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ABSTRACT

In this project, the hydrogenation activity of palladium (Pd) particles supported on 

different carbon and oxide supports was investigated. Supported Pd particles were 

prepared using strong electrostatic adsorption (SEA) technique, which is known to 

produce metal particles with narrow and uniform distribution. The scanning 

transmission electron microscopy (STEM), X-ray diffraction (XRD), and chemisorption 

methods were used to characterize the Pd particle size in this project. The Pd particles 

on different supports were annealed at a specific temperature, and the particle size was 

studied as a function of annealing temperature. Propylene hydrogenation to propane 

was conducted in a flow reactor to evaluate the catalytic performance. The smaller Pd 

particles were more active than the larger particles toward the hydrogenation reaction 

on all supports, and Pd particles on the graphene nanoplatelets were more active than 

on other supports. It was observed that smaller Pd particles on the carbon supports 

were decorated with carbon. The enhanced activity of particles supported on graphene 

nanoplatelets and its comparison to other catalysts as a function of particle size were 

studied in this project.
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                       CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

Catalysts are often required to promote the desired chemical transformations 

and are known to facilitate chemical reactions by lowering the activation energy. 

Seventy percent of all products are conducted in the presence of catalyst.1 Catalysis is 

involved in several fields, such as pharmaceuticals, petroleum chemicals, commodity 

chemicals, and agriculture.2 Catalytic processes are also used to facilitate more 

environmentally friendly processes; for example, catalytic converters are used in 

automobiles to decrease harmful gas emissions.3–6 Other catalytic process applications 

include fuel cells, synthetic fuels, food processing, and producing fine chemicals.8 Due to 

these various applications, there is a great interest in understanding catalytic activity 

and methods of synthesis to promote more efficient catalysts for the future.1 

Heterogeneous catalysis plays an essential role in industrial processes. More 

than 90% of the commercial chemical reactions are conducted through heterogeneous 

catalysis.9 Examples of industrial applications include ammonia synthesis, methanol and 

Fischer–Tropsch Synthesis, hydrocarbon transformation, environmental catalysis, and 



2 
 

hydroprocessing reactions.10 Heterogeneous catalysts supersede homogeneous 

catalysts due to their reusability and ease of separation from the reaction mixture.11 

Here, the heterogeneous catalysis occurring on supported palladium (Pd) particles is 

considered. 

1.2 SUPPORTED METAL CATALYSTS 

Supported metal catalysts play a vital role in energy storage and conversion, 

nanoelectronics, fuel production, and chemical production.12 Metal nanoparticles have 

gained attention due to their unique properties compared to their bulk counterparts. 

The metal nanoparticles possess a large surface-to-volume ratio and high dispersion, 

which makes them ideal for catalytic applications.5  

Overall activity depends on the number of metal atoms at the surface that are 

accessible to reactant molecules. .7,13–16 For metal particles that are well dispersed over 

high surface area supports, less metal is required for catalysis, thus decreasing the 

overall cost. The catalyst support also plays a vital role in providing well-dispersed metal 

particles. The metal catalyst support is selected based on its cost, availability, and ability 

to anchor the nanoparticles on the surface. Carbon is a commonly used support because 

of its inertness, low cost, high surface area, easy recovery of the metal phase in the 

spent catalyst, and low deactivation.17,18  

 

 



3 
 

1.3 PALLADIUM PARTICLE AS CATALYST 

Pd catalysts are used in petroleum cracking, oxidation of organics, C–C bond 

formation reactions, coupling reactions, and alcohol oxidation.19 Palladium based 

catalysts are considered one of the most promising catalysts for the hydrogenation of 

alkenes and alkynes. For example, palladium supported on silica catalysts has shown 

remarkably high activity in the hydrogenation of benzene, 1-hexene, cyclohexene, and 

benzonitrile.20 Being less costly than other metals like Pt and Rh, it is one of the most 

studied metal particles to improve catalytic activity. Most importantly, the property of 

Pd to catalyze different reactions makes it a widely used industrial catalytic converter. 

