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ABSTRACT 

Structural health monitoring (SHM) and non-destructive evaluation (NDE) have 

been a significant research topic to help with damage detection in aerospace structures. 

SHM and NDE techniques are based on extracting damage sensitive features to determine 

the criticality of damage and lifetime of a structure. Acoustic emission (AE) signal 

detection is an important technique in SHM and NDE especially for fatigue crack growth. 

AE signals for thin aerospace structures consist of ultrasonic guided Lamb waves that 

propagate through the structure. This thesis focuses on AE signal repeatability, load at 

which AE signals occur, feature extraction, artificial intelligence and electro-mechanical 

impedance of a piezoelectric wafer active sensor (PWAS) in response to a crack in thin 

aerospace structures. The artificial intelligence techniques explored include machine 

learning model classification and deep learning classical and convolutional neural 

networks designed to understand the meaning behind each AE signal that comes from a 

fatigue crack. 

The goal of this research is to distinguish AE signals from fatigue growing cracks 

into two categories; crack face rubbing and crack growth. From there, we want to determine 

the crack length based on the AE signal. With the understanding of the AE signal and 

artificial techniques created from this research, when applied to industry, we will be able 

to locate cracks on an aerospace structure and determine whether the structure needs 

maintenance before it results in catastrophic failure.
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CHAPTER 1  

PIEZOELECTRIC WAFER ACTIVE SENSOR 

There are many methods that are used for detecting acoustic emission (AE) signals 

and it is important to find the method that best suits your application. Variations in 

methodology could include capturing of in-plane or out-of-plane ultrasonic waves, size of 

sensor, frequency range, etc. The methods used for detecting AE are either passive or active 

techniques. Piezoelectric wafer active sensors (PWAS), S9225 sensors and PICO sensors 

were compared experimentally based on the hit- and waveform-based analysis due to an 

AE source [1], [2]. R15α is another common sensor and was used to collect AE data from 

pencil led breaks (PLB) as well as ball drops on a C-beam used in steel bridges [3]. Fiber 

Bragg grating sensors were used to evaluate the frequency and transient response of the 

AE source on an aluminum panel [4]. Scanning laser Doppler vibrometers (SLDV) used a 

laser to detect AE, which reduces the need to apply a sensor to your specimen [5]. All these 

sensing methods were used to detect AE in a specimen through the active or passive sensing 

of ultrasonic Lamb waves.  

1.1 INTRODUCTION TO SENSING TECHNIQUES 

AE sensors can be used to evaluate the damage of a specimen or the bonding quality 

of the sensor through electro-mechanical impedance. Changes in the electrical admittance 

of piezoelectric (PZT) sensors due to debonding on a graphite/epoxy-fiber-reinforced 

composite plate was experimentally evaluated [6]. Different bonding conditions of PWAS 
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were evaluated with the imaginary part of the admittance on an aluminum washer as well 

as the real part of the impedance on an aluminum surface [7].  

The admittance of a PWAS can give information about the bonding quality or 

damage of the sensor itself, but the admittance has been known to help determine the 

damage of the host structure. The admittance of a PWAS due to damage detection at 

various distances from the sensor was theoretically and experimentally examined and 

numerical significance has been provided for the experimental results [8]. A further 

investigation of the numerical significance of the impedance of a PWAS is seen in the 

following section. 

1.2 PIEZOELECTRIC CONSTITUTIVE EQUATIONS AND ADMITTANCE 

EQUATION 

 To understand the admittance or impedance measurements of a piezoelectric wafer 

active sensor (PWAS), it is important to understand and comprehend the piezoelectric 

constitutive equations. By manipulating the constitutive equations, a theoretical equation 

can be obtained for the admittance or impedance of a PWAS. 

 An understanding of a piezoelectric wafer active sensor (PWAS) comes from the 

basic electro-mechanical properties it has. In simple terms, as a PWAS is mechanically 

stretched or compressed, it produces an electrical response. It will also produce a 

mechanical response (stretching or compressing) when an electrical signal is applied to it. 

The basic constitutive equations that prove this relationship are seen in equation (1) below.  

 𝑆𝑖 = 𝑠𝑖𝑗
𝐸 𝑇𝑗 + 𝑑𝑚𝑖𝐸𝑚 

𝐷𝑚 = 𝑑𝑚𝑖𝑇𝑖 + 𝜀𝑚𝑘
𝑇 𝐸𝑘 

(1) 

where S is the mechanical strain, T is the mechanical stress, E is the electric field, D is the 

charge density, s is the mechanical compliance, d is the piezoelectric coupling constant, 
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and ε is the dielectric constant of the PWAS. The subscripts i, j, m and k indicate the 

direction of stress, strain or electric field. The admittance of the PWAS originates from the 

current running through the transducer. The current can be found by taking the derivative 

of the charge density with respect to time and integrating it over the area of the transducer. 

Knowing the admittance is equal to the current, I, over the applied voltage, V, the final 

equation can be found in equation (2). This is the admittance of a ‘free’ PWAS, meaning 

it is not bonded or touching any other surface. 

 𝑌𝑓𝑟𝑒𝑒(𝜔) = 𝑖𝜔
𝑤𝑙

𝑡𝑐

[𝜀33
𝑇 (1 − 𝑖𝛿)] (2) 

where ω is the angular frequency, δ is the dielectric loss that is tangent to the transducer, 

w is the width, l is the length, and tc is the thickness of the transducer. A ‘free’ PWAS does 

not help with structural health monitoring (SHM) and is merely a reference for bonded 

cases. When a PWAS is bonded to a host structure, it changes the response of the 

transducer. The admittance of a bonded PWAS is affected by both the mechanical 

impedance of the structure as well as the mechanical impedance of the PWAS. The 

admittance of a bonded PWAS is seen in equation (3). 

 
𝑌(𝜔) = 𝑖𝜔

𝑤𝑙

𝑡𝑐
[𝜀33

𝑇 (1 − 𝑖𝛿) − 𝑑31
2 𝑌𝑝

𝐸 +
𝑍𝑎(𝜔)

𝑍𝑎(𝜔)+𝑍𝑠(𝜔)
𝑑31

2 �̂�𝐸 (
tan 𝑘𝑙

𝑘𝑙
)]  (3) 

where 𝑌𝑝
𝐸  is the Young’s modulus of the PWAS with no electric field, k is the wave number 

of the transducer, 𝑍𝑎(𝜔) is the mechanical impedance of the sensor, and 𝑍𝑠(𝜔) is the 

mechanical impedance of the structure.  

1.3 STATISTICAL SIGNIFICANCE FOR EXPERIMENTAL RESULTS 

Admittance is more difficult to extract information from in comparison to the 

impedance because the real part of the admittance has many more resonances that may not 
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be as significantly distinct as the imaginary part of the impedance, i.e. slope. Giurgiutiu et 

al. [8] numerically evaluate the real part of the impedance.  

Giurgiutiu et al. [8] used the impedance method to introduce a good match between 

simulation and experimental results for PWAS distance from damage in thin circular 

aluminum plates. They used the real part of the impedance to determine at what distance a 

PWAS is from a slit in an aluminum plate where the PWAS is located at the center of the 

plate. To add numerical value to the results, they calculated the root mean square deviation 

(RMSD), mean absolute percentage deviation (MAPD), and correlation coefficient (CC). 

These equations are shown below.  

  𝑅𝑀𝑆𝐷 =  √∑ [𝑅𝑒(𝑍𝑘)𝑗 − 𝑅𝑒(𝑍𝑘)𝑖]2
𝑁
𝑘=1 / ∑ [𝑅𝑒(𝑍𝑘)𝑖]2

𝑁
𝑘=1    (4) 

 𝑀𝐴𝑃𝐷 =
1

𝑁
∑ |[𝑅𝑒(𝑍𝑘)𝑗 − 𝑅𝑒(𝑍𝑘)𝑖]/𝑅𝑒(𝑍𝑘)𝑖| 

𝑁
𝑘=1   (5) 

 𝐶𝐶 =
1

𝑁𝜎𝑍𝑗
𝜎𝑍𝑖

∑ [𝑅𝑒(𝑍𝑘)𝑗 − 𝑅𝑒(𝑍)𝑗] ∗ [𝑅𝑒(𝑍𝑘)𝑖 − 𝑅𝑒(𝑍)𝑖]  𝑁
𝑘=1   (6) 

where 𝑅𝑒(𝑍𝑘)𝑖 represents the real impedance values for the pristine specimen and 𝑅𝑒(𝑍𝑘)𝑗 

represents the corresponding real impedance values for the damaged specimen. N is the 

total number of points, (𝑍)𝑖 and (𝑍)𝑗 are the mean real impedance values of the pristine 

and damaged specimens respectively, and 𝜎𝑍𝑖
 and 𝜎𝑍𝑗

 signify the standard deviation of the 

pristine and damaged specimens, respectively. 

1.4 EXPERIMENTAL SET-UP AND PROCEDURE 

 Two different experiments were conducted for the purpose of this paper. The first 

experiment involves gathering the real part of the impedance of PWAS with various 

damage locations. The second experiment involves gathering the imaginary part of the 
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electrical admittance response for five different bonding conditions. The PWAS used are 

round, 7 mm diameter, 0.5 mm thick that are manufactured with positive and negative 

wires soldered to the electrodes. Both experiments used a device to resemble the ‘free’ 

PWAS condition and can be seen in Figure 1.1. This ‘free’ PWAS was used as a baseline 

for both experiments. 

 
 

Figure 1.1 Device used to simulate a ‘free’ PWAS. 

The experiments were set up so that the Omicron Electronics Impedance Analyzer 

Bode 100 was used to send signals and detect data in a PWAS with various damage 

locations or bond qualities. A wire with one end BNC connection and the other end with 

positive and negative connections was used to connect the positive and negative sided 
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PWAS to the Impedance Analyzer. The Impedance Analyzer was connected to a laptop 

through a USB connection. The Bode Analyzer Suite software on the laptop was used as 

the interface to measure and record the data. A picture of the experimental set-up can be 

found in Figure 1.2. 

 
 

Figure 1.2 Experimental set-up including the ‘free’ PWAS, and EMIS machine and 

software. 

1.4.1 Damage detection experimental set-up 

 In addition to the ‘free’ PWAS, five additional PWAS were bonded to round 1 mm 

thick Aluminum 2024-T6 specimens with a diameter of 10 cm. Each specimen had damage 

on it that resembles a crack of 10 mm in length. The first specimen was the pristine 

condition where there was no crack. The other four specimens had cracks 10 mm, 17 mm, 

32 mm and 47 mm away from the PWAS. A picture of the specimen is found in Figure 1.3.  
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Figure 1.3 Five PWAS damage location specimen. 

A single, linear sweep measurement was done from 10 kHz to 1 MHz with 1601 

data points for the ‘free’, pristine, 10 mm, 17 mm, 32 mm and 47 mm damage locations. 

The real part of the impedance was very busy and hard to distinguish where the resonance 

peaks were located. For more refined results the procedure was repeated for three different 

ranges, 10-40kHz, 10-150kHz and 300-450kHz. This was repeated three times to ensure 

the readings were correct. The data was graphed in Python and analyzed to determine if 

there were significant properties and patterns. Some of the properties the results were 

analyzed for were location, amplitude, and shifting of frequency peaks as well as slope for 

the imaginary part.  

1.4.2 Bonding quality experimental set-up 

The five different bonds consist of a fully bonded PWAS, a PWAS that is 75% 

bonded, 50% bonded, 25% bonded and a PWAS that resembles a ‘free’ situation as seen 

in Figure 1.1. The other four conditions were bonded with M-Bond 200 to a 1 mm thick 
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Aluminum 2024-T6 specimen approximately 4 cm away from one another. A picture of 

the specimen can be found in Figure 1.4.  

 
 

Figure 1.4 Aluminum specimen with various PWAS bonding quality conditions. 

 A single, linear sweep measurement was done from 10-40kHz for the imaginary 

part of the admittance with 1601 data points for the ‘free’, fully bonded, 75%, 50% and 

25% bonded conditions. This was repeated three times to ensure the readings were correct. 

The data was graphed in Python and analyzed to determine if there were significant 

properties and patterns. Some of the properties the results were analyzed for were location, 

amplitude, and shifting of frequency peaks as well as slope for the imaginary part. 

