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Abstract

Analyzing population representative datasets for local estimation and predictions over

time is important for monitoring related public health issues, however, there are many

statistical challenges associated with such analyses. Mixed effect models are one of

the common options which can incorporate time and spatial effect in the model and

related inference is well established.

In the first part of this dissertation, to estimate area-level prevalence using individual-

level data, small area estimation (SAE) with post-stratified mixed effect models

were used where sampling weights were also incorporated into it. However, if post-

stratification which requires more computation effort can improve estimation accu-

racy is not clear given the complicated modelling framework. Therefore, compar-

ing the mean squared prediction errors (MSPE) to evaluate the predictive ability of

post-stratification is of interest. In this study, various bootstrap methods were also

implemented to calculate confidence intervals for post-stratified estimates, and inves-

tigating and comparing the performances of different bootstrap methods is another

aim of this study. Under different model complexity situations, we are able to identify

the best-performed bootstrap methods in the simulation study.

The second part of the dissertation involves analyses and predictions of disease

prevalence using a penalized B-spline model. A unique feature of the data is that

the sampling standard errors (SSEs) coming with the prevalence estimates need to be

incorporated into the model. In previous studies, the uncertainty of the SSE is ignored

which could influence the reliability of the estimation. In this study, we incorporate

the uncertainty of the SSE and proposed an approximated likelihood function for fast
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computation. The performances of the proposed method were compared with some

standard approaches in a simulation study.
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Chapter 1

Introduction

1.1 Introduction to longitudinal data and cluster data

Fitzmaurice et al. [15] defined a longitudinal study to be data where multiple mea-

surements on the same subjects are taken repeatedly over time. Therefore, one of

the distinct features of the longitudinal data is that they have a temporal order.

Researchers can track the changes in responses over time and identify risk factors

that have influences on the longitudinal trajectory of the outcome. Also, because the

measurements were taken from the same subjects repeatedly, within-subject changes

over time can be captured and also be a point of interest to researchers. However, the

repeated measures indicate that the data points are clustered which brings in statis-

tical challenges due to the violation of the standard independence assumption made

in linear regression models. A huge amount of statistical research has focused on

developing models that can accommodate clustered data including longitudinal data.

In the scope of clustered data analyses, there are two important aspects including

point estimation and corresponding inference.

The two-staged model proposed by Laird and Ware [24] is one of the models used

for longitudinal analyses. This model assumes that all individuals follow the same

distribution for multiple measurements, which is the first stage model. A random

effect is a parameter that is allowed to vary over individuals. For each individual i in

stage 1, yi = Xiα + Zibi + ei, where ei ∼ N(0, Ri) and Ri is ni × ni positive-definite

covariance matrix for individual i. At the first stage, α and bi are considered fixed
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for each individual i. In stage 2, bi ∼ N(0, D) is a k-dimensional random effect and

D is a k × k positive-definite matrix. Marginally yi ∼ N(Xiα,Ri + ZiDZ
T
i ), while

conditionally yi|bi ∼ N(Xα + Zibi, Ri).

Laird and Ware [24] proposed a unified approach to inference using two-staged

models. For known variance matrices Ri and D, V ar(yi) = Vi = Ri + ZiDZ
T
i , they

proposed to estimate the parametesr via

α̂ =
(

m∑
1
XT
i V

−1
i Xi

)−1 m∑
1
XT
i V

−1
i yi

and predict the random effects with

b̂i = DZT
i V
−1
i (yi −Xiα̂).

For the unknown variance, α and bi can be estimated similarly by replacing V −1
i by

the estimated version V̂ −1
i , where V̂i = R̂i +ZiD̂Zi. In this case, α̂ and b̂i are known

as the Empirical Best Linear Unbiased Predictors (EBLUP) of α and bi.

Lindstrom and Bates [27] developed an efficient Newton-Raphson algorithm for

estimating parameters in mixed-effect model. They provided derivatives used in

the Newton-Raphson algorithm which improved the rates of convergence. Robinson

et al. [36] summarized and discussed details about the best linear unbiased prediction

(BLUP) estimate of the random effect in the mixed effect model.

Spatial statistics are in many situations a special case of clustered data analyses

and have become a popular research area. Spatial statistical models shared some

similarities with clustered data analysis as the samples from the same area can be

dependent. However, the geographical structures determine the relationship among

the areas which is one of the unique features of spatial data and needs to be taken into

consideration. Therefore, appropriately incorporating spatial structure into spatial

modeling is a current area of interest. One classic example can be the conditional

autoregressive model [5] where the effect of one region depends on the data from

neighboring regions and the distance between the neighbors.
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1.2 Real-world examples

There are many real-world examples of cluster data including longitudinal data and

spatial data among others. One of the studies discussed in this dissertation inves-

tigates the smoking related prevalence in each county of the South Carolina using

the South Carolina Adult Tobacco Survey (SCATS). In this study, individual-level

information was collected, and the geographic structure should be considered because

neighboring areas tend to have similar smoking patterns. Also, some counties have a

small number of observations where inference is more difficult given the small sample

size. For these areas, it is important to obtain unbiased point estimates along with

reasonable standard deviations and confidence intervals. Small area estimation is

a technique that can be applied to use the patterns observed in areas with a large

number of observations to overcome small sample sizes in other areas.

Another example in this dissertation is data used to track the prevalence of stunt-

ing disease in African countries and regions over time. In this example, spatial and

time trends are taken into account by using a P-spline ANOVA-type interaction model

which is further transformed to a mixed effect model.

Both studies used survey data where survey sampling designs have an impact on

model estimation and inference. Therefore, in addition to clustered data, the model

needs to account for various survey design issues discussed further below. In this

dissertation, we focus on obtaining standard errors and confidence intervals given the

complex data structures.

1.3 Aims

The dissertation has a wide spectrum of research interests including spatial small

area estimation, missing heterogeneity information, and missing sampling weights

with specific focus on mixed effect models. In Chapter 2, we focus on estimating
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confidence intervals for post-stratified spatial small area estimates. This project was

initiated by estimating the county-level prevalence of multiple smoking-related out-

comes in South Carolina. We fit the multilevel logistic mixed effect models with

ICAR random effects to estimate county-level smoking-related outcomes using the

data with unequal sampling probabilities and applied post-stratification to obtain

the aggregated prevalence. Standard errors and confidence intervals were estimated

using bootstrap methods. We compared the performances of three different boot-

strap methods: the classic bootstrap method, a Monte Carlo based bootstrap and

a weighted bootstrap. In chapter 3, we focus on incorporating missing heterogene-

ity information in Spatio-temporal models. The motivation of this project was to

track the trend of stunting disease prevalence over time in various countries/regions.

The data were collected from different sources of surveys related to stunting preva-

lence and pooled into a joint dataset. A unique feature of the joint dataset is that

prevalence point estimates come with the sampling standard errors (SSE). Both need

to be incorporated into the prevalence analysis. However, about half of the SSEs

might be missing which may also impact the final prevalence estimates. Additionally,

spatial dependence should be taken into consideration as well as a non-linear trend

over time. We propose a penalized mixed effect model with heterogeneous errors

which can incorporate smoothing Spatio-temporal effects and the missing sampling

standard errors.
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Chapter 2

Estimating confidence intervals for spatial

hierarchical mixed-effects models with

post-stratification

2.1 Introduction

Epidemiologists and other public health practitioners are increasingly turning to large

population-level representative datasets to measure or monitor area-level outcomes.

However, there are many statistical challenges associated with analyses of this type

of data including hierarchical covariate information, the limited sample size for some

areas, complex survey designs and spatial correlations, among others. Small area

estimation (SAE) techniques are often adopted to generate more reliable estimates

for local areas [see 34]. Post-stratification is an SAE technique that combines area-

level predictions that are conditional on sub-area-level (e.g., individual-level) data via

auxiliary information on sub-area-level population counts [19, 28]. Post-stratification

is a popular technique since it allows for models with, for example, individual-level

covariate data (e.g., gender) that can have higher predictive power than models with

only area-level covariates (e.g., the proportion of females). Valliant [38] studied the

asymptotic and empirical properties of post-stratified direct (not model-based) es-

timators and found that resampling-based estimators can reasonably estimate the

mean-squared error (MSE). However, it’s not clear how these results would translate

5



to model-based estimators, which allow for more covariate categories [16] and are

more common in recent applications of SAE.

A challenge for this statistical approach is that the data sources commonly used

are surveys where informative sampling designs are based on gender, race, age, and

other variables. Pfeffermann [31] argued that conditioning on all the survey design

variables can be a plausible approach for controlling for unequal selection probability

issues. However, it might not be realistic or possible to include all the relevant

sampling variables in the model. If ignored, the distribution of the sample data may

be very different from the distribution in the population, possibly biasing estimates.

Incorporating sampling weights via the inverse probability of selection is one of the

most common ways to correct this bias.

Hierarchical mixed-effects models with post-stratification have become a com-

mon SAE method in many areas of public health [40, 41, 18, 14, 10]. For example,

Zhang et al. [40] expanded the hierarchical logistic regression model to a more flexible

unit-level multilevel model and applied post-stratification using US census data to

generate SAE estimates of chronic obstructive pulmonary disease. Zhang et al. [40]

use a multilevel logistic regression model with variables at the individual, county,

and state level and produced county-level estimates specific to each particular in-

dividual variable level, which we refer to as stratum-specific county-level estimates.

Post-stratification is applied by leveraging population estimates from the US Census

to aggregate stratum-specific estimates to the county level. Accurate estimation of

standard errors and confidence intervals for such studies are crucial to understanding

where predictions reflect real public health crises or rather, a lack of data.

Obtaining the mean squared prediction error (MSPE) for post-stratified estimates

via asymptotic theory is difficult and may lead to estimators that are not feasible in

practice. A Bayesian approach is another alternative option. However, it is very

difficult to incorporate sampling weights and survey designs in a Bayesian approach
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as Bayesian model sampling procedures condition on the samples. Therefore, it can

result in large bias when the data arise from unequal probability sampling. Boot-

strapping [12] has long been a common technique for estimating the mean squared

prediction error of predictions in SAE [23, 30, 32]. A standard bootstrap method

with random sampling with replacement can be the most straightforward form of

bootstrapping. However, under a complex sampling design with unequal sampling

weights, the classic bootstrapping method may result in bias due to the violation of

equal sampling probabilities. Antal and Tillé [2] proposed a weighted bootstrapping

method to correct for sampling bias. Another bootstrap method is the Monte Carlo-

based bootstrapping approach [4], where model parameters are sampled from their

estimated theoretical distributions.

