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ABSTRACT 

Drug overdose is a leading cause of unintentional death in the United States and has 

contributed significantly to a decline in life expectancy from 2015 to 2018. Overdose 

deaths, especially from opioids, have also been recognized in recent years as a significant 

public health issue. To address this public health problem, this study sought to identify 

neighborhood-level (e.g., block group) factors associated with drug overdose and develop 

a spatial model using machine learning (ML) algorithms to predict the likelihood or risk of 

drug overdoses across South Carolina. This study included block group level socio-

demographic factors and drug use variables which may influence the incidence of drug 

overdose. In particular, this study developed a new index of access to measure spatial 

access to treatment facilities and incorporated these variables to assess the relationship 

between drug overdose and accessibility to the treatment centers. We explored different 

ML algorithms (e.g., XGBoost, Random Forest) to identify optimum predictors in each 

category. The categories were combined into a final ensemble predictive model that 

addressed spatial dependency. An evaluation was conducted to validate that the final model 

generalized well across the different datasets and geographical areas. Results of the study 

identified strong neighborhood-level predictors of a drug overdose, pinpointing the most 

critical neighborhood-level factor(s) that place a community at risk and protect 

communities from developing such problems. These factors included proportion of 

households receiving food stamps, households with income less than $35,000, high opioid 

prescription rates, smoking accessories expenditures, and low accessibility to opioid 
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treatment programs and hospitals. The generalized error of spatial models did not increase 

considerably in spatial cross-validation compared to the error estimated from normal cross-

validation. Our model also outperformed the geographic weighted regression method. Our 

Results show that variables regarding socio-demographic factors, drug use variables, and 

protective resources can assist in spatial drug overdose prediction. Our finding highlights 

several specific pathways toward community-level intervention targeted to a vulnerable 

population facing potentially high burdens of drug abuse and overdose.
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1.1. PROBLEM OVERVIEW 

Drug overdose is a leading cause of unintentional death in the United States and 

has contributed significantly to a decline in life expectancy from 2015 to 2018 (Wilson, 

2020). Overdose deaths, especially from opioids, have also been recognized in recent years 

as a significant public health burden (CDC, 2020b). This health crisis has emerged in  three 

waves (CDC Injury Center, 2021). First, in the 1990s, pharmaceutical companies touted 

opioids as an effective and safe treatment for chronic pain, leading to a considerable rise 

in the numbers of opioid prescriptions. Then, in 2010, there was an increase in both the 

incidence of drug overdose and the use of heroin. The third wave hit in 2013 with 

significant increases in overdose deaths involving synthetic opioids such as fentanyl. 

Between 2010 and 2019, there were over 530,000 overdose deaths, and of those, more than 

half involved opioids (National Institute on Drug Abuse, 2021). The United States leads 

the world in opioid use, consuming about 80% of all opioids in the world.  One out of every 

three adults in the country uses prescription opioids (Rummans et al., 2018). Among 

opioid-related deaths, the largest percentage were from the use of synthetic opioids other 

than methadone (this class includes illicitly manufactured fentanyl) with more than 36,000 

deaths in 2019 with an  age-adjusted death rate of 11.4 per 100,000 (National Institute on 

Drug Abuse, 2021). The prescription opioids category, which includes natural and semi-

synthetic opioids (e.g., oxycodone and hydrocodone) and methadone, was the second most 

common cause of opioid deaths through 2017, with 17,029 deaths, or an age-adjusted death 

rate of 5.2 per 100,000 (National Institute on Drug Abuse, 2021). Since 2018, the rate of 

drug deaths due to prescription opioids fell slightly, perhaps reflecting tighter controls and 

changing practices that reduced the number of opioids prescribed. While deaths due to 
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prescription opioids have decreased, deaths due to heroin have increased (National Institute 

on Drug Abuse, 2021). 

Concurrent with the rise in overdose deaths, there has been a rise in non-fatal 

overdoses and hospitalizations related to opioid abuse and misuse. Between 2005 and 2014, 

drug overdoses resulting in inpatient hospital admission and emergency department visits 

increased 64.1% and 99.4%, respectively (Weiss et al., 2020). Although considerably more 

attention has been devoted to the study of fatal overdoses, a non-fatal overdose is estimated 

to be between 20 to 30 times more common (Darke et al., 2003) and is associated with a 

range of harms. For instance, among injection drug users (IDU), non-fatal overdoses 

remain a critical determinant of morbidity and can lead to aspiration pneumonia, hypoxic 

brain injury, rhabdomyolysis, and renal failure (Darke & Hall, 2003). Repeated overdoses 

place a person at even greater risk of physical and cognitive impairment (Darke et al., 

2007). Additionally, drug overdose can result in acute kidney injury due to dehydration, 

hypotension, and urinary retention. People who engage in drug use or high-risk behaviors 

associated with drug use are also at risk for acquiring and transmitting hepatitis B and C 

viral infections such as HIV (Mallappallil et al., 2017). 

1.1.1. DRUG OVERDOSE IN SOUTH CAROLINA 

The opioid epidemic has particularly affected South Carolina (SC), and deaths due 

to both drug overdose and opioids have been steadily increasing. In 2018, SC ranked 9th 

among states with the highest opioid prescription rate in the country at 793 per 1,000 

residents (CDC, 2020c). The total number of drug overdose deaths was 1,131 in 2019, a 

2.5% increase from 1,103 in 2018, and a 43.3% increase in total overdose deaths since 
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2015, jumping from 789 to 1,131. Further, of those 1,131 total overdose deaths in 2019, 

923 involved prescription drugs (81.6%), 876 involved opioids (77.5%), 537 involved 

fentanyl (47.5%), 196 involved heroin (17.3%), and 230 involved cocaine (20.3%). Opioid 

deaths continue to rise in SC. In 2019, opioid-related overdose deaths increased by 7.3% 

from the preceding year. The five counties with the highest number of opioid-involved 

deaths were Horry (131); Charleston (107); Greenville (102); Spartanburg (55); and 

Richland (52). Horry County saw a 54% increase in opioid-related deaths, the highest in 

the state, going from 85 in 2018 to 131 in 2019 (SC Drug Overdose Deaths, n.d.).  

 Further evidence of this crisis comes from the administration of naloxone (Narcan 

or Evzio). Naloxone is an antidote medicine used to reverse and counter the effects of 

opioids in an overdose event. In 2019 there were 6,989 naloxone administrations by 

emergency medical technicians (EMTs), an approximate 11.2% increase from the 6,285 

administered doses in 2018. Since 2015, there has been an approximate 41.6% increase in 

naloxone administrations, jumping from 4,933 to 6,989 (SC Department of Alcohol and 

Other Drug Abuse Services, n.d.).  

Given increases in drug overdose deaths in SC, there is a need to develop more 

intervention and services to prevent drug overdose and overdose death. However, the first 

step to developing and implementing these services is to identify the factors that can predict 

drug overdose. In the following sections, we first review current factors identified in the 

literature that are related to the opioid and drug overdose epidemic. Then, we review 

methods and frameworks in past research that are commonly applied to predict drug-related 

outcome.  
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1.2. LITERATURE REVIEW  

1.2.1. DRUG OVERDOSE FACTORS 

Becoming involved in drug use and abuse may stem from a variety of factors, 

including genetic, biological, cognitive, family, and peer group factors (Scheier, 2010). 

Several individual characteristics that are linked to drug use, abuse, and overdose are 

identified by previous studies. For example, the non-Hispanic white individuals are more 

likely to have an overdose (Knowlton et al., 2013; Zedler et al., 2014). People who are 

divorced, separated, or not married are also at increased risk of fatal opioid overdose 

(Lanier et al., 2012). A systematic review also indicates that individual with lower incomes 

or insecure housing, without high school diploma, who are smokers, or who have been 

recently released from prison are at increased risk for drug use and overdose (Martins et 

al., 2015). Compared to people who own a house, those who rent are at increased risk for 

opioid overdose or abuse (CDC, 2015). While individual-level studies help identify people 

at risk of drug abuse and overdose, identifying contextual characteristics of a neighborhood 

environment that predict drug overdose is also important for community-based health 

intervention. Contextual characteristics of the neighborhood in relation with substance 

abuse have been theorized (Callahan, 2018; Galea et al., 2005). There are few studies that 

quantify these theories in relation with drug abuse and opioid overdose (Fite et al., 2009; 

Fuller et al., 2005; Frankenfeld and Leslie, 2019; Hembree et al., 2005). These studies show 

that a neighborhood disadvantage characterized by low income, poverty, low educational 

attainment, and high unemployment manifest greater risk regarding opioid overdose. 

Another study illustrates that residing in disadvantaged neighborhoods is associated with a 

higher overdose rate as residents misuse drugs to manage chronic stress resulting from 
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exposure to economic hardship and the associated experience of depression and anxiety 

(Boardman et al., 2001). Population density may affect substance use and overdose risk 

through a higher degree of collective socialization within dense urban areas, in which the 

norms and activities of a social network (peer pressure) influence individual behaviors 

(Galea et al., 2005; Latkin et al., 2003; Schroeder et al., 2001).  

The impact of community socio-economic conditions on drug overdose rates may 

vary between rural and urban areas. Some studies indicate that rural residents are at a higher 

risk of opioid and drug overdose and overdose deaths than individuals living in urban areas 

(King et al., 2014). Also, studies show greater rates of opioid prescribing in rural areas 

(García et al., 2019; Keyes et al., 2014). Several factors may contribute to these findings. 

For example, rural residents are less likely to be administered naloxone during an overdose 

emergency than urban residents (Frank et al., 2016), and they often have fewer accessible 

treatment facilities than individuals living in urban areas (Dick et al., 2015; Kvamme et al., 

2013).  

Research has also shown that exposure to tobacco outlets, including convenience 

stores, gas stations, and other stores that typically sell tobacco products, is associated with 

increased rates of smoking among youth and young adults (Cantrell et al., 2015; Novak et 

al., 2006). Exposure to point-of-sale tobacco and alcohol advertisements, promotions, and 

marketing can also increase smoking rates as well as alcohol consumption among youth 

(Bryden et al., 2012; Paynter & Edwards, 2009). These behaviors are strong predictors of 

illicit and prescription drug abuse in young adults (Griffin et al., 2019).  
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Neighborhood protective resources within a community such as hospitals, opioid 

treatment programs, libraries, parks, exercise facilities, and learning centers can potentially 

decrease the risk of drug overdose. For example, exposure to green space has been 

associated with calming effects and reduced psychological stress (De Vries et al., 2013), 

thus countering, to a limited extent, the stressful conditions of economically disadvantaged 

neighborhoods (Mitchell & Popham, 2008) and consequent drug use as a coping behavior. 

Additionally, being physically active may significantly improve health outcomes by 

lowering an individual’s risk for depression (Warburton et al., 2006). There are some 

discrepancies in the research about whether the presence of a fitness facility in a community 

promotes an active lifestyle (Ding et al., 2011; J. Feng et al., 2010); however, a dearth of 

these facilities in a neighborhood may provide residents with less of an opportunity to be 

physically active (Eriksson et al., 2012). Nevertheless, populations who perceive their 

communities as unsafe may be less likely to participate in outdoor fitness activities, 

including playing, walking, or running around the neighborhood (Molnar et al., 2004), and 

would benefit from improved access to exercise facilities.  

Opioid use disorder medications are effective in overdose reduction and in 

promoting recovery (Krawczyk et al., 2020; Pitt et al., 2018). Studies illustrate that 

increased access to treatment decreases rates of drug overdose deaths, infectious disease 

transmission rates, and criminal activity. Additionally, increased access to treatment is 

associated with treatment retention and social functioning (Kakko et al., 2003; Schwartz et 

al., 2013). However, the effect of spatial access to these facilities, particularly to opioid 

treatment programs, has been understudied.   
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1.2.2. DATA ANALYSIS METHODS 

Current studies apply many different methods, including spatial and non-spatial 

statistical approaches and intelligent algorithms to identify factors associated with 

overdose. Some studies have examined risk factors for opioid overdose using traditional 

statistical models designed to establish causation (Chichester et al., 2020; Frankenfeld & 

Leslie, 2019; Glanz et al., 2018; Seal et al., 2001; Thornton et al., 2018; Zedler et al., 2014). 

Chichester et al. (2020), for example, used multivariate regression along with principle 

component analysis (PCA) to identify an individual’s risk factors for a fatal overdose. 

Geissert et al. (2018) employed logistic regression and ordinary least square (OLS) to 

predict opioid overdose as a linear combination of risk factors (Geissert et al., 2018). 

Similarly, Seal et al. (2001) used logistic regression to determine the risk factors for non-

fatal overdose among street-recruited injection heroin users. Another study used negative 

binomial regression to compare county socioeconomic characteristics to death rates 

(Frankenfeld & Leslie, 2019). 