1.5 DATA AND ERROR ANALYSIS FOR THE TWO EXPERIMENTS 

1.5.3 Assumptions made for post-processing purposes 

Many assumptions were made to interpret the data that was collected. Since the 

quality of the bond is being explored, it is important to assume that only quality of the bond 

is affecting the electrical response of the PWAS. This means that the environmental effects 

are ignored. Environmental effects, such as temperature, humidity and pressure are ignored 

because they might influence the results. All data was collected in one sitting to keep 

environmental effects consistent. In real life applications, PWAS are typically bonded to a 

material such as Aluminum or composites, but the material is typically not resting on 
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another surface. It is assumed that the table the specimen is resting on in these experiments 

does not affect the electrical response of the PWAS. Another important assumption is that 

for the second experiment, the admittance reading of one PWAS was not affected by 

another PWAS bonded beside it.  

1.5.4 Results for damage detection in circular plates 

Analysis started with plotting a large frequency range, and then selecting several 

smaller ranges based on observations. The ranges chosen are 10-40 kHz, 10-150 kHz, and 

300-400 kHz all of which can be seen in Figure 1.5.  

 
 

Figure 1.5 Plots of real impedance at (a) 10-40 kHz, (b) 10-150 kHz, and (c) 300-450 

kHz. 

Error analysis methods were then used on these three ranges to find a correlation 

between the different damaged specimen. The methods used were root mean square 

deviation (RMSD), mean absolute percentage deviation (MAPD), and correlation 

coefficient (CC), which were chosen based on previous research [8]. The equations 



10 

associated with each of these methods are provided in equations (4), (5), and (6). When 

analyzing the values of each method, it is helpful to know what the numbers mean. For 

RMSD and MAPD a higher value represents larger deviation between the two data sets, 

while a lower value represents a better fit. The CC method has values between 1 and -1. A 

value close to 1 represents a strong positive correlation, a value close to -1 represents a 

strong negative correlation, and a value near zero represents a weak correlation. The 

statistical values for the previously stated frequency ranges are provided below in Table 

1.1. In this table, the meaning of the values in the second row are as follows: 0 is the pristine 

specimen, 1 is 10 mm damage specimen, 2 is the 17 mm damage specimen, 3 is the 32 mm 

damage specimen, and 4 is the 47 mm damage specimen. The 0 - 1 is the correlation for 

the pristine and 10 mm damage specimens and so on. 

Table 1.1  RMSD, MAPD, and CC values for the three frequency ranges 

 

 
10 - 40 kHz 10 - 150 kHz 300 - 450 kHz 

0-1 0-2 0-3 0-4 0-1 0-2 0-3 0-4 0-1 0-2 0-3 0-4 

RMSD 0.50 0.17 0.47 0.28 0.68 0.34 0.82 0.44 0.92 0.79 1.15 0.87 

MAPD 0.35 0.10 0.38 0.13 0.64 0.36 1.21 0.40 0.92 1.43 1.37 1.34 

CC 0.72 0.96 0.75 0.90 0.71 0.91 0.61 0.85 0.22 0.26 -0.02 0.40 

Analyzing these values shows no clear correlation for any of the methods. When 

looking for a correlation between the statistical values and the distance to the damage, the 

values have no clear fit. The values fluctuate with no recognizable pattern. In attempt to 

find a better correlation, the same methods were used on a smaller frequency range. A 

lower frequency range of 22-27 kHz and a higher frequency range of 58-68 kHz were used 

(see Figure 1.6). The plots at these smaller ranges display a visual correlation. In each range 
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the 10 mm specimen exhibits splitting of the resonances, the 32 mm specimen has multiple 

peaks, and the 17 mm and 47 mm are shifted to the right of the pristine peak. Although this 

is a clear visual trend, it is hard to quantify and does not lend itself to interpolation between 

the damages. The statistical values are provided in Table 1.2 and show the same lack of 

correlation as before. This method proves to be difficult and lacks solid correlations with 

resonance frequencies and damage location. 

 
 

Figure 1.6 Plots of the real impedance at ranges of (a) 22-27 kHz, and 

(b) 58-68 kHz. 
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Table 1.2 RMSD, MAPD, and CC values for the smaller frequency ranges 

 

 

 

22 - 27 kHz 58 - 68 kHz 

0-1 0-2 0-3 0-4 0-1 0-2 0-3 0-4 

RMSD 1.21 0.25 0.65 0.49 1.06 0.52 1.50 0.85 

MAPD 0.67 0.14 0.49 0.23 0.73 0.18 1.92 0.37 

CC -0.10 0.87 0.25 0.26 0.19 0.86 -0.14 0.10 

1.5.5 Results for PWAS bonding quality experiment 

 The analysis for bonding quality consisted of comparing the slopes for each 

bonding condition to a fully bonded specimen and a free specimen. Before analyzing, the 

difference between the admittance of a free PWAS and bonded PWAS must be understood. 

Through prior research it is known that the bonding condition affects the imaginary part of 

the admittance, therefore this method was used [6]. Figure 1.7 shows the relationship by 

plotting the imaginary part of admittance versus frequency. 

From the graph it’s clear that the bonding of a PWAS onto a structure causes a 

significant decrease in slope, with a difference of 66% for a fully bonded specimen. The 

slope then increases as the PWAS de-bonds due to the PWAS behaving more like a ‘free’ 

PWAS. To analyze the change the admittance was plotted at a large range to find the most 

consistent data. The range of consistent data was chosen to be 10-20 kHz, and a linear fit 

was used to find the slope. This process is represented in Figure 1.8. 
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Figure 1.7 Comparison between free and bonded PWAS. 

 

 
 

Figure 1.8 Representation of the method used to find a best fit line. 

Using this process, the slope for each bonding condition was found. The slopes are 

plotted in Figure 1.9 and a clear linear trend between the slope and bonding condition is 

seen. As the debonding progresses, the slope of the imaginary admittance increases. From 

the figure, it is seen the points do not lie perfectly on the line. This is attributed to the 
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difficulty of defining an exact bonding condition through the application of the adhesive. 

The linear fit can also be observed through comparing the bonded specimen slopes and the 

‘free’ specimen slope (see Table 1.3). Similarly, the table shows the slope progressing 

toward the slope of the ‘free’ PWAS as the bonding level decreases. The method of 

comparing the imaginary admittances provides many similar ways of determining the 

linear fit, but these two are quick and easiest to observe. 

 
 

Figure 1.9 Plot of the slopes of the best fit line for each specimen. 

Table 1.3  Percent difference of bonding condition slopes and free PWAS slopes 

 

Bonding Condition % Difference with Respect to Free PWAS 

Fully Bonded 66% 

75% Bonded 65% 

50% Bonded 64% 

25% Bonded 63% 

1.6 SUMMARY AND CONCLUSIONS 

 The first experiment (damage detection) explored the difficulties in reading the real 

part of the impedance. There was a trend in visual resonance peaks for a specific damage 
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location specimen, but it was hard to determine why that trend occurred when comparing 

it to other damage location responses. This concludes that the real part of the impedance 

does change with structure damage locations, but further work and evaluation must be done 

to determine the trend. The second experiment (bond quality) gave a better trend that allows 

us to get more information on the bonding of the PWAS. The imaginary part of the 

admittance provides the quality of the bonding of the PWAS to its host structure. 

Comparing a perfectly bonded PWAS to a ‘free’ PWAS, the slope of the fully bonded 

PWAS is 66% of the free PWAS. As the PWAS becomes unbonded, the slope slowly 

increases. In future work, it might be helpful to compare these results to results with a 

controlled environmental effect. PWAS may be used for aerospace purposes, which means 

temperature, humidity and pressure will change and could affect the reading of the 

electrical response.
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CHAPTER 2  

 LOW CYCLE FATIGUE CRACK EXPERIMENT TO CAPTURE AE 

SIGNALS 

2.1 INTRODUCTION 

Aerospace structures, including aircrafts and ships, are mainly constructed with an 

aluminum body. Due to the mechanical and environmental properties, these aerospace 

structures experience consistent vibration. The vibrations can cause microscopic cracks in 

high stress areas in the structure and have been known to lead to catastrophic failure. The 

aerospace structure can be evaluated between flights, but that takes a lot of time and money. 

The goal is to develop a way to evaluate the health of the material at equal time intervals 

whether the structure is in flight or not. This method of evaluation is called structural health 

monitoring. 

Structural health monitoring (SHM) and non-destructive evaluation (NDE) are 

damage detection strategies that allow one to determine the health of a material and to 

predict its lifespan [10], [11]. Together, SHM and NDE have been proven to be effective 

in detecting fatigue cracks in a structure. Specifically, the study of acoustic emission (AE) 

is a well-established and reliable method used in SHM and NDE to detect damage. AE has 

a wide range of applications including being used to detect the loosened/tightened state of 

a bolted structure [12] or to detect delamination or impact localization in composite plates 

[13], [14]. There is also a vast practice of using AE to detect fatigue cracks. Acoustic 
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emission is used to detect fatigue cracks in materials including T-section girders and 

welded steel for bridges [15], transverse weld toe for bridges [16], and wind turbine blades 

[17]. AE is also used to evaluate fatigue cracks in thin aerospace structures including 

aircrafts [18]. Applying fatigue loading to an aircraft material (aluminum 2024) to study 

signatures in acoustic emission waveforms due to a fatigue crack was also studied [1], [19].  

Once a set of AE data is collected, the data must be processed and analyzed to 

interpret its significance. There are many methods that are used to analyze data, which 

include signal enhancement, signal separation, source location, source characterization, 

etc. [20]. Many researchers use the fast Fourier transform (FFT) to analyze signals based 

on their frequency spectrum [21]. Joseph et al. [22] used the Pearson Correlation 

Coefficient (PCC) to study how similar two waveforms can be to one another based on 

their time and frequency domains. Many researchers have used Lamb wave propagation as 

well as signal time of arrival for source localization [23], [24].  

There are some common problems in the study of acoustic emission signals. An AE 

signal can be produced not only from the damage in question but also from outside sources, 

including environmental noise. The AE from outside sources is a contributor to the large 

amount of data typically collected during AE testing [2], [3]. Another issue when sensing 

AE is based on the sensitivity the sensor has due to bonding quality/technique and wire 

soldering of the sensor. The mitigation of these issues is described later in the chapter. 

Section 2.2 describes the state of the art procedure and results of an LCF experiment 

performed by Bhuiyan [19]. The rest of the chapter describes the procedure and results of 

an LCF experiment performed and compares the results to the results from section 2.2. 
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2.2 STATE OF THE ART FEATURE EXTRACTION FOR ALUMINUM 2024 

 An important factor in research is the repeatability of an experiment. Waveforms 

due to acoustic emission signals can look different based on many factors. Some of those 

factors include the types of sensors being used or the size and shape and material of the 

specimen or the acoustic emission source including damage, environmental factors, etc. 

With many different possibilities of waveform signatures, it is important to determine a 

level of confidence in the types/source of signatures observed for a type of damage. It is 

also important to understand how various parameters can affect these waveforms such as 

the frequency of loading in a fatigue crack. When there is fatigue on a specimen with a 

crack in it, the crack will open and close and the idea is to be able to determine whether the 

crack is open, closed or somewhere in the middle. 

An overview of the hit signature and waveform signature analysis done for a 

cyclically loaded specimen with a crack from reference [19] is explained in this section. 

Various features are examined in this chapter, including the appearance of the time domain 

waveform, frequency peaks and the load at which the waveform occurs.  

2.2.1 Experimental set-up and procedure for fatigue loading 

 The specimen used is a 304 mm length, 100 mm width and 1 mm thick aircraft 

grade aluminum Al-2024 T3. The specimen was placed in an MTS machine which axially 

and cyclically loaded the specimen between 2.3 kN and 23 kN with a frequency of 4 Hz. 

These loads are 6.5% and 65% of the tensile yield strength (345 MPa) of the material. After 

initiating the crack and growing it to 20 mm, the specimen was removed from the MTS 

machine and the proper AE sensing instrumentation was employed. The AE sensing 

instrumentation included a PWAS sensor that was glued to the specimen 5 mm from the 
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crack using M-Bond 200. To reduce the amount of reflective AE waves, a non-reflective 

boundary (NRB) made of clay was applied to the specimen. In addition, a strain gage was 

attached to the specimen to simultaneously capture the load to help analyze and group the 

hits. A schematic of the specimen with all the proper instrumentation attached is seen in 

Figure 2.1. Once the proper instrumentation was installed, the specimen was placed back 

in the MTS machine. This time, to monitor the crack growth, the load and frequency of the 

axial loading was reduced. The load was varied sinusoidally between 1.23 kN and 12.3 kN 

at a frequency of 0.05 Hz, which is a low cycle fatigue (LCF) experiment. With the help 

of a bandpass filter (filters out signals between 30 kHz to 700 kHz) and MISTRAS AE 

instrumentation, AE hits were captured. 