There are two objectives to this study. First, post-stratification involves in bring-

ing outside population information (i.e., US census) and more complicated compu-

tation, therefore, if post-stratification is necessary to improve predictive ability is

of interest. In this study, we compare the predictive ability of estimators based on

post-stratification versus those from non-post-stratified models in hierarchical mixed-

effects models. Here, non-post-stratification models use the marginal proportion of

each level of the variable. Non-post-stratified methods result in more straightforward

forms for estimating confidence intervals, but average over individual level informa-

tion which may be less accurate at the local level. The second objective is to evaluate

the performances of different methods for estimating accurate confidence intervals

under complex sampling designs. Various bootstrap methods are available, and some

of them require intensive computational effort. It is of interest to determine which

bootstrap methods that can provide accurate inference with less computational bur-

den. In Section 2, we review a commonly used post-stratification model and detail

the statistical challenges. In Section 3, we describe the various methods that can

be used to estimate uncertainty under a complex sampling design. In Section 4, we
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conduct simulation studies and present the simulation study results. In Section 5, we

apply the methods to a recent study on smoking exposure and prevalence in South

Carolina. Discussions and conclusions will be presented in Section 6.

2.2 Model specification

We are interested in estimating the prevalence of an outcome of interest in area j,

denoted as pj, for j = 1, ..., J . Here we consider a two-level logistic mixed effect

model, which can also be generalized to other exponential family distributions. The

two-level model is given by

logit(pij) = Xijβ + Zjα + b0j,

where logit(p) = log{p/(1 − p)}, pij is the probability of having the outcome for

second-level i (i.e., individual-level) first-level j (i.e., area-level), Xij is a second-level

vector of covariates, Zj is a first-level vector of covariates and bj is a random intercept.

Under a multilevel mixed effect model structure, spatial correlations among counties

can be considered as part of the random effect b0j to increase the efficiency of the

model. For simplicity, we will use a spatial intrinsic conditional autoregressive (ICAR)

model [35] where bj|bl ∈ δj ∼ N(b̄j, σ2
b/mj), where δj is the set of indices of neighbors

for area j and b̄j = ∑
l∈δj bl/mj with number of neighbor areas of area j denoted by

mj. Other spatial models are discussed in the Appendix 2.

In this dissertation, we consider the most common case where second-level covari-

ates are categorical (post-stratification for continuous second-level covariates is more

challenging). For example, suppose there are three categorical second-level covariates

with levels s (s = 1, . . . , S), k (k = 1, . . . , K) and l (l = 1, . . . , L), respectively. The

resulting model can be re-written as

logit(psklj) = µs + νk + φl + Zjα + bj, (2.2.1)

8



where psklj is the stratum-specific prevalence for second-level covariate levels s, k and

l in area j, with corresponding coefficients µs, νk and φl. Prediction of (2.2.1) can be

made using the best linear unbiased prediction (BLUP). For generalized linear mixed

effect models, Jiang and Lahiri [20] presented the best predictor (BP) to predict the

outcome of as logit(p̂sklj) = µ̂s+ν̂k+φ̂l+Zjα̂+b̃j where b̃j = E(bj). In this case, there

is no explicit closed form for b̃j but the conditional expectation can be approximated

as the ratio of two one-dimension integrals as mentioned previously.

To be able to aggregate the estimations for each stratum from the second level into

the first level estimation, post-stratification can be used. With this approach, popula-

tion level information is incorporated into stratum-specific estimates so that the final

aggregated estimates are corrected by the population size of each stratum. That is,

we can obtain the estimates for strata from the model, and post-stratification weights

are calculated for each post-stratum based on population information (i.e., from cen-

sus data). Then stratum-specific estimates are weighted by the post-stratification

weights to obtain the final aggregated estimates. By adopting a similar idea from

Gelman and Little [16], we can aggregate each stratum in each county to obtain

county-level probability

p̂j = E(p̂sklj|Popj) =
∑
s

∑
k

∑
l

p̂sklj
Popsklj
Popj

, (2.2.2)

where Popj = {Popsklj; s = 1, . . . , S, k = 1, . . . , K, l = 1, . . . , L}, Popsklj is the

population size in area j for second-level covariates s, k and l, and∑s

∑
k

∑
l Popsklj =

Popj is the total population for area j.

As discussed in the introduction, an important aspect of the study is to es-

timate the MSPE. Here, MSPE is defined as the mean squared error of p̂sklj as

MSPE(p̂sklj) = E(p̂sklj − psklj)2. Jiang et al. [22] and Jiang and Lahiri [21] proposed

jackknife and Taylor series expansion methods, respectively, to estimate the MSPE

of p̂sklj that can correct bias up to the second order. After the MSPE of p̂sklj is ob-

tained, the MSPE of p̂j can be calculated using delta-method. However, this involves
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calculating the covariances between each stratum-specific p̂sklj, which are not avail-

able in most software. Further, it’s not clear how accurate the delta-method would

be since the normality of (2.2.1) is questionable. As a result, we seek alternatives.

There are several ways of bootstrapping including the standard, weighted and Monte

Carlo based bootstrap methods. Details on how to estimate the MSPE using various

bootstrap methods will be presented in the next section.

2.3 Estimating the MSPE

2.3.1 Standard bootstrap and weighted bootstrap method

From the finite population with size N sample data D is selected with size n. The

standard bootstrap method used the simple random sampling with replacement (SR-

SWR) algorithm. However, under a complex sampling design with unequal sampling

weights, the classic bootstrapping methods may result in bias due to the violation

of the independence assumption. Antal and Tillé [2] proposed a weighted bootstrap-

ping method to correct for the sampling bias. Conceptually, their weighted bootstrap

method is an attempt to select bootstrap samples from the original sample so that

scaling, weighting and using artificial population are not needed. Here we will adopt

Algorithm 4 of the [2] to resample with unequal probability sampling without re-

placement. The key point of this algorithm is to yield unbiased or an approximation

of unbiased variance estimator of the outcome of interest using resampling methods.

The technical details of this algorithm are beyond the scope of this discussion and we

refer the readers to Algorithm 4 page 539 of [2]. The weighted bootstrap sampling

algorithm for the case n = ∑
s∈S φk ≥ 2 are summarized below:

(1) Select a sample S∗kA without replacement with unequal inclusion probabilities

φk with fixed sample size n∗ = ∑
k∈S φk from the original dataset D. We will

discuss the choice of φk later in this section. If n∗ is not an integer then we have

10



m =


m1 = bn∗c, with prob. q

m2 = bn∗ + 1c, with prob 1− q,

where q = bn∗c+ 1−n∗. The value of φk can be chosen by taking 1−φk = D̃kk,

where D̃kk can be viewed as an approximated variance estimator that D̃kl =
ck −

c2
k∑

j∈U Sjcj
, if k = l

− ckcl∑
j∈U Sjcj

, if k 6= l,

where ck are weights. There are several options that

have been proposed for computing the values of ck and the simplest one is

ck = n
n−1(1− πk), where πk = E(Sk).

(2) From the units that S∗kA = 0, a sample of S∗kB can be selected according to a

one-one design. The one-one re-sampling design is to randomly select nB units

from a sample size of nB so that E(S∗kB) = V ar(S∗kB) = 1, for all k ∈ SkB.

The re-sampling algorithm can be shown below for the case that total sample

size nB ≥ 3.

First, compute: p = b1
2

(
1 +

√
4n2
B+5nB−1
nB−1

)
c and

αB = p(nB−1)(p+1)−nB(nB+1)
2p(nB−1)

ñB =


p, with a prob. αB

p+ 1, with a prob. 1− αB
Then, select a simple random sample with over-replacement with sample size

ñB, denoted by SB1 from S∗kB. The over-replacement sampling is designed as

Pr(S1 = x1, ..., SN = xN) =
(
N + n− 1

n

)−1

. The marginal distribution of Sk

is inverse hypergeometric distribution with E(Sk) = n/N ,

and covariance matrix ∆kl = (N−1)(N+n)n
N2(N+1) x


1, if k = l

− 1
N−1 , if k 6= l

.

The final step is to select a simple random sample with replacement with sample

size nB − ñB from S∗kB, denoted by SB2.
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In this case, the final sample is S∗kB = SB1 + SB2.

(3) The complete resampling dataset for the weighted bootstrap method is Db =

S∗kA + S∗kB.

(4) Use Db from the weighted bootstrap sampling to fit the logistic mixed effect

model and get the stratum-specific prevalence estimates (p̂wsklj)b. The post-

stratification approach can be applied to aggregate the stratum-specific preva-

lence to the county-level prevalence estimates p̂bj.

(5) Repeat steps (1)-(5) for B times to obtain a collection of B county level preva-

lence estimates p̂j = (p̂1
j , ..., p̂

B
j ) . Then p̂j can be used to calculate the standard

deviation and the percentile-based empirical 95%CI of p̂j.

To calculate the standard deviation and confidence intervals of the area-level

prevalence pj, the standard and weighted bootstrap methods have similar algorithms:

(1) The original dataset is sampled with same sample size using either SRSWR or

weighted bootstrap method, yielding a bootstrap dataset Db.

(2) UseDb to fit the logistic mixed effect model with ICAR random effect logit(pwsklj) =

µs + νk + φl + Zjα + bj and obtain the stratum-specific prevalence estimates

(p̂wsklj)b.

(3) Apply the post-stratification to 2.2.2 to get the aggregated prevalence p̂bj.

(4) Repeat the steps (1) - (3) for B times so that we can have a collection of

p̂j = {p̂1
j , ..., p̂

B
j }.

After obtaining p̂j, we can calculate the confidence intervals. There are several boot-

strap CI calculation methods including the percentile-based empirical 95% confidence

interval or p̂j is assumed to follow some known distribution, e.g., Normal distribution

or t-distribution. For instance, t-CI has the form p̂j ± tα/2σ̂B, where tα/2 is the t

12



distribution critical value and σ̂B is standard error of p̂j. These methods require the

estimates from the bootstrap samples to be symmetrically distributed. There are

methods that can correct for the bias and skewness if the bootstrap estimates are

asymmetric. The bias-corrected and accelerated (BCa) bootstrap confidence interval

proposed by Efron [11] includes a bias correction constant z0 and some acceleration

constant a. Briefly, let φ̂ = g(θ̂) be the transformation of bootstrap estimate θ and

φ = g(θ) be the transformation for the true value. By using the transformation, we

can have (φ̂− φ)/τ ∼ N(−z0σφ, σ
2
φ), where σφ = 1 + aφ and τ is a constant standard

error of φ̂. Therefore, the confidence interval for the transformed function φ can be

given as (φ̂+ τz0)± τzα and the confidence interval for the parameter θ can be calcu-

lated by taking the inverse transformation θ = g−1(φ). [9] proposed an approximate

bootstrap confidence intervals (ABC) which are an analytic approximation to BCa

intervals. Here, we found the BCa and ABC methods to perform similarly to the

standard bootstrap approach (results not shown).

2.3.2 Monte Carlo based parametric bootstrap method

The Monte Carlo based bootstrap method [33] samples the model parameters via

parametric distributional assumptions. Let β̂ be a vector including all the estimated

parameters from the model. In our situation, β̂ = (µ̂s, ν̂k, φ̂l, α̂) with the correspond-

ing covariance matrix Σ̂β and let b̂ be the EBLUP random effect with corresponding

covariance matrix Σ̂b. Since covariances for b̂ are difficult to obtain, we consider di-

agonal Σ̂b. We assume that β ∼ MVN(β̂, Σ̂β) and bj ∼ N(b̂j, σ̂2
bj) where σ̂2

bj is the

(j, j) element of Σ̂b.

The Monte Carlo based bootstrap method can be described as

(1) Fit the original dataset D to model (2.2.1) and obtain the parameter estimations

and the BLUP of the random effects.
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(2) Generate βb and bb from their corresponding estimated distributions given

above.

(3) The stratum-specific prevalence are calculated as

(p̂wjskl)b =
exp(µ̂bs + ν̂bk + φ̂bl + Zjα̂

b + b̂b0j)
1 + exp(µ̂bs + ν̂bk + φ̂bl + Zjα̂b + b̂b0j)

, (2.3.1)

for each sampled βb and bb0.

(4) Apply the post-stratification 2.2.2 to get p̂bj estimates.

(5) Repeat steps (2) - (4) for b = 1, 2, ..., B to obtain a collection of p̂j = (p̂1
j , ..., p̂

B
j )

for j = 1, . . . , J .

The methods discussed in the previous section are applied to the bootstrap sample

p̂j to construct prediction intervals for p̂j for j = 1, . . . , J .

2.4 Simulation study

To compare the effect of post-stratification under the logistic mixed effect model,

we conducted numerous simulation studies to evaluate their MSPEs for models with

and without post-stratification. Meanwhile, it is also of interest to compare the

performances of bootstrap methods via coverage probabilities. We considered various

scenarios of true prevalences, the number of covariates in the model and sample sizes.

To investigate the performances of the model for common or rare outcomes, we

set the true prevalence to be p = 0.5 or 0.1, with J = 20 or 40 areas and sample size

n = 500 or 1000. It is hypothesized that the complexity of the model may play a role

in which method performs the best. Therefore, two separate covariate scenarios were

considered with two or three second-level covariates. The covariates were generated

as X1ij ∼ Bern(1/2), X2ij ∼Multi(1/3, 1/3, 1/3) for the scenarios with 2 covariates.

The model with 3 covariates is motivated by the real data where X1ij ∼ Bern(0.5),

X2ij ∼Multi(0.63, 0.12, 0.15, 0.1) and X3ij ∼Multi(0.1, 0.4, 0.3, 0.2) are designed to
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mirror gender, race, and age categories, respectively, which are popular individual

level covariates to use in post-stratification since population level data are commonly

available.

The individual level data are generated for N = ∑
j Nj subjects where the sample

size in each area was generated as Nj ∼ Uniform(1000, 1500) and rounded up and

this is the population data. The individual-specific probability of having the outcome

pij for first-level i in second-level j is given by

logit(pij) = βTX ij + αWij + bj i = 1, . . . , Nj, j = 1, . . . , J (2.4.1)

where Wij ∼ N(0, 1) is a covariate that is related to the sampling weights, bj is

the spatial random intercept which follows the ICAR model, and X ij are the fixed

effects. For all models β1 = 0.5 and β2 = −0.5, the 3 covariate model adds β3 = −0.5

and β0 was set so that E(pij) = p where p = 0.1 or 0.5. The individual level

outcome values can be generated using Yij ∼ Bern(pij). To be clear, the population

prevalence p and pj are obtained from the stratum-specific prevalence values. THey

are calculated as the observed prevalence across the entire population and areas. In

each iteraction of the simulation study, the sample is selected using probabilities qij

with logit(qij) = η+Wij where η was set so that n = 500 or 1000 samples are selected.

Note that W is related to both the probability of subjects being selected from the

population and the outcome. Thus, when W is unobserved sampling weights need to

be used. In all simulations, we do not adjust for W in our regression model and use

inverse probability weighting based on qij. A total of 500 iterations of each simulation

were implemented.

All approaches were estimated using adaptive Gaussian quadrature approximation

with PROC GLMMIX in SAS v9.4 (SAS Institute, Cary NC). The post-stratification

weights were calculated using the population frequencies for each covariate. Post-

stratification was applied to the stratum-specified prevalence estimates to get p̂postj .

For the case without post-stratification, the probability of each level of the covariate
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used to generate the covariates was used to calculate the stratum-specific prevalence.

That is, the prevalence is calculated by inputting the proportion of each covariate

category for X yielding the value p̂stdj .

Let p̂tj, t = 1, ..., T be the estimated prevalence for simulation iteration t in area

j. The averaged MSPE is calculated has MSPE = 1
J

∑J
j=1MSEj, where MSEj =

1
T

∑T
t=1(p̂tj − pj)2. To evaluate the performances of MSPE estimation, the methods

discussed in Section 3 were applied to obtain the 95% confidence intervals of p̂tj. By

checking the empirical distributions of p̂tj using each bootstrap method, there were

some cases where normality was not satisfied. Therefore, the empirical percentile-

based 95% prediction intervals were used. Coverage probability (CP) was calculated

as the percentage of iterations where the true prevalence pj was covered by prediction

intervals.

2.4.1 Averaged MSPE Results

In Table 2.1, we present the averaged MSPE for different covariate settings, sample

sizes, and prevalence. We also compared the averaged MSEs for post-stratified preva-

lence estimates and the naive estimates (without post-stratification). The values in

Table 2.1 were obtained from a single GLMM and post-stratification was applied or

the mean values of the covariates were used for prediction.

For all scenarios, the averaged MSPEs became smaller when the sample size was

larger. For two covariates, the averaged MSPE was smaller in the post-stratified case

than the one without post-stratification for all settings. In addition, the differences

were larger when the prevalence was low. For instance, the ratio of averaged MSE

for the non-post-stratified case was 31.7% larger than that for the post-stratified

case given that the sample size was 1000 in 20 counties when p = 0.1. The ratio

was 8% larger when the prevalence p = 0.5. For the three covariate settings, the

averaged MSPE does not depend on the average sample size per area. For example,
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Table 2.1: Averaged MSPE ×1000 for a GLMM with and without post-stratification
by the number of covariates in the model, the total sample size (n) and the number
of counties (J).

Two Covariates Three Covariates
n J p = 0.1 p = 0.5 p = 0.1 p = 0.5

Post-stratified
500 20 0.324 1.26 3.03 7.99
500 40 0.378 1.40 1.69 6.15
1000 20 0.209 0.860 1.43 5.23
1000 40 0.233 0.949 1.04 4.81

Not Post-stratified
500 20 0.442 1.36 2.94 9.59
500 40 0.472 1.51 2.07 6.91
1000 20 0.276 0.929 1.26 5.93
1000 40 0.294 0.984 0.77 5.21

the averaged MSPE is smaller for the case with n = 1000 in 40 areas as compared to

that with n = 1000 in 20 areas, despite the former having fewer people per area. This

is possibly due to the estimates of the random effect covariance parameters being more

accurate with more areas. It appears that applying post-stratification was beneficial

for p = 0.5, however, when p = 0.1 post-stratification was only beneficial when

J = 40. From the simulations (results not shown), the difference of MSPE between

post-stratification and non-post-stratification was primarily driven by the standard

deviations and the biases did not make an obvious difference across all settings.

2.4.2 Coverage probability results

Table 2.2 displays the CPs for all models and settings tested. For the two covariate

setting with p = 0.5, both standard bootstrap and weighted bootstrap methods

performed equally well and had coverage probabilities close to the nominal 0.95 level.

However, for p = 0.1 the CPs for the standard and weighted bootstrap were well below

the nominal level dropping as low as 0.713 and 0.706, respectively, for the n = 500 and

J = 40 case with no post-stratification. The Monte Carlo based bootstrap method

had relatively conservative coverage probabilities ranging from 0.977 to 0.999. The
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results for p = 0.1 were markedly more conservative than those with p = 0.5. In

general, all three bootstrap methods performed better when sample sizes were larger

compared to the smaller sample sizes.

For the two covariate setting, post-stratification generally performed better than

the naive method for both the standard bootstrap and weighted bootstrap meth-

ods, while it had little impact on the Monte Carlo approach. In addition, the CPs

were much lower for the cases without post-stratification when the sample sizes were

small. For the case wheren = 500 in 40 counties, CP for post-stratification was

0.885 compared to 0.713 for the case without post-stratification when using standard

bootstrap.

Overall, the CPs for three covariates were lower than those for the two covariate

setting. When p = 0.5, Monte Carlo based bootstrap methods performed the best

among the three bootstrap methods with coverage probabilities ranging from 0.886

to 0.969. Both the standard and weighted bootstrap methods had CPs well below

the nominal level. When p = 0.1, the Monte Carlo based bootstrap method had CPs

close to the nominal level and performed the best among the three bootstrap methods

with or without post-stratification. In this low prevalence setting, post-stratification

resulted in CPs closer to the nominal level for both standard and weighted bootstrap.

2.4.3 Bayesian Approach

Bayesian approach via MCMC is an alternative to the frequentist’s bootstrap methods

to calculate confidence intervals, where estimating the MSPE of p̂j is straightforward.

In this approach, we can specify flat priors to the parameter vector β and random

effect b. The original dataset is fit to the multilevel logistic regression model and

samples of the parameters β̂ and random effect b̂ can be drawn from the posterior

distribution via MCMC. In each iteration, stratum-specific prevalence can be calcu-

lated as in 2.2.1 and then apply the post-stratification to get the aggregated estimates
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Table 2.2: Empirical coverage probabilities for the standard bootstrap (Standard),
the Monte Carlo based bootstrap (MC), the weighted bootstrap (Weighted) by the
total sample size (n) and the number of counties (J). Displayed is the proportion of
times the estimated 95% confidence or credible interval contained the true value.

Two Covariates Three Covariates
n J Standard MC Weighted Standard MC Weighted

p = 0.1
Post-stratified

500 20 0.909 0.993 0.902 0.898 0.944 0.893
1000 20 0.926 0.993 0.924 0.929 0.942 0.915
500 40 0.885 0.999 0.739 0.811 0.969 0.811
1000 40 0.883 0.992 0.873 0.906 0.959 0.891

Not Post-stratified
500 20 0.834 0.991 0.824 0.636 0.962 0.613
1000 20 0.875 0.991 0.836 0.747 0.947 0.711
500 40 0.713 0.992 0.706 0.636 0.995 0.602
1000 40 0.834 0.986 0.820 0.783 0.989 0.770
p = 0.5

Post-stratified
500 20 0.950 0.989 0.942 0.867 0.925 0.854
1000 20 0.948 0.977 0.933 0.884 0.886 0.877
500 40 0.938 0.990 0.933 0.859 0.956 0.847
1000 40 0.941 0.982 0.925 0.855 0.923 0.818

Not Post-stratified
500 20 0.949 0.989 0.943 0.892 0.940 0.879
1000 20 0.943 0.978 0.934 0.903 0.909 0.895
500 40 0.937 0.991 0.933 0.879 0.969 0.870
1000 40 0.938 0.981 0.931 0.877 0.948 0.848

of p̂bj. Table 2.3 presents the coverage probabilities for Bayesian models with 2 co-

variates and 3 covariates where the simulation settings are analogous to previous

simulations.

2.5 Application to Adult Tobacco Survey data

We used the 2014-2015 South Carolina (SC) Adult Tobacco Survey (ATS), which is a

large state-based telephone survey collecting tobacco related information from nonin-

stitutionalized SC adults. Specifically, the dataset consists of multiple tobacco-related

19



Table 2.3: Coverage probabilities for Bayesian models with 2 or 3 covariates

Two Covariates Three Covariates
n J p = 0.1 p = 0.5 p = 0.1 p = 0.5

Post-stratified
500 20 0.876 0.925 0.872 0.878
500 40 0.991 0.895 0.776 0.851
1000 20 0.915 0.932 0.897 0.850
1000 40 0.862 0.900 0.849 0.834

Not Post-stratified
500 20 0.920 0.994 0.946 0.999
500 40 0.776 0.973 0.833 0.993
1000 20 0.973 0.999 0.990 1.000
1000 40 0.908 0.991 0.948 0.999

variables including a binary outcome of smoking status assessed among 7503 survey

participants. We included individual-level sex (2 categories), race (5 categories), and

age (4 categories) as fixed effect variables. We also included two-way interactions

between the variables as they also showed a significant impact on the smoking status.

One of the primary goals was to examine the smoking prevalence at the county-level,

and we used the spatial logistic mixed effects model with post-stratification. SAE

techniques were necessary given that there were some counties with limited sample

sizes which can lead to unstable estimates. Specifically, we used 2-level spatially

intrinsic conditional autoregressive random intercept by assuming that neighboring

counties might share some similarities. Stratum-specific estimates for each county

were estimated and averaged based on population size using information from the US

Census. The standard errors and confidence intervals for county-level smoking preva-

lence were calculated using three different bootstrap methods. In order to compare

the performances of the 4 methods, we calculated the widths of CIs of the counties

and then averaged them to obtain the averaged CIs.

The averaged estimated smoking prevalence is approximately 18% (results not

shown) for all 46 counties. Table 2.4 presents the averaged widths of CIs from the

3 aforementioned methods. The widths of CIs for the standard and weighted boot-
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Table 2.4: Average width of post-stratified confidence intervals and correlation of
estimated values between methods: standard bootstrap (STANDARD), the Monte
Carlo bootstrap (MC), the weighted bootstrap (WEIGHTED).

Bootstrap methods
STANDARD MC WEIGHTED

Averaged CI width 0.144 0.247 0.145
Pearson Correlation coefficients

MC 0.893
WEIGHTED 0.981 0.909

strap methods are similar (0.144 and 0.145, respectively), which is consistent with

the simulation results. The Monte Carlo-based bootstrap methods had wider CIs,

compared to the standard and weighted bootstrap methods. This is also expected

from the simulation study where the coverage probability for both Monte Carlo-based

bootstrap was close to 1.

2.6 Discussion

2.6.1 Conclusions

Bootstrap methods provide a general and straightforward way of calculating SE and

CIs without involving further theoretical derivations. The multilevel logistic mixed

effects model with a complex sampling design has broad application in many areas

including prevalence estimation. We have found that incorporating sampling weights

via IPW leads to estimates with low bias and good precision. Besides obtaining

unbiased point estimates, calculating MSPE and CIs are vital to accurate quantifi-

cation of error. Bootstrap methods are preferable in many cases, however, how they

should be used with complex sampling designs is uncertain. In this study, we eval-

uated the performances of three bootstrap methods for calculating CIs of a logistic

mixed effects model with a spatial random effect and we also compared the effect the

post-stratification under such complicated models.
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Our simulation results suggest that when two covariates are used, post-stratification

had beneficial effects as the averaged MSPE of prevalence estimates were smaller as

compared to the cases without post-stratification. Post-stratification might not be

necessary in some cases with large sample sizes or when many covariates are used.

For the three-covariate setting, we found that the parametric Monte Carlo bootstrap

approach was the closest to the nominal 0.95 value in all settings with or without

post-stratification. This is interesting considering the Monte Carlo based bootstrap

is not as computationally intensive as the other bootstrap methods as it only requires

implementing the analysis once. The Monte Carlo based bootstrap was conservative

for two covariates but always held its coverage probability. Overall, we did not see

any benefit to using the weighted bootstrap method over the standard bootstrap.

The weighted hierarchical logistic model with spatial random effects and post-

stratification is a powerful approach to implementing SAE on large survey’s with

complex sampling. More work is needed on graphical approaches to jointly display

point estimates and measures of uncertainty, as uncertainty is commonly ignored in

such analysis. This paper has demonstrated that the Monte Carlo based bootstrap,

an approach that is less computationally intensive than most others, can provide

confidence intervals that hold their coverage probabilities in a wide variety of settings.
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Chapter 3

Incorporating missing heterogeneity

information into spatial-temporal model

3.1 Introduction

Stunting is the most prevalent form of child malnutrition and one of the best overall

indicators of a child’s well-being. The United Nations have proposed Sustainable

Development Goals (SDGs), one of which calls for a reduction of stunting prevalence

in children under 5, with a target of a 40% reduction in children under 5 by 2025.

Therefore, monitoring and assessing the progress towards these targets is important in

terms of informing public health practitioners and policymakers. However, tracking

the trend of prevalence over time can be challenging. One of the challenges is the non-

linear time trend. This trend may be very flexible, and it is not appropriate to assume

linearity. Consequently, a flexible statistical model is needed to smooth the non-linear

trend over time. Similarly, spatial dependency among the neighboring areas/regions

also needs to be considered. The dependence of one area to its neighboring areas

may depend on the distances between the areas. Alkema and New [1] proposed a

Bayesian B-spline bias-reduction model that was able to flexibly smooth the trend

of under 5 mortality rate (U5MR). In their approach, the outcome log-transformed

U5MR was modeled by a penalized B-spline model and the model was fitted in a

Bayesian framework.

Another challenge is the sparse amount of health information in consecutive years.

For example, our motivating data contains a total of 260 survey observations for 54
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countries over 10 years of time. Sample data can yield large standard errors and

wide confidence intervals for small sample sizes. Statistical models that are capable

of borrowing strength from the available information to make predictions are needed.

De Onis et al. [8] combined multiple national and sub-national surveys from various

countries and used a linear mixed-effect model to estimate the trend of child growth

and malnutrition for over 100 countries and sub-regions for 15 years.

A joint data set has been constructed by the World Health Organization, United

Nations Children’s Fund, and the World Bank that used the information from more

than 700 surveys from 150 countries in Africa. By using the different sources of

surveys and datasets, we expect to produce more reliable predictions of prevalence.

In this joint dataset, malnutrition estimates were collected from different sources of

surveys, such as demographic and health surveys (DHS), multiple indicator cluster

surveys (MICS), among other types of surveys (Others) over time. Although great

effort has been put to collect and standardize the data, the difference in survey

quality is non-ignorable. Therefore, sampling standard errors (SSE) of the prevalence

estimates from each survey have been incorporated in the joint dataset which needs to

be considered in the data analyses. The magnitudes of the SSEs will vary due to the

data having different sampling designs and sample sizes, which have a large influence

on the uncertainty in the of prevalence estimates. Preferably, the studies with smaller

SSEs (better data quality) have larger inflence on the prevalence estimates than

the ones with poorer data quality. Alkema and New [1] proposed to use a survey

type-specific bias parameters to control for variation of the data quality. The idea

is based on the assumption that the data quality from the same survey type are

comparable. In this study, a further difficulty with incorporating the SSEs is that

approximately half of the SSEs are missing. The estimates could be biased if the

missing heterogeneity information was estimated and simply imputed, especially when

the SSEs are potentially large. Some studies may incorporate observed and missing
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SSEs in the analyses by simply imputing the missing SSEs using observed SSEs and

other information. This method ignores the uncertainty in the missing SSEs.

This study aimed to develop a statistical model that can fit flexible spatio-

temporal trends and incorporate heterogeneity information with potential missing-

ness. McLain et al. [29] used a penalized longitudinal model that used penalized

B-splines (P-spline) to model the flexible time effect, where SSE information was

incorporated in the residual variance. The missing SSEs were imputed using sin-

gle imputation depending on the sample size (when known), estimated prevalence

and survey types observed. This method does not account for the uncertainty in

the SSE values which could also influence the reliability of the estimation. There

are some similarities between their methods and our proposed method in terms of

using penalized B-splines to model the flexible spatio-temporal effects and the idea

of incorporating SSEs into the residual variance. However, our model also considers

spatial information and we are able to use an approximated likelihood function for

prevalence estimation that incorporates SSE uncertainty. Our procedure has a closed

form optimization function and requires less computational effort. In addition, in

our method, we take the uncertainty of the SSEs into consideration by assuming a

gamma distribution which is later incorporated into the mixed effect model.

The outline for this paper is as follows. In Section 2, we introduce the P-spline

model we use to smooth spatio-temporal effect and give the mixed effect model repre-

sentation of the P-spline model. In Section 3, we introduce our method to incorporate

the heterogeneity information with potential missingness into a mixed effect model.

In Section 4, we present the results of a simulation study to validate our proposed

model and compare it to a standard approach. In Section 5, we apply our proposed

method for real data analysis and validate our method compared with classical meth-

ods. We finalize the article with concluding marks in Section 6.
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3.2 P-spline model specification and its mixed effect model

representation

3.2.1 P-spline model

As discussed above, non-linear time effects and spatial dependency can be challenging

and we proposed to use a spline-type model to smooth spatio-temporal effects. The

spline regression model has the general form

f(y) = µ = Bθ, (3.2.1)

whereB is the regression basis of the smoothing variables, θ is a vector of parameters

and µ is a function of spatial and time information. Here, θ can be estimated by

minimizing the sum of squares: S = (y−Bθ)′(y−Bθ). However, the choices of knots

greatly inflence the B-spline model fitting: the model could overfit the data if too

many knots are selected leading to high variance and underfit the data; and if too few

knotsare selected which could result in high bias [13]. Eilers and Marx [13] proposed

to include many knots with a penalty term to control for over-fitting via penalized sum

of squares Sp(θ) = (y−Bθ)′(y−Bθ)+θ′Pθ. The penalty P proposed by Eilers and

Marx [13] used a difference of the adjacent coefficients, while Currie and Durban [6]

used a second order difference penalty which will be adopted here. In this approach,

the penalty term is P = λD′D with D being the second order difference matrix of

the regression coefficients θ and λ is the smoothing parameter. In the case of the

second order difference, Djj = 1, Djj+1 = −2, Djj+2 = 1 and all other Djj′ = 0. The

penalized sum of squares can be re-written as: Sp(θ) = (y−Bθ)′(y−Bθ)+λθ′D′Dθ.

Currie and Durban [6] used a penalized spline (P-spline) smoothing method to

flexibly model the effect of time. P-spline smoothing methods can also be expanded to

multi-dimensional smoothing. Lee and Durbán [25] proposed to use P-spline smooth-
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ing for spatial data, where longitude and latitude information were used for smoothing

y = µs(V 1,V 2) + ε = B(V 1,V 2)θ + ε, (3.2.2)

where ε ∼ N(0, σ2I) and V 1 and V 2 are vectors of longitude and latitude informa-

tion, respectively. Suppose that B(V 1) and B(V 2) have dimensions of ns × c1 and

ns× c2, respectively, where ns is the number of unique spatial longitude and latitude

points and c1 and c2 are the number of knots for the B-spline basis along latitude

and longitude, respectively. Here, B(V 1,V 2) = B(V 2)�B(V 1), where B(V 1) and

B(V 2) are the B-spline basis for the V 1 and V 2, respectively. The tensor product �

operation is defined as B2�B1 = (B2 ⊗ 1′c1)� (1′c2 ⊗B1), where ⊗ is the kronecker

product and � is the element-wise product. If A is an m × n matrix and C is a

p × q matrix, then the Kronecker product A ⊗ C is a mp × nq block matrix that

A⊗C =


a11C ... a1nC

...

am1C ... amnC

, and 1c1 , and 1c2 are vectors of ones with length of c1

and c2, which match the column numbers of B1 and B2. In the end, B(V 1,V 2) has

the dimension of ns × cs, where cs = c1c2.

Lee and Durbán [26] expanded it to P-spline ANOVA-type interaction models that

smoothed the effect of time, spatial effects and the interactions between the time and

spatial effects. That is, their model allows for an additive relationship of time, space

and time-space interaction:

y = γ + µs(V 1,V 2) + µt(t) + µst(V 1,V 2, t) + ε, (3.2.3)

where ε ∼ N(0, Iσ2). Here, µs(V 1,V 2) = Bs(V 1,V 2)θs is the spatial smoothing

function, which is analogous to the P-spline model in (3.2.2) with dimension of ntns×

cs. Note that nt is the number of unique time points, which is allowed to be different

from ns. Further, µt(t) = Bt(t)θt is the smoothing function for the time effect,

where Bt(t) is the B-spline basis for time t, which has dimension of ntns× ct. Lastly,
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µst(V 1,V 2, t) = Bst(V 1,V 2, t)θst is the interaction between the spatial and time

effects and Bst = Bs ⊗Bt. The general form for the B-spline basis matrix B in the

spline model is defined as B = [1nsnt : Bs ⊗ 1nt : 1ns ⊗Bt : Bs ⊗Bt], where 1nsnt ,

1nt and 1ns are vectors of ones with length of nsnt, nt and ns, respectively and the

B matrix has dimension of nsnt × (1 + ct + cs + ctcs).

The smoothing model is penalized on Bs, Bt and Bst, separately using P (s), P (t)

and P (st). The spatial penalty term P (s) = λ1Ic2⊗D′1D1 +λ2D
′
2D2⊗Ic2 , whereD1

is the second order difference matrix corresponding to the latitude information V 1

andD2 is the difference matrix corresponding to the longitude V 2. The time penalty

term P (t) = λtD
′
tDt, where Dt is the difference matrix for time t. The spatial and

time interaction penalty term is given by P (st) = τ2D
′
2D2⊗Ic1⊗Ict+τ1Ic2⊗D′1D1⊗

Ict + τ3Ic2 ⊗ Ic1 ⊗D′tDt. The penalty term P is a block diaganol martrix with P (s),

P (t) and P (st) on the diaganol such that P = blockdiag(0,P (s),P (t),P (st)).

3.2.2 Mixed effect model representation of the P-spline model

Connections between spline models and linear mixed effect models have drawn at-

tentions from various aspects. Brumback et al. [3] used truncated polynomials to

represent P-spline models and made a connection between P-spline models, mixed

effect models and the BLUP estimator. Verbyla et al. [39] derived the mixed effect

model representation of the cubic P-spline model. Currie and Durban [6] developed

a flexible P-spline model that adopted the connection between mixed effect models

and cubic spline models. Lee and Durbán [26] proposed a method of ANOVA-type

interaction models for transforming spatio-temporal effects to a mixed effect model

representation.

The standard form of the linear mixed effect model is

y = Xβ +Zb+ ε, (3.2.4)
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with b ∼ N(0,G) being the random effect coefficients and ε ∼ N(0, σ2Λ) being

the error term where Λ is a positive-definite matrix that can be used to incorporate

hetereogeneity information.

The main idea of the representation is to rewrite the non-parametric spline model

as the sum of fixed and random effects. That is, we would like to transform B-spline

basis B into [X : Z] matrices. The transformation from B-spline to mixed effect

model is not the focus of this paper, and we recommand readers to [6] for more details.

In summary, a one-to-one transformation matrix T is constructed by reformating the

penalty P such that BT = [X : Z]. The penalty P (or the matrix D′D) can

be decomposed as SV D(D′D) = UΣU ′ using singular value decomposition (SVD),

where Σ is a diagnal matrix with the eigenvalues of D′D on the diagonal and U is

the matrix of eigenvectors. The matrix U can be partitioned into U = [Un : U s]

where Un corresponds to the zero eigenvectors and U s corresponds to the non-zero

eigenvector. The transformation matrix T = [T n : T s] can be built as functions of

Un and U s, respectively. In the end, we can have X = BT n and Z = BT s.

For estimation purposes, by using this transformation minimizing the penalized

sum of squares Sp is equivalent to minimizing the residual maximum log-likelihood

(REML):

LR = −1
2 log |Ψ| − 1

2 log |X ′Ψ−1
X| − 1

2y
′(Ψ−1 −Ψ−1X(X ′Ψ−1X)−1X ′Ψ−1)y,

(3.2.5)

where Ψ = σ2Λ +ZGZ ′ is the marginal variance of y.

3.2.3 Estimation and asymptotic inference

Under mixed effect model framework, the empirical best linear unbiased predictors

(EBLUP) are β̂ = (X ′Ψ̂−1
X)−1X ′Ψ̂−1

y and the predicted random effect b̂ =

ĜZ ′Ψ̂(y − Xβ̂), where Ĝ = σ̂2F−1 is the estimated G and Ψ̂ = σ̂2Λ̂ + ZĜZ ′

is the estimated Ψ. For a new subject with covariate matrix Ci = [X i,Zi], the
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expected value of the new observation φi = X iβ̂ +Zib̂i. The variance of the φi is

Σ̂φi = Ci(C ′Λ̂
−1
C + K̂)−1C ′i, (3.2.6)

[37] where K is a block diagonal matrix of a (p+ q)× (p+ q) zeros and Ĝ−1. Here,

p is the number of columns in X and q is the number of columns in Z. In this case,

the variance of the new observation yi can be calculated as

Σ̂yi = σ̂2Λ̂i + Σ̂φi , (3.2.7)

Assuming a normal distribution, the predicted interval of the new observation are

given by (φ̂−Z1−α/2σ̂yi , φ̂+Z1−α/2σ̂yi), where σ̂yi is the standard error of yi which is

the square root of Σ̂yi .

3.3 Incorporating heterogeneity information into mixed effect

model

We assume the sampling precision Sij (which is the reciprocal of the variance) for

each area i and data point j follows a gamma distribution Sij ∼ Γ
(
ν0,

νij
ν0

)
with mean

E(Sij) = νij and variance V ar(Sij) = ν2
ij/ν0. We allow the expected precision νij to

vary across the areas and time points. We also assume that the expected sampling

precision νij is related to a known covariate matrix W ij, such that νij = exp(η0 +

η1W ij) where η0 and η1 are corresponding coefficients. The sampling precision can

be incorporated into the mixed effect model in (3.2.4) by letting the error term εij ∼

N(0, σ2/Sij).

In terms of missing heterogeneity information, we will assume some Sij are missing

at random (MAR). The whole dataset can be divided into two parts: data with ob-

served Sij denoted as Do and data with missing Sij denoted as Dm. Let the observed

sampling precision be So and the missing sampling precision be Sm. Now, the Sij be-

comes the combination of observed and predicted sampling precision Sij = (Soij, Ŝmij ).
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We can also define analogously yo and ym to be the outcome with and without het-

erogeneity information, that is y = (yo,ym)T . Similarly, let Co = [Xo,Zo] and

Cm = [Xo,Zm] be the covariate matrices for fixed and random effects. Under the

MAR assumption, the observed data could be used to fit a gamma regression model,

yielding consistent paramter estimates η̂0, η̂1 and ν̂0, and ν̂ij can be calcuated. There-

fore the missing sampling variance can be predicted Ŝmij using estimated parameters.

Under the general mixed effect model framework, we assume that the conditional

distribution, fy(y|b) is Gaussian with mean µ = Xβ+Zb and variance Σ = R. Here

b ∼ MVN(0,G) are the random effects and R = σ2S−1, where S−1 is a diagonal

matrix with 1/Sij on the diagonal. From there, the likelihood function for subject i

can be written as

Li =
∫ ∫

fy|S,b(yi|bi)dFb(bi)dFS(Smi )

=
∫ ∫

fyo|b(yoi |bi)fym|yo,Sm,b(ymi |yoi , bi)dFS(Smi )dF (bi), (3.3.1)

with full likelihood L = ∏
i Li. Since the first part of the integration is not related to

the unknown sampling precision Sm and ym|b ⊥⊥ yo|b, the likelihood can be written

as

L =
∫
fyo|b(yoi |bi)

∫
fym|Sm,b(ymi |Smi , bi)dF (Smi )dF (bi)

Following standard results that
∫
fym|Sm,b(ym|Smi , bi)dF (Smi ) = f tym|b(ymi |b; 2ν̂0,µ

m
t ,Σm

t ),

where f tym|b(ymi |bi, 2ν̂0,µ
m
t ,Σm

t ) is a generalized multivariate t-distribution with de-

grees of freedom df = 2ν̂0, mean µmt = Xmβ + Zmb and variance Σm
t = σ2(Ŝm)−1

where (Ŝm)−1 contains the predicted heterogeneity information, that is, a diagonal

matrix with ν̂0/(ν̂ij(ν̂0 − 1)) on the diagonal. The likelihood function can be written

as

Li =
∫
fyo|b(yoi |bi)f tym|b(ymi |2ν̂,µmt ,Σm

t )dFb(bi). (3.3.2)

Here, fyo,b(yoi |bi) has a normal distribution with mean µo = Xoβ+Zob and variance

Σo = σ2(So)−1, where (So)−1 is a diagonal matrix with Sij on the diagonal. In this
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way, the likelihood function has a multivariate normal-t mixture distribution inside

of the integral and it does not have a closed form when integrating with respect to

the random effect. One way to solve it is to compute numerically, which may be time

intensive and computationally demanding.

Here we seek an approximation that will result in a closed form for the inte-

gral. To this end, we temporarily approximate the t-distribution using a normal

distribution with the same mean and variance. This results in an integral of a

multivariate normal distributions which can be easily integrated. To be specific,

f tym,b(ym|b; 2ν̂,µmt ,Σm
t ) ≈ fNym,b(ym|b;µm,Σm). Then we have the approximated

likelihood function

L̃ =
∫
fNyo,b(yo|µo,Σo)fNym,b(ym|µmt ,Σm

t )dF (b). (3.3.3)

In this case, it is easy to integrate out the random effects and we can calculate the

likelihood as

L̃ = fNy (y|µ̃, Σ̃), (3.3.4)

a multivariate normal distribution, where µ̃ = Xβ, Σ̃ = ZGZ ′ + σ2S−1, and S =

(So, Ŝm). Let the covariance matrix of the multivariate normal distribution be Σ̃ =

ZGZ ′ + σ2S−1 =

 Σo Σom

Σom Σm

, where Σo and Σm are the variances for the yo and

ym and Σom is the covariance matrix. Note that the covariance Σom is non-zero since

the clusters can have observations in yo and ym.

The original likelihood function has normal and t distribution mixture which

corresponds to the observed and missing sampling precisions parts, respectively and

we would like to convert the approximated likelihood function back to a normal-t

mixture to improve the accuracy of estimation. The approximated normal likelihood

function (3.3.4) can work as a standard comparison to compare the performance of

our proposed method in the later simulation study. The first step is to separate the
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data with observed and missing sampling precision, and the approximated likelihood

function L̃ can then be given by

L̃ = fNyo(yo)fNym|yo(ym|yo), (3.3.5)

where fNym|yo(ym|yo) follows a multivariate normal distribution with mean µm|o =

Xmβ + Σom(Σo)−1(yo − Xoβ) and variance Σm|o = Σm − Σom(Σo)−1Σom, such

that fNym|yo(ym|yo) = fNym|yo(ym|yo,µm|o,Σm|o). Then we can switch the second part

fNym|yo(ym|yo,Cm) back to the t distribution that has degrees of freedom 2ν̂, mean =

µm|o, and variance Σm|o as defined above. As a result, we have the likelihood

ˆ̃L = fNyo(yo|µo,Σo)f tym(ym|2ν̂,µm|o,Σm|o). (3.3.6)

We assume that after the approximations, the likelihood function L is approximately

equal to the new normal-t mixture ˆ̃L. More detailed derivation of the likelihood

function can be found in the Appendix C.

3.4 Simulation study

To test the performance of our proposed method, numerous simulation studies have

been performed. For each simulation, we generated a training set D which is used

for estimation, and a test set Dpred used to evaluate the properties of the predictions.

The data was generated for N = 50 countries from the years 2010 to 2021. The first 6

years were used as the training dataset D and last 6 years were used as the test dataset

Dpred. The knots for time and spatial splines for both datasets were chosen to can be

the same. The time information (years) was smoothed using penalized-B spline model

and the location of knots were chosen to be 3 years apart. The spatial longitude and

latitude coordinates information is assumed to spread evenly over [0, 50] range for the

50 countries and is also smoothed by penalized-B spline in which location of knots

were chosen to be 10 points apart. In this simulation study, we will mainly focus on
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the additive time and spatial interaction model

y = γ + µs(V 1,V 2) + µt(t) + b0 + ε,

where µt(t) is the p-spline function for time, µs(V 1,V 2) is the interactive effect

of longitude and latitude, b0 ∼ N(0, σ2
b0) is a country-specific random intercept,

εij ∼ N(0, σ2/Sij) is the error term where sampling precision Sij ∼ Γ(ν0, νij/ν0) is

incorporated. Here, νij is generated from νij = exp(η0 + η1 ∗ Wij) with η0 = −1,

η1 = 0.5 and Wij with Wij ∼ N(0, 0.52). Different proportions of missing pmiss were

used for the sampling precision Sij that are dependent on Wij. The small proportion

of missing had pmiss = exp(−1−Wij)/(1+exp(−1−Wij)) which corresponds to about

20% missing, while the large proportion of missing had pmiss = exp(1 −Wij)/(1 +

exp(1 −Wij)) which gives about 60% missing. The rationale behind this setting is

that Wij is negatively associated with the missing probability pmiss and positively

related to νij, so when Wij increases the pmiss decreases and νij increases which

results in the increases in the expectation and variance of Sij. In this setting, the

proportion of missing pmiss is negatively associated with the covariate matrix W ij,

which is positively related to νij. Given the fixed value of ν0, the variance of Sij is

also positively related to νij, which results in the possitive association between the

variance of Sij and the proportion of missingness. The gamma parameter ν0 is set to

different values to compare the performances for large (ν0 = 2 or ν0 = 5) and small

(ν0 = 10) variance of Sij which is negatively related to the variance of error term εij.

The model was estimated using mixed effect representation of the P-spline model

and we can have y = Xβ +Zα+ b0 + ε, where X and Z are the fixed and random

effect design matrices that transformed the mixed-effect model to the P-spline model.

The dimensions of X and Z matrices depend on the knots of P-spline model, β is

the corresponding coefficients and α ∼ N(0, σ2
b1). Here, σ2

b0, σ2
b1 and σ2 were set to

0.005, 0.005 and 2×10−7, respectively which tried to mirror the parameters in the joint

dataset. By minimizing the normal-t approximation likelihood function (3.3.6), we
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are able to estimate the parameters along with making inference and predictions. A

classical normal likelihood function (referring as a normal-normal model) was used as

comparison where the missing sampling precision Sm was replaced by its expectation

νij. The degrees of freedom of the t part of the normal-t model is a function of the

gamma parameter ν0, therefore, we would expect more similar results from normal-

normal model and normal-t model when ν0 is large.

Let Y = (y1, ..., yM) be the true outcome with corresponding expectation µ =

(µ1, ..., µM) in dataset Dpred and µ̂pred = (µ̂1, ..., µ̂M) be the predicted outcome using

either normal-t or normal-normal likelihood function. Root mean squared prediction

error (RMSPE) and prediction coverage probability (CP) can be used to validate the

prediction. RMSPE is defined as RMSPEY =
√∑M

i=1(µ̂i − yi)2/M and RMSPEµ =√∑M
i=1(µ̂i − µi)2/M .

Table 3.1 shows the width of prediction intervals (PIs) were also narrower for

normal-t model than those in normal-normal model across all simulation settings.

The differences in prediction interval widths between the normal-t and normal-normal

models are more obvious when the missing proportion is low. When the missing

proportion is about 20%, the prediction interval widths for the normal-t model is

0.136 as compared to 0.364 for the normal-normal model given ν0 = 2. However, when

the missing proportion is high, the PI width for normal-t model is 0.347 as compared

to 0.390 for normal-normal model. The significant difference is primarily driven by

the difference between estimated σ̂2 from the error term. The ratio of σ̂2 from the

normal-normal and normal-t models (σ̂2
N/σ̂

2
t ) is about 6 when the missing probability

is low and about 1.2 when the missing probability is high (results not shown). The

coverage probabilities for the normal-t approximation are close to 0.95 when the

missing proportion for SSEs is low as compared to the normal-normal model which

has higher coverage probabilities. The normal-t model tended to have lower coverage

probability as compared to the normal-normal model when the missing proportion is
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Table 3.1: Summarized results of simulation study. The results contain the width
of prediction confidence intervals, prediction interval coverage probability, root mean
squared prediction error of estimates Y (RMSPEY ), and µ (RMSPEµ)

Low missing probability High missing probability
ν0 = 2 ν0 = 5 ν0 = 10 ν0 = 2 ν0 = 5 ν0 = 10

Width of PI
Normal 0.364 0.318 0.304 0.390 0.337 0.326
Normal-t 0.136 0.123 0.123 0.347 0.319 0.315
Prediction CP
Normal 0.974 0.972 0.979 0.958 0.961 0.947
Normal-t 0.950 0.979 0.967 0.905 0.941 0.934
RMSPEy
Normal 0.060 0.055 0.053 0.072 0.066 0.071
Normal-t 0.039 0.028 0.029 0.086 0.073 0.074
RMSPEµ
Normal 0.047 0.047 0.046 0.068 0.060 0.066
Normal-t 0.017 0.013 0.015 0.075 0.066 0.068

high. Both RMSPEY and RMSPEµ were smaller in the normal-t model versus those

in the normal-normal when the missing proportion was low. These results suggest

that normal-t model is preferred when missing proportion is low.

3.5 Real data analysis

In this real data analysis, we are interested in investigating the prevalence trend of

stunting over time in African countries using the joint data set. There were 260

stunting survey estimates available from 54 countries from years 1993 to 2015 and

we would like to predict the prevalence for years with no data in these countries

over a 23-year period, along with prediction confidence intervals. Among the 260

survey points, 92 surveys were from DHS, 36 were from MICS and 132 were from

other survey sources. To predict the stunt prevalence, we adjusted for gross domestic

product (GDP), fertility rate and life expectancy. Overall, 12 survey points were

excluded from the analysis due to missing covariate information. To better fit the
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model, teh GDP variable was scaled to make the mean of GDP as 0 and standard

deviation as 1. In addition, there were 119 SSEs missing.

A penalized B-spline model was used to smooth over longitude and latitude in-

formation as well as time (in years). The location of the spatial knots was chosen to

be 10 points apart from the minimum value to maximum value for both longitude

and latitude, and the knot location for time was chosen to be 10 years apart. The

sampling precision is assumed to follow a gamma distribution, such that Precision

∼ Γ(ν0, νij/ν0), and survey categories were considered to well explain the precision,

exp(E(precision)) = η0 + η1∗ (Survey categories). By using observed precisions, the

parameters η̂0, η̂1, ν̂0, and ν̂ij can be estimated and the missing precisions can be

predicted using the estimated parameters. Data was fit to our proposed normal-t

approximation likelihood and the standard approach to obtain the regression param-

eters and predict the stunting disease prevalence over year with prediction intervals.

In general, we found that stunting prevalence was decreasing, with some of coun-

tries having increasing trend until around years 2000 to 2005 and decreasing trend

afterward. Some of the countries had overall stunting prevalence as low as 0.2, as

compared to other countries that had stunting prevalence consistently higher than

0.4. In addition, GDP and life expectancy were negatively associated with stunting

prevalence and fertility rate was positively associated with stunting prevalence. With

a 1 unit increase in GDP there would be about a 2.4% decrease in prevalence, and

with a 1 year increase in life expectancy there would be about a 0.37% decrease in

stunting. On the other hand, a 1% increase in fertility rate, results in the stunting

prevalence increasing by 4.7% on average. In addition, survey category is used to

model the sampling precision and the precision for MICS surveys has 1.05 times the

precision of DHS and the precision for other types of surveys is 0.56 times of that for

DHS on average. The estimated ν̂0 is 4.
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To compare the performance of our proposed method, Figure 3.1 presents the

predicted stunting prevalence for Algeria, Benin, Botswana, and Burkina Faso over

time with predicted confidence intervals as well as the observed points. The left panel

presented the results using the standard normal approach and the right panel are the

ones using our proposed normal-t approximation method. The prediction intervals

for all 4 countries are narrower for our method as compared to the standard normal

approach which is consistent with the findings from the simulation study.

3.5.1 Validation

A 10-fold cross-validation (CV) analysis was conducted to validate the difference

between the normal-normal model and the normal-t model as did in the simulation

study. In the CV analysis, the joint dataset was used and the countries with only

one observed stunting estimate were excluded from the analysis. We did not adjust

any covariates in the real data cross-validation to avoid losing more survey estimates.

The included survey estimates were divided into 10 folds. The point prediction with

prediction intervals for out-of-sample data was computed using observed data as well

as SSE values. Both normal-normal and normal-t models were fit and the coverage

probability and RMSPE were calculated to compare the performances of the two

models.

Table 3.2 presents the results of the 10-fold CV analyses. From the results, both

the normal-normal and the normal-t models had coverage probability close to 0.95

and the normal-t model had smaller bias. The normal-t model has smaller RMSPE

and narrower prediction interval width compared to the normal-normal model which,

is consistent with our simulation results where missing proportion is low. Therefore,

it appears that the normal-t model out-performed the normal-normal model.
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Figure 3.1: Predicted stunting prevalence from 1993-2015 for Algeria, Benin,
Botswana, and Burkina Faso. The figure contains the predicted stunting prevalence
with prediction confidence intervals and observed stunting prevalence. Left panel is
the prevalence prediction using the standard normal approach and right panel is using
normal-t approximation

3.6 Conclusion

In this paper, we developed a normal-t mixture model to fit flexible spatio-temporal

trend with partial missing heterogeneity information. In this model, longitude and

latitude information as well as repeated time can be modelled flexibly using penalized-

B spline model which can be converted into a mixed effec model. In addition, by
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Table 3.2: Summarized results of 10-fold cross-validation. The results contain the
prediction confidence interval coverage probability, Bias, prediction confidence inter-
val width, and root mean squared prediction error of stunting prevalence estimates
(RMSPEY )

Normal-t Normal-normal
Mean CP 0.946 0.961

Bias -0.001 0.002
CI width 0.185 0.442
RMSPEY 0.054 0.123

assuming to follow gamma distribution, the missing heterogeneity information (i.e.,

SSEs) are incorporated into the mixed effect model framework. For computational

simplicity, we proposed a normal-t approximation of the likelihood function to es-

timate the parameters. We compared our method to a standard normal likelihood

function which assumed the missing precision Smij to be its predicted expectation ν̂ij.

The predicted Sij for our normal-t model is νij(ν0−1)
ν0

(derivation details can be found

in Appendix C). In the cases where ν0 is large, we would expect simular variance esti-

mates for both methods, and for the cases with small ν0, the corresponding variance

estimates for the normal-t model are smaller than the ones from the normal-normal

method. From the simulation study, we found that our proposed method has nar-

rower prediction intervals as well as smaller RMSPE across all settings with small

missing proportions. The width of PI was slightly narrower for the normal-t model

but the differences were not obvious. RMSPEs were larger for the normal-t model as

compared to the normal-normal model when the missing proportion is slightly large

across all ν̂0 values. When the missing proportion is high σ̂2 from the normal-normal

model tended to be over-estimated to have larger values, resulting in larger RMSPE

estimates.

In both the simulation study and real data analysis, η0 and η1 can be estimated

using known covariates and observed sampling precision, and are treated as fixed

values without incorporating the uncertainty of their values. The uncertainty can
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be incorporated via bootstrapping methods. One way is to assume distributions for

both of the parameters and sample them using a parametric bootstrap. Alternatively,

by resampling the covariates data, we could also measure the uncertainty of the

parameters.

For the real data analysis, the results were consistent with the simulation study

when ν = 5 with low missing SSE proportion and our proposed method performed

better than the standard normal model.
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Appendix A

More discussions about SAE methods

SAE methods can be divided into “design-based" methods and “model-based" meth-

ods. Here, we will focus on model-based methods. For model-based methods, com-

monly used models include two main types: area-level models and unit-level models.

For the unit-level models, the nested error unit level model for a continuous outcome

is one of the most popular models. It takes the form yij = x′ijβ+bi+εij, where the ran-

dom effect bi ∼ N(0, σ2
b ) and the error εij ∼ N(0, σ2

ε ) are independent. The true area

mean of the outcome is E(yi|bi) = θi = X ′iβ + bi. The model requires that the area

level mean of the covariates X̄i = ∑Ni
j=1 xij/Ni are known. The best linear unbiased

predictor (BLUP) for θi can be given as θ̂ = λi
[
ȳi + (X̄i − x̄i)′β̂GLS

]
+(1−λi)X̄iβ̂GLS,

where β̂GLS is the estimated coefficients from the Generalized Least Square (GLS)

estimation using all observations and λi = σ2
b/(σ2

b + σ2
ε/ni). For non-linear out-

comes, specifically for binary outcomes, the logistic mixed effect model can be used,

where logit(pij) = xijβ + ui, where xij and yij are covariates and the outcome for

individual j in area i, respectively, and ui is the random effect with ui ∼ N(0, σ2
u).

