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ABSTRACT

Math learning disability (MLD) is a neurodevelopmental disorder that results from 

specific cognitive deficits involved with numeric computation and arithmetic that cannot 

be attributed to low general ability. Although MLD has a significant impact on life 

outcomes, only a few studies have evaluated unique neurological profile differences 

between those with and without specific math deficits. EEG coherence has been useful 

for evaluating neural disconnections in children with neurodevelopmental disorders but 

has never been used to explain cognitive deficits found in children with MLD. The 

current study contributed to the literature by evaluating at-rest electrocortical signatures 

in those with MLD (n = 15), those without MLD, (n = 30), and those with general low 

achieving ability (n = 15). Specifically, the study evaluated disruptions in intra- and 

interhemispheric EEG coherence between three groups of children with differing math 

profiles. Results demonstrated those with math-specific deficits had reduced delta left 

hemispheric coherence relative to controls (p = .006), and reduced beta coherence in the 

left hemispheric central-parietal lobe (p = .034) and the right hemispheric fronto-central 

lobe (p = .004) in comparison to controls, not seen in low achieving students. 

Additionally, results demonstrated greater coherence in the control group compared to 

both the MLD and low achieving students. Exploratory analyses revealed left 

hemispheric delta coherence contributed significant variance beyond IQ for math (p = 

.007), but not reading ability (p = .622). Results from the current study provide support 

for disruption in basal electrocortical activity for children with specific math deficits.
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CHAPTER 1 

INTRODUCTION

Learning math skills in early childhood is vital as mathematics ability is 

significantly associated with greater positive life outcomes including socioeconomic 

status (SES), educational endurance, academic motivation, economic success, and even 

later ability to make health decisions (Reyna, Nelson, Han, & Dieckmann, 2009; Ritchie 

& Bates, 2013). Importantly, early mathematics ability is a stronger predictor of later 

academic achievement over other academic abilities including reading and attention skills 

(Duncan et al., 2007). Approximately 5-7% of children develop a specific math learning 

disability (MLD, or developmental dyscalculia; DD), and another 10% of elementary 

school children will go on to develop persistent deficits in math ability (Berch & 

Mazzocco, 2008; Shalev, Auerbach, Manor, & Gross-Tsur, 2000; Shalev, 2004). 

Although not all children with math deficits will meet criteria for a specific learning 

disability (SLD), this indicates that nearly 17% of children at the elementary school level 

have deficits in mathematics ability that hinder their later academic achievement. 

Although the prevalence of MLD is comparable to that of dyslexia, there has been a lack 

of research evaluating MLD and its treatment (Gersten, Clarke, & Mazzocco, 2007). Both 

disorders are neurobiological in nature, yet little research has been done evaluating 

neurological markers to explain the academic and cognitive deficits present in MLD. 
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Academic Deficits in MLD 

Children with difficulties in mathematics demonstrate deficits in the acquisition of 

arithmetic skills not due to low intellectual ability (Shalev, 2004). Core deficits include 

retrieving arithmetic facts, comprehending simple math equations, learning multiplication 

tables, and understanding math word problems (Hale, Fiorello, Bertin, & Sherman, 2003; 

Shalev et al., 2000; Shalev, 2004). Math skills develop in a common sequence from 

addition up to higher-order math topics, like geometry. Many of the skills learned in math 

are based on the ability to associate concrete measurements with abstract symbols (i.e., 

numerical symbols). Individuals can develop deficits associated with any part of this 

developmental sequence; however, core math deficits occur most often in the early 

sequence of acquiring mathematics with skills such as counting knowledge, counting 

speed, and working memory (Geary, 1993). As such, most MLD research evaluates 

elementary-aged children (Katherine & Fisher, 2016). 

Cognitive Deficits in MLD 

Children demonstrating deficits in mathematics show deficits in multiple areas of 

math and cognition (Hale et al., 2003). Children with MLD show deficits in cognitive 

skills such as long-term memory storage, visual motor integration, verbal comprehension, 

short-term working memory, and fluid reasoning (Geary, 1993, 2003; Hale et al., 2003; 

Price & Ansari, 2013). Although, there is disagreement as to whether all these cognitive 

deficits are found in children with MLD as the definition of MLD differs by research 

study. Including a large range of children allows for broader categorization but may cloud 

true cognitive deficits of children with MLD. Notably, there is agreement that core 

cognitive deficits in working memory and visuospatial attention (Attout & Majerus, 
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2015; Geary, 2003; Rotzer et al., 2009) contribute greatly to the development of MLD 

and low math achievement. 

Children with MLD tend to score lower on tasks of working memory and 

numerical ordering tasks than other children, even when IQ is matched (Attout & 

Majerus, 2015; Menon, 2016; Schuchardt, Maehler, & Hasselhorn, 2016). However, a 

recent meta-analysis concluded working memory and mathematics are more strongly 

related in those that have comorbid cognitive and other disorders, compared to typical 

learners and those with sole math difficulties (Peng, Namkung, Barnes, & Sun, 2016), 

meaning that children with only MLD may not display such severe working memory 

deficits.  

Research suggests that deficits in both the visuo-spatial sketchpad and central 

executive are intrinsically tied to arithmetic ability (Bull & Johnston, 1997; Bull, 

Johnston, & Roy, 1999; D’Amico & Guarnera, 2005; Geary, Hoard, vByrd-craven, & 

Nugent, 2007; McLean & Hitch, 1999). However, it appears that difficulties in working 

memory tasks for children with math deficits are numerically related (Gathercole, 

Pickering, Knight, & Stegmann, 2004; McLean & Hitch, 1999). Furthermore, children 

with low math ability tend to have deficits in verbal working memory tasks only when 

they involve numerical information (e.g., digit span) (D’Amico & Guarnera, 2005; 

McLean & Hitch, 1999).  

Visuospatial deficits are also present in children with MLD. There is an 

association between visuospatial and mathematics deficits such that children with both 

impaired visuospatial and numerical skills display a lack of numerical representation on 

the commonly used number line (Bachot, Gevers, Fias, & Roeyers, 2005). Additionally, 
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children with MLD have visuospatial working memory deficits (Andersson & Östergren, 

2012; Ashkenazi, Rosenberg-Lee, Metcalfe, Swigart, & Menon, 2013; Ashkenazi, 

Rosenberg-Lee, Tenison, & Menon, 2012). For example, children with MLD have 

difficulty with block tasks like block recall, which requires them to remember 

information that is presented within a specific visuospatial layout (i.e., remembering the 

order of blocks being tapped on the table). 

