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Abstract

Chapter 1 of this dissertation proposes a consistent and locally efficient estimator

to estimate the model parameters for a logistic mixed effect model with random slopes.

Our approach relaxes two typical assumptions: the random effects being normally

distributed, and the covariates and random effects being independent of each other.

Adhering to these assumptions is particularly difficult in health studies where in many

cases we have limited resources to design experiments and gather data in long-term

studies, while new findings from other fields might emerge, suggesting the violation

of such assumptions. So it is crucial if we could have an estimator robust to such

violations and then we could make better use of current data harvested using various

valuable resources. Our method generalizes the framework presented in Garcia & Ma

(2016) which also deals with a logistic mixed effect model but only considers a random

intercept. A simulation study reveals that our proposed estimator remains consistent

even when the independence and normality assumptions are violated. This contrasts

from the traditional maximum likelihood estimator which is likely to be inconsistent

when there is dependence between the covariates and random effects. Application of

this work to a Huntington disease study reveals that disease diagnosis can be further

improved using assessments of cognitive performance.

When a model of main research interest shares partial parameters with several

other models, it is of benefit to incorporate the information contained in these other

models to improve the estimation and prediction for the main model of interest. Vari-

ous methods are possible to make use of the additional models as well as the additional

observations related to these models. In Chapter 2, we propose an optimal strategy of
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doing so in terms of prediction. We develop a fusion learning method that fuses the

model averaging methodology with meta analysis and obtain the optimal weights.

We also establish theory to support the method and show its desirable properties

both when the main model is correct and when it is incorrect. Numerical experi-

ments including simulation studies and data analysis are conducted to demonstrate

the superior performance of our methods.

In Chapter 3, we propose a new pseudo-likelihood approach to fitting logistic re-

gression models with two-phase data that has incomplete data structure. The exist-

ing methods included inverse probability weighted (IPW) methods, pseudo-likelihood

(PL) methods, and maximum likelihood (ML) methods. MLEs either require that

the complete phase I covariates be discrete with a small number of levels or of low di-

mension, or the continuous phase I covariates could be stratified properly. Therefore,

they may not be able to make full use of the complete covariate information. In com-

parison, our method does not require to stratify the continuous phase I covariates,

and is more resilient to the misclassified phase I covariates. And it could handle a

relatively larger number of phase I covariates when the sample size is relatively small,

in this case, MLEs may not have enough samples in certain strata to obtain a valid

estimation.
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Chapter 1

Consistent Estimator for Logistic Mixed

Effect Models with Unknown Random Effect

Structure

1.1 Introduction

A mixed effect logistic model is commonly used for analyzing clustered binary data

arising in longitudinal studies of behavioral, social, health, and biomedical science.

In the mixed effect logistic model, the logit of the success probability of the response

is modeled as a linear function of fixed and random effect components. The observed

data are (Yij,Xij,Zij), j = 1, · · · ,mi and i = 1, · · · , n, where Yij is the binary

response variable, Xij is a p-vector that exerts a fixed effect and Zij is a q-dimensional

random variable that has a random effect Ri ∈ Rq. Here, i and j denote the index for

clusters and the subject within a cluster, respectively. The random effect is completely

unobserved and we assume mi > q for identifiability for all i. This identifiability

requirement will become self-evident in Section 1.2. The mixed effect logistic model

is

pr(Yij = 1|Xij,Zij,Ri) =
exp(XT

ijβ + ZT
ijRi)

1 + exp(XT
ijβ + ZT

ijRi)
, j = 1, · · · ,m, i = 1, · · · , n, (1)

and the main objective is to consistently estimate the p-dimensional regression coef-

ficient β in the presence of the unobserved random effect.

The standard maximum likelihood approach estimates β assumes that Ri has a

parametric distribution (e.g., multivariate normal with zero mean and positive definite

1



variance-covariance matrix) and is independent of the covariates Xij and Zij. When

the distribution for Ri is misspecified, however, the approach can yield biased pa-

rameter estimates and distorted type-I error rates (Heagerty & Kurland 2001, Agresti

et al. 2004, Litiére et al. 2007, 2008). The misspecification may occur in terms of mis-

specifying the shape of the distribution, incorrectly assuming independence between

the covariates and the random effect, or incorrectly assuming independence between

the cluster size and the random effect. A good review on the potential bias due to

misspecification of the distribution of Ri can be found in Neuhaus et al. (2011).

More flexible models for the distribution of Ri have been considered to circumvent

the misspecification bias, but under limited settings. For linear mixed models, Zhang

& Davidian (2001) proposed a smooth semi-nonparametric probability density for

random effect and Zhang et al. (2008) proposed a negatively skewed random effect

density. However, extending either method to generalized linear models is non-trivial,

and imposing smoothness constraints or a skewness condition introduces computa-

tional complexities that we can actually avoid.

In this paper, we propose estimating parameters in the mixed effect logistic model

without imposing any distributional assumptions on the random effect. Taking a

semiparametric approach, we treat the distribution of Ri as a nuisance parameter

and demonstrate that consistent estimates of β are obtained regardless of how the

distribution of Ri is specified. We thus avoid unnecessary assumptions, such as a

particular distributional shape for Ri (Zhang & Davidian 2001, Zhang et al. 2008)

and the independence between covariates and the random effect Ri. Our method

generalizes the framework presented by Garcia & Ma (2016) which also deals with

a logistic mixed effect model but only considered a random intercept. The presence

of the random slope terms in our model means that their method no longer applies.

Extending the result from random intercept to random slope is not as straightforward

as it seems.

2



The rest of this paper is organized as follows. In Section 1.2, we develop semi-

parametric efficient estimator for β. We demonstrate that the proposed estimator

is consistent regardless of the assumed model for the distribution of Ri, and the es-

timator achieves the asymptotic efficiency when the distribution for Ri is correctly

modeled. In Section 1.3, we demonstrate through extensive simulation studies that

the proposed estimator is robust to different distributional assumptions of Ri, includ-

ing different distributional shapes and dependence structures with covariates. The

robustness property of the new estimator contrasts to the large biases of the max-

imum likelihood estimator when the distribution of Ri is misspecified. In Section

1.4, we apply our method to analyze a dataset from a study of Huntington disease

and discover that the maximum likelihood estimator may result in misleading results

about the importance of cognitive measures in relationship to diagnosis of Hunting-

ton disease. In contrast, our method detects one more cognitive measure crucial in

determining the diagnostic result of Huntington disease. The paper ends with a brief

discussion in Section 1.5. All technical details are given in an Appendix.

1.2 Main Results

1.2.1 Notation and assumptions

Let Yi = (Yi1, . . . , Yim)T denote a m-dimensional vector, Xi = (Xi1, . . . ,Xim)

denote a p×m matrix, and Zi = (Zi1, . . . ,Zim) denote a q×m matrix. Without loss

of generality, assume that the first q columns of Zi form an invertible matrix.

Let f to denote various densities described by the subindices. The likelihood for

the ith cluster formed by the model in Equation (1) is

fY,X,Z(yi,xi, zi; β) =
∫
fY|R,X,Z(yi | ri,xi, zi,β)fR,X,Z(ri,xi, zi)dµ(ri)

=
∫ m∏

j=1
exp[yij(x

T

ijβ + rT
i zij)− log{1 + exp(xT

ijβ + rT
i zij}]fR,X,Z(ri,xi, zi)dµ(ri),

3



where µ(·) denotes the dominating measure. Throughout, we let fR,X,Z(ri,xi, zi) be

completely unspecified. To estimate β without needing to specify this distribution,

we take a semiparametric approach as described next.

1.2.2 Consistent and efficient estimator

Our approach is rooted in treating fR,X,Z(r,x, z) as an infinite dimensional nui-

sance parameter and using semiparametric techniques (Tsiatis 2006) to estimate β.

The approach involves first deriving the space spanned by this infinite-dimensional

nuisance parameter. This space, referred to as the nuisance tangent space, and its

orthogonal complement are derived in a similar way as Section S1 of Garcia & Ma

(2016). The orthogonal complement of the nuisance tangent space serves as an in-

termediate calculation for the estimator of interest. Specifically, the efficient score

function for β, denoted Seff , is obtained by projecting the score function with respect

to β,

Sβ(Y,X,Z) ≡ ∂

∂β
log{fY,X,Z(Y,X,Z,β)}

= E

[
∂

∂β
log{fY|R,X,Z(Y | R,X,Z,β)} | Y,X,Z

]
, (2)

onto the orthogonal complement of the nuisance tangent space. That is,

Seff (Y,X,Z,β) = Sβ(Y,X,Z)− E{h(R,X,Z) | Y,X,Z},

where h is a p-dimensional function that satisfies

E{Sβ(Y,X,Z) | R,X,Z} = E[E{h(R,X,Z) | Y,X,Z} | R,X,Z].

To allow exchanging integration and differentiation in Equation (2), we assume

that fY|R,X,Z(Y | R,X,Z,β) and its partial derivative ∂fY|R,X,Z(Y | R,X,Z,β)/∂β

are continuous functions of β and R. The practical implementation of the procedure

described above is however infeasible, because we are unable to perform the above
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computation without the true distribution form of the random effect. To this end, we

adopt a working model for fR|X,Z, denoted f ∗R|X,Z, and perform the above calculation

under such a working model. We provide the detailed expressions below, with all the

affected quantities marked with ∗. Under such a working model, the score function

with respect to β is

S∗β(Y,X,Z) = E∗
[
∂

∂β
log{fY|R,X,Z(Y | R,X,Z,β)} | Y,X,Z

]
, (3)

and the locally efficient score function is

S∗eff (Y,X,Z,β) = S∗β(Y,X,Z)− E∗{h∗(R,X,Z) | Y,X,Z},

Here, the “locally efficient score” means a function containing a working model in

it. When a misspecified working model is used, the function has mean zero, and

when a correct working model is used, the function is identical to the efficient score

function, i.e. Seff (Y,X,Z,β). An estimator based on solving the estimating equation

formed by the locally efficient score function is named a locally efficient estimator. A

locally efficient estimator subsequently has the property that if a misspecified working

model is used, the estimator is consistent. When a correct working model is used,

the estimator is efficient. Further, h∗ is a p-dimensional function that satisfies

E{S∗β(Y,X,Z) | R,X,Z} = E[E∗{h∗(R,X,Z) | Y,X,Z} | R,X,Z]. (4)

An estimator of β is then obtained from solving the estimating equation

n∑
i=1

S∗eff (yi,xi, zi,β) = 0. (5)

Using a working model f ∗R|X,Z to replace the true form of fR|X,Z enables us to

proceed with the computation. Of course, there is a cost involved with such a replace-

ment. Fortunately, the cost is only in terms of estimation efficiency. The replacement

does not affect the consistency of the resulting estimator.
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Theorem 1. The estimator β̂ solving Equation (5) satisfies

√
n(β̂ − β0)→ N{0,A−1B(A−1)T}

in distribution when n → ∞. Here, β0 is the true value of the parameter β, A =

E
{
∂S∗eff (Y,X,Z,β0) /∂βT

}
, B = var{S∗eff (Y,X,Z,β0)} = E{S∗eff (Y,X,Z,β0)⊗2}.

Additionally, if the true fR|X,Z is used in constructing the estimator, the resulting es-

timator β̂ achieves the optimal estimation efficiency bound.

The proof of Theorem 1 is in the Appendix A. Theorem 1 implies that we are

free to choose the form of f ∗R|X,Z without incurring penalties on consistency or dis-

torted type I error rates as in Heagerty & Kurland (2001), Agresti et al. (2004),

Litiére et al. (2007, 2008). If f ∗R|X,Z happens to be the true model, then the esti-

mator for β achieves the optimal efficiency bound. For computational simplicity,

we therefore choose the posited model of f ∗R|X,Z as a standard normal distribution.

In the simulation results given in Tables 1.5, 1.6, 1.7, 1.8, we show that even when

the true dsitribution fR|X,Z is not from a standard normal, our estimator for β is

still consistent. Regarding the estimation of the covariance matrix of our estimator,

we estimate the derivative ∂S∗eff (Y,X,Z,β0)/∂βT through numerical difference, and

approximate the expectations via sample average.

A computational challenge in forming the estimating equation is solving Equation

(4) for h∗ as it is an ill-posed integral equation. However, as demonstrated next, a

simple transformation of the response variable Yij and covariate Zij allows us to

avoid solving this ill-posed problem.

1.2.3 Simplification of estimating equations

To circumvent the ill-posed problem in Equation (4), we transform the response

variable Yi and covariate Zij such that the transformed variables satisfy properties

similar to the classical sufficiency and completeness.
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Let Wi = ∑m
j=1 YijZij, Ui = (Yi(q+1), . . . , Yim)T. Write Zi = (Zi1, · · · ,Zim) =

(ZiL,ZiR), where ZiL ∈ Rq×q and ZiR ∈ Rq×(m−q). That is, ZiL is the left q × q

submatrix of Zi and ZiR is the right q × (m− q) submatrix of Zi. Let

Mi =

 ZiL ZiR

0(m−q)×q I(m−q)×(m−q)

 , M−1
i =

 Z−1
iL −Z−1

iL ZiR

0(m−q)×q I(m−q)×(m−q)

 .
Under this notation, we transform Yi as

Yi = M−1
i

 Wi

Ui

 .
The matrix Mi is invertible because we assumed that the first q columns of Zi form

an invertible matrix. The one-to-one mapping from (Zi,Yi) to (Wi,Ui) allows us to

take advantage of certain sufficiency and completeness properties of Wi and Ui as

described in Theorem 2.

Theorem 2. The variables Wi and Ui satisfy the following two properties:

(a) Sufficiency of W:

fU|W,R,X,Z(u | w, r,x, z) = fU|W,X,Z(u | w,x, z) = fU|X,Z(u | x, z),

fR|U,W,X,Z(r | u,w,x, z) = fR|W,X,Z(r | w,x, z).

(b) Completeness of W:

For any function a(w,x, z), if E{a(W,X,Z) | R,X,Z} = 0, then a(W,X,Z) =

0.

The proof of Theorem 2 is in Appendix. The sufficiency and completeness prop-

erties in Theorem 2 allow us to form a statistic free of the random slope associated

with Z and remove the component containing the random slope from the estimating

equation. Indeed Theorem 2 (a) yields that E{h∗(R,X,Z) | Y,X,Z} in Equation

(4) is actually equal to E{h∗(R,X,Z) |W,X,Z}. The advantage of this equality is

that the conditional expectation of h∗(R,X,Z) given (W,X,Z) satisfies

E∗{h∗(R,X,Z) |W,X,Z} = E{S∗β(Y,X,Z) |W,X,Z}
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and E{S∗β(Y,X,Z) |W,X,Z} has a closed form, given by
∑

u S∗β{M−1(WT,uT)T,X,Z} exp{(XT
1 β, ·,XT

q β)(−Z−1
L ZRu) + (XT

(q+1)β, ·,XT
mβ)u}∑

u exp{(XT
1 β, . . . ,XT

q β)(−Z−1
L ZRu) + (XT

(q+1)β, . . . ,XT
mβ)u}

. (6)

where the summation ∑u is over all possible u ∈ Rm−p such that each entry in u is

either 0 or 1, and u satisfies that Wi = ZiLYi1 + ZiRu. Here Yi1 is the subvector of

Yi formed by the first q elements.

Therefore, the estimating equation (5) which originally involved solving an ill-posed

problem is now of the form

n∑
i=1

n∑
i=1

[S∗β(Yi,Xi,Zi)− E{S∗β(Yi,Xi,Zi) |Wi,Xi,Zi}] = 0. (7)

All terms in the estimating equation can be explicitly constructed without needing

to solve an ill-posed problem. The construction of S∗β(Yi,Xi,Zi) does require speci-

fying a proposed model f ∗R|X,Z, but by Theorem 1, the model does not need to be cor-

rectly specified to ensure consistency. Therefore, we have constructed a simple estima-

tion method that does not impose stringent assumptions on the unknown random ef-

fect, nor does it involve heavy computation. All terms in the new estimating equation

are easy to compute with the most difficult part being E{S∗β(Yi,Xi,Zi) |Wi,Xi,Zi}

, which we will use the Gaussian quadrature to deal with.

In summary, our algorithm for computing β̂ involves:

Step 1. Specify a working model for f ∗R|X,Z. For convenience, we suggest to model

f ∗R|X,Z using a normal distribution.

Step 2. Compute the function S∗β(Y,X,Z), as in Equation (3) where the expecta-

tions are computed under f ∗R|X,Z from Step 1.

Step 3. Compute E{S∗β(Yi,Xi,Zi) |Wi,Xi,Zi} using Equation (6).

Step 4. Solve the estimating equation (7) to obtain β̂.
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1.3 Simulation study

1.3.1 Design of Simulation

We compared the performance of our estimator to the traditional normal-based

maximum likelihood estimator (MLE). We used the glmer in R package lme4 (Bates

et al. 2016) to compute the maximum likelihood estimator. The assumption of the

MLE is that the random effect is normally distributed, and that covariates and the

random effects are independent. In comparison, our estimator does not assume that

the random effect follows a specific distributional form, nor do we require indepen-

dence between the covariates and the random effect. In this simulation study, we

assess the sensitivity of our estimator and the MLE when these assumptions do not

hold.

We generated 1000 data sets from the logistic random slope model in (1) with

each data set having a sample size n = 500. We considered mi = 3 covariates. We set

the true parameter as β = (0.35, 0.6,−0.4)T. To assess the distributional assumption

of the random effect, we generated data according to four different distributions:

1. Standard Normal random effect. Ri is from a standard normal distribution.

2. Mixed Normal random effect: Ri is from a mixture of normal distribution with

80% of the data from Normal(3,1), and 20% of the data from Normal(6,1.5).

3. Gamma random effect. Ri is from a Gamma distribution with shape parameter

1 and scale parameter 1.25.

4. Student-t random effect. Ri is from a student-t distribution with degree of

freedom 3.

Thus, the distributional shapes of the random effect include the standard bell-shaped

form, bimodality, heavy tailness and skewness. The deviations from the standard bell-
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shaped form will allow us to assess how well our estimator performs in comparison

to the MLE which assumes the random effect is indeed standard normal.

Under each of these four distributional assumptions for the random effect, we

generated three different sets of covariates, first assuming their independence from

the random effect:

1. Zij is from the Bernoulli distribution with success probability 0.5, and Xij is

from Normal(0.5,1);

2. Zij is from the Poisson distribution with parameter 0.5, and Xij is from Nor-

mal(0.5,1);

3. Zij is from the Geometric distribution with success probability 0.7, and Xij is

from Normal(0.5,1).

Therefore, in total we considered 12 different cases: four ways of generating Ri’s in

combination with three ways of generating the covariates.

We further considered 12 additional cases similar to the above except that we

introduced dependency between the random effect and covariates. This is aimed to

assess deviations from the second assumption of the MLE in which the random effects

and covariates are assumed to be independent. In the dependency case, we generated

Xij from Normal(0.5Ri, 1) to achieve the dependency between Ri and Xij’s. The

generation of Zij’s were the same as before.

In summary, these settings were designed to investigate the performance of both

the semiparametric estimator and the MLE when the random effect distribution is

mis-specified, in combination with different covariate combinations of X and Z. For

all data generation settings, we centered the generated random slopes to have zero

mean to accommodate the standard normal-based MLE. In the proposed method, for

all dependent and independent cases, we assumed the random effect is Normal(0,1)
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distribution and is independent of all the covariates. This is of course not a valid

assumption in all the settings considered above.

1.3.2 Simulation Results

We compared the performance of the semiparametric estimator and MLE in terms

of their bias, sample variance, estimated variance, and 95% coverage probabilities.

The results of the independent cases are given in Tables 1.1 to 1.4 and those for the

dependent cases are given in Tables 1.5 to 1.8.

Tables 1.1 to 1.4 show that when covariates and random effects are independent,

the semiparametric estimator has comparable performance to that of the MLE in

terms of bias and the 95% coverage probabilities meeting the nominal level. While we

expected the semiparametric estimator to be consistent based on Theorem 1, we were

initially surprised by the robustness of MLE to deviations from normality. However,

Neuhaus et al. (1992) demonstrated that the MLE actually performs quite well for

mixed effect models when the random effect is not normally distributed. In terms of

estimation variability, the semiparametric estimator has somewhat larger variability

compared to the normal-based MLE, although the difference in variabilities is small.

This is also within our expectation since MLE adopts stronger modeling assumptions

and must have smaller estimation variability.

The results in Tables 1.5 to 1.8 indicate a different phenomenon. In the case when

the covariates and random effect are dependent, inconsistency of the MLE starts to

manifest. Specifically, the biases of the estimates from the normal-based MLE are

sufficiently large, and they cause the coverage of the 95% confidence intervals to be

completely off from the nominal level. In contrast, the biases of estimates from our

proposed estimator is still very small, and the coverage probability of 95% confidence

intervals remain close to their nominal level. This clearly demonstrates that if we

treat the random effect as independent from the covariates while in fact there is
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dependency between the two, the normal-based MLE loses its robustness and gives

severely biased estimates with very small variability. Subsequently, inference based

on MLE will be misleading. On the contrary, the semiparametric estimator continues

to provide consistent estimation and valid inference results.

Summarizing the observations, the semiparametric estimator is a much more reli-

able method unless it is clear that the random effect and the covariates are indepen-

dent of each other. Because the random effect is not observable, it is often difficult

to determine its relation with the covariates. Thus, we recommend implementing the

semiparametric estimator in general.

We also record the execution time of running 50 simulations using our estima-

tor under one setting noted in Table 1.9. The CPU for this simulation is Intel I7-

8700k@4.4GHz and the size of RAM is 32GB. From Table 1.9, the execution time

increases as the cluster size increases or the number of parameters increases. These

values show that the computation is generally sufficiently fast and we can use a

single-thread R to run the entire simulation without engaging super computers with

thousands of threads.

We also considered small sample performance, such as sample size n = 25 or

n = 50. The algorithm does not converge in such sample sizes. As we gradually

increase the sample size, we start to have some sensible results when the sample

size n = 220. We report simulation results for n = 220 in Tables S.1 to S.8 in the

supplement. Overall, the general conclusion based on n = 220 is the same as based

on n = 500. The computing code is placed in the Supplementary Materials .