Pd mixed with Rh and Pt forms a three-way catalyst (TWC), which can neutralize 

unburned hydrocarbons, nitrogen oxides, and CO. However, the higher cost of Rh and 

Pt, and the scarce availability of Rh, directed the research toward using only Pd three-

way catalysts.21 Studies in the literature have shown that catalytic activity of the 

supported Pd particles depends on the particle size, dispersion, and the method in 

which the nanoparticles are deposited with stability against agglomeration. 22,23 Very 

recently, Pd deposited on single-wall carbon nanotubes has demonstrated excellent 

activity toward the Heck and Suzuki coupling reactions.23 The graphene supported Pd 

catalysts prepared using strong electrostatic adsorption and microwaved irradiation 

(SEA-MW) are highly active toward the coupling reaction.17 The catalytic activity of 

graphene supported Pd catalyst, commercially available Pd on activated carbon and Pd 

on activated charcoal, is properly compared by the coupling reaction between 4-

bromotoluene and phenyl boronic acid to produce 4-methyl 1, 1’- biphenyl. The result 
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reported showed that the turn over frequency (TOF) of the Pd on graphene catalyst is at 

least one order magnitude higher than its other counterparts.17 

In this work, supported Pd particles were subjected to the propylene 

hydrogenation reaction for catalytic testing. Catalytic hydrogenation of unsaturated 

organic molecules is used extensively in the chemical industry for various applications, 

such as in the petroleum refining industry, production of pharmaceuticals, 

agrochemicals, and flavors and fragrances.24 

1.4 CATALYST PREPARATION 

Improved catalytic synthesis methods are desired to prepare catalysts with high 

dispersion, control over particle morphology, and good stability. The control in the size 

and dispersion enhance the catalytic activities.5 There are several techniques for catalyst 

preparation, such as ion exchange (IE), wet impregnation (WI), dry impregnation (DI), 

deposition precipitation, reactive adsorption, chemical vapor deposition, and incipient 

wetness impregnation(IWI).9 However, in these techniques, there is a non-uniform 

distribution of the metal on the support surface. This leads to poor control over metallic 

dispersion and surface atoms.9  

1.5 IMPREGNATION TECHNIQUE 

The impregnation technique is a common and low-cost technique to produce 

metal nanoparticles on support.14 In this method, a specific volume of a metal precursor 

solution is placed in contact with the support material for a specific period. The 

concentration of metal on the support depends on the mixing and drying process. A 
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reduction treatment is required to obtain stable metal particles from the precursor 

metal ions. By reduction, hydrogen induces the formation of metallic species. The 

impregnation methods are divided into IWI and WI depending on the volume of the 

solution.14  

1.6 STRONG ELECTROSTATIC ADSORPTION (SEA) 

SEA is a specific type of WI in which the final pH is targeted to the range in which 

adsorption is most substantial. Using the SEA method, supported metal nanoparticles 

are synthesized with small sizes and uniform size distributions.25–30 This method's 

hypothesis is that adsorption of a monolayer of the metal complexes via electrostatic 

adsorption induces the distribution of small uniform particles.31 This idea was presented 

to the catalysis community in 1978 by Brunelle32 and further developed by Schwarz.33 

They postulated that there is electrostatic interaction induced between the oppositely 

charged metal precursor ions and support. This condition is achieved by controlling the 

final pH of the impregnating solution about the point of zero charge (PZC) of the support 

materials.  

Finding the PZC is crucial for determining the SEA conditions.14,25,34,35 The PZC is 

found at the isoelectric point, where there is no charge on the support surface. For 

oxide support, the PZC is the pH at which the hydroxyl groups overall are neutral.7,14,34 

As pH is adjusted away from the PZC, the surface’s functional groups are protonated or 

deprotonated depending on if the pH is below or above the PZC, respectively. The 

cationic or anionic precursor is deposited based on the protonation or deprotonation of 
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the support surface. The strong interaction between the support and precursor prevents 

nanoparticle agglomeration and migration during the drying process.29,35–37 

Oxides adsorb the anionic complexes at pH below the PZC of the support, where 

the surface is protonated and positively charged.14,38 To promote adsorption, the pH of 

the precursor solution was carefully adjusted. Then, metal ions are adsorbed on the 

surface by the electrostatic force of attraction. Different steps involved in the SEA 

method are given in the figure below, and Figure 1.1 shows the SEA mechanism.39 

    

