
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

Spring 2021

Detecting the Intent of Email Using Embeddings, Deep Learning Detecting the Intent of Email Using Embeddings, Deep Learning

and Transfer Learning and Transfer Learning

Zaid Alibadi

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alibadi, Z.(2021). Detecting the Intent of Email Using Embeddings, Deep Learning and Transfer Learning.
(Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/6384

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F6384&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F6384&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/6384?utm_source=scholarcommons.sc.edu%2Fetd%2F6384&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

DETECTING THE INTENT OF EMAIL USING EMBEDDINGS, DEEP LEARNING AND
TRANSFER LEARNING

by

Zaid Alibadi

Bachelor of Science
Al-Nahrain University, 2006

Master of Science

University of South Carolina, 2017

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy in

Computer Science

College of Engineering and Computing

University of South Carolina

2021

Accepted by:

Jose M. Vidal, Major Professor

John R. Rose, Committee Member

Csilla Farkas, Committee Member

Jijun Tang, Committee Member

Pelin Pekgun, Committee Member

Tracey L. Weldon, Interim Vice Provost and Dean of the Graduate School

ii

© Copyright by Zaid Alibadi, 2021
All Rights Reserved.

iii

DEDICATION

To my late father; Haider Alibadi.

To my late grandfather; Jaleel Soura Meri.

Gone But Not Forgotten.

iv

ACKNOWLEDGEMENTS

 I express a special thanks to my academic advisor, Dr. Jose M. Vidal. For your

valuable guidance and ideas to present this dissertation as best as possible, I show my

sincere gratitude and appreciation.

 A special thanks to Dr. Manpreet Gill, Dr. Ramkumar Janakiraman, Dr. Pelin

Pekgun and Dr. Chen Zhou for giving me the opportunity to be part of their research.

 Grateful thanks to the Graduate Director Dr. Jijun Tang, the Graduate Program

Coordinator Ms. Sri Satti, and the Sponsored Students Coordinator Ms. Joanna Zietara for

helping me in all the administrative matters that accompanied the years of study and

research.

 A sincere gratitude to the Higher Committee for Education Development (HCED)

in Iraq for their generous financial support.

 Finally, to my beautiful wife, Marwah, wonderful family, and everyone who helped

and supported me, I say "thank you".

v

ABSTRACT

 Throughout the years' several strategies and tools were proposed and developed to

help the users cope with the problem of email overload, but each of these solutions had its

own limitations and, in some cases, contribute to further problems. One major theme that

encapsulates many of these solutions is automatically classifying emails into predefined

categories (ex: Finance, Sport, Promotion, etc.) then move/tag the incoming email to that

particular category. In general, these solutions have two main limitations: 1) they need to

adapW Wo changing XVeU¶V behaYioU. 2) Whe\ UeqXiUe handcUafWed feaWXUeV engineeUing Zhich

in turn need a lot of time, effort, and domain knowledge to produce acceptable

performance.

 This dissertation aims to explore the email phenomenon and provide a scalable

solution that addresses the above limitations. Our proposed system requires no handcrafted

features engineering and utilizes the Speech Act Theory to design a classification system

that detects whether an email required an action (i.e., to do) or no action (i.e., to read). We

can automate both the features extraction and the classification phases by using our own

word embeddings, trained on the entire Enron Email dataset, to represent the input. Then,

we use a convolutional layer to capture local tri-gram features, followed by an LSTM layer

Wo conVideU Whe meaning of a giYen feaWXUe (WUigUamV) conceUning Vome ³memoU\´ of ZoUds

that could occur much earlier in the email. Our system detects the email intent with 89%

accuracy outperforming other related works.

vi

 In deYeloping WhiV V\VWem, Ze folloZed Whe concepW of Occam¶V Ua]oU (i.e., law of

parsimony). It is a problem-solving principle stating that entities should not be multiplied

without necessity. Chapter four present our efforts to simplify the above-proposed model

by dropping the use of the CNN layer and showing that fine-tuning a pre-trained Language

Model on the Enron email dataset can achieve comparable results. To the best of our

knowledge, this is the first attempt of using transfer learning to develop a deep learning

model in the email domain.

 Finally, we showed that we could even drop the LSTM layer by representing each

email¶V VenWenceV XVing conWe[WXal ZoUd/VenWence embeddingV. OXU e[peUimenWal UeVXlWV

using three different types of embeddings: context-free word embeddings (word2vec and

GloVe), contextual word embeddings (ELMo and BERT), and sentence embeddings

(DAN-based Universal Sentence Encoder and Transformer-based Universal Sentence

Encoder) suggest that using ELMo embeddings produce the best result. We achieved an

accuracy of 90.10%, comparing with word2vec (82.02%), BERT (58.08%), DAN-based

USE (86.66%), and Transformer-based USE (88.16%).

vii

TABLE OF CONTENTS

Dedication .. iii

Acknowledgements .. iv

Abstract ..v

List of Tables ... viii

List of Figures .. ix

Chapter 1: Introduction ..1

Chapter 2: Why Machine Learning..15

Chapter 3: Email Overload ..30

Chapter 4: Transfer Learning in the Email Domain ..57

Chapter 5: Investigating the Effects of Contextual Representation in Email69

Chapter 6: Conclusion..80

References ..82

viii

LIST OF TABLES

Table 3.1: Evaluation Results ..52

Table 3.2: Comparison of our work with related works ..56

Table 4.1: Removed email addresses ...63

Table 4.2: Training dataset shape ..64

Table 4.3: Baseline model results ..65

Table 4.4: SVC model result ..66

Table 4.5: First re-trained model results ..66

Table 4.6: Best retrained model results..67

Table 4.7: Baseline vs. re-trained LM model results ...68

Table 5.1: First model using different context-free word embeddings76

Table 5.2: Five models using different pre-trained embeddings78

ix

LIST OF FIGURES

Figure 3.1: Our CNN feature extractor architecture ..45

Figure 3.2: The architecture of our model ...48

Figure 4.1: Our LM main steps ..62

Figure 5.1: Frequency based embeddings ..70

Figure 5.2: Prediction based embeddings ..71

 1

CHAPTER 1

INTRODUCTION

On his voyage from London to Philadelphia in 1726, Benjamin Franklin conceived

the notion of a notebook in which he would record systematically his efforts at self-

improvement. In order to achieve this goal, he describes thirteen virtue. The third was

OUdeU; ³LeW all \oXU WhingV haYe WheiU placeV; leW each paUW of \oXU bXViness have its

Wime´. Years later, in his autobiography (1790), he described that this particular virtue gave

him Whe moVW WUoXble: ³OUdeU « ZiWh UegaUd Wo placeV foU WhingV, papeU, eWc., I foXnd

e[WUemel\ [Vic] difficXlW Wo acqXiUe.´ TZo hXndUed \eaUV laWer, order continues to be a

difficult goal, especially in the emails domain.

In this research, we are aiming at studying the Email Phenomenon. Specifically, we

trying to answer the six following questions: How do we study email? How do we use

email? How do we process email? How do we reply to email? How do we organize email?

and How do we recognize an important email?

Next, we describe the main problem facing email users, in particular, we are

focusing on the problem of Email Overload. We also try to cover the available solutions to

help the user manage their email inboxes and their limitations. Then, we explore how could

machine learning techniques solve this problem and introduce our proposed solution and

list its advantages over the current solutions. Later, we introduce the concept of transfer

learning, specifically in the domain of Natural Language Processing (NLP), by giving more

details into the application of transfer learning in the NLP domain and Language Modeling.

 2

Finally, we pUeVenW oXU model¶V aUchiWecWXUe and compaUe Whe UeVXlWV ZiWh oWheU

related works.

1.1. How Do We Study Email?

Since the inception of email as a communication tool, many researchers try to study the

phenomena of emails. Overall, we could divide these efforts into two main camps: The

fiUVW focXV on Whe XVeUV, While Whe Vecond camp focXV on email¶V XVage. An e[ample of

the first camp would be the Collaborative User Experience research group in IBM which

inYeVWigaWing emailV WhUoXgh XVeU¶V obVeUYaWionV and inWerviews, design mockups,

prototype implementations, and user evaluations (Rohall et al., 2004).

(Whittaker et al., 2005) have a different classification to how researchers study

email. The\ obVeUYe WhUee VXch claVVeV: The fiUVW iV ³empiUical VWXdieV of email XVage´. The

Vecond iV ³noYel V\VWem deVignV´, ZheUe diffeUenW WechniqXeV WhaW had been XWili]ed Wo

tackle different problems, and the third is based on theory; Depending on how users view

emails, different theories can be applying. Almost all of these classes suffer from the same

limitations: limited number of participants, organizational homogeneousness of

participants, reactive methods (surveys, interviews, experiments), and lack of longitudinal

perspective (Kalman and Ravid, 2014).

Regardless of the classification of these studies, we found one common goal; to

obtains observations regarding the Five Hows; How users utilize emails? How users

process their incoming emails? How users reply to emails? How users organize their

emails? And finally, How users define important emails? In the following sections we will

diYe inWo each ³HoZ´. BXW fiUVW leW UeYieZ coXple of WheVe VWXdieV and highlighW WheiU main

methodologies.

 3

(Dabbish et al., 2004) argue in favor of statistical analysis of surveys rather than

trying to analysis email archives using machine learning approach. Their reasons were: 1)

machine learning approach give little insight for user behaviors and actions on emails while

VXUYe\V pUoYide XV ZiWh geneUal model on XVeU¶V behaYioUV and 2) machine learning

approach tend to be on small sample size because these approaches are often intrusive

while survey would cover much bigger samples, increasing the generalization of the model.

(Venolia et al., 2001) tried to take advantage of both appUoacheV b\ VWXd\ing boWh Whe XVeU¶V

behaYioU and email¶V conWenW. The\ XVed inWeUYieZV and VXUYe\ Wo VWXd\ Whe XVeUV, in

addition to analysis of message archives.

1.2. How Do We Use Email?

Email is one of the most useful communication tools over the Internet. Since the

2000¶V, email Wechnolog\ ZaV VignificanWl\ e[panded, and iWV dail\ XVe becomeV a neceVViW\

Wo manage people¶V ZoUk, bXVineVV and inWeUpeUVonal UelaWionV. Some conVideU email noW aV

a product but as a protocol that lets people send and receive information (Vishnu et al.,

2013). Others, (Ducheneaut and Bellotti, 2001), see email more like a habitat than an

application. Overall, Email is an effective knowledge management tool which conveniently

enables fast and accurate communication. It is used for a wide range of tasks such as

information management and for coordination and collaboration in organizations.

(Mackay, 1988) is among the first who study the uses of emails. He identifies three

major forms of work management used in emails: information management, time

management and task management. (Whittaker and Sidner, 1996) shared some of

Macka\¶V findingV and diVcXVV WhUee main fXncWionV of email in WheiU VWXdieV of 20 XVeU¶V

inboxes: task management, personal achieving, and asynchronous communications. Other

 4

researchers, (Dabbish et al., 2004), try to examine the use of email in the work environment,

they observed six main purposes that email serves in an organizational context: Action

request, status update, reminders, information requests and responses, scheduling requests

and responses, and social content.

Rather than studying the purpose of emails, (Muller and Gruen, 2002) try to focus

on the situation in which email itself is the object of the collaboration. They studied how

teams shared a single mailbox to conduct a work operation (i.e., customer care, educational

institution, published office address). Other examples of reuse are comment fields as

instructions, mailboxes as identity statements, and folders as action-requests or status

indicators.

As for differences between work emails and personal emails, (Grevet et al., 2014)

noWice WhaW ZoUk¶V emailV Wend Wo be oYeUloaded in email VWaWXV (Wo Uead, Wo do) Zhile

personal emails tend to be overloaded in email type (bills, personal mail, promotional

mail).

1.3. How Do We Process Emails?

When iW¶V come Wo hoZ XVeUV handling WheiU inbo[eV, WZo eaUl\ VWXdieV WUied Wo

explain it; (Mackay, 1988) divides users into two different categories: 1) prioritizes who

focusing on managing their emails as they arrived and 2) archivers who focusing on

archiving information for later user. The second study, (Whittaker and Sidner, 1996), found

that users fell into one of three categories: 1) Frequent fliers who constantly cleaning their

inbox, 2) spring cleaners who cleaned their inbox every few months and 3) no fliers who

keep all their emails in the inbox folder and use a search tool to manage it.

 5

AnoWheU claVVificaWion b\ (GZi]dka, 2004) focXV on hoZ XVeUV managed Whe WaVkV¶

emails and he categorize them into: cleaners and keepers. While cleaners tend to set

specific times to read their emails so incoming emails wont interrupt other activities,

keepers would keep reading emails all the times and let incoming emails interrupt other

activities. He concludes that cleaners seem to have more control over their email behavior.

In the following two sections, we try to cover the most common activities applied by users

on WheiU emailV and Whe VWUaWegieV Whe\ folloZ Wo oUgani]e WheiU email¶V inbo[eV.

1.3.1. Users Activities

According to research conducted by McKinsey in 2012, reading and answering

email counts for 28% of the average employee workday (McKinsey Global Institute &

InWeUnaWional DaWa CoUp, 2012). AV emailV¶ XVeUV Vpend moUe Wime pUoceVVing and

managing their email, several activates done by users could be observed. A recent

quantitative study, done by (Castro et al., 2016) for 110,000 Yahoo active users, found that

98% of users read their incoming emails, 29% reply, 28% forward and 18% delete an email,

more specifically, 89.5% of these delete actions are not preceded by any read operation.

They make a distinguish between two delete behaviors: delete-with-read and delete-

without-read. The first brings some level of interest: its header is intriguing enough for the

user to open (and most probably read) it. The second indicates a lesser level of interest:

either the header brings sufficient information that the user does not need to read more, or

more frequently, the header is sufficient for the user to decide that he or she has no interest

whatsoever in that email, which is quite common with bulk mailing.

AV foU Whe XVeU¶V Wime managemenW foU WheVe emailV acWiYiWieV, iW WXUnV oXW WhaW Whe\

divide their time unequally. Based on video studies done by (Bellotti et al., 2005), they

 6

found the percentage of time people spending on: composing emails (54%), reading (23%),

filing (10%), scanning mailbox (6%), deleting (2%), searching folders (2%), managing

attachments (2%). Another area of emails that users spend considerable time on is email

attachment. Few studies have been made to analysis the use of attachments in email.

(Hailpern et al., 2014) conducted two studies (813 participants) to understand the state and

limitations of attachments. They conclude that most attachments are large sized files,

taking up a considerable amount of physical storage on local computers and on exchange

VeUYeUV, Woo. AV foU aWWachmenW¶V acceVV, XVeUV aUe opening a laUge peUcenWage of docXmenWV.

1.3.2. UVeU¶V SWUaWegieV

Not all users manage their emails in the same way. Many factors determine the best

strategy to match the end goal of the user. (Gwizdka, 2004) study these factors and he

proposes four cognitive abilities which have a possible effect on email processing:

1. Flexibility of closure: extracting email or email attributes from a distracting

background of other emails

2. Speed of closure: recreation of structure or relationships between a group of email

messages

3. Visual memory: ability to remember the configuration and location of an email, and

4. Working memory: a temporary store for recently activated items of information.

 These four cognitive abilities were measured using Factor-Referenced Kit of Tests

(Ekstrom, 1976). Based on these four factors, Gwizdka observes four strategies utilized

by users to deal with emails of future tasks or events:

1. Immediate processing,

 7

2. Limiting (e.g., the active screen should contain all the important emails otherwise,

ignore),

3. Encoding additional information (e.g., by adding flags to messages), and

4. Accumulation.

A different approach is to choose either a single pass or a multi-pass strategy

(Neustaedter et al., 2005a). In a single pass, user prefers simplicity over the ability to

quickly find important emails, while the multi-pass strategy was effective in finding

important emails quickly, although this strategy is more time consuming. They also found

that users who followed the multi-pass strategy would first try to find emails that could

qXickl\ be deleWed oU goW Uid of. BecaXVe iW¶V eaVieVW foU XVeUV Wo handle emailV of liWWle

importance (they could quickly delete them or file them) and often once the unimportant

emails were gone, it was easier to find the important emails. (Bälter and Sidner, 2002)

observed that users primarily following the multi-pass strategy, as they scanned the inbox

a mean of 2.3 times to decide which email need attention first. Moreover, (Venolia et al.,

2001) found that 70% of their interviewees processed emails out of order.

1.4. How Do We Reply To An Email?

On average, user send 31% as many emails as they receive, which implies many

emailV don¶W UeqXiUed a Uepl\ (DabbiVh eW al., 2005). A moUe UecenW VWXd\, (CaVWUo eW al.,

2016), give much lower percentage, only 2% of incoming emails received a reply. (Kooti

et al., 2016) found a correlation between the number of received emails and the frequencies

of XVeUV¶ UeplieV. AV XVeU UeceiYe moUe emailV, he/Vhe Wend Wo Vend leVV UeplieV. In WheiU

study of more than 2 million users exchanging 16 billion emails over several months, the

percentage of emails which received a reply decrease from 25% (on a day with low load of

 8

incoming emails) to less than 5% at high load day (about 100 emails a day). They observed

other factors affect the likelihood and the promptness of replying to an email:

x The day and time the message was received: Email users are more active during the

day than nighttime, and on workdays rather than the weekend. Emails received in

the morning get substantially longer replies than those received in the afternoon

and evening.

x The device used: Replies sent from phones are the fastest, followed by emails sent

from tablets, and finally replies from desktops.

x The number of attachments in the email: Replies to emails with attachments are

much slower (median of 56 minutes) than replies to emails without any attachment

(median of 32 minutes). Emails with an attachment, get longer replies (median of

47 words) than emails without attachments (median of 33 words).

Another reason for not replying for higher percentage of incoming emails is 90%

of emails are machine-generated, therefore, these emails do not expect a reply (Castro et

al., 2016). Other observed factors that affect the probabilities of receiving replies: Emails

from people within the same work organization not only have high probability to receive a

reply but user typically responded more quickly (Tyler and Tang, 2003). They also

observed that users typically responded more quickly to emails from people with whom

they have a history of quick communication. Incoming emails belong to a continuing

conversation thread increase the probability to receive a reply. While the frequency of

communication with the sender has no major effect on the likelihood of a reply (Dabbish

et al., 2004).

 9

Another interesting finding by (Dabbish et al., 2004) is perceived importance is

only weakly correlated with responding; people are only 8% more likely to respond to

important emails. They found the likelihood of replying Wo an email iV affecWed b\ VendeU¶V

chaUacWeUiVWicV moUe Whan email¶V conWenW e[cepW foU WZo caVeV: fiUVW, if Whe conWenW iV Vocial,

in this case, its %23 more likely to have respond. Second, emails with information request

are more likely to have a reply. They also observe that email with only one recipient more

likely to have a reply. A recent study by (Castro et al., 2016) confirmed that as they found

Whe Uepl\¶V UaWio iV higheU Zhen Whe nXmbeU of UecipienWV iV VmalleU (indicaWing a peUVonal

correspondence).

As for how the users handle the emails which received a reply, they utilize two

different methods: Rapid-ReVponVe; compoVed qXickl\ in a ³fiUe-and-foUgeW´ faVhion, and

Extended-Response, which requiring extra work, possibly with a need to make notes so

that ideas on how to handle the email is not forgotten (Bellotti et al., 2005).

Another important aspect is the reply time, (Tyler and Tang, 2003) found that users

gave a special attention to how and when they replied to emails. The time to respond

expUeVVeV a ³UeVponViYeneVV image´ WhaW dependV on Whe Vocial UelaWionVhip ZiWh Whe VendeU.

(Kooti et al., 2016)ီfound that 90% of the replies happen within a day of receiving the

message, and the most likely reply time is just two minutes. Also, half of the replies are

within 47 minutes of receiving the message. Replies become faster as the conversation

progresses, but the last reply is much slower than the previous replies.

1.5. How Do We Organize Emails?

(Whittaker et al., 2006) observed two main strategies users would follow to

faciliWaWe email¶V UeWUieYal: 1) oUgani]ing WheiU mailbo[XVing foldeUV and 2) XWili]ing VoUWing

 10

and searching. As for which one dominate the usage, (Whittaker et al., 2011) conclude,

based on their large-scale quantitative study of how people retrieved email, that sorting and

VeaUching dominaWeV. OWheU UeVeaUcheUV, VXch aV (TeeYan eW al., 2004), aUgXe WhaW emailV¶

users utilize a mix of the above two strategies to retrieve an email.

1.5.1. Foldering

Several reasons in favor of foldering could be observed:

x Declutter the inbox into a relatively small set of folders each containing multiple

emails related to same tasks (Whittaker et al., 2007). In this context foldering is

used to organize ongoing tasks/activates or archive completed tasks found in

emails.

x AnoWheU UepUeVenWaWion of ³Wo-do´ iWem (MinkoY eW al., 2008).

x For archival purposes (Kushmerick et al., 2006), as users tend to file emails

containing attachments, web links, or presentations (Bellotti et al., 2005).

x Preserved the context of the communications and activates history rather than just

a method for finding emails later (Ducheneaut and Bellotti, 2001).

FoU all Whe aboYe UeaVonV, email¶V XVeUV Vpend a conVideUable amoXnW of Wime and

effort to organizing their emails (Gwizdka and Chignell, 2004). (Fisher et al., 2006)

comparison of email archives from 1996 and 2006 shows that archive size and number of

folders have been increased dramatically but the average inbox size have remained the

same.

1.5.2. Threads

Both (Wattenberg et al., 2005) and (Whittaker, 1996) proposed threaded views as

a way to help users manage email. While folders require the users to manually create them

 11

and assign each email individually to its appropriate folder(s), thread is presented as an

automated method to clustering individual emails related to each other by the reply function

in email (Kerr, 2003). A thread-based view of emails can use space more efficiently while

at the same time giving the user additional context when focused on an individual message

(Tang et al., 2008). A good example would be Gmail and how it uses a clean and consistent

model of threads, rather than individual messages to organize emails.

On the other hand, there are some limitations for the use of threading, grouping

both incoming and outgoing email in the same threads would possibly confuse the user and

YiolaWe hiV/heU model of Whe ³SenW´ foldeU aV a VepaUaWe folder from the inbox (Tang et al.,

2008). (Cselle et al., 2007) identify two other difficulties: Thread drift and Topic drift.

Thread drift means that a topic contains several threads while Topic drift means that the

same thread contains information abouW diffeUenW WopicV (i.e., Whe XVe Whe ³Repl\ To´ bXWWon

inVWead of ³NeZ Mail´).

1.6. How Do We Recognize an Important Email?

(Spira and Goldes, 2007) report that a typical worker receives 200 non-spam email

on daily bases, a more recent report by Radicati.com estimates the number of business

emailV VenW and UeceiYed peU XVeU peU da\ Wo aYeUage 126 meVVageV in 2019. AV manageUV¶

responsibilities broaden, these numbers would increase, e.g., NSF program managers

report 500 to 1000 non-spam emails per day (Yoo et al., 2011).

AV Whe XVeU¶V inbo[iV flooded ZiWh WaVkV, UeVponVibiliWieV, and deadlineV, all

compeWe foU XVeU¶V aWWenWion dail\, WheiU pUodXcWiYiW\ ZoXld negaWiYel\ be affecWed. The\

either keep reading email streams loaded with low-priority announcements and

acknowledgments, or alternatively by not reading email frequently and risk the chance of

 12

ignoring high-priority urgent emails. Therefore, highlighting important emails would save

email¶V XVeUV a loW of Wime and effoUWV and decUeaVe Whe chanceV of missing out an important

task need to be done. (Faulring et al., 2010) argue that the order in which emails are handled

can significantly affect the efficiency of the strategy, since performing similar tasks

together reduces the overhead of switching between different types of tasks.

Importance ranking for emails is hard problem as users disagree on what is

important and requiring a high degree of personalization (Aberdeen et al., 2010). Not only

the perceived important of emails differ from user to user, but it differs for the same user

based on the time of accessing his inbox or the project that he/she currently working on.

One solution to identify the importance of an email by flagging it as important but this

solution found to be ignored by most users (Whittaker and Sidner, 1996). The reason could

be this field requires to be filled manually by the user which is a tedious work and it reflect

the importance from the sender perspective not the receiver (Dabbish et al., 2004).

So, ZhaW¶V make an email impoUtant? (Mackay, 1988) see the importance of a

message has as much to do with the current state of the user as the content of the email.

Several studies have been conducted to observe the factors which affect perceived

important of emails. A certain pattern could be observed reviewing the literature:

1. Social based factors: Social information is vital for determining the importance of

an email, such as:

x Sender (Venolia et al., 2001) (Dabbish et al., 2005),

x The history of the communication between the sender of an email and the

receiver. Higher communication frequency with the sender increases the

importance (Dabbish et al., 2005),

 13

x Sender within the same organization as the receiver or from outside the

organization (Neustaedter et al., 2005b). For example, emails from someone

with a close personal relationship (e.g., close colleagues, direct managers) and

emails from new social contacts working on similar projects were typically

quite important.

x Other social metrics are number of recipients (Venolia et al., 2001) (Balter and

Sidner, 2002) (Dabbish et al., 2003) (Dabbish et al., 2005) as higher number of

UecipienWV decUeaVed email¶V impoUWance, Whe nXmbeU of WimeV XVeU Uepl\ Wo a

peUVon¶V emailV, Whe nXmbeU of emails that user receive from someone that get

maUked Uead, oU Whe nXmbeU of WimeV Vomeone UeplieV Wo XVeU¶V emailV

(Neustaedter et al., 2005b).

2. Content based factors: Through collecting data on 121 users using a web-based

survey, (Dabbish et al., 2005) foXnd WhaW meVVage conWenW pla\V a Uole in XVeU¶V

perception in importance of an email. Emails of action/meeting request/response

had more importance than social contents email. (Venolia et al., 2001) confirm that

the nature of the email would affect its importance. Also, whether the email is a

reply have an effect, too. Replies were important as they often contained a solution

to a problem sent by the recipient.

3. Time based factors: (Neustaedter et al., 2005a) argue that the importance of email

iV laUgel\ deWeUmined b\ iWV Wime aWWUibXWeV. EmailV UelaWed Wo eYenWV in XVeU¶V

calendar for the day were judged important, regardless of arrival date (Balter and

Sidner, 2002).

 14

Looking for this issue from different angle, it may be useful to see what

characteristics of an email make it more likely to be ignore or deleted by the user. Less-

recent emails, news-related items, or email from people with a lesser relationship (e.g.,

someone for whom the user did not typically send replies to) were typically not as

important to users (Venolia et al., 2001). Carbon copies were judged as less interesting than

other messages, but not always (Balter and Sidner, 2002).

 15

CHAPTER 2

WHY MACHINE LEARNING?

Several researchers propose using machine learning in modeling the change in the

XVeU¶V behaYioU, peUVonali]ed filWeUing emailV and email¶V conWenW VXmmeU\ Wo help Whe XVeU

in allocating attention and deciding actions. (Mackay,1988) was one of the earliest

researchers to suggest that intelligent information retrieval techniques may prove practical

for classifying and retrieving emails. He advised that email clients designers should

focusing more on tools that accommodate the diverse use of emails rather than searching

for an optimal set of functions. As for the problem of allocating important email in the age

of email oYeUload, (WhiWWakeU eW al., 2007) aUgXe WhaW anal\]ing email¶V conWenW and headeUV

might both help users to allocate attention to important email and to decide what action to

apply to an email. (Faulring et al., 2010) conclude, based on their work on RADAR, that

adding AI technologies to collaborative systems can benefit users. They found that users

who received AI assistance performed 37% better compared with users who did not. They

emphasis that predictability and understandability are sub goals of the ultimate goal: usable

systems.

Although machine learning solutions do not require much work from the users, trust

is the main concern for users (Pazzani, 2000) (Whittaker and Sidner, 1996). To overcome

this obstacle, more freedom to adjust some of the setup of the tools may help. MailCat

(Segal and Kephart, 1999) avoids the risk of the user not knowing where content has gone

by presenting its best three guesses about where to place the message and i-ems (Crawford

 16

et al., 2002) intelligent classification application allows user intervention to update the

suggested folder.

In the following sections, we will start by explaining how the machine read and

understand email, then we present some of the previous work in using machine learning

techniques in the domain of email systems. We divide them into four main sections:

prioritization, categorization, visualization and social network between sender and

receiver.

2.1. How Machine Understand Email?

An email consists of two type of data: structured and unstructured data. The former

UefeUV Wo Whe meWadaWa like paUWicipanWV¶ emailV idV, daWe/Wime eWc. While, Whe laWWeU

corresponds to the raw text data that appears in the subject and body of the emails. Several

natural language techniques have been utilized by researchers to represent the structure and

unstructured data of emails. Based on the reviewed literature, we observed the below four

different representations:

1. GUaph: (MinkoY eW al., 2008) UepUeVenW email¶V content, social network (information

about senders and receivers), time information and activities, as a structured dataset

(a graph). They model email as a heterogeneous graph, where nodes represent the

message, person, email address, date and terms. For example, a message can be

linked to a person node with a relation of sent-to, sent from etc.

2. Lexical: The bag-of-words (BOW) model is a simplifying representation used in

natural language processing and information retrieval (IR). In this representation, a

text (i.e. email content) is represented as a bag (multiset) of its words, ignoring

grammar and even word order but keeping multiplicity. The final output is a one-

 17

line text file, per email, containing the number of occurrences of each known token

(e.g., word). (Qadir et al., 2016) experiment with lexical representation of the email

content. They use the bag of words (BOW) from email body and subject, after Penn

Tree Bank (PTB) style tokenization. They also experiment with a syntactic

representation using heuristics on the output of a PTB constituent parser (Quirk et

al., 2012) to identify Nouns (N) and Verb Phrases (VP) in email body and subject.

(Graus et al., 2014) also use bag of words, while (Carvalho and Cohen, 2007) used

tf-idf vectors to represent the content of an email.

3. Topic modeling: The main assumption behind this approach is that each document

(i.e., email) was generated by a single activity-specific distribution over words.

Therefore, emails about the same activity will use similar words, while emails about

different activities will use different words. For this purpose, Latent concept

models would be useful (Dredze et al., 2008). As these models treat documents as

having an underlying latent semantic structure, which may be inferred from word-

document co-occurrences (relates words to concepts and concepts to documents).

Two widely used latent concept models are: Latent Semantic Analysis/Indexing

(LSA/LSI) and Latent Dirichlet Allocation (LDA). LSI introduced by (Deerwester

et al., 1990), represents words and documents as points in Euclidean space which

could be used to determine emails similarity. Unlike traditional bag-of-words

models and similarity metrics that are based on how many words two documents

share, LSI projects documents onto a reduced-dimensionality subspace, and

computes similarity as the distance between two document vectors in the reduced

subspace. The intent of subspace projection is to capture concepts inherent in

 18

similar documents, such that each dimension in the subspace corresponds to a

different concept in the document corpus (Dredze and Lau, 2006). The second

meWhod Zhich XVed in docXmenW¶V clXVWeUing iV (LDA). In this approach, concepts

are distributions over words and weights are mixing probabilities representing

distributions over topics. LDA models learn probability distributions of words as

latent topics in a corpus. This method treats each document as a finite mixture over

an underlying set of topics, where each topic is characterized as a distribution over

words. Each email has a different distribution over these topics: an email about

going on YacaWion mighW giYe eqXal pUobabiliW\ Wo boWh ³hoWel UoomV´ and ³flighWV´.

4. Embeddings: for this approach, word representations are typically learned from

large collection of documents in a sliding window-fashion by updating the central

word in the window such that it is capable of accurately predicting the surrounding

words in the same window. Typically, a neural language model learns the

probability distribution of next word given a fixed number of preceding words

which act as the context. A recently proposed scalable Continuous Bag-of-Words

(CBOW) and scalable Continuous Skip-gram (SG) model (Mikolov et al., 2013)

for learning word representations have shown promising results in capturing both

syntactic and semantic word relationships in large news articles data. Their scalable

open-source software is available online (code.google.com/p/word2vec). (Kooti et

al., 2015) use a neural language model, known as paragraph2vec (Le and Mikolov,

2014) to represent each email as a real-valued low dimensional vector. Introducing

low dimensional embedding of words by neural networks take advantage of word

 19

order in documents and state the assumption that closer words in the word sequence

are statistically more dependent.

2.2. Prioritization As a Solution

Machine learning techniques could be utilized to extracted important information

automatically from email-header information, such as frequency, longevity of

communication, and likelihood of response (Wattenberg et al., 2005) (Whittaker, 2004).

Then, such information would help to automatically produce prioritization rules. For this

end and based on the reviewed literature, two approaches were observed:

FiUVW, anal\]ing XVeU¶V WUiage behaYioU on previous emails to determine the priority

ranking for new emails. Displaying an importance rating for an email beside other

information such as subject, sender, etc., would be useful particularly for sorting emails by

importance or comparing the relative importance of emails (Alibadi et al., 2014).

The Vecond appUoach aUgXed b\ (FUanoYic and ânajdeU, 2012) iV Whe alWeUnaWiYe Wo

importance-based filtering is content-based classification, which labels each message

based on its content, leaving it to the user to decide on the importance of the message. An

example would be analyzing previous emails to predict whether the user will perform an

action (i.e., reply, delete, etc.) on a new incoming email. The reason behind this approach

is the task of predicting the importance of the email is not only difficult but probably not

XVefXl peU Ve, and Whe XVeUV ma\ pUefeU Wo find ³acWionable email´ inVWead (CaVWUo eW al.,

2016). Several researchers follow this approach; (Carvalho and Cohen, 2005) use machine

learning to identify email requiring an action, (Ayodele and Zhou, 2009) propose to solve

the problem of email prioritization and overload by determining if email received needs

Uepl\, and (CVelle eW al., 2007) pUopoVe ³Uepl\ e[pecWed´ indicaWoU Zhich maUkV WopicV in

 20

which the newest email was addressed to the user and has not yet been replied to. On the

other hand, predicting if new email requires no action (or no immediate action) could save

valuable time for the user and let him/her focus on important emails instead. In (Dabbish

eW al., 2004) VWXd\, 64% of Whe meVVage didn¶W UeqXiUed a Uepl\. SXch a high peUcenWage on

no reply emails suggest an intelligent agent could aid the user in prioritizing emails for

view.

2.3. Categorization As a Solution

Another technique to help the user to cope with the email overload is to assist

him/her in decluttering the inbox by categorizing the incoming emails. (Dredze and Lau,

2006) VWaWe WhaW an email¶V XVeU ZoXld benefiW fUom a V\VWem WhaW can idenWif\, giYen a neZ

message, which activity/task it belongs to. They also noted that the email activity

classification problem is an incremental learning problem; the set of class labels can (and

will) change over time as new activities are created by the user.

One way to do that is utilizing machine learning techniques to analyze emails

headers and content and make recommendations to users about how they might categorize

incoming emails into folders. To achieve this goal, the system should satisfy several

conditions, (Balter and Sidner, 2002) mention four such conditions:

1. No or little work from the user.

2. All messages should be categorized.

3. Categorization should be scalable, and

4. No messages should be misclassified.

 21

We observed two applications of categorization in the domain of email systems: tagging,

and classification. In the following sections, we would review the previous works for each

application.

2.3.1. Tagging

Tags are unstructured, one-word/phrase labels that users apply to some object of

digital information. Tagging has emerged as a mechanism for impromptu organization of

information in social networking (Tang et al., 2008). It offers many desirable properties

that make it easy to: assign multiple tags to a single resource, create new tags on the fly

with minimal cognitive burden on the user, and represent information indexed by tags

through usable tag clouds.

(Millen et al., 2006) (Ames et al., 2007) study the use of tagging and found it

demonstrate several benefits in information retrieval. As for using tags in the emails

domain, (Sorower et al., 2015) explored the benefits of using tagging in managing emails.

They state that tagging email would be an important approach for managing email

overload, their results of 14 users study conclude that implicit feedback mechanisms can

provide a useful performance boost for email tagging systems. In addition, machine

learning methods can help the user with this task by predicting tags for incoming emails.

As a result, they proposed three algorithms (and two baselines) for incorporating implicit

feedback into the TaskTracer, known as EP2 (Email Predictor 2). TaskTracer Email

Predictor 2 (EP2) incorporates automated email prediction into Microsoft Outlook using a

multi-label classifier based on the confidence weighted linear classifier.

 22

2.3.2. Classification

One of the main advantages of classifying emails is to declutter the inbox and

aXWomaWicall\ moYeV emailV inWo iWV UelaWed foldeUV ZiWh no XVeU¶V inWeUYenWion UeqXiUed.

(Whittaker et al., 2006) argue that classifying emails, by task, would declutter the inbox,

increases task salience and reminds the user about ongoing tasks. (Freed et al., 2008) in

Reflective Agents with Distributed Adaptive Reasoning (RADAR), considered email task

detection as a text classification problem. They used a regularized logistic regression suite

of classifiers (Yang et al. 2005) (based on body, headers, links) and combined their results.

To adapW in XVeU¶V email habiWV (e.g., neZ people, changing pUojecWV), Whe claVVifieUV ZeUe

designed to be incrementally adaptive. SCONE (Fahlman, 2006) had been used to improve

claVVificaWion peUfoUmance; SCONE iV RADAR¶V knoZledge baVe Zhich pUoYideV

addiWional onWological infoUmaWion WhaW iV noW conWained in Whe email¶V conWenW. E[ampleV

inclXde baVic facWV, VXch aV ³Whe Connan Uoom iV in Whe UniYeUViW\ CenWeU,´ and higheU-

leYel concepWV, VXch aV ³a peanXW iV kind of food WhaW people mighW be alleUgic Wo´.

(Sorbo et al., 2015) propose a semi-supervised approach named DECA

(Development Emails Content Analyzer) that uses Natural Language Parsing to capture

lingXiVWic paWWeUnV and claVVif\ emailV¶ conWenW accoUding Wo deYelopeUV¶ inWenWionV, VXch aV

asking/providing helps, proposing a new feature or reporting/discussing a bug. Other

projects such as (Qadir et al., 2016) try to train a logistic regression classifier. The trained

classifier is then applied to the email data to identify the Thing of Interest (TOI) phrases.

Their results show that syntactic and semantic knowledge such as verb phrases and thing

of interests in emails can model the activities much better than bag-of-words.

 23

(Wendt et al., 2016) present a technique for the categorization of machine-

generated emails. They developed three new algorithms for classification of machine-

generated emails using structural templates: majority label, centroid similarity, and

hierarchical label propagation. Also, they explore number of underlying template

representations including bag-of-words and topic distributions, different similarity metrics

in template graph construction, and varying degrees of graph connectivity.

The task of automatically classifying emails prove to be a difficult task and there

are several challenges associated with it. (Brutlag and Meek, 2000) identify some of these

challenges, they recognize the need to adapt to changing behavior. In addition, (Pazzani,

2000) show that user have high expectations for text processing techniques used in email

and being somewhat intolerant of errors. Other drawback of using supervised machine

learning techniques, it requires the user to do additional work by annotation of large

numbers of emails for training purposes. For this reason, using unsupervised learning may

be preferred since it requires no additional work from the user on the training data. An

example of unsupervised learning is clustering. Clustering is the task of grouping a set of

objects in such a way that objects in the same group (called a cluster) are more similar (in

some sense or another) to each other than to those in other groups (clusters).

(Whittaker et al., 2011) suggest using clustering techniques to organize the inbox

inWo µVXpeUWhUeadV¶ b\ combining mXlWiple WhUeadV ZiWh oYeUlapping WopicV. While

(Surendran et al., 2005) used clustering as a means to derive the topics, not as an end in

itself. They argued against email categorization/clustering methods which learn pre-

assigned categories by the user, therefore, it would require efforts from the users to create

and maintain such categories. Their proposed approach is multi-document key phrase

 24

extraction by picking a few characteristic keywords/key phrases for each topic and use

those as a characterization of the topic itself.

2.4. Visualization As a Solution

The most popular interface, for displaying emails to the user, is the traditional linear

interface which (Whittaker and Sidner, 1996) define it as a tabular format of email folders

and once a new email has been read, the user is expected to execute an immediate action

on Whe email. BecaXVe of WhiV e[pecWaWion of ³an immediaWe acWion´ and Whe Wime limiWaWionV

of the user, several challenges arise (emails overload and tasks management), the former

we describe in details in the next chapter. Therefore, many researchers try to solve these

problems by focusing on the best interface that email clients should present emails to the

user. One proposed interface, by (Baecker et al., 1997), is TimeStore; A two-dimensional

representation which is based on a time-based email interface. In this interface, emails are

automatically organized by time and by sender and displayed on a two-dimensional grid.

Another similar example is TimeStore-TaskView, proposed by (Gwizdka, 2002), which is

baVed on TimeSWoUe and XVeV Whe Vame gUaphical UepUeVenWaWion. In WhiV inWeUface, email¶V

tasks are represented by small icons on a two-dimensional grid with temporal task

information shown on the horizontal and vertical axis, respectively.

Any solution should be based on two principles: First, there should always be a

special path for people to get urgent, certified, and personal messages and second, all other

paths should be filtered (Crocker, 1982). In alignment with these two principles,

(Neustaedter et al., 2005a) states to design email interfaces which support email triage, the

interface must reduce the number of items to triage, by grouping, and these groups must be

created automatically. These groups may still have many entities to triage within, but it

 25

could provide users with additional meta-level attributes of the emails. Therefore, they

suggest that email interfaces should also present additional socially noticeable information

about the sender, receiver, and time attributes of the emails.

Another approach proposed by (Surendran et al., 2005) is a personalized user

interface which can auto-arrange all the email/document according to the discovered

topics. They defined personal topic as any cohesive concept that is relevant to the user. It

could be an activity they participate in, an event they organized or attended, a person or a

group of people they associate with, etc.

As for the problem of task/activities management in emails, (Kushmerick et al.,

2006) vision is to provide activity-centric (rather than message-centric) tools that enable

users to manage their activities together, rather than as isolated email. The underline key

behind this approach is related emails in a task provide a valuable context that can be used

for semantic email analysis. At the same time, the activity related metadata in separate

email can provide relational clues that can be used to establish links between emails and

group them into tasks (Khoussainov and Kushmerick, 2005).

(Gwizdka and Chignell 2004), (Venolia and Neustaedter, 2003), (Wattenberg et al.,

2005) proposed several other solutions to visualize inbox tasks, including tree

representations and flat representations of information related to specific tasks. These

approaches depend on threads to group emails into a common task. Thus, they suffer from

Whe limiWaWion of WhUeadV aV iW¶V a Zeak indicaWoU of WaVkV becaXVe of diffeUenW email

responding practices and some emails include several topics. (Bellotti et al., 2005) try to

oYeUcome WhiV limiWaWion b\ depending on ³WhUaVkV´, Zhich iV a XVeU-customizable groups

based on threads.

 26

2.5. The Social Relationship Between Sender and Receiver

Analyzing the social meta-data of emails may be useful to identify the

UelaWionVhip¶V VWUengWh beWZeen VendeUV and UecipienWV, in addiWion Wo oWheU meWa

information such as the average respond time to a new email. An example of such an

approach is DriftCatcher by (Lockerd and Selker, 2003), using this meta data, they train an

SVM to classify emails by interaction process analysis, which labels emails with eight

W\peV of inWeUacWionV, VXch aV ³infoUming,´ ³inqXiUing,´ ³planning´ and ³keepInToXch.´

Other researchers, such as (Neustaedter et al., 2005b), consider the below social metrics to

capture multiple dimensions of the relationship between the user and their correspondents

and among the correspondents themselves

x Number of times an author sent email over a time period,

x Number of those messages that were replies,

x Number of those messages that remain unread can be used for supporting email

management.

The\ oUgani]e Whe Vocial meWUicV of each email inWo ³SenW meWUicV´, Zhich pUoYide

social information about email sent by the user to a correVpondenW, and ³ReceiYed meWUicV´,

which provide information about email received by the user from a correspondent. In the

following sections, below we discuss two applications that make benefits of analyzing the

social meta data of emails.

2.5.1 Recipient Recommendation

If you are communicating with other using emails, there are chances you had forget

to add an email recipient in at a least once. This problem is widespread among emails users,

(Carvalho and Cohen, 2008) found, by searching the Enron email corpus, that at least

 27

9.27% of the users have forgotten to add a desired email recipient in at least one sent

message. While at least 20.52% of the users were not included as recipients (even though

they were intended recipients) in at least one received message. They state that this task

can be a valuable addition to email clients, particularly in large corporations, where

negotiations are frequently handled via email and the cost of errors in task management is

very high. Also, (Sofershtein and Cohen, 2015) stated that prediction of recipients allows

foU effecWiYe ³aXWo-compleWe´ of WhiV field, WheUeb\ impUoYing XVeU e[peUience and UedXcing

the overhead of manual typing of the recipient.

AnoWheU pUoblem ZheUe UecipienW UecommendaWion ZoXld help iV ³VWoYepiping´.

(Pal and McCallum, 2006) define a stovepipe organization as an organization contains

members who have narrowly defined responsibilities and information, output and feedback

only move along a set path through a management hierarchy. They developed an automated

system that suggest a list of additional recipients to the cc field. Using a simple Multinomial

Naive Bayes model, they learn the probability distributions of recipients, words in body

and subject, and the recipients given so far to predict recipients in email cc lists.

2.5.2. Email Leak

IW¶V in oXU naWXUe Wo feel moUe WhUeaWened b\ malicioXV, UaWheU Whan accidenWal,

behavior. Sharks are much scarier than cars but having a car accident is far more likely

than getting eaten by Jaws. Research by CompTIA found that human error accounts for

52% of the root cause of security breaches (CompTIA, 2015). A freedom of information

request to the ICO reported that 62% of data securityီincidents reported between January

and April 2016 were due to human error (ComputerWeekly, 2016).

 28

In WheiU 2015 UepoUW, VeUi]on foXnd WhaW ZiWhin µMiVcellaneoXV EUUoUV¶ (Whe moVW

common W\pe of daWa VecXUiW\ incidenW caWegoU\), µmiVdeliYeU\¶ of infoUmaWion accoXnWed

for the majority of incidents (Verizon, 2015). (Carvalho and Cohen, 2007a) identify this

pUoblem aV ³email leakV´ (i.e., when a message is accidentally addressed to non-desired

recipients). The Bank of England, Goldman Sachs and the NHS Trust have all hit the

headlines for data breaches due to misaddressed emails. In addition to this, the ICO in the

UK recently reported that misaddressed emails were the number one type of data security

incidenW UepoUWed Wo Whem (InfoUmaWion CommiVVioneU¶V Office, 2016).

Conventional solutions to the problem of misaddressed emails would be user

should be more careful, email recall, encryption, double-check warnings, or allows IT

administrators to apply pre-defined policies to outbound emails. All these

approachesီsuffer from three key problems: highly disruptive to email¶V XVeUV, cUeaWe

admin overhead for IT teams, and rely on purely rule-based methods to screen outbound

emailV (in oWheU ZoUdV, don¶W adapW Wo XVeUV¶ behaYioU changeV).

More adaptable solutions would utilize the use of machine learning to analyze

outgoing email content. Such solutions will be able to detect human error and potential

data breaches in real time, before an email is sent, with no change to the way in which

employees normally send emails. (Balasubramanyan et al., 2008) propose CutOnce which

can be used to provide email leak prevention. CutOnce algorithm works by ranking only

the already-specified recipients of an email under composition, with the least likely address

on the top. While (Carvalho and Cohen, 2007) leverage content similarity by creating

TFIDF centroid vectors and determining k-nearest neighbors of a target email. They try to

determine appropriate recipients for an email and alerting the user when an email is sent to

 29

an inappropriate recipient (leak detection). They tried to approach this problem by

redefining it as an outlier detection task, where the unintended recipients are the outlier.

An e[ample of a commeUcial VolXWion Wo Whe pUoblem of ³email leakV´ ZoXld be

CheckRecipienW¶V deYeloped b\ a Weam of ImpeUial College WUained engineers,

mathematicians and data scientists. They are using machine learning to analyze emails to

understand the typical sending patterns and behavior of employees within the organization.

This analysis allows to establish the baseline behavior for email communication to detect

anomalies that may indicate misaddressing errors on outgoing emails. Every single time an

anomaly is detected in an outbound email, CheckRecipient not only prevents the email

from being sent but informs the sender why an anomaly was detected and asks them for

confirmation on whether they would still like to proceed with sending.

 30

CHAPTER 3

EMAIL OVERLOAD

In 1982, Peter Denning (then the ACM President) first wrote about the pain of

ZoUking ZiWh email, calling iW ³The ReceiYeU¶V PlighW´ and he aVked Whe folloZing qXeVWion,

³Who Zill VaYe Whe UeceiYeUV [of an email] fUom dUoZning in Whe UiVing Wide of infoUmation

Vo geneUaWed?´ (CUockeU, 1982). HoZ iV Whe ViWXaWion noZ, afWeU WhUee decadeV? (RadicaWi,

2015) estimates the number of emails sent and received daily in 2015 to be over 205 billion

and expected to grow at an average annual rate of 3% over the next four years, reaching

over 246 billion by the end of 2019. The number of business emails sent and received per

user per day in 2015 to be 122 emails per day and expected to average 126 messages sent

and received per business user by the end of 2019. So even after thirty-five years of Peter

Denning¶V qXeVWion, iW VeemV WhaW hiV qXeVWion VWill UeleYanW.

Several researchers explore this problem and based on the reviewed literature, two

definitions arise: First definition is Information Overload occurs as the volume of

information received by the individual surpasses their ability to process it (Schuff et al.,

2006). The second by (Dabbish and Kraut, 2006) (Alberts, 2013) define email overload as

a peUcepWion of email XVeUV¶ belief in Wheir inability to process, find and handle the amount

of email they send and receive. As for the consequences, Email overload would not only

hindeU Whe XVeU¶V capaciW\ Wo manage WheiU email inbo[, bXW iW coXld alVo caXVe Wime

pressures and can increase working hours, which are reportedly large contributors of stress.

(Edmunds and Morris, 2000) discovers that information overload causes stress amongst

 31

employees. As a result, (Song et al. 2007) coach readers on regaining control of their lives

fUom Whe ³W\Uann\ of email.´

In the following sections, we start by explaining what contributes to the problem of

email overload, then exploring the available solutions and their limitations. Later, we

pUeVenW oXU pUopoVed VolXWion. Finall\, Ze compaUe oXU model¶V UeVXlWV with a baseline

model and other previous works.

3.1. What Contributes To Email Overload?

The average number of unread work-related emails increased from (153) in 2006

(Fisher et al., 2006) to (696) in 2014 (Grevet et al., 2014). Grevet made these estimations

by replicate and extend on (Whittaker and Sidner, 1996) and (Fisher et al., 2006) works,

ZiWh a qXaliWaWiYe anal\ViV of Google¶V Gmail. JXVW like in 1996, email oYeUload iV VWill a

problem, both in terms of volume and of status. A recent study, by (Kooti et al., 2015) of

more than 2 million users exchanging 16 billion emails over several months, confirm

GUeYeW¶V UeVXlWV UegaUding email oYeUload aV Whe\ conclXde WhaW XVeUV geneUall\ Xnable Wo

keep up with rising load.

(Dabbish et al., 2004) found that 49% of incoming emails kept in the inbox. As for

Whe UeaVonV behind XVeUV¶ mailbo[eV been Vo full, an early study conducted by (Whittaker

and Sidner, 1996) mentioned two reasons:

1. Email inbox serves as a task manager to remind the user of all his/her tasks. They

claVVif\ emailV, Zhich don¶W be pUoceVV immediaWel\, inWo foXU W\peV of emailV:

a. ³To doV´ (ReqXiUe acWionV)

 32

b. ³To UeadV´ (UeqXiUeV Wime and effoUWV): The\ foXnd WhaW 21% of emailV kepW

in inbox contained more than 5 screen-full of text. Thus, time limitation

may be the reason.

c. ³IndeWeUminaWe VWaWXV´ (VWill eYalXaWing iWV impoUWance), and

d. ³Ongoing CoUUeVponding´ (dUafW emailV pending moUe Wime oU XnaYailable

information).

2. Filling emails into folders is difficult and have few benefits.

A more recent qualitative study of 34 knowledge workers by (Alberts, 2013),

identify five factors that contribute to this problem: Quantity (the amount of emails they

received daily), Poor Targeting (ease of writing an email, insecurity of certain employees

to CC to their manager, and internal communications), Large Attachments (the presence of

many/larges attachments), Discussion Thread Length (take too much time to read),

PUopagaWion EffecW (VendeUV Zho aUe abXVing Whe XVe of CC field, leading Wo Whe meVVageV¶

exponential multiplication). Another source, for email overload, is the machine generated

emails. (Ailon et al., 2013) (Grbovic et al., 2014) studies shown that more than 90% of

non-spam Web email is now machine-generated, with messages of various importance,

from e-tickets or invoices, to hotel newsletters.

3.2. Available Solutions

Several strategies and tools were proposed and developed to help the users cope

with the problem of email overload. At the same time, each of these solutions had its own

limitations and, in some cases, contribute to further problems. In the following sessions,

we are reviewing these solutions:

 33

3.2.1. UVeU¶V BehaYioU AV A SolXWion:

InfoUmaWion oYeUload pUoblemV can be minimi]ed b\ incUeaVing XVeU¶V infoUmaWion

pUoceVVing capaciW\, UedXcing Whe job¶V infoUmaWion load, oU doing a combinaWion of boWh.

Studies suggest that employees often increase their information processing capacity by

temporarily reading faster, scanning through documents more efficiently, and removing

distractions that slow information processing speed, (McShane and Von Glinow, 2015)

state that information load can be reduced by buffering, omitting, and summarizing. An

example of Buffering would be filtering incoming emails, either by a human assistant or

by automatic rules. Another use of automatic rules would be omitting and ignoring some

unimportant emails by redirect them from the inbox folder into folders that user never look

at. In general, (Whittaker et al., 2006) observed two main strategies users would follow to

faciliWaWe email¶V UeWUieYal: oUgani]ing WheiU mailbo[XVing foldeUV and/oU XWili]e VoUWing and

searching.

Although foldering declutters the inbox, it requires efforts (Bellotti et al., 2005) as

it requires a commitment from the user to invest considerable amounts of time and efforts

Wo conVWUXcW Whe foldeUV¶ oUgani]aWion foU fXWXUe UeWUieYal. Several studies have shown that

email users experience problems in organizing their emails, especially when asked to find

already archived emails (Boardman and Sasse 2004). Furthermore, a successful filling is

highly depending on predicting future retrieval requirements (Whittaker et al., 2006),

which proven to be a cognitively difficult task (Kidd, 1994). Since user need to remember

where a particular email is located and the name of the targeted folder. (Elsweiler et al.,

2008) observe that participants in their study of memory for email messages correctly

recalled over %80 of content, purpose, or task related of particular email in their main

 34

inbo[, Zhile ³fUeqXenW flieUV´ Wend Wo UemembeU leVV aboXW WheiU email. One UeaVon ma\ be

that foldering emails prevent the user from exposing to those emails frequently (Whittaker

et al., 2011).

Another problem associate with such method is the efficiency of email archive and

retrieval. Since an extra time would be required in searching for the targeted folder when

created and when searching for a specific email. Therefore, as the number of folders

incUeaVe, Whe efficienc\ of email¶V UeWUieYal ZoXld decUeaVe (BllWeU, 2000). ThiV on Whe oWheU

hand ma\ lead Wo ³failed foldeUV´ (WhiWWakeU and SidneU, 1996); foldeU conWain different

emails, or duplicate folders contain similar emails, such folders had been created but not

utilized well. All these challenges would explain why (Whittaker et al., 2007) found that

users sometimes avoid foldering emails that later turns out to be useless or irrelevant. While

(Neustaedter et al., 2007) identify that large proportion of users live with a flat inbox

structure, with just a few folders and filter rules for newsletters.

So, why users keep foldering emails despite all these challenges? (Whittaker et al.,

2011) argue that foldering is a just reaction to the phenomenon of receiving many emails

rather than response to increased demands for refinding emails. Users who receiving large

number of emails, tend to folder those emails to decluttering their inbox. Other researchers

argue that users are not foldering much of their emails. (Koren et al., 2011) study shown

that 70% of Web mail users never defined a single folder. (Grevet et al., 2014) found that

inboxes show indication of having a large number of emails, fewer messages are archived,

and labels are not as extensively used in Gmail as folders were in previous studies. They

also noticed that the volume of emails is much greater in personal accounts than work

accounts, and the number of unread emails is much greater in personal email as well.

 35

AV foU VeaUching and VoUWing, alWhoXgh WheVe meWhodV don¶W UeqXiUe iniWial effoUWV,

they could affect productivity and the efficiency of email archive and retrieval, since a

successful retrieval is highly dependent on predicting future retrieval requirements

(WhiWWakeU eW al., 2006). AnoWheU pUoblem ZiWh boWh foldeUing and VeaUching, iW¶V difficXlW

to find a master method that will accommodate the different needs and habits for all users.

Working with emailV haV come Wo Weach XV hoZ diYeUVe and XnpUedicWable people¶V email

reading/storage habits can be. Therefore, a technique which work perfectly for one user

may not guarantee to work well for another user.

3.2.2. Email Client As A Solution

Several email clients provide tools to manage emails overload. Users respond by

keep scanning email inbox, marking email as unread or flagging it as important for more

process later, sorting emails by sender or flags rather than by time, moving emails to folders

for later reference, deleting irrelevant emails from the inbox (Bellotti et al., 2005). (Venolia

et al., 2001) question the effectiveness of these tools and the adoption rate by users, as they

found small number of users (%30 of their samples) utilized such tool to handle their

emails. The same conclusion was confirmed by (Bellotti et al., 2005) through their

preliminary survey of email tool usage, they found that users use a fraction of the tools

provided by an email client such as Microsoft Outlook.

Another shortage of email client, especially in helping the user in emails triage

activity, its lack of providing sufficient and relevant information for identifying important

new email (Venolia et al., 2001). Since most activities are distributed over multiple email,

yet email clients allow users to manipulate just isolated email (Khoussainov and

Kushmerick, 2005).

 36

MeanZhile, one of Whe moVW VXcceVVfXl applicaWionV foU aXWomaWion in Whe email¶V

domain is spam filtering. Although email spam filter control unwanted emails and prove

to be an effective solution for the problem of spam emails, (Grevet et al., 2014) state that

emails which users sign up for such as discounts, store receipts, or for other reasons, are

more difficult to filter through traditional spam detection mechanisms.

Throughout the years, several commercial solutions from the popular email clients

were deYeloped Wo pUoYide alWeUnaWiYe VolXWionV foU email¶V XVeUV Wo manage WheiU emailV.

Yahoo mail offers Smart views, which provide search facets for messages, such as People,

Social, Travel, Shopping and Finance (Grbovic et al., 2014). The model behind this system

works on structural emails by structural clustering (X-Clusters) based on the structure of

Whe email¶V bod\. IW XWili]eV VeYeUal claVVificaWion feaWXUeV: VXbjecW/bod\ ZoUdV, XVeU acWionV

on emails (open, reply, delete, etc.), overall traffic volume (message distribution within a

da\/Zeek) and VWUXcWXUal feaWXUe of Whe email (hoZ man\ HTML Wag haYe, peUVonal¶V

emails have fewer). Gmail has been offering various ways for users to scan their inboxes,

first with its Priority Inbox which classifies emails into specific tabs: primary, social,

promotion, and updates (Aberdeen et al., 2010). Then with its Smart Labels and Inbox Tabs

and more recently with its Inbox for Gmail, which supports automatic sorting into various

Bundles (Travel, Purchases, Finance and Social). The model leaUnV fUom XVeU¶V inWeUacWion

with his emails and request feedback. Also, it utilizes many other features including email

conWenW, HTML code, VendeU IP addUeVV. MicUoVofW offeUV "ClXWWeU" and When ³FocXVed

Inbo[´ in iWV email clienW, Outlook. Focused Inbox uses a tab system, with "Focused" and

"Other" tabs. Low-priority e-mailV geW placed in Whe ³OWheU´ and ZhaW landV in Whe FocXVed

 37

Inbox is determined by an understanding of the people that the user interact with often, and

the content of the email itself (e.g., newsletters, machine-generated mail, etc.).

An issue, with automatically classifying incoming emails into predefined

categories, is who to determine which category an email belong to. In the case of Gmail

Priority Inbox, to which tab should an email sent by an advocacy groups placed in? the

primary inbox tab or the promotion tab? Keeping in mind that these tabs serve another

purpose: ad inventory. While Gmail does not sell ads in the primary inbox, advertisers can

pay for top placement in the social and promotions tabs in free accounts. So, if an email

sent by advocacy groups or political parties to be considered promotions emails, there are

legiWimaWe conceUnV WhaW Gmail¶V WabV and inbo[adV ZoXld WXUn inWo a Facebook-style news

feed where you have to pay for placement.

In general, the task of automatically classifying emails proves to be a difficult task

and there are several challenges associated with it. (Brutlag and Meek, 2000) identify that

these classification model should recognize the need to adapt to changing behavior. Also,

(Pazzani, 2000) shows that user has very high expectations and being somewhat intolerant

of errors. Furthermore, there is the problem of Topic drift. Topic drift means that the same

thread of emails conWainV infoUmaWion aboXW diffeUenW WopicV (i.e. Whe XVe Whe ³Repl\ To´

bXWWon inVWead of ³NeZ Mail´) (CVelle eW al., 2007). OYeUall, WhiV appUoach needV feedback

from the user, produces better results on structural emails (machine generated emails), and

UeqXiUeV Wime and conVideUable amoXnWV of emailV and iWV meWadaWa Wo leaUn Whe XVeU¶V

interactions.

 38

3.3. The Proposed Solution

SWXd\ing XVeUV¶ needV and ZhaW Whe\ ZanW fUom emailV clienWV help XV in oXU miVVion

to design and develop an intelligent email assistant. For this end, accessibility and visibility

are the most two characteristics of an email client that user requested. (Dabbish and Kraut,

2006) found that users want email information to be more available at the surface level,

which confirm (Whittaker and Sidner, 1996) previous findings that user prefers availability

and visibility. Dabbish and Kraut found, in their survey-study of 484 email users with

widely varying job characteristics, that users have a smaller number of folders and keep

their inbox small. A behavior that increases the surface level visibility of individual email

messages and reduced the feelings of email overload. Therefore, we conclude that the best

VolXWion Wo VeUYe Whe XVeUV¶ needV VhoXld haYe WheVe WZo main chaUacWeUiVWicV: 1) help the

user read and access the email content more efficiently, and 2) it should not add more

comple[iW\ oU UeqXiUe a change in XVeUV¶ behaYioU.

3.4. Speech Act

To achieve the above goal, we choose to follow the steps of (Cohen et al., 2004) by

utilizing the speech acts theory to cover some of the possible speech acts associated with

emails. A speech act is an utterance that serves a function in communication, any time a

speaker offers an apology, greeting, request, complaint, invitation, compliment, or refusal,

he/she uses speech act. Speech act has been used to model conversations for automated

classification and retrieval (Twitchell et al., 2004) and it would provide an effective way

of summarizing the intended purpose of an email message (Franovic and ânajdeU, 2012).

One of the applications of speech act theory is the classification of emails into

Email Speech Acts. This taxonomy is based on Speech Act Theory (Searle, 1969) (Austin,

 39

1962) and characteristics of email. (Cohen et al., 2004) utilize speech acts theory and work

on ontology of nouns (information and activity) and verbs (request, propose, amend,

commit, deliver, refuse, greet and remind) covering some of the possible speech acts

associated with emails. They assume that a single email could contain multiple acts, and

that each act is described by a verb-noun pair drawn from this ontology (e.g., "deliver

data"). As a result, each email may be annotated with several labels, as it may contain

several speech acts.

As for the nature of requests and commitments in email, (Lampert et al., 2006)

studied those and defined a Verbal Response Modes (VRM) taxonomy of speech acts,

which classify emails into two dimensions: literal meaning and pragmatic meaning. In

(Lampert et al., 2008), they state that the ontological foundation of their taxonomy is the

notion of an action and they define it as:

x Actions are carried out by agents.

x A request is placing of an obligation by one agent on another agent to carry out the

requested action.

x A commitment is the taking on, by some agent, of an obligation to carry out an

action.

x Both requests and commitments may be conditional

They define requests as sentences carrying an expectation that the recipient of the

email should act for it, and commitments as sentences carrying an expectation that the

sender is promising future action from themselves or on behalf of another person.

Studying how users use emails will give us a better idea of which email speech acts

to utilize for our work. (Grevet et al., 2014) notice that work emails tend to be overloaded

 40

in email status (to read, to do) while personal emails tend to be overloaded in email type

(bills, personal mail, promotional mail). Since we are focusing on work-related emails in

WhiV pUojecW, Ze VelecW Whe acW of ³InWenW´ Wo UepUeVenW Whe ³Wo do´ emailV and Whe acW of

³DeliYeU\´ Wo UepUeVenW Whe ³Wo Uead´ emailV.

Another key difference of our approach is that instead of classifying emails into

predefined categories (ex: Finance, Sport, Promotion, etc.) and move the emails into

VepaUaWe foldeU/Wab/bXndle, Ze aXgmenW Whe email ZiWh eiWheU ³inWenW´ if iWV conWenW iV a

UeqXeVW, commiW oU pUopoVe, oU aXgmenW iW ZiWh ³deliYeU\´ baVe on Whe aboYe acW¶V

definition. The idea behind our approach is rather than trying to learn the preference of the

user and then classifying and moving the emails out of the inbox folder, we should focus

on mining Whe conWenW of Whe emailV Zhile ³ViWWing´ idle inVide Whe XVeU¶V inbo[. Then pXVh

to the surface relevant information about the nature of Whe email¶V conWenW and make iW

visible to the user to help him/her decide whether to process this particular email or not.

As a result, the user would save the time and effort of clicking and opening the email.

3.5. The Enron Email Dataset

A large corpus of real-world emails subpoenaed from Enron Corporation was

placed in the public record and made available to researchers. The data consists of over

500,000 email messages from the email accounts of 150 people. We used the May 7, 2015

version. As a preprocessing step, we read each email and decompose it into its fields (From,

To, Subject, Content, etc.). Since the content of each email contains the entire

correspondence, including any previous emails, we tried to obtain only the content of the

sending message with no forwarded or replied parts. As each email could consist of

multiple speeches acts, we choose to focus on the smallest meaningful entity that is a

 41

sentence and then tried to predict its speech act. Using NLTK library (Bird and Loper,

2004), we conYeUW each email¶V conWenW inWo a liVW of iWV VenWenceV. AfWeU WhaW, Ze cUeaWed

one list with all the sentences of all the emails in the dataset, excluding any invalid

VenWenceV (a ³VenWence´ Zhich conViVWV of onl\ a liVW of VWUingV of Vpecial chaUacWeUV or

numbers), resulting in a total of 2,683,615 sentences. Finally, we shuffled the list and select

7497 sentences and use these for labeling. We manually labeled sentences as containing

eiWheU ³inWenW´ oU ³deliYeU\´ acWV.

In addition to our labeled dataset, we utilize the Parakweet Lab's Email Intent

Dataset. This dataset comes from the same Enron email corpus and contains training and

test data for detecting "intent" sentences in email messages. The creators of this dataset,

Parakweet Lab, follow the same (Cohen et al., 2004) definitions for a request, propose and

commit, and define "intent" as one of these three speech acts. In total, there are 4649 labeled

examples but after double checking the sentences manually, we decided that only 3828 are

valid sentences (i.e., conWain an ³inWenW´ oU ³deliYeU\´).

In total, our dataset contains 11319 labeled sentences, 4124 sentences labeled as

intent and 7195 sentences labeled as delivery. Then, using sklearn library (Pedregosa et al.,

2011), we split our dataset set into 80% as training set and 20% as a testing set. We

folloZed Whe beloZ gXidance in oXU labeling effoUWV: FoU Whe ³InWenW´, Ze combine Whe

following acts:

1. Request: ask someone else for an action, task, meeting, info or favor. Also, we

consider conditional statement (e.g., If someone cannot make it at this time, let me

know their names) as a request.

2. Directive: an order or command.

 42

3. Commit: commit self to an action/task/delivery or meeting. Examples are "I'll have

it ready by 2 pm" or "I'll review it later".

AV foU Whe ³DeliYeU\´, Ze defined iW aV an acW of Vending VomeWhing/infoUmaWion,

express an opinion, to inform (FYI), or to update. As for the statement, similar to this one

³pleaVe leW me knoZ if \oX haYe an\ qXeVWionV oU need addiWional infoUmaWion´ Zhich iV

common Wo end emailV ZiWh iW, Ze conVideU iW aV a ³deliYeU\´ acW.

3.6. Word Embeddings

An email consists of two parts of data: structured and unstructured data. The former

refers to the metadata like participants' emails ids, date/time etc. While the latter

corresponds to the raw natural languages text that appears in the subject and body of the

emails. In our work, we focus on the second part, more specifically, on representing the

content of emails using word embedding. Word embedding is a class of approaches for

representing words or documents using a dense vector representation that capture

something about their meaning. The main idea behind this approach is each word can be

represented by means of its neighbors (Firth, 1957). There is a linguistic theory behind the

approach, namely the "distributional hypothesis" by (Harris 1954). Comparing with the

traditional word representations, word embedding is an improvement over simpler bag-of-

word model word encoding schemes like word counts and frequencies that result in large

and sparse vectors (mostly 0 values) that describe documents but not the meaning of the

words.

There are two main approaches for how to compute these word embeddings:

Frequency based embedding and Prediction based embedding. The first approach uses

matrix factorization. It starts by going through the text and counting the number of times

 43

word couples are seen close to each other (in a given window, e.g., 5 words). This

information is stored in a data structure called a ³co-occXUUence maWUi[´. WoUdV YecWoUV aUe

built and adjusted iteratively, to minimize the (cosine) distance between words having a

high probability of co-occurrence. An example of this approach is Glove (Global Vectors

for Word Representation) (Pennington et. al., 2014). The second approach uses a shallow

feed-forward neural network (1 hidden layer). The main idea is to construct a neural

network that outputs high scores for windows that occur in a large unlabeled corpus and

low scores for windows where one word is replaced by a random word. When such a

network is optimized via gradient descent, the derivatives backpropagate into a word

embedding matrix. An example is word2vec from Google (Mikolov et. al., 2013) with its

two variants, Continuous Bag-of-Words CBOW (given context words predict a center

word) and Continuous Skip-gram SG (given a center word predict the context words).

Learning word representation requires serious computational power, time and big

corpus of text. Fortunately, both Stanford and Google offer pre-train word vectors which

had been trained on billon of tokens. In our work, we used GloVe pre-train word vectors

(100 dimensions) trained on 6 billion tokens from Wikipedia 2014 corpus and word2vec

pre-trained word vectors trained on part of Google News dataset (about 100 billion words),

this model contains 300-dimensional vectors for 3 million words and phrases. In addition

to the above two pre-train word vectors, we train a word2vec algorithm on the entire Enron

email dataset. We used our list of all sentences found in the Enron dataset. In the

pUepUoceVVing VWep, Ze conYeUW all ZebViWe¶V link addUeVV Wo Whe Woken ³[LINK]´ and all

email addUeVVeV inWo Whe Woken ³[EMAIL]´. AV foU cleaning VWep, Ze folloZed Whe adYice

of Tomas Mikolov, one of the developers of word2vec. He suggests only very minimal text

 44

cleaning is required when learning a word embedding model. Therefore, we kept only

alphabeWical chaUacWeUV and Whe Vpecial chaU of qXeVWion maUk ³?´ and Ze didn¶W VWem oU

lemmatize the text. After that, we used the word2vec algorithm's implementation provided

by genism (Rehurek and Sojka, 2010) with the following hyper-parameters (windows size

= 5 and dimension size = 100), to obtain word vectors for 94,673 unique words.

3.7. Neural Networks in NLP

Natural language processing (NLP) enables computers to perform a wide range of

natural language-related tasks such as parsing, part-of-speech (POS) tagging, machine

translation, dialog systems, and sentiments classification. The traditional methods which

have been utilized to solve these NLP problems were traditional machine learning models

such as Support Vector Classifier and Logistic Regression trained on very high

dimensional and sparse features. These traditional machines learning based NLP systems

relied heavily on hand-crafted features which in turn are time- consuming and often

incomplete.

In the last few years, neural networks based on dense vector representations have

been producing superior results on various NLP tasks (Collobert et. al., 2011). An

advantage of using neural networks is that they require no hand-crafted features and enable

automatic feature representation learning. (Young et. al., 2017) provide a comprehensive

review of most deep learning methods which have been used in NLP research today. In

this chapter, we are focusing on two deep learning architectures, Convolutional Neural

Networks (CNN) (LeCun et. al., 2015) and Long Short-Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997).

 45

3.7.1. Convolutional Neural Network

Convolutional Neural Networks (CNN) have recently been shown to achieve

impressive results on the practically important task of sentence categorization (Kim, 2014;

Kalchbrenner et. al., 2014; Goldberg, 2016). For most NLP task, CNN plays the role of

feature extractor by extracting higher-level features from constituting words or n-grams to

create a useful latent semantic representation of the sentence (Collobert et. al., 2011).

Initially, CNN was designed to be used in image processing tasks. Therefore, the input is

e[pecWed Wo be a ³2-D maWUi[´ UepUeVenWing image pi[elV. FoU NLP WaVk, inVWead of image

pixels, the input are sentences or documents as sequences of tokens. In order to apply CNN,

the input needs to be represented as a matrix where each row of the matrix corresponds to

one token, typically a word. That is, each row is a vector that represents a word. Typically,

these vectors are word embedding.

FIGURE 3.1: OUR CNN FEATURE EXTRACTOR ARCHITECTURE

 46

Instead of hand engineering our features to classify whether a sentence is an intent

oU a deliYeU\, Ze aUe XVing a CNN aV a feaWXUeV¶ e[WUacWoU Vo iW ZoXld capWXUe a phUaVe VXch

as "send me" regardless of where it happens in the sentence. Figure 3.1 illustrates our CNN

model architecture. The model comprises of filters layer and pooling layer. The filters layer

consists of 32 filters of size 3 and their width would be equal to the embedding dimensions

(100 dimensions) used to represent the sentence.

This layer performs convolutions on the input sentence matrix and generates 32

feature maps. Then the largest number from each two neighboring cells in the feature map

is selected using a 1D-max pooling to produce the compress feature map. Then, these 32

compress feature maps are concatenated to form one feature matrix. This feature matrix

would represent the higher-level features of the input sentence and would be passed into

the LSTM layer.

3.7.2. Long Short-Term Memory Network

Long Short-Term Memory network (LSTM) is a special type of Recurrent Neural

Network (RNN). A recurrent neural network is a neural network that attempts to model

time or any other sequence, such as language. One problem of standard RNN, as the

distance between words or sequences values increase, i.e., they are separated by a large

number of other words or values, modeling such dependencies will lead into the problem

of vanishing gradient problem or exploding gradient problem. In vanishing gradient

problem, the ZeighW¶V XpdaWe iV minoU and UeVXlWV in VloZeU conYeUgence; ThiV makeV Whe

optimization of the loss function slow and in the worst case, may completely stop the neural

network from learning. As for the exploding gradient, this is the exact opposite of vanishing

gradient. Consider you have non-negative and large weights and small activations A. When

 47

these weights are multiplied along the layers, they cause a large change in the cost. Thus,

the gradients are also going to be large. This means that the changes in weights will be in

huge steps, the downward moment will increase. This may result in oscillating around the

minima or even overshooting the optimum again and again and the model will never learn.

LSTM is capable of overcome such shortcoming of standard RNN by learning long-

term dependencies using a new structure called a memory cell. A memory cell is composed

of three main gates: an input gate, a forget gate and an output gate. The weights of these

gates will model the interactions between the memory cell itself and its environment. As

our CNN layer learn and output the most important features of the words, the LSTM

consider the meaning of a given word and remember what the previous word was. So, the

model ZoXld haYe Vome ³memoU\´ of ZoUdV WhaW coXld occur much earlier in the sentence.

3.8. The Proposed Model Architecture

Figure 3.2 shows all layers of the model. The first layer is the input layer, where

we are converting the input sentence from a list of tokens (i.e., words) into a list of the

word index, the word index is just the location number of that word in our dictionary of

unique words occurs in the corpus. Then, to solve the problem of invariant sentence length,

we are padding each input sentence with zero to make all sentences length equal to the

longest sentence in our corpus. The output of this layer would be a vector with the length

equal to the longest sentence. We used the Keras library to obtain the vocabulary of word

indexes and to pad the input sentences to get the same fixed length sentences.

The output of this layer is a 2d matrix, each row is a 100-D word vector represents

each word in the input sentence. The third layer is a conv1D, convolutional layer. This

layer applies 32 convolutional filters (filter size = 3 and activation = µUelX¶) on Whe

 48

embedding matrix input. Each filter output a feature map vector; the length of these features

map vectors is equal to the length of the input sentence (i.e., the number of words). All

these 32 features map vectors are concatenated to form a feature map matrix, the dimension

of this matrix is (number of words in the input sentence, number of features maps). We are

using a Maxpooling layer with size = 2 to compress the features matrix.

The fourth layer is an LSTM with hidden state of 100 units. In this layer, there is

only one LSTM cell that is reused for as many rows in the compress feature matrix. The

LSTM cell maintains a hidden state and a cell state (i.e., memory cell) within it that passes

forward to the next step. But there is only 1 set of parameters being learned. Those

parameters need to be able to handle all steps, conditional on the current input, hidden state,

and cell state. The cell state is not an output; however, it is passed forward as an input to

the next step. The hidden state is passed to the output as well as to the next step. Finally,

Wo make Whe pUedicWion, Ze aUe XVing a UegXlaU denVel\ connecWed NN la\eU ZiWh a ³Vigmoid´

function to squeeze the output feature vector from the LSTM.

3.9. The Experiment and Evaluation Results

To eYalXaWe oXU model¶V peUfoUmance, Ze compaUed oXU model¶V UeVXlW ZiWh 1)

Traditional approach, which consists of using TF-IDF to represent the input and a Support

VecWoU ClaVVifieU Wo claVVif\ Whe inpXW VenWence inWo ³Wo do´ oU ³Wo Uead´. 2) Deep LeaUning

FIGURE 3.2: THE ARCHITECTURE OF OUR MODEL

 49

approach: We reproduced the models described in (Kim, 2014) and (Kudugunta and

Ferrara, 2018), then we trained these models on our own labeled dataset and compare the

result with our own (CNN-LSTM) model.

The traditional approach consists of using TF-IDF to represent the input and a

SXppoUW VecWoU ClaVVifieU Wo claVVif\ Whe inpXW VenWence inWo ³inWenW´ oU ³deliYeU\´. We XVed

sklearn CountVectorizer and TfidfTransformor to represent the input and sklearn

implementation of C-Support Vector Classification to make the classification, their

implementation is based on libsvm. To obtain the best results, we used sklearn

GUidSeaUchCV Wo WXne Whe beloZ model¶V h\peU-parameters using 3 folds:

x 'vect__ngram_range': [(1, 1), (1, 2), (1, 3), (1, 4)],

x 'tfidf__use_idf': (True, False),

x 'clf__kernel': ("linear", "poly", "rbf", "sigmoid"),

x 'clf__C': [0.001, 0.01, 0.1, 1, 10],

x 'clf__gamma': [0.001, 0.01, 0.1, 1],

x 'clf__degree': [3,4,5]

Using the parallel computing option provided by sklearn, it took our Machine

(MacBook Pro with 2.9 GHz Intel Core i7 processor) 278.1 mins to process the 5760

different models. The following parameters gave us the best results: Ngrm_range: (1,2),

Use_idf: True, Kernel: linear, C: 1, gamma: 0.001.

As for comparing our CNN-LSTM model performance with a Deep learning

approach, we reproduced the models described in (Kim, 2014) and (Kudugunta and

Ferrara, 2018). (Kim, 2014) reports on a series of experiments with convolutional neural

networks (CNN) trained on top of pre-trained word vectors for sentence-level classification

 50

WaVkV. The claVVificaWion¶V WaVkV inclXde boWh VenWimenW anal\ViV and mXlWi qXeVWionV

classification. While (Kudugunta and Ferrara, 2018) used a deep neural network based on

long short-term memory (LSTM) architecture to detect bots at the tweet level. They used

Glove word embeddings to represent the input. In the end, we compared our (CNN-LSTM)

model with the following models:

1. CNN Model: one-layer CNN followed by a densely connected NN layer with a

³Vigmoid´ fXncWion. TheVe aUe the hyper-parameters of this model: CNN filters

numbers: 32, filter size: 3, pool size: 2, batch size: 16 and epochs: 10. We tried

different versions of this model:

o CNN on top of randomly initialized embeddings and then modified during

training.

o CNN on top of pre-trained word2vec embeddings

o CNN on top of pre-trained Glove word embeddings

o CNN on top of Enron Embeddings

2. Multichannel CNN: a multichannel version of the first model with a 50% dropout

layer between the CNN layer and the dense layer. We set a different filter size (1,

2, 3) for each channel. The intuition behind this model's architecture is that each

channel could capture different features of the input. So, a channel with a filter size

of one would read the sentence as 1-grams, a channel with a filter size of two would

read it as bi-grams and the third channel as a trigram. We tried the following

different versions of this model:

o Multichannel CNN on top of randomly initialized embeddings and then

modified during training.

 51

o Multichannel CNN on top of pre-trained word2vec embeddings

o Multichannel CNN on top of Glove word embeddings

o Multichannel CNN on top of Enron Embeddings

3. Three layers of CNN with randomly initialized embeddings and then modified

during training. We used the following hyperparameters: filters numbers

=[64,32,16], kernel size = [3,3,3], batch size= 16 and trained the model for 10

epochs.

4. LSTM: one-layer LSTM followed by a densely connected NN layer with a

³Vigmoid´ fXncWion. TheVe aUe Whe h\peU-parameters of this model: cell numbers=

100, dropout = 0.5, rec dropout = 0.2, batch size= 16 and trained the model for 10

epochs. We tried the following different versions of this model:

o LSTM on top of randomly initialized embeddings and then modified during

training.

o LSTM on top of pre-trained word2vec embeddings

o LSTM on top of Glove word embeddings

o LSTM on top of Enron Embeddings

5. Our proposed Model CNN + LSTM: One layer of CNN followed by one-layer

LSTM. Then, a denVel\ connecWed NN la\eU ZiWh a ³Vigmoid´ fXncWion. The hyper-

parameters values are the following: CNN filters numbers: 32, filter size: 3, pool

Vi]e: 2, acWiYaWion fXncWion iV ³UelX´, and LSTM Vi]e = 100. AfWeU WUaining Whe model

XVing ³Adam´ opWimi]eU foU onl\ WhUee epochV ZiWh a baWch Vi]e of 16, Ze goW Whe

best performance compared with the other models.

 52

Table 3.1 shows the evaluation results. We are using F1 score to report our results,

F1 score is the harmonic average of the precision and recall.

TABLE 3.1: EVALUATION RESULTS

Model Accuracy Loss Precision Recall F1

Traditional approach: TF-IDF +
SVC 85.07% - 85% 85% 0.85

CNN + rand. initialized embeddings 81% 1.03 81% 81% 0.81
CNN + Enron embeddings 80% 0.82 82% 89% 0.81
CNN + Glove embeddings 82% 0.60 82% 83% 0.82
CNN + Word2vec embedding 82% 0.74 83% 83% 0.83
Multichannel CNN + rand.
initialized embeddings 80.30% 0.93 81% 80% 0.80

Multichannel CNN + Enron
embeddings 86.70% 0.37 87% 87% 0.87

Multichannel CNN + Glove
embeddings 84.36% 0.37 84% 84% 0.84

Multichannel CNN + Word2vec
embedding 85.07% 0.42 85% 85% 0.85

Multichannel CNN + Enron, Glove,
word2vec embeddings 84.93% 0.38 85% 85% 0.85

3 layers of CNN + rand. initialized
embeddings 79.01% 0.87 79% 79% 79%

LSTM + rand. initialized
embeddings 81.75% 0.73 82% 82% 82%

LSTM + Enron embeddings 86.57% 0.31 87% 87% 87%
LSTM + Glove embeddings 84.36% 0.34 85% 84% 84%
LSTM + Word2vec embeddings 85.60% 0.33 86% 86% 86%
Our Model CNN + LSTM + rand.
initialized embeddings 80% 0.90 81% 81% 81%

Our Model CNN + LSTM + Enron
embeddings 89% 0.29 89% 89% 89%

Our Model CNN + LSTM + Glove
embeddings 86% 0.30 87% 87% 87%

Our Model CNN + LSTM +
word2vec embeddings 86% 0.33 86% 86% 86%

3.9.2. Results Comparison To Related Works

(Cohen eW. al., 2004) pUeVenWed an onWolog\ of ³email Vpeech acWV´. TheiU onWolog\

is pairs of nouns and verbs covering some of the possible speech acts associated with

 53

emails. In their work, they focus on the message level and assumed that a single email may

contain several acts and each act is described by a verb-noun pair from their ontology and

iW¶V Xp Wo Whe annoWaWoUV Wo deWeUmine Whe oYeUall inWenW of Whe email. The\ alVo pUopoVe a

system that automatically classifies emails based on its intention. The system was trained

and tested on four email datasets totally (1,357) emails. The first three are subsets from the

CSpace email corpus, (Kraut et. al., 2005) while the fourth dataset is PW CALO corpus.

They used bigrams with an unweighted bag of words representation to represent the emails.

They also add hand-crafted features, a total of 9602 features such as (times, POS tags and

POS counts). SVM (Support Vector Machine with a linear kernel) and DT (a simple

decision tree learning system) (Schapire and Singer, 1999) produce their best results: above

80% precision and above 50% recall. In a follow-up work by (Carvalho and Cohen, 2006),

they show that combination of n-gram sequence features with more work on message

preprocessing could reduce the classification error rates by 26.4% on average.

(Lampert et. al., 2010) focused only on Request speech act. Their request classifier

works on the message level. Their approach consists of using SVM-based automated email

zone classifier configured with graphic, orthographic and lexical features to classify the

email conWenW inWo diffeUenW fXncWional]oneV ³email]oneV´. AnoWheU SVM claVVifieU,

implemented using Weka (Hall et. al., 2009), would consider only small number of zones

to classify whether the message contains a request or not. They used a subset of the Enron

email dataset (505 email messages), released by Andrew Fiore and Jeff Heer, to train their

system. Hand-cUafWed feaWXUeV VXch aV meVVage¶V lengWh, nXmbeU of capiWali]ed ZoUdV, and

number of non-alpha-numeric characters, were used to represent the email messages. Their

system achieves an accuracy of 83.76% and weighted F1-measure of 0.838.

 54

(Qadir and Riloff, 2011) trained several classifiers to identify speech act sentences

using a variety of lexical, syntactic, and semantic features divided into three groups:

³Le[ical and S\nWacWic (Le[S\n) FeaWXUeV´, ³Speech AcW ClXe FeaWXUeV´, and ³SemanWic

FeaWXUeV´; Whe\ alVo XWili]ed Vpeech acW ZoUd liVWV fUom e[WeUnal UeVoXUceV and domain-

specific semantic class features. Their system consists of four SVM classifiers, one for

each speech acts (Directive, Expressive, Representative and Commisive). The classifiers

were trained on 150 message board posts contained a total of 1,956 sentences, these

messages were obtained from Veterinary Information Network (VIN), which is a web site

(www.vin.com) for professionals in veterinary medicine. Their system performance was

for sentences containing speech act: 86% Precision, 83% recall and 0.84 F-measurement,

and for sentences with no speech act: 93% Precision, 95% recall, and 0.94 F1-

measurement. As for each speech acts, the F-measurement were: Commisive: 48%,

Directive: 86%, Expressive: 94% and Representative: 21%.

(Franovic and Snajder, 2012) proposed a multilabel classification system of email

messages in the Croatian language based on the following speech acts: Deliver, Amend,

Commit, Remind, Suggest and Request. They used both TF (Term Frequency) and TF-IDF

(Term Frequency ± Inverted Document Frequency) to represent the input. As for learning,

they used six different models: SVMs (Support Vector Machines), Naive Bayes (NB), k-

NN (k-Nearest Neighbors), Decision Stump (DS), AdaBoost (with Decision Stump as the

weaker learner), and RDR (Ripple Down Rule) on three types of features extracted at three

levels (message, paragraph and sentence level). Their system was trained on 1337 email

messages. SVM classifier on sentence level gave the best overall performance of 0.8816

F1- measurement.

 55

All related works are using traditional machine learning approach. This approach

requires a considerable time and efforts on features engineering. Comparing that with our

approach, see Table 3.2, which required almost no time and efforts on handcrafting

features. Utilizing word embedding and Neural networks, we were able to automate the

entire process of feature engineering and to our knowledge, no previous research work had

explored that to detect users intents in emails.

3.10. Analysis

The aim of our research, in this chapter, was to detect the intent of a sentence in

email and claVVif\ iW inWo ³inWenW´, UepUeVenWing a ³Wo-do´ VenWence oU ³DeliYeU\´,

UepUeVenWing a ³Wo-Uead´ VenWence, accoUding Wo Whe Email Speech AcW Wa[onom\. The main

goal iV Wo deVign a V\VWem Zhich UeqXiUe no handcUafWed feaWXUeV and VWill achieYe ³good´

results. In this work, we were able to achieve that using word embeddings to represent the

input sentences and then using a model consists of Convolutional Neural Network (CNN)

and Long Short-Term Memory network (LSTM) to extract the features to classify the intent

of the sentence. We found that our model is able to detect the intent of the sentence with

an accuracy of 89% and a loss rate of 0.29. The precession and recall, of Whe ³inWenW´ acW,

aUe 90% and 93% UeVpecWiYel\. While Whe pUeceVVion and Uecall, of Whe ³deliYeU\´ acW, aUe

87% and 82% respectively. These results confirm our hypothesis that using word

embeddings and neural network model, outperforms the traditional approach of

handcrafting features.

 56

TABLE 3.2: COMPARISON OF OUR WORK WITH RELATED WORKS

Model Level

Hand
Crafted
features

Speech acts Precision Recall F1

Cohen et al.,
2004 message Yes

Request

Above
80%

Above
50%

0.69
Proposal 0.44
Delivery 0.80
Commit 0.47
Directive 0.78

Commissive 0.85
Meet 0.72

Lampert et al.,
2010 message Yes Request 84.90% 83.7% 0.84

Non-request 82.50% 83.9% 0.83

Qadir & Riloff,
2011 Sentence Yes

Commissive 63% 39% 0.48
Directive 87% 85% 0.86

Expressive 97% 91% 0.94
Represent 32% 16% 0.21

Franovic &
ânajdeU, 2012 Sentence Yes

Deliver - - 0.88
Amend - - 0.72
Commit - - 0.78
Remind - - 0.69
Suggest - - 0.69
Request - - 0.72

Ours Sentence No
Intent-To do 90% 93% 0.91
Delivery-To

read
87% 82% 0.85

 57

CHAPTER 4

TRANSFER LEARNING IN THE EMAIL DOMAIN

Neural networks are networks that information flows through. In the forward pass

the input flows and transforms, hopefully becoming a representation that is more amenable

to the targeted task. During the back phase we propagate a signal, the gradient, back

through the network. Its standard that a neural network consists of multiple layers of non-

linearity functions stacked together. The actual role of the non-linearity is to twist and turn

the feature space so that the boundary turns out to be linear. With each layer, the network

transforms the data, creating a new representation. These representations make the data

³niceU´ foU Whe neWZoUk Wo claVVif\. We can look at the data in each of these representations

and how the network classifies them. When we get to the final representation, the network

will just draw a line through the data (or, in higher dimensions, a hyperplane).

In oUdeU Wo Ueach Whe ³beVW´ final UepUeVenWaWion, Whe neWZoUk need Wo be WUained on

large amount of data. The main objective of training a neural network is to identify the

correct weights for the network by multiple forward and backward iterations. In most cases

these weights would be initialized randomly. More recently, pre-trained models, which

have been previously trained on larger datasets, are been utilized to initialize these weights

and then retrain the model. This approach is known as transfer leaUning. We ³WUanVfeU Whe

leaUning´ of Whe pUe-trained model to our specific problem statement. With transfer

learning, we basically try to exploit what has been learned in one task to improve

generalization in another. Since a neural network is trained on data, the network gains

 58

knoZledge fUom WhiV daWa, Zhich iV compiled aV ³ZeighWV´ of Whe neWZoUk. TheVe ZeighWV

can be extracted and then transferred to any other neural network. Instead of training the

other neural network from scratch, we ³WUanVfeU´ the learned features and such a model

would be called a pre-trained model.

There are different situations when using a pre-trained model may be useful as it

saves time and processing power required to train the model from scratch:

x Use the architecture of the pre-trained model: We use architecture of the model

while we initialize all the weights randomly and train the model according to our

dataset again.

x Feature extraction: We can use a pre-trained model as a feature extraction

mechanism. We can remove the output layer (the one which gives the final

predicted probabilities) and then use the entire network as a fixed feature extractor

for the new data set. An example of this usage would be using a ConvNet that has

been pre-trained on ImageNet, remove the last fully connected layer, then treat the

rest of the ConvNet as a feature extractor for the new dataset. Once you extract the

features for all images, train a classifier for the new dataset.

x Train some layers while freeze others: Another way to use a pre-trained model is

to train it partially. The main idea is to keep the weights of initial layers of the

model frozen while retrain only the higher layers.

Another situation, where using transfer learning would be preferable, is when there

is not much of labeled training data. The general idea is to use knowledge learned from

tasks for which a lot of labelled data is available in settings where only little labelled data

is available. Creating labelled data is expensive, so optimally leveraging existing datasets

 59

is a key. Transfer Learning is mostly used in Computer Vision and Natural Language

Processing tasks like sentiment analysis, because of the huge amount of computational

power that is needed for them.

In the following sections, we start by giving more details into the application of

transfer learning in both the vision domain as well as the NLP domain, what is Language

Modeling and its role in transfer learning in text. Finally, we will present our approach,

compaUe oXU model¶V UeVXlWV ZiWh a baVeline and oWheU previous works.

4.1. Transfer Learning in Vision

Deep learning methods have led to significant successes in computer vision.

Typically, deep learning techniques have been invented and applied in research settings on

enormous datasets, such as ImageNet (Deng et al., 2009) or MS Coco (Lin et al., 2014).

To increase performance on these large datasets, researchers have come up with network

architectures with increasing depth and complexity (Simonyan and Zisserman, 2014) (He

et al., 2016) (Chollet, 2017). All these network architectures required gathering

considerable amounts of images which have been annotated so it can be feed into the

neWZoUk in oUdeU Wo WUain iW. ThaW¶V in WXUn ZoXld UeqXiUe a conVideUable Wime and pUoceVVing

power.

As it turns out, deep learning networks learn hierarchical feature representations

(Olah et al., 2017). This means neural Networks usually try to learn low level features,

such as edges in their earlier layers, shapes in their middle layer and some task-specific

features in the later layers. With transfer learning, we can use the early and middle layers

and only re-train the latter layers. It helps us to leverage the labeled data of the task it was

initially trained on. Transfer learning is mostly used in Computer Vision because it can

 60

reduce the size of the dataset, which decreases computation time and makes it more suitable

for traditional algorithms as well.

4.2. Transfer learning in NLP

While deep learning models have achieved state-of-the-art on many NLP tasks,

these models are trained from scratch, requiring large datasets, and days to converge.

UVXall\, Ze need a loW of daWa Wo WUain a NeXUal NeWZoUk fUom VcUaWch, bXW Ze don¶W alZa\V

have access to enough data. That is where Transfer Learning comes into play because, with

it, we can build a solid machine Learning model with comparatively little training data

because the model is already pre-trained. This is especially valuable in Natural Language

Processing (NLP) because there is mostly expert knowledge required to created large

labeled datasets. A simple example of transfer learning would be using just a single layer

of weights (known as embeddings) which has been extremely popular for some years, such

as the word2vec embeddings from Google.

Amore computer-vision-like transfer learning example, where an entire pre-trained

model used, is (Howard and Ruder, 2018). They proposed Universal Language Model

Fine-tuning (ULMFiT), a transfer learning method that can be used to achieve computer-

vision-like transfer learning for any task for NLP. They show that their method outperforms

the state-of-the-art on six text classification tasks. In short, their method looks like this:

Train a Language Model (LM) on a huge dataset or download pre-trained one, fine-tune

this LM on the targeted dataset, then add few layers and fine-tune it to solve the task at

hand.

In this work, we are building on their work. Our Hypothesis is that training a

Language Model on the entire Enron email data (around 500,000 emails) and then using

 61

transfer learning to adapt this pre-trained Language Model on our labeled intent emails

dataset would outperform both the traditional hand-crafted features approach and the use

of an LSTM model trained on the intent email dataset.

4.2.1. Language Model

A statistical language model is a probability distribution over sequences of words.

Given such a sequence, say of length m, it assigns a probability 𝑃 ሺ𝑤ଵ, 𝑤ଶ, 𝑤ଷ, … , 𝑤) to

the whole sequence. FoU each ZoUd in Whe langXage¶V YocabXlaU\, Whe LangXage Model

(LM) computes the probability that it will be the next word. A language model learns these

probabilities based on examples of text. Simpler models may look at a context of a short

sequence of words, whereas larger models may work at the level of sentences or

paragraphs. Most commonly, language models operate at the level of words.

Recently, neural-network-based language models have demonstrated better

performance than classical methods both standalone and as part of more challenging

natural language processing tasks. Currently, all state-of-the-art language models are

neural networks (Merity et al., 2017). (Jozefowicz et al., 2016) found that LSTM-based

neural language models out-perform the classical methods. The use of neural networks in

language modeling is often called Neural Language Modeling, or NLM for short. The main

UeaVon foU WhiV impUoYed peUfoUmance ma\ be Whe meWhod¶V abiliW\ Wo geneUali]e.

Specifically, a word embedding is adopted that uses a real-valued vector to represent each

word in a project vector space. This learned representation of words based on their usage

allows words with a similar meaning to have a similar representation (Kim et al., 2016).

A language model can be developed and used standalone, such as to generate new

sequences of text that appear to have come from the corpus. Also, it could be a fundamental

 62

part of many systems that attempt to solve natural language processing tasks such as

machine translation and speech recognition (Goldberg, 2017).

4.3. The Proposed Model Architecture

To apply transfer learning into our problem, we are following this approach: first,

train a Language Model on the entire Enron Email Dataset (around 2m sentences), remove

last dense layer and add new dense layer for our binary classification task (i.e., classify to

do or to read), retrain this model on our training subset of the labeled intent dataset. Finally,

test this model on the testing subset of our labeled intent dataset. The below Figure 4.1

illustrates the main steps of our approach.

FIGURE 4.1: OUR LM DEVELOPMENT MAIN STEPS

4.4. The Experiment and Results

We used the same Enron emails dataset, which consists of 495,546 real-world

written emails. Before performing any preprocessing step, we decided to filter out any

email WhaW ZaV noW Vend fUom an enUon.com domain oU Whe ZoUd ³EnUon´ iV noW menWioned

in Whe ³FUom´ field. The logic behind WhiV deciVion iV WhaW Ze foXnd WhaW man\ emailV VenW

from not an Enron domain, are either newsletters or machine generated emails. We, also,

eliminated any machine generated emails from the email addresses mentioned in the

following Table 4.1.

Train LM on
unlabeled Enron

Dataset

Replace last
layer with new
sigmoid layer

Fine tune the
model on the

labeled dataset
Test the model

 63

TABLE 4.1: REMOVED EMAIL ADDRESSES

Email address removed
outlook.team@enron.com

arsystem@mailman.enron.com
enron.announcements@enron.com
announcements.enron@enron.com

enron_update@concureworkplace.co
exchange.administrator@enron.com

The first pre-processing step was separating the body section (i.e., the actual content

of the email composed by the sender) from other sections (i.e., forwarded previous email

oU Whe VignaWXUe). Then, Ze Ueplaced ZebViWe¶V link oU email addUeVV menWioned in Whe bod\

of an email by the tokens [LINK] and [EMAIL], respectively. After that, we replaced any

duplicated special characters with one copy of that character. Next, we got rid of all emails

which are empty or contain only numbers of special characters (i.e., no actual written

sentences), 45,921 emails were deleted in this step. Finally, we used NLTK package to

extract all the sentences from all emails and then saved it into a text file. In the end, we

have one text file which contain all the written sentences in the entire Enron emails dataset.

To transform the entire Enron emails text, we have first to read the entire text file,

mentioned above, as a one long sequence of strings. Then, we encode the text as integers.

Each word in the source text is assigned a unique integer so we can convert the sequences

of words to sequences of integers. Keras provides the Tokenizer class that can be used to

perform this encoding. First, the Tokenizer is fit on the source text to develop the mapping

from words to unique integers. Then sequences of text can be converted to sequences of

integers by calling the texts_to_sequences() function.

To train the language model, we need pairs of input and target output words. To

geneUaWe (inpXW, oXWpXW) paiUV foU Whe model Wo leaUn fUom, Ze Uead Whe EnUon¶V emailV 30

 64

tokens a time as the input and the following 31st token would be the target. The below

Table 4.2 shows the shape of our dataset after this step.

TABLE 4.2: TRAINING DATASET SHAPE

Input Label

W1 W2 « W30 W31

W2 W3 « W31 W32

W3 W4 « W32 W33

W4 W5 « W33 W34

Finally, since, the language model will be statistical and will predict the probability

of each word in the vocabulary given an input sequence of text, we need to fit the language

model to predict a probability distribution across all words in the vocabulary. That means

that we need to turn the output element from a single integer into a one hot encoding with

a 0 for every word in the vocabulary and a 1 for the actual word that the value. This gives

the network a ground truth to aim for, from which we can calculate error and update the

model. Keras provides the to_categorical() function that we use to convert the integer to a

one hot encoding while specifying the number of classes as the vocabulary size.

4.4.1. Training The Language Modeling

After we finished pre-processing and transformed the input and output. We defined

the neural language model. The model uses a learned word embedding in the input layer.

This has one real-valued vector for each word in the vocabulary, where each word vector

has a specified length. In this case we used a 100-dimensional projection. The model has

a two hidden LSTM layer with 256 units. For regularization, we added a dropout layer of

(0.2) after each LSTM layer. The output layer is comprised of one neuron for each word in

 65

the vocabulary and uses a Softmax activation function to ensure the output is normalized

to look like a probability.

Next, we compile and fit the model on the encoded text data. Since we are modeling

a multi-class classification problem (predict the word in the vocabulary), we used the

categorical cross entropy loss function. We used the efficient Adam implementation of

gradient descent and track accuracy at the end of each epoch. The model was trained for 2

epochs.

4.4.2. Fine Tuning The Pre-trained Language Model

We used the same labeled dataset which has been described previously, also we

followed the same pre-processing steps and labeling guidance. We experienced with three

different scenarios where we hypothesis that applying transfer learning may be useful, but

first we will describe our base model that we used to evaluate each model against.

TABLE 4.3: BASELINE MODEL RESULT

 Precision Recall F1
Intent Class 87% 90% 0.89
Delivery
Class 82% 77% 0.8

Overall 85% 85% 0.85

The baseline model uses a learned word embedding in the input layer. This has one

real-valued vector for each word in the vocabulary, where each word vector has a specified

length. In this case we used a 100-dimensional projection. The model has two hidden

LSTM layer, each layer with 256 units. For regularization, we added a dropout layer of

(0.5) after each LSTM layer. Finally, to make the prediction, we are using a regular densely

connecWed la\eU ZiWh a ³Vigmoid´ fXncWion Wo VqXee]e Whe oXWpXW feaWXUe Yector from the

LSTM. We trained this model on %80 of our intent email dataset for 2 epochs with batch

 66

size of 16. Then, we tested the model on the remaining %20. The above Table 4.3 shows

this model results:

In the first scenario, we used the pre-trained Language model as a features extractor

by removing the last dense layer, then using Support Vector Classifier (SVC) to classify

the intents of the emails. We used the following parameters for the SVC: C=1, kernel=

"rbf", gamma=0.1, degree = 3. Using the pretrained Language Model as features extractor

proved to be a failed experiment. The below Table 4.4 VhoZV WhiV model¶V UeVXlWV:

TABLE 4.4: SVC MODEL RESULT

 Precision Recall F1
Intent
Class 64% 100% 0.78

Delivery
Class 98% 6% 0.11

Overall 77% 65% 0.54

In the 2nd scenario, we replaced the last dense layer of the language Model, by a

new dense layer and retrain the entire model on our intent data subset. We trained this

model on %80 of our intent email dataset for 8 epochs with batch size of 16. Also, we

decrease the learning rate to (0.0001). Then, we tested the model on the remaining %20.

FolloZing WhiV appUoach pUoYed Wo be a VXcceVV. CompaUing Whe baVeline model¶V UeVXlW,

Ze impUoYed Whe model¶V pUeciVion and Uecall foU boWh Whe InWenW acW and DeliYeU act. The

below Table 4.5 shows this model results:

TABLE 4.5: FIRST RE-TRAINED MODEL RESULT

 Precision Recall F1
Intent
Class 88% 91% 0.90

Delivery
Class 84% 80% 0.8

Overall 87% 87% 0.87

 67

Retraining all layers of the Language Model at the same time may be an aggressive

way to let the pre-trained Language Model adapt to the knowledge obtained from our intent

email¶V daWaVeW. So, Ze decided Wo UeWUain Whe enWiUe model gUadXall\. We VWaUW b\ fUee]ing

all Whe la\eUV¶ ZeighWV and When XnfUee]e and UeWUain them one layer a time, starting from

the last (i.e., Whe denVe la\eU). AfWeU fUee]ing all Whe LangXage Model¶V la\eU, e[cepW Whe

last dense layer, we trained this model on %80 of our intent email dataset for 70 epochs

with batch size of 16. Also, we decrease the learning rate to (0.0001). We tested the model

on Whe Uemaining %20. Ne[W, Ze XnfUee]e Whe Vecond LSTM la\eU¶V ZeighWV and Whe

following dropout layer. We retrain the model again with the same parameters as the above

foU anoWheU 10 epochV. Finall\, Ze XnfUee]e all Whe la\eU¶V ZeighWV and UeWUain Whe entire

model for another 3 epochs. The below Table 4.6 show the results after each step:

TABLE 4.6: BEST RE-TRAINED MODEL RESULT

 Intent Deliver Overall
Precision

Overall
Recall

Overal
l F1 Precision Recall Precision Recall

Retrain last
layer only 0.79 0.91 0.79 0.59 0.79 0.79 0.78

Retrain last
3 layers 0.86 0.93 0.87 0.75 0.87 0.87 0.86

Retrain all
layers 0.91 0.91 0.84 0.84 0.88 0.88 0.88

4.5. Analysis

We found that our model is able to detect the intent of the sentence with an accuracy

of 88.43% and a loVV UaWe of 0.32. The pUeceVVion and Uecall, of Whe ³inWenW´ acW, aUe 91%

and 91% UeVpecWiYel\. While Whe pUeceVVion and Uecall, of Whe ³deliYeU\´ acW, are 84% and

84% respectively. These results confirm our hypothesis that using transfer learning on

Language Model, outperforms using only a two LSTM layers model. As shown in the

 68

below Table 4.7, using a simple pretrain Language Model and then gradually retrain it on

oXU inWenW email¶V daWaVeW, Ze ZeUe able Wo impUoYe Whe accXUac\ of Whe model and decUeaVe

its loss, comparing with the baseline model.

TABLE 4.7: BASELINE VS. RE-TRAINED LM MODEL RESULTS

Model Precision Recall F1
2 LSTM Baseline model 85% 85% 0.85

Transfer learning on pretrained Language Model 88% 88% 0.88

 69

CHAPTER 5

INVESTIGATING THE EFFECT OF CONTEXUAL REPRESENTATION

IN EMAIL

Up Wo WhiV poinW in oXU UeVeaUch, Ze XWili]ed WZo embeddingV: ZoUd2Yec and GloYe

Wo UepUeVenW Whe We[WXal daWa of emailV. BoWh WheVe embeddingV aUe belonging inWo Whe Vame

W\pe of embeddingV, conWe[W fUee embedding. In WhiV W\pe of embedding, each ZoUd haV one

embedding ZiWhoXW an\ conVideUaWion Wo Whe conWe[W ZheUe iW¶V XVeV. In UecenW \eaUV, oWheU

W\peV of embeddingV haYe been deYeloped. In Whe ne[W phaVe in oXU ZoUk, Ze compaUe

diffeUenW ZoUd embeddingV and VenWence encodingV ZiWh Whe goal of XndeUVWanding Zhich

embeddingV/encodingV aUe moUe VXiWable foU XVe in Whe WaVk of deWecWing Whe inWenW of an

email. We focXV oXU e[peUimenWV on WhUee diffeUenW W\peV of embeddingV:

x Pre-trained context-free word embeddings: word2vec (Mikolov et. al., 2013),

GloVe (Pennington et. al., 2014), and context-free word embeddings trained on the

entire Enron emails dataset using the word2vec algorithm.

x Pre-trained contextual word embeddings: Embeddings from Language Models

(ELMo) (Peters et. al., 2018) and Bidirectional Encoder Representations

from Transformers (BERT) (Devlin et. al., 2018)

x Pre-trained sentence embeddings: Universal Sentence Encoder (USE) and

Transformer (Cer et. al., 2018)

 70

Then, XVing a Vimple NeXUal NeWZoUk model conViVWV of one denVe la\eU of 256

nodeV followed by one node dense layer to perform the classification.

5.1. Context-Free Word Embeddings: Word2vec and GloVe

As we discussed in chapter 3, there are two approaches for computing word

embeddings: Frequency based embedding, explained in Figure 5.1 and Prediction based

embedding explained in Figure 5.2. The first approach uses matrix factorization. It starts

by going through the text and counting the number of times word couples are seen close to

each other (in a given window, e.g. 5 words). This information is stored in a data structure

called a ³co-occXUUence maWUi[´. WoUdV YecWoUV aUe bXilW and adjXVWed iWeUaWiYel\, Wo

minimize the (cosine) distance between words having a high probability of co-occurrence.

An example of this approach is Glove.

FIGURE 5.1: FREQUENCY BASED EMBEDDINGS

The second approach uses a shallow feed-forward neural network (1 hidden layer).

The main idea is to construct a neural network that outputs high scores for windows that

occur in a large unlabeled corpus and low scores for windows where one word is replaced

by a random word. When such a network is optimized via gradient descent, the derivatives

backpropagate into a word embedding matrix. An example is word2vec from Google with

 71

its two variants, Continuous Bag-of-Words CBOW (given context words predict a center

word) and Continuous Skip-gram SG (given a center word predict the context words). A

pre-trained word2vec embeddings available to download from

(https://code.google.com/archive/p/word2vec/), while a pre-trained GloVe embedding is

available to download from (https://nlp.stanford.edu/projects/glove/).

FIGURE 5.2: PREDICTION BASED EMBEDDINGS

5.2. Contextual Word Embeddings: ELMo

One disadvantage of using the above word embeddings (word2vec or GloVe) is

that single word would be represented by one vector no matter what the context was. For

example, bank (a financial establishment) and bank (the land alongside a river) both would

have the same word vector representation. Several NLP researchers (Peters et. al., 2017;

McCann eW. al., 2017) aUgXe Zh\ noW giYe iW an embedding baVed on Whe conWe[W iW¶V XVed

in? to both capture the word meaning in that context as well as other contextual

information. Instead of using a fixed embedding for each word, ELMo looks at the entire

https://nlp.stanford.edu/projects/glove/

 72

sentence before assigning each word in it, an embedding. Rather than a dictionary of words

and their corresponding vectors, ELMo analyses words within the context that they are

used. It is also character based, allowing the model to form representations of out-of-

vocabulary words. This means that the way ELMo is used is quite different to word2vec.

RaWheU Whan haYing a dicWionaU\ µlook-Xp¶ of ZoUdV and WheiU coUUeVponding vectors, ELMo

instead creates vectors on-the-fly by passing text through the deep learning model. It uses

three layers bi-directional LSTM trained as a language model to be able to create those

embeddings. ELMo gained its language understanding from being trained to predict the

next word in a sequence of words. This is convenient because we have vast amounts of text

data that such a model can learn from without needing labels. ELMo comes up with the

contextualized embedding through grouping together the hidden states (and initial

embedding). First, all the hidden layers for the forward and backward language model are

concatenated together, then multiply each concatenated vector by a weight based on the

mask. Finally, summing up all the weighted vector to generate the contextualized

embedding. The pre-trained model is available to download from TF-Hub at

(https://tfhub.dev/google/elmo/2). This pre-trained ELMo was trained on the 1 Billion

Word Benchmark.

5.3. Contextual Word Embeddings: BERT

BERT follow the same approach as ELMo. Its start by training a general-purpose

"language modeling" on a large text corpus (ex: Wikipedia), and then use that model for

downstream NLP tasks that we care about (ex: question anVZeUing). BERT¶V ke\ Wechnical

innovation is applying the bidirectional training of Transformer (Vaswani et. al., 2017), an

attention model, to language modelling. In its vanilla form, Transformer includes two

https://tfhub.dev/google/elmo/2

 73

separate mechanisms: an encoder that reads the text input and a decoder that produces a

pUedicWion foU Whe WaVk. Since BERT¶V goal iV Wo geneUaWe a langXage model, onl\ Whe

encoder is necessary. The inpXW of Whe WUanVfoUmeU¶V encodeU iV a VeqXence of WokenV, Zhich

are first embedded into vectors and then processed in the neural network. The output is a

sequence of vectors of size H, in which each vector corresponds to an input token with the

same index. When training language models, there is a challenge of defining a prediction

goal. Many models predict the next word in a sequence, a directional approach which

inherently limits context learning. To overcome this challenge, BERT uses two training

strategies: 1) Masked LM (MLM): before feeding word sequences into BERT, some of the

words in each sequence are replaced with a [MASK] token. The model then attempts to

predict the original value of the masked words, based on the context provided by the other,

non-masked, words in the sequence. 2) Next Sentence Prediction (NSP): In the training

process, the model receives pairs of sentences as input and learns to predict if the second

sentence in the pair is the subsequent sentence in the original document. During training,

50% of the inputs are a pair in which the second sentence is the subsequent sentence in the

original document, while in the other 50% a random sentence from the corpus is chosen as

the second sentence. The assumption is that the random sentence will be disconnected from

Whe fiUVW VenWence. BERT¶V aXWhoUV offeU WZo pUeWUained model Vi]e foU BERT: BERT base

and BERT laUge). BoWh model Vi]eV haYe a laUge nXmbeU of WUanVfoUmeU¶V encodeU la\eUV

(i.e., Transformer Blocks); 12 for the base version, and 24 for the large version. These also

have larger feedforward-networks (768 and 1024 hidden units respectively), and 12 and 16

attention heads respectively. Each encoder layer would have an embedding representation

for each token in the text sequence. Like ELMo, we use all these embedding layers of the

 74

pre-trained BERT to create contextualized word embeddings. Pre-trained models for

BERT are available to download from (https://github.com/google-research/bert#pre-

trained-models).

5.4. Sentence Embeddings: DAN-Based USE

While word embeddings such as word2vec or GloVe try to embed a single word

into a high dimensional vector, Universal Sentence Encoder (USE) (Cer et. al., 2018) try

to embed not only words but phrases, sentences, and short paragraphs. USE takes variable

length English text as input and outputs a 512-dimensional vector. Two different

approaches had been utilized for encoding sentences into embedding vectors. One makes

use of a deep averaging network (DAN) (Iyyer et. al., 2015) while the other uses

Transformer (Vaswani et. al., 2017) architecture, which we will be discussed in the next

section. Both variations of this model were trained on a variety of data sources and a variety

of tasks with the aim of dynamically accommodating a wide variety of natural language

understanding tasks. The main difference between USE and word embeddings is USE was

trained on a number of natural language prediction tasks that require modeling the meaning

of word sequences rather than just individual words. The DAN based USE makes use of a

deep averaging network (DAN) whereby input embeddings for words and bi grams are first

averaged together and then passed through a feedforward deep neural network (DNN) to

produce sentence embeddings. The main advantage of the DAN encoder, over the

Transformer based USE, is that compute time is linear in the length of the input sequence.

The pre-trained model is available to download from TF-Hub at

(https://tfhub.dev/google/universal-sentence-encoder/2).

https://github.com/google-research/bert%23pre-trained-models
https://github.com/google-research/bert%23pre-trained-models
https://tfhub.dev/google/universal-sentence-encoder/2

 75

5.5. Sentence Embeddings: Transformer-Based USE

Just like the DAN-based USE, the Transformer based USE take as an input English

strings and produce as output a fixed dimensional embedding representation of the string.

This Model is based on the transformer architecture with the aim of high accuracy at the

cost of greater model complexity and resource consumption. The

original Transformer model constitutes an encoder and decoder, but this model uses its

encoder part only. The encoder is composed of a stack of N = 6 identical layers. Each layer

has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a

simple, position-wise fully connected feed-forward network. They also employed a

residual connection around each of the two sub-layers, followed by layer

normalization. Since the model contains no recurrence and no convolution, for the model

to make use of the order of the sequence, it must inject some information about the relative

or absolute position of the tokens in the sequence, that is what the "positional encodings"

does. The pre-trained model is available to download from TF-Hub at

(https://tfhub.dev/google/universal-sentence-encoder-large/3). Both models (Dan-based

and Transformer-based USE) were trained with the Stanford Natural Language Inference

(SNLI) corpus. The SNLI corpus is a collection of 570k human-written English sentence

pairs manually labeled for balanced classification with the labels entailment, contradiction,

and neutral, supporting the task of natural language inference (NLI), also known as

recognizing textual entailment (RTE). Essentially, the models were trained to learn the

semantic similarity between the sentence pairs.

https://tfhub.dev/google/universal-sentence-encoder-large/3

 76

5.6. Experiment and Results

The first experiment was to evaluate the context-free word embeddings (i.e.,

word2vec and GloVe). For representing the input, we used word embeddings to represent

each ZoUd and When concaWenaWe all Whe ZoUdV¶ YecWoUV in a VenWence Wo conVWUicW one YecWoU

for each sentence. We experimented using two different pretrained word embeddings

(word2vec and GloVe), in addition to word embeddings trained on the entire Enron Email

datasets using the word2vec algorithm. We used the word2vec algorithm's implementation

provided by genism [39] with the following hyper-parameters (windows size = 5 and

dimension size = 100), to obtain word vectors for 94,673 unique words. As shown in Table

5.1, Whe model XVing Google¶V pUe-trained word2vec gave the best result. We are using F1

score to report our results, F1 score is the harmonic average of the precision and recall.

TABLE 5.1: FIRST MODEL USING DIFFERENT CONTEXT-FREE EMBEDDINGS

Embeddings Accuracy Precision Recall F1

Enron embeddings 80.91% 82% 81% 0.81
Glove embeddings 77.82% 78% 78% 0.78
Word2vec embedding 82.02% 82% 82% 0.82

For the second model, we used pre-trained ELMo to represent each sentence into a

1024-dimensional vector. Then, we used a neural network consist of 256-relu nodes dense

layer followed by a one-Vigmoid node denVe la\eU Wo claVVif\ Whe VenWence¶V inWenW inWo ³Wo

do´ oU ³Wo Uead.´ We WUained Whe model foU 10 epochV on 9055 labeled VenWenceV XVing Whe

following hyperparameters (optimizers: Adam, learning rate: 0.001, batch size: 32, and

loss: binary cross entropy). Then, we tested the model on the remaining 2264 labeled

sentences.

 77

For the third model, we used the pre-trained BERT model to represent each

sentence into a 768-dimensional vector. Then, we used a neural network consist of 256-

relu nodes dense layer followed by a one-sigmoid node dense layer to classify the

VenWence¶V inWenW inWo ³Wo do´ oU ³Wo Uead.´ We WUained Whe model foU 10 epochV on 9055

labeled sentences using the following hyperparameters (optimizers: Adam, learning rate:

0.001, batch size: 32, and loss: binary cross entropy). Then, we tested the model on the

remaining 2264 labeled sentences. As shown in Table 5.2, the model using pre-trained

ELMo embeddingV pUodXce Whe beVW UeVXlWV aV meaVXUed b\ Whe oYeUall model¶V accXUac\,

precision, recall, and F1 for both classes.

For the fourth model, we used pre-trained DAN-based USE to represent each

sentence into a 512-dimensional vector. Then, we used a neural network consist of 256-

nodes dense layer followed by a one-Vigmoid node denVe la\eU Wo claVVif\ Whe VenWence¶V

inWenW inWo ³Wo do´ oU ³Wo Uead.´ We trained the model for 10 epochs on 9055 labeled

sentences using the following hyperparameters (optimizers: Adam, learning rate: 0.001,

batch size: 32, and loss: binary cross entropy). Then, we tested the model on the remaining

2264 labeled sentences.

For the last model, we used pre-trained Transformer-based USE to represent each

sentence into a 512-dimensional vector. Then, we used a neural network consist of 256-

nodes dense layer followed by a one-Vigmoid node denVe la\eU Wo claVVif\ Whe VenWence¶V

intenW inWo ³Wo do´ oU ³Wo Uead.´ We WUained Whe model foU 20 epochV on 9055 labeled

sentences using the following hyperparameters (optimizers: Adam, learning rate: 0.001,

batch size: 32, and loss: binary cross entropy). Then, we tested the model on the remaining

2264 labeled sentences.

 78

TABLE 5.2: FIVE MODELS USING DIFFERENT PRE-TRAINED EMBEDDINGS

 Intent Deliver
Accuracy F1

Precision Recall Precision Recall
Word2vec 0.86 0.86 0.75 0.75 82.02 0.82

ELMo 0.91 0.94 0.88 0.84 90.1 0.90
BERT 0.66 0.73 0.39 0.31 58.08 0.57

DAN USE 0.87 0.93 0.85 0.76 86.66 0.86
Transformer USE 0.91 0.9 0.83 0.84 88.16 0.88

5.7. Analysis

The main goal of our research, in this chapter, is to compare three types of

embeddings: context-free word embeddings, contextual word embeddings, and sentence

embeddings. For context-free word embeddings, we used pre-trained word2vec and GloVe

embeddings. We also, experimenting with pre-trained word embeddings trained on the

entire Enron Email Dataset using the word2vec algorithm. Among those three context-free

word embeddings, the model using pre-trained word2vec from Google trained on the

Google News dataset, gave the best result in our tasking of classing the intent of emails.

We also used two different type of contextual word embeddings. One using bi-directional

LSTM trained on the task of Language Modeling (ELMo) and the second utilize a

bidirectional training of Transformer, an attention model, to language modelling (BERT).

The first model, ELMo, performed exceptionally well comparing with BERT. We were

able to obtain an accuracy of 90.10% comparing with 58.08% for BERT. Lastly, we

experimented with using pretrained sentence embeddings to represent the input. We used

two different version of Google Universal Sentence Encoder (DAN-based and

Transformer-Based. The Transformer-Based USE performed better than DAN-based

sentence embeddings. As shown in Table 5.2, among all the different types of word and

 79

sentence embeddings, the modeling using the ELMo embeddings gained the largest

benefits of using pre-trained embeddings in our task of classing the intent of emails. We

got an accuracy of 90.10%.

 80

CHAPTER 6

CONCLUSIONS

The aim of this dissertation is to explore the email phenomenon and provide a

scalable solution that addresses the problem of email overload. Our proposed classification

model requires no handcrafted features engineering and utilize the Speech Act Theory to

design a classification system that detect whether an email required an action (i.e., to do)

or no action (i.e., to read). We were able to automate both the features extraction and the

classification phases by using word embeddings, trained on the entire Enron Email dataset,

to represent the input, in addition to a convolutional layer to capture local tri-gram features,

followed by a LSTM layer to consider the meaning of a given feature (trigrams) with

UeVpecW Wo Vome ³memoU\´ of ZoUdV WhaW could occur much earlier in the email.

Furthermore, by applying the principle of Occam¶V Ua]oU (i.e., laZ of paUVimon\),

we were able to simplify the above proposed model by dropping the use of the CNN layer

and showing that fine tuning a pre-trained Language Model on the Enron email dataset can

achieve a comparable result. To the best of our knowledge this is the first attempt of using

transfer learning to develop a deep learning model in the email domain.

Lastly, by experimenting with three different types of embeddings: context-free

word embeddings (word2vec and GloVe), contextual word embeddings (ELMo and

BERT), and sentence embeddings (DAN-based Universal Sentence Encoder and

Transformer-based Universal Sentence Encoder), we found that using a contextual word

embedding (i.e. ELMo) is sufficient to represent both the semantic and contextual meaning

 81

of the sentence to classify it into its appropriate class. This final version of the our model

achieved the best so far with an accuracy of 90.10%.

A second application of the embeddingV, Ze foXnd, iV Wo encode Whe XVeU¶V log daWa

into a character embedding and then using it to detect malicious insider activities (Saaudi

eW. al, 2018). The UaZ XVeUV¶ log daWa UepUeVenW fiYe XVeU acWiYiWieV: ³Log on/ Log off,´

³ConnecW / DiVconnecW,´ ³ZebViWe link,´ ³EmailV,´ and ³local fileV´. TheVe XVeUV¶ acWiYiWieV

were pre-processed to generate new textual session-based sequences which were in turn

encoded into its char embeddings.

A third and final use of embeddings is in the domain of recommender system. We

found that just like you shall know a word by the company it keeps, you shall know a

product by the company it keeps. In another words, while a sentence is a group of words,

a purchase order is a group of products. Building on this assumption, we used the same

algorithm we used to train our Enron embedding but this time we train it on millions of

customers orders by replacing each product with its product ID. After training, we obtained

an embedding for each product ID. Applying Cosine similarity on pair of products

embeddings, result in a score of how similar these two products are.

 82

REFERENCES

Aberdeen, D., Pacovsky, O., & Slater, A. (2010). The learning behind gmail priority
 inbox.

Ailon, N., Karnin, Z. S., Liberty, E., & Maarek, Y. (2013, February). Threading machine
 generated email. In Proceedings of the sixth ACM international conference on
 Web search and data mining (pp. 405-414).

Alberts, I. (2013). Challenges of information system use by knowledge workers: The
 email productivity paradox. Proceedings of the American Society for
 Information Science and Technology, 50(1), 1-10.

Alibadi, Z. H., Thamer, S. K., & Goerge, L. E. (2014). Design and Implementation of
 Email Agent System. Journal of University of Babylon, 22(3), 966-974.

Ames, M., & Naaman, M. (2007, April). Why we tag: motivations for annotation in
 mobile and online media. In Proceedings of the SIGCHI conference on Human
 factors in computing systems (pp. 971-980).

Austin, J. L. (1970). How to do things with words: the William James lectures delivered
 at Harvard University in 1955.

Ayodele, T., & Zhou, S. (2009). Applying machine learning techniques for e-mail
 management: solution with intelligent e-mail reply prediction. Journal of
 Engineering and Technology Research, 1(7), 143-151.

Balasubramanyan, R., Carvalho, V. R., & Cohen, W. (2008). Cutonce-recipient
 recommendation and leak detection in action. In AAAI-2008, Workshop on
 Enhanced Messaging.

Bälter, O., & Sidner, C. L. (2002, October). Bifrost Inbox Organizer: Giving users
 control over the inbox. In Proceedings of the second Nordic conference on
 Human-computer interaction (pp. 111-118).

Bälter, O. (2000, April). Keystroke level analysis of email message organization.
 In Proceedings of the SIGCHI conference on Human Factors in Computing
 Systems (pp. 105-112).

 83

Bellotti, V., Ducheneaut, N., Howard, M., Smith, I. and Grinter, R.E., 2005. Quality
 versus quantity: E-mail-centric task management and its relation with overload.
 Human±Computer Interaction, 20(1-2), pp.89-138.

Bird, S., & Loper, E. (2004). NLTK: The Natural Language Toolkit In Proceedings 42nd.
 In Meeting of the Association for Computational Linguistics (Demonstration
 Track) pp (pp. 214-17).

Boardman, R., & Sasse, M. A. (2004, April). " Stuff goes into the computer and doesn't
 come out" a cross-tool study of personal information management.
 In Proceedings of the SIGCHI conference on Human factors in computing
 systems(pp. 583-590).

Brutlag, J. D., & Meek, C. (2000, June). Challenges of the email domain for text
 classification. In ICML (Vol. 2000, pp. 103-110).

Carvalho, V. R., & Cohen, W. (2007). Recommending recipients in the enron email
 corpus. Machine Learning.

Carvalho, V. R., & Cohen, W. W. (2005, August). On the collective classification of
 email" speech acts". In Proceedings of the 28th annual international ACM SIGIR
 conference on Research and development in information retrieval (pp. 345-352).

Carvalho, V. R., & Cohen, W. W. (2007, April). Preventing information leaks in email.
 In Proceedings of the 2007 SIAM International Conference on Data Mining (pp.
 68-77). Society for Industrial and Applied Mathematics.

Carvalho, V. R., & Cohen, W. W. (2008, March). Ranking users for intelligent message
 addressing. In European Conference on Information Retrieval (pp. 321-333).
 Springer, Berlin, Heidelberg.

Cer, D., Yang, Y., Kong, S. Y., Hua, N., Limtiaco, N., John, R. S., ... & Sung, Y. H.
 (2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions.
 In Proceedings of the IEEE conference on computer vision and pattern
 recognition (pp. 1251-1258).

Cohen, W., Carvalho, V., & Mitchell, T. (2004, July). Learning to classify email into
 ³Vpeech acWV´. In Proceedings of the 2004 Conference on Empirical Methods in
 Natural Language Processing (pp. 309-316).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011).
 Natural language processing (almost) from scratch. Journal of machine learning
 research, 12(ARTICLE), 2493-2537.

 84

CompTIA, 2015. Organizations changing strategies and tactics as security environment
 gets more complex, new CompTIA study finds. [Online]
 Available at: https://www.comptia.org/about- us/newsroom/press-r
 eleases/2015/03/31/organizations- changing-strategies-and-tactics-as-security-
 environment- gets-more-complex-new-comptia-study-finds.

ComputerWeekly, 2016. Human error causes more data loss than malicious attacks.
 [Online] Available at: http://www.computerweekly.com/news/450297535/Hu
 man-error-causes-more-data-loss-than-malicious-attacks

Crawford, E., Kay, J., & McCreath, E. (2002, January). An intelligent interface for
 sorting electronic mail. In Proceedings of the 7th international conference on
 Intelligent user interfaces (pp. 182-183).

Crocker, D. (1982). Standard for the format of ARPA Internet text messages.

Cselle, G., Albrecht, K. and Wattenhofer, R., 2007, January. BuzzTrack: topic detection
 and tracking in email. In Proceedings of the 12th international conference on
 Intelligent user interfaces (pp. 190-197). ACM.

Dabbish, L., Kraut, R., Fussell, S., & Kiesler, S. (2004). To reply or not to reply:
 Predicting action on an email message. In ACM 2004 Conference. Citeseer.

Dabbish, L., Venolia, G., & Cadiz, J. J. (2003, April). Marked for deletion: An analysis
 of email data. In CHI'03 Extended Abstracts on Human Factors in Computing
 Systems (pp. 924-925).

Dabbish, L. A., & Kraut, R. E. (2006, November). Email overload at work: an analysis of
 factors associated with email strain. In Proceedings of the 2006 20th anniversary
 conference on Computer supported cooperative work (pp. 431-440).

Dabbish, L. A., Kraut, R. E., Fussell, S., & Kiesler, S. (2005, April). Understanding email
 use: predicting action on a message. In Proceedings of the SIGCHI conference on
 Human factors in computing systems (pp. 691-700).

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990).
 Indexing by latent semantic analysis. Journal of the American society for
 information science, 41(6), 391-407.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A
 large-scale hierarchical image database. In 2009 IEEE conference on computer
 vision and pattern recognition (pp. 248-255). Ieee.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep
 bidirectional transformers for language understanding. arXiv preprint
 arXiv:1810.04805.

http://www.computerweekly.com/news/450297535/Hu

 85

Di Castro, D., Karnin, Z., Lewin-Eytan, L., & Maarek, Y. (2016, February). You've got
 mail, and here is what you could do with it! analyzing and predicting actions on
 email messages. In Proceedings of the Ninth ACM International Conference on
 Web Search and Data Mining (pp. 307-316).

Di Sorbo, A., Panichella, S., Visaggio, C. A., Di Penta, M., Canfora, G., & Gall, H. C.
 (2015, November). Development emails content analyzer: Intention mining in
 developer discussions (T). In 2015 30th IEEE/ACM International Conference on
 Automated Software Engineering (ASE) (pp. 12-23). IEEE.

Dredze, M., Lau, T., & Kushmerick, N. (2006, January). Automatically classifying
 emails into activities. In Proceedings of the 11th international conference on
 Intelligent user interfaces (pp. 70-77).

Dredze, M., Wallach, H. M., Puller, D., & Pereira, F. (2008, January). Generating
 summary keywords for emails using topics. In Proceedings of the 13th
 international conference on Intelligent user interfaces (pp. 199-206).

Ducheneaut, N., & Bellotti, V. (2001). E-mail as habitat: an exploration of embedded
 personal information management. interactions, 8(5), 30-38.

Edmunds, A., & Morris, A. (2000). The problem of information overload in business
 organisations: a review of the literature. International journal of information
 management, 20(1), 17-28.

Ekstrom, R. B., Dermen, D., & Harman, H. H. (1976). Manual for kit of factor-
 referenced cognitive tests (Vol. 102). Princeton, NJ: Educational testing service.

Elsweiler, D., Baillie, M., & Ruthven, I. (2008). Exploring memory in email
 refinding. ACM Transactions on Information Systems (TOIS), 26(4), 1-36.

Fahlman, S. E. (2006, August). Marker-passing inference in the scone knowledge-base
 system. In International Conference on Knowledge Science, Engineering and
 Management (pp. 114-126). Springer, Berlin, Heidelberg.

Faulring, A., Myers, B., Mohnkern, K., Schmerl, B., Steinfeld, A., Zimmerman, J., ... &
 Siewiorek, D. (2010, February). Agent-assisted task management that reduces
 email overload. In Proceedings of the 15th international conference on Intelligent
 user interfaces (pp. 61-70).

Fisher, D., Brush, A. J., Gleave, E., & Smith, M. A. (2006, November). Revisiting
 Whittaker & Sidner's" email overload" ten years later. In Proceedings of the 2006
 20th anniversary conference on Computer supported cooperative work (pp. 309-
 312).

 86

Franovic, T., & ânajdeU, J. (2012). Speech AcW BaVed ClaVVificaWion of Email MeVVageV in
 Croatian Language.

Freed, M., Carbonell, J. G., Gordon, G. J., Hayes, J., Myers, B. A., Siewiorek, D. P., ... &
 Tomasic, A. (2008, July). RADAR: A Personal Assistant that Learns to Reduce
 Email Overload. In AAAI (Vol. 8, pp. 1287-1293).

Goldberg, Y. (2016). A primer on neural network models for natural language
 processing. Journal of Artificial Intelligence Research, 57, 345-420.

Goldberg, Y., 2017. Neural network methods for natural language processing. Synthesis
 Lectures on Human Language Technologies, 10(1), pp.1-309.

Graus, D., Van Dijk, D., Tsagkias, M., Weerkamp, W., & De Rijke, M. (2014, July).
 Recipient recommendation in enterprises using communication graphs and email
 content. In Proceedings of the 37th international ACM SIGIR conference on
 Research & development in information retrieval (pp. 1079-1082).

Grbovic, M., Halawi, G., Karnin, Z., & Maarek, Y. (2014, November). How many
 folders do you really need? classifying email into a handful of categories.
 In Proceedings of the 23rd ACM International Conference on Conference on
 Information and Knowledge Management (pp. 869-878).

Grevet, C., Choi, D., Kumar, D., & Gilbert, E. (2014, April). Overload is overloaded:
 email in the age of Gmail. In Proceedings of the sigchi conference on human
 factors in computing systems (pp. 793-802).

Gwizdka, J., & Chignell, M. (2004). Individual differences and task-based user interface
 evaluation: a case study of pending tasks in email. Interacting with
 computers, 16(4), 769-797.

Gwizdka, J. (2002, September). TaskView: design and evaluation of a task-based email
 interface. In Proceedings of the 2002 conference of the Centre for Advanced
 Studies on Collaborative research (p. 4). IBM Press.

Gwizdka, J. (2004, April). Email task management styles: the cleaners and the keepers.
 In CHI'04 extended abstracts on Human factors in computing systems (pp. 1235-
 1238).

Hailpern, J., Asur, S., & Rector, K. (2014, October). AttachMate: Highlight extraction
 from email attachments. In Proceedings of the 27th annual ACM symposium on
 User interface software and technology (pp. 107-116).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
 recognition. In Proceedings of the IEEE conference on computer vision and
 pattern recognition (pp. 770-778).

 87

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
 computation, 9(8), 1735-1780.

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text
 classification. arXiv preprint arXiv:1801.06146.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., & Wu, Y. (2016). Exploring the
 limits of language modeling. arXiv preprint arXiv:1602.02410.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural
 network for modelling sentences. arXiv preprint arXiv:1404.2188.

Kalman, Y. M., & Ravid, G. (2014, February). Email inbox management by information
 overloaded users. In Proceedings of the companion publication of the 17th ACM
 conference on Computer supported cooperative work & social computing (pp.
 185-188).

Kerr, B. (2003, October). Thread arcs: An email thread visualization. In IEEE Symposium
 on Information Visualization 2003 (IEEE Cat. No. 03TH8714) (pp. 211-218).
 IEEE.

Khoussainov, R., & Kushmerick, N. (2005, July). Email Task Management: An Iterative
 Relational Learning Approach. In CEAS.

Kidd, A. (1994, April). The marks are on the knowledge worker. In Proceedings of the
 SIGCHI conference on Human factors in computing systems (pp. 186-191).

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint
 arXiv:1408.5882.

Kim, Y., Jernite, Y., Sontag, D., & Rush, A. M. (2016). Character-aware neural language
 models, AAAI, 2741±2749. arXiv preprint arxiv:1508.06615.

Kooti, F., Aiello, L. M., Grbovic, M., Lerman, K., & Mantrach, A. (2015, May).
 Evolution of conversations in the age of email overload. In Proceedings of the
 24th International Conference on World Wide Web (pp. 603-613).

Koren, Y., Liberty, E., Maarek, Y., & Sandler, R. (2011, August). Automatically tagging
 email by leveraging other users' folders. In Proceedings of the 17th ACM
 SIGKDD international conference on Knowledge discovery and data mining (pp.
 913-921).

Kushmerick, N., Lau, T., Dredze, M., & Khoussainov, R. (2006, July). Activity-centric
 email: A machine learning approach. In AAAI (pp. 1634-1637).

 88

Kudugunta, S., & Ferrara, E. (2018). Deep neural networks for bot detection. Information
 Sciences, 467, 312-322.

Lampert, A., Dale, R., & Paris, C. (2006, November). Classifying speech acts using
 verbal response modes. In Proceedings of the Australasian Language Technology
 Workshop 2006 (pp. 34-41).

Lampert, A., Dale, R., & Paris, C. (2008). The nature of requests and commitments in
 email messages. In Proceedings of the AAAI Workshop on Enhanced
 Messaging(pp. 42-47).

Lampert, A., Dale, R., & Paris, C. (2010, June). Detecting emails containing requests for
 action. In Human Language Technologies: The 2010 Annual Conference of the
 North American Chapter of the Association for Computational Linguistics (pp.
 984-992).

Le, Q., & Mikolov, T. (2014, January). Distributed representations of sentences and
 documents. In International conference on machine learning (pp. 1188-1196).

LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. nature, 521(7553), p.436.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L.
 (2014, September). Microsoft coco: Common objects in context. In European
 conference on computer vision (pp. 740-755). Springer, Cham.

Lockerd, A., & Selker, T. (2003, September). DriftCatcher: The Implicit Social Context
 of Email. In INTERACT.

Mackay, W. E. (1988). Diversity in the use of electronic mail: A preliminary
 inquiry. ACM Transactions on Information Systems (TOIS), 6(4), 380-397.

McCann, B., Bradbury, J., Xiong, C., & Socher, R. (2017). Learned in translation:
 Contextualized word vectors. In Advances in Neural Information Processing
 Systems (pp. 6294-6305).

McKinsey Global Institute & International Data Corp, 2012. The social economy:
 Unlocking value and productivity through social technologies. [Online] Available
 at: http://www.mckinsey.com/industries/high- tech/our-insights/the-social-
 economy McShane, S. and Von Glinow, M. 2015. Organizational Behavior, 7th
 edition. McGraw-Hill. ISBN: 978-0-07-786258-9.

Merity, S., Keskar, N. S., & Socher, R. (2017). Regularizing and optimizing LSTM
 language models. arXiv preprint arXiv:1708.02182.

 89

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
 representations of words and phrases and their compositionality. Advances in
 neural information processing systems, 26, 3111-3119.

Millen, D., Feinberg, J., & Kerr, B. (2005). Social bookmarking in the
 enterprise. Queue, 3(9), 28-35.

Minkov, E., Balasubramanyan, R., Cohen, W. W., & Dep, M. L. (2008). Activity-centric
 search in email. In Enhanced Messaging Workshop, AAAI.

Muller, M. J., & Gruen, D. M. (2002). Collaborating within±not through±email: Users
 reinvent a familiar technology. Poster at CSCW.

Neustaedter, C., Brush, A. B., Smith, M. A., & Fisher, D. (2005, July). The Social
 Network and Relationship Finder: Social Sorting for Email Triage. In CEAS.

Neustaedter, C., Brush, A. B., & Smith, M. A. (2005, April). Beyond" from" and"
 received" exploring the dynamics of email triage. In CHI'05 extended abstracts
 on Human factors in computing systems (pp. 1977-1980).

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from
 labeled and unlabeled documents using EM. Machine learning, 39(2-3), 103-134.

Olah, C., Mordvintsev, A., & Schubert, L. (2017). Feature visualization. Distill, 2(11),
 e7.

Pal, C., & McCallum, A. (2006, July). CC Prediction with Graphical Models. In CEAS.

Pazzani, M. J. (2000, January). Representation of electronic mail filtering profiles: a user
 study. In Proceedings of the 5th international conference on Intelligent user
 interfaces (pp. 202-206).

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for
 word representation. In Proceedings of the 2014 conference on empirical methods
 in natural language processing (EMNLP) (pp. 1532-1543).

Peters, M. E., Ammar, W., Bhagavatula, C., & Power, R. (2017). Semi-supervised
 sequence tagging with bidirectional language models. arXiv preprint
 arXiv:1705.00108.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer,
 L. (2018). Deep contextualized word representations. arXiv preprint
 arXiv:1802.05365.

 90

Qadir, A., & Riloff, E. (2011, July). Classifying sentences as speech acts in message
 board posts. In Proceedings of the 2011 Conference on Empirical Methods in
 Natural Language Processing (pp. 748-758).

Qadir, A., Gamon, M., Pantel, P., & Hassan, A. (2016, June). Activity modeling in email.
 In Proceedings of the 2016 Conference of the North American Chapter of the
 Association for Computational Linguistics: Human Language Technologies(pp.
 1452-1462).

Quirk, C., Choudhury, P., Gao, J., Suzuki, H., Toutanova, K., Gamon, M., ... & Cherry,
 C. (2019). MSR SPLAT, a language analysis toolkit.

Rehurek, R., & Sojka, P. (2010). Software framework for topic modelling with large
 corpora. In In Proceedings of the LREC 2010 Workshop on New Challenges for
 NLP Frameworks.

Rohall, S. L., Gruen, D., Moody, P., Wattenberg, M., Stern, M., Kerr, B., ... & Wilcox, E.
 (2004, April). ReMail: a reinvented email prototype. In CHI'04 extended
 abstracts on Human factors in computing systems (pp. 791-792).

Saaudi, A., Al-Ibadi, Z., Tong, Y., & Farkas, C. (2018, December). Insider Threats
 Detection Using CNN-LSTM Model. In 2018 International Conference on
 Computational Science and Computational Intelligence (CSCI) (pp. 94-99).
 IEEE.

Schuff, D., Turetken, O., & D'Arcy, J. (2006). A multi-attribute, multi-weight clustering
 appUoach Wo managing ³e-mail oYeUload´. Decision Support Systems, 42(3), 1350-
 1365.

Segal, R. B., & Kephart, J. O. (1999, April). MailCat: An intelligent assistant for
 organizing e-mail. In Proceedings of the third annual conference on Autonomous
 Agents (pp. 276-282).

Sevinc, G., & D'Ambra, J. (2010). The influence of self-esteem and locus of control on
 perceived email overload.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
 image recognition. arXiv preprint arXiv:1409.1556.

Sofershtein, Z., & Cohen, S. (2015, August). Predicting email recipients. In 2015
 IEEE/ACM International Conference on Advances in Social Networks Analysis
 and Mining (ASONAM)(pp. 761-764). IEEE.

Song, M., Halsey, V., & Burress, T. (2008). The hamster revolution: How to manage
 your email before it manages you. Berrett-koehler publishers.

 91

Sorower, M. S., Slater, M., & Dietterich, T. G. (2015, November). Improving Automated
 Email Tagging with Implicit Feedback. In Proceedings of the 28th Annual ACM
 Symposium on User Interface Software & Technology (pp. 201-211).

Spira, J. B., & Goldes, D. M. (2007). Information overload: We have met the enemy and
 he is us. Basex Inc.

Surendran, A. C., Platt, J. C., & Renshaw, E. (2005, July). Automatic Discovery of
 Personal Topics to Organize Email. In CEAS.

Tang, J. C., Wilcox, E., Cerruti, J. A., Badenes, H., Nusser, S., & Schoudt, J. (2008).
 Tag-it, snag-it, or bag-it: combining tags, threads, and folders in e-mail. In CHI'08
 Extended Abstracts on Human Factors in Computing Systems (pp. 2179-2194).

Teevan, J., Alvarado, C., Ackerman, M. S., & Karger, D. R. (2004, April). The perfect
 search engine is not enough: a study of orienteering behavior in directed search.
 In Proceedings of the SIGCHI conference on Human factors in computing
 systems (pp. 415-422).

Twitchell, D. P., Adkins, M., Nunamaker, J. F., & Burgoon, J. K. (2004). Using speech
 act theory to model conversations for automated classification and retrieval.
 In Proceedings of the International Working Conference Language Action
 Perspective Communication Modelling (LAP 2004) (pp. 121-130).

Tyler, J. R., & Tang, J. C. (2003). When can I expect an email response? A study of
 rhythms in email usage. In ECSCW 2003 (pp. 239-258). Springer, Dordrecht.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &
 Polosukhin, I. (2017). Attention is all you need. Advances in neural information
 processing systems, 30, 5998-6008.

Venolia, G. D., & Neustaedter, C. (2003, April). Understanding sequence and reply
 relationships within email conversations: a mixed-model visualization.
 In Proceedings of the SIGCHI conference on Human factors in computing
 systems (pp. 361-368).

Team, V. R. (2015). 2015 data breach investigations report.

Vishnu, M. S., Damle, D., Bhaumik, D., & Sahu, D. (2013, November). Semantic emails:
 agent technology in email systems. In Proceedings of the 25th Australian
 Computer-Human Interaction Conference: Augmentation, Application,
 Innovation, Collaboration (pp. 419-420).

Wattenberg, M., Rohall, S. L., Gruen, D., & Kerr, B. (2005). E-mail research: Targeting
 the enterprise. Human–Computer Interaction, 20(1-2), 139-162.

 92

Wendt, J. B., Bendersky, M., Garcia-Pueyo, L., Josifovski, V., Miklos, B., Krka, I., ... &
 Ravi, S. (2016, February). Hierarchical label propagation and discovery for
 machine generated email. In Proceedings of the Ninth ACM International
 Conference on Web Search and Data Mining (pp. 317-326).

Whittaker, S., Bellotti, V., & Moody, P. (2005). Introduction to this special issue on
 revisiting and reinventing e-mail. Human–Computer Interaction, 20(1-2), 1-9.

Whittaker, S., & Sidner, C. (1996, April). Email overload: exploring personal information
 management of email. In Proceedings of the SIGCHI conference on Human
 factors in computing systems (pp. 276-283).

Whittaker, S., Bellotti, V., & Gwizdka, J. (2006). Email in personal information
 management. Communications of the ACM, 49(1), 68-73.

Whittaker, S., Bellotti, V., Gwizdka, J., Jones, W., & Teevan, J. (2007). Personal
 information management. American: university of cambright.

Whittaker, S., Jones, Q., Nardi, B., Creech, M., Terveen, L., Isaacs, E., & Hainsworth, J.
 (2004). ContactMap: Organizing communication in a social desktop. ACM
 Transactions on Computer-Human Interaction (TOCHI), 11(4), 445-471.

Whittaker, S., Matthews, T., Cerruti, J., Badenes, H., & Tang, J. (2011, May). Am I
 wasting my time organizing email? A study of email refinding. In Proceedings of
 the SIGCHI Conference on Human Factors in Computing Systems (pp. 3449-
 3458).

Whittaker, S., Swanson, J., Kucan, J., & Sidner, C. (1997). TeleNotes: managing
 lightweight interactions in the desktop. ACM Transactions on Computer-Human
 Interaction (TOCHI), 4(2), 137-168.

Yoo, S., Yang, Y., & Carbonell, J. (2011, October). Modeling personalized email
 prioritization: classification-based and regression-based approaches.
 In Proceedings of the 20th ACM international conference on Information and
 knowledge management (pp. 729-738).

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning
 based natural language processing. ieee Computational intelligenCe
 magazine, 13(3), 55-7.

	Detecting the Intent of Email Using Embeddings, Deep Learning and Transfer Learning
	Recommended Citation

	tmp.1630692072.pdf.k58YR