Spatial approaches can be divided into hotspot methodologies, and spatial 

regression approaches. Hotspot methods such as Getis-Ord Gi* statistics and local Moran’s 

I are exploratory spatial data analysis techniques that are commonly used to analyze drug 

overdoses spatially (Amram et al., 2019; Rossen et al., 2014; Stopka et al., 2019a). These 

methods identify and measure areas of local and global spatial association. Spatial 

regression methods, including OLS and geographic weighted regression (GWR) have been 

used to identify potential predictors of opioid misuse and those patients susceptible to abuse 

(X. Chen et al., 2017). To estimate the effect of proximity to various facilities (e.g., alcohol 

and tobacco stores, treatment centers) on drug overdose, research provides a measure of 
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accessibility using different approaches. The simplest way to compute access to facilities 

is to measure the number of providers or facilities within an administrative boundary or 

within a specified distance buffer (Eriksson et al., 2012). Other simple, distance-based 

measures can also be calculated using Geographic Information Systems (GIS), including 

the minimum distance between a point (e.g., patient address or population represented by 

a geographic centroid) and the closest facility, the true distance based on the actual facility 

used, and the average distance to all facilities with use potential (F. Wang, 2012). For 

instance, Amram et al. (2019) measured spatial access to methadone clinics by identifying 

the number of clinics within 20-minutes of walking time from patient addresses. 

Furthermore, several studies provide a framework for the development and 

evaluation of a cumulative index based on socio-demographic characteristics of the 

population (Bohnert et al., 2011). These methods use established, including the use of equal 

weights for each variable, a sum of z-scores for selected variables, and the use of principal 

components analysis or factor analysis to estimate weights and build a composite index.  

Among intelligent algorithms, machine learning (ML) techniques have been used 

widely to predict outcomes in a variety of healthcare applications. Machine learning is an 

efficient and effective approach to predicting and identifying hidden patterns in datasets 

with many variables. It can provide insight into modeling that is free from strict 

methodological assumptions required for traditional statistical approaches (Song et al., 

2004; Wiemken & Kelley, 2020). However, machine learning applications in the context 

of drug overdose have been limited to identify individuals at risk of drug abuse or opioid 
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overdose using electronic medical records (Badger et al., 2019; Cochran et al., 2017; Ellis 

et al., 2019; Lo-Ciganic et al., 2019; Yang et al., 2015).   

1.3. GAPS IN THE LITERATURE  

The need to develop and assess strategies to combat the opioid epidemic warrant 

intense research activity. The research that has been carried out has studied different drug-

related outcomes, including opioid overdose, drug overdose death, drug dependence, and 

abuse. A large body of work has been devoted to studying overdose mortality, though 

common wisdom and evidence suggest that non-fatal overdose events are much more 

common than fatal ones (Edwards, 2016). Although previous findings have identified 

potential risk factors for overdose, the studies have not investigated the scope of protective 

resource drivers such as access to treatment centers and recreational and green spaces that 

may affect the health and overdose risk for people who use opioids. Moreover, previous 

studies were conducted in specific populations (people who inject drugs, Medicaid 

recipients, veterans, and privately insured populations) that often do not generalize well to 

other US populations. Most research on predictors of drug-related overdose or overdose 

mortality has been devoted to identifying individual factors while ample evidence suggests 

that economic features of the populations’ geographic contexts such as unemployment, 

poverty, and median household income can strongly influence drug use and abuse 

behaviors and overdose rates (Galea et al., 2003). Regarding the methods currently used in 

practice, most algorithms are based on traditional statistical approaches (e.g., OLS, GWR). 

These approaches have limited ability to handle nonlinear risk prediction and complex 

interactions among predictors. Machine learning algorithms often show better performance 

compared to traditional linear regression models (P. Feng et al., 2018) as they can handle 
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complex nonlinear relationships between the predictors and the responses and do not 

assume a specific shape of response function (e.g., linear or polynomial) (Shalev-Shwartz 

& Ben-David, 2014). Current studies that use machine learning methods for predicting 

drug overdose have not captured the spatial variation in their models and have not been 

compared to traditional regression. Moreover, although hotspot analysis can identify event 

concentrations with associated significance levels, they do not explain the factors 

contributing to these events. Essentially, hotspot methods only consider the dependent 

variable and are solely dependent on time or space to interpolate the events that occurred 

in the past. 

1.4.   PURPOSE STATEMENT 

This study aims to identify neighborhood-level (e.g., block group) factors 

associated with drug overdose and develop a spatial model using machine learning 

algorithms to predict areas at most risk of drug overdoses across South Carolina. 

Identifying neighborhood characteristics that function either as potential protective factors 

or potential risk factors in association with drug overdose data can highlight specific 

pathways toward community-level intervention targeted to a vulnerable population. This 

study uses high-resolution spatial data at the block group level that can greatly enhance 

public health studies (Gabrysch et al., 2011) by improving context and decreasing spatial 

uncertainty (Murray et al., 2014) when compared with more aggregate units such as census 

tracts or ZIP Codes (Grubesic & Matisziw, 2006). This study includes socio-demographic 

factors and drug use variables which may influence the incidence of drug overdose. In 

particular, this study measures spatial access to treatment facilities and incorporates them 

as variables to assess the impact of access to these facilities on drug overdose. To the best 
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of our knowledge, no study has yet examined and compared different types of 

neighborhood-level factors related to drug overdose utilizing machine learning approaches.  

This dissertation has been structured in the following manner: Chapter 1 provides 

an overview of the problem, past studies, and the purpose of the dissertation. Chapter 2 

provides a detailed review of the literature regarding accessibility to protective 

resources/assets. We also present a spatial accessibility index that builds off of the two-

step floating catchment area (2SFCA) method (W. Luo & Wang, 2003b) and which has 

three dimensions: a facility attractiveness index defined by services rendered and 

incorporated into the Huff Model (Dramowicz, 2005). A facility catchment area is defined 

as a function of facility attractiveness to account for variable catchment size, and a social 

vulnerability index (SVI) is incorporated to account for non-spatial factors that mitigate or 

compound the impacts of spatial access to care.  The index guides the work in subsequent 

chapters and can be used as a model for future accessibility research. 

Chapter 3 details the process of developing a spatial model to predict drug overdose 

across the state of SC at the block group level. We recognize the most critical 

neighborhood-level factors that place a community at risk of experiencing drug overdoses 

and factors that may help protect communities from developing such problems. 

Subsequently, we develop a robust spatial model using machine learning algorithms to 

predict drug overdose. An evaluation was conducted to validate that the final model 

generalized well across the different datasets and areas.  

In Chapter 4, we emphasize significant study findings, discuss our work’s strengths 

and limitations, and consider the public health implications. 
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FACILITY ATTRACTIVENESS AND SOCIAL VULNERABILITY 

IMPACTS ON SPATIAL ACCESSIBILITY TO OPIOID TREATMENT 

PROGRAMS IN SOUTH CAROLINA1  

 
 

1 Parisa Bozorgi, Jan M. Eberth, Jeannie P. Eidson, Dwayne E. Porter. Facility 

attractiveness and social vulnerability impacts on spatial accessibility to opioid treatment 

programs in South Carolina. Under review by International Journal of Environmental 

Research and Public Health   

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bozorgi%20P%5BAuthor%5D&cauthor=true&cauthor_uid=30289107
https://www.ncbi.nlm.nih.gov/pubmed/?term=Eberth%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=30289107
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bozorgi%20P%5BAuthor%5D&cauthor=true&cauthor_uid=30289107
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2.1. INTRODUCTION 

In the United States, drug overdose deaths have more than tripled from 1999 to 

2018. In 2018, opioid overdose was involved in almost 70% of these deaths (CDC, 2020a). 

In 2019, a total of 1,131 drug overdose deaths occurred in South Carolina, a 2.5% increase 

from 2018 with 77.4% involving an opioid. From 2018 to 2019, deaths involving all 

opioids, prescription opioids, and heroin increased by 7.4%, 7%, and 16%, respectively 

(SCDHEC, n.d.).  

Three medications are currently approved by the Food and Drug Administration 

(FDA) to treat opioid dependence: methadone, buprenorphine, and naltrexone (National 

Academies of Sciences et al., 2019). Methadone can only be dispensed from the U.S. 

Substance Abuse and Mental Health Services Administration (SAMHSA)-certified OTPs 

and is the only safe option for pregnant and breastfeeding women. However, in 2017, over 

70 percent of people who needed treatment for opioid use disorder (OUD) did not receive 

medications (Lipari, 2018). Of those who get access to specialty care, a minority (<30%) 

receive treatment with methadone or buprenorphine (Krawczyk et al., 2017). Among those 

in treatment, the numbers of people who receive evidence-based medications such as 

buprenorphine, methadone, and naltrexone are rising, but remain low (Beetham et al., 

2019; Krawczyk et al., 2017; Shulman et al., 2019).  

Previous studies identified obstacles to receiving treatment, including poor 

accessibility and availability, treatment cost, and lack of health insurance coverage, and 

lack of support services such as assistance with housing and transportation (Huskamp et 

al., 2018; Mancher et al., 2019). One study found patients traveled an average of 49 miles 

http://www.addictioncenter.com/news/2019/09/study-barriers-buprenorphine-treatment/
http://www.addictioncenter.com/treatment/medications/naltrexone/
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to reach medication prescribers, and those traveling a mean distance greater than 45 miles 

to prescribers were less likely to regularly receive medications (Rosenblum et al., 2011a). 

Longer travel distances have also been associated with shorter length of stay in outpatient 

methadone clinics and lower probability of completion and aftercare utilization 

(Rosenblum et al., 2011a). Treatment retention is especially crucial among methadone-

maintained patients because of the importance of continued medication often required to 

achieve and sustain treatment gains (Cooper et al., 2002; Meade et al., 2015). Further, 

traveling long distances for daily treatment like methadone adds a significant burden of 

transportation cost for most patients, especially for rural residents who need to travel a 

longer distance. Patients may also face a number of other challenges when seeking care 

such as difficulty finding child care and transportation (Chatterjee et al., 2018). The 

distance to an OTP has also been associated with the number of missed doses in the first 

month of treatment. Specifically, patients who lived more than 10 miles from the OTP were 

more likely to miss treatments compared to individuals who lived within 5 miles of the 

OTP (Amiri et al., 2018b).  

While findings from these studies were critical in advancing our understanding 

about the importance of a geographic perspective on access to OTPs, inequality in spatial 

accessibility to OTPs in South Carolina has not been studied.  Determining and evaluating 

geographic variation in spatial access to OTPs may help explain why some areas have a 

higher rate of drug overdose or drug overdose death. 

Access to care is a multidimensional concept influenced by both spatial and 

nonspatial factors that can be further categorized into potential and revealed accessibility. 

Revealed accessibility focuses on the actual use of health care services, whereas potential 
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accessibility considers the population as the potential users of health care providers (W. 

Luo & Wang, 2003c). Spatial access to health care is primarily dependent on three factors: 

supply, demand, and travel costs between supply and demand. The two-step floating 

catchment area (2SFCA) method is based on the gravity model (W. Luo & Wang, 2003a) 

that considers both supply and demand, as well as their interaction. First, it defines a 

catchment (service area) of 30 minutes drive time around the facility and the population-

to-provider ratios (PPR). The second step identifies a catchment around the demand 

location and searches for all the facilities within the demand's catchment area. Each facility 

found in a resident's catchment area will have a corresponding PPR, calculated in step one. 

The spatial accessibility index is calculated by summing all the PPR of all facilities within 

the demand catchment. The final 2SFCA score is computed in a two-step process expressed 

as follows: 

Step 1: Generate a 30 minute drive time zone (catchment) concerning the provider site and 

compute the provider-to-population ratio at each provider location: 

𝑅𝑗 =
𝑆𝑗

    ∑   𝑃𝑖
    

𝑖∈{𝑑𝑖𝑗≤𝑑0}

  (1) 

Where:  

• 𝑅𝑗 is the provider-to-population ratio at physician location j; 

• 𝑃𝑖 is a population of block group 𝑖; and 

• 𝑑0 is a travel threshold; 𝑑𝑖𝑗 is travel time between 𝑖 and 𝑗. 

Step 2: Generate another 30 min drive time catchment concerning the population site and 

compute the spatial accessibility index (𝐴𝑖) for each population site:  

𝐴𝑖 = ∑ 𝑅𝑗𝑗∈{𝑑𝑖𝑗≤𝑑0}   (2) 
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Where 

• 𝑅𝑗 is the provider-to-population ratio at physician location j; 

• 𝑑0 is a travel threshold; 

• 𝑑𝑖𝑗 is travel time between 𝑖 and 𝑗; and 

• and 𝐴𝑖 is a spatial accessibility index of each population site 𝑖. 

Despite the popularity of 2SFCA, the method has a drawback that it does not 

consider distance decay and assumes all services within the catchment area are equally 

accessible. Also, it uses a fixed catchment size, which is more problematic for urban and 

rural areas which may have very different commuting behaviors (Shah et al., 2016; Cooper 

et al., 2002). Modifications to the basic form of 2SFCA include improvements in catchment 

size (W. Luo & Whippo, 2012a; McGrail & Humphreys, 2014; Ni et al., 2015), the 

inclusion of competitive effects among the facilities (J. Luo, 2014; Wan, Zou, et al., 2012) 

and nonspatial factors (Lin et al., 2018a; Mao & Nekorchuk, 2013), incorporating distance 

decay within catchments (W. Luo & Qi, 2009a) and implementing variable catchment sizes 

(W. Luo & Whippo, 2012b).  