[20] presented the best predictor (BP) for the mixed logistic model as logit(p̂ij) =

xijβ + E(ui|
∑ni
j=1 yij). There is no explicit closed form for p̂ij, but the conditional

expectation can be approximated as the ratio of two one-dimension integrals. There-

fore, statistical methods are needed to solve SAE problems which actually have two

aspects: producing reliable estimates based on small sample sizes and assessing the

estimation errors.
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Another aspect of the SAE problem is to assess the error in the predictions us-

ing prediction mean squared errors (PMSE). Let the variance components be ψi =

(σ2
ε , σ

2
b ) and the EBLUP of the outcome be θ̂(ψ̂) obtained from θ̂(ψ) with ψ re-

placed by the estimated ψ̂, the PMSE can be defined as the MSE of θ̂(ψ̂) that is

MSE(θ̂(ψ̂)) = E[θ̂(ψ̂) − θ]2. For the general mixed effect model, [7] proposed a uni-

fied PMSE estimator for the EBLUP when the unknown parameters were estimated

using MLE or REML. Re-sampling procedures including the jackknife method and

bootstrap methods are often used in the estimation of PMSE in GLMMmodels versus

LMM due to the complex form of the estimator. [17] proposed a double-bootstrap

method to estimate PMSE.
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Appendix B

Spatial correlations

Under a multilevel mixed effect model structure, spatial correlations among counties

can be considered as part of the random effect b0j to increase the efficiency of the

model. One option is to use the methods that incorporate the spatial dependency

into the variance matrix V ar(Y ), such as simultaneous autoregressive (SAR) model.

In SAR model, Y = Xβ + ε, where the error term ε = ρWε + ξ incorporates

the spatial weight matrix W that contains the weights of the linked neighbors. A

generalization of SAR is the weighted SAR that includes the weights inversely pro-

portional to the population sizes of the neighbors. Another option is to model the

spatial dependency conditional on the observations of the related neighbors, such as

conditional autoregressive (CAR) model. The joint distribution of the random effects

b0 for the CAR model is assumed that b0 ∼ N(0, σ2
b (I − φW )−1). W is the adja-

cency matrix with dimension J × J , where entries wr,j and wj,r are positive when

region r and j are neighbors and zero otherwise. The parameter φ controls the spa-

tial correlations between the neighbors. To simplify the model, we will use a spatial

intrinsic conditional autoregressive (ICAR) model, which is a generalization of the

CAR model with the parameter φ = 1. In this case, the spatial dependency is only

depends on the neighborhood structure of the regions. The ICAR model assumes

that bj|bl ∈ δj ∼ N(b̄j, σ2
b/mj), where the random effect for county j given its neigh-

bors l follows normal distribution with mean b̄j =
∑

l∈δj
bl

mj
where mj is the number of

neighbor counties of county j, and δj is the set of indices of neighbors for county j.
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Appendix C

Derivations of normal-t likelihood

approximation

The whole dataset D contains two parts including the one Do with observed sampling

precision So and the one Dm with missing sampling precision Sm. The outcome

y, covariate matrix X have analogous definitions. Let Co = [Xo,Zo,W o] and

Cm = [Xm,Zm,Wm] be the covariate matrix for mixed and random effects and

known information for sampling precision.

Under general mixed effect model framework, we can have following distribution

defined

• fy|b,S(y|b) ∼ MVN(µ,Σ), where µ = Xβ + Zb and Σ = σ2S−1 with S =

(So,Sm), .

• Smij ∼ Γ(ν0,
νij
ν0

) is a diagonal elements of the matrix Sm and the pdf takes the

form f(Smij ) = 1
Γ(ν0)(νij/ν0)ν0 (Smij )ν0 exp(−Smij

νij
). We allow that the parameter νij

varies with Sij.

• The random effect b ∼MVN(0, G).

The full likelihood function is

L =
∫ ∫

fy|S,b(yi|S, b)dFb(b)dFS(Sm)

=
∫ ∫

fyo|b(yo|b)fym|yo,S,b(ym|yo,Sm, b)dFS(Sm)dFb(b)

(C.0.1)
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For each subject, the likelihood function has the independent and identical distribu-

tion.

Li =
∫ ∫

fy|b(yoi |bi)fym|yo,Sm,b(ymi |yoi ,Smij , bi)fSm(Smij )d(Smi )dFb(bi)

=
∫
fyo|b(yoi |bi)

∫
fym|yo,Sm,b(ymi |yoi ,Smij , bi)fSm(Smi )fb(bi)d(Smij )d(bi)

=
∫
fyo|b(yoi |b)

∫ √
Smij√

2πσ2
exp

(
−

(ymij − µij)2

2σ2 Smi

)
νν0

0
Γ(ν0)νν0

ij

(Smij )ν0−1 exp(−
Smij ν0

νij
)d(Smij )dFbi(b)

=
∫
fyo|b(yoij|bi)︸ ︷︷ ︸

L1∫
√
Smij√

2πσ2
exp

(
−

(ymij − µij)2

2σ2 Smi

)
νν0

0
Γ(ν0)νν0

ij

(Smij )ν0−1 exp
(
−ν0

Smij
νij

)
d(Smij )


︸ ︷︷ ︸

L2

dFb(b)

(C.0.2)

L2 =
∫ νν0

0√
2πσ2Γ(ν0)νν0

ij

(Smij )(ν0+ 1
2 )−1 exp

[
−

(ymij − µij)2Smij
2σ2 −

ν0S
m
ij

νij

]
d(Smij )

=
∫ νν0

0√
2πσ2Γ(ν0)νν0

ij

(Smij )(ν0+ 1
2 )−1 exp

[
−

(ymij − µij)2νij + 2σ2ν0

2σ2νij
Smij

]
d(Smij ) (C.0.3)

Let Θij = 2σ2νij
(ymij−νij)2νij+2σ2ν0

L2 =
∫ νν0

0√
2πσ2Γ(ν0)νν0

ij

(Smij )(ν0+ 1
2 )−1 exp

(
−
Smij
Θij

)
d(Smij )

= νν0
0√

2πσ2Γ(ν0)νν0
ij

∫ Γ(ν0 + 1
2)Θ(ν0+ 1

2 )
ij

Γ(ν0 + 1
2)Θ(ν0+ 1

2 )
ij

(Smij )ν0− 1
2 exp

(
−
Smij
Θij

)
d(Smij )

= νν0
0√

2πσ2Γ(ν0)νν0
ij

Γ(ν0 + 1
2)Θ(ν0+ 1

2 )
ij (C.0.4)

Replace Θij back into the formula

L2 =
νν0

0 Γ(ν0 + 1
2)√

2πσ2Γ(ν0)νν0
ij

Γ(ν0 + 1
2)
[

(ymij − µij)2νij + 2σ2ν0

2σ2νij

]−(ν0+ 1
2 )

=
νν0

0 Γ(ν0 + 1
2)√

2πσ2Γ(ν0)νν0
ij

Γ(ν0 + 1
2)( ν0

νij
)−(ν0+ 1

2 )
[(ymij − µij)2 νij

ν0
+ 2σ2

2σ2

]−(ν0+ 1
2 )

=
Γ(ν0 + 1

2)
Γ(ν0)

(
νij

2πσ2ν0

) 1
2
[
1 + (yij − µij)2νij

2σ2ν0

]−( 2ν0+1
2 )

(C.0.5)
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L2 has the generalized t-distribution kernel.

Replace L2 back to the full likelihood

Li =
∫
fyo|b(yoi |bi)

Γ(ν0 + 1
2)

Γ(ν0)

(
νij

2πσ2ν0

) 1
2
[
1 + (yij − µij)2νij

2σ2ν0

]−( 2ν0+1
2 )

︸ ︷︷ ︸
P2: Generalized t-distritbution

dFb(bi)

(C.0.6)

P2 is a generalized t distribution with degrees of freedom df = 2ν0, location parameter

µt = Xβ+Zb, and variance Σt that is a diagonal matrix with the diagonal elements

Σii = ν0σ
2/νij(ν0 − 1).

The full likelihood L is a normal-t mixture. Let f t(·|df,µt,Σt) stand for the

probability density function (pdf) of a multivariate generalized t-distribution function

with degrees of freedom df , mean µt and variance Σt. Let fN(·|µ,Σ) denote the pdf

of a multivariate normal distribution with mean µ and covariance matrix Σ. The

likelihood function can be written as

L =
∫
fNyo|b(yoi |bi)f tym|b(ymi |bi)dFb(b)

=
∫
fyo|b(yoi |bi)f tym|b(ym|2ν̂,µmt ,Σm

t )dFb(b), (C.0.7)

Here, fyo|b(yoi |bi) has a normal distribution with mean µo = Xoβ + Zob, and the

covariance matrix for the multivariate normal distribution is Σo = σ2(So)−1. For the

multivariate t-distribution, we have all the parameters µmt and variance matrix Σm
t

as in P2.

We want to approximate the multivariate t-distribution with a multivariate nor-

mal distribution with same mean and variances, that is f tym|b(ym|b; 2ν̂0, µ̂
m
t , Σ̂

m

t ) ≈

fNym|b(ym|bi; µ̂
m, Σ̂m) . The likelihood function can be approximate as

L̃ =
∫
fyo|b(yo|bi)fNym|bi(y

m|bi; µ̂m, Σ̂
m)dF (bi) (C.0.8)

In this case, it is easy to integrate out the random effect and we can have the likelihood

function

L̃ = fy|b(y|b; µ̃ = Xβ, Σ̃ = (ZGZ ′ + σ2S−1)), (C.0.9)
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where S = (So,Sm). The likelihood follows a multivariate normal distribution with

mean µ = Xβ and variance Σ = ZGZ ′ + σ2S−1.

Let the covariance matrix of the likelihood function Σ =

 Σo Σom

Σom Σm

, where Σo

and Σm are the variance matrices for yo and ym, and Σom is the covariance matrix

for the two. Note that the covariance Σom is non-zero since the outcome can have

observations in both yo and ym.

The likelihood function L̃ can be re-written as

L̃ = f(yo)f(ym|yo), (C.0.10)

where f(ym|yo) follows a multivariate normal distribution with mean µm|o = Xmβ+

ΣomΣo−1(yo−Xoβ) and variance Σm|o = Σm−ΣomΣo−1Σom. Therefore, we can write

the likelihood function L̃ as

L̃ = fyo(yo) fym|ym(ym|yo; µ̂m|o, Σ̂m|o)︸ ︷︷ ︸
conditional distribution

(C.0.11)

We will switch the conditional distribution back to the multivariate generalized t

distribution with the same mean and variance and the likelihood function can be

written as
ˆ̃L = fyo(yo)f tym|yo(ym|yo; 2ν̂,µm|o,Σm|o) (C.0.12)

We assume that after the approximation, the likelihood function L is approximately

equal to the new normal-t mixture ˆ̃L
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