1.4 Analysis of a Huntington disease study

Huntington disease (HD) is a rare neurodegenerative disease linked to deteri-

oration of the central nervous system. Its symptoms include unwanted choreatic

movements, behavioral and psychiatric disturbances and dementia (Roos 2010). The
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Cooperative Huntington Observational Research Trial (COHORT) was a large ob-

servational, longitudinal study of HD conducted from 2005 to 2011 that evaluated

different cognitive and motor impairments associated with HD. The study included

n=3211 participants who were annually evaluated over a four year time span. We

focused on those subjects who had at least 4 consecutive visits during this study.

Our main objective in analyzing COHORT is to investigate if cognitive measures are

important determining the possibility of occurrence of HD. This objective stems from

recent results that a major sign of HD is cognitive decline, and such decline can be

observed long before motor symptoms first appear (Roos 2010).

To assess the association between cognitive measures and occurrence of HD, we

modeled the data using the mixed effect logistic model in (1). For each person

i = 1, . . . , n, and visit j = 1, . . . ,m with m = 6, we set the response variable Yij as 1

if the person was diagnosed with HD, and 0 otherwise. Diagnosis of HD occurs when

the participant’s extrapyramidal signs are unequivocally associated with HD and the

diagnosis is determined by a trained clinician. We set Zi to be the gender for subject

i. We set Xij’s to be a set of four different motor and cognitive measures. Specifically,

we set X1ij to be the total motor score (TMS), defined as the sum of total motor

impairments as evaluated using the Unified Huntington Disease Rating Scale (Group

1996). We set X2ij to be the score from the Symbolic Digit Modality Test (SDMT), a

test that assesses the cognitive impairment by some simple substitution tasks, such as

visual scanning, attention, and motor speed. We set X3ij to be the stroop color score

(SCOLOR), a test that assesses the cognitive impairment by recording how many X’s

printed in blue, red, or green ink that a subject correctly verbally stated its color in

a certain amount of time. We set X4ij to be the stroop word score (SWORD), a test

that assesses the cognitive impairment by recording the number of color words (blue,

red, green) printed in black ink that a subject correctly verbally reads in a certain

amount of time. We set X5ij to be the stroop interference score (SINTER), a test
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that assesses the cognitive impairment by recording how many color words that were

printed in colored ink (eg. BLUE printed in green ink or BLUE printed in blue ink)

and correctly verbally read by a subject in a certain amount of time. Lastly, we set

Ri to be the random slope associated with Zi.

We applied our proposed estimator and the standard-normal MLE to assess the

association between cognitive impairments and occurrence of HD. We suspect that

the cognitive covariates and random effect are dependent based on clinical results

from Downing et al. (2008). They found gender differences in cognitive function.

Females tended to outperform males on tests of memorization and language skills.

Males tended to outperform females on tasks involving mathematical reasoning and

visuospatial ability. These results suggest that if we assess the impact of cognitive

measures on HD occurrence, we may have that cognitive measures and the random

effect are dependent through gender. This would imply that the MLE could yield

misleading results because it assumes independence, whereas our estimator does not.

We performed our analysis in two steps. In the first step, we analyzed three

subsets of the data: the 1404 subjects who had four clinical visits, the 775 subjects

who had five visits, and the 132 subjects who had six visits. In each of the three sub-

data sets, we implemented the semiparametric estimator to obtain estimators β̂1,

β̂2, β̂3, where β̂1=(β̂1tms, β̂1sdmt, β̂1scolor, β̂1sword, β̂1sinter), β̂2=(β̂2tms, β̂2sdmt, β̂2scolor,

β̂2sword, β̂2sinter), β̂3=(β̂3tms, β̂3sdmt, β̂3scolor, β̂3sword, β̂4sinter). We then perform the

second step by taking a weighted average of the results, i.e. we set β̂=(β̂tms, β̂sdmt,

β̂scolor, β̂sword, β̂sinter).

The weighted average is denoted as β̂ = ∑3
i=1 wiβ̂i, where the weights are pro-

portional to the inverse of the variances of β̂i. That is, wi is a diagonal matrix,

with its jth element wij = v−1
ij /(

∑3
i=1 v

−1
ij ), where vij = var(β̂ij). The variance of the

final estimator is var(β̂j) = (∑3
i=1 v

−1
ij )−1. For comparison, we also implemented the

normal-based MLE in the similar fashion.
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Table 1.10 shows the results from both estimators. The semiparametric estimator

indicates that cognitive scores from SDMT, SCOLOR, SWORD are not statistically

significant, as their 95% confidence intervals contain zero. On the other hand, it de-

tects TMS and SINTER to be significant covariates, both positively associated with

the probability of developing HD. However, MLE indicates that only TMS score is

statistically significant, while all the other four covariates are not statistically signifi-

cant. The difference from the two analysis indicates that there is dependence between

the random slope and the covariates. Based on both the theoretical results and the

simulation experience, we believe the results from MLE can be misleading.

This result implies that if we adopt MLE on the data set to determine which

covariates are needed for diagnosis of HD, we might neglect a vital covariate stroop

interference score. The importance of stroop interference score coincided with clinical

findings in (JS et al. 2013), where they found that prodromal HD patients have

declined response shifting, and inhibition depends on efficient response shifting, while

inhibition is necessary for stroop interference test. Based on these observations and

our analysis results, we recommend using TMS and SINTER jointly to determine the

occurrence of HD.

1.5 Discussion

We proposed a locally efficient estimator using a semiparametric approach in a

mixed effect logistic model with random slope. Locally efficient means even when

we use a misspecified working model, the resulting estimator of β is still consistent.

If the true model happens to be the proposed working model, then the estimator is

efficient. The method does not assume independence between the random slope and

the covariates, and does not estimate or model the distribution of the random slope.

In fact, an important advantage of the estimator is its consistency regardless whether

or not the distribution of the random effect is correctly modeled, and regardless if
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there is dependency between the random slopes and the covariates. Our method is

developed under the mixed effect model with binary response under the logit link

function. It will be interesting and valuable to investigate if the general approach can

be adapted to incorporate the probit link or log-log link for the binary response, and

to more general models in handling count or continuous response.

Sometimes, there is evidence that a random effect is discrete, hence it is natural to

consider the treatment of a discrete random effect. In fact, if a random effect is dis-

crete with infinitely many categories, we would recommend to ignore its discreteness

and use a continuous working model for its distribution for computational purpose.

In fact, our derivation has not assumed the random effect is continuous so the results

derived before indeed apply. If a random effect is discrete with finitely many cate-

gories, the problem actually drastically simplifies. Indeed, in this case, treating the

random effect probability masses as additional parameters, the original problem is a

pure parametric model and a simple MLE will yield the efficient estimator.
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Table 1.1: Simulation results when random effect and covariates are independent.
Bias, sample variance (var), averaged estimated variance (v̂ar), and the empirical cov-
erage percentage of the 95% confidence interval (CI) for the semiparametric estimator
and the normal-based MLE are reported. The true parameter β = (0.35, 0.6,−0.4)T.
Results are based on 1000 simulations with n = 500, mi = 3. Biases are multiplied
by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE
bias var v̂ar CI bias var v̂ar CI

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) centered Xij ∼ N(0.5, 1) Zi ∼ Bernoulli(0.5)
β̂1 2.59 3.40 3.28 94.7% 0.44 0.45 0.44 94.6%
β̂2 3.03 3.82 3.67 96.1% 0.48 0.49 0.50 96.2%
β̂3 −2.94 3.76 3.38 94.4% −0.38 0.43 0.45 95.5%

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) centered Xij ∼ N(0.5, 1) Zi ∼ Poisson(0.5)
β̂1 3.29 3.82 3.35 94.1% 0.21 0.45 0.43 94.4%
β̂2 3.19 4.03 3.76 95.4% 0.25 0.48 0.49 95.4%
β̂3 −2.62 3.93 3.45 94.1% −0.30 0.44 0.44 95.9%

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) centered Xij ∼ N(0.5, 1) Zi ∼ Geometric(0.7)
β̂1 1.16 2.53 2.49 95.3% 0.078 0.41 0.41 95.6%
β̂2 2.39 2.93 2.88 95.3% 0.13 0.47 0.47 94.0%
β̂3 −1.59 2.74 2.58 95.3% 0.11 0.44 0.42 95.0%

Table 1.2: Simulation results when random effect and covariates are independent.
Bias, sample variance (var), averaged estimated variance (v̂ar), and the empirical cov-
erage percentage of the 95% confidence interval (CI) for the semiparametric estimator
and the normal-based MLE are reported. The true parameter β = (0.35, 0.6,−0.4)T.
Results are based on 1000 simulations with n = 500, mi = 3. Biases are multiplied
by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE
bias var v̂ar CI bias var v̂ar CI

Ri ∼ Gamma(1, 1.25) centered Xij ∼ N(0.5, 1) Zi ∼ Bernoulli(0.5)
β̂1 2.17 3.34 3.09 95.4% −2.33 0.38 0.39 92.8%
β̂2 2.69 4.00 3.51 94.5% −2.62 0.46 0.45 92.1%
β̂3 −1.77 3.30 3.13 94.9% −3.02 0.42 0.40 92.1%

Ri ∼ Gamma(1, 1.25) centered Xij ∼ N(0.5, 1) Zi ∼ Poisson(0.5)
β̂1 1.88 3.56 3.29 95.0% −2.02 0.38 0.40 94.2%
β̂2 1.90 4.05 3.78 94.5% −2.61 0.45 0.45 93.1%
β̂3 −1.24 3.46 3.38 95.1% −2.91 0.41 0.41 93.8%

Ri ∼ Gamma(1, 1.25) centered Xij ∼ N(0.5, 1) Zi ∼ Geometric(0.7)
β̂1 1.82 2.58 2.43 95.4% −2.00 0.37 0.38 94.2%
β̂2 3.42 3.08 2.83 94.6% −1.97 0.44 0.44 93.5%
β̂3 −2.60 2.52 2.49 95.3% −2.33 0.38 0.39 94.4%
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Table 1.3: Simulation results when random effect and covariates are independent.
Bias, sample variance (var), averaged estimated variance (v̂ar), and the empirical cov-
erage percentage of the 95% confidence interval (CI) for the semiparametric estimator
and the normal-based MLE are reported. The true parameter β = (0.35, 0.6,−0.4)T.
Results are based on 1000 simulations with n = 500, mi = 3. Biases are multiplied
by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE
bias var v̂ar CI bias var v̂ar CI
Ri ∼ t(3) centered Xij ∼ N(0.5, 1) Zi ∼ Bernoulli(0.5)

β̂1 2.47 4.12 3.80 95.3% −1.70 0.55 0.53 94.4%
β̂2 5.51 5.21 4.44 93.4% −1.22 0.60 0.60 94.3%
β̂3 −3.61 4.39 3.91 95.4% −2.10 0.54 0.55 94.3%

Ri ∼ t(3) centered Xij ∼ N(0.5, 1) Zi ∼ Poisson(0.5)
β̂1 3.05 3.78 3.58 95.1% −1.15 0.51 0.53 95.2%
β̂2 4.29 4.61 4.11 94.4% −0.90 0.59 0.60 95.4%
β̂3 −2.73 3.87 3.67 95.0% −1.70 0.52 0.54 94.8%

Ri ∼ t(3) centered Xij ∼ N(0.5, 1) Zi ∼ Geometric(0.7)
β̂1 2.37 3.38 3.02 94.3% −0.81 0.49 0.50 95.5%
β̂2 2.77 4.00 3.47 94.2% −1.22 0.57 0.56 93.5%
β̂3 −2.07 3.43 3.07 94.3% −1.28 0.53 0.51 94.6 %

Table 1.4: Simulation results when random effect and covariates are independent.
Bias, sample variance (var), averaged estimated variance (v̂ar), and the empirical cov-
erage percentage of the 95% confidence interval (CI) for the semiparametric estimator
and the normal-based MLE are reported. The true parameter β = (0.35, 0.6,−0.4)T.
Results are based on 1000 simulations with n = 500, mi = 3. Biases are multiplied
by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE
bias var v̂ar CI bias var v̂ar CI

Ri ∼ N(0, 1) Xij ∼ N(0.5, 1) Zi ∼ Bernoulli(0.5)
β̂1 2.44 3.42 3.25 95.3% 0.57 0.49 0.49 95.5%
β̂2 3.60 4.28 3.75 94.9% 0.70 0.51 0.55 96.0%
β̂3 −3.41 3.20 3.39 96.0 % −0.40 0.52 0.50 94.5%

Ri ∼ N(0, 1) Xij ∼ N(0.5, 1) Zi ∼ Poisson(0.5)
β̂1 2.56 3.42 3.35 94.2% 0.25 0.47 0.47 95.4%
β̂2 4.76 4.48 3.88 94.1% 0.60 0.51 0.53 95.8%
β̂3 −3.46 3.32 3.47 95.7% −0.64 0.50 0.48 94.6%

Ri ∼ N(0, 1) Xij ∼ N(0.5, 1) Zi ∼ Geometric(0.7)
β̂1 1.99 3.28 2.94 95.2% 0.44 0.45 0.47 96.1%
β̂2 3.96 3.76 3.36 94.8% 1.19 0.53 0.53 95.1%
β̂3 −1.86 3.13 2.96 95.2% −0.71 0.47 0.48 95.7 %
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Table 1.5: Simulation results when random effect and covariates are dependent:
Xij ∼ Normal(0.5Ri, 1). Bias, sample variance (var), averaged estimated variance
(v̂ar), and the empirical coverage percentage of the 95% confidence interval (CI) for
the semiparametric estimator and the normal-based MLE are reported. The true pa-
rameter β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with n = 500,
mi = 3. Biases are multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE
bias var v̂ar CI bias var v̂ar CI

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) centered Zi ∼ Bernoulli(0.5)
β̂1 1.74 3.76 3.25 94.6% 25.91 0.48 0.44 2.3%
β̂2 2.72 3.85 3.72 96.0% 25.12 0.49 0.51 5.1%
β̂3 −3.98 3.81 3.39 94.4% 29.41 0.42 0.41 0.9%

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) centered Zi ∼ Poisson(0.5)
β̂1 2.49 3.39 3.31 96.2% 25.40 0.43 0.44 1.6%
β̂2 3.44 3.89 3.73 95.2% 24.32 0.50 0.51 4.8%
β̂3 −3.52 3.77 3.41 94.7% 28.68 0.41 0.41 0.8%

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) centered Zi ∼ Geometric(0.7)
β̂1 1.86 3.12 2.76 94.1% 23.68 0.44 0.42 3.9%
β̂2 3.15 3.70 3.18 93.2% 23.02 0.52 0.49 7.4%
β̂3 −2.32 2.89 2.84 95.5% 27.28 0.41 0.40 2.3%

Table 1.6: Simulation results when random effect and covariates are dependent:
Xij ∼ Normal(0.5Ri, 1). Bias, sample variance (var), averaged estimated variance
(v̂ar), and the empirical coverage percentage of the 95% confidence interval (CI) for
the semiparametric estimator and the normal-based MLE are reported. The true pa-
rameter β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with n = 500,
mi = 3. Biases are multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE
bias var v̂ar CI bias var v̂ar CI

Ri ∼ Gamma(1, 1.25) centered Zi ∼ Bernoulli(0.5)
β̂1 2.39 2.86 2.82 95.4% 20.73 0.39 0.41 8.2%
β̂2 2.95 3.65 3.22 94.7% 20.16 0.51 0.48 16.6%
β̂3 −1.90 3.22 2.86 95.2% 23.35 0.40 0.39 5.0%

Ri ∼ Gamma(1, 1.25) centered Zi ∼ Poisson(0.5)
β̂1 2.73 3.12 3.07 95.8% 20.31 0.38 0.41 9.1%
β̂2 3.17 4.11 3.55 94.6% 19.67 0.49 0.48 17.5%
β̂3 −2.18 3.44 3.18 94.4% 22.72 0.39 0.40 6.2%

Ri ∼ Gamma(1, 1.25) centered Zi ∼ Geometric(0.7)
β̂1 2.50 2.65 2.63 95.9% 19.80 0.40 0.41 10.8%
β̂2 3.05 2.94 3.00 95.5% 19.05 0.49 0.47 19.6%
β̂3 −1.29 2.85 2.67 94.8% 21.40 0.39 0.39 8.2%

19



Table 1.7: Simulation results when random effect and covariates are dependent:
Xij ∼ Normal(0.5Ri, 1). Bias, sample variance (var), averaged estimated variance
(v̂ar), and the empirical coverage percentage of the 95% confidence interval (CI) for
the semiparametric estimator and the normal-based MLE are reported. The true pa-
rameter β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with n = 500,
mi = 3. Biases are multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE
bias var v̂ar CI bias var v̂ar CI
Ri ∼ t(3) centered Zi ∼ Bernoulli(0.5)

β̂1 2.16 4.84 4.33 95.2% 35.62 0.44 0.48 0.0%
β̂2 4.30 5.79 4.94 94.4% 33.46 0.54 0.57 0.2%
β̂3 −4.51 4.98 4.47 93.7% 42.23 0.38 0.41 0.0%

Ri ∼ t(3) centered Zi ∼ Poisson(0.5)
β̂1 3.00 4.73 4.21 94.8% 34.37 0.43 0.47 0.0%
β̂2 4.61 5.92 4.93 95.1% 32.16 0.53 0.55 0.3%
β̂3 −3.28 4.56 4.34 95.3% 41.67 0.40 0.40 0.0%

Ri ∼ t(3) centered Zi ∼ Geometric(0.7)
β̂1 1.86 3.78 3.43 94.5% 33.05 0.41 0.45 0.0%
β̂2 3.73 4.29 3.98 93.3% 30.87 0.49 0.53 0.4%
β̂3 −2.89 4.02 3.52 93.9% 40.16 0.36 0.39 0.0%

Table 1.8: Simulation results when random effect and covariates are dependent:
Xij ∼ Normal(0.5Ri, 1). Bias, sample variance (var), averaged estimated variance
(v̂ar), and the empirical coverage percentage of the 95% confidence interval (CI) for
the semiparametric estimator and the normal-based MLE are reported. The true pa-
rameter β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with n = 500,
mi = 3. Biases are multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE
bias var v̂ar CI bias var v̂ar CI

Ri ∼ N(0, 1) Zi ∼ Bernoulli(0.5)
β̂1 3.05 4.11 3.70 95.4% 30.25 0.47 0.46 0.2%
β̂2 5.42 4.98 4.21 94.3% 28.77 0.56 0.53 1.3%
β̂3 −2.52 3.74 3.71 95.6% 35.39 0.40 0.41 0.1%

Ri ∼ N(0, 1) Zi ∼ Poisson(0.5)
β̂1 2.04 4.20 3.66 92.7% 29.55 0.47 0.45 0.2%
β̂2 4.81 4.72 4.22 94.2% 28.04 0.50 0.52 1.2%
β̂3 −2.16 3.72 3.64 97.0% 34.73 0.39 0.41 0.1%

Ri ∼ N(0, 1) Zi ∼ Geometric(0.7)
β̂1 1.61 3.20 2.92 94.7% 28.30 0.46 0.44 0.8%
β̂2 3.85 3.44 3.39 94.8% 26.55 0.51 0.51 2.8%
β̂3 −1.12 3.20 2.99 93.8% 33.22 0.460 0.40 0.2%
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Table 1.9: Execution time of 50 simulations using our estimator when random effect
is generated from Normal(0,1), Zij is from the Geometric distribution with success
probability 0.7, Independent case means Xij ∼ N(0.5, 1) and dependent case means
Xij ∼ N(0.5Ri, 1). The unit of time is second, and m stands for the cluster size and
p denotes the number of parameters to be estimated.

Independent Dependent
m=2,p=3 79.39 78.59
m=3,p=3 208.3 201.28
m=4,p=3 321.74 310.9
m=3,p=1 41.16 39.54
m=3,p=2 112.47 113.76
m=3,p=3 205.56 202.47

Table 1.10: Results from Huntington disease (HD) data analysis based on semi-
parametric estimator and normal-based maximum likelihood estimator (MLE). est:
Parameter estimate, SE: standard error, 95% CI: 95% Wald-Type confidence interval,
β̂tms: Coefficient for total motor score, β̂sdmt: Coefficient for symbol Digit Modalities
Test, β̂scolor: Coefficient for stroop color score, β̂sword: Coefficient for stroop word
score , β̂sinter: Coefficient for stroop interference score. SE are multiplied by 10.

Semiparametric Estimator Normal-based MLE
Est SE 95% CI Est SE 95% CI

β̂tms 0.133 0.012 (0.065, 0.201) 0.266 0.004 (0.229, 0.303)
β̂sdmt 0.028 0.012 (−0.040, 0.097) −0.029 0.004 (−0.066, 0.009)
β̂scolor 0.008 0.014 (−0.066, 0.081) −0.029 0.003 (−0.063, 0.006)
β̂sword 0.009 0.004 (−0.032, 0.048) −0.014 0.002 (−0.039, 0.012)
β̂sinter 0.074 0.002 (0.043, 0.104) −0.014 0.004 (−0.053, 0.024)
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Chapter 2

Prediction Using Many Samples with Working

Models Containing Partially Shared

Parameters

2.1 Introduction

Prediction is often the goal in many statistical analysis. Based on a statistical

model and existing data with both covariates and responses, i.e., the labeled data,

the usual practice is to estimate the unknown components of the model and use the

resulting completely known model to predict the response associated with a new set

of covariates, i.e. the unlabeled data. This practice works well when the labeled data

and the new, unlabeled data share the same relation between the response (label)

and the covariates. When additional labeled data are available, whose dependence

of the response and covariates does not necessarily obey the same statistical rule as

the original data, we usually cannot make use of them because information carried

in such data may not benefit our prediction purpose.

However, it is not uncommon that even when data generated from different sce-

narios follow different models, they could still share some common components. For

example, two data sets may both follow linear regression who share a common co-

variate subset and its effect. Further, if the response of the second data set is masked

out and instead, only a dichotomous variable indicating whether or not the response

is positive is available, then we will have two models share common covariate effects,

22



where one model has continuous response while the other categorical. The familiar

mixed effect model can be viewed as one particular example as well. In this case,

each cluster can be viewed as samples from a population and observations in the same

cluster follow the same distribution. However, different cluster share some common

features, captured as the fixed effect which is the same across all clusters. It is then

natural to borrow information from observations in other clusters even if the main

purpose is doing prediction in one specific cluster.

