962728192781
168	$k \equiv 1794 \pmod{3328}$	39937		192	$k \equiv 103 \pmod{114}$	4903

Table B.60 cont. Covering for d = 27 in Base 31

row	congruence	prime p_i		row	congruence	prime p_i
193	$k \equiv 65 \pmod{114}$	1553023	Γ	217	$k \equiv 53 \pmod{228}$	306232251849987913
194	$k \equiv 27 \pmod{114}$	98595072158281		218	$k \equiv 15 \pmod{228}$	p_{218}
195	$k \equiv 101 \pmod{114}$	35362755128281368537612757051		219	$k \equiv 108 \pmod{133}$	775559048587
196	$k \equiv 6 \pmod{57}$	7639		220	$k \equiv 70 \pmod{133}$	C _{133,1}
197	$k \equiv 25 \pmod{57}$	36068660903683		221	$k \equiv 32 \pmod{133}$	C _{133,2}
198	$k \equiv 61 \pmod{76}$	1217		222	$k \equiv 127 \pmod{266}$	3293879
199	$k \equiv 23 \pmod{76}$	23126269		223	$k \equiv 89 \pmod{266}$	2611420465612378154239
200	$k \equiv 59 \pmod{76}$	53489941		224	$k \equiv 51 \pmod{266}$	$c_{266,1}$
201	$k \equiv 21 \pmod{76}$	2491389137		225	$k \equiv 13 \pmod{266}$	$c_{266,2}$
202	$k \equiv 57 \pmod{76}$	130154580611883020628409201		226	$k \equiv 429 \pmod{456}$	457
203	$k \equiv 95 \pmod{152}$	921121		227	$k \equiv 315 \pmod{456}$	451441
204	$k \equiv 19 \pmod{152}$	99253763473		228	$k \equiv 201 \pmod{456}$	1348915338405903577
205	$k \equiv 131 \pmod{152}$	P_{152}		229	$k \equiv 87 \pmod{456}$	$c_{456,1}$
206	$k \equiv 245 \pmod{304}$	124337		230	$k \equiv 391 \pmod{456}$	$c_{456,2}$
207	$k \equiv 93 \pmod{304}$	2693717249		231	$k \equiv 733 \pmod{912}$	$c_{912,1}$
208	$k \equiv 207 \pmod{304}$	3366543416577233		232	$k \equiv 277 \pmod{912}$	$c_{912,2}$
209	$k \equiv 55 \pmod{304}$	C _{304,1}		233	$k \equiv 1531 \pmod{1824}$	910429537
210	$k \equiv 169 \pmod{304}$	$c_{304,2}$	Γ	234	$k \equiv 619 \pmod{1824}$	$c_{1824,1}$
211	$k \equiv 321 \pmod{608}$	9507314849		235	$k \equiv 1075 \pmod{1824}$	$c_{1824,2}$
212	$k \equiv 17 \pmod{608}$	3178774177	Γ	236	$k \equiv 1987 \pmod{3648}$	40129
213	$k \equiv 205 \pmod{228}$	229		237	$k \equiv 163 \pmod{3648}$	299137
214	$k \equiv 167 \pmod{228}$	63147793		238	$k \equiv 3241 \pmod{3648}$	94849
215	$k \equiv 129 \pmod{228}$	150718033		239	$k \equiv 2329 \pmod{3648}$	1115197554433
216	$k \equiv 91 \pmod{228}$	249613717		240	$k \equiv 1417 \pmod{3648}$	C3648,1

Table B.60 cont. Covering for d = 27 in Base 31

row	congruence	prime p_i	
241	$k \equiv 505 \pmod{3648}$	$c_{3648,2}$	
242	$k \equiv 1873 \pmod{2736}$	C _{2736,1}	
243	$k \equiv 961 \pmod{2736}$	C _{2736,2}	
244	$k \equiv 2785 \pmod{5472}$	19461003841	
245	$k \equiv 49 \pmod{5472}$	$c_{5472,1}$	
246	$k \equiv 11 \pmod{57}$	p_{246}	
247	$k \equiv 85 \pmod{95}$	793926617318201	
248	$k \equiv 161 \pmod{190}$	$c_{190,1}$	
249	$k \equiv 123 \pmod{190}$	$c_{190,2}$	
250	$k \equiv 237 \pmod{380}$	1041961	
251	$k \equiv 47 \pmod{380}$	27268386181	
252	$k \equiv 199 \pmod{380}$	$c_{380,1}$	
253	$k \equiv 9 \pmod{380}$	$c_{380,2}$	
254	$k \equiv 539 \pmod{570}$	4561	
255	$k \equiv 349 \pmod{570}$	612751	
256	$k \equiv 159 \pmod{570}$	1177163431	
257	$k \equiv 501 \pmod{570}$	63058531	
258	$k \equiv 311 \pmod{570}$	$c_{570,1}$	
259	$k \equiv 121 \pmod{570}$	$C_{570,2}$	
260	$k \equiv 273 \pmod{285}$	2851	
261	$k \equiv 178 \pmod{285}$	5271361	
262	$k \equiv 83 \pmod{285}$	P_{285}	
263	$k \equiv 45 \pmod{95}$	P_{95}	