Figure 1.1: Mechanism of SEA technique illustrating surface charging, protonation, 
deprotonation, and adsorption.37  

After determining the PZC of the support, a precursor was chosen, and an uptake survey 

was conducted. The uptake survey was performed to determine the optimal pH. Then, 

this pH related to maximum adsorption was defined as an optimal pH, where the 

highest adsorption of the metal precursor on the support was obtained. This optimal pH 

is called the point of maximum adsorption. Once the uptake survey was completed, the 

optimal pH was used to adsorb the precursor into the support.  
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Figure 1.2 below is an adsorption survey of Pd nanoparticles on silica via SEA.39 

The highest adsorption of Pd particles occurred at pH ~11.5. Initially, from pH 1–5, no 

adsorption was observed. As the solution's pH increased, the support surface 

deprotonated, and the cationic Pd complex started to adsorb electrostatically at pH 6. 

At extreme pH values, no adsorption was observed due to high ionic strength.40 The 

higher ionic strength was due to the excess ions, which caused double layer 

compression or electrical screening, thereby decreasing the adsorption equilibrium 

constant for metal complexes.40 

   

 

Figure 1.2: Metal surface density as a function of pH final for tetraamine Pd(II) complex 
on silica support.39
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                                                                     CHAPTER 2 

SYNTHESIS, CHARACTERIZATION, AND HYDROGENATION ACTIVITY OF PD ON CARBON 

AND OXIDES SUPPORTS 

2.1 INTRODUCTION 

The properties of supported metal nanoparticles are influenced by their shape, 

size, oxidation state, and metal support interactions. 41 In structure-sensitive reactions, 

nanoparticle size is an important factor in catalytic activity. Schlatter and Boudart42 

reported that the rate of ethene hydrogenation is independent of Pt particle size. 

However, Shaikhutdinov et al. 43 reported that ethylene hydrogenation activity is 

independent of particle size between 1–6 nm. In contrast to these studies, 

Borodziniski44 reported that for ethylene hydrogenation over the Pd/SiO2 catalysts, the 

particle diameter over a range of 4.2–26.2 nm does not influence the reaction 

mechanism and adsorption strength of the ethylene. In another study, Gigola45 

observed an increase in TOF with an increase in the particle size for Pd/ SiO2 catalyst for 

ethylene hydrogenation in the range of 3–8 nm. Binder46 concluded that discrepancies 

in the literature could be due to differences in reaction conditions.  
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The catalyst support can also play an important role through controlling the size, 

morphology, and electronic properties of the particles.47 For example, Pd nanoparticles 

supported on graphitic nanoplatelets show exceptionally high activity in the Suzuki 

coupling reaction.17 This work is focused on the preparation of Pd particles with 

controlled sizes on silica and carbon supports and the study of the catalytic activity of 

these materials in propylene hydrogenation reactions. 

2.2 EXPERIMENTAL 

2.2.1 Synthesis 

Catalyst preparation: 

Catalysts were prepared by the SEA method using a cationic metal precursor, 

palladium (II) tetraamine nitrate (PdTA-NO3), at basic pH. The metal precursor was 

purchased from Sigma Aldrich with a purity of 99.999% and used without any additional 

treatment. Vulcan XC72 (VXC72) was purchased from Cabot Corporation, graphene 

nanoplatelets from Alfa Aesar, referred to as GN-Alfa, and OX50 silica is from Aerosil. 

The carbon supports were oxidized in concentrated nitric acid (> 67%) at 90°C for 3 h 

and washed until their pH reached that of DI water. Oxidized VXC72 (oxdVXC2) and 

oxidized GN-Alfa (oxdGN-Alfa) were pre-annealed at 600°C for 4 h in helium gas using a 

heating ramp rate of 10°C/min and a gas flow of 600 SCCM. The OX50 support was pre-

annealed at 800°C for 4 h under the same conditions. These catalyst supports were 

designated as OX50(800), oxdVXC72(600), and oxdGN-Alfa(600) to specify the pre-

annealing temperature. 
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The PZC and surface area of all supports were determined before metal 

deposition. The PZC of silica was 4.1, GN-Alfa was 4.2, oxdVXC72 was 2.5, oxdGN-Alfa 

was 1.3, and oxdGN-Alfa(600) was 6.5. The BET surface area of OX50 was 50 m2/gm, 

oxdVXC-72 was 230 m2/gm, and oxdGN-Alfa was 230 m2/gm. 