Such consideration directly leads us to consider prediction using multiple mod-

els from heterogeneous populations. Specifically, consider independent data sets

from N populations. Let the jth data set be Yji,Xji,Z[j]
i for i = 1, . . . , nj, where

Xji, j = 1, . . . , N, i = 1, . . . , nj are i.i.d. observations and Z[j]
i , i = 1, . . . , nj are i.i.d

observations, but for j1 6= j2, Z[j1]
i and Z[j2]

i can be different covariates. We describe

the dependence of the response Yji on the covariates Xji,Z[j]
j with a conditional prob-

ability density function (pdf)

f
Yji|Xji,Z

[j]
i

(y,x, z[j]) = fj(xTβ + z[j]Tαj, y,γj), j = 1, . . . , N, i = 1, . . . , nj. (1)

Thus, even though different functional forms fj and different parameter values αj,γj

are allowed in different populations, the population specific models still share a com-

mon parameter β. Our purpose is to predict the response for a given set of covariates

X,Z[1]. Here, without loss of generality, we consider prediction in the first population.

To distinction the model associated with the first population and the ones associated

with the remaining populations, we name the first model the main model, while the

rest the helper models.

To perform prediction, a natural practice is to first estimate β,α1,γ1 using sam-

ples from the first population, and then use the estimated parameter values and

the functional form f1 to form a prediction, for example, the mean calculated as∫
yf1(XTβ̂ + Z[1]Tα̂1, y, γ̂1)dµ(y), where β̂, α̂1, γ̂1 are the estimators of β,α1,γ1 and

µ(·) is the probability measure of response. One may also think of improving the
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quality of the parameter estimation hence the quality of the prediction by using max-

imum likelihood estimator (MLE) based on all the data. This will improving the β

estimator, and hence may further improve the estimation of other parameters and

the prediction itself. Such consideration is based on a simple fact that all the models

are correct. As long as one model, whether it is the main model or one of the helper

models, is misspecified, such practice runs the risk of giving too much trust to the

possibly misspecified model and hence can cause deteriorated prediction performance.

We take a different approach to making use of the multiple samples through a

fusion of model averaging and meta analysis. This approach has the advantage that

it can achieve the best prediction in large samples even if the main model that the

prediction is based on is misspecified. On the other hand, if the main model is cor-

rect, the procedure will automatically eliminate the influence from misspecified helper

models and use only the correctly specified helper models to form prediction. We can

think of the method as a kind of fusion learning method. Given that in practice it

is not usually known whether any model is correctly or incorrectly specified, this is a

desirable feature. In addition, our procedure also has the flexibility of incorporating

population specific statistical model forms, population specific parameters, and even

population specific response variable type. For example, we allow some populations

to have continuous response while others to have categorical responses. Finally, our

procedure does not require pooling different samples from different populations to-

gether in order to carry out the parameter estimation. This can be a very important

advantage since in our era data size is easily too large to handle, and our procedure

can thus be used to justify splitting the data first, performing estimation separately,

and then pool the results together. It in fact prescribes a method to pool the results

together in an optimal way in terms of prediction performance.

The fusion learning method proposed in the current paper is related to the frequen-

tist model averaging framework. The main difference between our method and the
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classic works on frequentist model averaging, such as Yang (2001), Hjort & Claeskens

(2003), Hansen (2007), Liu (2015), Chen et al. (2018), Zhang et al. (2018), Mitra

et al. (2019), and Zhang & Xia (2019), is that we adopt different models on different

data sets, while existing model averaging methods consider different models belong to

the same regression family on a single data set. As far as we know, the current paper

is the first one where different models are adaptively fitted for different data sets, and

then an averaging approach is applied to improve the prediction for a target quantity.

Our work is also related to meta-analysis in that we also consider multiple data sets.

The classic goal of meta-analysis is mainly in parameter estimation, here we expand

the scope of meta analysis by aiming at prediction. Further, classic meta-analysis

generally assumes all the models are correctly specified, here we no longer make such

assumption.

2.2 Prediction Procedure

The prediction procedure we propose is very simple. Given the model described in

(1) and the observations {Yji,Xji,Z[j]
i } for i = 1, . . . , nj, j = 1, . . . , N , to predict Y

associated with X,Z[1] from the first population, we carry out the following procedure.

Algorithm

Step 1: For j = 1, . . . , N , estimate β, αj and γj using the observations {Yji,Xji,Z[j]
i },

where i = 1, . . . , nj via, for example, MLE. Denote the estimators β̂[j], α̂j and

γ̂j.

Step 2: Form the jth prediction of Y using the estimator β̂[j] and α̂1, γ̂1 by assigning

Ŷj = E(Y | X,Z[1]; β̂[j], α̂1, γ̂1) =
∫
yf1(XTβ̂[j] + Z[1]Tα̂1, y, γ̂1)dµ(y).

Step 3: Combine Ŷj’s to construct a function of w through

Ŷ (w) =
N∑
j=1

wjŶj, (2)
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where w = (w1, . . . , wN)T are a vector of weights that satisfy 0 ≤ wj ≤ 1 for

j = 1, . . . , N and ∑N
j=1 wj = 1. Let the set of all such w’s be W .

Step 4: Construct a crossvalidation criterion to evaluate the prediction performance

of any set of weight choices, where

CV (w) ≡ 1
n1

n1∑
i=1
{Ŷ (−i)

1i (w)− Y1i}2,

where Ŷ (−i)
1i (w) is calculated the same way as Ŷ (w) described above except

that Y1i is left out of the calculation, i.e. it is the leave-the-ith-observation-out

prediction of Y1i under weight choice w.

Step 5: Select w by minimizing the crossvalidated average prediction error, i.e.

ŵ = argminw∈WCV (w). (3)

Step 6: Let the resulting prediction be Ŷ (ŵ). We term it fusion learning prediction

(FLP).

The algorithm described above is rooted from a very basic idea of finding Ŷ (w) so

that the expected error squared, i.e. E[{Ŷ (w) − Y }2], is minimized. Because we do

not want to put our full trust on the model f1(XTβ +Z[1]Tα1, y,γ1), we approximate

E[{Ŷ (w)−Y }2] via a model free fashion through using sample average, while mimick-

ing the procedure of obtaining Ŷ (w) through the leave-one-out procedure Ŷ (−i)
1i (w).

Indeed, it is not difficult to show that CV (w) is an asymptotically unbiased estimator

of E[{Ŷ (w)− Y }2], the quantity we would like to minimize. We provide the detailed

verification of this result in the Appendix B.1.

Using crossvalidation to determine weights has been used as stacking (H.Wolpert

1992, Breiman 1996). In these seminal papers, the predictions averaged were from the

same data set, and they did not consider heterogeneous populations as we considered

here. In addition, the predictions to be averaged in our problem are calculated based
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on both the main model and the helper models, while they are typically based on only

one model in stacking. Lastly, in the current paper, we rigorously prove the optimality

and weight assignment properties for combining predictions, while in stacking, these

properties have not been built as far as we know.

2.3 Theoretical properties

It is not surprising that the theoretical properties of the above procedure derived

below depend on whether or not the main model is misspecified, since the main

model is the critical factor we rely on to perform prediction. Interestingly, although

our prediction procedure also incorporates all the helper models, whether or not none,

one or more of the helper models are misspecified does not affect the validity of the

theoretical results.

2.3.1 Theoretical properties under misspecified main model

To present the theoretical properties, we first formally define the risk function

as R(w) ≡ E[{Ŷ (w) − E(Y |X,Z[1])}2]. Ideally, one would certainly aim at mini-

mizing R(w) with respect to w in the set W . In Theorem 3, we show that this

goal is essentially achieved by our procedure. Usually, the prediction risk function is

E[{(Y (w)− Y }2]. It is seen that E[{(Y (w)− Y }2] = E[{(Y (w)− E(Y |X,Z[1])}2] +

E[{(Y − E(Y |X,Z[1])}2], where the second component is not controllable. Thus, we

aim at minimizing R(w).

Before stating Theorem 3, we first describe some assumptions that are needed to

formally establish the theoretical properties of our predictor. All limiting processes

considered in this paper correspond to n → ∞ where n = min1≤j≤N nj. We allow

both N →∞ and N fixed.
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Assumption 1. [Regularity of estimators] There exist values α?
j , γ?

j and β?
[j] such

that N−1/2n
1/2
j (α̂j −α?

j) = Op(1), N−1/2n
1/2
j (γ̂j − γ?

j ) = Op(1) and N−1/2n
1/2
j (β̂[j] −

β?
[j]) = Op(1) uniformly for j = 1, . . . , N .

Assumption 1 is a simple requirement on the regularity of the estimators being

averaged. This excludes, for example, super efficient estimators. When a model

is correct, the limiting parameter values α?
j , γ?

j and β?
[j] are naturally the true pa-

rameter values, while when a model is misspecified, these limiting parameter values

also exist and usually satisfy certain properties depending on how the estimators are

constructed. Indeed, when the estimator is MLE, these results have been rigorously

established in White (1982) under his conditions A1-A6. Here, for simplicity, we

write the result in the general case as an assumption. To accomodate uniform con-

vergence under a possibly diverging N , we weaken the convergence rate assumption

to (nj/N)−1/2.

We write θ̂ ≡ (β̂T
[1], . . . , β̂

T
[N ], α̂

T
1 , γ̂

T
1 ) and θ? ≡ (β?T

[1], . . . ,β
?T

[N ],α
?
1

T,γ?
1

T). We

now define some limiting quantities when the estimators are replaced by their cor-

responding limits. Specifically, let Y ?
j ≡

∫
yf1(XTβ?

[j] + Z[1]Tα?
1, y,γ

?
1)dµ(y) and let

Y ?(w) ≡ ∑N
j=1 wjY

?
j . Similarly, let Y ?

1i,j ≡
∫
yf1(XT

1iβ
?
[j] + Z[1]

i

T
α?

1, y,γ
?
1)dµ(y) and

let Y ?
1i(w) ≡ ∑N

j=1 wjY
?

1i,j. We write the “risk” calculated under the limiting pa-

rameter values, as R?(w) ≡ E
[
{Y ?(w)− E(Y |X,Z[1])}2

]
, and let ξ ≡ infw∈W R

?(w)

be the minimum risk under the ideal weights if the limiting parameter values were

known. To be explicit, we write E(Y |X,Z[1]) as gtrue(X,Z[1]; β,α1,γ1). Then,

E(Y1i|X1i,Z[1]
i ) = gtrue(X1i,Z[1]

i ; β,α1,γ1). Under the main model, we write Y ?
j =

g(X,Z[1]; β?
[j],α

?
1,γ

?
1), Y ?

1i,j = g(X1i,Z[1]
i ; β?

[j],α
?
1,γ

?
1), and Ŷj = g(X,Z[1]; β̂[j], α̂1, γ̂1).

Let εi = Y1i − E(Y1i|X1i,Z[1]
i ).

Assumption 2. The expectations E (ε4
i ), E

{
g4(X1i,Z[1]

i ; β?
[j],α

?
1,γ

?
1)
}
and

E
{
g4

true(X1i,Z[1]
i ; β,α1,γ1)

}
exist.

28



Assumption 3. g(X1i,Z[1]
i ; β[j],α1,γ1) is differentiable with respect to θ[j], where

θ[j]≡ (βT
[j],α

T
1 ,γ

T
1 )T and for any θ[j] in a local neighborhood of (β?T

[j] ,α
?T
1 ,γ?T

1 )T,

there exists a positive constant c1 such that for any 1 ≤ j ≤ N ,

E
∣∣∣g(X1i,Z[1]

i ; β[j],α1,γ1)
∣∣∣ ≤ c1 (4)

and

E

∥∥∥∥∥∥g(X1i,Z[1]
i ; β[j],α1,γ1)
∂θ[j]

∥∥∥∥∥∥ ≤ c1.

Assumption 4. The expectations E
{

sup1≤j≤N(Ŷj − Y ?
j )2

}
and

E
[
sup1≤j≤N{Y ?

j − E(Y |X,Z[1])}2
]
exist.

Assumptions 2, 3 and 4 are technical conditions on the existence, differentiability,

and boundedness of various moments, and are rather mild conditions. Taking linear

model Y = XTβ+Z[1]Tα+ε as an example, the sufficient conditions for Assumptions

2 and 3 are E(ε4), E(XT
1iβ + Z[1]

i

T
α1)4, E(XT

1iβ
?
[j] + Z[1]

i

T
α?)4, E(XT

1iβ[j] + Z[1]
i

T
α1)

and E(‖X1i‖2 + ‖Z[1]
i ‖2) exist. Assumption 4 is also a moment boundedness con-

dition. When N is finite, it simply requires the existence of E
{

(Ŷj − Y ?
j )2

}
and

E
[
{Y ?

j − E(Y |X,Z[1])}2
]
for all models. To handle a diverging N , we write the cor-

responding requirement in the expectation of the supreme form.

Assumption 5. [Misspecification of the main model] ξ >> (n/N3)−1/2.

Assumption 5 is a critical condition. It essentially requires the main model to

be sufficiently misspecified. To see this, we first consider the fixed N case. In such

case, if the main model had been correct, then β?
[1] = β, α?

1 = α1 and γ?
1 = γ1.
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Consequently,

ξ = inf
w∈W

R?(w)

= inf
w∈W

E
[
{Y ?(w)− E(Y |X,Z[1])}2

]
≤ E

[
{Y ?

1 − E(Y |X,Z[1])}2
]

= 0,

hence Assumption 5 is violated. On the other hand, if the main model is misspecified

with ξ � 1, then Assumption 5 is satisfied. Here n−1/2 is the rate of convergence

of ξ to zero under the true model case, hence it serves as the threshold between the

true and misspecified case. To accomodate a possibly diverging N , the threshold is

adapted to (n/N3)−1/2. Similar assumptions can be found in Equation (7) of Ando

& Lin (2014) and Assumption 1 (e) of Liu et al. (2020).

Under the above assumptions, the procedure we described in Section 2.2 leads

to the optimal weight choice, in that the risk of the prediction using the estimated

weights is the same as the risk of the prediction using the best possible weights to the

leading order. The result is stated in Theorem 3 with its proof given in the Appendix

B.2.

Theorem 3. If Assumptions 1-5 are satisfied, then

R(ŵ)
infw∈W R(w) → 1 (5)

in probability.

2.3.2 Theoretical properties under correct main model

We now consider the case that the main model is correctly specified. Because the

helper models can be correct or misspecified, we let D be the subset of {1, . . . , N}

that consists of the indices of the correctly specified models. Obviously 1 ∈ D. Let Dc

be the complement of D. Write ŵ = (ŵ1, . . . , ŵN)T. Let τ ≡ ∑
j∈D wj, τ̂ ≡

∑
j∈D ŵj

and M be the cardinality of Dc.

30



Assumption 6. infw∈W,
∑

j∈D wj=0 R
?(w) >> n−1/2N3/2.

In practice, when the model complexity does not increase with the sample size,

the risk of averaging misspecified models is typically of constant order. We hence also

write Assumption 7 as an alternative of Assumption 6.

Assumption 7. {infw∈W,
∑

j∈D wj=0 R
?(w)}−1 = O(1).

Assumption 6 obviously has similarity with Assumption 5. It imposes the relation

betweenN, n and the optimal risk if all weights are assigned to the misspecified model.

For simplicity, consider the fixed N case. Assumption 6 implies that the risk based

on the misspecified models only is much larger than n−1/2. When the main model is

misspecified, the optimal risk automatically will be sufficiently large hence we do not

need to restrict the weight set in Assumption 5. However, when the main model is

correctly specified, the deterioration of the risk has to result from the mis-estimation

of the parameter β, hence the correct models will need to be excluded for this purpose.

This is why we have to restrict the weights assigned to the correct model to be zero

in Assumption 6. Assumption 6 serves as a separation between the performance of

the correctly specified model and the misspecified model. Using any correct model

in combination with the correct main model, the resulting risk in the limit will be

zero. On the other hand, using any misspecified model, even when combined with

the correct main model, the resulting risk in the limit will be much larger than n−1/2,

as required by the assumption. Thus, intuitively it is clear that none of the incorrect

model will be chosen when we minimize the risk. When N diverges, Assumption 6 is

typically satisfied if N3/2 = o(n1/2) and infw∈W,
∑

j∈D wj=0 R
?(w) � 1. We summarize

the result in Theorem 4, with its proof in the Appendix B.3.

Theorem 4. If Assumptions 1, 2, 3 and 6 are satisfied, then τ̂ → 1 in probability.

Theorem 4 is a kind of model selection consistency, in that the method will au-

tomatically exclude the misspecified models. We stress that such model selection
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consistency is based on the correctness of the main model f1, and it only has the

ability to exclude the misspecified helper models. For the case that the main model

itself is misspecified, selection consistency in Theorem 4 does not hold in general

and only prediction optimality in Theorem 3 applies. Regardless a helper model is

correct or not, the prediction always relies on the main model hence the correct-

ness/misspecification of the main model dominates the performance of the prediction

procedure.

In modern applications, big data arise very often and it is common to perform

prediction in each section of the data separately and then combine the predictions

by simple average; see, for example, Li et al. (2013) and Battey et al. (2018). The

problem with this practice is that as long as one model is misspecified, which is often

the case due to the heterogeneity and complexity of data, the prediction error of

the simple average can deteriorate very quickly. However, using the fusion learning

procedure described in Section 2.2, the prediction properties described in Theorems

3 or 4 are automatically guaranteed and the procedure will yield better performance

than simple average. We summarize this property in Corollary 1 and provide a brief

argument in the Appendix B.4.

Corollary 1. Assume the number of models and the sample size satisfy n >> N4M−2+

N7M−4, where M is the number of misspecified models. Regardless the main model is

correct or not, under Assumptions 1-5 and Assumption 7, the risk of the fusion learn-

ing procedure in Section 2.2 is smaller than the risk associated with simple average

to the first order.

In Appendix B.5, we further explore the variance of the averaged prediction Ŷ (ŵ)

for both the misspecified and correct main model cases, and establish that the variance

of FLP, i.e. var{Ŷ (ŵ)}, converges to zero under suitable conditions. We note that

for the future observation Y , the prediction variance var{Ŷ (ŵ)− Y } = var{Ŷ (ŵ)}+
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var(Y ), thus, our prediction is optimal in the sense that the only variability is the

inherent variability associated with the randomness of the future observation.

2.4 Simulation Examples

2.4.1 Simulation Designs

We first consider linear regression models. We generate data from

fj(Yji,Xji,Z[j]
i ,β,αj) = 1

σ
√

2π
e−{Yji−XT

jiβ−(1,Z[j]
i

T
)αj}2/2σ2

, (6)

for i = 1, . . . , nj and j = 1, . . . , N , where Yji is a continuous response variable, β =

(0.5, 0.6,−0.61,−0.48)T, σ = 0.5, and (XT
ji,Z

[j]
i

T
)T is generated from a 9-dimensional

multivariate normal distribution with mean zero and correlation structure as AR(1)

with correlation coefficient 0.5 and variance 4. We first setN = 3, n1 = 100, n2 = 200,

n3 = 100, α1 = (0.4, 0.6, 0.5,−0.30,−0.25)T, α2 = (0.49, 0.08, 0.09,−0.04,−0.06, 2.5)T,

and α3 = (0.51, 0.07, 0.1,−0.05,−0.04)T. Note that here α2 is a 6 dimensional vec-

tor, while α1 and α3 are 5 dimensional vectors. When we estimate β and α2 of the

helper model 2, we always omit the last component of Z[2]
i

T
, so the helper model 2 is

misspecified. When fitting the main model 1 and the helper model 3, we do not omit

any component, so the main model 1 and the helper model 3 is correctly specified.

This is our Design C1.1 (C means the main model is correctly specified).

When generating data for Design C1.2, the only difference from C1.1 is that in

C1.2, n1 = 500, n2 = 400 and n3 = 300.

When generating data for Design M1.1 (M means that the main model is mis-

specified), the difference between C1.1 and M1.1 is that in addition to misspecifying

the helper model 2 as in C1.1, we now also misspecify the main model 1. Specifically,

now we let α1 = (0.4, 0.6, 0.5,−0.30,−0.25, 0.1)T, but when we estimate β and α1 in

the main model 1, we omit the last component of Z[1]
i

T
. When the dimension of αj is

changed, we also change the dimension of (XT
ji,Z

[j]
i

T
)T when generating the dataset.
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For Design M1.2, the sample sizes are n1 = 500, n2 = 400 and n3 = 300, and the

other setting is the same as those of Design M1.1.

Next, we consider to increase the number of helper models. In Design C1.3, we still

generate data from (6), but now we let N = 7, n1 = 100, n2 = 200, n3 = 100, n4 =

200, n5 = 100, n6 = 200, and n7 = 100. While we keep β as (0.5, 0.6,−0.61,−0.48)T,

we let α1 = (0.4, 0.6, 0.5,−0.30,−0.25)T, α2 = (0.49, 0.08, 0.09,−0.04,−0.06, 2.5)T,

α3 = (0.51, 0.07, 0.1,−0.05,−0.04)T, α4 = (0.02, 0.05,−0.03,−0.01, 2.5)T, α5 =

(0.03,−0.07, 0.06, 0.02)T, α6 = (−0.85, 2.5)T, α7 = −0.87. Note that now α1, α3

and α5 are 5-dimensional vectors, but α2 and α4 are 6-dimensional vectors. When

we estimate (βT,αT
2 )T of the helper model 2 and (βT,αT

4 )T of the helper model 4,

we omit the last component of Z[2]
i and Z[4]

i respectively, so the helper model 2 and

the helper model 4 are misspecified. In addition, when we estimate (βT,αT
6 )T of

the helper model 6, we omit the last component of Z[6]
i , thus the helper model 6 is

misspecified as well. In summary, in Design C1.3, we have the main model correctly

specified, three helper models correctly specified, and three helper models misspeci-

fied,

Regarding Design C1.4, the difference between C1.3 and C1.4 is that we increased

the sample sizes to n1 = 500, n2 = 400, n3 = 300, n4 = 400, n5 = 300, n6 = 400, and

n7 = 300.

For Design M1.3, the difference between C1.3 and M1.3 is that we misspecify the

main model 1 in the same way as we did in M1.1.

In Design M1.4, the difference between M1.3 and M1.4 is that we increase the

sample sizes to n1 = 500, n2 = 400, n3 = 300, n4 = 400, n5 = 300, n6 = 400, and

n7 = 300.