In culmination, children with MLD have wide-ranging cognitive deficits that 

impact their academic skills. Although there is convergent data in the field considering 

broad definitions of MLD, there is consistent evidence to suggest that children with lower 

math skills often display working memory deficits (particularly with numerical 

information) and visuospatial working memory deficits, which may be related to 

particular neurological abnormalities.  

MLD and the Brain 

To evaluate neurological abnormalities of learning disabilities, noninvasive 

neurocognitive research often uses functional magnetic resonance imaging (fMRI) and 

electrocochleography (EEG) paradigms. There are two main hypotheses researchers use 

to evaluate learning disabilities: the common deficit/domain-general hypothesis (e.g., 

Swanson, 1987), and the domain-specific cognitive hypothesis (e.g., Landerl, 

Fussenegger, Moll, & Willburger, 2009). The common deficit hypothesis argues there are 

general deficits children with learning disabilities have (e.g., overall lower connectivity 

across the brain), while the domain-specific hypothesis argues deficits in specific learning 

disabilities are attributed to the specific disability a child has (e.g., a child with a reading 

disability presents with a different neurological profile than a child with a math 
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disability). Research has indicated that children with learning disabilities comprise a 

heterogenous group, but subgroups can be evaluated using behavioral data and 

neurological markers (Roca-Stappung, Fernández, Bosch-Bayard, Harmony, & Ricardo-

Garcell, 2017). 

Specific studies have investigated brain abnormalities and differences in children 

with MLD compared to neurotypical controls, most commonly while performing certain 

mathematics tasks. Using fMRI methodology, two main brain areas are commonly 

evaluated in association with MLD: the IPS and fusiform gyrus, which are both areas 

associated with math functioning in the brain (Ashkenazi, Black, Abrams, Hoeft, & 

Menon, 2013; Butterworth, 2011; Menon, 2014). Children with MLD show reduced 

activation in areas commonly associated with math computation including the IPS, 

superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex 

(Ashkenazi et al., 2012). Furthermore, strength of activation in the IPS is associated with 

higher math performance (Bugden, Price, McLean, & Ansari, 2012), and children with 

MLD display reduced activation in the IPS (Mussolin et al., 2010; Rotzer et al., 2008). 

There is some research to suggest that children with MLD show hyperactivation of the 

IPS during certain tasks, but improper task modulation in the brain while performing 

math (Rosenberg-Lee et al., 2015). Along with IPS modulation, greater deactivation of 

the angular gyrus is also associated with poorer math ability (Gruber, 2001; Wu et al., 

2009).  

Although research evaluating MLD using EEG methodology is scarce, there are 

some key findings that emphasize the utility of EEG to study clinical differences in math 

achievement. Research suggests unique electrocortical signals that differentiate math 
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technique usage overlap with electrocortical signals seen in executive function tasks (see 

Hinault and Lemaire (2016)), and may present differently in children with math deficits. 

An older study evaluated neurological markers of children with “nonverbal learning 

disabilities” (NVL) in relation to “verbal learning disabilities,” (VLD) and found children 

with NVL displayed reduced right hemispheric long-distance connectivity in comparison 

to children with VLD (Njiokiktjien, de Rijke, & Jonkman, 2001). Additionally, children 

with NVL showed reduced gamma coherence over frontal and temporal lobes. More 

recently, when comparing children of differing mathematics ability while performing 

math tasks González-Garrido et al. (2018) found that children with low-achieving math 

ability showed greater frontal coherence, but reduced beta coherence in comparison to 

high-achieving math students. Although a baseline difference in IQ was noted, no 

children had below a 90 standard score IQ, and represented low-achieving math children, 

rather than children with MLD. Regardless, these findings can be used as a starting point 

to evaluate MLD and low achieving math students’ unique neurological signatures. 

Beyond activation and electrocortical studies, a unique morphometry study of 

children with MLD found that those with MLD had reduced volumetric white and gray 

matter in the left frontal lobe and right parahippocampal area (Rotzer et al., 2008). 

Furthermore, morphometric analyses reveal that brain abnormalities in the right 

hemispheric tempo-parietal networks are associated with mathematical and working 

memory deficits (Rykhlevskaia, Uddin, Kondos, & Menon, 2009). Overall, findings from 

fMRI, EEG, and morphometry reveal that children with MLD and low achieving math 

abilities show neurological differences that can be explored further. 
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Using Coherence to Study Clinical Groups 

EEG studies have been performed looking at differences between those with and 

without learning disabilities, but few have published resting state basal data, or observed 

clinical differences specifically in children with math deficits. Although some key studies 

were identified previously, most studies evaluating math and the brain use hemodynamic 

measures of neural responses. However, such measures use a reductionistic approach, 

prioritizing separate regions of the brain implicated in cognition and mathematics ability, 

rather than evaluating whole brain cognition networks. One technique that may 

incrementally address the neurobiological basis for cognitive and mathematics deficits 

while preserving a more holistic assessment of brain networks is evaluating brain 

coherence. Coherence from EEG data is considered a type of quantitative EEG (qEEG) 

analysis, which has very recently been noted to provide additional insight into clinical 

disorders beyond behavioral profiles (Popa, Dragos, Pantelemon, Rosu, & Strilciuc, 

2020). In addition, studying the brain’s basal physiology can also work to highlight 

distinguishing features, though this paradigm is seldom used to evaluate learning 

disabilities, as identification practices are primarily behavioral.  

Coherence is a measure of phase consistency between different electrocortical 

regions (Bedat & Piersol, 2000) and is often used to estimate functional interactions 

between brain regions at different wavelengths (Srinivasan, Winter, Ding, & Nunez, 

2007). As such, by using coherence measurements, researchers can evaluate functional 

integration of brain regions in relation to tasks, or at rest. Resting-state paradigms are 

often used to evaluate neurological clinical profiles present when individuals are not 

performing any specific tasks (Hanakawa, 2017), and thus coherence measurements in 
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resting-state paradigms can be used to look at unique neurological profiles in children 

with MLD through functional integration present in the resting brain.  