 
 

Figure 2.1  Diagram of fatigue specimen with a 

PWAS 5 mm from the crack. [19] 
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2.2.2 Experimental results 

Based on the information provided by the MISTRAS AE instrumentation, the 

captured time and frequency domain of all the waveforms can be plotted with the sinusoidal 

loading. Once all the hits were placed on a loading graph, the hits were assigned to eight 

different groups (A-H) based on the major frequency peaks and at the load the hit occurred. 

Based on these factors, the grouped hits can be hypothesized to originate from either crack 

growth or crack rubbing and clapping. A hit plot of 50 cycles and the load pattern is found 

in Figure 2.2. In the figure, the hits are color coded based on their respective groups. 

 
 

Figure 2.2  AE hits captured by the PWAS with simultaneous load readings. [19] 

 The hits during these 50 cycles were grouped into eight different groups based on 

the time and frequency domain of the waveform. Group A included waveforms that had 

the same time and frequency domain and occurred almost consistently at 72 dB. Group A 

hits happened at approximately 84% of the maximum fatigue load. To understand the 

percentage of the maximum load at which the hit occurred can be described by Figure 2.3. 

Its major frequency content occurs at ~40 kHz, ~100 kHz, and ~350 kHz. Group B 
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waveforms all occurred at a higher amplitude of 96 dB and occurred at 78% of the 

maximum load. Its major frequency content occurs at ~60 kHz, ~100 kHz, and ~230 kHz 

and then a drop at ~450 kHz. The hit plot as well as waveforms for group A and B can be 

found in Figure 2.4. 

 
 

Figure 2.3 Description of load level at which group A and group B occurred at. [19] 

 
 

Figure 2.4  (a) Time and frequency domain of a typical group A waveform, (b) time 

and frequency domain of a typical group B waveform. [19] 
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Group C did not consistently occur at the same amplitude and averaged at ~81% of 

the fatigue loading. Group C had high frequency content at ~30 kHz and ~100 kHz and a 

typical group C waveform can be seen in Figure 2.5. Group D was a relatively small group 

that occurred at 78% of the maximum load and were present only in the first 300 s of cyclic 

loading. Group D had high frequency content at low frequencies and then again at ~230 

kHz, ~450 kHz and ~550 kHz. Group D hit plot and typical waveform can be seen in Figure 

2.6.  

 
 

Figure 2.5      Time and frequency domain for group C. [19] 

 Group E hits happened as a cluster with about two or three hits for every loading 

cycle. The first hit in the cycle always had the highest amplitude compared to the second 

and third hits. These hits varied between 51% and 58% of the maximum load and appeared 

after ~250 s into the cyclic loading. A typical waveform for group E is shown in Figure 

2.7. In the Figure 2.7, you can see that the dominant frequency peaks occur at ~30 kHz, 60 

kHz and 200 kHz. 
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Figure 2.6  (a) Actual group D waveform, (b) denoised 

group D waveform, (c) frequency domain for 

group D. [19] 

 Group F hits occurred at about 57% of the maximum load and occurred in every 

cycle and happened at similar times as group E hits. Group F hits had a similar frequency 

spectrum as group E, but group F had an additional frequency peak at 450 kHz. A typical 

Group F waveform can be seen in Figure 2.8. Group G hits occurred between 78% and 

81% of the maximum load and the hits occurred sporadically throughout the 50 cycles. 

Group G frequency spectrum is very similar to Group C except it doesn’t have some of the 

low frequency peaks including 40 kHz. A typical Group G waveform can be seen in Figure 

2.9. 
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Figure 2.7  Time and frequency domain for group E. [19] 

 
 

Figure 2.8  Time and frequency domain for group F. [19] 

Group H was grouped because it only reached about 23% of the maximum load. 

These hits occurred the least in the 50 cycles and had major frequency peaks at ~40 kHz, 

~70 kHz, ~100 kHz, and ~200 kHz. A typical Group H waveform can be found in Figure 

2.10. 
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Figure 2.9  Time and frequency domain for group G. [19] 

 
 

Figure 2.10  Time and frequency domain for group H. [19] 

2.3 EXPERIMENTAL SET-UP 

 An Aluminum 2024-T3 specimen that is 304 mm long, 101 mm wide and 1 mm 

thick is used to simulate an aluminum plate that would be used in an aircraft. A 1 mm hole 
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is drilled into the center of the specimen to ensure the crack will grow in the center. Prior 

to placing the specimen in the cyclic loading MTS machine, the machine was zeroed. The 

specimen was then placed into the MTS machine with 2 inches of the specimen being 

gripped on either side. The MTS machine being used has two different load cells. One load 

cell is 50,000 lbf and the other is 5,000 lbf. Since the testing load does not exceed 4,945 

lbf, the 5,000 lbf load cell was chosen for more accuracy. A sinusoidal load of 2.2 kN to 

22 kN (R= σmin/σmax =0.1) was applied to the specimen to grow the crack to ~21 mm. These 

values were chosen because they are 6.5% and 65% of the tensile yield strength of the 

specimen which are the load levels typically used in practical aircraft testing. The fatigue 

crack was initiated after about 35,000 cycles and it took 4,571 cycles to grow the crack to 

~21 mm. The growth of the crack was tracked with the use of ruler tape applied directly on 

the specimen. 

 After the crack was grown to 20 mm, the specimen was removed from the MTS 

machine. A non-reflective boundary (NRB) made of clay was applied to the specimen to 

eliminate the reflective AE waves that may occur. The sensors used to detect the acoustic 

emissions are two piezoelectric wafer active sensors (PWAS) and two S9225 sensors. On 

side 1 of the specimen, the two PWAS were bonded to the specimen using M-Bond AE-15 

at 5 mm and 25 mm away from the crack. The two S9225 sensors were bonded on the other 

side of the crack mirroring the first two sensors. The S9225 sensors were bonded to the 

specimen using hot glue from a hot glue gun. On side 2 of the specimen, a strain gage was 

bonded to the specimen using M-Bond AE-15 at 35 mm from the crack. The layout of the 

specimen can be seen in Figure 2.11.  
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 Once all the clay boundaries and sensors were applied to the specimen, the MTS 

machine was zeroed, the load cell was chosen to be 5,000 lbf, and the specimen was placed 

back into the MTS machine and some baseline procedures were conducted. When the 

specimen is first placed into the machine, the machine fluctuates between compression and 

tension. The load was set to 100 lbf to reduce fluctuation and have consistency for pre-

testing measurements. The pre-testing measurements include setting a threshold, pencil 

lead break (PLB), impedance test, eddy current measurement, and pictures of the crack and 

crack tips. The threshold of the AEwin software was set right above the environmental 

noise level and then raised 2 dB to ensure the environmental noise won’t be detected during 

testing. A pencil lead break (PLB) was done to ensure all sensors were working properly 

based on time of arrival and amplitude of the hits. Generally, the PWAS recorded a higher 

amplitude than the S9225 sensors. PWAS recorded a higher amplitude than S9225 sensors 

because PWAS are sensitive to both in-plane and out-of-plane motion whereas S2995 

sensors are only sensitive to out of plane motion. An eddy current measurement was taken 

to determine the length of the crack prior to any testing. An impedance test was also 

conducted using an Impedance Analyzer and Bode Analyzer Suite software to get a 

baseline of the bonding of the two PWAS. Lastly, a camera was used to take a picture of 

the crack and crack tips prior to any testing. A picture of the experimental set up can be 

seen in Figure 2.12 and a picture of the specimen can be seen in Figure 2.13. After all these 

baseline measurements were conducted, the fatigue experiment can be conducted. 
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Figure 2.11 Side 1 and side 2 of specimen with applied NRB and sensors.  

 
 

Figure 2.12 Experimental set-up of all devices used to help monitor and conduct the LCF 

experiment. 
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Figure 2.13 Picture of specimen loaded in the MTS machine prior to testing. 

2.4 EXPERIMENTAL PROCEDURE FOR LCF CRACK GROWTH 

 A lower sinusoidal load of 1.23 kN to 12.3 kN was applied at a low frequency to 

control the growth of the crack. The frequencies ranged from 0.05 Hz to 2 Hz. The crack 

was monitored using AEwin which provided a time and frequency domain for all the AE 

events. The strain gage gave a sinusoidal strain reading which was later converted into a 

normalized load which allowed for the recording of the load at which the AE event 

occurred. Although the load could be measured directly from the load cell, we decided that 

we wanted synchronized loading values with the hits that occurred on AEwin. The camera 

was used to video the crack throughout the low cycle fatigue (LCF) crack growth. 

Periodically, the loading on the specimen was stopped at maximum load and an Eddy 

Current, Impedance measurement, and picture of the crack was conducted to monitor the 
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length of the crack and to ensure the bonding of the PWAS had not changed. This 

methodology is detailed out in Figure 2.14.  

 
 

Figure 2.14 Detailed methodology of machinery and instrumentation used in LCF 

experiment. 

2.5 EXPERIMENTAL RESULTS 

 The crack was grown from ~21 to ~23 mm in 5,320 cycles and eddy current 

measurements were taken periodically throughout the experiment. A table of crack 

initiation data and a table showing data from crack growth cycles can be seen in Figure 

2.15. An example of eddy current measurements taken at ~21 mm, ~22.5 mm and ~23 mm 

can be seen in Figure 2.16. Through visualization of the crack length with the use of ruler 

tape, it was observed that the red area in Figure 2.16 representes the visual crack length 

while the yellow and green indicated internal fracture that cannot be seen with the human 

eye. The jagged lines along the length of the crack prove that the crack faces are not 
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perfectly smooth. The results in this section include the waveforms and discussion from 60 

cycles at 0.5 Hz, 0.25 Hz, 0.1 Hz and 0.07 Hz. Results from various frequency loadings 

are introduced as a way to determine if frequency of loading can change the signature of 

an AE signal. Based on obervation of the crack through a camera and an eddy current, the 

crack did not grow during any of the cycles being reviewed in this section; all AE hits are 

from crack rubbing and clapping. For each set of 60 cycles, the normalized hit amplitudes 

from all four sensors as well as the normalized sinusoidal load recorded from the strain 

gage were plotted onto one graph. A further analysis of the waveforms for 10 of the 60 

cycles was conducted. The waveforms were then subjectively separated into two different 

groups based on frequency peaks.  

 
 

Figure 2.15 Crack initiation and crack growth data tables 
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Figure 2.16 Eddy current measurements at (a) ~21 mm, (b) ~22.5 mm, and (c) ~23 mm. 

2.5.3 Waveform groups for 60 cycles at 0.5 Hz 

 With the test specimen in the MTS machine, it was loaded to 12.3 kN (2765 lbf) 

with R=0.1 and a frequency of 0.5 Hz. The specimen was sinusoidally loaded for 60 cycles 

and data was collected from PWAS 1, PWAS 2, S9225 1, and S9225 2. As AE data was 

being collected, the strain gage measured the strain simultaneously which was then 

converted and normalized to force in lbf. A plot of the sensor hits and loading for 60 cycles 

at 0.5 Hz can be seen in Figure 2.17. In the figure, you can see that the sensors did not 

detect any AE signals at some loading cycles. After reviewing the results of the signals, 

there were two AE signal signatures observed at three different loads and amplitudes. 

Based on subjective signal types, the signals were clustered into two different groups. A 

plot of just 10 of the 60 total cycles, which show both groups (as seen in yellow), can be 

seen in Figure 2.18. All signals were captured during the loading of the specimen and none 
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during unloading. This indicates that uneven surfaces on opposite faces of the crack only 

came in contact during loading. Typically, the signals were captured at about 87% of the 

load which is 10.701 kN (2405.55 lbf). There were some hits that were recorded at about 

42% of the maximum load which is 5.166 kN (1161.3 lbf). It is important to note that 

sensor S9225 2 does not function properly and records slightly lower recorded amplitudes. 

 
 

Figure 2.17 Sensor hits and loading for 60 cycles with loading frequency of 0.5 Hz. 

 Typical group 1 AE waveforms had high amplitudes and were captured by all four 

sensors and can be seen in Figure 2.19. These signals typically occurred at about 87% of 

the maximum load and had maximum low frequency content and additional peaks at ~150 

Hz, ~275 Hz, and ~375 Hz. Occasionally, there were low amplitude group 1 signals that 

occurred at 87% of the maximum load as seen by the corresponding hits at 81.34 s and the 

signals were only captured by near field sensors. On other occasions, group 1 signals had 

low amplitudes and occurred at only 42% of the maximum load. No matter the load or 

amplitude, group 1 signal signatures were similar. Group 2 signals can be seen in Figure 

2.20. These signals also occurred at 87% of the maximum load and had a lower amplitude 
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than group 1 hits. Group 2 frequency domain waveforms consisted of only low frequency 

content and a small frequency peak at ~150 Hz. 