Table B.60 cont. Covering for d = 27 in Base 31

row	congruence	prime p_i
264	$k \equiv 577 \pmod{760}$	761
265	$k \equiv 387 \pmod{760}$	C760,1
266	$k \equiv 197 \pmod{760}$	$c_{760,2}$
267	$k \equiv 767 \pmod{1520}$	$c_{1520,1}$
268	$k \equiv 7 \pmod{1520}$	$c_{1520,2}$
269	$k \equiv 138 \pmod{171}$	49267837
270	$k \equiv 100 \pmod{171}$	P_{171}
271	$k \equiv 233 \pmod{342}$	$c_{342,1}$
272	$k \equiv 195 \pmod{342}$	$c_{342,2}$
273	$k \equiv 499 \pmod{684}$	15382971192162601
274	$k \equiv 157 \pmod{684}$	$c_{684,1}$
275	$k \equiv 461 \pmod{684}$	$c_{684,2}$
276	$k \equiv 803 \pmod{1368}$	8209
277	$k \equiv 119 \pmod{1368}$	16417
278	$k \equiv 1107 \pmod{1368}$	28729
279	$k \equiv 765 \pmod{1368}$	4986361
280	$k \equiv 423 \pmod{1368}$	$c_{1368,1}$
281	$k \equiv 81 \pmod{1368}$	$c_{1368,2}$
282	$k \equiv 214 \pmod{513}$	2053
283	$k \equiv 385 \pmod{513}$	2104977965218759
284	$k \equiv 43 \pmod{513}$	C _{513,1}
285	$k \equiv 176 \pmod{513}$	$c_{513,2}$
286	$k \equiv 347 \pmod{1026}$	7204633561

row	congruence	prime p_i	row	congruence
287	$k \equiv 5 \pmod{1026}$	$c_{1026,1}$	310	$k \equiv 153 \pmod{798}$
288	$k \equiv 174 \pmod{209}$	224531627	311	$k \equiv 647 \pmod{798}$
289	$k \equiv 136 \pmod{209}$	5957505709	312	$k \equiv 381 \pmod{798}$
290	$k \equiv 98 \pmod{209}$	964279537211	313	$k \equiv 1141 \pmod{1596}$
291	$k \equiv 60 \pmod{209}$	171106718558612865601	314	$k \equiv 343 \pmod{1596}$
292	$k \equiv 22 \pmod{209}$	P ₂₀₉	315	$k \equiv 875 \pmod{1596}$
293	$k \equiv 193 \pmod{418}$	419	316	$k \equiv 1673 \pmod{3192}$
294	$k \equiv 155 \pmod{418}$	40657189	317	$k \equiv 77 \pmod{3192}$
295	$k \equiv 117 \pmod{418}$	7292011	318	$k \equiv 571 \pmod{665}$
296	$k \equiv 79 \pmod{418}$	C _{418,1}	319	$k \equiv 305 \pmod{665}$
297	$k \equiv 41 \pmod{418}$	C _{418,2}	320	$k \equiv 39 \pmod{665}$
298	$k \equiv 421 \pmod{836}$	918891073	321	$k \equiv 400 \pmod{665}$
299	$k \equiv 3 \pmod{836}$	9000773650776029	322	$k \equiv 134 \pmod{665}$
300	$k \equiv 495 \pmod{532}$	C532,1	323	$k \equiv 1103 \pmod{1330}$
301	$k \equiv 229 \pmod{532}$	C _{532,2}	324	$k \equiv 837 \pmod{1330}$
302	$k \equiv 989 \pmod{1064}$	8513	325	$k \equiv 1863 \pmod{2660}$
303	$k \equiv 723 \pmod{1064}$	141616141088633	326	$k \equiv 533 \pmod{2660}$
304	$k \equiv 457 \pmod{1064}$	$c_{1064,1}$	327	$k \equiv 1597 \pmod{2660}$
305	$k \equiv 191 \pmod{1064}$	<i>C</i> _{1064,2}	328	$k \equiv 267 \pmod{2660}$
306	$k \equiv 115 \pmod{399}$	C _{399,1}	329	$k \equiv 1331 \pmod{1995}$
307	$k \equiv 210 \pmod{399}$	$c_{399,2}$	330	$k \equiv 666 \pmod{1995}$
308	$k \equiv 685 \pmod{798}$	1597	331	$k \equiv 1996 \pmod{3990}$
309	$k \equiv 419 \pmod{798}$	342517162879291	332	$k \equiv 1 \pmod{3990}$