Spatial accessibility models have been widely used to measure access to different 

types of healthcare facilities and services, including inpatient health care, mammography, 

cancer screening, and primary care (Ranga & Panda, 2014; Donohoe et al., 2016; Stewart 

et al., 2020; Lin et al., 2018b). However, geographic variation in accessibility to OTPs 

remains primarily unknown. This research develops a spatial access model building off the 

two-step floating catchment area (2SFCA) method and accounting for nonspatial factors 

and facility attractiveness, providing a more reasonable pattern than the traditional 2SFCA 

method. Specifically, this research examines spatial accessibility to OTPs to identify low 
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and high spatial access areas in South Carolina. The findings provide a support for state 

and local governments to better allocate treatment resources where access to treatments is 

limited. 

2.2. STUDY AREA  

A spatial accessibility model was calculated for block groups in South Carolina, a 

state located in the southeastern region of the U.S. with a population of 5,148.714 over a 

32,020 mi2 area and characterized by rural and urban landscapes (Wikipedia, 2020). South 

Carolina has 46 counties and 3,046 block groups. There are 21 OTPs statewide, with most 

clustered in urban areas and only 4 OTPs located in rural areas. From a demographic 

perspective, many counties (28 out of 46 counties) are classified as highly vulnerable 

populations based on the CDC SVI score, which accounts for almost 30% of the state’s 

total population.  
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 Figure 2.1. Study area and spatial distribution of OTP facilities in SC 

 

2.3. DATA SOURCES 

Information on OTPs was obtained from the publicly available Substance Abuse 

and Mental Health Services Administration (SAMHSA) data released in 2019. The data 

contain the location and services provided by facilities. The location of services was 

geocoded with the corresponding street addresses.  

Population data were extracted at the block group level from the U.S. Census 

Bureau's Integrated Public Use Microdata Series (IPUMS), explicitly using the 2013-2017 

American Community Survey. To represent population location more accurately, we 

calculated population-weighted block group centroids based on Census block population. 
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Distances between OTP service locations and demand locations were calculated based on 

the 2018 street network using Network Analysis of ArcGIS Pro (ESRI Inc., Redlands, CA, 

USA).  

The Social Vulnerability Index (SVI) at the Census tract level was obtained from 

the 2017 Centers for Disease Control and Prevention (CDC) (CDC, 2018). The SVI was 

created to identify socially vulnerable populations and rank U.S. Census tracts based on 

the resident population’s demographics. It ranks four domains (Socioeconomic Status, 

Household Composition & Disability, Minority Status & Language, and Housing & 

Transportation) based on 2-5 demographic indicators in addition to Overall Vulnerability, 

which aggregates all the indicators into a single summary rank. We assumed that all the 

block groups within the Census tract have the same overall ranking as their Census tract. 

2.4. METHOD 

2.4.1. OVERVIEW 

This study estimates facility attractiveness and uses the Huff Model for quantifying 

the probability of a person’s preference on an OTP site, accounting for factors including 

distance to and the attractiveness of the OTP site. A key feature of the proposed model, 

besides measuring attractiveness of the facility based on multiple attributes, is to integrate 

the Centers for Disease Control and Prevention (CDC) Social Vulnerability Index (SVI) to 

account for nonspatial factors. The facility catchment size is also determined as a function 

of facility attractiveness. We evaluate the relation between our model (i.e., weighted 

2SFCA (W2SFCA)) and the 2SFCA model using the Spearman correlation coefficient and 

the Intraclass Correlation Coefficient (ICC). To assess whether high or low access score 
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cluster spatially, the optimized hot spot analysis with optimal distance band identified 

based on incremental spatial autocorrelation is used. Choropleth maps of the final 

accessibility indices highlight differences between the methods. 

2.5. ANALYSIS 

To address the limitation of previous accessibility models, our method focuses on 

enhancing the provider catchment size and applying nonspatial factors, in three steps.  

In the first step, a facility catchment size was defined as a function of facility 

attractiveness. To determine facility attractiveness, a composite index of attractiveness was 

developed based on factors including the type of opioid treatment, ancillary services 

provided, payment/insurance types accepted, Medicare/Medicaid patient acceptance, and 

language services. A facility’s service was given more weight if the facility is located 

within an area where the majority of the population are vulnerable due to lack of that 

service. For example, greater weight was allocated to the housing and transportation 

services provided by the facility if the site was located in an area where the majority of the 

population are classified in the highest vulnerability category for housing and 

transportation; otherwise, no weight is given to that service. Determination of the 

highest/lowest vulnerable population is based on the CDC SVI score (4 categories 

representing 0-25%, 25.01-50%, 50.01-75%, 75.01-100%). In this step, the facility 

attractiveness at a treatment facility j (𝐶𝑗) was quantified as a sum of the weighted attributes 

mentioned earlier:   

𝐶𝑗  = ∑ 𝑊𝑘
𝑛
𝑘=1 𝑋𝑘  (3) 
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Where: 

▪ 𝑋𝑘 is the kth attributes assigned for treatment facility j; 

▪ 𝑊𝑘 is the weight assigned to the attribute 𝑋𝑘.  

A high score effectively increases the size of the population competing to access 

available services. Then, we used the Huff model to estimate the most likely population 

accessing the facility. For each block group, we measured and/or created: 

• a population-weighted centroid to represent the location of the demand population.  

• the travel time between each block group centroid and facility address using the 

origin-destination (O.D.) cost matrix function of ArcGIS Pro 2.3. 

• an 80-minute drive-time catchment area around the demand location calculated 

using the closest facility function of ArcGIS Pro 2.3. 

• the Huff model selection probability of a population location on each treatment 

facility within its catchment using Equation (4). 

𝑃𝑟𝑜𝑏𝑖 =  
𝐶𝑗𝑒

−𝑑
𝛽

2

                      

∑ 𝐶𝑠𝑒
−𝑑
𝛽

2

                      𝑠∈𝐷0

   (4) 

Where:   

▪ 𝑃𝑟𝑜𝑏𝑖 is the Huff model-based selection probability of population 𝑖 at treatment 

facility j;  

▪ 𝐶𝑗 is the attractiveness of treatment facility j calculated from the previous step;  

▪ 𝑑𝑖𝑗 is the shortest travel time from population 𝑖 to treatment facility 𝑗and 𝛽 is the 

distance impedance coefficient. 
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Calculation of the shortest travel time from population centroid to the OTPs showed 

that an 80-minute drive-time ensured each block group has access to at least one OTP 

within its catchment. The value of β was estimated using the Gaussian function (Equation 

5). A value of 0.01 was considered a threshold value when the distance decay function 

approaches to 0 (Wan, Zhan, et al., 2012). The Gaussian function was adopted as the 

distance decay function because it has been proved superior to other functions in simulating 

the distance impedance effect (L. Wang, 2007).  

𝑓𝑑 = 𝑒
−𝑑

𝛽

2

                      β = −
𝑑0

2

ln 0.01
              (5) 

In the second step, the facility catchment size (D) was defined as a function of the 

treatment facility attractiveness using the Gaussian function (Equation 6). To differentiate 

the facility catchment size in urban and rural areas, we determined the urban/rural status of 

the facilities using the 2013 urban-rural classification from USDA's Rural-Urban 

Commuting Area (RUCA) codes. RUCA codes classify U.S. Census tracts using measures 

of population density, urbanization, and daily commuting. A facility within a metropolitan 

area (codes 1-3) was defined as urban; all other facilities are labeled as rural (codes 4-10). 

Among facilities located in rural areas, the facility catchment size (D) was based on a 

threshold of 60-minute drive-time vs. 30-minute drive-time for facilities located in urban 

areas. Towards our goal of defining effective facility catchment sizes, these numbers were 

multiplied by the facility attractivness formulated using the Gaussian function. The facility 

catchment sizes ranged from 17.2 – 30 minutes in urban areas and from 32.5 – 46.2 minutes 

in rural areas. 
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D = 𝑒
−(

𝐶𝑗−𝐶𝑚

𝐶𝑚
)2

 * 30 min     𝐶𝑗 ≤ 𝐶𝑚 

D = 𝑒
−(

𝐶𝑗−𝐶𝑚

𝐶𝑚
)2

 * 60 min     𝐶𝑗 ≤ 𝐶𝑚 

 

(6) 

Where: 

▪ D is the facility catchment size  

▪ 𝐶𝑚 is the maximum attractiveness score.  

Then, provider-to-population ratio (𝑅𝑗) were calculated using Equation 7. 

𝑅𝑗 =
𝐶𝑗

    ∑   𝑃𝑟𝑜𝑏𝑖𝑗𝑊𝑖𝑗 𝑃𝑖
     

      (𝑖∈𝐷0)   

      (7) 

𝑊𝑖𝑗 =  𝑒
−𝑑
𝛽

2

 

Where:  

▪ 𝑅𝑗 is a provider-to-population ratio at treatment facility j; 

▪ 𝑃𝑖 is a weighted population of block group 𝑖; 

▪ 𝐷0 is a travel threshold; 

▪ 𝑊𝑖𝑗 is a travel impedance between 𝑖 and 𝑗; 

The numerator was weighted by the facility attractiveness because facilities 

offering more services are more attractive than others.  

In the third step, an 80-minute drive-time catchment area was defined around the 

population-weighted block group centroid and the ratios were summed from all facility 

locations falling within this catchment area. However, to account for nonspatial factors, we 

consider the output by the CDC SVI index associated with each population location. A 
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high SVI score effectively reduces a population catchment size due to the higher social 

vulnerability and associated service needs of the population. Areas with higher scores for 

𝐴𝑖 are considered to have better spatial accessibility to OTPs. The accessibility score is 

expressed as: 

𝐴𝑖 = ∑ 𝑅𝑗(𝑗∈𝐷0) 𝑊𝑖𝑗 𝑃𝑟𝑜𝑏𝑖𝑗 𝑆𝑉𝐼−1  (8) 

Where:  

▪ 𝐴𝑖  is the accessibility at population location i;  

Using the same datasets, we compared our weighted 2SFCA (W2SFCA) model 

with the original 2SFCA model. Choropleth maps were also generated using ArcGIS Pro, 

allowing the visualization of our final accessibility index vs. the traditional 2SFCA method. 

We also conducted the hot spot analysis using the local Getis-Ord Gi* statistic for the 

spatial accessibility score. The method identifies statistically significant clusters of high 

values (hot spots) and low values (cold spots) within the framework of the conceptualized 

spatial relationship. The Gi* statistic consists of a ratio of the weighted average of the 

values in the neighboring locations to the sum of all values, including the value at the 

location (𝑥𝑖) (Equation 9). To quantify spatial relationship among block groups, we 

generated a spatial weight matrix that related each location to its nearest eight neighboring 

locations. 

𝐺𝑖
∗ =

𝛴𝑗𝑤𝑖𝑗𝑥𝑖

𝛴𝑗𝑥𝑖
  (9) 

Where:  

▪ 𝑤𝑖𝑗 is the spatial weight between districts i and j 
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2.6. RESULTS 

Measures of central tendency and dispersion among the two accessibility scores is 

shown in Table 2.1. We tested the association between the two methods with data measured 

continuously using the Spearman correlation coefficient method. A positive relationship 

was found with a coefficient of 0.73 and a p-value of 0.003 (Table 2.2).  

The ICC was measured by a single-rating and 2-way random-effects model with 

two methods across 3045 subjects (Table 2.2). Although the obtained ICC value was 0.71 

(indicating moderate reliability), a 95% confidence interval ranges between 0.2 and 0.8, 

meaning that there is a 95% chance that the true ICC value lands on any point between 0.2 

and 0.8. Therefore, the level of reliability can be interpreted as poor to moderate. The 

geographic patterns of accessibility index computed by the W2SFCA (before and after 

including SVI) and the traditional 2SFCA model are shown in Figures 2.2-2.4. The spatial 

distribution of accessibility by W2SFCA (Figure. 2.2) showed a relatively similar pattern 

to the traditional 2SFCA (Figure. 2.4). However, the range of the accessibility scores by 

W2SFCA was smaller than the range of 2SFCA. For spatial comparison of the two 

methods, quantile classification groups with four classes were used.  
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 Figure 2.2. Geographic variation of spatial accessibility score  

 (W2SFCA) 
 

 
 

 Figure 2.3. Geographic variation of spatial accessibility score  

 (W2SFCA) including SVI 
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Figure 2.4. Geographic variation of spatial accessibility score (2SFCA) 
 

Table 2.1. Distribution of spatial accessibility scores 

Variable Mean Median SD IQR Range 

W2SFCA 0.00035 0.00036 0.00017 0.00028 0.00083 

2SFCA 0.00024 0.00025 0.00020 0.00038 0.00091 

 

According to the results obtained from W2SFCA shown in Figure 2.2, the spatial 

accessibility to OTPs is unevenly distributed. Areas with higher access were primarily 

located in the northern part of the state, with very few located in the south and southeast of 

the state. From the results of the accessibilities analysis with the proposed 

method, approximately 21% of the state’s population lives in areas with low access, 23% 

live in areas identified as medium-low access, 26% live in areas identified as medium-high 
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access, and 30% live in high access areas. A majority of the population with low access 

(85%) live in areas with a moderate to a high level of social vulnerability. 