 
 

Figure 2.18 Sensor hits and loading for 10 cycles with loading frequency of 0.5 Hz 

assigned to groups 1 or 2. 

2.5.4 Waveform groups for 60 cycles at 0.25 Hz 

 The results in this sub-section are for a sinusoidally loaded specimen with a loading 

frequency of 0.25 Hz. The maximum load applied was 12.3 kN (2765 lbf), R=0.1 for 60 

cycles. A plot of the load and AE signals from all four sensors can be seen in Figure 2.21. 

After reviewing the results, a section of 10 cycles was focused on where two AE signal 

signatures appeared. This plot along with the group numbers (as seen in red) can be seen 

in Figure 2.22. All signals were captured during the loading of the specimen and none 

during unloading. The signal signatures are similar to the signatures of group 1 and 2 with 

a loading frequency of 0.5 Hz (section 2.5.3) except they appeared at different loads and 

amplitudes. The two loads discovered were at 89% of the maximum load which was 10.947 

kN (2460.85 lbf) and at 77% of the maximum load which is at 9.471 kN (2129.05 lbf). 

Group 1 only appeared at 89% of the maximum load while group 2 appeared at both loads.  
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Figure 2.19   Group 1 waveform for (a) near field PWAS 1, (b) near field 

S9225 1, (c) far field PWAS 2, and (d) far field S9225 2 

with loading frequency of 0.5 Hz. 

 
 

Figure 2.20 Group 2 waveform for (a) near field PWAS 1, (b) near field 

S9225 1, and (c) far field PWAS 2 with loading frequency 

of 0.5 Hz. 



36 

 
 

Figure 2.21 Sensor hits and loading for 60 cycles with loading frequency of 0.25 Hz. 

 
 

Figure 2.22 Sensor hits and loading for 10 cycles with loading frequency of 0.25 Hz 

assigned to groups 1 or 2. 

 A typical group 1 waveform from all four sensors can be seen in Figure 2.23. Here, 

there are consistently high amplitudes and had frequency peaks at ~150 Hz, ~275 Hz, and 

~375 Hz. Group 2 waveforms have only low frequency content and have lower amplitudes. 

The group 2 corresponding sensor signal waveforms for the hit at 212.34 s can be seen in 

Figure 2.24.  
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Figure 2.23 Group 1 waveforms for (a) near field PWAS 1, (b) near field S9225 1, (c) far 

field PWAS 2, and (d) far field S9225 2 with loading frequency of 0.25 Hz. 

 
 

Figure 2.24 Group 2 waveforms for (a) near field PWAS 1, and (b) near field S9225 1 

with loading frequency of 0.25 Hz.  
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2.5.5 Waveform groups for 60 cycles at 0.1 Hz 

 The specimen was sinusoidally loaded to a maximum load of 12.3 kN, R=0.1 for 

60 cycles at a loading frequency of 0.1 Hz. Many hits appeared during these 60 cycles as 

seen in Figure 2.25. This figure also shows the normalized cyclic loading that was recorded 

from the strain gage. A select set of 10 cycles was chosen to visualize the results of the 

load at which the hits occurred. This plot along with the group numbers (as seen in blue), 

can be seen in Figure 2.26. All signals were captured during the loading of the specimen 

and none during unloading. Here, only one signal signature appeared during these 60 cycles 

that appeared to be a group 1 waveform. The hits appeared at different amplitudes and 

loads. The first load was at 90% of the maximum load, which corresponds to 11.07 kN 

(2488.5 lbf), and the second load occurred at 52% of the maximum load, which corresponds 

to 5.396 kN (1437.8 lbf). The group 1 waveform that appeared at 488.68 s can be seen in 

Figure 2.27. As you can see, this group 1 waveform is like the signal signatures of group 1 

from the previous sections because of the low frequency content as well as having peaks 

at ~150 Hz, ~275 Hz, and ~375 Hz.  

 
 

Figure 2.25 Sensor hits and loading for 60 cycles with loading frequency of 0.1 Hz. 
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Figure 2.26 Sensor hits and loading for 10 cycles with loading frequency of 0.1 Hz 

assigned to group 1. 

 
 

Figure 2.27 Group 1 waveforms for (a) near field PWAS 1, (b) near field S9225 1, (c) far 

field PWAS 2, and (d) far field S9225 2 with loading frequency of 0.1 Hz. 
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2.5.6 Waveform groups for 60 cycles at 0.07 Hz 

 During the 60 cycles at 0.07 Hz, a total of 273 hits occurred from all four sensors 

during a 60 cycle sinusoidal loading (65 hits from PWAS 1, 56 hits from PWAS 2, 94 hits 

from S9225 1 and 58 hits from S9225 2). All the hit amplitudes from the 60 cycles were 

normalized and plotted on one graph along with the normalized sinusoidal load (recoded 

from the strain gage) and can be seen in Figure 2.28. The hits from a select 10 cycles were 

chosen to analyze. These 10 cycles had hits that varied the most in amplitude and percent 

of the maximum load in which the hit occurred. The 10 cycles with grouped waveforms 

(seen in green) can be seen in Figure 2.29. All signals were captured during the loading of 

the specimen and none during unloading. 

 
 

Figure 2.28 Normalized hit and normalized load for 60 cycles for AE hits from all sensors 

with loading frequency of 0.07 Hz. 

 As seen in Figure 2.29, there are two different groups. Group 1 occurred most often 

and tended to have a higher amplitude and occurs at ~92% of the maximum load which is 

11.316 kN (2543.8 lbf). Typically, in group 1, all four sensors captured an AE event. A 

typical group 1 waveform occurring at 363.81 s can be seen in Figure 2.30. The group 1 
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frequency domain has a majority of low frequency content but also has frequency peaks at 

~150 Hz, ~275 Hz, and ~375 Hz. On some occasions, the group 1 signals had low 

amplitudes and occurred at 57% of the maximum load which is 7.011 kN (1576.05 lbf) but 

still had the typical group 1 waveform. An example of this low amplitude group 1 hit cluster 

occurs at 404.69 s. Group 2 waveforms occurred at ~92% of the maximum load which is 

11.316 kN (2543.8 lbf). Group 2 signals have low amplitudes and only occur in the near 

field sensors. They have only low frequency content which can be seen in Figure 2.31. 

 
 

Figure 2.29 10 cycles with waveforms assigned to either group 1 or 2 with loading 

frequency of 0.07 Hz. 

2.6 SUMMARY AND CONCLUSIONS 

 Acoustic emission signal detection is a very precise process. The signal signatures 

can change as a result of even the smallest change in any parameter. Because of this, AE 

signals resulting from the data collection process were studied. The results show that the 

change in loading frequency does not change the signal signature (group 1 and group 2 
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remain the same for all evaluated loading frequencies). It is important to mention that the 

percent of the maximum load the hits occur at increase as the loading frequency decreases. 

 Due to parameter changes, it is important to collect as much data as possible to 

monitor the signals. This leads us to improve the method of data collection. This method 

includes cameras to video tape and capture images of the crack, eddy current measurements 

to measure the crack length, and analyzing the impedance of the PWAS to ensure 

debonding does not occur.   

 It is also important to mention that out of all the data collected, AE signals were 

only captured during the loading of the specimen and not during the unloading. This proves 

that differentiating between crack growth signals and crack rubbing and clapping signals 

will be more difficult since crack growth signals will likely appear during loading of the 

specimen as well.  

 The repeatability of the experiment is important to note as well. It appears that the 

signals in Group A and Group G reviewed from Y. Bhuiyan [19] in section 2.2.2 were 

similar to AE signals in Group 1 and Group 2 (section 2.5), respectively. This proves that 

AE signals can be repeated in the case of two different LCF specimen 
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Figure 2.30 Group 1 waveform for (a) near field PWAS 1, (b) near field S9225 1, (c) far 

field PWAS 2, and (d) far field S9225 2 with loading frequency of 0.07 Hz. 

 
 

Figure 2.31 Group 2 waveform for (a) near field PWAS 1, and (b) near field S9225 1 with 

loading frequency of 0.07 Hz.
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CHAPTER 3  

INTRODUCTION TO ARTIFICIAL INTELLIGENCE TECHNIQUES 

As previously mentioned, the goal of this research is to be able to non-destructively 

evaluate aerospace structures. In order to reach that goal, artificial intelligence (AI) needs 

to be implemented to understand the physical meaning behind the signal processing results 

and then classify future data without the help of human intelligence. Two major types of 

AI are machine learning and deep learning. 

Machine learning starts with determining signal signatures or extracting features 

from a data set. Feature extraction can be performed subjectively or objectively. Once a 

method of feature extraction has been completed, unsupervised machine learning 

algorithms can be used to cluster the data. Once the data has been clustered, classification 

models can be trained for a computer to classify future data. 

Deep learning is more complicated and requires more data for classification in 

comparison to machine learning. The major concept of deep learning is neural networks. 

A neural network imitates the process of neurons firing in the human brain. There are many 

different types of neural networks including artificial neural networks, LSTM networks, 

and convolutional neural networks.  

3.1 ARTIFICIAL INTELLIGENCE STATE OF THE ART 

 Artificial intelligence (AI) is defined as the theory and development of computer 

systems able to perform tasks that normally require human intelligence, such as visual 
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perception, speech recognition, decision-making, and translation between languages [25]. 

AI is an extremely smart human aid that has the capability to learn from experience and 

adjust itself to new inputs to improve performance. AI is an extremely prevalent topic used 

in many aspects of our everyday lives such as music recommendations, mobile banking 

fraud detection, google search suggestions, etc. Artificial intelligence has two major 

branches. The first branch is machine learning and the second branch is deep learning. 

Machine learning is based on extracting features that help place an input into a certain 

category. In feature extraction, principal component analysis (PCA) is an extremely 

important concept that reduces the dimensionality of the extracted features. Those features 

are then learned through machine learning models such as support vector machine (SVM), 

k-nearest neighbor, discriminant analysis (DA), etc. Smarsly et. al [26] defines AI as a term 

that describes the ability of a computational entity to perform activities in a fashion that 

usually characterizes human thought which is how deep learning is performed. Deep 

learning takes the entire input and categorizes it in a way like neurons in the human brain. 

A popular deep learning process is called artificial neural networks (ANN).  

 Artificial intelligence has also made many appearances in the engineering industry. 

The engineering industry uses AI for applications like sophistication of automobiles, using 

image processes to identify structural abnormalities, damage detection in structural health 

monitoring (SHM), etc. SHM is a research subject that could greatly improve with the help 

of artificial intelligence. In the aerospace field, SHM could help reduce turn-around time 

for aircrafts, reduce labor costs for maintenance, detect damages, and predict the life of the 

aircraft structure. Manson and Worden [27] used kernel density function (KDF) and 
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artificial neural networks (ANN) to study the effect of panel removal on the transmissibility 

of a Gnat aircraft trainer starboard wing. 

 Many researchers have used AI techniques in SHM for monitoring acoustic 

emission (AE) vibration signals. Elforjani and Shanbr [28] extracted features from AE 

signals and used machine learning techniques such as ANN, Gaussian process (GP) and 

SVM to determine the remaining useful life (RUL) of ball bearings. Ahn et. al [29] used 

PCA and SVM for acoustic emission pipeline leak-early detection. Nasir et. al [30] used 

feature extraction and AI to monitor the AE circular sawing process of Douglas fir wood 

under extreme cutting conditions. Jahanbakhshi et. al [31] studied noise pollution from AE 

due to a John Deere combine harvester using ANN. Manson et. al [32] used artificial neural 

networks to detect damage on an aircraft wing through transmissibility. 