We further consider logistic models. We generate data from

fj(Yji,Xji,Z[j]
i ,β,αj) =

exp[Yji{XT
jiβ + (1,Z[j]

i

T
)Tαj}]

1 + exp{XT
jiβ + (1,Z[j]

i

T
)Tαj}

, (7)
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for i = 1, · · · , nj and j = 1, . . . , N , where Yji = 0 or 1. Then Designs C2.1, C2.2,

M2.1, M2.2, C2.3, C2.4, M2.3 and M2.4 are the same as Designs C1.1, C1.2, M1.1,

M1.2, C1.3, C1.4, M1.3 and M1.4 respectively, except that instead of generating data

from (6), now we generate data from (7).

In addition, to demonstrate the flexibility of our method, we consider mixed helper

models under two different settings of the main model, which we name Designs C1.5,

C1.6, M1.5, M1.6 and Designs C2.5, C2.6, M2.5, M2.6. Designs C1.5, C1.6, M1.5,

M1.6 are the same as Designs C1.3, C1.4, M1.3, M1.4 respectively, except that for

j = 2, 3, we generate data from (7) instead of (6). So the main model and four helper

models are linear models and the other two helper models are logistic. Design C2.5,

C2.6, M2.5, M2.6 are the same as Design C2.3, C2.4, M2.3, M2.4 respectively, except

that for j = 2, 3, we generate data from (6) instead of (7). So the main model and

four helper models are logistic and the other two helper models are linear.

2.4.2 Comparison Methods

For comparison, in addition to our FLP method, we also implement six addi-

tional methods. The first comparison method is the simple average method, where

we follow the same procedure as in the proposed method, except that we use an

equal weight wi = 1/N , instead of using crossvalidation to select a set of weights.

The second comparison method is named “MLE main” method, where we ignore all

helper models, and simply perform the standard prediction incorporating the MLE

estimated parameters from the main model. The third comparison method is named

the “MLE all” method, where we estimate parameters by maximizing the composite

log-likelihood

l(β,α1, . . . ,αN) =
n∑
i=1

N∑
j=1

log{fj(Yji,Xji,Z[j]
i ,β,αj)}.

Note that in the “MLE all” method, we use the helper models in the corresponding

designs. The fourth and fifth comparison methods are respectively AIC and BIC
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based model averaging methods, termed as smoothed AIC and smoothed BIC re-

spectively (S. T. Buckland & Augustin 1997, Claeskens & Hjort 2008), where the

averaging weight is respectively set as ŵj = exp(−AICj/2)/{∑j exp(−AICj/2)} and

ŵj = exp(−BICj/2)/{∑j exp(−BICj/2)}. Finally, the sixth method is a meta-

analysis based prediction, where we first obtain the meta-analysis based estimator

of β, and then combine with α̂1 and γ̂1 to calculate the prediction for a new obser-

vation in the main population.

2.4.3 Simulation Results

We compare all methods using a test data set of 500 observations generated

from the main model. Specifically, we calculate the mean prediction error R(w) =

n−1
new

∑nnew
i=1 {Ŷi(w) − E(Y |Xi,Z[1]

i )}2 on the testing data, where nnew = 500. We re-

peat the procedure for 100 times. The resulting average R(w) values are provided

in Tables 2.1 and 2.4. The “Gain” column in each table is the percentage of average

R(w) decreases when comparing our FLP method with one of the other six methods

that has the smallest average R(w).

In the last columns of Tables 2.1 and 2.6, we report the average τ̂ ’s for the designs

where the main model is correctly specified. It is seen that the average τ̂ ’s are all

above 0.8 except C2.5 in Table 2.6 and when the sample sizes are larger, they are closer

to 1. This performance verifies the consistency shown in Theorem 4. The τ̂ values

of the designs with misspecified main models are not reported in the last columns of

the tables, because there is no guarantee that the fusion learning procedure will tend

to put specified weights on any models when the main model is misspecified.

When the main model is misspecified, from the results in the tables, we see that

our FLP method yields the smallest average R(w) compared to all the competitor

methods, reflecting the theoretical result in Theorem 3. When the main model is

correctly specified, our FLP method still has advantage. The possible reason is that
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our FLP method asymptotically puts zero weights on the misspecified helper models,

but the simple average, “MLE all”, the smoothed AIC/BIC and the meta-analysis

methods depend on the misspecified helper models substantially and the “MLE main”

does not use any information from correctly specified helper models.

For smaller simple size or larger N , we find that the gain from our FLP method

is more significant. We also find that the gain under logistic regression is more

significant than that in linear regression.

Last, we inspect Tables 2.5 and 2.6. We can see that our FLP method still has

obvious advantages over other methods. Similar to the previous findings, when sample

size is smaller, the gain of our FLP method is more significant. For C-type designs,

when the sample sizes are larger, the average τ ’s are closer to 1.

2.5 Real Data Example

We analyze the data “default of credit card clients” of an important bank in

Taiwan, publicly available at the UCI machine learning repository. We consider six

populations of clients, with credit scores equal to 10k, 110k, 210k, 310k, 410k, and

≥ 510k respectively. The sizes of the samples from the six populations are respectively

493, 588, 730, 272, 78 and 206.

The response variable is Y , with Yji = 1 if the ith client of the jth population

defaulted, and Yji=0 otherwise. The covariates Xji1, · · · , Xji5 are the payment ratios

of the previous five months, which have numerical values between 0 and 1. The

payment ratio is calculated as the payment amount of this month divided by the

bill statement balance posted last month. If the bill statement balance is less than

or equal to 0, or the payment amount is greater than the bill statement balance,

then the payment ratio is set as 1. Other covariates include gender Zji1, with Zji1=1

representing male and Zji1=0 female, education level Zij2, with Zji2=1 indicating
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university education or above and Zji2=0 otherwise, marital status Zji3, with Zji3=1

if married and Zji3=0 otherwise, and age Zji4.

We analyze the data set with the following logistic model:

fj(Yji,Xji,Z[j]
i ,β,αj) =

exp[Yji{XT
jiβ + (1,Z[j]

i

T
)Tαj}]

1 + exp{XT
jiβ + (1,Z[j]

i

T
)Tαj}

, j = 1, ·, 6, i = 1, · · · , nj. (8)

We consider rotating the role of the six models. That is, each model will have one

opportunity to serve as the main model while the other five models will serve as

the helper models, so we have six settings. In the jth setting, we use the model

associated with jth population as the main model. Table 2.7 shows the weights by

our FLP method under all settings. It is interesting that in most settings, the weights

of the helper models are larger than those of the main models, which means the helper

models indeed help the predictions.

To check the performance of our FLP method, we randomly divide the data from

the population of the main model into two parts with equal sizes. We repeat the

procedure 100 times, and calculate the prediction errors for the methods compared

in the simulation section, with prediction error calculated as

Prediction Errorj = 1
100

1
bnj/2c

100∑
r=1

bnj/2c∑
i=1

(
Ŷ
{r}
ji − Y

{r}
ji

)2
, j = 1, . . . , 6, (9)

where {r} denotes the rth replication and nj is the size of the sample from the jth

population. Since

E
(
Ŷji − Yji

)2
= E{Ŷji − E(Yji|Xji,Z[j]

i )}2 + E(Y 2
ji)− E2(Yji),

the above prediction error also measures the prediction risk E{Ŷji−E(Yji|Xji,Z[j]
i )}2.

Figure 2.1 shows the prediction errors under the six settings. First, we can see that

our FLP method performs the most robust in all six settings. In the third, and

last settings, our FLP method outperforms the simple average method and in the

remaining four settings, they perform similarly. The “MLE main” method performs

worse than FLP in all settings, possibly because it does not use information from
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helper models. The “MLE all” method is also generally worse than FLP, where in the

first, fifth and sixth settings, it performs much worse than FLP, and in the remaining,

it performs similarly as FLP. The smoothed AIC and BIC methods have very similar

performance, and they perform worse than FLP in the third, fifth and sixth settings,

while have similar performance as FLP in the remaining settings. Finally, the meta-

analysis method is in general worse than FLP as well, except in the second and fourth

settings, where it performs similarly as FLP.

2.6 Concluding Remarks

In the context that a model of main research interest shares partial parameters

with several other models, we have developed a fusion learning procedure to improve

prediction for a new observation from the main model. The procedure achieves the

optimal prediction risk when the main model is misspecified; and if the main model

is correctly specified, the sum of weights assigned to the main model and the correct

helper models converges to one. Numerical examples show that the procedure has

excellent finite sample properties compared with the simple averaging method, the

MLE using the main model only and the MLE using all models.

Let Y (−i)
1i,j be the prediction of Y1i with Y1i deleted using the jth model, Y(−i)

1i =

(Y (−i)
1i,1 , . . . , Y

(−i)
1i,N )T, l be anN×1 vector with ones, and H = ∑n1

i=1(Y(−i)
1i −Y1il)(Y(−i)

1i −

Y1il)T/n1. Then, by
∑N
j=1 wj = 1, we have

CV (w) = 1
n1

n1∑
i=1
{Ŷ (−i)

1i (w)− Y1i}2 = 1
n1

n1∑
i=1
{wT(Y(−i)

1i − Y1il)}2

= wT 1
n1

n1∑
i=1

(Y(−i)
1i − Y1il)(Y(−i)

1i − Y1il)Tw = wTHw,

so minimizing CV (w) is a quadratic programming and can be solved very quickly.

As most of the literature on optimal model averaging, we did not study the limiting

distribution of the resulting average prediction because of the difficulties produced
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by the random weights and possible model misspecification. Using bootstrap may be

a feasible way to solve this problem and this certainly warrants future work.
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Table 2.1: N = 3 and all models are linear. FLP is the proposed method. Sim is the
Simple Average Method. MLEm is the MLE main estimator. MLEa is the MLE all
estimator. sAIC is the smoothed AIC method. sBIC is the smoothed BIC method.
MT is the meta-analysis method. S and L in the Si column indicates the smaller and
larger sample size in that design. D column indicates the specific simulation design
in use.

Average R(w)×102 Gain Mean τ̂
Si D FLP Sim MLEm MLEa sAIC sBIC MT
S C1.1 2.25 6.12 2.55 5.22 2.68 2.68 6.12 13.30% 0.96
L C1.2 0.41 2.64 0.45 0.73 0.60 0.60 2.64 7.69% 0.97
S M1.1 5.39 9.23 5.80 8.84 5.88 5.88 9.23 7.68% −
L M1.2 3.52 5.71 3.54 3.84 3.68 3.68 5.71 0.81% −

Table 2.2: N = 7 and all models are linear. FLP is the proposed method. Sim is the
Simple Average Method. MLEm is the MLE main estimator. MLEa is the MLE all
estimator. sAIC is the smoothed AIC method. sBIC is the smoothed BIC method.
MT is the meta-analysis method. S and L in the Si column indicates the smaller and
larger sample size in that design. D column indicates the specific simulation design
in use.

Average R(w)×102 Gain Mean τ̂
Si D FLP Sim MLEm MLEa sAIC sBIC MT
S C1.3 2.10 4.30 2.50 2.92 2.48 2.47 4.30 18.02% 0.82
L C1.4 0.39 1.71 0.45 0.42 0.60 0.62 1.71 9.41% 0.89
S M1.3 5.37 7.42 5.88 6.12 5.67 5.64 7.42 5.04% −
L M1.4 3.44 4.74 3.51 3.55 3.65 3.66 4.74 2.11% −

Table 2.3: N = 3 and all models are logistic. FLP is the proposed method. Sim is the
Simple Average Method. MLEm is the MLE main estimator. MLEa is the MLE all
estimator. sAIC is the smoothed AIC method. sBIC is the smoothed BIC method.
MT is the meta-analysis method. S and L in the Si column indicates the smaller and
larger sample size in that design. D column indicates the specific simulation design
in use.

Average R(w)×102 Gain Mean τ̂
Si D FLP Sim MLEm MLEa sAIC sBIC MT
S C2.1 1.57 1.82 1.93 3.53 2.05 2.05 1.89 15.74% 0.87
L C2.2 0.33 0.72 0.36 1.13 0.58 0.58 0.64 9.50% 0.94
S M2.1 1.60 1.81 1.93 3.48 2.11 2.11 1.86 13.18% −
L M2.2 0.39 0.76 0.42 1.15 0.64 0.64 0.68 7.30% −



Table 2.4: N = 7 and all models are logistic. FLP is the proposed method. Sim is the
Simple Average Method. MLEm is the MLE main estimator. MLEa is the MLE all
estimator. sAIC is the smoothed AIC method. sBIC is the smoothed BIC method.
MT is the meta-analysis method. S and L in the Si column indicates the smaller and
larger sample size in that design. D column indicates the specific simulation design
in use.

Average R(w)×102 Gain Mean τ̂
Si D FLP Sim MLEm MLEa sAIC sBIC MT
S C2.3 1.39 2.04 1.83 3.77 2.01 1.90 2.00 32.11% 0.89
L C2.4 0.29 1.02 0.33 1.69 0.58 0.56 0.89 16.16% 0.92
S M2.3 1.58 2.32 2.00 4.06 2.26 2.15 2.31 26.39% −
L M2.4 0.37 1.09 0.42 1.83 0.65 0.63 0.97 14.58% −

Table 2.5: N = 7, main model is linear, four helper models are linear and two helper
models are logistic. FLP is the proposed method. Sim is the Simple Average Method.
MLEm is the MLE main estimator. MLEa is the MLE all estimator. sAIC is the
smoothed AIC method. sBIC is the smoothed BIC method. MT is the meta-analysis
method. S and L in the Si column indicates the smaller and larger sample size in
that design. D column indicates the specific simulation design in use.

Average R(w)×102 Gain Mean τ̂
Si D FLP Sim MLEm MLEa sAIC sBIC MT
S C1.5 2.19 8.06 2.61 3.44 83.90 83.39 8.06 19% 0.83
L C1.6 0.43 5.40 0.47 0.64 15.85 15.85 5.40 8% 0.91
S M1.5 5.32 11.13 5.83 6.02 87.14 86.63 11.13 9% −
L M1.6 3.46 8.41 3.50 3.56 18.85 18.85 8.41 1% −

Table 2.6: N = 7, main model is logistic, four helper models are logistic and two
helper models are linear. FLP is the proposed method. Sim is the Simple Average
Method. MLEm is the MLE main estimator. MLEa is the MLE all estimator. sAIC
is the smoothed AIC method. sBIC is the smoothed BIC method. MT is the meta-
analysis method. S and L in the Si column indicates the smaller and larger sample
size in that design. D column indicates the specific simulation design in use.

Average R(w)×102 Gain Mean τ̂
Si D FLP Sim MLEm MLEa sAIC sBIC MT
S C2.5 1.50 1.91 1.93 1.96 2.08 2.07 1.95 27.50% 0.76
L C2.6 0.25 0.62 0.30 0.34 0.53 0.52 0.55 23.10% 0.83
S M2.5 1.60 1.98 2.03 2.02 2.17 2.16 2.03 23.57% −
L M2.6 0.32 0.68 0.37 0.43 0.6 0.59 0.61 18.32% −
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Table 2.7: Weights obtained by our FLP method in the data analysis. In Setting j,
the main model is Model j.

Weights of the main and helper models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Setting 1 0.200 0.013 0.185 0.002 0.506 0.093
Setting 2 0.052 0.048 0.405 0.288 0.199 0.008
Setting 3 0.231 0.686 0.002 0.075 0.003 0.004
Setting 4 0.005 0.167 0.050 0.441 0.042 0.294
Setting 5 0.067 0.051 0.395 0.040 0.027 0.420
Setting 6 0.397 0.091 0.420 0 0.012 0.080
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Setting 1 Setting 2

Setting 3 Setting 4

Setting 5 Setting 6

Figure 2.1: Boxplot of prediction errors in the real data example. In Setting j, the
main model is Model j which is associated with the jth population.
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Chapter 3

A Spline Assisted Pseudo-Likelihood Approach

to Studying Binary Outcomes with Two-Phase

Data.

3.1 Introduction

In general, for studying the association between a binary outcome and a set of

covariates, it is common that data for some covariates can only be made available

for a subset of subjects. The resultant incomplete data structure is usually described

using a two phase sampling scheme (Neyman 1938, JE. 1982), where the outcome

and the completely observed covariates are collected on all subjects at phase I and

the remaining covariates are collected on a subset at phase II.

Inverse Probability Weighted estimator(IPW) requires a model for missingness

mechanism and can be augmented to achieve double robustness. Pseudo-likelihood

approach Breslow & Cain (1988) can be more efficient than IPW but requires a

consistent estimate of missingness probability, therefore is most useful when phase I

covariates are discrete so that a nonparametric estimate of the missingness probability

is feasible. The existing MLEs either require that phase I covariates be discrete

(Breslow & Holubkov 1997, Scott & Wild 1997), or need to limit the number of phase

I covariates Tao et al. (2017).
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3.2 Our Proposed Pseudo-Likelihood Method

Let Y denote the binary outcome variable with Y = 1 indicating cases and Y = 0

controls. Let X denote phase I covariates that are available for all subjects, and Z

denote phase II covariates that are available only for a subset of subjects. It is of

interest to fit a logistic regression model for describing the relationship between Y

and all covariates X and Z,

logit pr(Y = 1|X,Z) = XTβ1 + ZTβ2, (1)

where β1 and β2 are the odd ratio(OR) parameters of interest. Note that, to simplify

notation, a variable with value equal to one is implicitly included in X, with the

corresponding regression coefficient in β1 being the intercept parameter. Let β denote

the vector of all parameters (βT
1 ,β

T
2 )T.

3.2.1 Data and Setup

The observed data is described as follows. Let R be a binary variable indicating

whether Z is observed or not. When R = 1, the complete data (Y,X,Z) is observed,

but only (Y,X) is observed when R = 0. The following scenarios are of interest:

(i) (Y,X) is available for a cross-sectional sample of N subjects, and Z is available

on a subset of m (m ≤ N) subjects; Missing completely at random: p(R =

1|Y,X,Z) = π which is a constant;

(ii) (Y,X) is available for a cross-sectional sample of N subjects, and Z is available

on a subset of m (m ≤ N) subjects; Missing at random: p(R = 1|Y,X,Z) =

π(Y,X);

(iii) (Y,X) is available for a case-control sample of N1 cases and N0 controls, N =

N1 +N0. Z is available on a subset of m1 (m1 ≤ N1) cases and m0 (m0 ≤ N0)

controls; m = m1 + m0. Missing completely at random: p(R = 1|Y,X,Z) = π
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where π is a constant, or p(R = 1|Y = 1,X,Z) = π1, p(R = 1|Y = 0,X,Z) =

π0, where π1 and π0 are constants and can be different;

(iv) (Y,X) is available for a case-control sample of N1 cases and N0 controls, N =

N1 +N0. Z is available on a subset of m1 (m1 ≤ N1) cases and m0 (m0 ≤ N0)

controls; m = m1 +m0. Missing at random: p(R = 1|Y,X,Z) = π(Y,X).

Note that for cross-sectional sample, the problems in (i) and (ii) are the familiar

missing covariate problem and are well studied. The efficient estimator is known to

be the AIPW. In (iii), the p(R = 1|Y,X,Z) = π case is MCAR while the other two

are actually MAR since the model depends on Y . In analyzing the problem, we can

work with the general MAR model in (iv). Details on considerations of π(Y,X) will

be described below.

3.2.2 Our Idea of a Pseudo-Likelihood Method with Improved Efficiency

We proposed “goodness-of-fit” (GOF) and “balanced goodness-of-fit” (BGOF)

two-phase sampling designs for selecting phase II subjects from a cross-sectional phase

I sample, and found that BGOF improved efficiency for estimating odds ratio param-

eters compared to the case-control and balanced designs for both Phase I and Phase

II covariates. These designs are built upon the difference between Y and its predic-

tion based on an existing model linking Y and phase I variables X, P e(Y = 1|X),

S(y,x) = |y−P e(Y = 1|X)|. For GOF, selected into phase II is based on a bernoulli

experiment with success rate min{1, c1S(1, x1)} for a case and min{1, c0S(0, x1)} for

a control, where c1 and c0 are two positive constants selected for achieving a targeted

phase II sample size. BGOF performed sampling in two steps, generating a GOF

sample first that is larger than the targeted sample size and adding an additional

step of BD sampling to achieve the targeted sample size. To set the terminology, we
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point out a simple relation

logit pr(Y = 1|X,Z,R = 1)

= log{P (Y = 1|X,Z, R = 1)/P (Y = 0|X,Z, R = 1)}

= logit pr(Y = 1|X,Z) + log{P (R = 1|Y = 1,X)/P (R = 1|Y = 0,X)}.

Thus, the difference between logit pr(Y = 1|X,Z,R = 1) and logit pr(Y = 1|X,Z)

is

o(x) ≡ log{P (R = 1|Y = 1,X)/P (R = 1|Y = 0,X)}, (2)

which is termed an offset. This relation shows that the phase two data can be

treated as if it is the whole data as long as we take into account the offset. For

example, pseudo-likelihood methods were proposed to analyze GOF/BGOF data,

where estimates are obtained by using standard logistic regression analysis software

with inclusion of an offset term to adjust for sampling bias. For GOF, this offset term

is written as

o(x) = log min{1, c1S(1,x)} − log min{1, c0S(0,x)}.

For BGOF, the offset term equals o(x) + log(π1l/π0l), where πyl is the fraction of

subjects sampled from the GOF cell with Y = y and stratum L = l.

This sampling design motivates the current work. Our rational for the superior

efficiency of GOF/BGOF was that subjects lack-of-fit as measured by pearson resid-

uals have a higher chance of being selected, and the lack-of-fit indicates that Z is

needed in the external model to bring the subject back to fit. In this sense, data on

Z for these subjects are more informative for association analysis. Without knowing

how missingness for Z happened except for MCAR or MAR, we conjecture that by

bringing into estimation information on the “lack-of-fit” of phase II subjects may help

improve efficiency. Our proposed method is described as follows.
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3.2.3 A Novel Pseudo-Likelihood Method when Phase I data is

Case-Control and Z is missing MAR

(i) Fit a preliminary model between Y and X using phase I data with J strata, say

logistic regression model pI(Y = 1|X; γ̂). Superscript “I" indicates that phase I

data was used to fit this model;

(ii) For cases, using the missingness indicator R as the outcome variable, fit a model

logit pr(R = 1|Y = 1,X) = αT
1 Xr +

J∑
j=1

θ1jI(X ∈ Sj) + f1{pI(Y = 0|X; γ̂)},

where Xr is a subset of X that is relevant to efficiency gain, which would

often include rare exposures, Sj corresponds to the jth stratum, and f1 is an

unspecified smooth increasing function which will be estimated through B-spline

approximation.

(iii) Similarly, for controls, using the missingness indicator R as the outcome vari-

able, fit a model

logit pr(R = 1|Y = 0,X) = αT
0 Xr +

J∑
j=1

θ0jI(X ∈ Sj) + f0{pI(Y = 1|X; γ̂)},

where Xr, Sj are the same as before, f0 is an unspecified smooth increasing

function which will be estimated through B-spline approximation.

Here, by including the strata information into our missingness model, we im-

proved the efficiency.

(iv) The pseudo-likelihood estimating equation is written as

U(β) =
N∑
i=1

Ri(XT
i ,ZT

i )T{Yi − pr(Yi = 1|Xi,Zi,Ri = 1)},
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where

logit pr(Yi = 1|Xi,Zi,Ri = 1)

= XT
i β1 + ZT

i β2 + log{expit(α̂T
1 Xri +

J∑
j=1

θ̂1jI(Xi ∈ Sj) + f̂1{pI(Yi = 0|Xi; γ̂)})}

−log{expit(α̂T
0 Xri +

J∑
j=1

θ̂0jI(Xi ∈ Sj) + f̂0{pI(Yi = 1|Xi; γ̂)})}

We will show that there exists a unique solution to the pseudo-likelihood estimat-

ing equation, the solution is consistent, and asymptotically normally distributed. We

need to deal with (1) the internal estimation of γ parameters (in this sense, data is

used twice) and (2) the estimated smoothers of f1 and f0.

3.3 Competing Approaches

We consider three competing methods implemented in the R package “OSdesign”.

The first method, Maximum-Likelihood method(ML), maximizes the following

pseudo-loglikehood function:

l(β) =
N∑
i=1

Rilog pr(Yi = yi|Xi,Zi, Ri = 1; β)

=
N∑
i=1

Rilog
pr(Ri = 1|Yi = yi,Xi)pr(Yi = yi|Xi,Zi; β)∑1
y=0 pr(Ri = 1|Yi = y,Xi)pr(Yi = y|Xi,Zi; β)

, (3)

where

pr(Yi = 1|Xi,Zi; β) = exp(βT
1 Xi + βT

2 Zi)/{1 + exp(βT
1 Xi + βT

2 Zi)}.

We approximate pr(Ri = 1|Yi = 0,Xi) based on stratifying the data according to

the covariates Xi. Let the strata description be Xi ∈ Sj, for j = 1, · · · , J and

i = 1, · · · , N . We approximate pr(Ri = 1|Yi = 0,Xi,Xi ∈ Sj) using µ0j, where

µ0j = (n0j − γ0j)/(N0j − γ0j),

and

γ0j = n0j −
N∑
i=1

RiI(Xi ∈ Sj)pr(Yi = 0|Xi,Zi; β).
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Similarly, we also approximate pr(Ri = 1|Yi = 1,Xi) based on stratifying the data

according to the covariates Xi. We approximate pr(Ri = 1|Yi = 1,Xi,Xi ∈ Sj) using

µ1j, where

µ1j = (n1j − γ1j)/(N1j − γ1j),

and

γ1j = n1j −
N∑
i=1

RiI(Xi ∈ Sj)pr(Yi = 1|Xi,Zi; β).

Here, n0j = ∑N
i=1 I(Yi = 0)I(Xi ∈ Sj)Ri, n1j = ∑N

i=1 I(Yi = 1)I(Xi ∈ Sj)Ri. It

is easy to see that γ0j approximates n0j − (n0j + n1j)pr(Y = 0 | R = 1,Xi ∈

Sj), i.e. the difference of the number of observed Y = 0 (n0j) and the expected

Y = 0 ( (n0j + n1j)pr(Y = 0 | R = 1,Xi ∈ Sj)) in stratum j of the complete

sample. Similarly, γ1j approximates n1j − (n0j + n1j)pr(Y = 1 | R = 1,Xi ∈ Sj),

i.e. the difference of the number of observed Y = 1 (n1j) and the expected Y = 1 (

(n0j + n1j)pr(Y = 1 | R = 1,Xi ∈ Sj)) in stratum j of the complete sample. Thus,

denoting µkj = (nkj − γkj)/(Nkj − γkj) for k = 0, 1, j = 1, · · · , J , the approximate

function we maximize is written as

l(β) ≈
N∑
i=1

Rilog


J∑
j=1

I(Xi ∈ Sj)µyijpr(Yi = yi|Xi,Zi; β)
µ1jpr(Yi = 1|Xi,Zi; β) + µ0jpr(Yi = 0|Xi,Zi; β)

 .
For implementation, we use iteration. Firstly, we set γ(0)

0j = γ
(0)
1j = 0, hence

µ
(0)
0j = n0j/N0j, µ(0)

1j = n1j/N1j and we maximize

L(0)(β) =
N∑
i=1

Rilog


J∑
j=1

I(Xi ∈ Sj)µ(0)
yijpr(Yi = yi|Xi,Zi; β)

µ
(0)
1j pr(Y = 1|Xi,Zi; β) + µ

(0)
0j pr(Y = 0|Xi,Zi; β)

 .
to obtain β̂(0). Then we plug β̂(0) to obtain

γ
(1)
0j = n0j −

N∑
i=1

pr(Yi = 0|Xi,Zi; β̂(0))RiI(Xi ∈ Sj),

γ
(1)
1j = n1j −

N∑
i=1

pr(Yi = 1|Xi,Zi; β̂(0))RiI(Xi ∈ Sj),
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and form µ
(1)
0j = (n0j − γ(1)

0j )/(N0j − γ(1)
0j ), µ(1)

1j = (n1j − γ(1)
1j )/(N1j − γ(1)

1j ). We iterate

this process until the difference between γ(a+1)
0j and γ(a)

0j , γ
(a+1)
1j and γ(a)

1j is small enough

to be considered as convergence for all j = 1, . . . , J .

The second method is a Pseudo-Likelihood method(PL), where we aim at maxi-

mizing the same loglikelihood function in (3), except that we approximate the proba-

bilitis pr(Ri = 1 | Yi, Xi) differently from ML. The approximation is based on stratify

the data according to the covariates Xi. Let the strata description be Xi ∈ Sj, for

j = 1, . . . , J and i = 1, . . . , N . Based on

pr(Ri = 1|Yi = 1,Xi ∈ Sj) = pr(Yi = 1,Xi ∈ Sj|Ri = 1)pr(Ri = 1)
pr(Xi ∈ Sj | Yi = 1)pr(Yi = 1)

≈
∑n
i=1 I(Xi ∈ Sj)I(Yi = 1)/n(n/N)

π1
∑N
i=1 I(Xi ∈ Sj)I(Yi = 1)/{∑N

i=1 I(Yi = 1)}

and

pr(Ri = 1|Yi = 0,Xi ∈ Sj) = pr(Yi = 0,Xi ∈ Sj|Ri = 1)pr(Ri = 1)
pr(Xi ∈ Sj, Yi = 0)

≈
∑n
i=1 I(Xi ∈ Sj)I(Yi = 0)/n(n/N)

π0
∑N
i=1 I(Xi ∈ Sj)I(Yi = 0)/{∑N

i=1 I(Yi = 0)}
,

we approximate the offset defined in (2) using

o(Xi ∈ Sj)

≈ logpr(Ri = 1|Yi = 1,Xi ∈ Sj)− log pr(Ri = 1|Yi = 0,Xi ∈ Sj)

≈ log
[ ∑n

i=1 I(Xi ∈ Sj)I(Yi = 1)/n(n/N)
π1
∑N
i=1 I(Xi ∈ Sj)I(Yi = 1)/{∑N

i=1 I(Yi = 1)}

]

−log
[ ∑n

i=1 I(Xi ∈ Sj)I(Yi = 0)/n(n/N)
π0
∑N
i=1 I(Xi ∈ Sj)I(Yi = 0)/{∑N

i=1 I(Yi = 0)}

]

= log{
n∑
i=1

I(Xi ∈ Sj)I(Yi = 1)} − log{
N∑
i=1

I(Xi ∈ Sj)I(Yi = 1)}

+log
N∑
i=1
{I(Yi = 1)} − logπ1 − log{

n∑
i=1

I(Xi ∈ Sj)I(Yi = 0)}

+log{
N∑
i=1

I(Xi ∈ Sj)I(Yi = 0)} − log
N∑
i=1
{I(Yi = 0)}+ logπ0.
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Note that π0 = 1 − π1, so we can view o(Xi ∈ Sj) as a function of π1, written as

o(Xi ∈ Sj, π1). Thus, the likelihood in (3) is approximated as

l(β) ≈
N∑
i=1

Rilog
exp{βT

1 Xi + βT
2 Zi + o(Xi ∈ Sj, π1)}

exp{βT
1 Xi + βT

2 Zi + o(Xi ∈ Sj, π1)}+ 1 , (4)

and we maximize it with respect to β, π1.

The third method, Weighted Likelihood method (WL), also known as Inverse

Probability Weighting(IPW), uses the inverse probabilities pr(Ri = 1 | Yi,Xi)−1 to

weigh the logistic regression loglikelihood functions computed based on the second

stage data. Specifically, we maximize

l(β) =
N∑
i=1

Rilogpr(Yi = 1|Xi,Zi)
pr(Ri = 1|Yi,Xi)

, (5)

where pr(Yi = 1|Xi,Zi) is exactly the same as (1), to obtain WL estimate of β. Here,

to form the weights, we also stratify the data, and for Xi ∈ Sj, we use

pr(Ri = 1 | Yi = 1,Xi) ≈
∑n
i=1 I(Xi ∈ Sj)I(Yi = 1)∑N
i=1 I(Xi ∈ Sj)I(Yi = 1)

,

pr(Ri = 1 | Yi = 0,Xi) ≈
∑n
i=1 I(Xi ∈ Sj)I(Yi = 0)∑N
i=1 I(Xi ∈ Sj)I(Yi = 0)

.

3.4 Asymptotic Property of Our Estimator

In the following, we consider the population from which the phase I data is ran-

domly extracted as the population of interest. Our goal is to estimate and make

inference of β̂ with respect to this population. Let pI(Y,X,γ) be a working model

of pr(Y | X) in the phase I data. Assumptions:

C1 There exists a γ∗ so that E{pr(Y | X)/pI(Y,X,γ∗)} is minimized.

C2 Among the diseased population, the true phase II sampling mechanism is pr(R =

1|Y = 1,X) = expit[m(X, τ1) + f1{pI(0,X,γ∗)}], and among the non-diseased

population, the true phase II sampling mechanism is pr(R = 1|Y = 0,X) =

expit[m(X)Tτ0+f0{pI(1,X,γ∗)}]. Here, f1(·), f0(·) are smooth increasing func-

tions with qth derivative.
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C3 The spline order r ≥ q.

C4 Denote the knots for f1(·) as t−r+1 = · · · = t0 = 0 < t1 < · · · < tM1 < 1 =

tM1+1 = · · · = tM1+r, where M1 is the number of interior knots and [0, 1] is

divided into M1 + 1 subintervals. M1 satisfies M1 →∞ and M−1
1 N1(logN1)1 →

∞ and M−1
1 N

1/2
1 → 0 as N1 → ∞. Similarly, denote the knots for f0(·) as

t−r+1 = · · · = t0 = 0 < t1 < · · · < tM0 < 1 = tM0+1 = · · · = tM0+r, where M0 is

the number of interior knots and [0, 1] is divided into M0 + 1 subintervals. M0

satisfies M0 →∞ and M−1
0 N0(logN0)−1 →∞ and M−1

0 N
1/2
0 → 0 as N0 →∞.

C5 Let h1p be the distance between the pth and (p + 1)th interior knots. There

exist two finite positive constants c, C so that cM−1
1 ≤ h1p ≤ CM−1

1 for all

p = r, . . . ,M1 + r. Similarly, let h0p be the distance between the pth and

(p + 1)th interior knots. There exist two finite positive constants c, C so that

cM−1
0 ≤ hp ≤ CM−1

0 for all p = r, . . . ,M0 + r.

Theorem 5. Assume the missingness model in (ii) and (iii) are correct. Then, under

conditions C1-C5, as sample sizes N1, N0 → ∞, the estimator β̂ obtained from (iv)

has the property that N1/2(β̂ − β0) → N(0,Σ) in distribution. Here, Σ is defined

this way:

Σ = D−1
β E [Uti(β, τ1, τ0,γ

∗) + Dγφi(γ∗)

−D1,ζ1Aζ1 {B1,ζ1,γφi(γ∗) + I(Yi = 1)St1i(τ1,γ
∗)}

−D0,ζ0Aζ0 {B0,ζ0,γφi(γ∗) + I(Yi = 0)St0i(τ0,γ
∗)}]⊗2 D−1

β
T
.

It is seen that Σ has the typical sandwich form with several components. The

components Dβ and Uti directly result from the estimating equation for β. The com-

ponent φi(γ∗) is caused by including the working model pI(Y,X,γ). If a completely

determined working model had been used this term will vanish. The components Aζ1
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and St1i are caused by the inclusion of the missingness model under Y = 1. Similarly

for Aζ0 and St0i. These terms will vanish if the covariate Z had been observed for

all subjects, and the parameters ζ1, ζ0 will simplify to τ1, τ0 if we had not incorpo-

rated a spline approximation. The terms B1,ζ1,γ and B0,ζ0,γ capture the effect on the

missingness estimation caused by estimating γ. Finally Dγ , D1,ζ1 , D0,ζ0 capture the

direct effect on the β estimation caused by estimating γ and the parameters in the

missingness models. The detailed proof of Theorem 5 is in Appendix C.1.

Corollary 2. If f1(·) and f0(·) are known instead of estimated via the spline approx-

imation, the variance in Theorem 5 simplifies to

Σ1 = D−1
β E [Uti(β, τ1, τ0,γ

∗) + Dγφi(γ∗) (6)

−D1,τ1Aτ1 {B1,τ1,γφi(γ∗) + I(Yi = 1)[I,0]St1i(τ1,γ
∗)}

−D0,τ0Aτ0 {B0,τ0,γφi(γ∗) + I(Yi = 0)[I,0]St0i(τ0,γ
∗)}]⊗2 D−1

β
T
,

where D1,τ1, Aτ1, B1,τ1,γ, D0,τ0, Aτ0, B0,τ0,γ are the submatrices in D1,ζ1, Aζ1, B0,ζ1,γ,

D0,ζ0, Aζ0, B0,ζ0,γ that do not involve δ1 or δ0, and [I,0] is a matrix conforming to

the corresponding dimensions.

3.5 Simulation

To demonstrate the performance of our method, we conduct extensive simulations.

In Simulation 1, our disease occurrence model is

pr(Yi = 1|Xi, Zi) = exp{(1,XT
i , Zi)β}/{1 + exp{(1,XT

i , Zi)β}. (7)

Here, Yi = 1 means cases and Yi = 0 means controls. Xi is a vector of length

7, whose first component Xi1 has a Bernoulli distribution with success probability

0.1, and for the remaining components Xi2 to Xi7, we first generate a intermediate

quantity Xtemp from a six-dimensional multivariate normal distribution with mean

zero and correlation structure as AR(1) with correlation coefficient 0.5 and variance
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1. Then we generate Zi from a standard normal distribution. Lastly, we generate

Xi2 to Xi7 using 0.05×Zi +Xtemp. This data generation mechanism allows us to add

dependency between X and Z, which is a common case in real data. We let the true

β be (−1.8, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55)T. We use (7) to generate N = 5000

observations to form the phase I data, where we only retain (Xi, Yi), i = 1, . . . , N and

masked out the Zi’s. We then select observations from the phase I data into the phase

II data as the following. We considered the simple random sampling method (SRS)

where the missingness model does not depend on Yi and Xi. Specifically, generated

missingness indicator Ri’s from a Bernoulli distribution with success probability 0.7.

If Ri = 1, we retain the Zi values hence the observation belongs to the phase II

sample. Otherwise, if Ri = 0, we do not observe Zi and the observation does not

belong to the phase II sample. Thus, about 70% of the observations of the phase I

sample is further selected into the phase II sample. The number of cases is about

24% in both phase I and phase II samples.

We implemented the proposed method as well as the competing methods ML,

PL, WL. In the implementation of the ML, PL, WL methods, for both the phase I

and phase II samples, we formed four strata, using the 0.25, 0.5 and 0.75 quantiles

of X2 from all the cases in the phase I samples. We report the bias and empirical

standard deviation of the estimated β̂ in Figure 3.1 and Table 3.1. When we inspect

the empirical standard deviation of each individual parameter, we found that our

method yields the smallest empirical standard deviation for 6 out of the 9 parameters.

In contrast, ML wins for only two parameter, WL wins for only one parameter, and

PL does not win in any parameter estimation. In addition, our method achieve the

smallest overall mean squared error (0.507), which is about 8.6% smaller than the

second smallest overall mean squared error (0.551) achieved by ML.

In Simulation 2, we use the Balanced Design (BD) to form phase II samples.

We keep the total sample size N = 5000, and use the same setting to generate the

56



phase I sample. To determine a selection mechanism for generating the phase II

sample, we split the phase I sample into four strata based on their X2 value, where

the separation points are the 0.25, 0.5 and 0.75 quartiles of X2 from all the cases

in the phase I samples. We then select all the cases in the phase I samples into the

phase II data. We further count the number of cases in each stratum, denoted as

cj, j = 1, . . . , 4, and we randomly select cj controls from the jth stratum of the phase

I control sample into the phase II sample, for j = 1, . . . , 4. Likewise, we implemented

the three competing methods in the same way as in Simulation 1 and the results

are in Figure 3.2 and Table 3.2. After we exam the empirical standard deviation of

each individual parameter, we found that our method yields the smallest empirical

standard deviation for 4 out of the 9 parameters. Meanwhile, PL wins only for two

parameter estimation, ML wins for three parameter estimation, and WL does not win

any parameter estimation. Additionally, our method produced the smallest overall

mean squared error (0.53), which is 15.3% smaller than the next smallest overall mean

squared error (6.1) produced by PL.

In Simulation 3, we consider Case-Control Design (CC) to construct the phase II

sample. The general simulation setting is the same as in Simulation 2, except that

we do not form four strata based on X2. Specifically, once we generate the phase

I sample, we denote the number of cases in the phase I samples as c1. We then

include all the c1 cases of the phase I sample into the phase II sample, and we further

randomly select c1 controls from all the controls in the phase I sample with equal

probability into the phase II sample. We analyze the data using the four competing

methods as we did in simulation 1, and report the results in Figure 3.3 and Table 3.3.

Reviewing the empirical standard deviation of each individual parameter, we find

that our method produces the smallest empirical standard deviation for 3 out of the

9 parameters. As a comparison, PL wins for 3 parameters, ML wins for 3 parameters.

WL does not win any parameters. We can also conclude that our method achieves
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the smallest overall mean squared error (0.59), which is 14.8% smaller than the next

smallest overall mean squared error (0.67) produced by PL.

In Simulation 4, we consider Goodness-of-Fit Based Design (GOF) for the phase

II sample. The data generation is similar to Simulation 3, except that the selection

probabilities of the controls into the phase II sample are no longer equal. To be

specific, we generate the phase I sample in the same way as we did in Simulation 3.

Let the number of cases in the phase I sample be c. We select all the c cases of the

phase I sample into the phase II sample. To further select the controls into the phase

II sample, we first adopt a working model

logitpre(Yi = 1|Xi,η) = XT
i η (8)

to approximate the relation between Yi and Xi. To obtain η, we generate a huge

data set from model (7) and fit the data using model (8) to obtain η̂. Among the

controls of the phase I data, we define S(xi) = pre(Yi = 1|xi, η̂). We then select c

observations from the control group with their selection probabilities proportional to

S(xi) to form the controls of the phase II sample. Results from the four methods are

in Figure 3.4 and Table 3.4. In this case, our method yields the smallest empirical

standard deviation for 8 out of 9 parameters. And only Pl wins for one parameters.

WL and ML do not win any parameters. In the meantime, our method generated

the smallest mean squared error (0.57), which is about 16.4% smaller than the next

smallest mean squared error (0.66) generated by PL method.

In Simulation 5, we further consider Balanced Goodness-of-Fit Based Design

(BGOF). We essentially adopt the Simulation 4 setting, except that the selection

of the phase II controls are performed separately in two strata. To be specific, the

phase I sample is generated the same as in Simulation 4, and all the cases in the

phase I sample are selected into the phase II sample. We further compute S(xi) as

we did in Simulation 4. We then use the 0.5 sample quantile of all the Xi2’s in the

phase I sample as the separation point to split the phase I sample into two strata. For
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j = 1, 2, let cj denote the number of cases in the jth stratum of the phase I sample.

We select cj observations from the controls of the jth stratum with their selection

probabilities proportional to S(xi) to form the controls of the phase II sample. The

results of the analysis are in Figure 3.5 and Table 3.5. Here, our method leads to

the smallest empirical standard deviation for 7 among the 9 parameters. The winner

for the remaining parameter is ML. Not surprisingly, our method also achieves the

smallest overall mean squared error (0.49), which is about 10.2% smaller than the

next smallest mean squared error (0.54) provided by the PL method.

The results from Simulations 1 to 5 indicate that our proposed method is by far

the most frequent winner in terms of estimation variability for different parameters,

and it always achieves the smallest overall mean squared error among all methods.

This is quite strong evidence of the superiority of our estimator. We also report

the estimated standard deviation and 95% coverage probability of our method in the

‘ESD’ and ‘CP’ row respectively. We could see that the estimated standard deviation

is very close to the empirical standard deviation, and the 95% coverage probability

fluctuates around its nominal level. We thus recommend implementing our proposed

method as a universally applicable method.

3.6 Concluding Remarks

In the context of modeling the binary outcome data set with incomplete data

structure, we have developed a pseudo-likelihood approach to improve the efficiency

for estimating the odds ratio parameters by incorporating the estimation information

on the “lack-of-fit” of the phase II subjects. We have also derived its asymptotic

properties. It has three major advantages over the existing methods dealing with the

similar data set. The first advantage is that unlike the existing methods, it does not

require to stratify the data set first if the phase I covariates are continuous, as the

existing methods could only handle discrete phase I covariates. This is a desirable
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feature as in the real world application, it is often difficult to determine how to stratify

the data set properly for the continuous phase I covariates. The second advantage

is that our method could also further improve the estimating efficiency via using the

strata information if the data set could be stratified. The third advantage is that our

method could handle relatively large number of continuous phase I covariates in a data

set with relatively small sample size, as our method does not require stratification

on that data set. In comparison, for the existing method, if the number of strata

is too much, it is difficult to guarantee each strata will have enough samples for a

valid estimation. The future work is to investigate how to handle high dimensional

phase I covariates using the similar idea. When the phase I covariates X are high

dimensional covariates, we can no longer use the logistic regression model as the

preliminary model between the outcome variable Y and X. Instead, we may consider

use LASSO regression, hence it would be interested to study new approach under

such high dimensional settings.
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Figure 3.1: Boxplots of β̂1 to β̂9 using the four methods for the Simple Random
Sampling phase II data in Simulation 1. X is from multivariate normal distribution.
X and Z are dependent. We use 4 strata for all methods . The blue horizontal line
in each boxplot is the true parameter value.
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Table 3.1: Empirical bias, empirical standard deviation of β̂ from four methods using
the Simple Random Sampling phase II data in Simulation 1. X is from multivariate
normal distribution. X and Z are dependent. We use 4 strata for all methods. All
results are timed by 100 and rounded to 3 digits.

β1 β2 β3 β4 β5 β6 β7 β8 β9

Ours

Bias 1.08 1.51 0.09 0.29 0.04 0.65 0.59 0.23 0.10
SD 5.16 13.98 5.48 5.96 6.16 6.24 6.11 5.37 4.72
ESD 5.35 13.50 5.44 6.09 6.11 6.12 6.14 5.53 4.88
CP 96% 94% 94% 95% 95% 94% 95% 96% 96%

PL Bias 1.06 1.48 0.06 0.33 0.01 0.68 0.64 0.17 0.10
SD 5.60 15.16 5.15 5.99 6.15 6.34 6.21 5.49 4.72

WL Bias 1.05 1.47 0.06 0.32 0.01 0.68 0.64 0.17 0.10
SD 5.60 15.18 5.15 5.98 6.15 6.35 6.22 5.50 4.72

ML Bias 1.05 1.48 0.06 0.33 0.01 0.68 0.64 0.17 0.10
SD 5.59 15.16 5.13 5.99 6.15 6.34 6.21 5.49 4.71
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Figure 3.2: Boxplots of β̂1 to β̂9 using the four methods for the Balanced Design
Sampling phase II data in Simulation 2. X is from multivariate normal distribution.
X and Z are dependent. We use 4 strata for all methods. The blue horizontal line in
each boxplot is the true parameter value.
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Table 3.2: Empirical bias, empirical standard deviation of β̂ from four methods using
the Balanced Design Sampling phase II data in Simulation 2. X is from multivariate
normal distribution. X and Z are dependent. We use 4 strata for all methods. All
results are timed by 100 and rounded to 3 digits.

β1 β2 β3 β4 β5 β6 β7 β8 β9

Ours

Bias 0.33 0.48 0.11 0.36 0.03 0.63 0.38 0.56 0.60
SD 5.58 13.82 5.32 6.27 6.25 6.33 6.63 6.08 5.09
ESD 5.41 14.26 5.34 6.50 6.54 6.57 6.59 5.96 5.20
CP 94% 95% 96% 96% 95% 95% 96% 95% 96%

PL Bias 0.33 0.18 0.13 0.36 0.04 0.62 0.38 0.57 0.61
SD 5.62 16.24 5.32 6.28 6.25 6.33 6.63 6.09 5.09

WL Bias 0.55 0.01 0.18 0.36 0.09 0.78 0.58 0.50 0.59
SD 5.84 16.94 5.62 6.77 6.51 6.57 6.96 6.42 5.34

ML Bias 0.42 0.18 0.12 0.37 0.05 0.63 0.39 0.57 0.61
SD 5.62 16.23 5.30 6.28 6.25 6.33 6.63 6.09 5.10
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Figure 3.3: Boxplots of β̂1 to β̂9 using the four methods for the Case Control Design
Sampling phase II data in Simulation 3. X is from multivariate normal distribution.
X and Z are dependent. We use 4 strata for all methods. The blue horizontal line in
each boxplot is the true parameter value.
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Table 3.3: Empirical bias, empirical standard deviation of β̂ from four methods
using the Case Control Design Sampling phase II data in Simulation 3. X is from
multivariate normal distribution. X and Z are dependent. We use 4 strata for all
methods. All results are timed by 100 and rounded to 3 digits.

β1 β2 β3 β4 β5 β6 β7 β8 β9

Ours

Bias 0.34 0.83 0.22 0.45 0.07 0.96 0.02 0.23 0.16
SD 5.31 14.52 6.05 6.82 6.70 6.83 6.82 6.19 5.36
ESD 5.39 14.36 5.89 6.61 6.62 6.64 6.68 6.03 5.28
CP 95% 95% 94% 94% 95% 94% 94% 94% 95%

PL Bias 0.32 1.06 0.15 0.44 0.08 0.98 0.01 0.22 0.16
SD 5.44 17.19 5.35 6.81 6.69 6.82 6.84 6.18 5.35

WL Bias 0.42 1.07 0.34 0.28 0.01 1.06 0.06 0.38 0.21
SD 5.61 18.03 5.68 7.07 6.96 7.19 6.94 6.43 5.48

ML Bias 0.31 1.06 0.16 0.45 0.08 0.98 0.01 0.22 0.16
SD 5.45 17.19 5.34 6.81 6.69 6.82 6.83 6.18 5.35
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Figure 3.4: Boxplots of β̂1 to β̂9 using the four methods for the Goodness-of-Fit
Based Design Sampling phase II data in Simulation 4. X is from multivariate normal
distribution. X and Z are dependent. We use 4 strata for all methods. The blue
horizontal line in each boxplot is the true parameter value.
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Table 3.4: Empirical bias, empirical standard deviation of β̂ from four methods using
the Goodness-of-Fit Based Design Sampling phase II data in Simulation 4. X is from
multivariate normal distribution. X and Z are dependent. We use 4 strata for all
methods. All results are timed by 100 and rounded to 3 digits.

β1 β2 β3 β4 β5 β6 β7 β8 β9

Ours

Bias 0.16 0.05 0.09 0.14 0.17 0.40 0.5 0.08 0.18
SD 5.26 14.92 5.37 6.61 6.27 6.39 6.68 5.99 5.38
ESD 6.12 14.47 5.54 7.08 7.28 7.48 7.69 7.34 5.29
CP 97% 94% 96% 97% 98% 97% 98% 98% 95%

PL Bias 0.13 0.64 0.11 0.16 0.19 0.42 0.53 0.06 0.18
SD 5.34 17.25 5.41 6.71 6.33 6.53 6.75 6.19 5.38

WL Bias 0.20 0.70 0.21 0.22 0.27 0.38 0.51 0.09 0.37
SD 5.49 18.08 5.64 6.99 6.63 6.68 7.03 6.42 5.54

ML Bias 0.13 0.65 0.14 0.16 0.20 0.41 0.53 0.06 0.18
SD 5.34 17.26 5.41 6.71 6.34 6.53 6.75 6.19 5.38
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Figure 3.5: Boxplots of β̂1 to β̂9 using the four methods for the Balanced Goodness-
of-Fit Based Design Sampling phase II data in Simulation 5. X is from multivariate
normal distribution. X and Z are dependent. We use 4 strata for all methods. The
blue horizontal line in each boxplot is the true parameter value.
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Table 3.5: Empirical bias, empirical standard deviation of β̂ from four methods using
the Balanced Goodness-of-Fit Based Design Sampling phase II data in Simulation 5.
X is from multivariate normal distribution. X and Z are dependent. We use 4 strata
for all methods. All results are timed by 100 and rounded to 3 digits.

β1 β2 β3 β4 β5 β6 β7 β8 β9

Ours

Bias 0.62 0.43 1.44 0.04 0.50 0.77 0.18 1.06 0.44
SD 7.59 9.51 5.11 6.71 6.99 6.71 7.00 6.31 5.67
ESD 7.41 9.31 5.77 7.31 7.50 7.67 7.84 7.48 5.55
CP 94% 94% 97% 97% 97% 98% 97% 98% 93%

PL Bias 0.82 0.49 1.31 0.13 0.32 0.54 0.07 0.78 0.45
SD 8.16 11.00 5.12 6.77 7.12 6.79 7.18 6.39 5.67

WL Bias 0.92 0.29 1.24 0.29 0.45 0.56 0.04 0.82 0.54
SD 8.44 11.56 5.48 7.15 7.41 7.07 7.61 6.58 6.01

ML Bias 0.90 0.49 0.96 0.13 0.33 0.54 0.07 0.77 0.45
SD 8.14 10.00 5.09 6.77 7.12 6.80 7.18 6.39 5.67
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Appendix A

Proof in Chapter 1

A.1 Proof of Theorem 1

Because E{S∗eff (Y,X,Z,β0)} = 0, we can expand around β0 to obtain

0 = n−1/2
n∑
i=1

S∗eff (yi,xi, zi, β̂)

= n−1/2
n∑
i=1

S∗eff (yi,xi, zi,β0) + n−1
n∑
i=1

∂S∗eff (yi,xi, zi,β∗)
∂βT n1/2(β̂ − β0)

= n−1/2
n∑
i=1

S∗eff (yi,xi, zi,β0) + E

{
∂S∗eff (Y,X,Z,β0)

∂βT

}
n1/2(β̂ − β0) + op(1),

where β∗ lies on the line connecting β̂ and β0. Therefore,

n1/2(β̂ − β0) = E

{
∂S∗eff (Y,X,Z,β0)

∂βT

}−1

n−1/2
n∑
i=1

S∗eff (yi,xi, zi,β0) + op(1).

This implies that n1/2(β̂−β0)→ Normal(0,A−1BA−T ) ,A = E{∂S∗eff (Y,X,Z,β0)/∂βT} and B = var{S∗eff (Y,X,Z,β0)}. Fi-

nally, it is easy to check that when f ∗R,X,Z(r,x, z) = fR,X,Z(r,x, z), −A = −E{∂Seff (Y,X,Z,β0)/∂βT} = var{Seff (Y,X,Z,β0)} =

B since Seff is the efficient score vector. Hence, the variance-covariance simplifies to B−1 and the estimator is efficient.
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A.2 Proof of Theorem 2

Sufficiency:

fU|W,R,X,Z(u | w, r,x, z)

= pr(U = u |W = w,R = r,X = x,Z = z)

=
exp{∑m

j=1 YijXT
ijβ + rT(∑m

j=1 YijZij)}/[
∏m
j=1{1 + exp(XT

ijβ + ZT
ijr)}]

∣∣∣∣
ZiYi=(wT,uT)T∑

Yis.t.ZiYi=w exp{∑m
j=1 YijXT

ijβ + rT(∑m
j=1 YijZij)}/[

∏m
j=1{1 + exp(XT

ijβ + ZT
ijr)}]

=
exp{(XT

i1β, . . . ,XT
iqβ)(ZiLw− Z−1

iL ZiRu) + (XT
i(q+1)β, . . . ,XT

imβ)u + rTw}∑
u exp{(XT

i1β, . . . ,XT
iqβ)(ZiLw− Z−1

iL ZiRu) + (XT
i(q+1)β, . . . ,XT

imβ)u + rTw}

=
exp{(XT

i1β, . . . ,XT
iqβ)(−Z−1

iL ZiRu) + (XT
i(q+1)β, . . . ,XT

imβ)u}∑
u exp{(XT

i1β, . . . ,XT
iqβ)(−Z−1

iL ZiRu) + (XT
i(q+1)β, . . . ,XT

imβ)u}
= fU|X,Z(u | x, z).
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Similarly,

fR|U,W,X,Z(r | u,w,x, z)

= pr(R = r | U = u,W = w,X = x,Z = z)

=
(
fR,X,Z(r,x, z) exp{

m∑
j=1

YijXT
ijβ + rT(

m∑
j=1

YijZij)}

/[
m∏
j=1
{1 + exp(XT

ijβ + ZT
ijr)}]

∣∣∣∣
ZiYi=(wT,uT)T

)

/
( ∫

fR,X,Z(r,x, z) exp{
m∑
j=1

YijXT
ijβ + rT(

m∑
j=1

YijZij)}

/[
m∏
j=1
{1 + exp(XT

ijβ + ZT
ijr)}]

∣∣∣∣
ZiYi=(wT,uT)T

dr
)

=
fR,X,Z(r,x, z) exp(wTr)/[∏m

j=1{1 + exp(XT
ijβ + ZT

ijr)}]∫
fR,X,Z(r,x, z) exp(wTr)/[∏m

j=1{1 + exp(XT
ijβ + ZT

ijr)}]dr
= fR|W,X,Z(r | w,x, z).
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Completeness:

E{a(W,X,Z) | R,X,Z}

=
∫

a(w,X,Z)fW|R,X,Z(w | R,X,Z)dµ(w)

=
∫

a(w,X,Z)
exp{(XT

i1β, ·,XT
iqβ)(ZiLw− Z−1

iL ZiRu) + (XT
i(q+1)β, ·,XT

imβ)u + RTw}∏m
j=1{1 + exp(XT

ijβ + ZT
ijR)}

dµ(u)dµ(w)

= b(R,Xi,Zi)
∫

a(w,X,Z) exp[{(XT
i1β, . . . ,XT

iqβ)ZiL + RT}w]dµ(w),

where

b(R,Xi,Zi) =
∫

exp{(XT
i1β, . . . ,XT

iqβ)(−Z−1
iL ZiRu) + (XT

i(q+1)β, . . . ,XT
imβ)u}dµ(u)∏m

j=1{1 + exp(XT
ijβ + ZT

ijR)}

is a positive function. Thus, E{a(W,X,Z) | R,X,Z} = 0 implies
∫

a(W,X,Z) exp[{(XT
i1β, . . . ,XT

iqβ)ZiL + RT}w]dµ(w) = 0.

This implies the Laplace transformation of a is zero, hence a(W,X,Z) = 0.

A.3 Derivation of the Nuisance Tangent Space

Let Yi = (Yi1, . . . , Yim)T , Xi = (Xi1, . . . ,Xim) denote a p × m matrix, and Zi = (Zi1, . . . ,Zim) denote a q × m matrix.

Without loss of generality, assume that the first q columns of Zi form an invertable matrix. Using f to denote various densities
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described by the subindices, the likelihood for the ith cluster is

fY,X,Z(yi,xi, zi; β,η1,η2)

=
∫
fY|R,X,Z(yi | ri,xi, zi; β)fR,X,Z(ri,xi, zi; η)dµ(ri) (A.1)

Here, µ(·) denotes the dominating measure. We want to leave fR,X,Z(ri,xi, zi) unspecified.

We assume throughout that fR,X,Z(r,x, z) in (A.1) is an unknown density. With fR,X,Z as the unknown (nuisance) distri-

bution, the nuisance tangent space is

Λ = [E{h(R,X,Z) | Y,X,Z} : E(h) = 0, E(hTh) <∞], (A.2)

and its orthogonal complement is

Λ⊥ = [γ(Y,X,Z) : E{γ(Y,X,Z) | R,X,Z} = 0, E(γTγ)} <∞], (A.3)

where h and γ are p-dimensional vectors.
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To see this, we first derive the nuisance score vector of the parametric submodel of (A.1) with respect to η:

∂

∂η
log

∫
fY|R,X,Z(yi | ri,xi, zi; β)fR,X,Z(ri,xi, zi; η)dµ(ri)

= 1∫
fY|R,X,Z(yi | ri,xi, zi; β)fR,X,Z(ri,xi, zi; η)dµ(ri)

×

∂

∂η

∫
fY|R,X,Z(yi | ri,xi, zi; β)fR,X,Z(ri,xi, zi; η)dµ(ri)

= 1
fY,X,Z(yi,xi, zi; β)

∂

∂η

∫
fY|R,X,Z(yi | ri,xi, zi; β)fR,X,Z(ri,xi, zi; η)dµ(ri)

=
∫ fY,R,X,Z(yi, ri,xi, zi; β)

fY,X,Z(yi,xi, zi; β)
1

fR,X,Z(ri,xi, zi; η)
∂

∂η
fR,X,Z(ri,xi, zi; η)dµ(ri)

=
∫ ∂

∂η
logfR,X,Z(ri,xi, zi; η)fR|Y,X,Z(ri | yi,xi, zi; β)dµ(ri)

= E{ ∂
∂η

logfR,X,Z(R,X,Z; η) | Y,X,Z}

= E{h(R,X,Z) | Y,X,Z}

We also have

E{ ∂
∂η

logfR,X,Z(R,X,Z; η)}

=
∫ ∫ ∫ ∂

∂η
logfR,X,Z(r,x, z; η)fR,X,Z(r,x, z; η)dµ(r,x, z)

=
∫ ∫ ∫ 1

fR,X,Z(r,x, z; η)fR,X,Z(r,x, z; η) ∂
∂η

fR,X,Z(r,x, z; η)dµ(r,x, z)

= ∂

∂η

∫ ∫ ∫
fR,X,Z(r,x, z; η)dµ(r,x, z) = ∂

∂η
1 = 0
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This completes the nuisance tangent space derivation for a parametric submodel. Since the definition of the nuisance tangent

space of our original model is the mean square closure of the nuisance tangent space of all parametric submodels, the desired

nuisance tangent space is

Λ = [E{h(R,X,Z) | Y,X,Z} : E(h) = 0, E(hTh) <∞],

Now we need to prove that for any bounded random functions E{h(R,X,Z) | Y,X,Z} ∈ Λ, they are the nuisance score

vectors of a specific parametric submodel. Suppose the true model for the unknown density fR,X,Z(r,x, z) is f0(r,x, z), and let

fR,X,Z(r,x, z) = f0(r,x, z){1 + ηTh(R,X,Z)}

where η is small enough such that

1 + ηTh(R,X,Z) ≥ 0

Then we have
∫ ∫ ∫

fR,X,Z(r,x, z)dµ(r,x, z)

=
∫ ∫ ∫

f0(r,x, z)dµ(r,x, z) +
∫ ∫ ∫

f0(r,x, z)ηTh(r,x, z)dµ(r,x, z)

= 1 + ηTE{h(R,X,Z)} = 1

This means fR,X,Z(r,x, z) is a valid probability density function as it is always positive and its integration from negative infinity

to positive infinity is 1. When η = 0, fR,X,Z(r,x, z) = f0(r,x, z), so the true model is contained in fR,X,Z(r,x, z). By definition,
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it is a parametric submodel. Since the nuisance score vectors for the parametric submodel is

∂

∂η
log

∫
fY|R,X,Z(yi | ri,xi, zi; β)fR,X,Z(ri,xi, zi; η)dµ(ri)

=
∫ ∂

∂η
logfR,X,Z(ri,xi, zi; η)fR|Y,X,Z(ri | yi,xi, zi; β)dµ(ri)

= E{ ∂
∂η

logfR,X,Z(R,X,Z; η) | Y,X,Z}

= E{h(R,X,Z) | Y,X,Z}

We have shown that any element in the set defined in (A.2) is indeed one element in the nuisance tangent space of model

(A.1).
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Now we need to derive Λ⊥. For any element γ(Y,X,Z) ∈ Λ⊥, we must have

0 = E[γT(Y,X,Z)E{h(R,X,Z) | Y,X,Z}]

=
∫ ∫ ∫

γT(y,x, z)E{h(R,X,Z) | Y,X,Z}fY,X,Z(y,x, z)dµ(y,x, z)

=
∫ ∫ ∫

γT(y,x, z)
∫

h(r,x, z)fR|Y,X,Z(r | y,x, z)dµ(r)fY,X,Z(y,x, z)dµ(y,x, z)

=
∫ ∫ ∫ ∫

γT(y,x, z)h(r,x, z)fR|Y,X,Z(r | y,x, z)fY,X,Z(y,x, z)dµ(r)dµ(y,x, z)

=
∫ ∫ ∫ ∫

γT(y,x, z)h(r,x, z)fR,Y,X,Z(r,y,x, z)dµ(r,y,x, z)

=
∫ ∫ ∫ [∫

γT(y,x, z)h(r,x, z)fY|R,X,Z(y | r,x, z)dµ(y)
]
fR,X,Z(r,x, z)dµ(r,x, z)

=
∫ ∫ ∫

E{γT(Y,X,Z)h(R,X,Z) | R,X,Z}fR,X,Z(r,x, z)dµ(r,x, z)

= E[E{γT(Y,X,Z)h(R,X,Z) | R,X,Z}]

=
∫ ∫ ∫ [∫

γT(y,x, z)fY|R,X,Z(y | r,x, z)dµ(y)
]
h(r,x, z)fR,X,Z(r,x, z)dµ(r,x, z)

=
∫ ∫ ∫

E{γT(Y,X,Z) | R,X,Z}h(r,x, z)fR,X,Z(r,x, z)dµ(r,x, z)

= E[E{γT(Y,X,Z) | R,X,Z}h(R,X,Z)]

for any h(R,X,Z) where E(h(R,X,Z)) = 0. Thus we must have E{γT(Y,X,Z) | R,X,Z} = 0 and E(γTγ) <∞. Then we

have

Λ⊥ = [γ(Y,X,Z) : E{γ(Y,X,Z) | R,X,Z} = 0, E(γTγ)} <∞],
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The score function is

Sβ(Y,X,Z; β) = ∂

∂β
log{fY,X,Z(y,x, z; β)}

= ∂

∂β
log

∫
fY|R,X,Z(y | r,x, z)fR,X,Z(r,x, z)dµ(r)

= 1
fY,X,Z(y,x, z)

∫ ∂

∂β
fY|R,X,Z(y | r,x, z)fR,X,Z(r,x, z)dµ(r)

= 1
fY,X,Z(y,x, z)

∫
{ ∂
∂β

logfY|R,X,Z(y | r,x, z)}fY|R,X,Z(y | r,x, z)fR,X,Z(r,x, z)dµ(r)

=
∫
{ ∂
∂β

logfY|R,X,Z(y | r,x, z)} fY,R,X,Z(y, r,x, z)
fR,X,Z(r,x, z)fY,X,Z(y,x, z)fR,X,Z(r,x, z)dµ(r)

=
∫
{ ∂
∂β

logfY|R,X,Z(y | r,x, z)}fR|Y,X,Z(r | y,x, z)dµ(r)

= E

[
∂

∂β
log{fY|R,X,Z(Y | R,X,Z; β)} | Y,X,Z
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A.1 Proof of E{h∗(R, X, Z) | Y, X, Z}=E{h∗(R, X, Z) |W, X, Z}

Here we need to use the first equation of the first part of Theorem 2.

E{h∗(R,X,Z) | Y,X,Z}

=
∫

h∗(r,x, z)fR|Y,X,Z(r | y,x, z)dµ(r)

=
∫

h∗(r,x, z)fR|U,W,X,Z(r | u,w,x, z)dµ(r)

=
∫

h∗(r,x, z)fR,U,W,X,Z(r,u,w,x, z)
fU,W,X,Z(u,w,x, z) dµ(r)

=
∫

h∗(r,x, z)fU|R,W,X,Z(u | r,w,x, z)fR,W,X,Z(r,w,x, z)
fU,W,X,Z(u,w,x, z) dµ(r)

=
∫

h∗(r,x, z)fU|W,X,Z(u | w,x, z)fR,W,X,Z(r,w,x, z)
fU,W,X,Z(u,w,x, z) dµ(r)

=
∫

h∗(r,x, z)fU,W,X,Z(u,w,x, z)fR,W,X,Z(r,w,x, z)
fU,W,X,Z(u,w,x, z)fW,X,Z(w,x, z) dµ(r)

=
∫

h∗(r,x, z)fR|W,X,Z(r | w,x, z)dµ(r)

= E{h∗(R,X,Z) |W,X,Z}
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Now we need to show why E{E{S∗β(Y,X,Z) | W,X,Z} | R,X,Z}=E{S∗β(Y,X,Z) | R,X,Z}. Here we need to use the

second equation of the first part of Theorem 2.

E{E{S∗β(Y,X,Z) |W,X,Z} | R,X,Z}

=
∫
E{S∗β(Y,X,Z) |W,X,Z}fW|R,X,Z(w | r,x, z)dµ(w)

=
∫ ∫

S∗β(U,W,X,Z)fU|W,X,Z(u | w,x, z)dµ(u)fW|R,X,Z(w | r,x, z)dµ(w)

=
∫ ∫

S∗β(U,W,X,Z)fU,W,X,Z(u,w,x, z)
fW,X,Z(w,x, z)

fW,R,X,Z(w, r,x, z)
fR,X,Z(r,x, z) dµ(u)dµ(w)

=
∫ ∫

S∗β(U,W,X,Z)fR|W,X,Z(r | w,x, z)fU,W,X,Z(u,w,x, z)
fR,X,Z(r,x, z) dµ(u)dµ(w)

=
∫ ∫

S∗β(U,W,X,Z)fR|U,W,X,Z(r | u,w,x, z)fU,W,X,Z(u,w,x, z)
fR,X,Z(r,x, z) dµ(u)dµ(w)

=
∫ ∫

S∗β(U,W,X,Z)fR,U,W,X,Z(r,u,w,x, z)
fR,X,Z(r,x, z) dµ(u)dµ(w)

= E{S∗β(Y,X,Z) | R,X,Z}

Since we constructed h∗ such that

E{S∗β(Y,X,Z) | R,X,Z} = E[E∗{h∗(R,X,Z) | Y,X,Z} | R,X,Z].

We have

E{E{S∗β(Y,X,Z) |W,X,Z} | R,X,Z} − E[E∗{h∗(R,X,Z) | Y,X,Z} | R,X,Z] = 0.
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which implies that

E[E{S∗β(Y,X,Z) |W,X,Z} − E∗{h∗(R,X,Z) |W,X,Z} | R,X,Z] = 0.

Now we use the second part of Theorem 2, we have

E{S∗β(Y,X,Z) |W,X,Z} − E∗{h∗(R,X,Z) |W,X,Z} = 0.

This means the conditional expectation of h∗(R,X,Z) given (W,X,Z) satisfies

E∗{h∗(R,X,Z) |W,X,Z} = E{S∗β(Y,X,Z) |W,X,Z}
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Appendix B

Proof in Chapter 2

B.1 Proof of asymptotic unbiasedness of CV (w) in estimating E[{Ŷ (w)− Y }2]

First of all, we have the familiar decompositions

E{CV (w)} = E[{Ŷ (−i)
1i (w)− Y1i}2]

= E[{Ŷ (−i)
1i (w)− E(Y1i|X1i,Z[1]

i )− Y1i + E(Y1i|X1i,Z[1]
i )}2]

= E[{Ŷ (−i)
1i (w)− E(Y1i|X1i,Z[1]

i )}2] + E[{Y1i − E(Y1i|X1i,Z[1]
i )}2]

and

E[{Ŷ (w)− Y }2] = E[{Ŷ (w)− E(Y |X,Z[1])}2] + E[{Y − E(Y |X,Z[1])}2].

Because the observations {X1i,Z[1]
i , Y1i}, i = 1, . . . , n1, and {X,Z[1], Y } are iid, we have that E[{Y1i − E(Y1i|X1i,Z[1]

i )}2] =

E[{Y − E(Y |X,Z[1])}2] and E[{Ŷ (−i)
1i (w) − E(Y1i|X1i,Z[1]

i )}2] = E[{Ŷ −(w) − E(Y |X,Z[1])}2], where Ŷ −(w) stands for the

quantity obtained in the same way as Ŷ (w) except that we use n1 − 1 observations randomly drawn from the first population,
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instead of the n1 observations. When n1 →∞, Ŷ (w)− Ŷ −(w)→ 0 in probability, hence E{CV (w)} = E[{Ŷ (w)− Y }2] + o(1)

for any w.

B.2 Proof of Theorem 3

We fist prove two preliminary results. By Assumption 2,

Y ?
1i,j{Y1i − E(Y1i|X1i,Z[1]

i )} = g(X1i,Z[1]
i ; β?

j ,α
?
1,γ

?
1)εi

and

{Y ?
1i,j − E(Y1i|X1i,Z[1]

i )}{Y ?
1i,j′ − E(Y1i|X1i,Z[1]

i )}

=
{
g(X1i,Z[1]

i ; β?
j ,α

?
1,γ

?
1)− gtrue(X1i,Z[1]

i ; β,α1,γ1)
}

×
{
g(X1i,Z[1]

i ; β?
j′ ,α

?
1,γ

?
1)− gtrue(X1i,Z[1]

i ; β,α1,γ1)
}
,

we know that

the variances of Y ?
1i,j{Y1i − E(Y1i|X1i,Z[1]

i )} and

{Y ?
1i,j − E(Y1i|X1i,Z[1]

i )}{Y ?
1i,j′ − E(Y1i|X1i,Z[1]

i )}

are bounded by a constant uniformly for all j, j′ ∈ {1, . . . , N}. (B.1)
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Second, note that∥∥∥∥∥∂{Ŷ (w)− E(Y |X,Z[1])}2

∂θ̂

∥∥∥∥∥ = 2
N∑
j=1

wj{Ŷj − E(Y |X,Z[1])}
N∑
j=1

wj

∥∥∥∥∥ ∂Ŷj∂θ̂[j]

∥∥∥∥∥
≤

{
2 max

j
|Ŷj|+ 2|E(Y |X,Z[1])|

}
max
j

∥∥∥∥∥ ∂Ŷj∂θ̂[j]

∥∥∥∥∥ ,∥∥∥∥∥∥∂{Ŷ
(−i)

1i (w)− Y1i}2

∂θ̂

∥∥∥∥∥∥ = 2
N∑
j=1

wj{Ŷ (−i)
1i − Y1i}

N∑
j=1

ŵj

∥∥∥∥∥∥∂Ŷ
(−i)

1i

∂θ̂
(−i)
[j]

∥∥∥∥∥∥
≤

{
2 max

j
|Ŷ (−i)

1i |+ 2|E(Y1i|X1i,Z[1]
i )|+ 2|εi|

}
max
j

∥∥∥∥∥∥∂Ŷ
(−i)

1i

∂θ̂
(−i)
[j]

∥∥∥∥∥∥ ,
Ŷ

(−i)
j,1i = g(X1i,Z[1]

i ; β̂[j], α̂
(−i)
1 , γ̂

(−i)
1 ), j ≥ 2,

Ŷ
(−i)

1,1i = g(X1i,Z[1]
i ; β̂

(−i)
[1] , α̂

(−i)
1 , γ̂

(−i)
1 ),

Ŷj,1i = g(X1i,Z[1]
i ; β̂[j], α̂1, γ̂1),

where θ̂[j] = (β̂T
[j], α̂

T
1 , γ̂

T
1 )T for j = 1, . . . , J , θ̂

(−i)
[1] = (β̂(−i)T

[1] , α̂T
1 , γ̂

T
1 )T, θ̂

(−i)
[j] = θ̂[j] for j = 2, . . . , J , β̂

(−i)
[1] is the estimate of β

under the main model without using the-ith-observation. Then, from Assumptions 2 and 3, we know that

the components of the derivatives ∂{Ŷ (w)− E(Y |X,Z[1])}2/∂θ̂ |
θ̂=θ

and

∂{Ŷ (−i)
1i (w)− Y1i}2/∂(β̂(−i)T

[1] , β̂T
[2], . . . , β̂

T
[N ], α̂

(−i)T

1 , γ̂
(−i)T

1 )T |
(β̂(−i)T

[1] ,β̂T
[2],...,β̂

T
[N ],α̂

(−i)T
1 ,γ̂

(−i)T
1 )T=θ

are Op(1) uniformly for any θ in a local neighborhood of θ?

and uniformly for any w ∈ W , (B.2)
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where α̂
(−i)
1 and γ̂

(−i)
1 are the estimate of α and γ respectively under the main model without using the-ith-observation. In

addition,

E
[

sup
w∈W

∣∣∣{Ŷ (w)− E(Y |X,Z[1])}2 − {Y ?(w)− E(Y |X,Z[1])}2
∣∣∣]

= E
[

sup
w∈W

∣∣∣{Ŷ (w)− Y ?(w)}{Ŷ (w) + Y ?(w)− 2E(Y |X,Z[1])}
∣∣∣]

≤ E
{

sup
1≤j≤N

|Ŷj − Y ?
j | sup

1≤j≤N
|Ŷj + Y ?

j − 2E(Y |X,Z[1])|
}

≤ E
(

sup
1≤j≤N

|Ŷj − Y ?
j |2
)

+ 2E
[{

sup
1≤j≤N

|Ŷj − Y ?
j |
}

sup
1≤j≤N

|Y ?
j − E(Y |X,Z[1])|

]

≤ 2E
(

sup
1≤j≤N

|Ŷj − Y ?
j |2
)

+ E
{

sup
1≤j≤N

|Y ?
j − E(Y |X,Z[1])|2

}
. (B.3)

It is seen that

ξ−1 sup
w∈W

∣∣∣{Ŷ (w)− E(Y |X,Z[1])}2 − {Y ?(w)− E(Y |X,Z[1])}2
∣∣∣

= ξ−1 sup
w∈W

∣∣∣∣∣(θ̂ − θ?
)T ∂{Ŷ (w)− E(Y |X,Z[1])}2

∂θ̂
|
θ̂=θ̃

∣∣∣∣∣
= ξ−1Op(n−1/2N3/2)

= op(1), (B.4)
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where the first equality uses (B.2) and Assumption 3, the second equality uses (B.2) and Assumptions 1-3, and the third equality

uses Assumption 5. Further, we have

sup
w∈W

|R(w)−R?(w)|
R?(w)

≤ ξ−1 sup
w∈W
|R(w)−R?(w)|

= ξ−1 sup
w∈W

∣∣∣E [{Ŷ (w)− E(Y |X,Z[1])}2 − {Y ?(w)− E(Y |X,Z[1])}2
]∣∣∣

≤ E
(
ξ−1 sup

w∈W

∣∣∣{Ŷ (w)− E(Y |X,Z[1])}2 − {Y ?(w)− E(Y |X,Z[1])}2
∣∣∣)

= o(1), (B.5)

where the second inequality uses (B.3) and Assumption 4, and the last equality is due to (B.4).

Similarly to (B.4), we can obtain that

sup
w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1

[
{Ŷ (−i)

1i (w)− Y1i}2 − {Y ?
1i(w)− Y1i}2

]∣∣∣∣∣ = Op(n−1/2N3/2). (B.6)

Let

g1i =
{
Y1i − E(Y1i|X1i,Z[1]

i )
}{

Y1i + E(Y1i|X1i,Z[1]
i )
}
,

CV ?(w) = CV (w)− 1
n1

n1∑
i=1

g1i, (B.7)

where n−1
1
∑n1
i=1 g1i is unrelated to w, so

ŵ = argminw∈WCV
?(w). (B.8)
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It is seen that

sup
w∈W

|CV ?(w)−R?(w)|
R?(w)

≤ ξ−1 sup
w∈W
|CV ?(w)−R?(w)|

= ξ−1 sup
w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1

[
{Ŷ (−i)

1i (w)− Y1i}2 − g1i
]
− E

[
{Y ?(w)− E(Y |X,Z[1])}2

]∣∣∣∣∣
≤ ξ−1 sup

w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1

[
{Y ?

1i(w)− Y1i}2 − g1i
]
− E

[
{Y ?(w)− E(Y |X,Z[1])}2

]∣∣∣∣∣
+ξ−1 sup

w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1

{
{Ŷ (−i)

1i (w)− Y1i}2 − {Y ?
1i(w)− Y1i}2

}∣∣∣∣∣
= ξ−1 sup

w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1

[
{Y ?

1i(w)− Y1i}2 − g1i
]
− E

[
{Y ?(w)− E(Y |X,Z[1])}2

]∣∣∣∣∣
+ξ−1Op(n−1/2N3/2)

≤ ξ−1 sup
w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1
{Y ?

1i(w)− E(Y1i|X1i,Z[1]
i )}2 − E

[
{Y ?(w)− E(Y |X,Z[1])}2

]∣∣∣∣∣
+ξ−1 sup

w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1

[
{Y ?

1i(w)− Y1i}2 − g1i − {Y ?
1i(w)− E(Y1i|X1i,Z[1]

i )}2
]∣∣∣∣∣

+ξ−1Op(n−1/2N3/2)

= ξ−1 sup
w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1
{Y ?

1i(w)− E(Y1i|X1i,Z[1]
i )}2 − E

[
{Y ?(w)− E(Y |X,Z[1])}2

]∣∣∣∣∣
+ξ−1 sup

w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1

[
2Y ?

1i(w)
{
Y1i − E(Y1i|X1i,Z[1]

i )
}]∣∣∣∣∣

+ξ−1Op(n−1/2N3/2), (B.9)
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where the second equality is from (B.6). By Lemma 1 of Zhang (2010), (B.5), (B.9) and Assumption 5, to prove (5), it suffices

to show

ξ−1 sup
w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1
{Y ?

1i(w)− E(Y1i|X1i,Z[1]
i )}2−E

[
{Y ?(w)− E(Y |X,Z[1])}2

]∣∣∣∣∣
= op(N−1/2) = op(1) (B.10)

and

ξ−1 sup
w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1

[
Y ?

1i(w)
{
Y1i − E(Y1i|X1i,Z[1]

i )
}]∣∣∣∣∣ = Op(n−1/2N) = op(1). (B.11)
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We consider (B.10) at first. It is seen that

sup
w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1
{Y ?

1i(w)− E(Y1i|X1i,Z[1]
i )}2 − E

[
{Y ?(w)− E(Y |X,Z[1])}2

]∣∣∣∣∣
= sup

w∈W

∣∣∣∣∣∣ 1
n1

n1∑
i=1
{
N∑
j=1

wjY
?

1i,j − E(Y1i|X1i,Z[1]
i )}2 − E

{ N∑
j=1

wjY
?
j − E(Y |X,Z[1])}2

∣∣∣∣∣∣
= sup

w∈W

∣∣∣∣∣∣ 1
n1

n1∑
i=1

[
N∑
j=1

wj{Y ?
1i,j − E(Y1i|X1i,Z[1]

i )}]2 − E
[

N∑
j=1

wj{Y ?
j − E(Y |X,Z[1])}]2

∣∣∣∣∣∣
≤ sup

w∈W

N∑
j=1

N∑
j′=1

wjwj′

∣∣∣∣∣ 1
n1

n1∑
i=1
{Y ?

1i,j − E(Y1i|X1i,Z[1]
i )}{Y ?

1i,j′ − E(Y1i|X1i,Z[1]
i )}

−E
[
{Y ?

j − E(Y |X,Z[1])}{Y ?
j′ − E(Y |X,Z[1])}

]∣∣∣
= n

−1/2
1 sup

w∈W

N∑
j=1

N∑
j′=1

wjwj′π̂j,j′

≤ n
−1/2
1 sup

j,j′
π̂j,j′

= op(ξN−1/2), (B.12)

where

π̂j,j′ ≡
∣∣∣∣∣n−1/2

1

n1∑
i=1
{Y ?

1i,j − E(Y1i|X1i,Z[1]
i )}{Y ?

1i,j′ − E(Y1i|X1i,Z[1]
i )}

−E
[
{Y ?

j − E(Y |X,Z[1])}{Y ?
j′ − E(Y |X,Z[1])}

]∣∣∣ .
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The last step in (B.12) is because by (B.1) and the Chebyshev’s inequality, we have that for any δ > 0,

pr
{
ξ−1n

−1/2
1 sup

j,j′
π̂j,j′ > δN−1/2

}

≤
N∑
j=1

N∑
j′=1

pr
{
ξ−1n

−1/2
1 π̂j,j′ > δN−1/2

}

≤ n−1
1 ξ−2Nδ−2

N∑
j=1

N∑
j′=1

var
[
{Y ?

1i,j − E(Y1i|X1i,Z[1]
i )}{Y ?

1i,j′ − E(Y1i|X1i,Z[1]
i )}

]
= O(n−1

1 ξ−2N3),

which, along with Assumption (5), implies (B.10).
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The proof of (B.11) is similar to that of (B.10). It is seen that

sup
w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1

[
Y ?

1i(w)
{
Y1i − E(Y1i|X1i,Z[1]

i )
}]∣∣∣∣∣

= sup
w∈W

∣∣∣∣∣∣ 1
n1

n1∑
i=1

 N∑
j=1

wjY
?

1i,j

{
Y1i − E(Y1i|X1i,Z[1]

i )
}∣∣∣∣∣∣

= sup
w∈W

∣∣∣∣∣∣
N∑
j=1

wj
1
n1

n1∑
i=1

[
Y ?

1i,j

{
Y1i − E(Y1i|X1i,Z[1]

i )
}]∣∣∣∣∣∣

≤ sup
w∈W

N∑
j=1

wj

∣∣∣∣∣ 1
n1

n1∑
i=1

[
Y ?

1i,j

{
Y1i − E(Y1i|X1i,Z[1]

i )
}]∣∣∣∣∣

≤ sup
j

∣∣∣∣∣ 1
n1

n1∑
i=1

{
Y ?

1i,jY1i − Y ?
1i,jE(Y1i|X1i,Z[1]

i )
}∣∣∣∣∣

= Op

n−1/2
N∑
j=1

var
{
Y ?

1i,jY1i − Y ?
1i,jE(Y1i|X1i,Z[1]

i )
}1/2


= Op(n−1/2N)

by (B.1). This completes the proof.

B.3 Proof of Theorem 4

If Dc is empty, the result trivially holds. We thus assume Dc is not empty (i.e., M ≥ 1). For any correctly specified model

j ∈ D, it is obvious that

Y ?
j − E(Y |X,Z[1]) = 0. (B.13)
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We first show that

sup
w∈W

∣∣∣∣∣ 1
n1

n1∑
i=1
{Y ?

1i(w)− E(Y1i|X1i,Z[1]
i )}2 − E

[
{Y ?(w)− E(Y |X,Z[1])}2

]∣∣∣∣∣
= sup

w∈W

∣∣∣∣∣∣ 1
n1

n1∑
i=1
{
∑
j∈Dc

wjY
?

1i,j − E(Y1i|X1i,Z[1]
i )}2 − E

{∑
j∈Dc

wjY
?
j − E(Y |X,Z[1])}2

∣∣∣∣∣∣ .
= sup

w∈W

∣∣∣∣∣∣ 1
n1

n1∑
i=1

[
∑
j∈Dc

wj{Y ?
1i,j − E(Y1i|X1i,Z[1]

i )}]2 − E
[
∑
j∈Dc

wj{Y ?
j − E(Y |X,Z[1])}]2

∣∣∣∣∣∣
≤ sup

w∈W

∑
j∈Dc

∑
j′∈Dc

wjwj′

∣∣∣∣∣ 1
n1

n1∑
i=1
{Y ?

1i,j − E(Y1i|X1i,Z[1]
i )}{Y ?

1i,j′ − E(Y1i|X1i,Z[1]
i )}

−E
[
{Y ?

j − E(Y |X,Z[1])}{Y ?
j′ − E(Y |X,Z[1])}

]∣∣∣
≤ n

−1/2
1 sup

j∈Dc
sup
j′∈Dc

π̂j,j′ (B.14)

for any large positive constant c,

pr
{
M−1 sup

j∈Dc
sup
j′∈Dc

π̂j,j′ > c

}
≤ c−2M−2 ∑

j∈Dc

∑
j′∈Dc

var(π̂j,j′) = O(c−2)

by (B.1), and thus

sup
j∈Dc

sup
j′∈Dc

π̂j,j′ = Op(M). (B.15)

Inserting (B.14), (B.15), (B.11) and (B.6) into (B.9), we obtain

CV ?(w) = R?(w) +Op{n−1/2(N3/2 +M)}. (B.16)
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Let λ̃ be a weight vector with the components in D replaced by zeros and

λ = λ̃/(1− τ). (B.17)

By (B.13) and the definition of λ in (B.17), we have

R?(w) = E
[
{Y ?(w)− E(Y |X,Z[1])}2

]
= E


 N∑
j=1

wj{Y ?
j − E(Y |X,Z[1])}

2


= E


∑
j /∈D

wj{Y ?
j − E(Y |X,Z[1])}

2


= (1− τ)2E


∑
j /∈D

(1− τ)−1wj{Y ?
j − E(Y |X,Z[1])}

2


≡ (1− τ)2R?(λ). (B.18)

Here we abused the R? notation to denote the risk as a function of w and a function of λ as well, while the context is clear.