 $\begin{array}{c} \text{prime } p_i \\ \hline 6757367761201 \\ \hline c_{798,1} \\ \hline c_{798,2} \\ \hline 460447588021 \end{array}$

 $c_{1596,1}$

 $c_{1596,2}$

 $\begin{array}{c} c_{3192,1} \\ \hline c_{3192,2} \\ \hline 6112681 \\ 8079339031 \end{array}$

 $\frac{1579235351}{c_{665,1}}$

 $c_{1330,1}$

 $\frac{c_{1330,2}}{372243061}$

15831936018361

 $c_{2660,1}$

 $C_{2660,2}$

 $c_{1995,1}$

 $c_{1995,2}$

 $\frac{63776582941}{c_{3990,1}}$

Table B.60 cont. Covering for d = 27 in Base 31

Appendix C

Resolvent polynomial Q(x, t-3)

For convenience sake, we write the resolvent

$$Q(x,t-3) = x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

with the coefficients defined below as

$$a_{5} = \frac{1}{518400} (t^{2}(t+2)(t+1)(t^{6}+5t^{5}+33t^{4}+259t^{3}+302t^{2}-1224t + 144)(t-1)^{2}(t-2)^{3}),$$

$$a_{4} = -\frac{1}{3224862720000} [(t-1)^{5}(t+2)^{2}(t-2)^{6}t^{3}(t+1)^{2}(5t^{12}+199t^{11}+2323t^{10} + 9931t^{9} - 4175t^{8} - 192683t^{7} - 629071t^{6} + 362553t^{5} + 6740550t^{4} + 11492064t^{3} - 1363392t^{2} - 3608064t - 1866240)],$$

$$a_{3} = -\frac{(t-1)^{7}t^{5}(t-2)^{8}}{100306130042880000000} [(565t^{19} + 17126t^{18} + 237975t^{17} + 1909630t^{16} + 9188870t^{15} + 19818996t^{14} - 68914210t^{13} - 698970740t^{12} - 1688037375t^{11} + 4194678206t^{10} + 32357048155t^{9} + 45384279990t^{8} - 118515571020t^{7} - 386351071704t^{6} + 14894176320t^{5} + 830049275520t^{4} + 140442024960t^{3} - 345324570624t^{2} - 202628874240t + 16124313600)(t+1)^{3}(t+2)^{3}],$$

$$a_{2} = -\frac{t^{6}(t+1)^{4}(t-2)^{11}(t-1)^{9}(t+2)^{4}}{103997395628457984000000000}(971t^{26} - 22591t^{25} - 1083583t^{24} - 14547383t^{23} - 83466551t^{22} + 47592793t^{21} + 4173298101t^{20}$$