The uptake surveys were conducted on these carbon and oxide supports to 

determine the pH at which the support's metal adsorption is maximum. The uptake of 

the metal precursor was found to be maximum at pH value higher than the PZC. Then, 

this pH related to maximum adsorption was defined as an optimal pH. The optimal pH 

determined was used for the precursor adsorption on the supports. The survey was 

performed on several pH values higher than the PZC in the basic pH range. For the 

survey, ~20 ml of precursor solutions was prepared for each pH value in the range of 1–

13, and the mass of the support was chosen based on the support surface area and 

desired surface loading. The detailed relationship between support surface area, surface 

loading, the volume of solution, and the mass of the support was used is found 

elsewhere.14,35 The pH of the solutions was adjusted by adding HCl, NH4OH, and NaOH. 

A surface loading of 1000 m2/L was used as a set standard SEA parameter for all 

supports. All supports were added to the precursor solutions and mechanically shaken 

at 120 rpm speed for an hour. The metal uptake at different pH levels was then 

determined by calculating the initial and final concentrations by ICP-OES. The pH for 

maximum adsorption was determined, which was used as the optimized pH value for 

the catalyst synthesis. The optimal pH for the GN-Alfa was found to be 11.8, silica was 

12, oxdGN-Alfa (600) was 11.15, and other support like oxdVXC72(600) was 10, as 
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reported elsewhere.48 Following catalyst synthesis, the catalysts were dried in an oven 

at 120°C for 16 h and then reduced at 180°C for 1 h in 10% H2/He. ICP-OES was 

conducted to calculate the Pd weight % from the initial and the final concentrations of 

the metal precursor solutions. The weight loading of the catalyst was 0.39% for 

Pd/OX50(800), 0.5% for Pd/oxdVXC72(600), and 0.1% for Pd/oxdGN-Alfa(600). 

After the Pd precursors were reduced to metallic particles, the catalysts were 

annealed at different temperatures to prepare particles of different sizes. The 

Pd/OX50(800) catalyst was annealed at 600°C, 700°C, and 800°C, and the 

Pd/carbon(600) catalysts were annealed at 400°C, 500°C, and 600°C. All catalysts were 

heated in a flow of 600 SCCM of He for 4 h. 

2.2.2 Characterization 

Pulse chemisorption: 

The number of Pd sites for the catalysts and particle sizes were determined by 

hydrogen titration of oxygen pre-covered surfaces using a Micromeritics Autochem II 

2920 automated analyzer. The catalyst was initially reduced in situ in flowing 10% H2/Ar 

at 200°C for 2 h. After reduction, the catalyst was oxidized in 10% O2/He for 30 min at 

40°C, and 10% H2/Ar pulses were introduced to remove the oxygen from the surface in 

the form of water at 40°C. The amount of hydrogen consumed in this process was 

measured using a thermal conductivity detector (TCD). An average value was calculated 

from the three successive titrations. The stoichiometry of the chemisorption was 0.667 
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surface Pd atom: 1 H2 molecule. The particle diameters were calculated assuming a 

hemispherical geometry. 

 X-ray diffraction (XRD): 

X-ray diffraction measurements on supported Pd-catalysts were performed on 

Rigaku Miniflex II, a benchtop system equipped with a D/teX-Ultra silicon strip detector 

and a Cu Kα radiation (λ = 1.5406 Å) operated at 30 mA and 15 kV. All XRD data were 

collected at 0.05°/min and a sampling width of 0.02°.49 The background signal from the 

support was subtracted from the diffraction pattern. Diffraction peaks were fit using 

Fityk software with Gaussian line shapes. The particle sizes were calculated from the 

Scherrer equation using full width at half maximum (FWHM) values from the fits.50 

P =
� �

� ��	

     (2.1) 

 The particle size is calculated using equation 2.1, where P is the actual particle size, K is 

a constant related to the crystallite shape with a value of 0.9, λ is the wavelength of Cu 

Kα radiation, b is the peak width after subtracting the instrumental peak width, and the 

θ is the Bragg angle.  