3.2 MACHINE LEARNING CLUSTERING TECHNIQUES 

 As previously seen in Chapter 2, AE waveforms can confidently be separated 

between noise signals and signals originating from the damage. Once the signals 

originating from the damage can be extracted, their waveforms are subjectively grouped 

and hypothesized whether the group of signals originate from crack growth or crack 

rubbing and clapping. These signals must now be objectively grouped or clustered to gain 

pattern recognition. This method of grouping clusters to then determine their meaning is 

called unsupervised learning and is the most appropriate method for clustering of fatigue 

crack damage. Some unsupervised methods that are widely used for feature extraction in 

damage detection is the hierarchical tree, principal component analysis (PCA), and k-

means clustering.  
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3.2.1 Hierarchical clustering analysis to determine highest variance features 

 Hierarchical clustering analysis is vastly present in the biomedical field for signal 

processing such as cancer classification, breast carcinoma identification, blood plasma 

lipidomic identification, etc., but it has expanded to damage detection in SHM [33]. The 

simplified hierarchical clustering procedure is as follows; the data points are evaluated 

based on the feature distance then the points are grouped into a binary hierarchical linkage 

and finally, the hierarchical tree is cut into clusters. Each of these steps are detailed below.  

 The feature distance evaluation between each pair of points where each point 

represents a hit or measurement is expressed in equation (7).  

 𝑌𝑟,𝑠 = 𝐷𝑖𝑠(𝐹𝑟 , 𝐹𝑠) (7) 

where r and s signify two different measurements, F is the ending point of the feature 

vector in a high-dimensional space, Y is the distance between the two features of r and s 

and Dis is the possible calculation of distance. This distance calculation can be done in 

many ways including Euclidean distance, Chebyshev distance, Minkowski distance, etc.  

The binary hierarchical tree is expressed in the equation below.  

 𝐶 = 𝐿(𝑌𝑟1,𝑠1
, 𝑌𝑟2,𝑠2

)  (8) 

where C is the derived clusters and L is the linkage calculation. One linkage will be the 

shortest feature distance between points. Finally, the hierarchical tree is cut into clusters. 

For this process, the relative distance between clusters is normalized. The measurements 

with the highest relative distance will include all the measurements. As the relative distance 

decreases, the dissimilarity between measurements also decreases. For example, a clustered 

hierarchical tree is shown for 16 observations in Figure 3.1.  
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Figure 3.1  Hierarchical tree split into clusters based on relative distance. 

 In this figure, cluster 3 (written in red) describes all the measurements due to 

damage and all the measurements below it in the tree are due to damage. Clusters can be 

represented by D1 and D2. Cluster 2 is a sub-cluster of cluster 3, and cluster 1 is a sub-

cluster of cluster 2. As the relative distance of cluster D decreases, the more similar the 

measurements are within that cluster. This hierarchical tree allows one to understand the 

correlation between all the 16 observations. 

3.2.2 The k-means algorithm approach to pattern recognition 

 The k-means algorithm approach is an unsupervised learning method that finds 

optimal solutions to the data set with respect to the nearest mean value [34]. The k is the 

specified number of clusters desired. The k-means algorithm works by finding the centers 

of each k group through an iterative process starting with k random data points and the 

average between them. The random data point or feature vector is assigned to a cluster 

based on its distance from the mean vector. The iterations start with finding the feature 
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vector that is closest to the mean vector and then iterates to the next closest vector and 

repeats until all the data points have been assigned to a cluster [35].  

3.2.3 Principal component analysis 

 Principal component analysis (PCA) is based on projecting data by means of a 

linear transformation to get a new data set on a new Cartesian coordinate system. The axes 

of this new cartesian coordinate system are based on the largest variance of the data set and 

are called the principal component scores [36]. The new linear combination of the data 

with the least variance is eliminated. It is important to normalize the data. If the data is not 

normalized, it will create importance of one feature over another. Unless there is a specific 

parameter such as rise time, peak amplitude, etc. that is desired to receive more importance 

over another, it is recommended to normalize the data [37]. Obtaining the new set of 

Cartesian coordinates can follow the equations below where {x} and {z} denote vectors in 

the measured and reduced space, respectively. The covariance matrix, [Σ], can be found 

from the equation below. 

 [𝛴] = ∑ ({𝑥}𝑖 − {�̅�})({𝑥}𝑖 − {�̅�})𝑇𝑁
𝑖=1   (9) 

where {x}i = (x1i, x2i, …, xpi) and i = (1, …, N), {�̅�} is the vector of all the means of the x-

data and N is the number of hits recorded. The covariance matrix can be decomposed to 

be,  

 [𝛴] = [𝐴][𝛬][𝐴]𝑇  (10) 

where [𝛬] is diagonal and [𝐴] is the transformation matrix. The transformation to principle 

components is then expressed as,  

 {𝑧}𝑖 = [𝐴]𝑇({𝑥}𝑖 − {�̅�}) (11) 
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 After completion of the equations, {𝑧}1, the highest variance component can be 

plotted against {𝑧}2 which is the second highest variance component. Each hit will be 

placed on the graph based on their variance component values or their component scores. 

An example of PCA can be seen in the figure below.  

 
 

Figure 3.2  (a) Linear principal components viewed on the original axis and (b) the 

principal components shown as the new coordinate system. [38] 

3.3 MACHINE LEARNING CLASSIFICATION MODELS 

 The idea of machine learning (ML) is that one can learn relationships from a series 

of data and the data can be classified using either supervised, unsupervised and semi-

supervised learning. Supervised learning is clustering data based on knowing a certain 

feature correlates to a known type of source (noise, damage, etc.). Unsupervised learning 

is clustering based on high variance features and then deciding the type of source it came 

from. Semi-supervised learning is a mixture between the two. For instance, you may know 

there are exactly three sources so the data can be organized into three clusters and the 

source features are then determined. ML classification models are essential when 

attempting to non-destructively evaluate an aerospace structure by assigning an AE event 

to a cluster. This section will discuss supervised PR classification models including 



51 

discriminant analysis (DA), support vector machines (SVM), k-nearest neighbor (KNN), 

decision trees (DT), and Naïve Bayes (NB). All these PR algorithms are supervised 

methods and are well suited for the applications discussed in the next chapter.  

 To use machine learning classification models, a dataset with extracted features 

must be present. Supervised learning techniques involve training a classification model 

with data and then introducing new data to test the accuracy of the model. Typically, when 

training a model, you will split your data into a training set and a testing set. The training 

set will sometimes be referred to as the original data and the testing set will sometimes be 

referred to as the new data.  

3.3.4 Discriminant analysis model classification 

 Discriminant analysis (DA) is a supervised learning technique used for clustering. 

A quadratic discriminant analysis can be done for a set of PCA AE data. The quadradic 

discriminant equation can be seen in the equation below [36].  

 𝑝(𝑥, �̅�, [𝛴]) =
1

(2𝜋)𝑑/2√|𝛴|
𝑒𝑥𝑝 {−

1

2
(𝑥 − �̅�)

𝑇
𝛴−1(𝑥 − �̅�)} (12) 

where �̅� is the mean vector, 𝑥 is the feature vector, d represents the number of dimensions 

and |𝛴| represents the determinant of the covariance matrix. Discriminant analysis assumes 

classification with a boundary and a normal probability distribution, but there is no 

assumption of independence in each predictor. There are two basic types of discriminant 

analysis; linear and quadratic. Linear DA assumes the size and shape of the distribution is 

uniform for all clusters, meaning equal covariance matrices. An example of this can be 

seen in Figure 3.3a. Quadratic DA assumes the size and shape of the distribution is different 

for each cluster, so the covariance matrices are not equal. An example of quadratic DA can 

be seen in Figure 3.3b. 
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Figure 3.3 (a) Linear discriminant analysis and (b) quadratic discriminant analysis. [38] 

3.3.5 Support vector machine model classification 

 Support vector machine (SVM) is a supervised ML technique. This technique 

separates between clusters based on a straight line in two dimensions, otherwise known as 

hyperplanes [39]. The basic concept of the method is finding arbitrary hyperplanes that 

separate clusters (Figure 3.4a) and then using those hyperplanes to find the optimal 

hyperplane which is furthest from all the data (Figure 3.4b). The optimal hyperplane for a 

linear SVM can be found from equation (13). 

 𝐷({𝑥}) = ∑ 𝛼𝑖𝑦𝑖 < {𝑥}𝑖, {𝑥} >
𝑁

𝑖=1
 (13) 

where N is the number of datapoints, 𝛼𝑖 are the Lagrange multipliers, and 𝑦𝑖 is the cluster 

label. There also exists a nonlinear SVM which is based on discriminant analysis and is 

expressed by, 

 𝐷({𝑥}) = ∑ 𝛼𝑖𝑦𝑖𝑘({𝑥}𝑖, {𝑥})
𝑁

𝑖=1
 (14) 

where 𝑘({𝑥}𝑖, {𝑥}) is the kernel function. Equations (13) and (14) follow the rule that if 

D({x}) > 0, it’s assigned to cluster 1 and if D({x}) < 0, it’s assigned to cluster 2. This is the 

case for only two clusters. When there is an example of more than two clusters, 
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multiclassification problems use a combination of multiple binary classifiers to create 

hyperplanes. The method of multiple binary classifiers is similar to linear discriminant 

analysis but instead, SVM uses the method of largest margins between hyperplanes rather 

than distributions. 

 SVM can also be used as an unsupervised learning approach as well. For the 

unsupervised learning approach, the algorithm is based on the origin set of data and a one-

cluster hyperplane with the largest possible hyperplane is used.  

 
 

Figure 3.4 SVM clustering for (a) arbitrary hyperplanes, and (b) optimal hyperplane. 

[39] 

3.3.6 k-nearest neighbor model classification 

 k-nearest neighbor is like k-means clustering except that k-nearest neighbor is a 

supervised learning technique. A model is trained with already classified data in a specified 

number of clusters. When new data is introduced, the new data is clustered based on the 

already classified data the new data is closest to. The k value is specified to compare the 

new data to k known datapoints. In Figure 3.5, there are three different clusters, green, blue 

and yellow. As you can see in the figure, if a new datapoint is introduced (such as the grey 
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one) it would be clustered as yellow because two out of the k =3 closest datapoints are also 

yellow.  

 
 

Figure 3.5 Example of k-nearest neighbor clustering. [38] 

3.3.7 Decision trees model classification 

 A decision tree model is considered a supervised classification model. It creates 

clusters by building a sequence of yes or no questions. The classified testing data is used, 

and boundaries are made to split them up into clusters by considering all the possible splits 

in each variable. When new data is introduced, it is clustered very quickly since the 

information simply runs through the binary sequence. A simple example of clustering data 

into three different groups can be seen in Figure 3.6.  
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Figure 3.6 (a) Classified data split into various boundaries, and (b) decision tree binary 

sequence used to cluster new data. [38] 

3.3.8 Naïve Bayes model classification 

 Naïve Bayes classification model is a supervised learning technique that uses a 

Gaussian mixture model to cluster training data. When looking at the training data in a 

feature plot, we assume the dataset comes from an underlying distribution as seen in Figure 

3.7a. Using an underlying distribution can reduce the influence of outliers. When new data 

is introduced, a probability is calculated based on where it lies on the distribution. The 

probabilities are solved using equation (12) from sub-section 3.3.4. The new data point is 

classified based on the classifier with the highest probability. An example of this can be 

seen in Figure 3.7b, where a new datapoint that was initially introduced as grey has been 

placed in the blue cluster. 

3.4 DEEP LEARNING NEURAL NETWORKS 

 Neural networks are a form of supervised learning. There are many kinds of neural 

networks, such as classical neural networks and convolutional neural networks. Neural 

networks are a well-established method of machine learning (ML) and are based on the 

neurons that add to the structure of the brain [39]. This learning technique is a computing 

paradigm to the way we learn with our brains. The basic organization of a neural network 
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is described by the multilayer perception (MLP). MLP is a collection of neurons (or nodes) 

arranged in layers with an input, hidden layers, then an output [40]. The MLP diagram is 

shown in Figure 3.8. 

 

 
 

Figure 3.7 (a) Gaussian Mixture model distributions for testing data and (b) new data 

point probability based on Naïve Bayes classification model. [38] 

 
 

Figure 3.8    Multilayer perception (MLP). [39] 
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 Each node i is connected to each node j in the figure and they are connected through 

weights (ωij). The signals passing through the MLP can be described by, 

 𝑥𝑖
(𝑘)

= 𝑓(𝑧𝑖
(𝑘)

) = 𝑓(∑ , 𝜔𝑖𝑗
(𝑘)

𝑥𝑗
(𝑘−1)

𝑗 )  (15) 

where 𝑥𝑖
(𝑘)

 is the signal from the node i on layer k, 𝑧𝑖
(𝑘)

 is the excitation of the node, f is a 

nonlinear activation function, and 𝑥𝑗
(𝑘−1)

 is the signal from the previous layer (k-1) at node 

j. Typically, there is a training phase for neural networks that needs to take place before 

the method can actually be used. For training, a set of inputs is run through the MLP 

resulting in outputs. These outputs are then compared to the desired outputs. If the training 

outputs compared to the desired outputs are small enough, then the weights (ωij) are not 

adjusted. If the compared results are not small enough, the error is sent through the network 

backwards and the weights can be adjusted that way [39].  

 There are two major types of neural networks that will be used in this thesis: 

classical neural networks and convolutional neural networks. Classical neural networks are 

described by the passing of numbers or vectors through the MLP to classify data. 

Convolutional neural networks are when a collection of images is passed through the MLP. 

3.4.1 Classical neural networks: LSTM 

 There are many different types of classical neural networks, but the one being used 

in this thesis is called long short-term memory (LSTM) networks. An LSTM is when the 

input to the neural network is an ordered sequence where information from earlier in the 

sequence may be important. The basic structure of an LSTM can be seen in Figure 3.9. 

What makes LSTM’s different from other classical neural networks is its internal state and 

recurrent neural network. The internal state is what the node uses as a working memory 

space which means information can be stored or retrieved over many time steps. The 
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recurrent neural network reuses the output from a previous step as an input for the next 

step. An example of an LSTM network is Apple iMessage word suggestion. As you are 

typing a sentence, iMessage will suggest words that will be typed next as a shortcut to 

spelling out full words. These suggestions are based on sentences you have typed in past 

texts (internal state) or based on words typed earlier in that sentence (recurrent neural 

network). 

 
 

Figure 3.9 Structure of the LSTM neural network.  

3.4.2 Convolutional neural networks 

 The convolutional network is a network with images as its input. These images are 

converted to red, green, blue (RGB) matrices and are passed through the constructed 

convolutional neural network. The basic construction of a convolutional neural network 

with an example of a 5 × 5-pixel input image to classify it as either a cat or a dog can be 

seen in Figure 3.10. It starts with the input image followed by the convolution layer. The 

convolution layer applies filters to downsize the original image to create a feature. The 
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feature is made from the sum of the product of the values in the filter matrix and RGB 

matrix. The feature then passes to the rectified linear unit (ReLU) which applies a threshold 

to remove all negative values. The image then gets passed through the maximum pooling 

layer which performs down-sampling of the image to reduce its pixel size. Max pooling 

layer creates a smaller matrix by taking the maximum value from the selected pooling 

region size (the example from Figure 3.10 has a pooling size of 3 × 3). Once the size of 

the image is reduced, it passes through the fully connected layer which is like the MLP. 

Finally, the image is normalized by the Softmax layer and the output it presented from the 

classification layer.  

 
 

Figure 3.10 General construction of a convolutional neural network.  
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CHAPTER 4  

MACHINE LEARNING FEATURE EXTRACTION AND MODEL 

CLASSIFICATION FOR EXPERIMENTAL AE SIGNALS 

Acoustic Emission (AE) is a well-established method of determining the structural 

health of a specimen. When determining whether a specimen is deemed “healthy,” it is 

important to understand the signal signatures in AE waveforms based on the source. The 

source can be from environmental noise, crack rubbing and clapping of the faying surfaces 

or crack growth occurring from the crack tips.  

 Considering artificial intelligence, we want to have a computer classify our AE 

signals to help us determine crack growth signals and find information within those crack 

growth signals that will determine the length of the crack. The first step to achieving this 

goal is through feature extraction. Feature extraction can be a subjective or objective 

process. To subjectively extract features, a deep understanding of the signals and what they 

mean must be known to the researcher. If the researcher is using data that they are unsure 

of, the extracted features may overfit once it’s applied to a classification model. To reduce 

or eliminate overfitting, features can be extracted using an objective method. Objective 

methods of feature extraction include using statistical observations like mean, kurtosis 

factor, standard deviation, etc. For the purpose of understanding the machine learning 

process, the methods used to extract features in this chapter are subjective. 
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4.1 EXPERIMENTAL SET-UP AND PROCEDURE 

 The specimen is a 101 mm wide and 305 mm long and 1 mm thick 2024 T3 

aluminum plate. The specimen has a 1 mm hole drilled into the geometric center of the 

plate for crack initiation. The plate was placed into an MTS machine with a maximum load 

of 14.05 kN and a minimum load of 1.405 kN with a loading frequency of 10 Hz. The crack 

initiated at 322 kcycles. Once the crack initiated, the specimen was removed from the MTS 

machine and was prepared with two PWAS and two S9225 sensors. The PWAS were 

located at 6 mm and 25 mm from the crack and the S9225 sensors were placed 6 mm and 

25 mm away from the crack mirroring the PWAS. On the opposite side of the specimen, a 

strain gage was applied about 35 mm from the crack. The strain gage is used to monitor 

the load applied to the specimen. The specimen was equipped with a non-reflective 

boundary (NRB) to reduce reflection from the AE waves. A picture of the specimen can 

be seen in Figure 4.1. The method of collecting the AE waves included the Mistras AE 

instrumentation connected to the sensors through a pre-amplifier. Periodically, to ensure 

the PWAS were well bonded, an impedance measurement was taken with an Omicron Lab 

EMIS instrument. This method can be seen in Figure 4.2. To reduce the number of factors 

that affect how the AE signals look, the specimen is applied with a constant stress intensity 

factor (SIF). To do this, the cyclic frequency is applied at 4 Hz starting at a load of 14.05 

kN and periodically reduced to 6.29 kN using the Fedderson correction factor [41]. The 

crack grew from ~3.5 to ~9.4 mm in an additional 188 kcycles.  
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Figure 4.1 (a) AE sensor side of the specimen, (b) strain gauge side of the specimen, and 

(c) sensor side of the specimen with sensor distances from the crack. 

 
 

Figure 4.2 Methodology for HCF testing in the MTS machine. 

4.2 SIGNAL DETECTION PROCESSING: FEATURE EXTRACTION 

 We know there are three types of signals that are being detected. The first type of 

signal is due to noise. These noise signals are determined when there is a signal detected 
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from one sensor and no other sensors in a range of 300 μs before and after the signal. A 

noise signal can also be present in all four sensors, but the time of arrival is the exact same. 

Another type of signal detected will be from crack faces rubbing and clapping, called Type 

2 (T2). These signals appear in all four sensors within a 300 μs range when there is no 

crack growth. The third type of signal is due to crack growth called, Type 1 (T1). These 

signals appear in all four sensors within a 300 μs range when there is crack growth. For 

both T1 and T2 signals, the time of arrival of the waveform appears in the near field sensors 

prior to being detected by the far field sensors. By observation, as the crack grows, the T1 

signals change but the T2 signals tend to remain the same. It is also observed that when the 

crack length is low, the crack-related AE signals are dominated by T1 signals since there 

is less crack surface for T2 signals to occur. Once the crack length grows, the T2 signals 

are dominating. For the SIF-controlled HCF specimen in question, T2 signals become 

dominant at a crack length of ~8 mm.  We want to understand the features that best 

distinguish the differences between the noise, T1 and T2 signals. The features chosen to 

distinguish between T1 and T2 signals are based on time and frequency domains of the 

signal detected.  

4.2.1 Distinguishing features between T1 and T2 time and frequency domain signals 

 The overall goal is to take recorded AE signals and be able to determine the crack 

length. Crack length can be determined through T1 signals (crack growth) since they 

change as the length of the crack changes. A typical T1 and T2 signal from the specimen 

with a crack length of ~7 mm can be seen in Figure 4.3. A table of significant differences 

between T1 and T2 signals can be found on Table 4.1. These features must be applied to a 

larger set of features to eliminate noise signals from the T1 and T2 signal clusters.  
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Figure 4.3 (a) Typical T1 signal at ~7 mm and (b) typical T2 signal at ~7 mm. 

 

Table 4.1 Features that distinguish between T1 and T2 signals 

 

Domain T1 T2 

Time 

domain 

The first peak in the time domain is 

larger than the second peak 

The first peak in the time domain 

is smaller than the second peak 

The time between each peak is 

about 2.4-2.6 μs 

The time between each peak is 

about 2.2-2.3 μs 

About even A0 and S0 content A0 content is dominant over S0 

content 

Frequency 

domain 

Frequency peaks at ~200 kHz and 

~300 kHz 

No frequency peaks at ~200 kHz 

and ~300 kHz 

Frequency drop at ~120 kHz No frequency drop at ~120 kHz 

 

4.2.2 Features distinguishing T1, T2 and noise AE signals 

 Since we are trying to find crack length based on the recorded signals, we want to 

favor the features to T1 signals. If the feature is not favored towards a T1 signal, its value 

is set equal to zero. A list of fourteen features used to distinguish between a T1, T2 and 

noise signal are found in the following bullets.  

Time domain features: 

◼ F1: The number of peaks the signal has with a minimum peak prominence of 6 mV 

and 25% of the maximum amplitude between 120 and 145 μs must be 3 < n < 9. 
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◼ F2: If F1 is true, the difference in time from the first to the second peak must be 

2.3 < t < 2.8 μs and the minimum value between the first and second peak must 

drop below -5 mV. 

F2 helps to separate T1 and T2 signals because the difference in time between first and 

second peak is less than 2.4 μs for T2 signals. It also helps to distinguish between crack 

and non-crack-related signals because non-crack-related signals typically don’t have a 

valley less than -5 mV when F1 criteria is true. 

◼ F3: If F2 is true, then the ratio of the first to second peak must be greater than 1. 

 This helps to separate T1 and T2 signals because the ratio of the first to the second 

peak is less than 1 for T2 signals. 

◼ F4: If F1 is true, the ratio of the S0 mode to the A0 mode is evaluated. 

Frequency domain features: 

◼ F5: The mean of the values between 0-150 kHz and the mean of the values between 

360-600 kHz must add up to be greater than 0.6. 

◼ F6: The mean of the values between 150-270 kHz and the mean of the values 

between 270-360 kHz must add up to be greater than 0.4. 

 This helps to distinguish between T1 and T2 signals because T2 tends to have less 

frequency content in the 150-360 kHz range. 

◼ F7: The maximum value of the amplitude for 150-270 kHz must be greater than 

0.2 for 170-225 kHz (and be between 175.5-220 kHz), greater than 0.15 for 270-

360 kHz, and greater than 0.5 for 360-600 kHz. 

 This helps to distinguish between T1 and T2 signals because T2 tends to have lower 

frequency content in the 150-360 kHz range. 



66 

◼ F8: The maximum value of the amplitude for 270-360 kHz must be greater than 

0.2 for 170-225 kHz (and be between 175.5-220 kHz), greater than 0.15 for 270-

360 kHz, and greater than 0.5 for 360-600 kHz. 

 This helps to distinguish between T1 and T2 signals because T2 tends to have lower 

frequency content in the 150-360 kHz range. 

◼ F9: The maximum value of the amplitude for 170-225 kHz must be greater than 

0.2 for 170-225 kHz (and be between 175.5-220 kHz), greater than 0.15 for 270-

360 kHz, and greater than 0.5 for 360-600 kHz. 

 This helps to distinguish between T1 and T2 signals because T2 tends to have lower 

frequency content in the 150-360 kHz range. 

◼ F10: The mean from 0-1,000 kHz must be greater than 0.14. 

◼ F11: The ratio of the sum of the maximum amplitudes for 0-150 kHz and 360-600 

kHz divided by the sum of the maximum amplitudes for 150-270 kHz and 270-360 

kHz is less than 3.5, greater than 0.25 for 150-270 kHz, greater than 0.15 for 270-

360 kHz and greater than 0.5 for 360-600 kHz. 

◼ F12: There must be a valley between 75-175 kHz that drops below 0.38. 

 This helps to distinguish T1 and T2 signals because T2 doesn’t drop below 0.38 in 

this frequency range. 

◼ F13: The number of peaks between 150-270 kHz with a minimum peak prominence 

of 0.06 that are greater than 0.2 must be between 0 < n < 4. 

 This helps to distinguish between T1 and T2 signals because T2 doesn’t have a 

peak in this frequency range. 
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◼ F14: The number of peaks between 270-360 kHz with a minimum peak prominence 

of 0.06 that are greater than 0.2 must be between 0 < n < 4. 

 There is no limit to the features that are used to separate signals into clusters. The 

chosen fourteen features are simply the features that were most useful in distinguishing the 

signals. There may be features that exist and are very good at distinguishing between the 

different types of signals but are unknown to us at the present time. There needs to be more 

features that will eventually take the T1 signals and separate them into sub clusters based 

on crack length.  

 Once the features have been determined, a table can be created where each column 

represents a feature and each row represents a signal or hit. An example of this table can 

be seen in Table 4.2. In aiding principal component analysis, all the values of the features 

were normalized. A set of hits that contain various T1, T2 and noise AE signals were 

selected in the 6-8 mm crack length range which fell in the 36-48 additional kcycle range. 

They are termed “additional” because they represent the number of cycles after crack 

initiation has occurred. As already mentioned in the bullets, there are certain features that 

help to distinguish between T1 and T2 signals. The supporting features include F2, F3, F6, 

F7, F8, F9, F12, F13 and F14. 

 To better understand how each feature helps to separate the hits into T1, T2 and 

noise signals, a parallel coordinate plot was created. A parallel coordinates plot for all data 

as well as the median of the data can be seen in Figure 4.4. In Figure 4.4a, each line signifies 

a hit signal and the coordinate value comes from the normalized value from Table 4.2. In 

Figure 4.4b the dashed lines signify 25% and 75% of T1 and T2 signals. As you can see, 

all fourteen features help to separate T1 signals from noise signals. F1, F5 and F11 help to 
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separate T2 signals from noise and F2, F3, F6, F7, F8, F9, F12, F13 and F14 are the features 

that help to separate T1 and T2 signals.  

Table 4.2 Features and hit numbers table for T1, T2 and noise AE signals 

 

Cycles Hit # F1 F2 F3 F4 F5 … F12 F13 F14 

3
6
-4

0
 k

cy
cl

es
 

C
L

=
6

-7
 m

m
 

1 0 0 0 0 0 

… 

0 0 0 

3 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 

72 0 0 0 0 0 0 0 0 

76 (T1) 0.7142 0.9637 0.9615 0.46984 0.7530 0.9105 1.000 1.000 

81 (T1) 0.7142 1.0000 0.9615 0.43514 0.8009 0.9234 1.000 1.000 

102 (T2) 0.7142 0 0 0.09559 0.8905 0 0 1.000 

5 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

4
0

-4
4
 k

cy
cl

es
 

C
L

=
7

-7
.4

 m
m

 
 

50 0 0 0 0 0 

… 

0 0 0 

70 0 0 0 0 0 0 0 0 

80 0 0 0 0 0 0 0 0 

90 0 0 0 0 0.6052 0.7168 0 0 

140 (T1) 0.7142 0.6519 1.0000 0.35920 0.7211 0.9692 1.000 1.000 

151 (T1) 0.7142 0.7138 1.0000 0.23707 0.7451 0.8707 1.000 1.000 

252 (T1) 0.7142 0.7131 0.9615 0.35782 0.6893 0.9980 1.000 1.000 

4
4
-4
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=
7
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-8
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m
 

 

69 (T1) 0.7142 0.8087 0.9615 0.28000 0.5078 

… 

0.9675 1.000 0 

132 (T2) 0.8571 0 0 0.07689 0.8648 0 0 1.000 

137 (T2) 1.0000 0 0 0.06080 0.8620 0 0 1.000 

152 (T2) 0.7142 0 0 0.07361 0.8575 0 0 0 

331 (T2) 0.8571 0 0 0.06409 0.8827 0 0 0 

342 (T2) 0.8571 0 0 0.03516 1.0000 0 0 0 

84 0 0 0 0 0 0 0 0 

92 0 0 0 0 0 0 0 0 

105 0 0 0 0 0 0 0 0 

106 0 0 0 0 0 0 0 0 
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Figure 4.4 (a) Parallel coordinate plot to help distinguish features and (b) parallel 

coordinate plot to help distinguish the median of features. 

4.3 PRINCIPAL COMPONENT ANALYSIS 

 Principal component analysis is done to reduce the dimensionality of the features. 

Once dimensionality is implemented, the PCA scores can be used as features as well. It is 

important to be able to visualize how all these features help to separate the hits into T1, T2 

and noise signals with the use of a plot. The principal component plot as well as the Pareto 

chart can be seen in Figure 4.5. The green (T1), red (T2) and purple (noise) labels were 

manually placed into the chart to see the separation between the signals for 4-48 kcycles 

and a crack length of 3.5-8 mm. Hit number 13 is visually classified as T1 and seen as an 

outlier but for classification purposes, it will be labeled T2. In the T1 cluster in Figure 4.5a, 
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you can see the hits were able to be further clustered into 3.5-6 mm and 6-8 mm. This is 

very promising for being able to determine crack length from an AE signal. In Figure 4.5b, 

you can see the Pareto chart, which shows that the first two principal components (as seen 

in Figure 4.5a) account for 89.13% of the variance and the first four principal components 

account for 95.65% of the variance.  

(a) (b)  

 

Figure 4.5 (a) PCA plot for 4-48 kcycles and crack length of 3.5-8 mm and (b) Pareto 

chart describing the variance of the first four principal components.  

 As mentioned previously, clusters from PCA are manually separated, but it is 

important to find a method of automatic clustering when the signals are not as clear as the 

ones presented above. Two ways of clustering based on principal components are k-means 

clustering and hierarchical clustering. These clustering methods are not based on 

classification, so they do not describe the meanings of each cluster. k-means clustering is 

an iterative process and is based off the distance the hits are from each other. The results 

of k-means clustering can be seen in Figure 4.6 and as you can see, the results are very 

good. Hierarchical clustering is also based on distance between hits in the PCA plot, but it 

is presented in a tree. Hierarchical clustering is a good method to use when one is interested 
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in sub-clustering. The results for hierarchical clustering of the crack-related hits can be 

seen in Figure 4.7. Aside from the outlier, the results are very good. The T1 and T2 hits 

were manually colored into green and red font, respectively.  

 
 

Figure 4.6 k-means clustering results based on first and second 

principal component.  

 
 

Figure 4.7 Hierarchical clustering of crack-related hits.  
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4.4 CLASSIFICATION MODELING 

 Now that the hits have been clustered, it is time to see if they can be classified into 

T1, T2 and noise signals. The classification methodology for machine learning purposes 

includes splitting the collected data into a training set and a testing set. A classification 

model can be trained by running the training data through the model. The model changes 

the weighting factors based on the training data to effectively classify the training data into 

their already-specified classification (noise, T1 or T2). Once you have a trained model, it 

is important to test how effective that model is when new data is introduced. The testing 

data is run through the trained classification model and the model’s accuracy can be 

determined. There are many different types of classification models, but five specific ones 

were chosen to see how well the data could be classified. The five models tested are k-

Nearest Neighbor (KNN), Decision Tree (DT), Naïve Bayes (NB), Discriminant Analysis 

(DA), and Support Vector Machine (SVM). With only 54 strong signals, it is predicted that 

the accuracy results for the classification models will be very high. The 54 hits were 

separated into 50% testing data and 50% training data. As predicted, KNN, DT, and SVM 

all had an accuracy of 100%. The scatter plot of the predicted cluster hits as well as the 

confusion matrix for the test data can be seen in Figure 4.8. Naïve Bayes and DA gave 

accuracy results of 84.26% and 96.06%, respectively, and their scatter plots and confusion 

matrices can be seen in Figure 4.9 and Figure 4.10, respectively. In Figure 4.9a and Figure 

4.10a, there is a box around the hits that were misclassified. In Figure 4.9b, four noise 

signals were predicted as T1 and in Figure 4.10b, one noise signal was predicted as T2. A 

guide for the meaning of each symbol in the scatter plot can be seen in the following three 

bullets.  
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• The “*” indicates the training data that were visually clustered and used to train the 

classification model. 

• The “+” indicates the testing data that were visually clustered and run through the 

trained classification model. 

• The “o” indicates the predicted cluster that the testing data falls under based on the 

classification model. 

 
 

Figure 4.8 (a) Scatter plot, and (b) confusion matrix for test data with 100% 

classification accuracy for KNN, DT, and SVM models. 

 
 

Figure 4.9 (a) Scatter plot, and (b) confusion matrix for test data with 84.26% 

classification accuracy for NB model.  
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Figure 4.10 (a) Scatter plot, and (b) confusion matrix for test data with 96.06% 

classification accuracy for DA model. 

4.5 SUMMARY AND CONCLUSIONS 

 Subjective feature extraction to distinguish between the three different types of AE 

signals was performed and the highest accuracy of the classification models proved to be 

100%. Hit number 13 was an outlier which caused some issues in distinguishing. In the 

future, there may be more than just one outlier, so an objective method for feature 

extraction is necessary. AE signals can change greatly from specimen to specimen. In the 

future, a larger dataset should be used to reduce the model from overfitting. 
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CHAPTER 5  

DEEP LEARNING CLASSICAL AND CONVOLUTIONAL NEURAL 

NETWORKS 

5.1 INTRODUCTION 

 Deep learning is the part of AI that introduces artificial neural networks to classify 

data. These neural networks can be supervised or unsupervised and provide a more 

objective method of learning. Rather than finding specific features that distinguish between 

outputs, neural networks take the raw data as its input. Neural networks are more advanced 

and complex than machine learning feature extraction and model classification techniques, 

but they have the capability to perform with higher accuracy and less error. In this chapter, 

sequence-based classical neural networks and pretrained convolutional neural networks are 

created and explored with experimental AE signals from an HCF crack growth specimen. 

5.2 EXPERIMENTAL PROCEDURE AND DATA 

 The experimental data used for the neural networks is collected from the same 

specimen as seen in Chapter 4. A 101 mm by 304 mm thin aluminum specimen was 

initiated with a crack by drilling a 1 mm hole in the geometric center of the specimen and 

placing the specimen in an MTS machine with a maximum load of 14.05 kN and a 

minimum load of 1.405 kN with a loading frequency of 10 Hz. The crack initiated at 322 

kcycles. Once the crack initiated, the specimen was removed from the MTS machine and 

was prepared with two PWAS and two S9225 sensors. The PWAS were located at 6 mm 
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and 25 mm from the crack and the S9225 sensors were placed 6 mm and 25 mm away from 

the crack mirroring the PWAS. On the opposite side of the specimen, a strain gage was 

applied about 35 mm from the crack. The strain gage is used to monitor the load applied to 

the specimen. The specimen was equipped with a non-reflective boundary (NRB) to reduce 

reflection from the AE waves. The method of collecting the AE waves included the Mistras 

AE instrumentation connected to the sensors through a pre-amplifier. Periodically, to 

ensure the PWAS were well bonded, an impedance measurement was taken with an 

Omicron Lab EMIS instrument. To reduce the number of factors that affect how the AE 

signals look, the specimen is applied with a constant stress intensity factor (SIF). To do 

this the load is applied at 4 Hz starting at a load of 14.05 kN and periodically reduced to 

6.29 kN using the Fedderson correction factor [41]. The crack grew from ~3.5 to ~9.4 mm 

in an additional 188 kcycles. 

 The data used for analysis consisted of 184 waveforms captured from PWAS 2. 

This dataset includes all 54 hits used in Chapter 4. An additional 130 hits were added to 

the dataset because neural networks give higher accuracies with larger amounts of data. 

Due to the need for a larger amount of dataset, some hits were included that were not clear 

whether it originated from crack growth or crack rubbing and clapping. As a result, the 

neural networks were trained to classify a signal as crack-related or noise. 

5.3 CLASSICAL NEURAL NETWORK: LSTM 

 Long Short-Term Memory (LSTM) neural network is a type of classical neural 

network where the input is an ordered sequence where information from earlier in the 

sequence may be important. Rather than the input being an image, the input is a signal 

vector. For our case, we have used the frequency domain signal vector as the input. Within 
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the node calculation, there is an internal state. The node uses this internal state as a working 

memory space, which means information can be stored or retrieved over many time steps. 

Once the sequence has been outputted, it has a recurrent neural network which reuses the 

output from a previous step as an input for the next step. LSTM’s do not have readily 

available pre-trained networks, so they are much more sensitive to input data. The more 

data they have to train with, the better the outcome will be.  

 For classification purposes like this, it is best to have at least 150 data points for 

each cluster, but we do not have enough data for that. The dataset used here consisted of 

184 frequency domain signal sequences containing 64 crack-related signals and 66 noise 

signals. The data was split to have a training set (88% of the data) and a testing set (12% 

of the data). The LSTM was trained with the training data and took 1 hour and 13 minutes. 

A plot of the accuracy and loss during the training process can be seen in Figure 5.1. At 

the end of the training process, the accuracy came out to be 94.53% with a loss of 0.1432. 

When the testing data (12% of the signals) was run through the trained model, the accuracy 

came out to be 95.45%. A confusion matrix of the classified testing data can be seen in 

 Figure 5.2. In this figure, you can see that the model misclassified only one hit 

which is very good for a model trained with such a small amount of data.  