$$+\ 1914955473774182400t^2 - 2794291949076480000t - 1120085118812160000),$$

$$+ 12105463713031323648t^4 + 15105787173710069760t^3$$

$$-29754674075021561856t^{6} - 17589914238198030336t^{5}$$

$$+ 19031371767295902720t^8 - 909888530182327296t^7$$

$$-2345775374118735216t^{10} + 9533883462003027216t^{9}$$

$$-545645011247552892t^{12} - 3244885546875680736t^{11}$$

$$+\ 142822956790453062t^{14} +\ 362506920521696259t^{13}$$

$$-16123493520572932t^{16} - 18470256487213219t^{15}$$

$$+ 652668668578976t^{19} + 3052210895296772t^{18} + 1894972913483304t^{17}$$

$$-\ 20726982562288t^{22} - 92753312348986t^{21} - 118039505050572t^{20}$$

$$+ 202415756960t^{25} + 572149272020t^{24} - 1167350005374t^{23}$$

$$+ 31775583t^{29} + 484998008t^{28} + 5057677832t^{27} + 38225536428t^{26}$$

$$-423746961408000t - 174142586880000),$$

$$+3893486111576064t^{4}+3363925250211840t^{3}+162533081088000t^{2}$$

$$-410513547875328t^7 - 8420432579430912t^6 - 3385496092686336t^5$$

$$-\ 616196821798026t^{10} + 1906511196115188t^9 + 4646891215412856t^8$$

$$+\ 47063847286243t^{13} - 85485729776969t^{12} - 599111235654873t^{11}$$

$$-\ 1446249066469t^{16} - 816561357013t^{15} + 17430769406179t^{14}$$

$$+28613582757t^{19}+68460720339t^{18}-180541237297t^{17}$$

$$\begin{split} + 552836059458766t^{28} + 2618652684938752t^{27} + 4110917354635588t^{26} \\ - 33542867622620378t^{25} - 279655912353961514t^{24} - 983567248456161308t^{23} \\ - 1111565086639035656t^{22} + 6592425857181067423t^{21} \\ + 42067117392217407811t^{20} + 118390581547439199852t^{19} \\ + 108325152400511977814t^{18} - 566110420912111523989t^{17} \\ - 2837325774310560559541t^{16} - 5490433889537402562258t^{15} \\ - 152259557603007942216t^{14} + 24519482597046680480736t^{13} \\ + 53400338699385797760240t^{12} + 25379810856426907362528t^{11} \\ - 85775019351549065358336t^{10} - 152622270374464010778624t^9 \\ - 26729828003045680865280t^8 + 156339163791201833533440t^7 \\ + 131522961373278451531776t^6 - 30854563520158694375424t^5 \\ - 84191031126917775360000t^4 - 24927107522009487114240t^3 \\ + 13099860216244076544000t^2 + 8615413876739014656000t \\ + 1039973956284579840000). \end{split}$$

 $+ \ 347569166974t^{31} + 4641689399200t^{30} + 65987640867622t^{29}$

Appendix D

MAGMA AND MAPLE CODE

In this appendix we provide the Magma and Maple code that was used throughout this dissertation to find integer solutions to various Thue equations and elliptic curves, construct the resolvent polynomial, find prime divisors of $\Phi_n(b)$, verify a collection of congruences is a covering, and verify that the composite numbers are indeed composite. We have broken the code into sections to provide additional structure.

D.1 Magma code for finding integer solutions to $ax^5 - by^5 = 4$

```
# Range over m=0, 1, 2, 3, 4.
# Create sets for possible values of a and b first.
S:={};
U:={};
m:=0;
for x in [0..4] do
    for y in [0..4] do
      S:={(2^x)*(3^y)} join S; end for; end for;
for x in [0..4] do
      U:={(2^m)*(3^x)} join U; end for;
U;
R<x> := PolynomialRing(Integers());
for t in S do
```

for u in U do
 f := t*x^5 - u;
 T := Thue(f);
 T;
 Solutions(T, 5); end for; end for;

D.2 Magma code for finding integer solutions to $ax^3 - by^3 = 6$

```
\# Range over m=0, 1, 2.
\# Create sets for possible values of a and b first.
S := \{\};
U\!:=\!\{\,\}\,;
m := 0;
for x in [0..2] do
     for y in [0..2] do
           for z in [0..2] do
     S\!:=\!\{(2^x)*(3^y)*(5^z)\} \text{ join } S; \text{ end for}; \text{ end for}; \text{ end for};
for x in [0..2] do
     for y in [0..2] do
     U{:=}\left\{ (2\ \ m) * (3\ \ x) * (5\ \ y) \right\} \text{ join } U; \text{ end for}; \text{ end for};
U;
R<x> := PolynomialRing(Integers());
for t in S do
     for u in U do
          f := t * x^3 - u;
          T := Thue(f);
```

```
T;
Solutions(T, 6); end for; end for;
```

Magma code for finding integer solutions to $ax^2 - by^3 = 6$ D.3 # Range over m=0, 1, 2. # Create sets for possible values of a and b first. # Output: (aby, a^2bx) . $S := \{\};$ $U:=\{\};$ m := 0;for x in [0..1] do for y in $\left[\, 0 \, . \, . \, 1 \, \right]$ do for z in [0..1] do $S\!:=\!\{(2^x)*(3^y)*(5^z)\} \text{ join } S; \text{ end for}; \text{ end for}; \text{ end for};$ for x in [0..2] do for y in [0..2] do $U:=\{(2^m)*(3^x)*(5^y)\}$ join U; end for; end for; for t in S do for u in U do t; u; $E := EllipticCurve([0, (t^3)*(u^2)*6]);$ $\mathbf{E};$ IntegralPoints(E); end for; end for;