In comparison with the 2SFCA, as expected, W2SFCA revealed more details of 

accessibility than 2SFCA. For example, in the vicinity of OTPs located in Richland and 

Lexington counties, the accessibility is underestimated by 2SFCA. The 2SFCA model 

detected all the block groups within these counties as areas with low accessibility while 

some of their block groups encompassed an OTP provider, and some were close to nearby 

OTP sites. This is due to the same catchment size regardless of the attractiveness of the 

OTP facilities. The weighted score by SVI revealed disparity in accessibility to OTPs 

relative to the socio-economic status of the population (Figure 2.3). As shown in Figure 

2.3, some block groups adjacent to the OTP facility are identified as areas with low access 

within the Spartanburg city limits. People living in this area are ranked as a highly 

vulnerable population, and their socio-economic status can affect their accessibility to the 

OTPs. Some of these OTP facilities are among facilities with the lowest attractiveness 

index indicating they either do not accept Medicaid/Medicare patients or do not provide 

additional services that can be beneficial for vulnerable populations.  

  Table 2.2. Spearman’s Correlation and ICC between W2SFCA and 2SFCA 

  W2SFCA 

2SFCA                     Spearman's Correlation 

                                       ICC (95% CI) 

0.73 

0.71(0.213-0.867) 
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Results of the hot spot analysis are shown in Figure 2.6. Cold spots with clusters of 

low accessibility were discovered in the much of the Midlands, Pee Dee, and Lowcountry 

regions (notable exceptions in Charleston, Beaufort, Darlington and Florence Counties). 

Hot spots with clusters of high accessibility were clustered in the Upstate region, as well 

as Aiken County, the border of York and Lancaster County, and the counties listed above. 

Many of these hot spots were clustered near metropolitan areas of the state, or bordering 

states.  

 
 

Figure 2.5. Hot spot and cold spot of spatial accessibility score (W2SFCA) 

 

2.7. DISCUSSION  

The primary goal of this study is to explore the geographic variation of spatial 

accessibility to OTPs and to identify areas with poor accessibility in South Carolina. This 

paper outlines a new index of access that integrates facility attractiveness and socio-
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economic factors to the existing metrics. The facility attractiveness includes services 

offered by the facility that helps to measure each facility’s attractiveness for opioid users. 

Most previous studies use a distance impedance coefficient 𝛽 to create weights within the 

service catchment. These studies measure 𝛽 by using the actual travel distance of patients 

who visited the treatment center. However, estimating 𝛽 based on the empirical data is 

likely to be confounded with the existing distribution of facilities in a region instead of 

representing the patients’ inclination to travel to a facility. We defined facility catchment 

size as a function of facility attractiveness formulated by the Gaussian function to moderate 

the effect on spatial access measure for different impedance coefficients (J. Luo, 2014). 

The SVI includes variables that help to identify populations who are more likely to have a 

lack of access to the OTPs. The integration of these factors makes this approach more 

realistic and provides a better fit for modeling access to OTPs. Additionally, this index has 

been designed to use data at the small geographic unit (block group), which identifies areas 

with poor access to OTPs at a much finer geographic scale than existing methods.  

We compared our model with the 2SFCA methods. We found that spatial 

accessibility is underestimated in some areas using the 2SFCA method. This problem has 

been partially alleviated in the W2SFCA method by incorporating SVI and facility 

attractiveness into the model. We showed that not only being too far from the facility can 

result in decreased access to the facility, but also sociodemographic factors and lack of 

accommodation at the facility (e.g., not accepting certain insurance plans) can present an 

obstacle to access care at the facility. Our findings have several public health implications. 

It can be used for the identification of OTPs accessibility variations throughout the state 

and possibly improving access to OTPs. Specifically, the scale of analysis provides more 
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granularity to uncover local areas of spatial homogeneity and heterogeneity for 

community-based interventions. Moreover, results of cluster analysis (e.g., clusters of low 

access) can be overlaid with the clustering of a high rate of drug overdose to target 

interventions in areas where treatment programs are most needed. Our methodology is also 

deployable to other healthcare facilities such as HIV care providers and mental health 

services. 

Despite this notable advantage of W2SFCA, several issues deserve attention when 

interpreting the results. Population locations used for this study are weighted block group 

centroids. The developed method, however, has the potential to further articulate the 

population selection behavior because the block group population is not necessarily a 

proper indicator of opioid treatment needs. This can be partially addressed in future 

development by incorporating the number of patients with a history of prescription opioid 

use or experienced opioid overdoes. This study also assumes that all patients traveled by 

car and don’t consider different modes of transportation, such as public transportation, as 

it is somewhat limited in the state. Moreover, it is possible to adjust the weights used for 

estimating the attractiveness score. Different weighting scenarios can be implemented in 

the future study to assess sensitivity and robustness of the spatial accessibility score. 

Among treatments provided at OTP facilities, methadone currently needs to be taken under 

the supervision of a practitioner (Methadone, n.d.); however, patients can take the 

treatment at home for maintenance purposes if they meet certain criteria. Policies to make 

take-home treatment more accessible should be considered to minimize the impact of 

geographic distance on treatment utilization. The impact of these policies on accessibility 

could be an important future area of spatial accessibility research. 
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2.8. CONCLUSION 

This study provided a new perspective for analyzing healthcare accessibility, 

including both spatial and nonspatial factors to define accessibility to OTPs in South 

Carolina. The results of this study indicated a significant variation in access to OTPs 

statewide. Cluster of low spatial access were mainly observed in the middle, south, and 

southeast of the state with exception in the metropolitan area of Columbia and Charleston. 

Rather than defined accessibility solely on distance to OTP facilities, we considered the 

role of facility attractiveness and social vulnerability of the potential demand populations. 

The traditional 2SFCA overestimates regional accessibility and the W2SFCA can provide 

a more realistic evaluation. Based on this study, policymakers and public-health officials 

should consider optimizing the allocation of existing healthcare resources or putting 

additional resources into low accessibility areas. 
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THE DEVELOPMENT OF A MACHINE LEARNING MODEL FOR 

PREDICTION OF DRUG OVERDOSE IN SOUTH CAROLINA2

 
 

2 Parisa Bozorgi, Dwayne E. Porter, Amir Karami, The Development of a Machine 

Learning Model For Prediction of Drug Overdose in South Carolina. Under review by 

Health & Place Journal 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bozorgi%20P%5BAuthor%5D&cauthor=true&cauthor_uid=30289107
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bozorgi%20P%5BAuthor%5D&cauthor=true&cauthor_uid=30289107
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3.1. INTRODUCTION 

Drug overdose is a leading cause of unintentional death in the United States and 

has contributed significantly to a decline in life expectancy from 2015 to 2018 (Wilson, 

2020). Overdose deaths, especially from opioids, have also been recognized in recent years 

as a significant public health burden (CDC, 2020b). Prescription opioids have the highest 

levels of dependence, abuse, and poisoning (Hastings et al., 2020). Among opioid-involved 

deaths, the category of synthetic opioids other than methadone (illicitly manufactured 

fentanyl) was the most common with more than 36,000 deaths in 2019. The prescription 

opioids category, which includes natural and semi-synthetic opioids (e.g., oxycodone and 

hydrocodone) and methadone, was the second most common with 17,029 deaths with an 

age-adjusted mortality rate of 5.2 per 100,000 (National Institute on Drug Abuse, 2021). 

The opioid epidemic has particularly affected South Carolina (SC), and deaths due to both 

drug overdose and opioids have been steadily increasing. In 2018, South Carolina ranked 

9th among states with the highest opioid prescription rate in the country at 793 per 1,000 

residents.  The total number of drug overdose deaths was 1,131 in 2019, a 2.5% increase 

from the 1,103 in 2018, and a 43.3% increase in total overdose deaths since 2015. Further, 

of those 1,131 total overdose deaths in 2019, 923 involved prescription drugs, 876 involved 

opioids, 537 involved fentanyl, 196 involved heroin, and 230 involved cocaine. Opioid 

deaths continue to rise in South Carolina. In 2019, opioid-related overdose deaths increased 

by 7.3% from the preceding year (SC Drug Overdose Deaths, n.d.). The five counties with 

the highest number of opioid-involved deaths were Horry (131), Charleston (107); 

Greenville (102); Spartanburg (55); and Richland (52). Horry County saw a 54% increase 
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in opioid-related deaths, the highest in the state, going from 85 in 2018 to 131 in 2019 (SC 

Drug Overdose Deaths, n.d.). 

Given increases in drug overdoses, there is a need to develop more intervention and 

prevention services to prevent drug overdose and overdose death. The first step to 

developing and implementing these services is to identify a set of factors that best predict 

the location and magnitude of potential drug overdoses. Studies have typically examined 

drug-related outcomes at the level of the individual. While individual-level studies help to 

identify individuals at risk of drug abuse and overdose, identifying neighborhood-level 

factors that predict drug overdose is important for community-based intervention including 

policies and programs (Hembree et al., 2005). There is a lack of studies investigating the 

association of neighborhood characteristics with a drug overdose at the neighborhood level.  

Most neighborhood-level studies have examined the relationship between socio-

demographic characteristics with opioid overdose and they have not examined different 

types of neighborhood-level factors such as drug-related risk factors and protective factors. 

Methodological approaches used to quantify these factors are also important. A large body 

of works have measured drug overdose risk by identifying overdose hot spots using 

geospatial techniques such as Getis-Ord Gi* and local Moran’s I statistics (Dworkis et al., 

2017; Hernandez et al., 2020; Saloner & Karthikeyan, 2015; Stopka et al., 2019b). These 

studies employed such methods to identify areas in need of overdose prevention and harm 

reduction resources, such as Narcan training, needle exchange facilities, or safe injection 

sites. However, developing policies based on these approaches can be ineffective as these 

methods rely on past events. Spatial regression methods, including OLS and geographic 

weighted regression (GWR), have been also used to identify potential predictors of opioid 
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misuse and patients susceptible to abuse (X. Chen et al., 2017). Furthermore, several 

studies used traditional statistical approaches to predict risk of opioid addiction and 

overdose or to examine the association of risk factors with opioid overdose (Chichester et 

al., 2020; Frankenfeld & Leslie, 2019; Glanz et al., 2018; Seal et al., 2001; Thornton et al., 

2018; Zedler et al., 2014). These studies were conducted in specific populations (e.g., 

people who inject drugs, Medicaid recipients, veterans, and privately insured populations) 

that may not generalize well with other US populations. 

In recent years, machine learning (ML) techniques have been used widely for 

predicting outcomes in a variety of healthcare applications. Machine learning algorithms 

often show better performance compared to traditional linear regression models (P. Feng 

et al., 2018) as they can handle complex nonlinear relationships between the predictors and 

the responses and do not assume a specific shape of response function (e.g., linear or 

polynomial) (Shalev-Shwartz & Ben-David, 2014). Machine learning applications in the 

context of drug overdoses have been limited to identifying individuals at risk of drug abuse 

or opioid overdose using electronic medical records (Badger et al., 2019; Cochran et al., 

2017; Ellis et al., 2019; Lo-Ciganic et al., 2019; Yang et al., 2015).  These studies have not 

captured geographic variation in their models. 

To address the above limitations, this study aims to fill this research gap by building 

a spatial model to predict a location and magnitude of potential drug overdose using 

machine learning.  We identify the most important block group level predictors of drug 

overdose using feature selection methods. Specifically, we build an ensemble model using 

three individual predictive models that are combined into a final predictive model. The 

three individual models include socio-demographic characteristics, drug related factors, 
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and protective resources. The ensemble model is built using a machine learning algorithm 

and GWR, which we then compare them in terms of R-squared and Root Mean Square 

Error (RMSE). Our models are unique in their inclusion of spatial dependency in the 

machine learning model to account for spatial autocorrelation. We use a high-resolution 

spatial data at the block group level that can greatly enhance public health studies 

(Gabrysch et al., 2011) by improving context and decreasing spatial uncertainty (Murray 

et al., 2014) when compared with larger, aggregate units such as census tracts or ZIP Codes 

(Grubesic & Matisziw, 2006). In the following section, we detail the process by which a 

spatial model is developed to predict drug overdoses in South Carolina.  

Aim 1: Exploring advanced GIS and spatial statistical methods to examine spatial 

dependency and spatial pattern in drug overdose. 

Hypothesis 1.1: There is a significant spatial autocorrelation in drug overdose 

across South Carolina. 

Hypothesis 1.2: There is a local spatial association in drug overdose in South 

Carolina.  

Aim 2: Identify top community protective resources, overdose-related risk factors, 

and socio-demographic factors and develop/validate a predictive spatial risk model of the 

top factors in each domain. 

Hypothesis 2.1: risks factors can assist in drug overdose prediction. 

Hypothesis 2.2: socio-demographic factors can assist in drug overdose prediction. 

Hypothesis 2.3: community/neighborhood protective resource factors can assist in 

drug overdose prediction. 
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Aim 3: Develop and validate a predictive spatial risk model of drug overdose by 

ensembling of the three domains: community protective resources, overdose-related risk 

factors, and socio-demographic factors in South Carolina. 

Hypothesis 3.1: Ensembling can improve the efficiency and effectiveness of the 

predictive spatial risk model in aim 2. 

3.2. DATA AND MATERIAL 

3.2.1. STUDY AREA 

A spatial risk prediction model was calculated for all block groups (n= 3046) in 

South Carolina, a state located in the southeastern region of the U.S. with a population of 

4,625,364 over a 30,060 mi2 area. The state is characterized by both rural and urban 

landscapes and racial/ethnic diversity (US Census Bureau, n.d.). 

