
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

Fall 2020

Categorical and Fuzzy Ensemble-Based Algorithms for Cluster Categorical and Fuzzy Ensemble-Based Algorithms for Cluster

Analysis Analysis

Bridget Nicole Manning

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Statistics and Probability Commons

Recommended Citation Recommended Citation
Manning, B. N.(2020). Categorical and Fuzzy Ensemble-Based Algorithms for Cluster Analysis. (Doctoral
dissertation). Retrieved from https://scholarcommons.sc.edu/etd/6154

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F6154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarcommons.sc.edu%2Fetd%2F6154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/6154?utm_source=scholarcommons.sc.edu%2Fetd%2F6154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

Categorical and Fuzzy Ensemble-Based Algorithms for Cluster
Analysis

by

Bridget Nicole Manning

Bachelor of Science
College of Charleston, 2010

Master of Science
College of Charleston, 2013

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Statistics

College of Arts and Sciences

University of South Carolina

2020

Accepted by:

David B. Hitchcock, Major Professor

John Grego, Committee Member

Karl Gregory, Committee Member

John Rose, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

c© Copyright by Bridget Nicole Manning, 2020
All Rights Reserved.

ii

Dedication

I dedicate this dissertation to my nieces, nephews, and whatever future children

I may have. I did this for you and everyone like you. As I write this dissertation, the

veil covering racial tension and disparities within our nation has been removed. The

media has portrayed people that look like you and me in a way that I never want you

to believe. I want you to see yourselves as the beautiful queens and handsome kings

that you are. Know no matter how big you may grow, that you have an even greater

power inside of you. A power that will allow you to be whoever and whatever you

want to be. Keep God first in all you do and go after your dreams. Don’t be afraid to

try or fail. I have done both many times, and I promise you the only things I regret

are those I didn’t try. I am an African-American woman that started as a poor black

girl from rural South Carolina. I had no college fund and no idea what I was doing

in life. To be honest, I still don’t. I follow my heart and pray things work out. I

cry and have days that I want to quit, but I keep going for you. You are just like

me. The blood that runs in my veins runs in yours, and I pray that one day when

you are older, you let these words guide you when I can’t: If a little black girl from

Dillon, South Carolina could earn a Ph.D. in Statistics, you too can do anything! I

dedicate this dissertation, the culmination of 5.5 years of my life, to you. I pray you

see it not as pieces of paper or a random book, but instead as a symbol of what your

blood and your lineage can achieve.

I love you with all of my heart!

iii

Acknowledgments

I would first like to thank God for giving me the ability, strength, knowledge, and

provisions necessary to complete this academic journey! I would also like to thank

my patient advisor, Dr. David B. Hitchcock, for all the edits, encouragement, and all-

around guidance in this process. I thank my committee members, Drs. John Grego,

John Rose, and Karl Gregory, for your suggestions that have improved the quality of

my research, and I thank my family of friends at USC who went through the craziness

with me: Zichen, Chunling, Ennan, Liu, Ethan, Brandy, Ryan, Geophrey, and Zach.

ToWilma Sims and Drs. Candace Porter, Shamarick Paradise, and Tracey Gunter,

my modern-day Hidden Figures: You have no idea how much you have motivated

and inspired me. I thank you for the career advice, life chats, and most importantly

for showing me by example that African-American women, too, have a place in the

world of statistics!

To my inner-circle, Chelsey, Eric, and Brandon: Thank you so much for going

through this process with me! Thank you for always believing in me and having my

back in everything life brings. I love you so much, and thank God for bringing you

into my life!

Lastly and most importantly, I thank my family for your sacrifices, support, and

love through this journey. I say thank you to my mother and father, Peter and Julia

Caldwell; my bonus parents, Larry and Jackie McQueen, Charles McLain, and John

Brown; my sisters, Scherylle, Michelle, Meagan, La’Tavia, and Gina; my brothers,

Julius, Braxton, Shkari, and Keyion.

iv

Abstract

This dissertation focuses on improving multivariate methods of cluster analysis.

In Chapter 3 we discuss methods relevant to the categorical clustering of tertiary

data while Chapter 4 considers the clustering of quantitative data using ensemble

algorithms. Lastly, in Chapter 5, future research plans are discussed to investigate

the clustering of spatial binary data.

Cluster analysis is an unsupervised methodology whose results may be influenced

by the types of variables recorded on observations. When dealing with the clustering

of categorical data, solutions produced may not accurately reflect the structure of

the process that generated them. Increased variability within the latent structure of

the data and the presence of noisy observations are two issues that may be obscured

within the categories. It is also the presence of these issues that may cause cluster-

ing solutions produced in categorical cases to be less accurate. To remedy this, in

Chapter 3, a method is proposed that utilizes concepts from statistics to improve the

accuracy of clustering solutions produced in tertiary data objects. By pre-smoothing

the dissimilarities used in traditional clustering algorithms, we show it is possible to

produce clustering solutions more reflective of the latent process from which observa-

tions arose. To do this the Fienberg-Holland estimator, a shrinkage-based statistical

smoother, is used along with 3 choices of smoothing. We show the method results in

more accurate clusters via simulation and an application to diabetes.

Solutions produced from clustering algorithms may vary regardless of the type of

variables observed. Such variations may be due to the clustering algorithm used, the

initial starting point of an algorithm, or by the type of algorithm used to produce

v

such solutions. Furthermore, it may sometimes be of interest to produce clustering

solutions that allow observations to share similarities with more than one cluster.

One method proposed to combat these problems and add flexibility to clustering

solutions is fuzzy ensemble-based clustering. In Chapter 4 three fuzzy ensemble-

based clustering algorithms are introduced for the clustering of quantitative data ob-

jects and compared to the performance of the traditional Fuzzy C-Means algorithm.

The ensembles proposed in this case, however, differ from traditional ensemble-based

methods of clustering in that the clustering solutions produced within the generation

process have resulted from supervised classifiers and not from clustering algorithms.

A simulation study and two data applications suggest that in certain settings, the pro-

posed fuzzy ensemble-based algorithms of clustering produce more accurate clusters

than the Fuzzy C-Means algorithm.

In both of the aforementioned cases, only the types of variables recorded on each

object were of importance in the clustering process. In Chapter 5 the types of vari-

ables recorded and their spatial nature are both of importance. An idea is presented

that combines applications to geodesics with categorical cluster analysis to deal with

the spatial and categorical nature of observations. The focus in this chapter is on

producing an accurate method of clustering the binary and spatial data objects found

in the Global Terrorism Database.

vi

Table of Contents

Dedication . iii

Acknowledgments . iv

Abstract . v

List of Tables . ix

List of Figures . xii

Chapter 1 Introduction . 1

1.1 History . 3

1.2 Classification . 9

Chapter 2 Cluster Analysis . 12

2.1 Popular Clustering Methods . 13

2.2 Cluster Goodness Evaluation . 22

2.3 (Dis) Similarity Measures . 27

2.4 Literature Review . 33

Chapter 3 Clustering Smoothed Dissimilarities in Tertiary Data 39

3.1 Background . 42

3.2 Method . 44

vii

3.3 Simulations . 51

3.4 An Application To Diabetes . 71

3.5 Discussion . 78

Chapter 4 Fuzzy Ensemble-Based Algorithms 82

4.1 Background . 86

4.2 Method . 94

4.3 Simulation Study . 99

4.4 Data Application . 129

4.5 Discussion . 140

Chapter 5 Plans for Future . 142

5.1 Introduction . 142

5.2 Clustering Binary Spatial Data . 143

Chapter 6 Conclusion . 151

Bibliography . 155

viii

List of Tables

Table 2.1 Cross-Tabulation of Two Clustering Partitions 23

Table 2.2 Pairwise Dissimilarity for Binary Data Objects Yi and Yj 30

Table 2.3 Pairwise Dissimilarity for Tertiary Data Objects Yi and Yj 32

Table 3.1 Cell Probabilities for a Pair of Tertiary Objects Yk and Yk′ 42

Table 3.2 Summary of matches and mismatches for a pair of objects Yk

and Yk′ . 44

Table 3.3 Cross-Tabulation of Two Partitions 51

Table 3.4 Parameter Settings for Multinomial Simulations 53

Table 3.5 Average ARI Values for the Average Linkage Clustering of Multi-
nomial Simulated Tertiary Data Assuming 200 Observations in
Each Cluster. 55

Table 3.6 Average ARI Values for the K-Medoids Clustering of Multino-
mial Simulated Tertiary Data Assuming 200 Observations in
Each Cluster. 58

Table 3.7 Average ARI Values for the Average Linkage Clustering of Multi-
nomial Simulated Tertiary Data Assuming an Unequal Number
of Observations in Each Cluster. 58

Table 3.8 Average ARI Values for the K-Medoids Clustering of Multino-
mial Simulated Tertiary Data Assuming an Unequal Number of
Observations in Each Cluster. 59

Table 3.9 Average ARI Values for the Average Linkage Clustering of Nor-
mally Simulated Tertiary Data Assuming Mutually Independent
Features. 64

Table 3.10 Average ARI Values for the K-Medoids Clustering of Normally
Simulated Tertiary Data Assuming Mutually Independent Features. 65

ix

Table 3.11 Average ARI Values for the Average Linkage Clustering of Nor-
mally Simulated Tertiary Data Assuming Dependency within
the Features. 65

Table 3.12 Average ARI Values for the K-Medoids Clustering of Normally
Simulated Tertiary Data Assuming Dependency within the Features. 66

Table 3.13 This table shows the variable cutoffs used to change the data
into tertiary categories. The final categories are ordinal. 73

Table 3.14 ARI values for the clustering of Pima Indian Women using K-
medoids and Average Linkage Algorithms using the unsmoothed
dissimilarities and three different smoothing methods. 77

Table 3.15 Confusion Matrix Formed Based on Average Linkage Clustering
of Unsmoothed Dissimilarities . 77

Table 3.16 Confusion Matrix Formed Based on Average Linkage Clustering
of Dissimilarities Pre-Smoothed under a Model of Independence . 78

Table 3.17 Confusion Matrix Formed Based on K-Medoids Clustering of
Unsmoothed Dissimilarities . 78

Table 3.18 Confusion Matrix Formed Based on K-Medoids Clustering of
Dissimilarities Pre-Smoothed under a Model of Independence . . . 78

Table 4.1 Possible Relabeling of 3 Clusters 96

Table 4.2 Cross-Tabulation of Two Partitions 98

Table 4.3 Hard Accuracy for Normally Distributed Data with Independent
Features . 105

Table 4.4 Soft Accuracy for Normally Distributed Data with Independent
Features . 106

Table 4.5 Hard Accuracy for Normally Distributed Data with Mutually
Dependent Features . 107

Table 4.6 Soft Accuracy for Normally Distributed Data with Mutually De-
pendent Features . 108

Table 4.7 Hard Accuracy for Lognormally Distributed Data with Indepen-
dent Features . 113

x

Table 4.8 Soft Accuracy for Lognormally Distributed Data with Indepen-
dent Features . 114

Table 4.9 Hard Accuracy for Lognormally Distributed Data with Depen-
dent Features . 118

Table 4.10 Soft Accuracy for Lognormal Data with Dependent Features 119

Table 4.11 Hard Accuracy for Student’s t-Distributed Data with Indepen-
dent Features . 123

Table 4.12 Soft Accuracy for t-Distributed Data with Independent Features . 124

Table 4.13 Hard Accuracy for Student’s t-Distributed Data with Dependent
Features . 127

Table 4.14 Soft Accuracy for t-Distributed Data with Dependent Features . . 128

Table 4.15 Confusion Matrix Formed from k-Nearest Neighbor-Based En-
semble Clustering of Wine Dataset 132

Table 4.16 Confusion Matrix Formed from Decision Tree-Based Ensemble
Clustering of Wine Dataset . 133

Table 4.17 Confusion Matrix Formed from Support Vector Machine-Based
Ensemble Clustering of Wine Dataset 133

Table 4.18 Confusion Matrix Formed from Fuzzy C-Means Clustering of
Wine Dataset . 133

Table 4.19 Accuracy of Wine Clustering Solutions 134

Table 4.20 Confusion Matrix Formed from k-Nearest Neighbor-Based En-
semble Clustering of Glass Dataset 136

Table 4.21 Confusion Matrix Formed from Decision Tree-Based Ensemble
Clustering of Glass Dataset . 137

Table 4.22 Confusion Matrix Formed from Support Vector Machine-Based
Ensemble Clustering of Glass Dataset 138

Table 4.23 Confusion Matrix Formed from Fuzzy C-Means Clustering of
Glass Dataset . 138

Table 4.24 Accuracy of Glass Clustering Solutions 139

xi

List of Figures

Figure 1.1 Czechanowski Matrix . 5

Figure 1.2 Zubin’s Method of Calculating Average Degree of Agreement . . . 6

Figure 1.3 Zubin’s Method of Calculating Intragroup Similarity 8

Figure 2.1 Example of a Dendrogram . 13

Figure 3.1 Plot of Average ARI Value Assuming an Equal Number of Ob-
servations from Each Cluster . 57

Figure 3.2 Plot of Average ARI Value Assuming an Unequal Number of
Observations from Each Cluster 59

Figure 3.3 Change in Average ARI Values for Average Linkage Clustered
Normally Distributed Data with Independent Features 67

Figure 3.4 Change in Average ARI Values for K-Medoids Clustered Nor-
mally Distributed Data with Independent Features 68

Figure 3.5 Change in Average ARI Values for Average Linkage Clustered
Normally Distributed Data with Dependent Features 69

Figure 3.6 Change in Average ARI Values for K-Medoids Clustered Nor-
mally Distributed Data with Dependent Features 70

Figure 3.7 Pima Indian Clusterings resulting from the Average Linkage
Algorithm . 74

Figure 3.8 Pima Indian Clusterings resulting from the K-Medoids Algorithm 75

Figure 3.9 Principal Component Plot of Pima Indian subjects 76

Figure 4.1 Hard Accuracy for Normally Distributed Data with Indepen-
dent Features . 103

xii

Figure 4.2 Hard Accuracy for Normally Distributed Data with Dependent
Features . 109

Figure 4.3 Hard Accuracy for Lognormal Data with Independent Features . . 115

Figure 4.4 Hard Accuracy for Lognormal Data with Dependent Features . . 120

Figure 4.5 Hard Accuracy of t-Distributed Data with Independent Features . 125

Figure 4.6 Hard Accuracy of t-Distributed Data with Dependent Features . . 129

Figure 4.7 Wine Observations in Space of First Two Principal Components . 130

Figure 4.8 Glass Observations in Space of First Two Principal Components . 131

Figure 4.9 Chi-Square Plots for Normality 132

Figure 4.10 Principle Component Plot of Wine Clusters 135

Figure 4.11 Principle Component Plot of Glass Clusters 139

Figure 5.1 Karney’s Ellipsoid used for Geodesics 146

xiii

Chapter 1

Introduction

The world is at a unique place in its history. We are able to track vital statistics,

exercise regimens, and smoking habits using compact wearable technology. We are

able to participate in forums with those across the country on common topics of

interests from the latest evolution in sports to the latest makeup releases. We are

able to communicate via telephone to those in other parts of the world and instantly

post and receive feedback on almost anything. There is no denying the current state

of affairs is much more advanced than anything we have ever seen in the history of

the human species. Yet, these advances bring challenges. How do we process this

information? How do we find patterns and meaning within this free and readily

available information? How can a business like Samsung use the data it collects

from smart watches to study the lifestyle habits of those who use their device? How

can those in the biological life sciences find similarities in those patients fighting a

common disease using only what information is collected in surveys completed in the

doctors’ office, and how can a clinical psychologist determine if there may be more

levels of depression than what may be shown in the current DSM-5 (APA, 2013) using

reader comments left on his/her personal blog for those dealing with depression? Is

it possible that the technological advances of the last few years can help us find the

answer?

Over the years, researchers from various fields such as business and the life sciences

have used traditional methods such as cluster analysis to find meaning in their data

with the hope that this additional information could then be used to serve other

1

needs. For example, Windgassen et al. (2018) argues that cluster analysis can be

used to help create complete clinical profiles for mental health patients that can

later be used to develop treatment regimen; while Grabowski, Herbeck, and Poon

(2018) provided a review of how the clustering of genetic sequences has been used in

epidemiology to identify clusters within HIV that can then be studied to learn about

transmission rates in sub-Saharan Africa. While these examples display some of the

more commonly perceived uses of cluster analysis, it has also been applied in another

context that may not seem quite as natural. Since the start of the 21st century,

cluster analysis has also been applied in text analytics. In this context, it has been

referred to as text mining.

Text mining is a term used to define machine learning methods by which in-

formative meaning can found in works of text. These “texts” may include books,

documents, or even webpages. The term can be thought of as an “umbrella” term

that refers to a host of methods including that of text-based clustering (Everitt et al.,

2011). Just like cluster analysis, text-based clustering has been employed in several

fields. Some examples include information retrieval where search engines employ such

methods to return the desired search results or in business where corporations like

Amazon have utilized it to cluster comments from its customers in order to make

recommendations (Huang, 2008).

This indicates that while cluster analysis is an older methodology, with one of

the earliest clustering methods dating back to the the early 19th century, it still

has important uses. With the ease of access to the World Wide Web and current

technological methods that make data collection much more efficient and affordable,

it has become a pressing issue to be able to classify it. The questions now become,

“Is it possible to make these traditional methods of multivariate classification more

efficient? Could classical methodologies in statistics be combined with modern ideas

to help meet this end goal?”

2

In this dissertation, we present multivariate methods of cluster analysis that can

be used to achieve this end. More specifically we present a method to create more

accurate clusters in tertiary data, introduce three fuzzy ensemble-based algorithms

for cluster analysis, and explore a future method in which spatial binary data may

be clustered using applications to geodesics. Improvements to the traditionally used

methods may impact those in fields ranging from business and hospitality to those in

the social and biological life sciences fields. But perhaps the answer to these questions

lie in not one field, but in the combination of many. To motivate this point, consider

the history of cluster analysis.

1.1 History

From pre-computer times until the present day, the field of cluster analysis has

evolved. One of the earliest methods developed began as a means of solving a problem

in anthropology. In 1909, Jan Czekanowski, a Polish anthropologist motivated by the

need to classify human remains, created a classification method that would precede

many modern-day methods of cluster analysis (Soltysiak and Jaskulski, 1999).

To motivate Czekanowski’s method, first consider the traditional framework used

to denote a set of n multivariate data objects, x = (x1,x2, . . . ,xn), each with P

observed measurements. Such data can be stored in a n× P matrix like X as shown

below:

X =


x11 x12 · · · x1P

... . . .

xn1 xn2 · · · xnP


In Czekanowski’s proposed method, the matrix X would be created using the bones’

measurements as the entries with the stipulation that variable types be the same.

3

In the next step, the average pairwise dissimilarity between objects were calculated

using the Manhattan distance (1.1)

dij = 1
P

P∑
p=1
|xip − xjp|, (1.1)

where dij denotes the average distance between objects i and j, xip denotes the ith

object’s measurement on the pth variable and xjp denotes the jth object’s measure-

ment on the pth variable (Soltysiak and Jaskulski, 1999). Next the average distances

were stored in a square matrix such that the measurements along the diagonals were

all 0 (since each object is identical to itself) and the off diagonals were positive (as

it is distance). After this the matrix was rearranged such that the objects closest to

each other were placed side-by-side as neighbors, and, in an effort to make cluster

visualization easier, graphical objects (like circles and squares) were used to denote

the distance between observations (Soltysiak and Jaskulski, 1999). For visualization,

the smallest distances were shown with a completely black square and the largest

distance with a completely white square. Object pairings with an average distance

that fell between the smallest and largest average distances of all possible pairings

were shown by a graphical image whose size was reflective of this distance (Soltysiak

and Jaskulski, 1999). In other words, the more similar a pair of objects are, (i.e.,

the smaller distance they have) the larger the graphical image. In the final step,

the matrix was rearranged once more so that the diagonals contained zero and the

smallest distances were shown closest to the diagonal as can be seen in Figure 1.1.

Though Czekanowski’s proposed method was limited by the fact that the variables

had to be of the same type (or transformed), and that only the Manhattan metric

was used, it was still considered a breakthrough method in its time as it could be used

with incomplete data and was fairly simple to use (Soltysiak and Jaskulski, 1999).

In fact, Soltysiak and Jaskulski (1999) argues that the most challenging aspect was

reorganizing the diagram in such a manner that clusters could be clearly identified;

while one of its biggest advantages was that it allowed users to visualize the potential

4

Figure 1.1 Czechanowski matrix showing distance between object pairs using dots.
The relative size of the black dots indicates closeness with bigger dots indicating
closer relationship and smaller dots showing greater distance between objects.
(Soltysiak and Jaskulski, 1999)

5

Figure 1.2 Example from Zubin (1938) depicting degree of agreement. In the
diagram, the body shows the number of questions on which each pair of individuals
agree.

clustering structure of the observations in two dimensions—a feat that had not been

possible before.

Decades later, psychologist Zubin (1938) used the survey responses of 136 peo-

ple to 70 questions on a “Personal Inquiry Form” to produce groups of like-minded

individuals. The participants in this survey included 68 schizophrenics and 68 con-

trols matched on various characteristics including gender and age. Zubin’s method

involved three steps:

1. Determine the average degree of agreement for each pair of individuals.

2. Sort individuals based on similarity scores.

3. Determine the actual patterns of agreement.

6

Within the first step, to find the average degree of agreement, Zubin counted the

number of items on which a pair of individuals agreed. In other words, the number

of items upon which their answers were the same. He organized this in a table such

that the diagonals had a value of 70 (as the diagonals represent a person’s degree of

agreement with themselves) and the off-diagonals denoted the degree of agreement

for the pairs. For an example of this, see Figure 1.2.

At the next step, individuals within the schizophrenic group were compared to

other individuals within the schizophrenic group (the same was done for the control

group). For this portion, Zubin looked at the number of times each individual in a

specific group agreed with his/her fellows in at least 45 items. (There is no discussion

of why 45 was chosen.) To see how this was tabulated, see Figure 1.3. These indi-

viduals were then grouped into two groups—those schizophrenics who agreed with

each other in at least 45 items and the controls who agreed with each other in at

least 45 items. Next, the number of items of agreement was reduced to 40. These

individuals were grouped together—one group for schizophrenics and a second for the

control. The process continued until there were a total of 8 subgroups. The last step

of Zubin’s method focused on determining what the actual agreement patterns were;

however, this was a qualitative interpretation of the cluster analysis rather than a

part of the algorithm.

Zubin’s method appears to be completely different than Czekanowski’s in its im-

plementation, but it has a similar purpose in that each researcher wanted to be able to

find sub-groupings within their data. For Zubin this was in terms of like-mindedness

(using categorical variables); whereas for Czekanowski it was actual measures related

to human bones (using quantitative variables). Regardless, each method met its

goal in finding objective methods upon which sub-groupings could be formed. These

methods preceeded modern day cluster analysis.

7

Figure 1.3 Example borrowed from Zubin (1938) depicting intragroup similarities.
The table shows the number of fellow individuals in which a particular individuals
agrees on at least 45 items.

Around this same time period and into the early 1940s, the first predecessors of

the modern computer were being built. Before long computers would be available in

many places. This allowed for the creation of more robust and complex methods of

cluster analysis. Not only could cluster analysis be done, it could be done more quickly

and efficiently than what was possible using Czekanowski’s and Zubin’s methods.

Since the advent of the computer, hundreds of clustering algorithms have been

proposed by computer scientists and researchers in a variety of fields. Therefore, it is

not surprising that in our present “big data” age, that again we rely on advances in

computers. Today, in fact, many more methods of cluster analysis have been invented

to deal with this special case of clustering.

Since trends in data collection show no signs of slowing and classification continues

to be important, it is unlikely that cluster analysis will lose relevance anytime soon.

Instead, it seems that the more pertinent issue is to be able to come up with more

8

efficient methods. Modern methods that are motivated by not just computer scientists

and statisticians, but quite possibly by practitioners in many diverse areas including

anthropology and psychology.

1.2 Classification

Modern methods of classification continue to apply ideas similar to those pro-

posed by Czekanowski and Zubin to find natural partitions that may exist in a set

of observations. However, the goal in classification may not always be to create sub-

groupings. Sometimes, the goal of the researcher may be to make predictions of

class membership for unknown observations. Other times, the intent may be to make

better predictions based on sub-groupings that can be formed utilizing some of the

information in the data. These three scenarios form the three branches of classifi-

cation used in modern-day statistics: supervised, unsupervised, and semi-supervised

learning.

To conceptualize each scenario, first assume there are n multivariate observa-

tions in a dataset each with P variable measurements recorded upon them. Further

suppose k of these observations include a label denoting class membership, and the

remaining n − k observations do not. With supervised learning, only the k labeled

observations are used to build a model that can be used to make class predictions

for the n − k unlabeled observations. In unsupervised learning, all n observations

are treated as if they are unlabeled and sub-groupings are formed, if possible, using

the multivariate observations on each object or some proximity measure. In this sce-

nario, the information about labels is ignored. Lastly, in semi-supervised learning, as

in unsupervised, all n objects are used—the k observations with membership labels

and the n − k that are not labeled. However, in this setting, the information about

the labeling is not ignored as in the unsupervised case. As each classification method

9

has its advantages and disadvantages that make them useful in certain settings or

inappropriate in others, each is equally important to the field of statistics.

Within supervised learning, as aforementioned, the primary goal is to make pre-

dictions about the the n−k unlabeled observations based solely on the k observations

that are labeled. To do this, the original dataset is segmented into two parts the train-

ing set and the testing set. The training set supervises the learning. The result of

training is a model or output learner that can then be used to predict the output for

the testing set. When the output is quantitative, the learners are usually referred to

as some type of regression; whereas, when the output is qualitative, the learners are

usually deemed classifiers.

Popular learners used in each setting differ based on the underlying assump-

tions about the data. Some examples of statistical models that may be used to

predict quantitative output include the ordinary least squares regression model or

the weighted least squares regression model. Alternatively, one may use a generalized

linear model like Poisson regression, for example, when the output is a particular

type of quantitative data. (In the Poisson case, the output is count data). On the

other hand, when the predictions are qualitative, learners may be trained using lo-

gistic regression, decision trees, support vector machines, or the k-nearest neighbor

classifier amongst others.

In unsupervised learning, as aforementioned, all n observations are treated as

unlabeled. This method may be used for exploratory data analysis and is helpful to

find natural groupings that may be present in the observations. Cluster analysis is

an example of this.

In semi-supervised learning, all n observations are used to build a learner. Com-

mon methods used in semi-supervised learning included self-training, co-learning,

expectation-maximization algorithms with generative models, and graph-based mod-

10

elling. We begin our discussion with a more in depth introduction to cluster analysis

in Chapter 2.

11

Chapter 2

Cluster Analysis

Cluster analysis is an unsupervised learning method. In computational fields, it

may be included within the umbrella term data mining. When it involves text, it

may be dubbed text mining, in psychology it may be called Q-analysis, and in biology

it may be described as numerical taxonomy (Everitt et al., 2011). Regardless of the

name, the goal of cluster analysis is usually to segment data observations into groups,

called “clusters”, such that observations within the same cluster are more similar to

each other than they are to any other observations in another cluster. Though a

plethora of algorithms for cluster analysis exist, they usually can be subdivided into

a few different methods. Five of the more popular methods include: hierarchical,

partitioning, fuzzy, model-based, and density-based methods. As no one class of

clustering methodology is always best, each method has its advantages and disadvan-

tages that may make them more applicable in one setting rather than in another. In

this section, there is a discussion of each of the aforementioned methods of cluster

analysis and a brief discussion of the advantages and disadvantages of each. There

is also a discussion of methods by which the goodness of clustering solutions can be

evaluated, and a discussion about commonly used measures to define similarity and

dissimilarity under various settings.

12

Figure 2.1 A dendrogram created from the fourth round of the 2018 British Open
where golfers were clustered based on scores at each of 18 holes.

2.1 Popular Clustering Methods

2.1.1 Hierarchical Methods

Hierarchical methods of cluster analysis build a hierarchy within the observations.

These methods may be agglomerative or divisive with the output of each being shown,

usually, with a dendrogram (example shown in Figure 2.1). The dendrogram depicts

the hierarchical structure of the data. In the case of agglomerative methods, this

hierarchy is built from the bottom up; whereas, in divisive methods, this hierarchy is

built from the top to the bottom. In the final stage of the clustering, the dendrogram

is cut wherever necessary to obtain the desired number of clusters. For an example

of this, consider Figure 2.1. The colors show where the dendrogram could be cut

to produce 3 clusters within the golfers. This serves as both an advantage and a

13

disadvantage of hierarchical methods. On the one hand, dendrograms are fairly easy

to understand. However, employing a hierarchical method will always result in a

hierarchy being built in the data—even when the latent structure of the data does

not support this assumption. To illustrate how these dendrograms (hierarchies) are

created, first consider the approach taken by an agglomerative method.

Algorithms of the agglomerative type begin with every observation being perceived

as a singleton cluster. At each level, pairs of observations are merged together based

on some measure of similarity or dissimilarity. This process repeats at every successive

level until only one cluster exists (at the top) that contains all observations. Common

methods of defining the similarity that is used to help determine what observations

should be merged at each iteration include single linkage, complete linkage, average

linkage, and Ward’s method. For notational purposes, assume there are two clusters

denoted as A and B. Furthermore assume that there are two data objects i ∈ A and

j ∈ B, then each method can be defined as shown below with dij representing the

distance between object i and j:

1. Single Linkage

d(A,B) = min
i∈A,j∈B

dij

2. Complete Linkage

d(A,B) = max
i∈A,j∈B

dij

3. Average Linkage

d(A,B) = 1
|A| |B|

∑
i∈A

∑
j∈B

dij

4. Ward’s method

d(A,B) =
∑
i∈A

di,Ā +
∑
j∈B

dj,B̄ −
∑

u∈A∪B
du,ū

Ward’s method of clustering merges the two pairs of clusters that result in

the least increase in the within-cluster variability as measured by the sum of

14

squared error (SSE) on each iteration of the algorithm. In the notation above,

di,Ā refers to the SSE between the observations in cluster A and their mean,

di,B̄ refers to the SSE between the observations in cluster B and their mean.

du,ū then refers to the SSE obtained by merging of clusters A and B. The goal

is by minimizing the within-cluster variability, the between cluster variability

is maximized.

Agglomerative methods of clustering can be implemented in several software pack-

ages. Two functions in R that can implement such hierarchical clustering include the

hclust function of the stats package, or the agnes function located in the cluster

package (Maechler et al., 2018). The PROC CLUSTER procedure can be used in SAS R©

as well.

For divisive methods, the process is reversed. Observations begin in one single

cluster. At each successive level of the hierarchy, the most heterogeneous observations

are removed based on a similarity or dissimilarity measure (typically the same ones

that may be used in an agglomerative approach). At the end of the process, each

observation is a singleton cluster. Divisive methods of clustering are not as commonly

used; however, they too can be implemented in R. One way to do this is through the

use of the diana function in the cluster package (Maechler et al., 2018).