Scanning transmission electron microscopy (STEM) 

The particle sizes were measured using JEOL 2100F 200 kV STEM. Catalysts were 

suspended in isopropanol and dispersed on a holey carbon-coated copper grid. 

Approximately 100–500 particles were counted for each catalyst. The following average 

values were determined: the average number diameter(dn) = ∑nidi/∑ni, surface average 
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diameter(ds) = ∑nidi
3/∑nidi

2, and the volume average diameter(dv) = ∑nidi
4/∑nidi

3, where 

ni is the number of particles with diameter di.51 

Catalyst evaluation: 

 The supported metal catalysts in this project were tested for propylene 

hydrogenation. Catalyst evaluation was performed in a fixed bed flow reactor equipped 

with a Hewlett-Packard 5890 Series II chromatograph with an HP-PLOT Q capillary 

column and a flame ionization detector. This system has been described extensively 

elsewhere.52 Approximately 0.001–0.005 grams of catalyst was mixed with 0.025 grams 

of Al2O3 and supported by glass wool in the stainless reactor tube. The samples were 

reduced at 200°C for 2 h in 10% H2/He and then cooled to the reaction temperature of 

−5°C. The feed gas compositions were 5 SCCM propylene, 20SCCM H2, and 75 SCCM He. 

2.4 RESULTS AND DISCUSSION 

2.4.1 Palladium particle size as a function of annealing temperature 

Figure 2.1 shows the Pd particle size for the Pd/OX50(800) catalyst as a function 

of annealing temperature (600°C, 700°C, and 800°C), as determined by these three 

different experimental methods. For the OX50 support, the unannealed Pd particles 

were below 2 nm in all cases. After annealing at 600°C, the STEM and chemisorption 

particle sizes were the same. No Pd peak could be detected in PXRD, and an upper limit 

on particle size was set to 1.5 nm, which was the smallest Pd diameter detected by XRD. 

After annealing at 700°C, the average STEM size was 3.7 nm, and the chemisorption size 
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had a similar value of 4.4 nm. When the catalyst was annealed at 800°C, the discrepancy 

between the chemisorption and STEM was still below 30%. Therefore, Pd particle sizes 

measured by chemisorption, XRD, and STEM for the Pd on the OX50(800) catalyst are 

agreed. 

                      

Figure 2.1: Particle size as a function of annealing temperature for Pd on OX50(800) 
catalysts. 

              

Figure 2.2: Particle size as a function of annealing temperature for Pd on oxdVXC72(600) 
catalysts. 
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Figure 2.2 shows the particle size characterization by chemisorption, XRD, and 

STEM experiments for Pd on oxdVXC72(600) catalysts after annealing at 400°C, 500°C, 

and 600°C. Unlike for silica-supported Pd particles, a significant difference in size 

measured by chemisorption and STEM was observed. For the unannealed catalyst, the 

difference was 300% between these two techniques. However, STEM and XRD are 

agreed. The larger chemisorption particle size is believed to be due to the carbon 

decoration on the Pd particles. After removing the carbon, by heating in oxygen (carbon 

burnoff treatment), the difference was reduced to ~50% for the unannealed catalyst, 

~10% for the 400°C annealed catalyst, < 60% for the 500°C annealed catalyst, and no 

change was observed for the 600°C annealed catalyst. This indicated that Pd on the 

oxdVXC72 support was highly decorated by carbon for the unannealed and 400°C 

annealed catalysts. 