South Carolina is divided into four Environmental Affairs (EA) regions that provide 

local support to the communities located within their boundaries: 1) Upstate, 2) Midlands, 

3) Pee Dee, and 4) Lowcountry. The Upstate region covers the northwest quadrant of S.C., 

Midlands covers the center of the state from York to Barnwell counties, Lowcountry covers 

the south quadrant, and Pee Dee contains the northeast region of the state. South Carolina 

has 46 counties and 3,059 block groups, which are small subdivisions of Census tracts 

designed to be demographically homogeneous. They typically have a population between 

600 and 3,000 people (US Census Bureau, n.d.). Block groups assigned to bodies of water 

and those with no residential population were excluded from the analysis, thereby reducing 

the total number of block groups to 3046.  
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3.2.2. DATA SOURCES 

Variables were collected from various sources. The 2018 Naloxone administration 

data was obtained from the S.C. Department of Environmental and Health Control, Bureau 

of Emergency Medical Services (SCDHEC, EMS). This data set includes records of all 

patients who received naloxone by the EMS or law enforcement during 2018. This 

Naloxone administration dataset does not reflect private third-party administrations not 

made by EMS or law enforcement.  

The 2018 inpatient and emergency department (ED) discharges related to drug 

overdose were also obtained from S.C. Revenue and Fiscal Affairs Office (SCRFA). This 

data set includes the unique number of individuals who experienced drug overdose defined 

by ICD-10 codes T36-T50 aggregated at the block group level. Block groups with less than 

10 individuals with an overdose were suppressed by the SCRFA. 

Opioid prescriptions were obtained from the South Carolina Prescription Drug 

Monitoring Program (SCPDMP), which is called South Carolina Reporting & 

Identification Prescription Tracking System (SCRIPTS). The SCRIPTS database includes 

all retail and outpatient hospital pharmacy dispensing of schedules II-IV controlled 

substances. It also consists of any controlled substance dispensing activity of those 

substances which occurs in the state of South Carolina, i.e., mail-orders pharmacies. The 

database does not include methadone clinics and emergency room/departments dispensing 

(less than a 48-hour supply). The rate of individuals who received at least one opioid 

prescription was obtained by dividing the number of individuals who received at least one 
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opioid prescription, during 2018, by the average population (older than 10) of each block 

group and multiplying the result by 100,000 to create a per capita rate.  

Socio-demographic data were extracted at the neighborhood (e.g., block group) 

level from the U.S. Census Bureau’s Integrated Public Use Microdata Series (IPUMS), 

explicitly using the 2014-2018 American Community Survey (IPUMS, n.d.).  

The location of opioid treatment programs and buprenorphine providers were 

obtained from the Substance Abuse and Mental Health Services Administration 

(SAMHSA) released in 2019. The data contain the location and services provided by 

facilities. The location of services is geocoded with the corresponding street addresses 

(SAMHSA, n.d.) using ArcGIS Pro 2.6 (ESRI, 2020). 

The urban-rural classification is derived from USDA’s Rural-Urban Commuting 

Area (RUCA) codes. To determine the block groups' urban/rural status, we categorized 

them based on the rural-urban commuting area (RUCA) codes. RUCA codes classify U.S. 

Census tracts using measures of population density, urbanization, and daily commuting. 

For this analysis, a block group within a metropolitan defined Census tract (Code 1-3) is 

defined as urban. All other block groups are labeled as rural (Code 4-10) (USDA, n.d.). 

The geocoded locations of off/on-premises alcohol retail stores, tobacco, library, 

and parks were obtained from ESRI Business Analyst by searching for businesses by North 

American Industry Classification System (NAICS) codes. To verify the accuracy of the 

business locations, we assessed the latitude and longitude coordinates using an in-house 

geocoder.  
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Block group level crime and smoking behaviors data were also collected from the 

2018 ESRI market potential database (ESRI, n.d.). The market potential database is based 

on survey data from MRI-Simmons and measures the likely demand for a product or 

service in an area. The database includes an expected number of consumers for each 

product or service.  

3.2.3. DATA PREPROCESSING 

We manually reviewed EMS cases to identify drug-related overdose cases using a 

text search of chief complaint and to select for terms involving heroin, drug, and opioid 

and ICD-10 codes including T40.0 -- T40.6, heroin T40.1, methadone T40.3, cocaine 

T40.5. We then geocoded drug overdose and prescription data. All addresses were 

prepossessed to improve the geocoding quality, which has an impact on the derivation of 

the data at various geographic aggregation. Cases, including homeless and transient 

populations, persons who lacked a valid address, persons with only a P.O. box (n = 120), 

and addresses outside S.C. were removed. The data was reviewed for misspelled address 

information using Google Maps. Addresses were matched using a minimum match score 

of 85, spelling sensitivity of 80, and side offset of 10 feet, i.e., the default settings of 

ArcGIS. We then conducted interactive re-matching in ArcGIS, where addresses can be 

reviewed manually and corrected on a case by case basis as necessary. Addresses that 

couldn’t be geocoded to the exact location were removed from the dataset. We then 

aggregated EMS data at the block group level and generated rates for the following 

analyses.  
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Block group was selected as a unit of analysis, which allows for the determination 

of risk-levels at a granular level. For each block group, a rate of drug overdose per 1,000 

persons (over the age of 10) was calculated and served as the dependent variable in the 

model. We defined an overdose event as a case involving the administration of Naloxone 

by EMS personnel for a nonfatal drug overdose involving a single dose or multiple doses 

for an individual patient, or an overdose discharged from the ED or hospital.  

We investigated independent variables that were known or plausibly associated 

with a drug overdose based on prior research. The starting pool of independent variables 

was 115. As a result of consultation with experts, SCDHEC and the Department of Alcohol 

and Other Drug Abuse Services (DAODAS), variables that were not necessarily important 

in explaining variation in drug overdose were removed. The final data comprised 83 

variables. A list of variables is summarized in Table 3.1. Descriptive statistics, including 

median, mean, first quartile, and third quartile, were calculated for all the finalized 

variables included in the model.  (Figures 3.1 and 3.2). 

Table 3.1. Candidate explanatory variables 

Category Subcategory Variables Data Source 

Socio-

demographic 

Unemployment Long term unemployed Population 

16+ 

 

ACS (2014-

2018) 

Population  Population Density 

Women Population 10+ 

Men Population 10+ 
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Population age 25-34 

Population age 35-44 

Population age 45-54 

Population age 55-64 

Population age 65+ 

Income HH Income $15000−24999 

HH Income $15000-24999 

HH Income $25000-34999 

HH Income $35000−49999 

HH Income $50000−74999 

HH Income $75000−99999 

HH Income $100000−149999 

HH Income $150000−199999 

HH Income $200000+ 

HH Income less than $35000 

Race White Population 

Black Population 
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Other Races 

Marital status Pop Age 15+ Widowed 

Pop Age 15+ Married 

Pop Age 15+ Never Married 

Pop Age 15+ Divorced 

Diversity Diversity Index ESRI 2018 

Education 

attainment 

Education Pop Age 25+: < 9th 

Grade 

ACS (2014-

2018) 

Education: High School/No 

Diploma 

Education: High School Diploma 

Education: Some College/No 

Degree 

Education: Associate Degree 

Education: Bachelor’s Degree 

Education: Graduate Degree 

Households HHs w/No Retirement Income ACS (2014-

2018) 

 
Median Household Income 

HHs: Inc Below Poverty Level 

 HHs w/Pop <18: Oth Fam/Fem 

HHr 



46 
 

HHs:Inc at/Above Poverty Level 

HHs with Social Security Income ESRI 2018 

HHs w/No Social Security Income 

HHs w/Public Assist Income 

HHs with Retirement Income ACS (2014-

2018) 

HHs w/Food Stamps/SNAP ESRI 2018 

Owner Households ACS (2014-

2018) 

Renter Households 

Owner HHs by Vehicles Avail: 0 

Renter HHs by Vehicles Avail: 0 

Median Year Householder Moved 

In 

Insurance 

coverage 

Pop <19: No Health Insurance 

Urbanicity Urban/Rural USDA (RUCA 

Code) 

Housing Housing Affordability Index ESRI 2018 

Vacant Housing Units 

Average Home Value 

Housing: Mobile Homes 
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Risk Factors Smoking and 

Prescriptions 

Smoking Accessories Average ESRI 2018 

SCDHEC 
Smoking Products Average 

Smoked cigarette/vaporizer last 12 

months 

Smoked e-cigarette/vaporizer last 

12 months 

Smoked menthol cigarettes in last 

12 months 

Smoked non-menthol cigarettes in 

last 12 months 

Drugs and Vitamins 

Used prescription drug for 

anxiety/panic 

Used prescription drug for 

backache/back pain 

Used prescription drug for migraine 

headache 

Used prescription drug for 

depression 

Used prescription drug for sinus 

congestion/headache 

Nonprescription Drugs 

Prescription Drugs 

Medicare Rx Drug Premium 

Individuals with 1+ opioid 

prescription 

SCDHEC 

Access to Tobacco Stores 
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Access to Liquor Stores Facility location 

from SCDOR 

and ESRI 2018 

 

Crime Total Crime Index ESRI 2018 

 
Personal Crime Index 

Property Crime Index 

Protective 

Resources 

Accessibility 

measurements 

Access to Parks  Facility location 

from ESRI 

2018 
Access to Fitness 

Access to Library  

Access to Hospitals  Hospital 

location from 

SCDHEC 

Access to OTP Facility location 

from SAMSHA 

2019 
Access to Menta Health Facility  

Access to Buprenorphine Providers  
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Figure 3.1. Descriptive statistics of the finalized socio-demographic variables 
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Figure 3.2. Descriptive statistics of the finalized drug risk factors and preventive 

sources variables 
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Spatial factors such as access to tobacco and liquor stores, parks, and libraries were 

calculated using Enhanced Two-Step Floating Catchment Area (E2SFCA) (W. Luo & Qi, 

2009b). Accessibility to opioid treatment programs (OTPs), buprenorphine practitioners, 

mental health facilities, and hospitals were measured using our developed spatial 

accessibility model (see Chapter 2). Variables were divided into three domains (risk 

factors, protective factors, and socio-demographics) with the hypothesis that each domain 

would have a different relationship with a drug overdose.  

The risk factor domain included access to liquor and tobacco stores, the rate of 

individuals who received at least one opioid prescription, smoking products expenditure, 

smoking behaviors, and crime data. The hypothesis was that areas with higher access to 

the liquor and tobacco stores and a higher rate of patients would experience a higher rate 

of overdose. The protective resource domain included accessibility measurements to 

facilities such as hospitals, libraries, parks, opioid treatment programs. The hypothesis was 

that areas with higher accessibility score would have a lower rate of drug overdose. The 

third category of data was related to the socio-demographic characteristics of the 

neighborhood. The relationship of each of these three domains with drug overdose events 

was explored in-depth in the following sections of this study.  

3.3. METHODOLOGY 

3.3.1. SPATIAL STATISTICS 

The analysis of spatial data is complicated by a phenomenon known as spatial 

autocorrelation (SAC) that needs to be accounted for in machine learning approaches. 

Spatial autocorrelation occurs when the values of variables sampled at nearby locations are 
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not independent of each other (Tobler, 1970). To account for spatial autocorrelation, we 

first checked whether spatial autocorrelation was present in our data using Global Moran’s 

I. The Global Moran’s I values range approximately between −1 to 1. A Moran value near 

zero indicates no spatial pattern, no spatial autocorrelation (confirming the null hypothesis 

of spatial randomness). A negative spatial autocorrelation coefficient reflects neighboring 

areas with large inverse values–e.g., large values and small values are neighbors (i.e., 

dissimilarity). A positive spatial autocorrelation coefficient reflects neighboring areas with 

similarly high or low values (i.e., similarity). A pseudo p-value for the Global Moran’s I 

was calculated via a Monte Carlo simulation consisting of 999 random replications.  

To identify statistically significant clusters of overdoses in particular 

neighborhoods, local spatial variations were also examined. Two local measures of spatial 

association including Anselin Local Moran’s I (i.e., LISA) and local Getis-Ord (Gi*) 

statistics were used to detect clusters or outliers and the most important type of spatial 

correlation. Anselin Local Moran’s I was utilized to detect clusters and outliers of areas 

with extreme drug overdose values unexplained by random variation. Further, the Gi* 

statistic was applied to provide additional information indicating the intensity and stability 

of the hot spot and cold spot clusters. The Gi* statistic consists of a ratio of the weighted 

average of the values in the neighboring locations to the sum of all values, including the 

value at the location (𝑥𝑖) (Equation 1). In contrast, the local Moran’s I statistic includes 

only neighboring features and the value 𝑥𝑖 is not included (Equation 2). 

𝐺𝑖
∗ =

𝛴𝑗𝑤𝑖𝑗𝑥𝑖

𝛴𝑗𝑥𝑖
  Equation 1 
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𝐼𝑖 =
𝛴𝑗𝑤𝑖𝑗𝑧𝑖𝑧𝑗

𝛴𝑖𝑧𝑖
2    Equation 2 

The statistical significance of a Z-score identifies the presence and intensity of local 

clusters of hot spots and cold spots of the event, relative to the hypothesis of spatial 

randomness. We quantify spatial relationships using K-Nearest Neighbor (KNN). To 

define number of neighbors (K), we followed a general rule of thumb which evaluates each 

neighbor in the context of a minimum of eight neighbors for hotspot analysis (ESRI, 2011).  