A recent article evaluated resting-state brain coherence in a large group of 

children with and without learning disabilities (n = 216) and noted some clear coherence 

differences such as increased theta power and reduced alpha coherence in children with 

learning disabilities (Jäncke, Saka, Badawood, & Alhamadi, 2019). However, results did 

not account for a statistically significant IQ baseline difference between groups, and 

should be interpreted cautiously, as observed differences may reflect this baseline 

difference (see Thatcher, North, and Biver, (2005)) Another recent article using 

coherence EEG measures evaluated clinical differences between those with dyslexia (n 

=184) and children with a non-specific reading delay (n = 43) to observe flow of 

information differentiation (Bosch-Bayard et al., 2020). Overall, research studies have 

used EEG coherence paradigms (both resting and non-resting state) to study clinical 

group differences and uncover unique electrocortical signatures (Coben, Clarke, 

Hudspeth, & Barry, 2008; Kam, Bolbecker, O’Donnell, Hetrick, & Brenner, 2013; Park 

et al., 2017; Tas et al., 2015), and as such, coherence is a well-validated method that can 

be applied to studying MLD. 

Study Overview  

In culmination, children with specific math deficits are at a disadvantage in terms 

of later academic and economic success, and our research efforts into uncovering the 

neurological underpinnings of mathematics disabilities are stunted when evaluating 

coherence and brain connectivity. Although research has been used to evaluate the 

neurological basis of math while performing math tasks, we know little about the basal 
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physiology of math deficits in the brain. The current study adds to the growing body of 

literature on math deficits and the brain by providing an evaluation of basal physiology 

differences between three groups of elementary school aged children: neurotypical 

controls, children with low achieving math scores (LA), and children with specific math 

deficits in an otherwise average cognitive profile (MLD). Analyzing inter and 

intrahemispheric cortical coherence between these three groups creates a holistic view of 

unique neurological differences that can be used to distinguish children with these 

specific deficits at rest and differentiate math-specific deficits against differences due to 

lower cognitive ability. Given the associations between brain connectivity and behavioral 

interpretations of academic and cognitive abilities, the results of this study provide 

biological explanations of math-specific deficits. Furthermore, this study provides 

evidence for and against the “common-deficit hypothesis” by providing unique brain 

profile differences in those with math deficits, not observed by those with lower cognitive 

ability, as well as deficits common to both groups. 

 

.
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CHAPTER 2 

METHOD

All experimental procedures and questionnaires given were approved by the 

Institutional Review Board at the University of South Carolina and all children gave 

verbal assent, while their parents gave written consent. 

Participants 

This study examined math ability in children aged 7-12. Participants for this study 

included 30 controls, 15 children with low achieving math ability (LA), and 15 children 

with specific math deficits (MLD) (N = 60). Children were recruited through local 

advertisements and agencies in the Columbia, South Carolina area that serve children 

with specific learning disabilities, including MLD. Neurotypical controls were recruited 

using online media outlets such as Facebook parenting groups. Participants received 

monetary compensation for completion of the study. 

Inclusion criteria for a child to be LA or MLD consisted of: a.) current/previous 

specific math learning disability diagnosis (including documentation), and/or b.) score 

below the 25th percentile on the Woodcock-Johnson Tests of Achievement – 3rd Edition 

(WJ-III Ach) Math Calculation subtest and/or Math Fluency subtest. Using this criteria, 

30 children were identified. To be considered as MLD, a discrepancy approach was used 

to ensure that lower math scores deviated from a child’s general IQ. It should be noted 

that this classification system does not include all variables typical in a full evaluation for 

a math learning disability (i.e., history, instruction information, etc.). As such, inclusion 
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criteria to the MLD group was used for the purposes of identifying children with notable 

math deficits within an average cognitive profile in comparison to low achieving children 

not meeting criteria for MLD. If a child had a math subtest score that was at least 15 

standard score points (1 SD) below their IQ, they were classified as MLD. If a child did 

not have any math subtest scores at least 15 points below their IQ, they were identified as 

having low achieving math scores that could be explained by lower cognitive ability. The 

average discrepancy (using the child’s lowest math subtest score and GIA) for the MLD 

group was 24.3 points (approximately 1.5 SD discrepancy from IQ), while the average 

discrepancy for the LA group was 8 points. The creation of these two groups increased 

statistical power by making groups more homogenous and allowed for the differentiation 

between LA and MLD children to determine unique brain profile markers in children 

with specific math deficits. 

Inclusion criteria for control children consisted of: a.) no current or previous IEP 

in school or qualifications for special education services, and b.) score at or above the 

25th percentile on the WJ-III Ach Math Calculation and Math Fluency subtests. The 

control group included children of average (SS between 90 and 115; n = 15) and high 

achieving math ability (SS above 115; n = 15). Children were excluded if their General 

Intelligence Ability (GIA) (Woodcock-Johnson Tests of Cognitive Ability – 3rd Edition; 

WJ-III Cog) fell below a standard score of 70. Children were also assessed with the 

Broad Reading Cluster to determine if there were any notable reading deficits. Only two 

children were identified as having a reading composite below 70; however, the exclusion 

of these two participants did not result in significant differences in results, so they were 

retained. Participants had a mean age of 9.58 (SD = 1.38) and 53.3% of the sample was 
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male (46.7% female). Participants were overwhelmingly Caucasian, making up 83.3% of 

the ethnic makeup of the participant population, with 8.3% African American, 1.7% 

Hispanic, and 6.7% Asian. 

Procedures 

Each testing session lasted approximately three hours, including multiple breaks 

from testing. Participants and their guardians arrived at the lab and guardians gave 

written consent to testing procedures while children provided verbal assent. Parents 

completed parent-report questionnaires while children completed neuropsychological 

testing. Children were first fitted with an EEG cap and resting-state EEG data was 

collected, both eyes open and eyes closed in three-minute intervals. After EEG data was 

collected, participants completed multiple cognitive and academic tests. During testing, 

breaks were provided as necessary, but no breaks exceeded 20 minutes. Most children 

only used 3-4 breaks per testing session with each break lasting 5-10 minutes. After study 

completion, guardians received monetary compensation. All data used in the study was 

de-identified following testing to ensure confidentiality. 

Materials 

Woodcock-Johnson Tests of Cognitive Ability – 3rd Edition. The WJ-III 

(Woodcock, Mather, McGrew, & Wendling, 2001) was used in this study because data 

was collected before the fourth edition of the WJ was released. The WJ-III is an 

individually administered cognitive assessment appropriate for individuals aged two to 

90+. The WJ-III Cog provides multiple subtests in each of the Cattell-Horn-Carroll 

(CHC) factors of intelligence. All standard battery subtests were administered to obtain a 
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GIA score used to rule-out general lower cognitive ability for children scoring low on 

math measures used in the inclusion criteria. 