                 

Figure 2.3: Particle size as a function of annealing temperature for Pd on oxdGN-
Alfa(600) catalysts. 
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Figure 2.3 shows the Pd particle sizes measured by STEM and chemisorption 

experiments for Pd on oxdGN-Alfa catalysts annealed at different temperatures. Note 

that the Pd peak could not be detected by XRD due to the low weight loading. The 

unannealed Pd particles on the oxdGN-Alfa support were ~5 nm, as measured by 

chemisorption. This particle size significantly exceeded that of the ~2 nm determined by 

STEM measurements. After the carbon burnoff treatment, the chemisorption particle 

size decreased to 1.7 nm. After annealing at 400°C, the chemisorption particle size was 

3.4 nm and did not appear to be decorated by carbon, given that the pre-burnoff, post-

burnoff, and STEM particle sizes were similar. After annealing to 500°C, the STEM 

particle size exceeded the chemisorption size, but the difference was not large 

compared to the unannealed particles. After annealing at 600°C, the chemisorption 

particle size was 31.5 nm, and the STEM size was 18.5 nm. This difference in STEM could 

be attributed to the broad Pd particle size distribution for the 600°C annealed catalyst. 

The difference between small Pd particles by chemisorption and STEM particle size was 

due to the carbon decoration in the annealed Pd particles. 

3.4.2 Propylene hydrogenation  

Figures 2.4, 2.5, and 2.6 show the TOF for product formation vs. time on stream 

for propylene hydrogenation on Pd particles on the three different supports. TOF was 

calculated from the measured rate of reaction and the number of active sites 

determined from the chemisorption experiments. 
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For the Pd/OX50(800), the unannealed catalyst had the highest initial TOF at ~35 s−1, 

which gradually decreased to 21 s−1 at the end of 24 h of reaction. For the catalysts 

annealed at 600°C and 700°C, the TOF values decreased to~12–15 s−1 after 24 h of on 

stream. The TOF for the 800°C annealed catalyst was ~10 s−1 after 24 h on stream.  

                 

Figure 2.4: Propane formation as a function of time on stream for Pd/OX50(800) 
catalysts: unannealed (green), annealed at 600°C (blue), annealed at 700°C (red), and 
annealed at 800°C (black). 

Figure 2.5 shows the TOF as a function of time on stream for the Pd particles on 

the oxdVXC72(600) support. The TOF for the unannealed catalyst was the highest. 

Initially, the TOF was ~29 s−1 and then gradually decreased to ~20 s−1 at 24 hours. The 

TOFs for the 400°C and 500°C catalysts were almost identical after 24 h of reaction (~16 

s−1). The 600°C annealed catalyst had the lowest TOF, which was ~10 s−1 after 24 h.   
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Figure 2.5: Propane formation as a function of time on stream for Pd/oxdVXC72(600) 
catalysts: unannealed (green), annealed at 400°C (red), annealed at 500°C (blue), 
annealed at 600°C (black). 

Figure 2.6 shows the TOF vs. time on stream for Pd particles supported on 

oxdGN-Alfa(600). For the Pd/oxdGN-Alfa(600) catalyst, the unannealed catalyst had the 

highest activity, and annealing at a higher temperature decreased the activity. However, 

the activity of the annealed catalyst was constant over time compared to the 

unannealed catalyst. For the 600°C annealed catalyst, the activity was significantly 

lower. The unannealed catalyst had about 5-fold higher initial activity than the 400°C 

annealed catalyst. For the 500°C annealed catalyst, the TOF was like that of the 400°C 

annealed catalyst. 
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Figure 2.6: Propane formation as a function of time on stream for Pd/oxdGN-Alfa(600) 
catalysts: unannealed (green), annealed at 400°C (red), annealed at 500°C (blue), 
annealed at 600°C (black). 

2.5 CONCLUSION 

A clear particle size effect was demonstrated for the propylene hydrogenation 

reaction on Pd/OX50. The smaller Pd nanoparticles exhibited higher activity compared 

to larger Pd particles. However, particle size effects were more difficult to understand 

on the carbon-supported catalysts due to carbon decoration. This carbon decoration 

was observed for all sizes of Pd particles on oxdVXC72 and the smaller particles on 

oxdGN-Alfa. The Pd nanoparticles on the GN-Alfa support exhibited excellent activities 

compared to similar sized-Pd particles on other silica and carbon supports. This result 

suggests that the GN-Alfa support enhances the hydrogenation activity of Pd particles. 
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