3.3.2. MODELING PROCESS OVERVIEW 

To create the spatial risk prediction model, we undertook a machine learning 

process to identify different types of predictive power from the variables. Machine learning 

is a field of computer science that uses computer algorithms to identify hidden patterns in 

datasets with a multitude of variables and can be used to predict various outcomes. Machine 

learning algorithms typically build a model from test inputs in order to make data-driven 

predictions or decisions. Machine learning can be divided into categories such as 

supervised and unsupervised (Osisanwo et al., 2017). In a supervised learning model, the 

algorithm learns on a labeled dataset. Supervised learning can be further categorized into 

classification and regression. Classification is predicting discrete class labels, while 

regression is the task of predicting a continuous quantity (Osisanwo et al., 2017). An 

unsupervised model, in contrast, provides unlabeled data that the algorithm discovers 

hidden patterns in data on its own. Unsupervised learning models are used for three main 

tasks: clustering, association and dimensionality reduction (Gentleman & Carey, 2008). 

We conducted a feature selection process to recognize the best subset of variables 

that could provide better prediction performance. By identifying the best subset of 
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variables, we constructed different predictive models informed by supervised machine 

learning techniques. Several spatial risk prediction models for each domain were built. The 

predictive power of each of these domains was captured separately to explore how well 

each of these domains predicted overdose independently. All three models were also 

combined into a final ensemble predictive model. The predictive power of the three 

separate and the combined models was compared with each other. All models were trained 

and tested by the proportion of 80/20 percent of the data during each iteration process, 

which was repeated 1000 times. All models’ parameters were determined using grid search 

approach with 5-fold cross-validation. We then conducted an evaluation process to validate 

the final model was generalizable across the different datasets and areas.  

The following sections will outline the machine learning process of feature 

selection, model construction, and validation process. The systematic framework is shown 

in Figure 3.3. The diagram depicts the flow from raw data through the development of 

predictive models, and their evaluation towards identifying risk of drug overdose. Figure 

3.3 shows the ensembling process that combines the output predictions of the three 

domains. 
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Figure 3.3. A machine learning-based framework to predict drug overdose 
 

 

Figure 3.4. Ensembling process 
 



56 
 

3.3.3. DESIGN EXPERIMENTS 

In designing experiments for the prediction model, a variety of well-established 

machine learning algorithms were used. These included the following algorithms: Linear 

Regression (LR), Sequential Minimal Optimization (SMO), Random Forest (RF), and 

Extra Gradient Boosting (XG-Boost). In the following paragraphs, the models used in this 

study are briefly described.  

Linear Regression is a statistical model that finds the coefficients of the best fitting 

linear model in order to describe the relationship between a continuous dependent variable 

and one or more independent variables. Sequential Minimal Optimization (SMO) is based 

on nonlinear transformations of the variables into a higher-dimensional feature space 

(Vapnik, 2000).  

Ensemble models synthesize the results of multiple learning algorithms to obtain 

better performance than individual algorithms and help decrease variance and bias and 

improve predictions. The ensemble models used in our study were random forests and 

gradient boosting. Random Forest is a tree-based ensemble model that develops multiple 

random decision trees through a bagging method (Ajit, 2016). The Random Forest 

algorithm works by generating a large number of independent classification or regression 

decision trees and then employing the majority of the vote (for classification) or averaging 

(for regression) to generate predictions. This reduces the drawback of the large variance in 

decision trees. Decision splits are made based on impurity and information gain. Extra 

Gradient Boosting (XGBoost) is also an ensemble prediction model based on decision trees 

(T. Chen & Guestrin, 2016).  
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Compared to other algorithms, XGBoost has higher interpretability, predictive 

accuracy, and computational speed (Ajit, 2016). In contrast to Random Forest, this model 

successively builds decision trees using gradient descent in order to minimize the error. A 

final prediction is made using a weighted majority vote of all of the decision trees (Ajit, 

2016). Both Random Forest and XGBoost are robust against outliers. Because of bootstrap 

sampling, outliers appear in individual trees less often, and therefore, their influence is 

curtailed (Ajit, 2016). They can also recognize non-linear relationships in data, which is 

useful when modeling spatial relationships. They are not affected by co-linearity in the 

data. This is highly valuable as socio-demographic data can be highly correlated.   

We split each category’s dataset into training (80%) and test (20%) datasets. We 

performed a grid-search approach to tune parameters for each algorithm. The most 

important parameters for XGBoost are the number of trees (nrounds), the learning rate 

(eta), and the depth of each tree (depth). These parameters control the complexity and the 

fitness of the model. The rest of the parameters are complementary and help to avoid 

situations of overfitting and underfitting. For RF, an appropriate number of trees (ntrees) 

and the number of randomly selected predictors at each tree node (mtry) were specified. 

For SMO, a regularization or complexity parameter (C) and the radial kernel search 

parameter (gamma) that minimize cross-validation error were selected.  

We then implemented our modeling process in two steps: feature selection and 

model building. Feature selection is one of the critical steps in the development of a 

prediction model, which aims at eliminating less important variables without losing much 

of the total information (Bagherzadeh-Khiabani et al., 2016). It is desirable to reduce the 
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number of input variables to reduce the computational cost of modeling, risk of model 

overfitting, training time, and to improve the performance of the model.  

There are two main types of feature selection techniques: filter and wrapper 

methods (Liu et al., 2010). The filter method ranks the feature subset based on the 

correlation between the outcome variable and independent variables. Subsets that show 

high correlation with the outcome variable and less correlation with independent variables 

will be ranked at a higher value. This method doesn’t involve any machine learning 

algorithm (Liu et al., 2010). Wrapper methods use a specific learning algorithm to select 

features. The method utilizes a search procedure in the space of possible features and then 

generates and evaluates various subsets in order to find the best one (Sánchez-Maroño et 

al., 2007).  

We used the most common feature selection methods: Filter (i.e., correlation-based 

feature selection (CFS)) and wrapper subset evaluation methods to measure the effect of 

different feature selection methods on the model performance. To select the best subset of 

features in each category, each dataset was fed into each machine learning algorithm 

separately. The performance of the various algorithms was then investigated using the 

paired T-test to determine whether the performance was statistically significantly different 

among the algorithms. We considered statistical significance at the confidence level of 

95%, associated with a p-value < 0.05. Additionally, we computed the SHapley Additive 

exPlanation (SHAP) to rank the features. SHAP is an additive feature attribution method, 

in which each prediction is explained by the contribution of the features of the dataset to 

the model output (Lim & Chi, 2019). More specifically, SHAP approximate Shapley 

values, an idea from game theory that is the solution for the problem of computing the 
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contribution to a model’s prediction of every subset of features given a dataset with n 

features (Lim & Chi, 2019).  

To build a model for each category, the model was trained on the training dataset 

using the best features. The trained model from each algorithm was then used to predict on 

the 20% test dataset. Further, an ensemble model was created by combining three models–

each model derived from each category–into a robust fused prediction model aimed at 

reducing the overall error. To build the ensemble model, we used two approaches 

including, machine learning and geographic weighted regression (GWR) (Brunsdon et al., 

1996). GWR is a local spatial statistical technique that assumes non-stationarity in 

relationships. That is the relationships between the dependent variable and the explanatory 

variables changes from location to location. GWR, unlike global statistics, generates an 

equation for every component (i.e., area) in the dataset by calibrating each one using the 

target feature and its neighbors. In this respect, nearby features produce a higher weight in 

the calibration than distant features. The prediction of three individual models was served 

as independent variables, and drug overdose rate served as a dependent variable. For GWR, 

an adaptive bi-square kernel type and a KNN search were used for bandwidth selection. 

We incorporated spatial dependency into ML models using neighborhood matrices, 

which specify the relationship between each data location and those at a neighboring 

location. The neighborhood can be identified by the adjacency of block groups that share 

a common border, a distance-based weight matrix, or a specific number of neighbors. 

Regarding the first two approaches, since block group polygons are of widely varying sizes, 

there will be problems with the distribution of the neighbor cardinalities. In addition, there 

will be a potential problem with isolates when using a distance-based weight matrix. Thus, 
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to have the same number of neighbors for each location and avoid the problem of isolates, 

we defined the neighborhood relationship using KNN. To find a suitable number (k) of 

nearest neighbors, different k values range from 8 to 46 were examined, and the 

corresponding estimation errors were obtained. We followed the rule of thumb suggested 

by ESRI (ESRI, 2011) to determine the min/max for k. The k=35 that resulted in the 

minimum error was selected. 

The machine learning experiments were implemented in the open-source Waikato 

Environment for Knowledge Analysis platform and Python 3.6 with computing libraries, 

which included Numpy 1.15.4, Pandas, Scikitlearn, and XGBoost. Spatial analysis was 

performed in GeoDa 1.10.0.8 (University of Chicago, n.d.) and ArcGIS Pro 2.6 (ESRI, 2020). 

3.3.4. MODEL VALIDATION 

We validated the model through several measurements. First, we assessed the 

performance of various algorithms in terms of Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE). RMSE is a common measurement of the differences between 

regression model predicted values and observed values. It is formally defined as 𝑅𝑀𝑆𝐸 =

√
∑ (�̂�𝑗−𝑦𝑗)

2𝑛

𝑗=1

𝑛
, where �̂� represents the prediction, and y represents the observed value at 

observation n. Lower RMSE scores are typically more desirable. An RMSE value of 0 

would indicate a perfect fit for the data. RMSE can be difficult to interpret on its own; 

however, it is useful for comparing models with similar outcome variables. In our case, the 

outcome variables (drug overdose rate) are consistent across modeling datasets, and 

therefore can be reasonably compared using RMSE. MAE measures the average magnitude 
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of the errors in a set of predictions without considering their direction. It’s the average over 

the test sample of the absolute differences between prediction and actual observation where 

all individual differences have equal weight. It is defined as 𝑀𝐴𝐸 =
1

𝑛
∑ |�̂�𝑗 − 𝑦𝑗|

𝑛

𝐽=1
, 

where �̂� represents the prediction, and y represents the observed value at observation n. In 

order to compare algorithms, we established a zero-rule algorithm as a baseline by which 

to compare all evaluated algorithms. The zero-rule algorithm predicts the mean of the 

training dataset. 

Second, we conducted both normal and spatial cross-validation. The goal of normal 

cross-validation is to test the model’s ability to predict new data that was not used in 

estimating it in order to flag problems like overfitting or selection bias. It helps to verify 

that the model is generalizable across different subsets of the data, not just the initial test 

set. Normal cross-validation is based on partitioning the set of observations into equally 

sized subsets to train the classifier on all but one of these subsets and test it on the remaining 

one. We conducted n-fold cross-validation tests to ensure that the model is generalizable. 

This means that the initial data set was divided into n equal subsets, with n-1 subsets used 

to train the model and the remaining subsets used to test the model; this partitioning was 

repeated n times (folds). We then average errors measured on these test data sets (RMSE 

and MAE in our case) across n folds. The preferred number of folds in n-fold is suggested 

to be between 5 and 10 (Hastie et al., 2009; Kohavi, 1995). For this study, we implemented 

5-fold cross-validation. 

Cross-validation assumes that (pairs of) observations in different subsets of the 

partition are independent. In a spatial context, spatial autocorrelation causes the normal 
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random cross‐validation techniques to underestimate the prediction error. When test data 

is randomly selected for cross-validation from the entire spatial domain, training and test 

data from nearby locations will be dependent (spatial autocorrelation). Consequently, if the 

objective is to predict outside the spatial structure of the training data, error estimates from 

random cross-validations will be overly optimistic. To provide a useful estimate for our 

model prediction performance without optimistic bias due to SAC, we performed spatial 

cross-validation.  This effectively forces testing on more spatially distant features, thus 

decreasing spatial dependence and reducing optimism in error estimates (Trachsel & 

Telford, 2016). To implement the spatial cross-validation, we did not divide the data into 

subsets randomly, but instead, we spatially divided training and test datasets. A spatially 

segregated hold-out prevents spatial dependency between training and test datasets and 

thus makes the two datasets to be more likely independent (Townsend Peterson et al., 

2007). Our test dataset included all block groups within a county and a county’s immediate 

block group neighbors, and the training dataset included the rest of the block groups.  This 

was done in an iterative process splitting was done until all 46 counties had been test 

dataset. The error was then averaged over the splits. 

Lastly, we assessed the model residuals using Global Moran’s I. The technique tests 

the model’s spatial autocorrelation by calculating the residual Moran’s I, where 0 indicates 

the weakest spatial autocorrelation model and the p-value > 0.05 represents no significant 

spatial autocorrelation exists. 
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3.4. RESULTS 

3.4.1. SPATIAL STATISTICS 

The result of Global Moran’s I showed the presence of statistically significant (p-

value < 0.0001) positive spatial autocorrelation (Global Moran’s I = 0.22) in drug 

overdose, confirming the presence of spatial clustering (Figure 3.5). Significant clusters of 

block groups with high (hot spots) and low (cold spots) overdose rates, as assessed by the 

Getis-Ord Gi* tool are shown in Figure 3.6. Cold spots are mainly located in lower 

Midlands region, while hot spots located in the northeast. The Figure 3.7 shows the 

locations with significant local Gi* for various p-values. Anselin Local Moran’s I 

confirmed the significant hot and cold spots identified by the Getis-Ord Gi * tool. The 

Anselin Local Moran’s I showed core clustering of high drug overdose block groups next 

to high ones (HH) consistently located in the northeast and north of the state (Figure 3.8 

and 3.4). The analysis also showed a core cold spot (L) located in the lower Midlands 

region, on the bottom of the I-95 corridor. Statistically significant spatial outliers (HL, LH 

clustering) were evident in the central and western parts of the state. 