Woodcock-Johnson Tests of Achievement – 3rd Edition. Math achievement 

was represented by the WJ-III Ach (Woodcock, McGrew, & Mather, 2001). Similar to 

the WJ-III Cog, the WJ-III Ach is an individually administered achievement assessment 

that is appropriate for individuals aged two to 90+. The WJ-III Ach provides scores in 

different areas of math, reading, and writing. For this study, the Broad Mather Cluster 

score was evaluated, which combines the Calculation, Math Fluency, and Applied 

Problems subtests. This score is for all intents and purposes, the average of these three 

subtests. Additionally, individual scores on the math subtests were used for inclusion 

criteria into the MLD and LA groups. 

EEG Recording and Analysis 

Participants were fitted for a standard 19-electrode cap, with ground electrodes 

placed on the ears. Figure 2.1 displays the international 10-20 electrode recording 

placement. Baseline, resting-state EEG recordings for eyes closed and eyes open data 

were recorded for a minimum of three minutes. Only eyes closed data was used in the 

current study since this type of data is one of the most common paradigms to evaluate 

clinical group differences (e.g., Murias, Webb, Greenson, & Dawson, 2007). EEG 

activity was recorded using a BrainMaster Discovery 24E amplifier (Wigton & 

Krigbaum, 2015) with Neuroguide 6.6.4 Software (Thatcher, 2011). Data was sampled at 

256 Hz, with a 60Hz notch filter to remove excess noise caused by the surrounding 

environment. All impedance values for electrodes were maintained below10KΩ 

throughout data recording, with reference electrodes maintained below 5KΩ. 
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Prior to data processing, EEG data was cleaned using the Neuroguide Software 

(Thatcher, 2011). First, EEG data were manually inspected to choose a minimum of ten 

seconds of artifact-free data. An automatic selection function was then applied to 

automatically select data within the sample that models the artifact-free selection. Data 

were visually inspected to ensure accurate selection. Additionally, automatic ocular 

correction was employed to remove eye-movement artifacts from data. Data was filtered 

using a high band pass of 1 Hz and a low band pass of 30 Hz. EEG data was referenced 

using a linked-ears electrode reference. 

The power spectrum was calculated using Welch’s transformation for delta (1–4 

Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) frequency bands, which 

estimates power spectral density and reduces signal noise. Coherence measures were 

obtained using the Neuroguide software. Neuroguide uses a normed database to provide 

coherence values in raw Z-scores, minimizing discrepancies in coherence due to age. 

Data Analysis 

Continuous demographic variables were evaluated with one-way analyses of 

variance (ANOVA) and discrete demographic variables were evaluated with Chi-square 

analyses. To analyze coherence by brain area, electrodes were separated into frontal 

(FP1, FP2, F7, F3, Fz, F4, and F8), temporal (T3, T4, T5, and T6), central (C3, Cz, and 

C4), parietal (P3, Pz, and P4), and occipital (O1 and O2) lobes. Using methods similar to 

Coben, Clarke, Hudspeth, and Barry (2008), interhemispheric coherence was calculated 

by averaging all electrode coherence connections within each lobe. This included 21 

frontal, 6 temporal, 3 central, and 3 parietal averaged connections. Occipital connections 

were not averaged because there was only one coherence connection (O1-O2). One-way 
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ANOVAs were performed to determine interhemispheric coherences group differences 

(control, LA, and MLD) at each specified wavelength.  

Intrahemispheric coherence was analyzed in two different ways. First, coherence 

was analyzed by mean short/medium and long electrode distances by hemisphere (Coben 

et al., 2008) to evaluate global connectivity and integration of information across 

electrode distances. Left short/medium distances were: Fp1–F3, T3–T5, and C3–P3 and 

right distances were: Fp2–F4, T4–T6, and C4–P4. Left long electrode distance was 

defined as F3– O1 and right electrode distance was defined as F4–O2. Mixed ANOVAs 

were used to analyze differences between groups (control, LA, and MLD) and within 

hemisphere (L, R) at each specified wavelength. 

Next, coherence was analyzed by group, hemisphere, and region, using previously 

established intrahemispheric coherence analysis methods for observing clinical group 

differences (Kam, Bolbecker, O’Donnell, Hetrick, & Brenner, 2013; Park et al., 2017; 

Tas et al., 2015; Thatcher, Krause, & Hrybyk, 1986). F3 –C3, F3–P3, F3–T3, C3–P3, 

C3–T3, P3–T3 electrode pairs were used on the left hemisphere and F4–C4, F4–P4, F4–

T4, C4– P4, C4–T4, P4–T4 electrode pairs were used on the right hemisphere. Mixed 

ANOVAs were used to analyze differences between groups (control, LA, and MLD), 

within hemisphere (L, R), and within brain area (fronto-central, fronto-parietal, fronto-

temporal, central-parietal, central-temporal, and parietal-temporal) at each specified 

wavelength. For all repeated measures analyses, if Mauchley’s Test of Sphericity was 

broken, a Greenhouse-Geisser correction was applied.  
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       Figure 2.1. International 10-20 system.   
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CHAPTER 3 

RESULTS 

Descriptive statistics 

Participant characteristics are presented in Table 3.1. All variables were 

homoscedastic. Of note, there was a significant difference in age between groups, 

however, no differences passed Bonferroni-corrected pairwise comparisons. Chi-square 

analyses for gender and ethnicity indicate no significant differences between the three 

groups. All math subtests and the broad math cluster demonstrate significant, expected 

differences between all groups (p’s < .001), such that the control group had higher math 

scores than both the MLD and LA groups. As noted in Table 3.1, the control group had 

significantly higher general IQ than the MLD and LA groups (p’s < .001). Both the 

control and MLD group had average IQ, while the LA group had low average IQ. This 

was expected given that MLD children generally have math deficits in an otherwise 

average cognitive profile (Geary, 2003). IQ was not used as a covariate as the MLD 

groups displayed average IQ. Considering IQ is positively correlated with coherence 

(Thatcher, North, & Biver, 2005), differences between the control and LA groups, 

demonstrate specific, expected, IQ-related differences in coherence. 