5.4 CONVOLUTIONAL NEURAL NETWORKS 

 The deep learning process we are using here is a convolutional neural network. 

Neural networks are made up of many layers or steps that come together to form the process 

of the network. There are many different networks with many different layers. The dataset 

we are using includes a ‘.jpg’ of the Choi William transform for each signal. The transform 

is used as the image because it allows for intensities of both the time and frequency domain 
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of a signal. The Choi William transform is a type of wavelet transform that intensifies the 

Lamb wave modes and adds more detail than that of a wavelet transform [42]. Since we 

are using images as the input, the network is called a convolutional neural network. 

Examples of some Choi William transforms can be seen in Figure 5.3. In the figure, you 

can see a significant difference between the crack-related signals and the noise signals. 

Since neural networks are very complex and typically take months to create for a trained 

professional, a pretrained convolutional neural network was used, called AlexNet. The full 

tree of the layers of AlexNet can be seen in Figure 5.4. There is a total of 25 layers and for 

AlexNet, it is required that the input layer have a size of 227 × 227 × 3 RGB images. As 

you can see, some of the layers are repeated because convolutional layers can have many 

different types of filters. When an image goes through a convolutional or pooling layer, it 

typically reduces the pixel size of the image. The size of the image is calculated from the 

input image size, filter/pooling size, padding and stride size as seen in the equation at the 

bottom of Figure 5.4. Transfer learning is the term used when a pretrained network is 

modified. Transfer learning was used to update the last fully connected layer (fc8) to have 

an output of two nodes (one for crack-related and one for noise). An example of how the 

convolutional layer works can be seen in Figure 5.5. Figure 5.5a is a montage of all 96 

filters for the first convolutional layer in AlexNet. Figure 5.5b is filter 79. As you can see, 

filter 79 will mainly activate the green in the figure. Inputting hit number 27 (4-8 kcycles, 

3.5-4 mm) as seen in Figure 5.5c, filter 79 will activate only the green in the figure to result 

in a black and white photo as seen in Figure 5.5d. This convolution layer example also 

shows how the image size reduction is performed as well. Refer to the equation in Figure 

5.4 to determine the output size of the filtered image in Figure 5.5d. 
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Figure 5.1 Training process for frequency domain LSTM network. 

 
 

 Figure 5.2 Confusion matrix for test data run through trained frequency 

domain LSTM network. 

 This dataset included 184 strong and weak signals which includes 64 crack-related 

signals and 66 noise signals. Since weak signals are included in this dataset, we will attempt 
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to classify the signals into crack-related and noise related. The dataset was split up into a 

training set (70% of the signals), a validation set (10% of the signals), and a testing set 

(20% of the signals). The testing and validation set was run through the pretrained network. 

The accuracy and loss were evaluated throughout the training process and the training 

graphs can be seen in Figure 5.6. The accuracy is the percentage of training images that the 

network classified correctly during an iteration. It does not measure how confident the 

network is about each prediction. The loss is a measure of how far from a perfect prediction 

the network was, totaled over the set of either training or validation images. The accuracy 

and validation accuracy reached 100%, the loss reached 4.532e-5 and the validation loss 

6.971e-6. The test data was run through the trained neural network and 100% accuracy was 

reached meaning all the testing data was categorized correctly. The confusion matrix can 

be seen in Figure 5.7.  

 
 

Figure 5.3 Example Choi William transforms for crack-related and noise AE signals. 
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Figure 5.4 Pretrained convolutional neural network called AlexNet. 

5.5 SUMMARY AND CONCLUSIONS 

 In summary, deep learning artificial intelligence techniques were explored to 

classify 184 AE signals into crack-related and noise. An LSTM classical neural network 

was trained with the frequency domain of the signals. The results had good accuracy, but 

the model took over an hour to train, so it may not be an efficient technique to use once 

more AE signals are introduced. A pretrained convolutional neural network called AlexNet 

was used to train the AE signals. The accuracy was very good with a very small loss. The 

network training time was just over three minutes which makes it a more efficient deep 

learning technique than the LSTM. Since we used a pretrained convolutional network 

(AlexNet), less data is needed to continue to see good results.  
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Figure 5.5 (a) Montage of convolutional layer 1 from pretrained AlexNet neural 

network, (b) a close up of green-activating filter 79, (c) input of hit #27, and 

(d) hit #27 activated with filter 79. 

 
 

Figure 5.6 Accuracy and loss graphs for training convolutional neural. 
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Figure 5.7 Confusion matrix of the testing data run through the trained network. 
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CHAPTER 6  

SUMMARY AND CONCLUSIONS 

 The work completed for this thesis enhances the understanding and knowledge of 

damage detection through the results from the active PWAS sensing capabilities, 

experimental methodology, and artificial intelligence techniques.  

 The basic understanding of the constitutive equations was introduced in Chapter 1. 

Through the active sensing of the PWAS, the electro-mechanical impedance and 

admittance was reviewed for sensor debonding as well as damage detection. Although 

results for measuring damage did not show a clear trend, the imaginary part of the 

admittance resulted in a clear correlation between the amount of debonding and the slope 

of the line in the frequency vs. admittance plot. As the sensor debonded, the slope of the 

line increased and contained less noise. In conclusion, sensor debonding can be 

quantifiably measured through the slope of the active sensing by means of the real part of 

the admittance. 

 Chapter 2 provides the knowledge for proper methodology for experimental fatigue 

crack growth monitoring as well as repeatability of AE signal signatures. Section 2.4 

clearly outlines the methodology needed to properly and confidently monitor crack growth. 

The monitoring process includes the use of AEwin to gather AE signal hits, impedance 

analyzer to monitor the bonding of the PWAS, a magnifying camera to capture photos and 

videos of the crack tip, an eddy current instrument to measure crack length, and a bridge 

completion as well as a strain gauge to measure the load being applied. Change in loading 
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frequency affected the percentage of the maximum load the hit occurred at. As the loading 

frequency decreased, the load at which the signal occurred increased. When discussing 

repeatability of AE signals, it appears that the signals in Group A and Group G reviewed 

from Y. Bhuiyan [19] in section 2.2.2 were similar to my AE signals in Group 1 and Group 

2 (section 2.5), respectively. This proves that AE signals can be repeated in the case of two 

different LCF specimen.  

 Artificial intelligence provided us with a platform for allowing a computer to 

classify AE signals in place of human intelligence. The machine learning results provide 

us with the ability to separate signals into crack growth, crack rubbing and noise with the 

use of feature extraction and classification models. The deep learning results provide us 

with the ability to separate signals into crack-related and noise. The models and networks 

used gave great accuracy for classifying AE signals. These AI techniques are part of the 

transformation from research to industry applications.  

6.1 FUTURE WORK 

6.1.1 Datasets used for artificial intelligence purposes 

 Artificial intelligence works best with large datasets. We wish to continue artificial 

intelligence studies using the experimental data we have already collected from the SIF-

controlled HCF specimen data. In the future, we hope to validate our trained classification 

models, convolutional neural network and classical neural network with other datasets. 

There are three main datasets we hope to use in the future. The first future dataset comes 

from AE signals that have already been collected from LCF and HCF specimen. The 

second dataset can be created from the future laboratory LCF and HCF experimental AE 

signals. The third dataset comes from simulated AE signals that should be explored in the 
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future. With these datasets, we hope to complete the future work as explained in the 

following sections.  

6.1.2 Machine learning classification models 

 In the future, we would like to run more data through the already trained 

classification model as seen in Chapter 4. Due to using strong (high amplitude) AE signals 

to train the model and the resulting high accuracy, the model may be overfitting. Since a 

typical dataset includes more than just high amplitude AE signals, the model should be re-

trained with more data to include outliers. Since it is sometimes difficult to subjectively 

determine if a signal is T1 or T2, the model should be trained to have only two output 

classes, crack-related and noise related. This new classification model is to be trained and 

tested with more data.  

 Once this model is trained and test signals have proven it is possible to distinguish 

between crack-related and noise signals with good accuracy, we want to be able to 

distinguish the crack-related signals between crack-growth (T1) and crack rubbing and 

clapping (T2) signals. This may be difficult to do with the features we have subjectively 

created since they were designed to distinguish between only strong T1 and T2 signals. 

These features may not apply to new datasets that are created from new specimen that are 

subjected to different environmental conditions as well as human error. This is where 

unsupervised learning plays a role in feature extraction. There may be some feature or set 

of features that all AE signals have no matter what conditions are applied that cannot be 

seen by the human eye. In the future, features should be created based on statistical 

observations of the time and frequency domain signals to objectively extract features. Some 

statistical observations include mean, standard deviation, rise time, peak amplitude, etc. 
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Through PCA, these statistical features may create natural clusters for the signals to help 

distinguish between crack growth and crack rubbing and clapping. 

6.1.3 New convolutional neural networks 

 Since we are using a well-established pre-trained network to classify our Choi 

William transform images, the results have been very good. In the future, the objectively 

clustered AE signals from section 6.1.2 should be used to distinguish between crack 

growth, crack rubbing and clapping and noise signals using a new trained convolutional 

neural network.   

 Convolutional neural networks allow inputs from multiple channels to help classify 

AE signals. In the future, data from the PWAS that is 5 mm from the crack in addition to 

the PWAS that is 25 mm away from the crack should be used to help identify crack growth 

and crack rubbing and clapping signals.  

6.1.4 New LSTM classical neural networks 

 Since the LSTM network is created from scratch and not a pre-trained network, it 

is much more sensitive to the inputted signal vector. Therefore, LSTM networks must be 

trained with a very large dataset. In the future, another frequency domain LSTM should be 

created and trained to accurately classify signals into crack growth, crack rubbing and 

clapping and noise signals.  

 LSTM classical neural networks allow inputs from multiple channels to help 

classify AE signals. In the future, the data from the PWAS that is 5 mm and 25 mm from 

the crack should be used to help identify crack growth and crack rubbing and clapping 

signals from the time and frequency domains. 
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6.1.5 Regression models 

 A regression model is typically used when you are trying to determine a continuous 

variable rather than a discrete one. The crack length is the first continuous variable in 

question. In the future, a regression model should be used to determine the crack length 

from crack growth AE signals. Regression models can be used as a classification model or 

as a neural network. Using the classification model with extracted features from crack 

growth signals can be used as the input to determine the crack length. Choi William 

transforms from crack growth AE signal images can also be used as the input to 

convolutional neural networks to determine crack length. Comparing both networks of 

different inputs will determine which method has the highest accuracy. 

 Crack location is the second continuous variable that can be studied with the help 

of a regression model. A crack-related AE signal changes as it moves further away from 

its origin. In the future, the data collected from experiments with multiple PWAS sensors 

at various distances from the crack should be used for analysis. Features could be 

objectively extracted and used to determine signal distance from the crack. From there, use 

those features as the input to a regression classification model. The results to the regression 

convolutional neural network can be compared to the Choi William transform input results. 

6.2 MAJOR CONTRIBUTIONS 

 The goal of this research is to identify crack damage in an aerospace structure and 

to find its corresponding crack length based on ultrasonic Lamb waves. Many contributions 

have been outlined in this thesis that help us move towards our goals. The major 

contributions of this research are outlined in the following paragraphs.  

 The details and results outlined in Chapter 1 of this thesis prove that the slope of 

the imaginary part of the impedance provides us with a way to accurately measure how 
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well a PWAS is bonded to a structure. Not only does the slope give the PWAS bonding 

quality but the amplitude of the resonances also indicates how well the PWAS is bonded 

to the structure. The larger the amplitude of the resonances, the better the bonding. This is 

one way that experimental methodology has been improved.  

 Chapter 2 provides a detailed methodology that improves monitoring crack growth. 

When growing a fatigue crack, it is important to note when the crack grows and how much 

it grows. This data is gathered from a camera capturing pictures and videos from the crack 

tip as well as periodic eddy current measurements of the crack. Chapter 2 also provides 

confidence in the repeatability of AE signal signatures from LCF experimentation. 

 One of the largest contributions to this research is the application of artificial 

intelligence. With the help of artificial intelligence, AE signals can be classified based on 

reliable models that confidently separate different types of signals. In Chapter 4, feature 

extraction was introduced which separates signals based on time and frequency domain 

features. These features were then used to train classification models that help classify the 

different types of signals. In Chapter 5, neural networks were used to train different types 

of networks. The LSTM provided us with a network that classified signals based on their 

frequency domain vectors. The pre-trained convolutional neural network, called AlexNet, 

provided us with a network that classified signals based on their Choi William transforms. 

These contributions help to classify signals faster and with less human error.  
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