 

 Figure 3.5. Global Moran’s I statistic for drug overdose 



64 
 

 

Figure 3.6. Gi* statistic cluster map of the drug overdose 
 

 

Figure 3.7. Gi* statistical significance map of the drug overdose 
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 Figure 3.8. Local Moran’s I cluster map of the drug overdose 
 

 

  Figure 3.9. Local Moran’s I statistical significance map of the drug overdose 
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3.4.2. PREDICTION PERFORMANCE OF MACHINE LEARNING ALGORITHMS 

All the experiments were performed on each domain by splitting each into 80% 

training and 20% testing datasets. Tables 3.2 through 3.4 describes the comparative 

evaluation scores of different models across different feature selection methods after 

hyperparameter optimization. The feature selection methods mentioned earlier provided a 

different set of important features. However, there were features that were presented as the 

most important ones by all algorithms.  The most important features were then ranked using 

SHAP. To determine the performance of different models on a varying number of 

variables, the MAE and RMSE were calculated. The higher the MAE and RMSE the model 

had, the worse was the performance of the model.  In the risk factor category, the lowest 

error was obtained by the XGBoost method using wrapper RF feature subset selection. 

Wrapper LR algorithm in feature selection yielded the most accurate subset of features for 

the XGBoost method in the socio-demographic category. Regarding the protective 

resource category, the wrapper RF algorithm for the XGBoost method yielded the most 

accurate subset of features. 



 

 
 

6
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 Table 3.2. Performance metrics of ML algorithms over different feature selection methods (risk factor domain) 

Attribute 

evaluator 

RF LR SMO XGBoost ZeroR 

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE MAE RMSE 

CFS 0.28 4.68 6.16 0.30 4.64 5..86 0.34 4.63 5.89 0.29 3.91 5.07 5.01 6.37 

Wrapper LR 0.38 4.28 5.84 0.40 4.45 5.73 0.4 4.43 5.76 0.42 3.61 4.83 5.01 6.37 

Wrapper RF 0.41 4.28 5.69 0.38 4.51 5.79 0.38 4.47 5.84 0.44 3.18 4.18 5.01 6.37 

Wrapper SMO 0.39 4.28 5.80 0.40 4.45 5.73 0.41 4.42 5.75 0.42 3.29 4.28 5.01 6.37 

Normalized 0.39 4.25 5.80 0.40 4.45 5.73 0.40 4.41 5.75 0.41 3.36 4.29 5.01 6.37 

Standardized 0.39 4.25 5.80 0.40 4.45 5.73 0.40 4.41 5.75 0.41 3.36 4.29 5.01 6.37 
 

 

 Table 3.3. Performance metrics of ML algorithms over different feature selection methods (socio-demographic domain) 

Attribute 

evaluator 

RF LR SMO XGBoost ZeroR 

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE MAE RMSE 

CFS 0.28 4.68 6.04 0.31 4.63 5..95 0.30 4.59 5.98 0.28 4.60 5.87 5.01 6.37 

Wrapper LR 0.32 4.57 5.92 0.35 4.54 5.86 0.33 4.51 5.90 0.38 3.41 4.52 5.01 6.37 

Wrapper RF 0.25 4.93 6.24 0.22 4.92 6.29 0.21 4.92 6.28 0.31 3.85 4.92 5.01 6.37 

Wrapper SMO 0.32 4.57 5.92 0.35 4.54 5.87 0.34 4.51 5.88 0.32 3.51 4.78 5.01 6.37 

Normalized 0.32 4.58 5.92 0.32 4.57 5.92 0.31 4.53 5.97 0.28 3.36 4.90 5.01 6.37 

Standardized 0.31 4.57 5.92 0.33 4.55 5.90 0.31 4.53 5.97 0.28 3.36 4.90 5.01 6.37 
 

 

 Table 3.4. Performance metrics of ML algorithms over different feature selection methods (protective resource domain) 

Attribute 

evaluator 

RF LR SMO XGBoost ZeroR 

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE MAE RMSE 

CFS 0.10 4.78 6.23 0.09 4.93 6.23 0.06 4.90 6.32 0.10 4.60 6.22 5.01 6.37 

Wrapper LR 0.11 4.72 6.12 0.11 4.89 6.22 0.08 4.84 6.32 0.12 4.56 5.91 5.01 6.37 

Wrapper RF 0.12 4.60 6.01 0.09 4.91 6.23 0.08 4.87 6.31 0.12 4.41 5.56 5.01 6.37 

Wrapper SMO 0.12 4.92 6.43 0.10 4.92 6.23 0.08 4.91 6.27 0.13 4.74 5.80 5.01 6.37 

Normalized 0.10 4.61 6.02 0.11 4.89 6.22 0.08 4.84 6.33 0.13 4.67 5.82 5.01 6.37 

Standardized 0.10 4.58 5.98 0.11 4.89 6.22 0.08 4.84 6.33 0.13 4.67 5.82 5.01 6.37 
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Regarding the important features, in the risk factors category, the opioid 

prescription rate provided the strongest predictive power in all the selection methods. 

Access to liquor and tobacco retail stores were selected as important variables through all 

feature selection experiments. In the final model, the opioid prescription rate and average 

smoking accessories expenditures provided the strongest predictive power. In the socio-

demographic domain, population with income less than $35,000, percent widowed, percent 

divorced, and population density were selected as important features throughout all feature 

selection experiments. Furthermore, urban/rural status, unemployment rate, and vacant 

housing units were selected by the RF and SMO algorithms. In the final model, households 

with food stamps provided the strongest predictive power, followed by a population with 

income less than $35,000 and population density. Access to OTP facilities calculated by 

weighted 2SFCA and access to fitness were selected as important variables in all the 

selection methods in the protective resource category. In the final model, access to OTP 

facilities provided the strongest predictive power within this category of variables, 

followed by access to the hospitals. Figures 3.10, 3.11 and 3.12 show the variables included 

in each model in order of their relative predictive importance in the model. The x-axis is 

essentially the average magnitude change in model output calculated by SHAP values. The 

XGBoost model’s parameters tuning experiments for each domain and ensemble model are 

shown through Figures 3.13 – 3.20. The final optimized parameters for each domain are 

depicted in Table 3.5.  
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Figure 3.10. Important predictors in risk factors domain 
 

 

Figure 3.11. Important predictors in socio-demographic domain 
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Figure 3.12. Important predictors in protective resource domain 
 

 

Figure 3.13. Tune max tree depth, subsample, and colsample  

parameters (risk factors) 
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Figure 3.14. Tune child weight, gamma and eta  

parameters (risk factors) 
 

 

Figure 3.15. Tune max tree depth, subsample, and  

colsample parameters (socio-demographic)
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Figure 3.16. Tune child weight, gamma and eta parameters  

(socio-demographic) 
 

 

Figure 3.17. Tune max tree depth, subsample, and colsample 

 parameters ((protective resources) 
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Figure 3.18. Tune child weight, gamma and eta parameters  

(protective resources) 
 

 

Figure 3.19. Tune max tree depth, subsample, and colsample  

parameters (ensemble model) 
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Figure 3.20. Tune child weight, gamma and eta parameters  

(ensemble model) 
 

Table 3.5. XGBoost Hyper-parameter values extracted with the use of  

grid search and parallel processing. 

 

Domain Parameters Name Optimized Value 

Risk Factors Domain nrounds 1800 

 eta  0.01 

gamma  0.9 

depth  3 

min child weight  9 

subsample  0.2 

column sample 1 

lambda 2 

alpha 1 
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Socio- demographic 

Domain 

nrounds 800 

 eta  0.01 

gamma  0.1 

depth  6 

min child weight 3 

subsample  1 

column sample 0.4 

lambda 2 

alpha 1 

Protective Resource 

Domain 

nrounds 400 

 eta  0.02 

gamma  0.05 

depth  3 

min child weight 3 

subsample  0.5 

column sample 0.8 

lambda 2 

alpha 1 

Ensemble Model nrounds 100 

 eta  0.1 

gamma  1 

depth  4 

min child weight 1 

subsample  0.75 
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column sample 1 

lambda 2 

alpha 1 

 

We ensembled the three aforementioned domains (socio-demographic, risk, and 

protective resources) to one final model using the XGBoost and GWR. The prediction 

results from each of the domains served as independent variables with the aim of reducing 

the model’s overall error. The prediction range and R-squared for each of the individuals 

and ensemble models are provided in Table 3.6. The results showed that the ensemble 

model by XGBoost achieved higher R-squared improved by 0.46-0.62 over individual 

models. The results also indicated that ensemble machine learning by XGBoost 

outperformed GWR. The Figure 3.4 shows how correlated the predictions were with the 

observed values. The plots indicate that all the models perform better when predicting 

lower values. Moving from the left to the right along the x-axis (from lower to higher 

values), the predicted and observed values become less correlated with each other. The 

actual drug overdose and prediction maps for each domain and ensemble model is shown 

in Figure 3.22. In the prediction maps, it is clear how the variables in each model strongly 

informed its predictions. As shown in the map, the risk factors prediction map shows more 

accuracy than the other two categories, particularly in northeast, such as block groups in 

Georgetown and Horry Counties. Protective factor and socio-demographic categories also 

predicted well in Georgetown County.  
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 Table 3.6. Descriptive statistics of the prediction models 

  

Socio-

demographic 

Model 

Risk 

Factor 

Model 

Protective 

Resource 

Model 

Ensemble 

Model by 

XGBoost 

Ensemble 

Model by 

GWR 

Drug 

Overdose 

Rate (per 

1000) 

Mean 6.998 6.986 6.888 6.994 6.188 6.992 

Std. 

Deviation 
3.308 3.499 2.247 5.443 5.698 6.266 

Minimum 0.017 0.016 1.403 0.001 0 0 

Maximum 34.751 26.968 18.678 53.73 68.012 61.111 

R2 0.19 0.27 0.11 0.73 0.71 -  

 

 

Figure 3.21. Scatter plots of predicted versus observed drug  

overdose values  
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Figure 3.22. Map of actual drug overdose (top map) and prediction for each  

individual model and ensemble model at block group level 



 

79 
 

3.4.3. MODEL EVALUATION AND VALIDATION 

The RMSE of prediction using 5-fold cross-validation is shown in Figure 3.23. The 

results suggested that the model was robust and predicted well for random subsamples. The 

MAE and RMSE for the risk factors model were 3.18 and 4.18, respectively. The MAE 

and RMSE for the socio-demographic model were 3.56 and 4.61, respectively, which was 

statistically significantly slightly higher than risk factors’ model error at the significant 

level of 0.05. The protective factors model showed an MAE of 4.34 and RMSE of 5.46, 

statistically significantly higher than the socio-demographic and risk factor models' errors 

at the significant level of p-value = 0.05. The risk factors model provided the strongest 

predictive power to the final model, followed by the socio-demographic and protective 

resources models. The protective model contributed the least predictive power to the 

model, which was consistent with the higher level of errors that the model contained on its 

own.  

The MAE and RMSE of the ensemble model using the XGBoost were 2.06 and 

2.69, respectively. In the ensemble by GWR, the ensemble predictions had MAE and 

RMSE of 2.48 and 3.34, respectively. As with the distribution of errors shown in Figure 

3.4 for each model, there were a few significantly larger outliers, likely accounting for the 

discrepancy between the prediction values and the areas with a higher rate of overdoses. 

The value of its outlier errors was lower than that of the other models. The distribution of 

errors indicated that across many subsets of the block groups, the ensemble model 

performed with the least amount of error. The normal cross-validation result indicated that 

the model built in the training set had minimal overfitting features and generalized well 

across the different datasets (Figure 3.24). The RMSE obtained from spatial cross-
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validation was 3.39 which did not increase considerably compared to the error estimated 

from normal cross-validation (RMSE difference of 0.7). 

Moreover, a spatial autocorrelation test for residuals was performed for each 

individual model and the ensemble model (Figure 3.25). To map the residuals, the standard 

deviation classification method with an interval of 1 standard deviation from the mean was 

used. The blue color emphasizes values above the mean, and the red color shows values 

below the mean. As it is shown in the map, the distribution of the residuals for each 

individual model indicates clustering of over and under predictions in some areas. The map 

of residuals for the ensemble model showed that no pattern exists; instead, the model’s 

residuals exhibited a random noise meaning that there was no clustering of over and under 

predictions in the model.  