Interhemispheric Coherence  

Interhemispheric coherence results are depicted in Table 3.2. Bonferroni - 

corrected pairwise comparisons were performed to explore significant ANOVA 

differences. In occipital alpha, the MLD group showed reduced coherence compared to
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the LA group (p = .030). In the beta wavelength, the control group showed greater 

coherence compared to the LA group in the temporal (p = .027) lobe, while the control 

group had greater coherence compared to both the MLD (p = .034) and LA (p = .016) 

groups in the parietal lobe. Differences between groups did not survive Bonferroni-

corrections for theta temporal coherence and there were no group differences in delta 

coherence. Results suggest that those with MLD show reduced alpha occipital coherence, 

even compared to those with low achieving math abilities. Additionally, MLD and LA 

groups showed reduced beta coherence in the parietal lobe, while only the LA group 

showed reduced coherence in the temporal lobe. As such, interhemispheric coherence 

markers of specific math deficits may lie within reduced alpha occipital coherence.  

Intrahemispheric Coherence 

Electrode Distances. Mixed ANOVAs were performed by wavelength to 

determine interactions within hemisphere and between groups by differing electrode 

distances. Bonferroni-corrected pairwise comparisons were used to explore significant 

differences. Results for small-medium electrode distances are depicted in Table 3.3. In 

the beta wavelength, the control group showed significantly greater coherence than the 

LA group (p = .004). Specifically, there was a group X hemisphere interaction such that 

in the left hemisphere, the control group had greater coherence than both the LA (p = 

.013) and MLD (p = .018) groups, while in the right hemisphere the control group had 

greater coherence than the LA group (p = .005) (Figure 3.1). This provides evidence to 

suggest there may be no distinct neurological markers of math deficits within short-

medium electrode distance integration, beyond differences explained by lower ability.  
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For long electrode distances, there was only a group X hemisphere interaction in 

the delta wavelength. As depicted by Figure 3.2 the controls and LA groups showed 

modulation of coherence across hemispheres. The controls showed greater left 

hemispheric coherence and reduced right hemispheric coherence (p < .001) while the LA 

group showed the opposite coherence pattern (n.s.). The MLD group showed low stable 

coherence across both hemispheres with no coherence modulation. Overall, this provides 

some evidence to suggest the MLD group has lower stable delta coherence that differs 

from regular coherence patterns for children without specific math deficits for long-range 

information integration. 

Group, Region, and Hemisphere Interactions. Mixed ANOVAs were 

performed by wavelength to determine interactions within hemisphere and region, and 

between groups (Table 3.5). In the beta wavelength, there was a main effect of group 

such that the control group showed greater coherence than both the LA (p = .006) and 

MLD (p = .023) groups. Additionally, there was a group X hemisphere X region three-

way interaction (Figure 3.3). In the left hemisphere, the control group showed greater 

coherence than the LA group in the fronto-central (p = .024), fronto-temporal (p = .028), 

fronto-parietal (p = .044), central-temporal (p = .042), and tempo-parietal lobes (p = 

.020). Additionally, the control group showed greater coherence than the MLD group in 

the fronto-parietal (p = .022), central-parietal (p = .034), and tempo-parietal (p = .030) 

lobes. In the right hemisphere, the control group showed greater coherence than the LA 

group in the fronto-parietal (p = .006) and central-parietal (p = .005) lobes. The control 

group showed greater coherence than the MLD group in the fronto-central (p = .004) and 

fronto-parietal (p = .011) lobes.  
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In the delta wavelength, there was a main effect of group, such that the control 

group showed significantly greater coherence than the MLD group (p = .028). The group 

X hemisphere interaction indicates that in the left hemisphere, the control group showed 

significantly greater coherence than the MLD group (p = .003) (Figure 3.4). Results 

suggest that beta left hemispheric coherence in the central-parietal lobe and right 

hemispheric coherence in the fronto-central lobe may indicate specific neurological 

clinical differences for children with math deficits that are not solely due to low 

achievement in mathematics. Importantly, there were significant noted differences in 

delta left hemispheric coherence such that children with math deficits showed reduced 

coherence, not seen in the LA group. 

Exploratory Hierarchical Regressions 

Given previous results indicating the importance of general left hemispheric delta 

coherence for differentiating those with and without math disabilities, an exploratory 

hierarchical regression was performed to determine if these neurological correlates 

predict math ability, beyond IQ itself. IQ was used in the first block of predictors to 

ensure that IQ was accounted for in predicting math ability, given its high predictive 

value in determining academic skill ability. Specifically, the Broad Math Cluster score 

was used to determine general math ability. This cluster consists of the three main math 

subtests from the WJ-III Ach: Math Calculation, Math Fluency, and Applied Problems. 

Results for the regression shows homoscedastic residuals and all VIF values were less 

than 10, indicating no collinearity.  

Overall, both regression models were statistically significant (p’s < .001) (Table 

3.6). IQ by itself significantly predicted math ability (F (1,58) = 121.83, p < .001, R2 = 
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.677). Importantly, adding coherence variables as predictors (F (7,52) = 24.62, p < .001, 

R2 = .768) substantially explained more variance in math ability than IQ alone (p = .007, 

R2 change 9.1%) (Figure 3.5). Delta left hemispheric fronto-central, fronto-parietal, and 

central-parietal coherence variables were all significant predictors of math ability. Both 

fronto-central and central-parietal beta weights were positive, suggesting that as 

coherence in these areas increase, math ability increases, while as coherence in fronto-

parietal increases, math ability decreases.  

To determine divergent validity in predicting math ability, delta left hemispheric 

coherence variables were also used to predict the Broad Reading Cluster. As previously 

established, coherence is positively correlated with intelligence (Thatcher, North, & 

Biver, 2005). Using delta left hemispheric coherence to predict reading ability provides 

evidence to determine if these coherence variables are correlates of math ability 

specifically, or general intellectual/academic ability. Results for the regression showed 

homoscedastic residuals and all VIF values were less than 10, indicating no collinearity. 

When predicting reading ability using IQ and coherence variables, both models were 

significant (p’s < .001) (Table 3.6). IQ significantly predicted reading ability (F (1,58) = 

119.41, p < .001, R2 = .673), and adding coherence variables also resulted in a significant 

model (F (7,52) = 17.23, p < .001, R2 = .699). Importantly, adding these coherence 

variables did not add significant variance for predicting reading ability beyond IQ (p = 

.622, R2 change 2.6%). Additionally, none of the coherence variables were significant 

predictors of reading ability (p’s > .4). 

These results suggest that left hemispheric coherence at the delta wavelength not 

only may work to differentiate those with and without math disabilities but are also 
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highly associated with math ability and not reading ability. As such, left hemispheric 

coherence at the delta wavelength may be particularly important for predicting math 

ability, and not academic abilities generally.  
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         Table 3.1. Group Characteristics (N = 60) 

 

 Control  MLD  LA   

Variables M SD  M SD  M SD F p 

IQ *** 110.40 11.59  99.20 11.32  88.33 7.22 22.35 < .001 

Age * 9.17 1.42  10.20 1.21  9.80 1.26 3.28 .045 

Broad Math Cluster *** 117.37 14.34  87.13 17.53  85.80 11.07 34.08 < .001 

Calculation *** 114.17 15.28  87.67 19.11  89.40 13.51 19.50 < .001 

Math Fluency *** 105.90 11.52  78.00 6.16  84.20 11.21 44.14 < .001 

Applied Problems *** 115.73 10.85  93.53 16.24  88.33 11.18 30.34 < .001 

             *p < .05, ** p < .01, *** p <.001 
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  Table 3.2. Interhemispheric Coherence 

 

 F p Post hoc 

Alpha    

Frontal  .53 .590  

Temporal .17 .848  

Central 2.67 .078  

Parietal 2.74 .073  

Occipital * 3.69 .031 MLD < LA 

Beta    

Frontal  1.27 .289  

Temporal * 3.72 .030 Con > LA 

Central * 3.69 .031 (n.s) 

Parietal ** 5.74 .005 Con > MLD, LA 

Occipital .23 .795  

Theta    

Frontal  .03 .971  

Temporal * 3.18 .049 (n.s) 

Central 2.40 .100  

Parietal 2.60 .083  

Occipital .99 .378  

Parietal    

Frontal  .37 .692  

Temporal 1.30 .281  

Central 1.21 .305  

Parietal 1.24 .299  

Occipital .01 .99  

   *p < .05, ** p < .01, *** p <.001 
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    Table 3.3. Short-medium Electrode Distance Intrahemispheric Coherence  

 

 F p ηp
2 Post hoc 

Alpha     

Group  .38 .688 .013  

Hemisphere *** 17.40 < 001 .234 L > R 

Group X Hemisphere .18 .837 .006  

Beta     

Group ** 6.39 .003 .183 Con > LA 

Hemisphere * 6.09 .017 .096 L > R 

Group X Hemisphere * 3.42 .040 .107 
In L, Con > LA, MLD 

In R, Con > LA 

Theta     

Group  1.88 .161 .062  

Hemisphere *** 13.26 <.001 .189 L > R 

Group X Hemisphere .95 .394 .032  

Delta     

Group * 3.44 .039 .108  

Hemisphere * 5.71 .020 .091 L > R 

Group X Hemisphere 1.65 .201 .055  

     *p < .05, ** p < .01, *** p <.001 
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          Table 3.4. Long Electrode Distance Intrahemispheric Coherence  

 

 F p ηp
2 Post hoc 

Alpha     

Group  2.86 .065 .091  

Hemisphere .54 .467 .009  

Group X Hemisphere .08 .926 .003  

Beta     

Group  2.73 .074 .087  

Hemisphere ** 8.68 .005 .120 L > R 

Group X Hemisphere  1.88 .162 .062  

Theta     

Group  2.22 .119 .075  

Hemisphere 1.77 .188 .030  

Group X Hemisphere  2.51 .090 .081  

Delta     

Group .90 .414 .030  

Hemisphere .64 .428 .011  

Group X Hemisphere ** 5.51 .006 .162 Con, L > R 

*p < .05, ** p < .01, *** p <.001 
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 Table 3.5. Intrahemispheric Coherence Interactions 

 

 F p ηp
2 Post hoc 

Alpha     

Group 2.16 .124 .071  

Group X Region 1.05 .388 .036  

Group X Hemisphere .225 .799 .008  

Group X Region X Hemisphere 1.51 .176 .050  

Beta     

Group ** 6.77 .002 .192 Con > LA, MLD 

Group X Region .81 .542 .028  

Group X Hemisphere 2.19 .121 .071  

Group X Region X Hemisphere * 2.50 .031 .080 

In FC FP, Con > LA, 

MLD 

In CP, Con > LA 

Theta     

Group 2.54 .088 .082  

Group X Region .38 .862 .013  

Group X Hemisphere .93 .401 .032  

Group X Region X Hemisphere 1.68 .115 .056  

Delta     

Group * 4.29 .018 .131 Con > MLD 

Group X Region .32 .914 .011  

Group X Hemisphere * 4.68 .006 .125 In L, Con > MLD 

Group X Region X Hemisphere .89 .513 .030  

  *p < .05, ** p < .01, *** p <.001 
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    Table 3.6. Delta Hierarchical Regressions Predicting Math and Reading  

 

 β t p 
R2 

Change 

Broad Math 

Cluster 
    

Model 1     

IQ *** .823 11.04 < .001  

Model 2    .007 

IQ *** .789 11.31 < .001  

F3-C3 * .246 2.07 .043  

F3-T3 .037 .29 .773  

F3-P3 * -.325 -2.22 .031  

C3-T3 .194 1.03 .309  

C3-P3 * .257 2.15 .036  

P3-T3 -.101 -.66 .512  

Broad Reading 

Cluster 
    

Model 1     

IQ *** .820 10.93 < .001  

Model 2    .622 

IQ *** .802 10.08 < .001  

F3-C3 .117 87 .390  

F3-T3 .048 .33 .743  

F3-P3 -.063 -.38 .707  

C3-T3 .051 .24 .814  

C3-P3 .022 .16 .871  

P3-T3 -.001 -.00 .997  

     *p < .05, ** p < .01, *** p <.001 
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       Figure 3.1. Beta S/M electrode distance coherence Group X  

       Hemisphere. 
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                  Figure 3.2. Delta long electrode distance coherence Group X  

       Hemisphere. 
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Figure 3.3. Beta Group X Region X Hemisphere. a.) Left hemisphere and b.) Right    

hemisphere. X-axis depicts electrode pairs across regions. 
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Figure 3.4. Delta coherence Group X Hemisphere. 
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Figure 3.5. Regression Predicting Math using IQ and delta left  

hemispheric coherence. Electrode pairs predictors (F3-C3, F3-T3,  

F3-P3, C3-T3, C3-P3, and P3-T3). 
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CHAPTER 4 

DISCUSSION 

Math learning disability is a neurodevelopmental disorder that results in 

individuals having deficits in arithmetic, not due to low general ability. Although 

arithmetic abilities are highly predictive of later personal and economic success (Duncan 

et al., 2007; Ritchie & Bates, 2013), there is a lack of research into MLD compared to 

other neurodevelopmental disorders, such as dyslexia (Gersten et al., 2007). Although 

there has been much research into the neurological markers of mathematics in the brain, 

there are only a handful of studies that evaluate unique neurological profile differences 

between those with and without specific math deficits. The current study sought to fill 

this gap by providing evidence of unique electrocortical signatures present in those with 

MLD that differ from those without deficits, and those with general low achieving ability. 

Specifically, the study evaluated intra- and interhemispheric EEG coherence between 

three groups to identify potential brain integration disruptions in children with MLD.  

Results from the current study demonstrate expected coherence differences 

between those without deficits and those with low achieving math ability, but also 

highlight important neurological distinctions in those with MLD. Although multiple areas 

of the brain were implicated as differences between clinical groups, the most salient 

results indicated that individuals with MLD may show reduced beta coherence in left 

hemispheric central parietal areas and right hemispheric frontal central areas. 

Additionally, the MLD group showed reduced left hemispheric delta coherence 
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compared to controls, a difference that the LA group did not display. Although the 

neurotypical control group showed a modulation of delta hemispheric coherence with 

higher coherence in the left hemisphere compared to the right hemisphere (also 

demonstrated in the LA group, though not significantly), the MLD group demonstrated 

low, stable coherence across both hemispheres. 

In the beta band, the MLD group showed reduced coherence compared to the 

controls across the left central parietal area and right fronto-central area. Moreover, 

controls showed greater coherence across fronto-parietal connections in both hemispheres 

compared to the MLD and LA groups. These results align with previous studies 

suggesting the importance of frontal and parietal networks in math ability. Specifically, 

math-gifted children show greater connectivity (as measured by fMRI) across fronto-

parietal networks, and the parietal lobe across multiple task paradigms (Prescott, 

Gavrilescu, Cunnington, O’Boyle, & Egan, 2010; Zhang, Gan, & Wang, 2017). 

Morphometrically, research suggests that MLD may be a “disconnection syndrome,” 

showing reduced fiber projections between parietal, temporal, and frontal regions 

(Kucian et al., 2014), which may explain reduced coherence among certain projections 

from these regions as measured electrocortically.  

With regards to interhemispheric coherence, controls had higher coherence than 

the LA group within the beta band across the parietal, temporal, and central lobes. Recent 

research suggests that children with high math achievement express increased beta usage 

during math tasks in comparison to children with lower math achievement (González-

Garrido et al., 2018). Additionally, a review of beta-band activity suggests that beta 

activity should be prominent in resting-state paradigms (Engel & Fries, 2010), and 
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although high beta activity was observed in the control group, both the MLD and LA 

groups showed reduced resting-state beta coherence. As such, reduced beta at resting-

state may signify abnormal basal physiology. Uniquely, the MLD group showed reduced 

coherence in relation to the LA group in the occipital lobe in the alpha band. This may 

suggest that when compared to those with lower achieving ability, those with specific 

math deficits show reduced integration across high frequency visual areas of the brain. 

Overall, these results align with clinical theories that those with MLD may have 

weaknesses in visuospatial cognitive abilities, as indicated by difficulties in linear and 

spatial numerical representations (Bachot et al., 2005; Hegarty & Kozhevnikov, 1999). 

Additionally, visuospatial integration significantly explains both math and written 

expression achievement abilities in children (Carlson, Rowe, & Curby, 2013), suggesting 

the importance of visual skills in math performance, even considering IQ. 

In a novel finding, left hemispheric delta coherence differentiated MLD 

individuals from controls such that the MLD group had low stable coherence across 

hemispheres compared to the control group, who showed a modulation in coherence with 

high left hemispheric coherence compared to right hemispheric coherence. An older 

study using cognitive assessment data hypothesized that left hemispheric activity (and 

executive functions) may be predictive of mathematics ability, particularly in children 

with MLD (Hale et al., 2003). Although older theories suggested that MLD may result 

from right hemispheric deficits due to non-verbal dysfunction (Rourke, 1991), 

neuroimaging studies suggest multiple areas of cognition across hemispheres are 

necessary for math computation and differentiating MLD (e.g., Ashkenazi et al. (2013)). 

Additionally, as recent fMRI research suggests left hemispheric activity is more highly 
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associated with more basic math abilities (Arsalidou & Taylor, 2011), reduced left 

hemispheric coherence at rest may be associated with reduced ability to perform these 

basic math tasks. More research is needed to confirm this association. 

An exploratory analysis was used to determine whether left hemispheric delta 

coherence was specifically predictive of math ability, rather than general ability. Given 

previous results suggesting that left hemispheric delta coherence was useful in 

differentiating those with and without MLD (such that those with MLD show reductions 

in coherence across these regions), these coherence measures were regressed with IQ to 

predict math and determine if they added significant explained variance beyond IQ. 

Generally, although we use dichotomous categories for diagnosis, symptoms of clinical 

syndromes (including academic skills) are continuous (Krueger et al., 2018). As such, left 

hemispheric delta coherence that differentiated groups, could be used to predict 

continuous mathematics ability. Adding in coherence variables did add significant 

explained variance for mathematics ability but did not add significant explained variance 

beyond IQ for reading ability. Altogether, these results suggest that reduced left 

hemispheric delta coherence may be associated with lower math ability. Future studies 

should continue to evaluate correlates of math ability through qEEG paradigms.  

Limitations 

Generally, there are some limitations in this study that should be considered. Most 

significantly, the sample size for both the MLD and LA groups was small; however, 

separating participants with math ability below the 25th percentile into MLD and LA 

groups created more homogeneity. Additionally, having a low-achieving group helps to 

distinguish markers of MLD that differ from lower general ability. Importantly, IQ is 



 

38 

highly correlated with coherence, so there are many expected differences between the 

control and LA group that resemble differences in ability (Thatcher et al., 2005). Creating 

homogenous groups not only increases statistical power but allows for greater 

interpretation of results. Previous similar studies including González-Garrido et al. (2018) 

and Jäncke et al. (2019) both evaluated individuals with low-achieving academic abilities 

and although excluded for low IQ, did not account for baseline differences in IQ. 