D.4 Magma code for finding integer solutions to $ax^3 - by^2 = 6$

```
\# Range over m=0, 1, 2.
\# Create sets for possible values of a and b first.
\# Output: (abx, ab<sup>2</sup>y).
S := \{\};
U:=\{\};
m := 0;
for x in [0..1] do
     for y in [0..1] do
          for z in [0..1] do
     S\!:=\!\{(2^x)*(3^y)*(5^z)\} \text{ join } S; \text{ end for}; \text{ end for}; \text{ end for};
for x in [0..2] do
     for y in [0..2] do
    U:=\{(2^m)*(3^x)*(5^y)\} join U; end for; end for;
for t in S do
     for u in U do
u; t;
E := EllipticCurve([0, (t^3)*(u^2)*(-6)]);
\mathbf{E};
IntegralPoints(E); end for; end for;
```

D.5 MAPLE CODE FOR CONSTRUCTING THE RESOLVENT POLYNOMIAL

Construct F(x1, x2, x3, x4, x5, x6), labeled F, that belongs to $PGL_2(2)$.
- > with (GroupTheory):
- > H:=Group(Perm([[1,2,3],[4,5,6]]),Perm([[1,3,4,5,6]]),Perm ([[1,2],[3,4],[5,6]])):
- > A:=Elements(H):
- > F:=expand (sum (alpha [A[j][2]] * alpha [A[j][3]]^2 * alpha [A[j][4]]^3 * alpha [A[j][5]]^4 * alpha [A[j][6]]^5 , j=1..120)):

Construct the resolvent in terms of roots r_1, ..., r_6.

- > S:=Group(Perm([[1,2]]),Perm([[1,2,3]])):
- > B:=Elements(S):
- > Q:=product(x-eval(F, { alpha[1]=alpha[B[j][1]], alpha[2]=alpha [B[j][2]], alpha[3]=alpha[B[j][3]], alpha[4]=alpha[B[j][4]], alp ha[5]=alpha[B[j][5]], alpha[6]=alpha[B[j][6]]}), j=1..6) :
- > for j from 0 to 6 do
- > w[j] := coeff(Q, x, j): end do:
- # Create the sigma_{i,j} used.

Write coefficients of resolvent in terms of sigma_{i,j}.
Input: (polynomial to rewrite, number of iterations used)

- # Coefficient of x⁵ took 22 iterations, x⁴ took 229, x³ took 1152, x² took 3900, x took 10020, constant term took 22000.
- # Output: (polynomial in terms of roots, polynomial in terms
 of sigma_{i,j})

```
> ChangeToSigmas:=proc(sympoly)
  local m, j, tempsympoly, sigs, mm, t, sigresult, sigmess:
  tempsympoly:=sympoly: sigs:=NULL: sigresult:=1: sigmess:=1:
  if sympoly=0 then RETURN(0): fi:
  for j from 1 to 6 do
  m:=degree(tempsympoly, alpha[j]):
  tempsympoly:=coeff(tempsympoly, alpha[j],m):
  sigs := sigs , m:
  od:
  sigs := [sigs]:
  mm:=nops(sigs):
  for j from 1 to mm-1 do
  t := sigs[j] - sigs[j+1]:
  if t > 0 then sigresult:=sigresult*eval(sigma[j,o],o=t):
     sigmess:=sigmess*sigma[j,t]:
  fi: od:
  if sigs [mm] > 0 then
  sigresult:=tempsympoly*sigresult*eval(sigma[mm,o],o=sigs[mm
     ]): sigmess:=tempsympoly*sigmess*sigma [mm, sigs [mm]]:
  fi:
  if sigs [mm] = 0 then
```

```
sigresult:=tempsympoly*sigresult: sigmess:=sigmess*
tempsympoly:
```

fi :

```
RETURN(sigresult, sigmess):
```

end:

> CreateSigmas:=proc(sympoly,N)

local counter,j,check,finalsympoly,tempsympoly, sig, finalsigpoly:

```
check:=0: finalsympoly:=0:finalsigpoly:=0: tempsympoly:=
expand(sympoly): counter:=200:
```

```
for j from 1 to N while check=0 do ## Increase 300 here if
    needed
```

```
sig:=ChangeToSigmas(tempsympoly):
```

```
finalsympoly:=finalsympoly+sig[1]:
```

final sigpoly := final sigpoly + sig [2]:

```
tempsympoly:=tempsympoly-expand(sig[1]):
```

```
if j>counter then print(counter); counter:=counter+200: fi:
```

```
if tempsympoly=0 then check:=1: fi:
```

od:

```
if j > N\!\!-\!\!1 then
```

 $\label{eq:printf} \textit{("Increase the number of iterations."): RETURN(NULL number of iterations."): Return number of iterations."]$

```
):
```

fi:

```
RETURN(finalsympoly,finalsigpoly):
```

end:

```
> pint:=CreateSigmas(w[5],116000):
```

Write each sigma_{i,j} in terms of coefficients of poly.

"Sigma Replace.txt" contains sigma_{i,j} in terms of coefficients.

Output: coefficient of resolvent in terms of t.

```
> read "Sigma Replace.txt"
> FinalEval:=proc(poly)
local a:
    a:=eval(poly,{values}):
    RETURN(a):
    end:
> simplify(FinalEval(pint[2]));
```

D.6 Magma code for finding prime divisors of $\Phi_n(b)$

Either returns the complete factorization, # Or the factors it found if unable to completely factor # The nth cyclotomic polynomial at a.

D.7 MAPLE CODE FOR CHECKING WHETHER A SYSTEM OF CONGRUENCES IS A COVERING

Read file containing the covering in question.
File contains lists of the form table9:=[[a, n, p], ...],
Where p is a prime factor of the nth cyclotomic polynomial,
The congruence is k equivalent to a (mod n).

> restart:

- > with (NumberTheory);
- > read "InsertCoverings.txt":

Find the least common multiple of the moduli.

> L := 1: for y in table9 do L := ilcm(L, y[2]): end do: L; ifactor(L);

Verify the set of congruences is a covering.

Check that every integer up to L - 1 satisfies a congruence # Output: every integer in [0, L - 1) that does not satisfy a congruence.

> B := []:

```
> A:=[seq(i,i=000000.L-1)]:
L:=convert(A,set):
for x in A do
P:=0:
for y in table9
while x mod y[2]<>y[1] do P:=P+1 od: if P=nops(table9) then
B:=[op(B),x]
fi: od:
> B
```

D.8 MAPLE CODE FOR VARIOUS CHECKS ON THE COVERINGS

```
# Verify that c(p) = n for each prime used.
# MultOrder2 creates command to check multiplicative order.
# Output: number of incorrect primes/composites.
```

```
> MultOrder2 := proc(s, t)
     local L, y;
     L := 0;
    if 10<sup>s</sup> mod t \Leftrightarrow 1 then L := L + 1; else
      for y in Divisors(s) do
        if 10^y \mod t = 1 then if y = s then L := L; else L
           := L + 1; end if; end if; end do; end if;
    if L = 0 then 0 else 1; end if;
    end proc;
> J := 0;
  for y in tabled4p do
      J := J + MultOrder2(y[2], y[3]);
  end do;
  J ;
> J := 0:
  for y in tabled4c do
      J := J + MultOrder2(y[2], y[3]):
  end do:
  J ;
\# Verifying that no prime is used twice.
# Include all tables with primes in tablebigp used.
\# Output: [a, n, p] if the prime p is used more than once.
> tablebigp:=[op(table9), op(table3)]:
> for y in tabled4p do M:=0:
   for x in tablebigp do
```

```
210
```

if
$$x[3]=y[3]$$
 then M:=M+1: else fi: od: if M>1 then print(
y) else fi: od:

Determine how many times we can use each composite number. # Include all tables with composites in tablebigc used. # Include all tables with primes in tablebigp used.

Make sure each composite is used no more than twice.

Output: composites that are used more than twice.

$$>$$
 for y in tabled4c do

M:=0: for x in tablebigc do

if x[3]=y[3] then M:=M+1: else fi: od: if M>2 then print(y[3], M) else fi: od:

Verify composite numbers aren't divisible by primes used. # Output: [a, n, c] where c is the gcd(composite, primes) > tablebigp:=[op(table9), op(table3)]: > for y in tabled4c do M:=1: for x in tablebigp do if x[2]=y[2] then M:=M*x[3] fi: od: print(y[1], y[2], gcd(y[3], M*y[2])) od: