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3 ABSTRACT 

Flow boiling in microchannels using dielectric fluids is one of the most desirable 

cooling solutions for high power electronics. Primary two-flow patterns, including bubbly 

flow, slug flow, and annular flow, have been well established in microchannels. However, 

it is challenging to promote flow boiling performance, particularly critical heat flux (CHF), 

due to their unfavorable thermophysical properties. Considering these situations, flow 

boiling in parallel and isolated microchannels have been extensively studied.  

In this dissertation, a novel concept that has five parallel microchannels (W=200 

µm, H=250 µm, L=10 mm) are interconnected by micro-slots (20 µm wide and 250 µm 

deep) starting from the beginning section, and the middle section to the channel outlet have 

been proposed. The visualization study shows that these micro-slots designed as artificial 

nucleation sites can enable high-frequency nucleate boiling by drastically reducing the 

bubble waiting time and remaining the micro-slots entirely fully activated simultaneously. 

More importantly, such rapid switch on-off of uniquely coordinated nucleate boiling in the 

adjacent channels creates a highly desirable periodic rewetting mechanism to delay CHF 

conditions and enhance heat transfer rates substantially. Flow boiling in this innovative 

microchannel configuration has been systematically characterized with mass flux ranging 

from 462 kg/m2∙s to 1617 kg/m2∙s. Compared to plain-wall microchannels with inlet 

restrictors (IRs), the flow boiling heat transfer coefficient (HTC) has a significant 

enhancement primarily owing to the enhanced latent heat transfer, including nucleate 

boiling and thin-film evaporation. 
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Moreover, CHF is substantially enhanced by ~76% at a mass flux of 1155 kg/m2s 

owing to the rapid and periodic rewetting enabled by these micro-slots. Such drastic 

enhancements have been achieved without compromising the two-phase pressure drop. 

Based on the experimental studies of the novel design, a theoretical model and bubble 

dynamic studies are conducted to investigate the enhanced mechanism of flow boiling in 

the microchannel. The bubble dynamics have been systematically characterized in terms 

of bubble growth rates, bubble departure diameter, and bubble departure frequency, and 

thus nucleate boiling enhancement has been explained. The real time wall temperature for 

the present design fluctuates periodically and more stable compared to the chaotic 

fluctuation for the plain wall microchannel, which shows that micro slots can effectively 

manage the boiling instability. Furthermore, non-dimensional fitted correlations have been 

obtained to predict the bubble departure frequency and bubble departure diameter. The 

models and bubble dynamic studies provide insights into the enhanced HTC mechanism.   
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1 CHAPTER 1 FLOW BOILING IN MICROCHANNELS 

In two-phase flow cooling system, the heat generated in electronic devices (CPU, 

GPU, etc.) is dissipated by evaporation of a working fluid. This advanced thermal 

management solution can dissipate larger heat loads than the available traditional methods 

(liquid cooling or heat pipes) in a more efficient way. Two-phase flow boiling in 

microchannels is one of the most promising cooling techniques for microelectronics.  

Moreover, in two-phase flow, the total pressure drop includes acceleration pressure 

drop and friction pressure drop was significantly increased, due to the existence of 

acceleration pressure drop. In addition, bubble dynamics plays an essential role in the 

cooling application of two-phase flow boiling. It can significantly be influenced by bubble 

shape and channel size [1]. In this proposal, the literature review focuses on the following 

aspects, including the two-phase flow boiling in microchannels and the bubble dynamics. 

 1.1 Flow Patterns in Microchannels 

Two-phase microchannel heat sinks are among the strongest candidates for heat 

removal devices in high heat flux environments by their large surface area to volume ratio, 

compact dimensions, and low flow rate requirements [2]. The accurate prediction heat 

transfer coefficient of flow boiling in a microchannel has recently served as essential design 

guidance for various cutting-edge technologies [3]. Due to the intense heat removal from 

tiny areas [4-8], the volume available for packaging cooling hardware has averted stringent 

limits. However, the heat transfer correlations design commonly used by engineers for the 
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thermal design was established over the past decades for the conventional nuclear power 

generation and petroleum industries.  

Compared with pool boiling phenomena, flow boiling has the liquid flow on the 

micro level. Flow boiling can be triggered by liquid density difference leading to the natural 

circulation of fluid or external force, result in forced movement. The types of two-phase 

fluid flow during the flow boiling are more complicated than the pool boiling. The simplest 

and most common way of dealing with flow boiling heat transfer is using single-phase and 

pooling boiling of superposition [9, 10].  

Two-phase liquid flowing in a tube expresses various flow structures depending on 

different phase interfaces [11, 12]. While the liquid is heated and evaporated, the liquid 

and vapor also have other flow structures. The main characteristic of two-phase flow is an 

existing interface between the two-phase fluids, especially in the liquid-gas two-phase 

flow. In general, surface tension significantly helps develop the bending interface to form 

a sphere, such as bubbles or droplets. The sphere structure maybe transforms due to the 

discontinuous variation interface in a continuous phase, which could lead to even more 

significant change of a sphere structure. Therefore, small bubbles could shape well into the 

globe. However, it should be noted that large bubbles could transform quickly. 

In order to better understand the flow characteristics and flow boiling mechanisms, 

two-phase flow patterns have been observed visually. The primary two-phase flow 

patterns, including bubbly flow, slug flow, and annular flow, have been well established in 

microchannels [12, 13]. As shown in Figure 1.1, at the initial stage (single-phase), the 

subcooled working liquid enters from the inlet. As the fluid heated up, the wall temperature 

approached saturation temperature. Meanwhile, subcooled boiling began. At this stage, 
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individual bubbles start to form at bubbly flow with smaller bubble diameters than 

hydraulics diameter. The convective boiling process passes through bubbly, plug regimes. 

The increase of heating power induced the annular flow, moreover, the rapid vigorous 

generation of vapor, leading to the elongated bubbles formed, the local dryout of the 

microchannel occurs at the top of the channel, where the liquid film would become thinner 

on account of gravitational force, and the dryout then progresses around the perimeter from 

top to bottom along the channel. 

In addition, Figure 1.1 indicates schematically the sequence of regimes associated 

with subcooled boiling. In the fully developed nucleate boiling regime, the nucleate boiling 

mechanism generally is so robust that it completely dominates the heat transfer process. At 

higher flow velocities and subcooling levels, convective effects could be significant well 

beyond the point where the nucleation site density has attained a level equal to that for pool 

boiling at the same superheat. 

 
 

Figure 1.1 Two-phase flow patterns for flow boiling [13].  
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 1.2 Instabilities of Two-Phase Flow Boiling in Microchannels 

Generally, the two-phase flow instabilities for boiling in microchannel demonstrate 

an essential subject in the last thirty years. There are still practical problems with heat 

exchange equipment, such as the evaporator, nucleate reactor, cryogenic equipment, and 

chemical equipment. The negative consequences of two-phase flow instabilities are 

mechanical vibration, which will lead to fatigue damage for the device, control system 

interference, periodical change of the local thermal stress that causes heat transfer 

deterioration. Therefore, the investigation of two-phase flow instabilities is the principal 

occurrence factor of understating the result in the unsteady flow. It is challenging to prevent 

the two-phase flow instabilities and determine the critical value for which flow instabilities 

occur. 

Ledinegg [14] first investigated the two-phase flow instabilities experimentally the 

method, and the results indicated that the flow and pressure difference were not following 

monotropic function. In 1983s, Wissler [15] studied the instabilities under the natural 

circulation boiler, using the homogenous flow model. Wallis and Heasley [16] established 

a solution to integrate the continuity equation and the energy equation. Quandt [17] 

presented the experimental data for the parallel channel stability (up to 110 bar). The study 

indicated that the flow pulse occurred in the subcooled area at a particular heat load and 

heat flux. In the meantime, due to the simplifying assumptions, deep understandings are 

still needed to narrow the gap between analysis results and experimental data.  

Nevertheless, the studies have common agreements over the causes of two-phase 

flow instabilities and the consequences, including temperature fluctuations, pressure 

difference, backflow, local dryout and CHF. Researches identified that flow instabilities 

could be triggered by mass flow rate, flow regimes, bubble dynamics, subcooling liquid 
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and coolant properties. In recent years, many efforts have been taken in order to overcome 

the flow instability issues. Table 1.1 listed various of researches that focused on two-phase 

flow boiling instabilities in microchannels in recent years. 

Table 1.1 Two-phase flow boiling instabilities in microchannels 

 

Author Key Parameters Major Results 

Kuang, et 

al. [18] 

Pressure drop 

System pressure 

Wall temperature 

The unstable oscillation occurred due to 

the pressure drop will decays as the wall 

temperature of the evaporator gets close 

to the liquid temperature. 

Alugoju, 

et al.[19] 

Divergence angle 

Width ratio (outlet to inlet) 

Diverging microchannels have a better 

performance to control flow instability 

compared with straight channels. 

Xu, et al. 

[20] 

Temperature oscillations 

Pressure oscillations 

Two-phase flow instability modes have 

been identified with long/short-period 

and large/small-amplitude. 

Ozdemir, 

et al. [21] 

Inlet/outlet temperature 

Pressure fluctuations 

Wall temperature 

Upstream compressibility can take 

account of flow reversal in 

microchannels. 

Huang, et 

al. [22] 

Pressure drop 

Boiling number 

The oscillation period of flow instability 

has a strong bearing on the boiling 

number. 

Chen, et 

al. [23] 

Wall temperature 

Flow rate 

Compressible volume 

The reverse flow was observed at low 

pressure circulation, long two-phase 

region and upstream compressible 

volume. 

Chen, et 

al. [24] 

Ledinegg instability 

Density wave 

Pressure drop 

The characteristics of three types of the 

instability of liquid nitrogen have been 

numerically studied and compared with 

those of water/refrigerant fluids. 
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Cui, et al. 

[25]  

Pressure oscillations 

Heat transfer coefficient 

Flow rate 

Jet-to-target distance 

The characteristics of two-phase flow 

instability in distributed jet array 

impingement boiling of HFE-7000 on 

pin-fin surface and its affecting factors 

have been investigated experimentally. 

 

 1.3 Flow Boiling in Microchannel with Deionized Water 

Phase change heat transfer, primarily flow boiling in microchannels, is among the 

most promising cooling solutions of high-power electronics [26, 27]. Owing to the 

potentially high heat transfer rate for flow boiling in horizontal microchannels, several 

experimental investigations of flow boiling in microchannels have been conducted over the 

last decades. Many researchers have found that flow through the channel during flow 

boiling in microchannels was conventional or oscillations [28]. However, it is challenging 

to enhance flow boiling in an isolated parallel microchannel due to the unstable non-

uniform distributions or maldistribution of two-phase flow, resulting in the dryout, which 

could lead to the possible device failure [29]. In parallel channels, the unbalanced two-

phase flow distribution can result in degradation of boiling performance and a sharp 

increase in surface temperatures [30]. It is incredibly challenging to forbid local dryout 

near the outlet section of horizontal microchannels because of the limit for liquid supply 

improvement. 

The results of recent studies suggest that the severe flow instabilities indicated by 

large amplitude wall temperature and pressure oscillations can deteriorate heat transfer 

coefficient (HTC) and critical heat flux (CHF) as well [31]. In general, the main efficient 

heat transfer modes including nucleate boiling, convection, and evaporation have been 

impeded due to the lack of liquid supply. As mentioned above, some earlier studies have 
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concluded that the enhancement of nucleation boiling and thin-film evaporation is cracid 

[32-34]. In the last decades, numerous techniques have been explored to improve the heat 

transfer performance of flow boiling in microchannels. Many designs [35-37] are widely 

used to promote the flow boiling performance, such as inlet restrictors (IRs) [38]. The 

primary mechanism is to use this configuration to suppress liquid backflow to enhance the 

flow instabilities. The reentrant cavities [39] are designed as nucleation sites to improve 

active nucleation site density in enhancing the nucleation boiling, the impingent jet [40]. 

The mechanism is jetting the fluid onto a hot surface to cool the surface. In addition, the 

micro pin fin [41] array at the bottom and the nanowires [26] in the microchannel are 

designed to improve nucleation boiling. Table 1.2 has shown the studies of traditional 

techniques in flow boiling. 

Moreover, flow boiling can significantly improve the heat transfer efficiency, 

enhanced nucleation boiling, and decrease the coolant needed [28]. For example, multiple 

jets with reentry cavities take advantage of the utility of high latent heat of vaporization 

associated with typical liquid-vapor phase change phenomena, allowing significant heat 

transfer with little temperature rise. Kosar and Kuo found inlet orifices placed inside 

parallel microchannels could suppress the boiling flow instabilities [42]. HTC and CHF 

were successfully enhanced by regulating bubble slugs. However, the increased pressure 

drop may cause higher power and required a high flow rate. Kuo and Peles [43] presented 

a new microchannel with reentrant cavities to promote the generation of bubble nucleation 

and uniformity. A vast bubbly region at high mass velocity was observed and significantly 

reduced. Wang and Zhang [44] employed the impingement jets to reduce wall superheat 

and achieve higher heat removal rates, although this technology required additional pump 
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power. Stroock and Dertinger [45] indicated that chaotic mixer in microchannels with DI 

water is a passive method for mixing steady pressure-driven flow streams in microchannels 

at low Reynolds number. But it hadn’t been studied to enhanced two-phase transport in the 

silicon area. However, the enhancement can only be triggered at a low heat flux. As long 

as the heat flux increasing, the proportional energy of nucleation boiling decreased due to 

the lack of liquid rewetting and resulting in local dryout at the outlet section of 

microchannels. Sustained nucleate boiling can promote heat transfer rate and maintain the 

wall temperature at a safe level [29].  

Another crucial aspect of flow boiling is the critical heat flux (CHF), showing the 

safe operation margin of high power density electronics [46]. The crisis reason for boiling, 

which results in electronic devices failure, is overheating—the liquid rewetting ability, 

incredibly close to the outlet section of microchannels, thoroughly determined the CHF. 

Many microchannel configurations have been developed to enhance CHF using DI water 

as working fluid significantly. These include controlling reversal vapor flows by inlet 

restrictors (IRs) [47], recovering pressure by tapered channels [48], improve surface 

wettability by decorating micro/nanostructure [26, 27, 49-51], and promoting liquid 

rewetting by capillary micro/nanostructures [52-55]. Wang et al. [56] reported an ultrahigh 

CHF over 1.2 kW/cm2 has been achieved by improving the thin film evaporation boiling 

with nanoporous membranes. In this study, the thickness of the liquid film gradually 

reduced along with the heat flux increased. However, about 1.8atms were applied to serve 

as the driving force to pump working fluid through the membranes. As aforementioned in 

the previous study [57], a maximum of 1015W/cm2 has been achieved via enhancing liquid 

supply to delay local dryout at outlet section of microchannel at a mass flux of 680 kg/m2 
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without raised two-phase pressure drop significantly. A high CHF of 830 W/cm2 is recently 

revealed at a low mass flux of 396 kg/m2 in microchannels with capillary micro-pinfin 

fences. 

Table 1.2 Studies of traditional techniques in flow boiling 

 

Author Methods Pros Cons 

Kosar and Kuo 

(2006) [58] 

Inlet 

restriction 

Enhanced HTC and CHF 

Regulating bubble slugs 

Suppress flow oscillations 

Increased pressure 

drop 

Required higher 

flow rate 

Kandlikar, et al.  

(2005) [59] 

Inlet 

restriction 

Reduced the instabilities Increased pressure 

drop 

Wang, et al.  

(2008) [47] 

Inlet 

restriction 

Reduced amplitudes of 

temperature and pressure 

oscillations 

Higher pressure 

drop and lower 

HTC at high vapor 

quality.  

Kosar and Kuo 

(2005) [60] 

Reentrant 

cavities 

Enhanced capillary flow 

Enhanced HTC 

CHF enhancement 

are insignificant 

Kuo and Peles 

(2008) [39] 

Reentrant 

cavities 

Enhanced nucleation site 

distribution 

An extended bubbly region 

was observed in high mass 

velocity. 

Significant reductions in the 

wall superheat. 

Effected the CHF 

enhancement. 

Xia, et al. (2010) 

[61] 

Reentrant 

cavities 

Reduced the friction factor Augment pressure 

drop 

Morsged, et al.  

(2012) [26] 

Nanowires Reduced surface superheat 

for ONB 

Enhanced heat transfer rate 

in single-phase 

Pressure fluctuation 

increased 
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Krishnamurthy 

and Peles, (2008) 

[62] 

Micro pin fins Enhanced CHF & HTC 

Promote capillary flow 

Observed flow patterns 

Additional pressure 

drop 

Stroock and 

Dertinger, (2002) 

[63] 

Micro mixer Mixing steams at low Re It hasn’t been 

studied for 

enhanced two-phase 

transport in silicon. 

Wang and Zhang, 

(2004) [44] 

Impingement 

jets 

Reduce wall superheat 

Achieve higher heat removal 

rates 

Required additional 

pump power 

 

 1.4 Flow Boiling in Microchannel with Dielectric Fluids 

Compared to deionized (DI) water, properties of dielectric fluids are more stable 

and reliable for applications of electronics cooling [64-66], which make dielectric fluid 

flow boiling in microchannels a more favorable cooling solution for high power 

electronics. However, considering their unfavorable thermophysical properties, enhancing 

flow boiling heat transfer coefficient (HTC) and critical heat flux (CHF) in microchannels 

is a challenging task. For instance, the thermal conductivity of HFE-7100 is 0.069 W/m∙K, 

approximately ~10 times lower than that of water (~0.6 W/m∙K). Besides, the latent heat 

of vaporization of HFE-7100 is 111.6 kJ/kg, nearly 20 times smaller than that of water. In 

addition, the surface tension is 13.6 mN/m, five times lower than that of water, making it 

difficult to form and sustain long thin liquid films on heated surfaces. On a highly wetting 

fluid, it is challenging to promote efficient thin film evaporation and nucleate boiling. Table 

1.3 shows the more details about major thermo-physical properties of HFE-7100. 

Many efforts have been taken to enhance flow boiling HTC on dielectric fluids. For 

example, nanowires [65], reentrant cavities [66, 67], porous graphite [36, 68] and other 
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porous surfaces [69] can effectively enhance nucleate boiling by increasing nucleation site 

density. In addition, sustaining thin film through enhanced capillary flows induced by 

micro/nano-structures can result in highly efficient thin film evaporation [67]. Other 

methods including diverging microchannels [37], inclining microchannels [70], and 

mixing generation [67] have been developed to significantly promote HTC of HFE-7100 

flow boiling. 

Table 1.3 Major thermo-physical properties of HFE-7100 

 

Name HFE-7100 

Latent Heat of Vaporization (kJ/kg) 111.6 

Specific Heat, 25 °C, 1 ATM (J/kg∙K) 1183 

Liquid Thermal Conductivity (W/m∙K) 0.069 

Boiling Point, 1ATM (°C) 61 

Liquid Density, 25 °C (kg/m3) 1520 

Kinematic Viscosity (cSt) 0.37 

Surface Tension, 25 °C (mN/m) 13.6 

Vapor Pressure, 25 °C (kPa) 26.9 

 

However, it is more challenging to enhance CHF of dielectric fluid flow boiling in 

microchannels. CHF crisis in a closed microchannel system can be triggered by three main 

factors, such as explosive boiling, two-phase flow instabilities, and local dryout. Low 

thermal conductivity of dielectric fluids is more likely to trigger explosive boiling and 

result in premature CHF conditions. Local dryout in the form of a stable vapor film on 

heating surfaces is highly likely to occur at low surface tension dielectric fluids due to its 

weak capillarity. Moreover, severe two-phase flow instabilities [71, 72] can also lead to 
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local dryout, especially pounced near the outlet section. Enhancing CHF on DI-water with 

numerous technologies, such as regulating bubble slugs [73], suppressing flow instability 

[74], modifying surface properties [27, 49, 50], and promoting liquid rewetting [52-55] 

have been studied for decades. Noting that research to enhance CHF on dielectric fluid at 

room temperature is few. For instance, the enhancement of HTC in microchannels with 

nanowires [65], reentrant cavities [66] has been achieved, but not on CHF. One of the main 

reasons for the limited enhancement of CHF is the lack of liquid supply, despite that 

capillary flow is promoted by integrating reentrant cavities [66] and nanowires [65]. As 

aforementioned, Lee et al. have reported a high CHF of ~700 W/cm2 at a high mass flux 

of 5550 kg/m2 s on pre-cooled HFE-7100 in microchannels with the inlet temperature of -

30oC [75]. In general, it is extremely challenging to enhance CHF in dielectric fluid flow 

boiling with inlet temperature at room temperature. 

 1.5 Bubble Dynamics in Microchannels 

The enhancement mechanism to enhance nucleation boiling is equally vital in flow 

boiling heat transfer study in microchannels. The bubble dynamic study is one of the most 

critical issues. In the last decades, the bubble dynamics study has emerged as a boiling heat 

transfer subdiscipline. The primary research usually forced on the growth and motion 

pattern of vapor bubbles. Moreover, bubble growth and departure from a heating surface 

have magnificent implications for the heat transfer mechanism of nucleate boiling. 

Since the 1950s, single bubble dynamics has already made significant progress, and 

various theoretical models have been gradually developed. Many experimental data have 

been accumulated. It promoted the development of nucleate boiling heat transfer 

mechanism. However, especially on bubble-bubble interaction, there is not a satisfactory 

conclusion when considering multiple bubble system.  
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As a previous analysis [76], the nucleate bubble forming on an active cavity 

continues to grow under various forces. At the initial stage, the vapor pressure inside the 

bubble is satisfied 
2

v lp p
r


+＞ . Vapor bubbles begin to grow up because of the unbalance 

between the surface tension and the difference of pressure inside and outside the vapor 

bubble. During this period, the temperature inside the vapor bubble is equal to the 

surrounding liquid, bubble growth is subject to surface tension force and inertia force, and 

the growth rate is very high. 

With the volume of vapor bubble increased, the effect of surface tension decreases. 

The pressure inside the vapor bubble is close to the outside, and the vapor bubble grows 

under the isobaric condition. The bubble temperature is equal to the saturated temperature 

under the system pressure. At this stage, the heat transfer process from superheated liquid 

to the vapor bubble dominates the bubble growth, growth rate reduced, and bubble duration 

has enhanced. 

To better understand the pattern of bubble growth and motion [77-79], two different 

situations need to be concerned, bubble growth under superheated liquid with uniform 

temperature and bubble growth with the non-uniform temperature of different boundary 

conditions. The violent oscillation of the bubble formed from flow boing heat transfer has 

been investigated analytically and numerically. Meanwhile, only a limited number of 

papers try to examine the combined work of bubble dynamics and microchannels.  

This study has formulated a general bubble dynamics model, especially in bubble 

departure diameter, bubble departure frequency, and bubble growth diameter, suitable for 

the oscillating bubble formed in microchannels for high heat flux heating and rapid and 

high-frequency alternating nucleation boiling circumstances. A nondimensional 
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correlation is established for different working fluids, and mass flux is using experimental 

data.  

With uniform density and temperature distribution approximation, the estimated 

values of the far-field pressure signal from the evolving bubble formed from the fully 

evaporated droplet are in good agreement with experimental results. In this dissertation, a 

semi-theoretical model has been developed to analyze the bubble departure diameter, 

bubble growth diameter, and bubble departure frequency. Multiple bubbles are considered 

for flowing boiling at low heat flux conditions. A comparison of bubble departure diameter, 

bubble growth rate, and frequency with various working conditions are made with well-

controlled experiments. 

 1.6 Bubble Dynamics Models  

Flow boiling in a microchannel is characterized by nucleation rate and dynamic 

behavior of vapor bubbles in the channel [7, 80, 81]. Many researchers have identified the 

bubble dynamics play an essential role in flow boiling heat transfer [82-84]. In the last 

decades, the dynamics of vapor bubbles formed on a heated surface subjected to forced 

flow have been studied [85]. Flow boiling in microchannel involves many complex 

phenomena such as bubble nucleation, growth, departure, and coalescence. Bubble 

dynamics are fundamental to the understanding of boiling heat transfer mechanism and 

prediction of heat transfer. It concerns bubble generation, bubble growth, bubble collapse, 

a departure from nucleation sites, bubble motion through fluid, forces acting on the fluid, 

and heat transfer performance. 

Moreover, nucleation site density depends on the surface physical properties, 

surface finish, liquid physical properties, heat flux, and the wall superheat [86]. Vapor 

bubble growth is determined by the surface tension, liquid inertia, and difference between 
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the pressure within the bubble and external pressure. Bubble departure is related to the 

surface tension and liquid resistance on the bubble due to asymmetrical bubble growth, 

acting opposite to the fluid motion [28]. Several studies have been developed to predict the 

bubble growth rate, bubble departure frequency, and bubble departure diameter by 

calculating various forces that act on the growth bubble from a heated surface. However, 

there are a few correlations or models that could be widely applied to two-phase flow 

boiling in microchannels with HFE-7100. These limitations indicate a challenging task to 

develop a numerical technique for two-phase flow with the various interface. The shape 

and movement of the interface and each geometric configuration of phase need to be 

computed as part of the solution. The large property jumps associated with phase change 

also increase the complexity of the solution method. Therefore, future work is still needed 

to investigate a more reliable model to predict bubble dynamics. 

Table 1.4 listed correlations for the departure diameter of bubbles during nucleate 

boiling over the past seventy years. In many experimental studies, the departure diameter 

was generally determined from the movies captured by high-speed camera. Based on data 

obtained in this manner, several correlation equations have been proposed.  

The correlations are written in terms of the departure Bond number odB  defined as 

 
2( )

o l v d
d

g d
B

 



−
=  (1) 

Gunther [87] was one of the earliest authors to study nucleate boiling under forced 

convection conditions. The research with high speed and resolution photographic method 

has been developed for the forced convection boiling of heat transfer. It shows that the 

bubble size and bubble lifetime reduced as the bulk fluid velocity increased.  Fritz [88] 

found that the bubble departure diameter is related to surface tension and buoyancy force. 
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Klausner et al. [89] proposed a prediction model for bubble departure diameter with 

various forces acting on the growing bubble. Core and Rohsenow [90] analyzed the 

correlation of bubble departure diameter. However, it only meets the cases for low pressure. 

Moreover, Zeng et al. [91] developed an improved model that the growth force is 

dominant compared to the surface tension force near the departure point. Thorncroft and 

Mei [92] correlated the data for bubble departure diameter by founding the bubble growth 

increases with Jacob number (growing ΔTsat) under otherwise identical conditions in up-

flow or downflow. J.F. Klausner [89] have proved the surface tension alone cannot prevent 

the vapor bubble from departing. Situ et al. [93] focused on bubble lift-off size in subcooled 

flow boiling, taking into account the force balance analysis, which showed that the bubble 

is governed by growth force and shear lift force at the instant of the lift-off.  

Table 1.4 Departure diameter correlations [28] 
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Rohsenow (1969) 

[97] 
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41.5 10C −=   for water 

44.65 10C −=   for fluids other than water 
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In addition, in order to introduce more recent results on bubble departure diameter, 

Chen and Groll [101] developed a novel method to simulate existing bubble shapes by 

solving the Yong-Laplace equation. Besides, Helden et al. [102] performed the bubble 

departure diameter variation and depicted that the bubble departure diameter decreased as 

the liquid velocity increased. Chen and Ren [103] proposed a prediction model for the 

bubble departure diameter based on force analysis and found that the contact circle 

diameter of vapor bubble is more extensive for a bubble with a bigger departure diameter. 

Phan [104] considered a model considering the effect of contact angle on bubble departure 

diameter during heterogeneous boiling. Koncar et al. [105] concluded the variation of 



 

18 

bubble diameter according to local flow conditions at low pressure in upward subcooled 

flow. Mazzocco et al. [106] was modeling the relative velocity of the bubble to improve 

the lift-off diameter predictions. 

To predict the bubble departure frequency, Cole [107] indicates that buoyancy force 

and drag forces could dominate in the hydrodynamic region if the bubble departure 

diameter and bubble frequency are equal to the bubble rise velocity. Hatton and Hall [108] 

proposed the correlation of bubble departure frequency and bubble departure diameter. 

Ivey [109] suggested the relationships between bubble frequency, bubble departure 

diameter, and rise velocity in nucleate boiling. Tu and Yeoh [110] determined the 

relationship between bubble departure diameter and bubble frequency at low-pressure 

subcooled boiling flows. Lee et al. [111] briefly introduced the bubble frequency is 

correlated with bubble departure diameter with a form of nf D const = . Zuber et al. [112] 

proposed a relationship between the product of bubble frequency and diameter in terms of 

fluid properties, the bubble rise velocity is  

 D /d Gt  (2) 

Where, 

 G Wt t=  (3) 

Figure 1.2 shows the model validation with other correlations, and it is observed 

that the model predictions do not agree well with the present experimental data. In this 

study, the comparison of experimental data with different models predicted of bubble 

departure frequency and bubble departure diameter in the last decade is plotted in Figure 

1.2. As shown in Figure 1.2 (a), the present study of experimental data has the better 

performance of departure frequency, and the maximum frequency has achieved a value of 
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~7700 kHz at a heat flux of 33 W/cm2. Figure 1.2 (b) shows that the experimental data of 

bubble departure diameter is much higher than the developed prediction models. However, 

it is still hard to illustrate a clear trend due to the significant variations in the experimental 

conditions and the microchannel dimensions. Therefore, the non-dimensional analysis is 

used for establishing a prediction model in this dissertation proposal. 

Table 1.5 Present bubble dynamic models and existing models/correlations [113] 

 

Flow conditions Parameters Author Major 

assumptions 

Pool boiling Bubble departure frequency Cole (1967) 

[107] 

The 

hydrodynamic 

region where 

buoyancy and 

drag force 

dominates. 

Pool boiling Bubble departure frequency Ishii and Zuber 

(1979) 

[114] 

Dd/tG= bubble 

rise velocity; 

tG=tW 

Pool boiling Bubble departure frequency Ivey (1967) 

[109] 

Buoyancy and 

drag forces 

dominate 

Forced convective 

boiling 

Bubble waiting time Basu et 

al.(2005) [115] 

Correlated with 

wall superheat. 

Forced convective 

boiling 

Bubble growing time Basu et al. 

(2005) [115] 

Correlation with 

departure 

diameter, wall 

superheat and 

bulk subcooling. 

 

Many new concepts are demonstrated to enhance critical heat flux and heat transfer 

coefficient, suppress flow instabilities and improve nucleation boiling. Although the early 

results have shown the enhancement of flow boiling heat transfer in micro-slots 
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microchannels by enhancing nucleation sites to enhance and sustain nucleation boiling and 

eventually improving HTC and CHF, the enhanced mechanisms of heat and mass transfer 

leading to high HTC and CHF are not well understood yet. Therefore, theoretical models 

of bubble dynamics are essential to deepening understanding. For theoretical bubble 

dynamic models based on the observed new phenomenon, more data should be collected 

to compare with differently structured microchannels with different working fluids to get 

more accurate and reliable results. Table 1.5 shows the present bubble dynamic models and 

existing models/correlations. More visualization study is needed to get accurate trends for 

bubble growth, departure diameter, departure frequency, and switch frequency for the 

interconnected microchannels configuration in this dissertation compared with the 

aforementioned various bubble dynamic models.  

 
 

Figure 1.2 (a) Data comparison of bubble departure frequency as a function of heat flux. 

(b) Data comparison of bubble departure diameter as a function of heat flux.  

 

To summarize existing works in two-phase flow boiling in microchannels, 

improvements on HTC and CHF are achieved by improving nucleate boiling, thin-film 

evaporation, flow mixing, flow stabilities delay the surface dryout. However, backflow and 

instability occur during flow boiling in microchannels resulting in non-uniform flow and 
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low heat transfer, such as additional pressure drop, complex system, low energy efficiency, 

and explosive boiling. 

This dissertation includes three parts to understand and model the two-phase flow 

boiling heat transfer in the novel designed interconnected microchannels. Part I of this 

dissertation discussed the experimental methods used and key trends of heat transfer 

coefficient with different mass velocity and working fluids with innovative microchannels 

configurations. Part I also included the bubble dynamics study and proportional energy 

study to investigate the mechanism of enhancing heat transfer performance. Part II focuses 

on the effect of different sizes of micro-slots to improve the design as mentioned above 

and enhanced CHF and HTC. The unique features of micro-channel flow boiling are 

discussed in Part I and II, and Part II is carefully identified and incorporated into the model 

of Part III. Three empirical correlations have been proposed using the experimental results 

from Part I and II. 
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2 CHAPTER 2 HIGHLY COORDINATED, RAPID AND 

SUSTAINABLE NUCLEATE BOILING IN MICROCHANNELS ON 

HFE-7100 

This study presents an innovative microchannel configuration with 28 micro-slots 

interconnected on each parallel channel to enhance nucleate boiling and CHF. Micro-slots 

served as active nucleate sites that aim to improved nucleation boiling of heat transfer. 

Moreover, significant progress has been made in the two-phase flow boiling of 

microchannels, several new phenomena such as bubble switch in microchannels, thin liquid 

film inhales in micro-slots, and high-frequency rewetting with micro slots have been 

observed by visualization study with a high-speed camera, which results in the nucleate 

boiling improvement.  

With the enhancement of the liquid supply at microchannels, a significant delay of 

CHF crises can be generated in the present configuration of interconnected microchannels 

with a slightly reduced two-phase pressure drop. HTC can be magnificently enhanced due 

to the thin film evaporation and nucleate boiling enhancement by micro-slots. In additional, 

bubble dynamics study and proportional energy study will be adopted to study the 

enhanced mechanism of the present design interconnected microchannels compared to the 

plain wall microchannel configuration with inlet restrictors. Moreover, the dominant 

energy of heat flux will be explored in this study.
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 2.1 Design and Microfabrication of Interconnected Microchannels 

 
 

Figure 2.1 (a) Configuration of the interconnected microchannels. (b, c) Scanning electron 

microscopy (SEM) images of interconnected microchannels and dimensions.  

 

An innovative microchannel configuration has been developed to enhance flow 

boiling in terms of HTC and CHF on HFE-7100, as shown in Figure 2.1. In this design, 

five parallel microchannels are interconnected by 28 micro-slots on each intermediate wall. 

These micro-slots were designed as nucleation sites to enhance and sustain nucleate 

boiling. More details about the dimensions of microdevice have been discussed in our 

previous study [116]. More importantly, nucleate boiling in neighboring microchannels 

can be harmonically coordinated for the first time, leading to significantly higher bubble 

growth rates and rewetting frequency and, eventually, greatly enhanced HTC and CHF. 

In plain wall microchannels, it is challenging to enhance heat transfer performances 

of flow boiling due to a long waiting time for bubble nucleation and bubble departure time. 

Figure 2.2 shows the experimental setup and the test package module. The test setup 

consists of an optical imaging system, a data acquisition unit, and an open coolant loop. 

HFE-7100 is pumped by pressurized nitrogen (N2). All test processes are executed at room 
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temperature ~ 19 ºC and 1 atm. Details of the experimental setup were reported in our 

previous studies [67]. 

 
 

Figure 2.2 (a) An exploded 3D model of the test package module [117] and (b) 

experimental setup.  
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Figure 2.3 Microfabrication process of the tested microdevice. 

 

Figure 2.3 shows the detailed flow chart to fabricate the microfluidic device. First, 

1 ± 0.01μm thick thermal oxide layer was grown on both sides of n-type <100> silicon 

wafer to provide electrical insulation for the micro heaters and serve as a hard mask for 

deep reactive ion etching (DRIE). A 1 ± 0.05μm thick, thin-film micro-heater was 

fabricated through a lift-off process on the backside of the wafer. Silicon oxide serving as 

an etching mask was etched off using reactive ion etching (RIE). Then five parallel micro-

channels were etched by DRIE. The depth of the channel is 250 ± 3μm. The DRIE process 

also creates deep vertical sidewalls with a root mean square (RMS) roughness of ~300 nm. 

A Pyrex glass wafer was anodically bonded to the silicon substrate to seal the microfluidic 

device. The individual microchannel test chips (length 30 ± 0.005 mm; width 10 ± 0.005 

mm; thickness 1 ± 0.005 mm) were cut from the wafer by a dice saw. More detailed 

microfabrication was elucidated in our previous study [116]. 



 

26 

 2.2 Data Reduction 

In experiments, the input power was calculated by multiplying the DC voltage (V) 

with current (I). Then the effective heat flux was calculated after subtracting the heat loss, 

Qloss, (pre-calibrated between the ambient environment and the test device) from the total 

input power, P, as follow,  

 loss
eff

P Q
q

A

−
 =  (4) 

where A is the base heating area. Based on the pre-calibrated linear relationship 

between temperature and electrical resistance, the average temperature of the microheater 

(on the backside of the device) was calculated as, 

 ( )heater a aT K R R T= − +  (5) 

Ra is the resistance of microheater at ambient temperature Ta and K is the slope of 

pre-calibration. The average temperature at the bottom wall of microchannels was then 

derived as, 

 𝑇̅𝑤𝑎𝑙𝑙 = 𝑇̅ℎ𝑒𝑎𝑡𝑒𝑟 −
𝑞𝑒𝑓𝑓
′′ 𝛿

𝑘𝑠
 (6) 

Where 𝛿  and ks are the substrate thickness, the thermal conductivity of silicon, 

respectively. 

The fin efficiency, ηf, of a finite fin was estimated from 

 
tanh( )

f

mH

mH
 =  (7) 

The equation of ηf is used to characterize fin performance and to calculate the 

average effective HTC, where the parameter m was calculated as, 

 ( )2 / sm h L W k WL= +  (8) 
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Then, the effective two-phase HTC considering fin efficiency, htp, is evaluated by, 

 ( )( )( )2

latent
tp

f wall sat

Q
h

WL HL T T
=

 + −
 (9) 

where Tsat is the saturated temperate of working fluid. The latent heat contributed 

to boiling heat transfer was derived as, 

 latent loss sensibleQ P Q Q= − −  (10) 

Where Qsensible is the sensible heat due to the liquid temperature as follows. 

 ( )sensible c p o iQ GA C T T= −  (11) 

Significant physical properties of dielectric fluid HFE-7100 are given in [67]. Tsat 

is a function of working pressure (p) in the middle of the microchannel. 

The vapor quality was calculated as [116], 

 
eff sensible

fg

P Q

mh


−
=  (12) 

 2.3 Uncertainty Analysis 

The measurement uncertainties of flow rate, pressure, voltage, current, temperature, 

and microfabrication resolution are ±0.1%, ±1.5%, ±0.5%, ±0.5%, ±1 oC, and 3 µm, 

respectively [118]. Uncertainty propagations are calculated using methods developed by 

Kline and McClintock [119]. Uncertainties of effective HTC have been estimated to be less 

than ±2 kW/m2K. 

 2.4 Flow Boiling Curves 

In this study, the flow boiling performance in terms of effective HTC considering 

all effective heat transfer areas is characterized with mass flux ranging from 462 kg/m2s to 

1617 kg/m2s. Figure 2.4 (a) shows that the effective HTCs decrease with the increase in 
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heat flux. Figure 2.4 (b) shows the overall HTCs based on the heater area as an effective 

heat flux function. The overall HTCs based on the heating area share almost the same trend 

with effective HTCs, but ~2 times higher. HTC of ~120 kW/m2K is achieved after the onset 

of nucleate boiling (ONB) at a mass flux of 1155 kg/m2s. Figure 2.4 also indicates that 

there are two distinct regimes of HTC curves. For mass flux ranging from 462 kg/m2s to 

924 kg/m2s, the curves of HTC become flat after ONB. The sustainable nucleate boiling 

may contribute to the stable heat transfer rate. At mass flux between 1155 kg/m2s and 1617 

kg/m2s, the HTCs gradually decline with the increase in heat flux. The high contribution 

of convection and the occurrence of the heating surface dryout near the outlet section 

should be two main reasons for the decrease of HTC, especially near CHF conditions. 

 
 

Figure 2.4 (a) Effective HTC as a function of effective heat flux. (b) The overall HTC as a 

function of effective heat flux.  

 

Moreover, Figure 2.5 present the exit vapor quality in the current configuration 

remains higher than that from plain wall microchannel and half interconnected channel at 

the mass velocity of 693 kg/m2s. Mainly, the exit vapor quality at the peak CHF value in 

the present configuration is 0.92, which is more than twice higher than that in the previous 

one, indicating a significantly higher portion. 
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Figure 2.5 Effective HTC as a function of vapor quality.  

 

 2.5 New Nucleate Boiling Phenomena and Bubble Dynamics 

A complete bubble cycle includes bubble growing time and bubble waiting time, as 

schematically shown in Figure 2.6. The bubble growing time is the duration from bubble 

nucleation to departure or collapse on a heating surface. Additionally, the waiting time is 

when the initiation nucleus on a nucleation site after previous bubble departure or collapse 

from the same site. The bubble departure frequency can be defined by [120]: 
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Bubble dynamics in terms of bubble departure diameter (Dd), bubble growth rate 

(
𝑑𝐷

𝑑𝑡
) the bubble waiting and growth times are characterized and compared with those in 

plain-wall microchannels at different mass fluxes, as shown in Figure 2.7. Compared to 

data for plain-wall microchannels, the bubble departure diameter (Dd) and bubble growth 

rate (
𝑑𝐷

𝑑𝑡
) for the present microchannel configuration are ~2.3 times larger and ~ 3 times 

faster, respectively, as shown in Figure 2.7 (a, b). As depicted in Figure 2.7 (c, d), bubble 
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waiting time (t) on the present microchannel configuration is less than half of that on the 

plain-wall microchannels. The growing time of the present channel is ~ 2.6 times longer 

than that in plain wall microchannels.  

 
 

Figure 2.6 Schematic of a bubble growth cycle including waiting and bubble growing 

periods for (a) interconnected microchannel configuration and (b) plain-wall 

microchannels.  

 

It would be challenging to meet two requirements for bubble nucleation on a plain 

wall with highly wetting fluids: residual vapor and superheated fluid. The superior wetting 

liquid could completely occupy the nucleation sites by removing residual vapor after a 

bubble departure on the plain wall. Another factor would take a longer time to make the 
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refilled liquid in the nucleation site to be superheated. These two factors would lead to a 

significantly longer bubble waiting time. In contrast, in the interconnected microchannels 

with micro-slots, a small amount of vapor could remain inside the micro-slots after the 

bubble departure due to the induced capillary pressure. Moreover, the liquid can be quickly 

sucked into the slots during the bubble departure process and heated up after then, which 

keeps these micro-slots active continuously and dramatically reduces the bubble growing 

time, as illustrated in Figure 2.7 (c, d). Visualization has been conducted to validate these 

two hypotheses and are discussed in the next section. 

 
 

Figure 2.7 Comparisons of bubble dynamics between the present design and plain-wall 

microchannels at a mass flux of 693 kg/m2s. (a) Bubble departure diameter (Dd) as a 

function of heat flux, (b) bubble diameter as a function of time, and (c) the bubble waiting 

time as a function of heat flux. (d) bubble growing time as a function of heat flux.  
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Figure 2.8 shows three sequential frames of liquid jetting from the micro-slots. 

These images are selected from image sequences at a sample rate of 7,000 frames per 

second (fps). The observed liquid jetting should be pumped out by pressure imbalance 

between the neighboring channels owing to unstable non-uniform distributions of two-

phase flow [30]. More importantly, this jetting flow well validates residual vapor and liquid 

inside the slots, significantly shortening the bubble growing time. 

 
 

Figure 2.8 Liquid jetting from these slots at 40W/cm2 and 

mass flux of 462 kg/m2s. (a) initial stage of non-fluid 

jetting status. (b, c) fluid jetting observed in two 

sequential images.  

 

For comparison, Figure 2.9 depicts the waiting period of nucleate boiling in plain-

wall microchannels at a mass flux of 693 kg/m2s and a heat flux of 65 W/cm2. The bubble 

departure frequency in the plain-wall microchannels is ~ 355 Hz, as shown in Figure 2.12 

(a), lower than ~ 452 Hz at similar working loads of interconnected channels. The bubble 

departure diameter is ~45 µm, around 2.3 times smaller. The waiting time for plain wall 

microchannel is ~1.3 times longer than that in interconnected microchannels, as shown in 

Figure 2.7 (a) and (c). Figure 2.9 (a) and (d) clearly show that bubble nucleation of the 

plain wall randomly occurs. The bubble departure frequency in the plain wall 

microchannels is much lower than that of the present microchannels, the shorter bubble 

waiting time. 
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Figure 2.9 Waiting time in plain wall microchannels at a 

mass flux of 693 kg/m2s and a heat flux of 65 W/cm2. (a) 

Bubble departs from the wall surface, (b, c) no bubble 

nucleation appears with a long waiting period, and (d) 

new bubble appears at same nucleation site.  

 

Figure 2.10 shows the bubble growth process in the interconnected microchannels 

at mass flux of 462 kg/m2s and heat flux of 40 W/cm2. Compared to the plain-wall 

microchannel, the bubble growth and departure or collapse in the interconnected channel 

has been well coordinated. The bubble growing time is measured at ~ 220 μs, as shown in 

Figure 2.7 (d).  

Active nucleation site density is another parameter to characterize the bubble 

dynamics. The active nucleation site density was estimated by dividing the measured 

number of active nucleation sites by the total area using images captured by a high-speed 

camera . As shown in Figure 2.11, the active nucleation site density of interconnected 

microchannels is a constant of 2240 sites/cm2 owing to the 100% active nucleating sites, 
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which is ~ 1.86 times higher than the cavity structure at a similar working condition of a 

mass flux 693 kg/m2s and ~ 1.7 times higher than that of plain-wall microchannels.  

 
 

Figure 2.10 A bubble growth process at a mass flux of 

462 kg/m2s and a heat flux of 40W/cm2. (a) The initial 

stage for the interconnected channel, (b) bubble growing 

from micro-slots, (c) bubble collapsing or departing from 

the channel, and (d) bubble merging.  

 

 
 

Figure 2.11 (a) Designs of different configurations. (b) Active nucleation site density as a 

function of heat flux with different configurations.  

 

The micro-slots in the interconnected channels were 100% activated during the 

boiling, but reentry-cavities in our previous design were only 22.2% activated according 
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to experiment data [67]. High active nucleation site density can facilitate nucleate boiling 

of heat transfer rate. 

 
 

Figure 2.12 (a) Bubble departure diameter increases with the increase of heat flux at 

different mass fluxes. (b) f·Dd as a function of heat flux.  

 

Figure 2.12 (a) shows the effects of mass flux and heat flux on bubble departure 

frequency, which increases with the enhancement of heat flux and decreases the increase 

of mass flux on the present microchannel configuration. In additional. Figure 2.14 (c) 

demonstrates that the switching frequency increases as the heat flux increases at different 

mass fluxes. The trends of bubble switch frequency were nearly overlapped in two different 

mass fluxes, meaning that it should be primarily determined by nucleate boiling. Bubble 

departure frequency and departure diameter are highly affected by the superheat. A 

reported study has suggested the bubble departure diameter is closely related to departure 

frequency in the form of  f·Dd=constant [121]. In this study, a fit curve is f·Dd = 0.05. It is 

obtained from curve-fitting experimental results in Figure 2.12 (b).  

 2.6 Coordinated Nucleate Boiling 

In conventional microchannels, nucleate boiling in an individual channel is usually 

isolated. It is highly desirable to harmonically coordinate these usually isolated boiling 
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processes to enhance nucleate boiling. On the present microchannel configuration, bubble 

nucleation switches between two sides of each wall at a high frequency.  

 
 

Figure 2.13 (a, b) A top-view of the highly coordinated and rapid nucleate boiling at 2597 

Hz switching frequency of nucleate boiling between the two sides of a microchannel at a 

heat flux of 40W/cm2 mass flux of 462 kg/m2s. Nucleate boiling occurred from both sides 

of the channel wall sequent.  
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More importantly, the bubble nucleation and departure process on one side of the 

wall greatly enhances bubble nucleation through shorting bubble waiting time. Thus, 

nucleate boiling has been well-coordinated through these well-designated micro-slots, as 

illustrated in Figure 2.13 (a).  

 
 

Figure 2.14 (a) Bubble diameter as a function of time. (b) Nucleate boiling switching 

frequency as a function of heat flux.  

 

Figure 2.13 (a) has shown the new nucleate boiling phenomena in the middle 

section of the interconnected microchannels at a mass flux of 462 kg/m2s and a heat flux 

of 40 W/cm2. The bubble departure frequency is ~ 411 Hz with a departure diameter of 

~152 µm. The concept clearly shows the process of bubble growth, collapse or departure, 

and switching between two neighboring channels. The bubble first appears on the upper 

surface of channel three, and after the bubble collapse or departure, bubbles nucleate and 

grow on the top surface of channel one. The same situation occurs at the bottom surface of 

channels two and four after the bubble departs from channel three, as shown in Figure 2.13 

(a). The details about the bubble diameter variation with the time change have shown in 

Figure 2.7 (b). It is indicated that the diameter of bubble growth, collapse, and the waiting 

periods for the next pulse is almost systematic patterns.  
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 2.7 Enhanced HTC 

The switching period in this study, as shown in Figure 2.14, is defined as a period 

from bubble growth to departure or collapse on one side of the wall until the initial nucleus 

appears at the nucleation cavities on the other side of the wall. The whole process has been 

illustrated in Figure 2.13 (a), from wall two to wall three or from wall three to wall two, 

according to the equation f=1/ts. 

 
 

Figure 2.15 Significant enhancements of HTC are achieved on the present design compared 

to plain wall microchannels. (a, b) Effective HTC as a function of effective heat flux. (c, 

d) Effective HTC as a function of vapor quality.  

 

Compared to the plain-wall microchannel configuration, effective HTCs 

considering all effective heat transfer areas in this study are substantially enhanced, as 

shown in Figure 2.15 (a, b). Significant enhancements of ~175% and ~156% are achieved, 
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respectively, at the mass flux of 462 kg/m2s and 693 kg/m2s, as shown in Figure 2.15 (a, 

b). The enhanced mechanism of HTC is explored as follows. On the plain wall surface, it 

is difficult to form large thin liquid film areas due to the low surface tension of HFE-7100. 

The explosive boiling would possibly take place and blow off the liquid film from the 

heating surface, resulting in local dryout spots. Meanwhile, the suppressed nucleate boiling 

due to the highly rewetting ability of HFE-7100 would deteriorate heat transfer rates.  

The interconnected microchannel configuration developed in this study can 

overcome these challenges, as mentioned above. Nucleate boiling has been drastically 

enhanced by increasing active nucleation site density and bubble growth rates. The 28 

micro-slots can serve as nucleation sites to greatly enhance nucleate boiling. More 

importantly, highly desirable periodic rewetting is enabled in each channel and coordinated 

between these micro-slots channels.  

The comparison between the current design and the plain-wall microchannels at 

different mass fluxes was conducted, as shown in Figure 2.15. Two types of effects, 

including heat flux and vapor quality, were compared to indicate the heat transfer 

mechanism, as shown in Figure 2.15 (c, d). The interconnected channels can enable 

significantly higher vapor quality (enhanced up to ~ 186% at a mass flux of 462 kg/m2∙s) 

than the plain wall microchannels do. This is because the new microchannel configuration 

increases high nucleation-site-density and keeps them activated, enhancing latent heat 

transfer contributions as indicated by high exit vapor quality. Note that HTC remains stable 

as a function of the vapor quality.  

 
'' '' '' ''

advection total nuc evaq q q q= − −
 (14) 
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During the coordinated nucleate boiling process, heat is primarily transferred by 

advection, nucleate boiling, and evaporation. To better understand the enhanced 

mechanisms, these three heat transfer modes have been analyzed. The advection heat flux 

Eq. (14) including mixing and convection contributions, which results from the disruption 

of the thermal boundary layer during bubble growth, lift-off, or collapse [122]. The periodic 

disruption of the thermal boundary layer can reduce thermal resistance [123-127]. The 

nucleate boiling heat flux Eq. (15) is defined as the amount of heat carried away by these 

bubbles nucleated on the heating surface. In the present microchannel configuration, the 

whole growth process of each bubble can be accurately measured by high spatiotemporal 

images captured by a high-speed camera (Phantom v7.3) due to the large bubble departure 

size, extended growth time, and fully activated sites as illustrated in Figure 2.7. The 

evaporation heat flux can be estimated by excluding nucleate boiling from the total latent 

heat flux Eq (16).  

 
''

nuc v fg bq h V Na f=      (15) 
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Figure 2.16 summarizes the ratio of three major heat transfer mode contributions to 

the total effective heat flux at different mass fluxes between the two configurations. In the 

plain wall microchannels, the advection heat transfer at a mass flux of 693 kg/m2s 

dominates heat transfer. The heat transferred by nucleate boiling and evaporation only 

accounts for a small fraction.  
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Figure 2.16 (a, b, c) shows that the nucleate boiling contributes 20% to 40% of the 

total heat transfer rate in the overall heat transfer process. Simultaneously, evaporation 

accounts for 21%-46% of total heat removal, more than doubled compared to these in plain-

wall microchannels.  

 
 

Figure 2.16 Comparison of proportional energy. (a) Bar graph of nucleation heat flux. (b) 

Bar graph of evaporation heat flux. (c) Bar graph of advection heat flux. (d) Nucleation 
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heat flux ratio as a function of effective heat flux. (e) Evaporation heat flux ratio as a 

function of effective heat flux. (f) Advection heat flux ratio as a function of effective heat 

flux.  

 

In those testing conditions as shown in Figure 2.16, the latent heat contribution has 

been substantially enhanced, which should be the primary reason behind the drastically 

enhanced HTCs enabled by the present microchannel configuration.  

 2.8 Enhanced CHF with the Reduced Pressure Drop 

Figure 2.17 compares the enhanced CHF at different mass flux ranging from 462 

kg/m2s to 1617 kg/m2s in the present design with the plain wall microchannels. A 

significant enhancement of ~76% has been achieved at mass flux of 1155 kg/m2s by 

enhancing liquid rewetting through the micro-slots. Moreover, a slight decrease of ~6% of 

two-phase pressure drop was found compared to the plain-wall microchannels, as shows in 

Figure 2.17 (b). The enhancement of CHF indicates that micro-slots play a vital role in 

enhancing CHF. The rapid and periodic rewetting enabled by the highly coordinated 

nucleate boiling in neighboring channels is the main factor leading to the enhanced CHF.  

 
 

Figure 2.17 Comparison of (a) CHF and (b) two-phase pressure drop between the present 

design and plain wall configuration. 
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Usually, premature CHF conditions can be triggered by explosive boiling, flow 

instabilities, and partial dryout. For plain-wall microchannels with IRs, when heat flux 

increases, explosive boiling is likely to occur because of superheated HFE-7100 due to its 

low thermal conductivity. Then, the thin liquid film would be expelled away from walls, 

and eventually, the vapor layer forms on the heating surface near inlet regions. The 

integration of micro-slots has successfully prevented the occurrence of explosive boiling.  

 
 

Figure 2.18 Comparison of CHF with different 

microchannel configurations.  

 

The heating surface dries out because low rewetting capability is one of the main 

factors resulting in premature CHF conditions. Enhanced liquid spreading is essential to 

increase CHF. Normally, surface rewetting is highly influenced by working fluid 

properties, surface conditions of heating surfaces, and two-phase transport regimes. 

However, it is challenging to increase CHF on highly wetting HFE-7100. In conventional 

plain-wall microchannels, it is difficult to maintain liquid film on the heating surface on 

HFE-7100 because of its low surface tension. The potential solution of this issue is to 



 

44 

enhance capillary pressure through surface modification, such as nanowires, to compensate 

for the low surface tension. Although local rewetting is enhanced in microchannel covered 

with nanowires, the global liquid supply greatly suffers from high flow resistance resulting 

from dense nanowires. As a result, the enhancement of CHF is not significant using 

nanowires. In this study, individual microchannel interconnected by micro-slots would 

greatly promote liquid rewetting.  

 
 

Figure 2.19 Thin liquid film can be inhaled in micro-slots 

when the bubble grows in the present study at a mass flux 

of 462 kg/m2s and a heat flux of 44 W/cm2.  
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Figure 2.19 shows that thin liquid film can be sustained between the micro-slots, 

effectively delaying local surface dryout at mass flux of 462 kg/m2s and heat flux of 44 

W/cm2 in the present study. The high-frequency nucleation boiling in the present design 

can also improve liquid supply to the neighboring channels. 

Figure 2.18 shows the early result of CHF on a highly wetting dielectric fluid of 

HFE-7100. The trend of CHF indicates that this new design of interconnected 

microchannel performs better heat transfer performance. The micro-slots served as reentry 

cavities extremely enhanced the rewetting ability and delayed local dryout, leading to 

higher CHF performance. However, to obtain more persuasive results, more experimental 

data should be accomplished with interconnected microchannels to study the enhanced 

mechanism of the present design with HFE-7100 as working fluid.  

 2.9 Conclusions 

In this study, flow boiling of HFE-7100 has been systematically characterized by 

an innovative microchannel configuration. Rapid and sustainable nucleate boiling has been 

well-coordinated through designated micro-slots for the first time. Compared to the plain 

wall microchannels, HTC and CHF have been considerably enhanced without 

compromising two-phase pressure drop. The primary HTC enhancement mechanism is the 

higher contribution of latent heat transfer on the present microchannel configuration. The 

highly coordinated and high frequency nucleate boiling process also greatly delays CHF 

conditions. The bubble dynamics have been systematically characterized in terms of bubble 

growth rates, bubble departure diameter, and bubble departure frequency and the enhanced 

nucleate boiling is discussed as well. 
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3 CHAPTER 3 EFFECTS OF SIZE AND NUMBERS OF MICRO-

SLOTS 

In this study, microchannels with three different sizes of micro-slots are used to 

elucidate the effectiveness of different sizes and numbers of micro-slots in interconnected 

microchannels on flow boiling heat transfer. The new configuration is developed based on 

the experimental and theoretical study of half interconnected microchannel design [128]. 

With the improved configurations, nucleate boiling can be further enhanced, and the active 

nucleation site density can be extended to the entire channel. 

In additional, based on the improved microchannel configuration, the 

enhancements of CHF and HTC are not at the penalty of pressure drop. The high-frequency 

rewetting with micro slots can significantly improve liquid supply to the neighboring 

channels. The transient state features for the present improved microchannel configuration 

proved that the real-time wall temperature of the present design fluctuates periodically and 

more stable than the chaotic temperature fluctuation of plain wall microchannel, which 

shows that micro slots can effectively manage the boiling instability. 

 3.1 Design of Device Architecture 

An innovative microchannel configuration has been fabricated on a 500μm silicon 

wafer with five main microchannels which the dimensions of length × width × depth is 

10mm × 200μm × 250μm. In this design, all five parallel microchannels are interconnected 

fully by micro-slots on each intermediate wall, as shown in Figure 3.1. To achieve more 

effective results, these micro-slots were designed with three different sizes (10μm, 20μm, 



 

40μm) for each full interconnected channel separately as nucleation sites to enhance and 

sustain nucleate boiling to enhance the HTC and CHF compare to the previous study of 

half interconnected channel and plain wall microchannels.  

 
 

Figure 3.1 (a) The concept of full & half interconnected channels. (b) The top view of the 

SEM image of the full interconnected channel structure with the dimension of wide and 

length. (c) The side view of SEM image with dimension of micro-slots and microchannel 

wall height.  

 

An aluminum film resistor (10mm2mm1.2μm) was deposited on the backside 

of the microchip to supply uniform heat flux and served as a thermistor to measure wall 

temperature. A 500μm thick Pyrex glass wafer was bonded to the silicon substrate to seal 

the channels and form a visualization window. HFE-7100 at room temperature has been 

used as a working fluid. More importantly, nucleate boiling in neighboring microchannels 

can be harmonically coordinated for the first time, leading to significantly higher bubble 
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growth rates and rewetting frequency, and significantly better heat transfer performance. 

The studies above have presented further detail of the fabrication process and experimental 

detail [128, 129].  

 3.2 Data Reduction 

In experiments, the input power was calculated by multiplying the DC voltage (V) 

with current (I). Then the effective heat flux was calculated after subtracting the heat loss, 

Qloss, (pre-calibrated between the ambient environment and the test device) from the total 

input power, P, as follow,  

 loss
eff

P Q
q

A

−
 =  (17) 

Where A is the base heating area. Based on the pre-calibrated linear relationship 

between temperature and electrical resistance, the average temperature of the microheater 

(on the backside of the device) was calculated as, 

 ( )heater a aT K R R T= − +  (18) 

Ra is the resistance of the microheater at ambient temperature Ta, and K is the slope 

of pre-calibration. The average temperature at the bottom wall of microchannels was then 

derived as, 

 𝑇̅𝑤𝑎𝑙𝑙 = 𝑇̅ℎ𝑒𝑎𝑡𝑒𝑟 −
𝑞𝑒𝑓𝑓
′′ 𝛿

𝑘𝑠
 (19) 

Where 𝛿  and ks are the substrate thickness, the thermal conductivity of silicon, 

respectively.  

The fin efficiency, ηf, of a finite fin was estimated from 

 
tanh( )

f

mH

mH
 =  (20) 
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The equation of ηf is used to characterize fin performance and to calculate the 

average effective HTC, where the parameter m was calculated as, 

 ( )2 / sm h L W k WL= +  (21) 

Then, the effective two-phase HTC considering fin efficiency, htp, is evaluated by, 

 

 ( )( )( )2

latent
tp

f wall sat

Q
h

WL HL T T
=

 + −
 (22) 

Where Tsat is the saturated temperate of working fluid. The latent heat contributed 

to boiling heat transfer was derived as, 

 latent loss sensibleQ P Q Q= − −  (23) 

Where Qsensible is the sensible heat due to the liquid temperature as follows. 

 ( )sensible c p o iQ GA C T T= −  (24) 

Major physical properties of dielectric fluid HFE-7100 are given in [67]. Tsat is a 

function of working pressure (p) in the middle of a microchannel. 

The vapor quality was calculated as [116], 

 
eff sensible

fg

P Q

mh


−
=  (25) 

 3.3 Uncertainty Analysis 

The measurement uncertainties of flow rate, pressure, voltage, current, temperature, 

and microfabrication resolution are ±0.1%, ±1.5%, ±0.5%, ±0.5%, ±1 oC, and 3 µm, 

respectively [118]. Uncertainty propagations are calculated using methods developed by 

Kline and McClintock [119]. Uncertainties of effective HTC have been estimated to be less 

than ±2 kW/m2K. 
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Figure 3.2 Significant enhancements of HTC are achieved on the present design with 

smaller micro-slots size. (a) Effective HTC as a function of effective heat flux at micro-

slots size 10μm. (b) Effective HTC as a function of effective heat flux at micro-slots size 

20μm. (c) Effective HTC as a function of effective heat flux at micro-slots size 40μm. (d), 

(e), (f) Data regression for mass flux and effective heat flux.  
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 3.4 Flow Boiling Curves 

In this study, three micro-slots with different sizes are designed to examine the 

different heat transfer performance in various mass fluxes. As Figure 3.2 (a) shows, the 

effective HTC as a function of effective heat flux different mass flux with the micro-slots 

size of 10μm, at a mass flux of 924 kg/m2s the effective HTC achieved an extremely high 

value compared to the other flow conditions, however, as the mass flux increase, the HTC 

trend line became decrease although it still has a larger enhancement contrast with the 

results for 462 kg/m2s and 693 kg/m2s. Figure 3.2 (b, c) demonstrates that increasing micro-

slots size leads to worse heat transfer performance as the mass flux rises. As Figure 3.2 (c) 

indicates before ONB, the HTC has a small growth rate as the mass flux increases. The 

ONB HTC at mass flux of 462 kg/m2s enhances ~100% compared with the 924 kg/m2s 

flow condition. The main reason that causes this phenomenon is that the larger slots size 

causes the high contribution of convection and the heating surface dryout near the outlet 

section and eventually decreases the HTC. 

Figure 3.2 (a, b, c) also indicates the data regression for mass flux and effective 

heat flux. An optimization study was established using the MATLAB program from the 

data acquired from previous experimental results collected by LabView. As Figure 3.2 (a) 

shown, at the microchannel with 10μm micro-slots size, the optimal result can be acquired 

at the mass flux of 1015 kg/m2s. And Figure 3.2 (b) indicated that at the microchannel with 

20μm micro-slots size, the optimal result is at the mass flux of 669 kg/m2s. The mass flux 

of 294 kg/m2s is the optimal result of the microchannel with 40μm micro-slots size based 

on the aforementioned experimental data. More optimization studies would be developed 

in future work. 
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 3.5 Enhanced Nucleation Boiling and CHF 

 
 

Figure 3.3 Effective HTC as a function of heat flux with 

three micro-slots sizes. 

 

Figure 3.3 shows the heat transfer performance with the different micro-slots size 

microchannels at the same mass flux of 693 kg/m2s. An enhancement of ~ 12.7 times is 

achieved in the present microchannels with 10μm compared to plain wall microchannels 

at mass flux of 693 kg/m2s, although the micro-slots with size of 20μm and 40μm have 

almost the same trend. The effective HTC of the full interconnected channel with 10μm 

slightly decreases. The effective HTC for the 20μm and 40μm configurations is nearly 

invariable and increases heat flux.  

As Figure 3.4 indicated, compared with half interconnected channel and plain wall 

microchannel, present design with full interconnected channel significantly improved 

effective HTC up to 345% at mass flux of 462 kg/m2s and 693 kg/m2s. Figure 3.4 shows 

that the curve of the full interconnected channel at the mass flux of 462 kg/m2s has a steep 

offset as the effective heat flux reached 60 W/cm2. The high contribution of convection 
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and the occurrence of the heating surface dryout near the outlet section should be two main 

reasons for the decrease of HTC, especially near CHF conditions.  

 
 

Figure 3.4 Effective HTC as a function of effective heat flux and overall HTC as a function 

of heat flux at the mass flux of 462 kg/m2s and 693 kg/m2s.  

 

According to the results in half interconnected channel configuration and plain wall 

microchannel configuration as a baseline, Figure 3.4 (a) indicates that the full 

interconnected microchannel has higher effective HTC at low heat flux than the other two 

structures. However, the trend line has a sudden decrease as the effective heat flux reached 

60 W/cm2. Besides, the enhancement of the HTC has a peak value of 43 kW/m2K, which 

is ~ 345% higher than the plain wall microchannel and ~ 21.5% larger than the half 

interconnected microchannel. Figure 3.4 (b) shows the overall HTCs based on the heater 
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area as a function of effective heat flux. The overall HTCs based on the heating area share 

almost the same trend with effective HTCs, but ~2 times larger. Figure 3.4 also 

demonstrates that at mass flux of 462 kg/m2s, the curves of effective HTC of half 

interconnected microchannel and plain wall microchannel become flat after ONB. 

Nevertheless, the trend of full interconnected microchannels has a sudden drop. The high 

contribution of convection and the occurrence of the heating surface dryout near the outlet 

section should be two main reasons for the decrease of HTC, especially near CHF 

conditions. 

To deeply understand the heat transfer capability of the present microchannels, 

Figure 3.5 summarizes the major enhancement results in this study. The delayed boiling 

incipience deteriorates the heat transfer performance, as shown in Figure 3.5(a). The slope 

of boiling curves is very small for the single-phase region. There is a peak value for the 

curve, and after that, every configuration gradually decreased as the heat flux increased. 

For example, at heat flux of 30 W/cm2, the present study with 20μm micro-slots size has 

already reached the ONB condition. However, the plain wall microchannel and the 

previous structure remain in a single-phase region. As the number of micro-slots increases, 

the increasing nucleation sites lead to more effective nucleation boiling. Figure 3.5 (b) 

indicates the wall temperature of onset nucleation boiling as a heat flux function. Compared 

to the plain wall microchannels.  

The present design shows a slight reduction of the wall temperature at the ONB 

owing to the increased number of nucleation sites. The overall wall superheats at TONB are 

approximately 13 °C different from the mass flux of 462 kg/m2s, comparing the 10μm 

micro-slots structure to the plain wall microchannel configuration. Figure 3.5 (d) shows 
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that a peak CHF of 137W/cm2 is obtained at a mass velocity of 1155 kg/m2s, meaning a 

~69% enhancement compared to the plain wall microchannel. As shown in Figure 3.5 (c), 

the two-phase pressure drop trend line on a full interconnected microchannel at a mass 

velocity of 924 kg/m2s slightly decreases, which illustrates the pumping power budget was 

reduced. The gradually decreased pressure drop can be explained that the increased micro-

slots' sizes can significantly release the two-phase pressure drop.  

 
 

Figure 3.5 Comparisons of flow boiling performance on the present microchannel 

configuration and the previous studies of the half-interconnected channel and the plain wall 

microchannels. (a) Wall temperature as a function of effective heat flux at a mass flux of 

693 kg/m2s. (b) The onset of nucleation boiling of wall temperature as a function of mass 

flux. (c) Pressure drop as a function of effective heat flux. (d) CHF as a function of mass 

flux.  
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 3.6 Bubble Dynamics 

As previous study in half interconnected channels described, bubble departure 

frequency and bubble departure diameters are two important factors for flow boiling 

phenomenon and heat transfer performance mechanism study. Figure 3.6 (a) illustrates that 

bubble departure frequency using DI water as working fluid for fully interconnected 

microchannels has the same trend with the half interconnected microchannels with HFE-

7100 as the working fluid. As the effective heat flux raises, the departure frequency 

increased. The maximum value of departure frequency was obtained at mass flux of 389 

kg/m2s of 4017 kHz. Improvement of the departure frequency can explain the high and 

rapid coordination of the rewetting phenomena inside the micro-slots, eventually delay 

local dryout, stabilize the nucleation boiling, enhance the HTC and extend the application 

range in engineering. 

 
 

Figure 3.6 (a) Bubble departure frequency as a function of heat flux with DI water as the 

working fluid. (b) Bubble departure diameter as a function of heat flux.  

 

Figure 3.6 (b) shows the bubble departure diameter as a function of heat flux. The 

bubble departure diameter slightly increased as the heat flux enhanced. A larger bubble 

diameter with higher departure frequency leads to better heat transfer performance due to 
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its capability to take away more heat from the fluid. As previous research described, in the 

interconnected microchannels with micro-slots, only a small amount of vapor could remain 

inside the micro-slots after the bubble departure because of the induced capillary pressure. 

Besides, the liquid can be quickly sucked into the slots during the bubble departure process 

and heated up after then, which keeps these micro-slots active all the time. 

 
 

Figure 3.7 f∙D as a function of heat flux with DI water as 

the working fluid.  

 

Figure 3.7 proposed that the bubble departure diameter is closely related to the 

departure frequency with the fitting curve 0.4df D = , according to the previous report 

[130]. The curve-fitting experimental results are obtained from a visualization study 

captured by a high-speed camera. 

 3.7 Transient Study Analysis 

Recent studies have revealed that flow boiling in micro-channels is associated with 

specific flow oscillations and instabilities related to the oscillation period [131]. The 
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previous study only focused on the steady state of the experiment, and some phenomena 

could not be captured before. Therefore, the transient study is developed to understand the 

underlying mechanism of flow boiling in microchannels deeply. In this study, full 

interconnected microchannels with 20μm micro-slot are used as test chips, HFE-7100 as 

working fluid. 

 
 

Figure 3.8 Comparison of the full interconnected channel with different heat flux at the 

mass flux of 924 kg/m2s. Wall temperature as a function of time.  

 

As shown in Figure 3.8 (a, b), at mass flux of 924 kg/m2s, heat flux of 40 w/cm2 

and 45 w/cm2, wall temperature oscillated along with the time. The maximum temperature 

difference between the channel wall is ~5 °C. As aforementioned, effective HTCs are 

significantly enhanced during the boiling nucleation region compared to the plain wall 

microchannel configuration. Figure 3.5 (b) indicates that compared to the plain wall 

microchannels, a significant reduction of TONB is observed in the enhanced nucleation 

boiling because of the increased number of nucleation sites. Figure 3.9 shows oscillation 

frequency in the plain wall microchannel is 5 Hz, much lower than the full interconnected 

channel with 33.75Hz. Like the previous study, the interconnected channel has a good 
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performance of sustaining nucleation boiling and delaying local dryout. The oscillation 

frequency can explain the reason of interconnected microchannel has more stability 

mechanism compared to plain wall microchannel. It is also clearly demonstrating that the 

trend line of wall temperature of plain wall microchannel is oscillated and has a large wave 

as shown in Figure 3.9, which can make clear reason for worse heat transfer performance 

in plain wall microchannels. The present design temperature fluctuates periodically and 

more stable compared to the chaotic fluctuation of plain wall microchannel. This indicates 

the introduction of micro-slots can effectively manage boiling instabilities.  

 
 

Figure 3.9 Comparing the full interconnected channel and plain wall microchannel with 

the same heat flux at the mass flux of 924 kg/m2s. Wall temperature as a function of time.  

 

 3.8 Conclusions 

In conclusion, the present microchannel configuration has been demonstrated to 

enhance flow boiling drastically. The continuous rewetting and sustainable global liquid 

supply have been substantially promoted by generating high-frequency jetting flows 

through the micro-slots. The main achievement, as shown below: 

Compared to different sizes of micro-slots, the interconnected microchannel with 

10μm micro-slots size has a significant enhancement of CHF with ~73% at mass flux of 
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924 kg/m2s and CHF up to 134 W/cm2. Pressure drops are reduced ~ 1.3 times compare to 

the 10μm micro-slots size to the 40μm micro-slots size. Wall temperature of ONB has been 

reduced, especially with interconnected microchannels of 10μm and 20μm. Effective HTC 

enhanced along with the micro-slot size decrease. The micro-slots size with 10μm has an 

almost 60% larger HTC than the micro slots size with 20um for present microchannels. 

The interconnected microchannel configuration is promising in implementing the two-

phase cooling of high-power electronics. And the prediction of optimum working 

conditions with different micro-slots sizes has been obtained. 
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4 CHAPTER 4 THEORETICAL STUDIES OF BUBBLE DYNAMIC OF 

FLOW BOILING WITH DI WATER AND HEF-7100 IN FULL 

INTERCONNECTED MICROCHANNELS 

To better understand the bubble dynamic mechanism, a theoretical study is 

conducted to understand and validate the working principle of microchannel structures 

bubble dynamic. As proposed in many studies [89, 102, 104, 130], to develop a theoretical 

bubble dynamic model for flow boiling in microchannels with high frequency rewetting 

and oscillations, all essential thermo-physical properties, for example, latent heat of 

evaporation, specific heat and heat conductivity need to be considered.  

It is also challenging to develop a bubble dynamic model in a flow boiling 

considering the unstable flow conditions, irregulate bubble sizes, and the diversity of two-

phase flow boiling. Thus, it is critical to take into account the different working fluid 

properties.  

In this study, according to other bubble dynamic models and correlations in two-

phase flow boiling heat transfer of microchannels, three nondimensional parameters related 

to bubble departure diameter, effective heat flux and bubble departure frequency were 

established. In this study, three approximate logarithmic relationships between the bubble 

departure diameter, bubble departure frequency, and the heat flux, bubble growth rate and 

time are obtained. The fitted bubble dynamic models agree well with existing data even if 

the data acquired from the different fluid mass flux, which confirmed the model is accurate.  



 

 4.1 Experimental Apparatus and Methods 

 
 

Figure 4.1 Schematic of the testing chip.  

 

The approach developed in this study is the same as the one developed by Kuo 

[130] to analyze the bubble growth and departure during nucleate boiling on a horizontal 

surface. Microdevices with micro-slots as nucleation sites are designed to enhance and 

sustain the nucleation boiling in microchannels. Each device consists of 5 parallel 

microchannels (Length ⅹ Wide ⅹ Height = 10mm ⅹ 200μm ⅹ 250μm) are interconnected 

by 28 micro-slots (W=20μm) on each intermediate wall, as shown in Figure 4.1. The 

experiment apparatus details consist of the test loop, working principle, experiment 

procedure, data reduction, and bubble dynamic studies as established in previous studies. 

The latest research indicated that the bubble dynamics of flow boiling include 

bubble departure diameter, bubble growth diameter, and bubble departure frequency 
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models. Therefore, bubble departure diameter, bubble growth diameter, and bubble 

departure frequency are collected from the earlier study in the last two chapters for varying 

mass flux and different working fluids such as DI water and HFE-7100.  

 4.2 Measurements 

As proposed in the previous study [128], the test system was established to collect 

experimental data and capture movies with high-speed camera. The major components of 

the experimental setup of the open coolant loop are visualization system, data acquisition 

system, and microdevice package. A pressurized reservoir served as collection tank to 

supply working fluid for the experiments, such as HFE-7100 or DI water, which should be 

degassed first. High-pressure nitrogen is used as a pump. The working fluid pass through 

a mass flow meter of Krohne Optimass 3300c with ± 0.1% resolution (density with ± 

2kh/m3). The microdevice package details are presented in the previous study [128], two 

pressure transducers are for measuring the inlet and outlet absolute pressure difference. 

Two K-type thermocouples acquire the temperature from the inlet and outlet. The heater 

temperature is calculated by pre-calibrating the electric resistance of the microchip heater 

of the microchip as a linear function of working temperature. The electrical power is 

supplied by a high precision digital programmable power supply (BK-PRECISION 

XLN10014). The experimental data, such as flow rate, local pressure, inlet, and outlet 

temperature, voltage, resistance, and current, are collected by an Agilent 34972A data 

acquisition system and recorded by a customized data acquisition system with NI 

LabVIEW. A high-speed camera (Phantom V 7.3) and an Olympus microscope (BX-51) 

with 400   amplifications are used for the visualization study. All measurements are 

carried out at 1 atm ambient pressure and room temperature of 18 °C. 
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 4.3 Data Comparison 

The growing characteristics of vapor bubbles in the thermal boundary layer region 

near the superheated surface are more complex than the normal circumstances because of 

the lack of spherical symmetry and non-uniformity of temperature field of the surrounding 

liquid. Despite these significant differences, bubble growth near superheated surface 

exhibits an inertia-controlled regime and heat transfer controlled growth similar to those 

for spherical bubble growth in an infinite uniformly superheated ambient. 

The bubble growth process near a heated wall can be idealized as a sequence of 

stages indicated schematically in Figure 4.2. After the departure of a bubble, liquid at the 

bulk fluid temperature 
T  is brought into contact with the adjacent fluid with surface 

temperature w sat ( )T T P＞
. A short period of time then elapses during which transient heat 

conduction into liquid takes place, but the bubbles likely do not grow up significantly. This 

time interval is referred to the waiting period, designated here as wt . 

 
 

Figure 4.2 The waiting period and subsequent growth and release of a vapor bubble at an 

active cavity site.  

 

Once the bubble growth begins, the thermal energy needed to vaporize liquid at the 

interface comes, at least in part, from the liquid region adjacent to the superheated bubble 

during the waiting period. During the initial stage of bubble growth, the liquid immediately 
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adjacent to the interface is highly superheated, and the heat transfer to the interface is not 

a limiting factor. As the embryo bubble emerges from the nucleation site cavity, a rapid 

expansion is triggered by the sudden increase in the radius of the curvature of bubble. The 

resulting rapid growth of the bubble is resisted primarily by the inertia of the liquid [132]. 

For this inertia controlled the early stage of the bubble growth process, the bubble grows 

nearly hemispherical. As the bubble grows up radially in this regime, a thin microlayer of 

liquid is left between the lower portion of the bubble interface and the heated wall. This 

liquid film, which is sometimes referred to as the evaporation microlayer, varies at the edge 

of the hemispherical bubble. Heat is transferred across this film from the wall to the 

interface, directly vaporizing liquid. This film may evaporate completely near the cavity 

where nucleation began, significantly elevating the surface temperature there. When this 

occurs, the surface temperature may fluctuate strongly during the repeated growth and 

release of bubbles as the surface cyclically dries out and then rewets. 

 
 

Figure 4.3 Forces per unit as a function of mass flux. 

 

It is critical to learn from visualization results of bubble dynamics of flow boiling. 

Consequently, a high-fidelity prediction model could be developed. In this study, 
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comparison of the experimental data and different prediction models of bubble departure 

frequency and bubble departure diameter reported in the last decade is plotted (Figure 1.2). 

As shown in Figure 1.2 (a), the present experimental data has a higher departure frequency. 

The maximum frequency has achieved a value of ~7700 kHz at heat flux of 33 W/cm2. 

Figure 1.2 (b) shows that the present experimental data of bubble departure diameter is 

much higher than the prediction of the developed models. However, it is still hard to 

illustrate the precise trend due to the significant variations in microchannels for the present 

experimental conditions, channel dimensions and working fluid. Therefore, the 

nondimensional model is needed and important. 

Various forces acting on the liquid-vapor interface, including inertia force, surface 

tension, shear stress, buoyancy, and evaporation momentum, significantly affect the two-

phase flow and heat transfer. The previous studies [67, 76] have analyzed the forces acting 

on the liquid-vapor interface. In this study, simplified equations are adopted from the study 

[76] to calculate these forces. 

Surface tension per unit area, 

 
'' cos

s

c

D
F

A

  
=  (26) 

Where Ac is the channel cross-section area. 

Inertia force per unit area, 

 
'' 2

iF U=   (27) 

The shear stress is expressed as, 
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c
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Buoyancy force per unit area, 
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'' ( ) cosb v l

c
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F g

A
  = −     (29) 

Figure 4.3 indicates the comparison of shear stress, inertia force, and the surface 

tension for water and HFE-7100 at different mass fluxes. The surface tension force and 

inertia force of HFE-7100 are lower than those of water. However, the sheer stress of HFE-

71000 is higher than that of water due to its large dynamic viscosity. From Figure 4.3, it 

also can be found that the inertia and shear forces increase with the mass flux increasing. 

Surface tension is dominant at relatively low mass fluxes but suppressed by inertia force 

with increased mass flux. The higher surface tension force and inertia force can facilitate 

thin liquid film formation and enhance rewetting. Hence, the flow boiling performances on 

water outperform that on HFE-7100. 

 4.4 Results and Discussion 

If the bubble growth process does become heat transfer controlled, pressure and 

liquid inertia force become relatively smaller, and surface tension then tends to pull the 

bubble to a more spherical shape. Thus, it undergoes the transition from inertia controlled 

growth to heat transfer controlled growth, the shape of the bubble is transformed from a 

hemispherical shape to a more spherical configuration, as indicated in Figure 4.2. 

Throughout the bubble growth process, interfacial tension acting along the contact 

line tends to hold the bubble in place on the surface. Buoyancy, shear stress, buoyancy, and 

inertia forces associated with the motion of the surrounding fluid may act to pull the bubble 

away. These detaching forces generally become stronger as the bubble becomes larger. As 

shown in Figure 4.3, when the net force effect becomes large enough, the retaining effect 

of surface tension forces at the contact line is overcome, the bubble would release 

accordingly. 
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Figure 4.4 Non-dimensional study of bubble departure diameter.  

 

As the above analysis admits the possibility of both inertia controlled and heat 

transfer controlled growth regimes, the occurrence or absence of either one depends on the 

conditions under which bubble growth occurs. Specifically, very rapid, inertia controlled 

growth is more likely to take place as the following conditions exist: high wall superheat, 

high imposed heat flux, highly polished surface having only very small cavities, very low 

contact angle (highly wetting liquid), low latent heat of vaporization, low system pressure 

(resulting in low vapor density). 

The bubble departure frequency, bubble growth diameter, and bubble departure 

diameter are rarely seen in flow boiling area in the last decade. It is extremely challenging 

to modify a theoretical model that coincides with the experimental data. According to the 

present experimental situations, assuming bubble departure diameter, bubble departure 
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frequency, and bubble growth diameter is related to the density, latent heat of vaporization, 

surface tension, the thermal conductivity of working fluids, mass flux, and gravity of the 

earth, and heat flux.  

 

''
0.25 ''( 0.048 ln( ) 0.13) /d l fg

fg

q
D G h g q

G h
 = −  −       (30) 

 
 

Figure 4.5 Non-dimensional study of bubble growth diameter.  

 

Figure 4.4 demonstrates an approximate logarithmic relationship between the 

bubble departure diameter and the heat flux that the equation shows in Eq 30. As shown in 

Figure 4.4, an approximate logarithmic relationship between the bubble departure diameter 

and the heat flux is obtained. The fitted bubble dynamic model agrees well with the present 

experimental data for water and HFE-7100 as the working fluids, which confirmed the 

model accurately. 
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The bubble departure diameter served as y-coordinate nondimensionalized with 

heat flux, liquid thermal conductivity, latent heat, mass flux, and surface tension. An 

exponent correlation is applied to obtain a more consistent curve.  

 

''
0.25 ''/

(3.24 ) 0.118) / l fg

l fg

t q
D q G h

G h g


 




=  −    

  
 (31) 

 
 

Figure 4.6 Non-dimensional study of bubble departure frequency.  

 

Figure 4.5 illustrates the relationship between the bubble growth diameter and time. 

There is an approximately linear relationship between the growth diameter and the time. 

Similarly, two parameters are established, which are related to bubble growth diameter and 

time, respectively. The fitted bubble dynamic model agrees well with existing experimental 

data. Eq 31 is the data trend line in Figure 4.5. Based on Figure 2.7(b), the prediction 

models are fitted very well with the experimental data for  nine different working 

conditions.  
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Figure 4.6 shows the linear relationship between the bubble departure frequency 

and heat flux. The maximum relative deviation is about 19%. As shown in Figure 2.12 (a), 

the experimental data collected by high-speed camera, the seven different flow conditions 

with two different working fluids, has basically fallen into a linear trend line, which shows 

the prediction model for the bubble departure frequency is feasible . The linear relationship 

equation has shown as Eq 32. 

 4.5 Conclusions 

In this study, a nondimensional study of bubble dynamics in microchannels with 

bubble departure diameter, bubble growth diameter, and bubble departure frequency are 

experimentally and theoretically studied. The semi theoretical bubble dynamic models are 

developed based on the latent heat, surface tension, and liquid viscosity of the different 

working fluids. Previous bubble departure diameter, growth diameter, and bubble 

departure frequency models and correlations are compared to the present theoretical model. 

Major conclusions are summarized as follow: 

The theoretical bubble dynamics models developed in this study considers the 

effects of thermophysical properties, geometries, and flow conditions. The development of 

the theoretical bubble dynamics model provides insights into the dynamic bubble 

mechanisms. However, further investigation is needed to estimate accurate local 

subcooling and interfacial vapor to liquid heat transfer coefficient. Existing recognized 

bubble dynamics correlations in microchannels are also compared to the present study. The 

semi-empirical correlation developed by Cuo shows a great agreement with the 
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experimental data because of the similarities in the microchannel configuration and heat 

transfer mechanisms. 
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