The result was further confirmed statistically by applying a spatial autocorrelation 

statistic (Global Moran’s I) on residuals. This detects significant clustering or random 

pattern in the residuals. The Moran’s I report revealed that the pattern of the residuals was 

significantly clustered, with a Moran’s I value of 0.048, 0.065, and 0.045 for risk factors, 

socio-demographic, and protective resource, respectively. Figures 3.26 through 3.29 shows 

scatter plots of the results obtained from the ensemble model residual analysis according 

to the different spatial relationship conceptualization methods. The pattern of the residuals 

was significantly different from random, with a Moran’s index 0.009, -0.004, -0.003, and 

0.008 for KNN = 8, KNN = 25, KNN = 35, and queen contiguity, respectively. The 

residuals had no statistically significant spatial autocorrelation. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486340/figure/ijerph-14-00654-f004/


 

81 
 

 

Figure 3.23. Performance evaluation results of models across 5-folds 

 

 

Figure 3.24. Performance evaluation results of models according to RMSE 
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Figure 3.25. Distribution of residuals for individual and ensemble models 
 

 

Figure 3.26. Moran’s I scatter plot for ensemble model 

residual with 8 nearest neighbors 
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Figure 3.27. Moran’s I scatter plot for ensemble model residual  

with 25 nearest neighbors 
 

 

Figure 3.28. Moran’s I scatter plot for ensemble model residual  

with 35 nearest neighbors 
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Figure 3.29. Moran’s I scatter plot for ensemble model residual with  

queen contiguity neighbors 
 

3.5. DISCUSSION AND CONCLUSION 

We identified the most important features that contributed to a drug overdose and 

developed a spatial risk model to predict drug overdose at the neighborhood level across 

South Carolina. The data comprise 83 variables categorized into three domains: socio-

demographic, risk factors, and protective resources. We used different feature selection 

techniques - including Linear Regression (LR), Sequential Minimal Optimization (SMO), 

Random Forest (RF), Extra Gradient Boosting (XGBoost), and SHAP to assess the best 

subset of features. Throughout the modeling process, the three individual and ensemble 

models were trained on random subsets of 80% of the block groups and tested on the 

remaining 20% of the block groups. We compared the models’ performance on the test 

data using RMSE and MAE as the goodness of fit metrics. For each model, a grid-search 

approach with parallelized performance evaluation for model parameters tuning was used 

to generate the best model parameters. Using the 5-fold cross-validation technique, we 

assessed each of the model’s performance to ensure the model’s generalized well across 
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the different datasets. We also implemented spatial cross-validation by counties to validate 

the model across different areas. Finally, we used GWR and XGBoost to ensemble the 

three individual models.  

All the methods produced a better performance with a reduced feature set than full 

features. There were no significant changes across the evaluated algorithms from 

standardizing or normalizing the data. The wrapper method was demonstrated to be 

superior compared to the filter-based method from the feature selection methods. 

Performance comparison results showed the XGBoost was the top-performing model in 

each domain. Analysis of the feature importance showed features including the individual 

with at least one opioid prescription, households with food stamps, and accessibility to 

opioid treatment facilities were the most important features contributing towards the 

prediction of a drug overdose. Within the protective resources, access to parks also 

contributed substantially (more than 0.5) to the model. While we considered this feature as 

a protective variable, greater access to the park was associated with greater drug overdoses.  

The ensembled model achieved higher performance than each of the individual 

models. Importantly, enameling using XGBoost outperformed the more conventional 

spatial model technique (GWR). The ensemble model using XGBoost showed that the error 

decreased markedly, lowering the MAE and RMSE to 2.06 and 2.69, respectively, 

compared with MAE of 2.48 and RMSE of 3.34 obtained by GWR. Both models had 

similar R-squared values with very slight differences (R-squared = 0.73 for ensemble by 

XGBoost and R-squared = 0.71 for ensemble by GWR). A map of the predictions for the 

ensemble model showed that the combined model captured more of the nuance of the drug 

overdose risk, specifically in the coastal counties central to the state’s shoreline. The range 
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of predictions was from 0.001-53.73, which was larger than the range of individual models. 

Our findings also suggested that the risk factor category, carrying the strong predictors of 

opioid prescription rate, played a crucial role in determining the course of the drug 

overdose epidemic. The opioid prescription rate predictor seems to correlate with the need 

for enhancing access to OTP, the most important predictor in protective resource category. 

Analysis of the residuals for the ensemble model showed that the spatial variation 

was well captured by the model and there was no spatial autocorrelation in the residuals. 

Also, the ensemble model obtained relatively smaller maximum values of the residuals 

compared with individual models. There were overestimations and underestimations of 

drug overdose for the smaller and larger values, respectively, but most of the residuals fell 

into their confidence intervals. Individual models also produced similar distributions of the 

residuals with only slight overestimations and underestimations for the smaller and larger 

values, respectively. That was only a few of the residuals outside the range of their 

confidence intervals.  

Normal cross-validation ensured that our model performed similarly when the data 

was trained on different subsets of our initial dataset. In spatial modeling, normal cross-

validation generally returns a lower error, which indicates a potential over-optimistic 

estimate. However, the error of our prediction model did not increase considerably in 

spatial cross-validation compared to the error estimated from normal cross-validation that 

indicates the inclusion of the spatial dependency using KNN method were able to account 

for spatial autocorrelation in our model.  
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There are several notable strengths that distinguish this study from previous studies. 

First, this study is the first to use supervised machine learning methods that account for 

spatial dependency to predict neighborhoods at high risk of drug overdoses in South 

Carolina using various datasets. Second, the block group analysis provided more 

granularity to uncover local areas of spatial homogeneity and heterogeneity. Third, our 

model not only studied contextual aspects of the neighborhood (e.g., crime, socioeconomic 

status) and drug-related factors but also examined the effect of protective factors (i.e., 

adequate access to treatment centers) that may reduce the rate of drug overdoses. Forth, we 

measured accessibility to the facilities using floating catchment area methods (e.g., 

E2SFCA and W2SFCA) which is superior to the density-based methods used in past 

studies (Cantrell et al., 2015; Novak et al., 2006). Fifth, we revealed the effectiveness of 

spatial features in capturing spatial dependency and provided insights on the usage of 

spatial cross-validation in performance estimation. Sixth, this research showed that 

machine learning had a better performance compared with the traditional geographically 

weighted regression (GWR).  

The ability of opioid treatment accessibility to predict drug overdose is in line with 

literature suggesting that enhancing spatial accessibility to treatment is associated with 

opioid-related mortality and treatment retention (Amiri et al., 2018a; Haley et al., 2019; 

Rosenblum et al., 2011b). In addition, variables describing access to tobacco and liquor 

stores lends empirical evidence to the theory that exposure to tobacco outlets and alcohol 

is associated with smoking and alcohol consumption (Bryden et al., 2012; Paynter & 

Edwards, 2009), which are known predictors of illicit and prescription drug abuse (Griffin 

et al., 2019). The high ranking of variables describing income less than $35,000 and use of 
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food stamps affirm the degree to which drug overdose is linked to economic characteristics 

of a neighborhood. Divorced and not married variables were also important predictors that 

were consistent with theory suggesting that family fragmentation or living alone may 

influence analgesic overdose through a social mechanism in a neighborhood (Cerdá et al., 

2013). Education also may have immediate impacts on the drug overdose rate through the 

economic opportunities it engenders.  

Despite previous research indicating that the urban/rural status of the neighborhood 

is associated with overdose (García et al., 2019; Keyes et al., 2014; King et al., 2014), 

urbanicity defined by RUCA codes wasn’t helpful in drug overdose prediction. However, 

population density (which is an element often used to define urbanicity) was found to be 

an important predictor, consistent with literature indicating higher rate of drug overdose in 

dense areas (Galea et al., 2005; Latkin et al., 2003; Schroeder et al., 2001).  

In addition, renter households with no vehicle may be a key demographic for 

targeted support by healthcare planners when allocating resources. Other important 

predictor included mobile homes. Mobile homes are more affordable than other housing 

types and primarily occupied by low income population (Boehm & Schlottmann, 2004). A 

possible explanation for this finding could be that it’s a retirement option for elder people 

when they no longer have an income outside of social security. However, to better 

understand the possible relationship between drug overdose and mobile homes further 

exploration is needed.  

Our model may be used in a decision-making capacity to prioritize the needs of 

specific communities based on the individual assessment of the predictors in each domain 
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before they were ensembled into one model. For example, the protective resource category 

may identify neighborhoods with lower risk more accurately than the risk factors and socio-

demographic categories, helping policymakers to avoid expanding access to treatments 

where they would be less useful. 

While we were successful in predicting drug overdose in South Carolina, there are 

some limitations that we plan to address in the future study when possible. First, the list of 

candidate predictors did not encompass all of the important risk factors of a drug overdose, 

such as exposure to a natural disaster that is known to predispose people toward using or 

abusing drugs as a coping mechanism (Cerdá et al., 2013). Similarly, we didn’t have access 

to the block group level drug-related crime data. Second, we used the E2SFCA method to 

measure access to some facilities; however, alternative methods can be implemented to 

improve the accuracy of the accessibility measurements, which may have an impact on our 

final prediction. For example, measuring access to liquor and tobacco stores, parks, and 

libraries could be improved by defining more accurate catchment areas. Third, we only 

included a one-year estimate of the drug overdose; including time series overdose data in 

the model may result in better prediction. 

In conclusion, we were able to identify strong neighborhood-level predictors of a 

drug overdose. Our findings may explain the spatial variability of a drug overdose and can 

complement existing policies by providing an opportunity to predict high-risk areas based 

on their community characteristics. This is supplemental to existing efforts and could make 

use of the infrastructure already in place. In the future, this model can be improved through 

the inclusion of more outcome and potential covariate data. The findings of this study must 

be interpreted with respect to these important strengths and limitations.  
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CONCLUSION
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This chapter provides an overview of our study findings and highlights the strengths 

and limitations of each chapter. In Chapter 1, we give a brief overview of why drug 

overdose and the opioid epidemic matter and certain aspects of one’s environment may 

negatively or positively impact the drug overdose rate. We further discuss the populations 

that are most vulnerable to drug overdose and the gaps in the literature, examining the 

relationships between socio-demographic, protective resources, and risk factors with drug 

overdoses.  

In Chapter 2, we introduce a new measure to quantify the spatial accessibility to 

opioid treatment programs (OTP). We use the measure in a case study to highlight the need 

to improve spatial disparity in accessibility to OTPs in South Carlina. The proposed method 

incorporates facility attractiveness and uses the Huff Model for quantifying the probability 

of a person’s preference on an OTP site. We also used the social vulnerability index (SVI) 

to account for nonspatial factors that mitigate or compound the impacts of spatial access to 

care. Results of the study indicate a significant variation in access to OTPs statewide. 

Spatial access to OTPs is low across the entire state except for a limited number of 

metropolitan areas. Approximately 21% of the state’s population lives in areas with low 

access, 23% live in areas identified as medium-low access, 26% live in areas identified as 

medium-high access, and 30% live in high access areas. A majority of the population with 

low access (85%) live in areas with a moderate to a high level of social vulnerability. 

Results provide more realistic estimates of access to care to assist policymakers in better 

targeting disadvantaged areas for OTP program expansion and resource allocation. In 

Chapter 3, we demonstrate how spatial access can be incorporated into a model using 

machine learning algorithms to predict potential risk of drug overdose. Despite the notable 
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advantage of our method, several issues deserve attention when interpreting the 

results. Population locations used for this study are weighted block group centroids. The 

developed method, however, has the potential to further articulate the population selection 

behavior because the block group population is not necessarily a proper indicator of opioid 

treatment needs. This can be partially addressed in future development by incorporating 

the number of patients with a history of prescription opioid use or experienced opioid 

overdoes. This study also assumes that all patients traveled by car and don’t consider 

different modes of transportation, such as public transportation, as it is somewhat limited 

in the state.  

For the spatial model, we identify the most important neighborhood-level (e.g., 

block group) factors associated with a drug overdose. Using these factors, we developed a 

model using machine learning algorithms to predict the likelihood or risk of drug overdoses 

across South Carolina. We also investigated whether the machine learning model captures 

spatial patterns better than conventional spatial techniques such as geographic weighted 

regression (GWR). Our model includes contextual aspects of the neighborhood (e.g., 

crime, socio-economic and demographic status) and drug-related factors to predict drug 

overdose.  

Our results show that features including the prescription opioid rate and average 

smoking accessories representing expenditures for a product such as a cigar, tobacco, and 

pipe, are the most important predictors within the risk factors category.  Within the socio-

demographic domain, households with food stamps and income less than $3,500 have the 

strongest prediction power. Accessibility to opioid treatment facilities and hospitals are the 

most important features contributing towards the prediction of a drug overdose among 
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protective resource factors. Our results also indicate that protective factors like access to 

treatment centers may positively influence reducing drug overdose rates in some 

neighborhoods. For example, a neighborhood with greater access to OTPs and hospitals is 

less likely to experience a drug overdose. The results demonstrate that machine learning 

has the better performance results using various metrics compared with GWR. 

While we were successful in predicting areas at high risk of overdose in South 

Carolina, there are some limitations that could be addressed in the future. First, the list of 

candidate predictors did not encompass all of the important risk factors of a drug overdose, 

such as exposure to a natural disaster that is known to impact people toward using or 

abusing drugs as a coping mechanism (Sinha, 2008). Similarly, we didn’t have access to 

the block group level drug-related crime data. Second, we used the E2SFCA method to 

measure access to some facilities; however, alternative methods (e.g., V2SFCA) (W. Luo 

& Whippo, 2012b) can be implemented to measure accessibility. Third, we only included 

a one-year estimate of drug overdose; including time series overdose data in the model may 

result in better prediction. 

Our overarching goal is to detect and prevent overdose before it occurs. This is 

complementary to existing efforts such as safe injection programs and prescription drug 

monitoring. Public health practitioners and other officials may use findings to inform 

decisions related to the development and implementation of drug overdose prevention 

efforts by facilitating better targeting of resources towards neighborhoods with greatest 

need.  
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