Combining (B.16) and (B.18), we have CV ?(w) = (1 − τ)2R?(λ) + Op{n−1/2(N3/2 + M2)} hence, replacing w with ŵ, we

have

CV ?(ŵ) = (1− τ̂)2R?(λ̂) +Op{n−1/2(N3/2 +M)}, (B.19)

where τ̂ and λ̂ are τ and λ with w in their expressions replaced by ŵ. Note that in all the functions of w such as R?(w), the

expectation was calculated first and then ŵ was inserted. Let w̃ be the weight vector with the first component one and other
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zeros. Then, by (B.13), we know R?(w̃) = 0, which along with (B.16), implies

CV ?(w̃) = Op{n−1/2(N3/2 +M)}. (B.20)

Now, from (B.19)-(B.20) and the truth that ŵ minimizes CV ?(w), we have

(1− τ̂)2R?(λ̂) +Op{n−1/2(N3/2 +M)} ≤ CV ?(w̃) = Op{n−1/2(N3/2 +M)},

thus

(1− τ̂)2 inf
w∈W,

∑
j∈D wj=0

R?(w) ≤ Op{n−1/2(N3/2 +M)}, (B.21)

which, along with Assumption 6, implies Theorem 4.

B.4 Proof of Corollary 1

When the main model is misspecified, the results of Theorem 3 ensures that our procedure yields the minimum risk, hence

is no larger than the risk of simple average to the leading order.

When the main model is correct, the simple average procedure yields

Ŷ (1/N) =
N∑
j=1

1
N
Ŷj = E(Y |X,Z[1]) +Op(n−1/2N1/2) + υN,M , (B.22)

where υN,M has the same order as MN−1, so the risk is R(1/N) = O(n−1N) + υ2
N,M .

100



On the other hand, letting τ̂ = ∑
j∈D ŵj, our prediction satisfies

Ŷ (ŵ) =
N∑
j=1

ŵjŶj

= E(Y |X,Z[1]) +
∑
j∈D

ŵj
{
Ŷj − E(Y |X,Z[1])

}
+
∑
j /∈D

ŵj
{
Ŷj − E(Y |X,Z[1])

}
= E(Y |X,Z[1]) +Op(n−1/2N1/2) +Op(1− τ̂)

= E(Y |X,Z[1]) +Op(n−1/2N1/2)

+Op

n−1/4(M1/2 +N3/4)

 inf
w∈W,

∑
j∈D wj=0

R?(w)


−1/2


= E(Y |X,Z[1]) +Op(n−1/2N1/2) +Op{n−1/4(M1/2 +N3/4)},

where the second last step is based on (B.21) and the last step used Assumption 7. Hence the risk is

R(ŵ) = Op{n−1N + n−1/2(M +N3/2)},

which is much smaller than R(1/N) as long as

n−1N/υ2
N,M = o(1) and n−1/2(M +N3/2)}/υ2

N,M = o(1),

which means n >> N4M−2 +N7M−4.
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B.5 Discussions on the variance of the averaging prediction

Let Ŷ = (Ŷ1, . . . , ŶN)T, Σ = diag{var(Ŷ1), . . . , var(ŶN)}, Σwy = cov(ŵ,Y) and λmax(·) and λmin(·) denote the maximum

and minimum eigenvalues of a matrix, respectively. We consider the following situations.
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Case 1: All predictions are unbiased, i.e., E(Ŷj) = E{E(Y |X,Z[1])}. From Proposition 3.1 of Gerda Claeskens & Wang

(2016), 0 ≤ E(ŵj) ≤ 1 and ∑N
j=1 E(ŵj) = 1, we have

var{Ŷ (ŵ)}

= E(ŵ)TΣE(ŵ) + 2E(ŵ)TE
[
{Ŷ − E(Ŷ)}{Ŷ − E(Ŷ)}T{ŵ− E(ŵ)}

]
+E

[
{Ŷ − E(Ŷ)}T{ŵ− E(ŵ)}

]2
− {trace(Σwy)}2

≤ λmax(Σ)‖E(ŵ)‖2 + 2 ‖E(ŵ)‖
∥∥∥E [{Ŷ − E(Ŷ)}{Ŷ − E(Ŷ)}T{ŵ− E(ŵ)}

]∥∥∥
+E

(
λmax[{ŵ− E(ŵ)}{ŵ− E(ŵ)}T]‖Ŷ − E(Ŷ)‖2

)
≤ λmax(Σ) + 2

∥∥∥E [{Ŷ − E(Ŷ)}{Ŷ − E(Ŷ)}T{ŵ− E(ŵ)}
]∥∥∥

+E
(
trace[{ŵ− E(ŵ)}{ŵ− E(ŵ)}T]‖Ŷ − E(Ŷ)‖2

)
≤ λmax(Σ) + 2

[
E
∥∥∥{Ŷ − E(Ŷ)}{Ŷ − E(Ŷ)}T{ŵ− E(ŵ)}

∥∥∥2
]1/2

+E
{
‖ŵ− E(ŵ)‖2‖Ŷ − E(Ŷ)‖2

}
≤ λmax(Σ) + 2

[
E
{
‖Ŷ − E(Ŷ)‖4‖ŵ− E(ŵ)‖2

}]1/2

+E
{
‖ŵ− E(ŵ)‖2‖Ŷ − E(Ŷ)‖2

}
≤ λmax(Σ) + (Σ) +

[
E
{
‖Ŷ − E(Ŷ)‖4

}]1/2
+ 4E

{
‖Ŷ − E(Ŷ)‖2

}
≤ max

j
var(Ŷj) + 8N

(
max
j

E
[{
Ŷj − E(Ŷj)

}4
])1/2

+ 4N max
j

var(Ŷj).
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Hence, if

√
nj[Ŷj − E{E(Y |X,Z[1])}]→ Normal(0, σ2

j ), (B.23)

there exists a positive constant c4 such that

σ2
j ≤ c4, (B.24)

and

Nn−1 → 0, (B.25)

then the variance of Ŷ (ŵ) converges to zero.

Case 2: All predictions are asymptotically unbiased with E(Ŷj) = E{E(Y |X,Z[1])}+ O(n−1/2
j ) uniformly. By basic calcula-

tions, we have

var{Ŷ (ŵ)}

= E(ŵ)TΣE(ŵ) + 2E(ŵ)TE
[
{Ŷ − E(Ŷ)}{Ŷ − E(Ŷ)}T{ŵ− E(ŵ)}

]
+E

[
{Ŷ − E(Ŷ)}T{ŵ− E(ŵ)}

]2
− {trace(Σwy)}2

+E(Ŷ)TE
(
{ŵ− E(ŵ)}

[
{ŵ− E(ŵ)}T{2Ŷ − E(Ŷ)}+ 2{Ŷ − E(Ŷ)}TE(ŵ)

])
,
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where

E(Ŷ)TE
(
{ŵ− E(ŵ)}

[
{ŵ− E(ŵ)}T{2Ŷ − E(Ŷ)}+ 2{Ŷ − E(Ŷ)}TE(ŵ)

])
= E

(
E(Ŷ)T{ŵ− E(ŵ)}

[
{ŵ− E(ŵ)}T{2Ŷ − E(Ŷ)}+ 2{Ŷ − E(Ŷ)}TE(ŵ)

])
≤ E

{ N∑
j=1

O(n−1
j )}1/2‖ŵ− E(ŵ)‖

{
‖ŵ− E(ŵ)‖‖2Ŷ − E(Ŷ)‖+ 2‖Ŷ − E(Ŷ)‖‖E(ŵ)‖

}
≤ (Nn−1)1/2E{2‖2Ŷ − E(Ŷ)‖+ 2‖Ŷ − E(Ŷ)‖}

= O(Nn−1/2)

under condition (4). Hence, if the conditions (4)-(B.24) are satisfied, and

Nn−1/2 → 0, (B.26)

then the variance of Ŷ (ŵ) converges to zero.

Case 3: The main model is correct and some helper models can be misspecified. This is the case considered in Section 2.3.2.

Obviously, for the correctly specified models, the predictions are asymptotically unbiased under our regularity conditions. It is

seen that

var{Ŷ (ŵ)}

= var
(∑

j∈D
ŵjŶj +

∑
j∈Dc

ŵjŶj

)
≤ 2var

(∑
j∈D

ŵjŶj

)
+ 2E

{∑
j∈Dc

ŵjŶj − E
∑

j∈Dc
ŵjŶj

}2
.
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Hence, from Theorem 4, the second term above goes to zero. From the derivations in the above Case 2, the first term goes to

zero. Thus, as long as the assumptions of Theorem 4 and the conditions (4)-(B.26) are satisfied, then the variance of Ŷ (ŵ)

converges to zero.

Case 4: The main model can be misspecified. From derivations in (B.9), (B.10), and (B.11) and Assumptions 1-3, we know

that uniformly for any w ∈ W ,

CV ?(w) = 1
n1

n1∑
i=1
{Y ?

1i(w)− E(Y1i|X1i,Z[1]
i )}2 +Op(n−1/2N3/2), (B.27)

and

|CV ?(w)−R?(w)| = Op(n−1/2N2). (B.28)

Further, let h?j =
{
Y ?

11,j − E(Y11|X11,Z[1]
1 ), . . . , Y ?

1n1,j − E(Y1n1|X1n1 ,Z[1]
n1)
}T

and H? = (h?1, . . . ,h?N). Then,

CV ?(w) = n−1
1 wTH?TH?w +Op(n−1/2N3/2)

by (B.27). Assume that

E {CV ?(w)} has a unique minimizer wo, i.e., wo = argminw∈WE {CV ?(w)} ,

and wo is an interior point of W . (B.29)
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Let u be a N -dimensional vector with ∑N
j=1 ui = 0 and ‖u‖ = 1, and εn,N be a small positive non-random value related to n

and N . Then,

CV ?(wo + εn,Nu)− CV ?(wo)

= n−1
1 (wo + εn,Nu)TH?TH?(wo + εn,Nu)− n−1

1 wTH?TH?w +Op(n−1/2N3/2)

= n−1
1 ε2

n,NuTH?TH?u + 2n−1
1 εn,NwoTH?TH?u +Op(n−1/2N3/2)

≥ ε2
n,Nλmin(n−1

1 H?TH?)− 2εn,N(n−1/2
1 ‖H?wo‖)λ1/2

max(n−1
1 H?TH?) +Op(n−1/2N3/2),

where

n−1
1 E‖H?wo‖2 = E{CV ?(wo) +Op(n−1/2N3/2)}

= argminw∈WE {CV ?(w)}+O(n−1/2N3/2)

≤ argminw∈WE {R?(w)}+ sup
w∈W

E |CV ?(w)−R?(w)|+O(n−1/2N3/2)

= ξ +O(n−1/2N2) +O(n−1/2N3/2)

= O(ξ + n−1/2N2),

where the last second step uses (B.28). Hence, when

ξ = o(1), n−1/2N2 = o(1), (B.30)

and when there exist positive constants c̃1 and c̃2 such that

c̃1 ≤ λmin(n−1
1 H?TH?) ≤ λmax(n−1

1 H?TH?) ≤ c̃2, (B.31)
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we can let εn,N = (ξ + n−1/2N2)1/3, and obtain

Pr
{

inf
w0+εn,Nu∈W

CV ?(wo + εn,Nu) > CV ?(wo)
}
→ 1.

Now, we get if the conditions (B.29), (B.30), (B.31) are satisfied, then ‖ŵ −wo‖ = Op{(ξ + n−1/2N2)1/3} = op(1). Let woj be

the jth component of wo. It is seen that

var
{
Ŷ (ŵ)

}
= var


N∑
j=1

ŵjŶj


= var


N∑
j=1

(ŵj − woj )Ŷj +
N∑
j=1

woj Ŷj


≤ 2var


N∑
j=1

woj Ŷj

+ 2E


N∑
j=1

(ŵj − woj )Ŷj − E
N∑
j=1

(ŵj − woj )Ŷj


2

.

Therefore, as long as the assumptions of Theorem 4 and the conditions (4)-(B.24) (B.29), (B.30), (B.31) are satisfied, then the

variance of Ŷ (ŵ) converges to zero.
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Appendix C

Proof in Chapter 3

C.1 Proof of Theorem 5

Proof: Let ζ1 = (τ T
1 , δ

T
1 )T. Let B(·) be a vector of B-spline bases, and δ1 satisfy supu |δT

1 B(u) − f1(u)| = O(hq1), which

exists under Conditions C2, C3, C4 and C5. Let

φi(γ) = −
[
E

{
∂2logpI(Y,X,γ∗)

∂γ∂γT

}]−1
∂logpI(Yi,Xi,γ)

∂γ
.

109



ξi(β) = expit(XT
i β1 + ZT

i β2),

η1i(ζ1,γ) = expit[m(Xi)Tτ1 + δT
1 B{pI(0,Xi,γ)}],

η0i(ζ0,γ) = expit[m(Xi)Tτ0 + δT
0 B{pI(1,Xi,γ)}],

ηt1i(τ1,γ) = expit[m(Xi)Tτ1 + f1{pI(0,Xi,γ)}],

ηt0i(τ0,γ) = expit[m(Xi)Tτ0 + f0{pI(1,Xi,γ)}],

µi(β, ζ1, ζ0,γ) = expit[XT
i β1 + ZT

i β2 + log{η1i(ζ1,γ)} − log{η0i(ζ0,γ)}],

µti(β, τ1, τ0,γ) = expit[XT
i β1 + ZT

i β2 + log{ηt1i(τ1,γ)} − log{ηt0i(τ0,γ)}],

Ui(β, ζ1, ζ0,γ) = Ri(XT
i ,ZT

i )T{Yi − µi(β, ζ1, ζ0,γ)},

Uti(β, τ1, τ0,γ) = Ri(XT
i ,ZT

i )T{Yi − µti(β, τ1, τ0,γ)},

S1i(ζ1,γ) = {Ri − η1i(ζ1,γ)}
[
m(Xi)T,B{pI(0,Xi,γ)}T

]T
,

S0i(ζ0,γ) = {Ri − η0i(ζ0,γ)}
[
m(Xi)T,B{pI(1,Xi,γ)}T

]T
,

St1i(τ1,γ) = {Ri − ηt1i(τ1,γ)}
[
m(Xi)T,B{pI(0,Xi,γ)}T

]T
,

St0i(τ0,γ) = {Ri − ηt0i(τ0,γ)}
[
m(Xi)T,B{pI(1,Xi,γ)}T

]T
.
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ci1 = µti(β, τ1, τ0,γ){1− µti(β, τ1, τ0,γ)}{1− ηt1i(τ1,γ)}

×[ηt1i(τ1,γ)ξi(β) + ηt0i(τ0,γ){1− ξi(β)}],

ci0 = µti(β, τ1, τ0,γ){1− µti(β, τ1, τ0,γ)}{1− ηt0i(τ0,γ)}

×[ηt1i(τ1,γ)ξi(β) + ηt0i(τ0,γ){1− ξi(β)}],

Aζ1 ≡
[
E

{
I(Yi = 1)∂S1i(ζ1,γ

∗)
∂ζT

1

}]−1

=

E
ξi(β)ηt1i(ζ1,γ){1− ηt1i(ζ1,γ)}

 m(Xi)

B{pI(0,Xi,γ)}


⊗2


−1

+ o(1),

Aζ0 ≡
[
E

{
I(Yi = 0)∂S0i(ζ0,γ

∗)
∂ζT

0

}]−1

=

E
[{1− ξi(β)}ηt0i(ζ0,γ){1− ηt0i(ζ0,γ)}]

 m(Xi)

B{pI(1,Xi,γ)}


⊗2


−1

+ o(1),

B1,ζ1,γ ≡ E

{
I(Yi = 1)∂S1i(ζ1,γ

∗)
∂γT

}
,

B0,ζ0,γ ≡ E

{
I(Yi = 0)∂S0i(ζ0,γ

∗)
∂γT

}
,

Dβ ≡ E

{
∂Uti(β, τ1, τ0,γ

∗)
∂βT

}
= E (−µti(β, τ1, τ0,γ){1− µti}[ηt1i(τ1,γ)ξi(β)

+ηt0i(τ0,γ){1− ξi(β)}](XT
i ,ZT

i )T(XT
i ,ZT

i ),
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(C.2)

Dγ ≡ E

{
∂Ui(β, τ1, τ0,γ

∗)
∂γT

}
,

D1,ζ1 ≡ E

{
∂Ui(β, ζ1, ζ0,γ

∗)
∂ζT

1

}
= E (µti(β, τ1, τ0,γ){1− µti(β, τ1, τ0,γ)}{1− ηt1i(τ1,γ)}Ri

×(XT
i ,ZT

i )T[m(Xi)T,B{pI(0,Xi,γ)}]T
)

+ o(1)

= E
(
ci1(XT

i ,ZT
i )T[m(Xi)T,B{pI(0,Xi,γ)}]T

)
+ o(1),

D0,ζ0 ≡ E

{
∂Ui(β, ζ1, ζ0,γ

∗)
∂ζT

0

}
= −E

(
ci0(XT

i ,ZT
i )T[m(Xi)T,B{pI(1,Xi,γ)}]T

)
+ o(1).

First of all, based on White (1982), the MLE γ̂ satisfies

√
N(γ̂ − γ∗) = N−1/2

N∑
i=1

φi(γ∗) + op(1).
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Following the standard analysis, letting (ζ̃T
1 , γ̃

T)T be a point on the interval connecting (ζ̂T
1 , γ̂

T)T and (ζT
1 ,γ

∗T)T, in step (ii),

the MLE ζ̂1 satisfies the expansion

0 = N−1/2
N∑
i=1

I(Yi = 1)S1i(ζ̂1, γ̂)

= N−1/2
N∑
i=1

I(Yi = 1)S1i(ζ1,γ
∗) +

[
E

{
I(Yi = 1)∂S1i(ζ1,γ

∗)
∂ζT

1

}
+ op(1)

]
N1/2(ζ̂1 − ζ1)

+
[
E

{
I(Yi = 1)∂S1i(ζ1,γ

∗)
∂γT

}
+ op(1)

]{
N−1/2

N∑
i=1

φi(γ∗) + op(1)
}
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elementwise. Note that ζ̂1 exists and is unique because of the convexity of the loglikelihood function that we maximize in Step

(ii). In addition, ‖ζ̂1 − ζ1‖ = op(1) because for any ζ∗1 such that ‖ζ∗1 − ζ1‖ = CN−1/2, we have

N−1/2
N∑
i=1
{Ri[m(Xi)Tτ ∗1 + δ∗1

TB{pI(0,Xi, γ̂)}

−log(1 + exp[m(Xi)Tτ ∗1 + δ∗1
TB{pI(0,Xi, γ̂)}])}

= N−1/2
N∑
i=1
{Ri[m(Xi)Tτ1 + δT

1 B{pI(0,Xi, γ̂)}

−log(1 + exp[m(Xi)Tτ1 + δT
1 B{pI(0,Xi, γ̂)}])}

+N−1{
N∑
i=1

S1i(ζ1,γ)}N1/2(ζ∗1 − ζ1) + N1/2

2N (ζ∗1 − ζ1)T∂
∑N
i=1 S1i(ζ̃∗1 , γ̃∗)
∂ζT

1
(ζ∗1 − ζ1)

≤ N−1/2
N∑
i=1
{Ri[m(Xi)Tτ1 + δT

1 B{pI(0,Xi, γ̂)}

−log(1 + exp[m(Xi)Tτ1 + δT
1 B{pI(0,Xi, γ̂)}])}

+cT(ζ∗1 − ζ1) + N1/2

2 (ζ∗1 − ζ1)T
{
E
∂S1i(ζ̃∗1 , γ̃∗)

∂ζT
1

+Op(N−1/2)
}

(ζ∗1 − ζ1)

≤ N−1/2
N∑
i=1
{Ri[m(Xi)Tτ1 + δT

1 B{pI(0,Xi, γ̂)}

−log(1 + exp[m(Xi)Tτ1 + δT
1 B{pI(0,Xi, γ̂)}])},

where c is a constant vector and we used Condition C4 in the second last step above. Note that the last term after the second

last inequality above is always negative due to the convexity, so we can choose a sufficiently large C to ensure the last inequality.
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Therefore, we get

N1/2(ζ̂1 − ζ1) = Aζ1N
−1/2

N∑
i=1
{−B1,ζ1,γφi(γ∗)− I(Yi = 1)S1i(ζ1,γ

∗)}+ op(1)

elementwise. Similarly we also have

N1/2(ζ̂0 − ζ0) = Aζ0N
−1/2

N∑
i=1
{−B0,ζ0,γφi(γ∗)− I(Yi = 0)S0i(ζ0,γ

∗)}+ op(1)

elementwise, where ζ0 = (τ T
0 , δ

T
0 )T.
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Finally, consider the maximum pseudo-likelihood estimator β̂ in step (iv). Obviously the loglikelihood of β is that of a

logistic regression form which is convex, hence it has a unique maximizer β̂ which is consistent. Then we get

0 = N−1/2
N∑
i=1

Ui(β̂, ζ̂1, ζ̂0, γ̂)

= N−1/2
N∑
i=1

Ui(β, ζ1, ζ0,γ
∗) + E

{
∂Ui(β, ζ1, ζ0,γ

∗)
∂β

}
N1/2(β̂ − β)

+E
{
∂Ui(β, ζ1, ζ0,γ

∗)
∂ζ1

}
N1/2(ζ̂1 − ζ1) + E

{
∂Ui(β, ζ1, ζ0,γ

∗)
∂ζ0

}
N1/2(ζ̂0 − ζ0)

+E
{
∂Ui(β, ζ1, ζ0,γ

∗)
∂γ

}
N1/2(γ̂ − γ∗) + op(1)

= N−1/2
N∑
i=1

Uti(β, τ1, τ0,γ
∗) + DβN

1/2(β̂ − β)

+D1,ζ1Aζ1N
−1/2

N∑
i=1
{−B1,ζ1,γφi(γ∗)− I(Yi = 1)St1i(τ1,γ

∗)}

+D0,ζ0Aζ0N
−1/2

N∑
i=1
{−B0,ζ0,γφi(γ∗)− I(Yi = 0)St0i(τ0,γ

∗)}

+DγN
−1/2

N∑
i=1

φi(γ∗) + op(1).

Thus, N1/2(β̂ − β)→ N(0,Σ) in distribution, where

Σ = D−1
β E [Uti(β, τ1, τ0,γ

∗) + Dγφi(γ∗)

−D1,ζ1Aζ1 {B1,ζ1,γφi(γ∗) + I(Yi = 1)St1i(τ1,γ
∗)}

−D0,ζ0Aζ0 {B0,ζ0,γφi(γ∗) + I(Yi = 0)St0i(τ0,γ
∗)}]⊗2 D−1

β
T
.
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