Distinguishing unique brain differences while accounting for expected differences due to 

lower ability is an important distinction made in this study, as compared to other EEG 

studies. Future studies should ensure adequate sample size, but also ensure that IQ is not 

influencing EEG coherence results when evaluating clinical group differences. 

Another limitation of this study is that the control group used here was 

heterogenous and included half average achieving and half high-achieving children. As 

mentioned previously, ability is related to coherence, so the control group may have 

displayed heightened coherence in comparison to the other two groups, due to the 

inclusion of high-achieving children. Some research does suggest heightened 

connectivity in fronto-parietal brain regions for math gifted children during specific tasks 

(Prescott et al., 2010); however, there is little research to suggest that high-achieving 

children have significantly increased resting-state connectivity compared to average 

achieving children. Regardless, future studies should consider separating these two 

groups when evaluating learning disabilities. 

Lastly, the study used a categorization method of MLD that did not consider all 

aspects common to a clinical or school-based diagnosis. The current study used an 

experimental IQ-achievement discrepancy approach for two reasons: 1) to determine if 
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lower math ability was due to lower cognitive ability or possible specific math deficits, 

and 2) to confirm MLD status for children with a school/clinic diagnosis of MLD. The 

MLD group had either a math fluency or math calculation subtest discrepancy from their 

overall IQ by at least 15 standard score points (1SD), but the average discrepancy for the 

MLD group was over 24 standard score points (approximately 1.5 SD). Although IQ can 

be affected by lower working memory deficits that are associated with MLD, research 

suggests deficits in these areas may be more prevalent in children with comorbid 

cognitive disorders and low math achievement (see (Peng, Namkung, Barnes, & Sun, 

2016). Similar discrepancy approaches have been used in dyslexia studies (e.g., Abbott, 

Reed, Abbott, and Berninger (1997) and Hook (2001)) using verbal composite scores. 

The broad math composite score was not used for the discrepancy evaluation here as 

children can have MLD in math fluency or basic calculation skills, and the math 

composite score averages across all math subtests. It should be noted that this type of 

discrepancy approach does not adequately account for a child’s overall strengths and 

weaknesses or instructional history. This approach did however feasibly allow for an 

evaluation of two distinct groups (MLD, LA), but future studies could improve the 

categorization of MLD using additional testing and gathering information from a child’s 

school.  

Future Studies 

When evaluating mathematics ability in individuals, research studies have often 

evaluated differences between those with and without math deficits while performing 

certain working memory or math tasks. Few studies have evaluated resting-state 

paradigms, even though resting-state can be used to assess basal physiology of 
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individuals, and the default-mode network (Greicius, Supekar, Menon, & Dougherty, 

2009). Specifically, research suggests that activity in the delta wavelength are highly 

associated with the default-mode network (DMN) (Neuner et al., 2014). The DMN 

appears to show higher activity at rest, but less activity during tasks (Broyd et al., 2009). 

Results from this study suggest that children with MLD cognitive profiles showed 

reduced coherence in the delta wavelength. These results may provide evidence to 

suggest that those with MLD had reduced activation of the DMN network, particularly in 

comparison to those with no math-specific deficits. Hypotheses concerning beta-band 

oscillation also indicate reduced beta-activity at rest (found for the MLD and LA groups) 

may be associated reduced activation of the DMN and reduced top-down control during 

tasks (see Engel and Fries (2010)). However, previous DMN studies evaluated power 

while this study evaluated coherence. Future studies should investigate the associations 

between coherence and DMN across wavelengths, particularly in clinical groups, such as 

MLD or LDs. Additionally, future MLD intervention studies may consider targeting 

behaviors associated with the DMN including creativity and problem-solving (Kühn et 

al., 2014). 

Conclusions 

Not only did this study evaluate basal physiology through EEG connectivity, but 

it also uniquely looked at neurological profiles of children with MLD. Only a handful of 

studies have evaluated electrocortical signatures present in MLD (or low-achieving math 

ability), although similar research has been conducted for other neurodevelopmental 

disorders including dyslexia (Bosch-Bayard et al., 2020) and autism spectrum disorder 

(Coben et al., 2008). Additionally, the neurological research into LDs does not always 
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consider evaluation of separate LD types (e.g., Jäncke et al. ( 2019)) due to arguments 

that neurologically, LDs present with a common-deficit, rather than specific deficits (e.g., 

Swanson (1987)). 

The current study provided evidence that LDs have electrocortical signatures that 

can present as both domain-general and domain-specific. Generally, results from this 

study suggested that often, the control group showed increased coherence compared to 

the MLD and LA groups. In contrast, some areas in the beta band, and general left 

hemispheric delta coherence were associated with specific deficits in children with MLD, 

not seen in LA children. These results are similar to those in Jäncke et al. (2019), which 

noted unique electrocortical signatures in subtypes of learning disabilities with additional 

evidence of domain-general deficits.  

Studying unique neurological profiles of types of LDs, including MLD, provides 

a way of linking neurological differences to academic profiles. Cognitive and academic 

tests used to evaluate LDs measure behavioral abilities as a proxy for neurological 

functioning. However, brain signatures of LDs evaluate brain functioning directly. 

Importantly, EEG coherence allows for a low-cost, non-invasive way of analyzing 

integrated cortical functioning. A greater understanding of neural disconnections present 

in LDs improves our current treatment and identification of LDs. The current study 

sought to evaluate resting-state brain coherence to determine basal physiology distinct in 

children with MLD compared to those without any academic deficits, and those with 

consistent, low-achieving abilities. Results suggest domain-specific deficits in the MLD 

group in left hemispheric delta coherence, which uniquely predict math ability, while 

differentiating MLD children from neurotypical controls. Results also demonstrated 
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possible deficits in the default mode network in children with MLD, providing evidence 

for targeted interventions associated with the DMN including creativity and problem-

solving, which should be further explored. MLD is a seldom studied neurodevelopmental 

disorder, and research that bridges the gap between behavioral characteristics and neural 

presentations provide theoretical utility for evaluating neurological functioning in these 

types of disabilities.  
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