2.1.2 Partitioning-Based Methods

Partitioning-based methods of cluster analysis divide a set of observations into

k clusters at once. They require that the number of clusters, k, to be created be

assigned a priori usually with the added stipulation that each observation can only

be a member of one partition (fuzzy methods do not have this stipulation). The

two most popular algorithms that implement partitioning methods of clustering are

the K-Means (MacQueen, 1967) and K-Medoids (Rousseeuw and Kaufman, 1987)

methods.

15

In the K-Means algorithm, an initial random set of k observations are chosen

as starting centroids. At the next step, the distance from each observation to each

centroid is computed using the Euclidean distance. Observations are then grouped

together with the closest centroid. Next, the overall mean is calculated for all cluster

members and this value becomes the new centroid for the cluster. (For the K-Means

algorithm the centroid need not be a cluster member). The last two steps repeat

until convergence occurs.

The K-Medoids algorithm is implemented in a similar manner as the K-Means

algorithm with the exceptions that Euclidean distance does not have to be used in

this case and the centroid no longer represents the cluster means. Instead it is called

a “medoid” and is the cluster member whose distance is closest to the overall mean

of its cluster members.

When comparing the two algorithms, the K-Medoids method of cluster analysis

is noted as being more robust in the presence of outliers than the K-Means algo-

rithm (Sanse and Sharma, 2015). However, the K-Means algorithm tends to be more

popular. Furthermore, the K-Medoids method can take a proximity measure as an

input; whereas, original observations have to be used within the K-Means algorithms

in order to calculate the Euclidean distance. Both algorithms are found in various

software packages. For example, the K-Means algorithm can be implemented in R

using the kmeans function in the stats package or the PROC FASTCLUS function in

SAS. The K-Medoids algorithm can be implemented using the pam function in the

cluster package (Maechler et al., 2018) in R.

2.1.3 Fuzzy Methods

We now discuss the subfield of cluster analysis known as fuzzy clustering. Let

X = [x1,x2, . . . ,xn]T denote a set of multivariate objects to cluster, and let C =

{C1, C2, . . . , Cc} denote a set of c disjoint and non-empty partitions of X such that

16

⋃c
j=1Cj = X. Now define uj(xk) = ukj where ukj denotes the grade of membership

for the kth object in the jth cluster. In the special case in which

ukj =


1 if xk ∈ Cj

0 otherwise

{uj : j = 1, 2, . . . , c} denotes a hard partition of X. In the general case in which

ukj ∈ [0, 1], {uj : j = 1, 2, . . . , c} is considered a fuzzy partition ofX. Fuzzy methods

of clustering remove the assumption that data objects belong to solely one cluster.

Instead, fuzzy-based methods allow for data objects to share similarity with more

than one cluster.

Arguably the most popular fuzzy method of clustering is the Fuzzy C-Means

algorithm (Bezdek, Ehrlich, and Full, 1984). For this algorithm in particular there are

the additional stipulations that ∑c
j=1 ukj = 1 and 0 ≤ ∑n

k=1 ukj ≤ n. The algorithm

then seeks to minimize the objective function

Qv(U ,m) =
c∑
j=1

n∑
k=1

uvkjd(xk,mj)

where U denotes a n× c matrix that contains the membership grades ukj, v denotes

the fuzzifier that controls the amount of fuzziness in the clustering solution, and

d(xk,mj) refers to the distance between object k and the center of cluster j, mj.

(Details of this algorithm are explained in more detail in Section 4.1). The cmeans

function of the e1071 package can be used to implement the Fuzzy C-Means algorithm

in R.

2.1.4 Model-Based Methods

Model-based clustering assumes data objects have arisen from a mixture of prob-

ability distributions. Through such a method, they are able to determine the number

of clusters that exist in a data set, to identify clusters of various shapes, and han-

dle noisy observations. To motivate this method of clustering, consider a population

17

with G subpopulations and a set of multivariate data objects x = (x1,x2, ...,xn).

In model-based clustering each of the G subpopulations is assumed to have arisen

from an underlying distribution fk(x;θ) for k = 1, 2, ..., G, where θ is a vector of un-

known parameters. In this context, the problem of clustering observations amounts

to assigning objects to clusters in a manner that maximizes the complete likelihood

function,

L(x;θ) = ΠG
k=1fk(x;θ). (2.1)

where fk(x;θ) denotes the probability distribution of the kth subpopulation. One

aspect commonly explored with model-based clustering is the determination of the

appropriate probability model or models that should be used to define clusters in

differing scenarios. Typically this is done based on some assumed features of the

clusters. For example, Fraley and Raftery (2002) discuss how when the underlying

distributions are believed to be a mixture of Gaussian distributions with a covariance

structure defined as Σk = σ2I, then the shape of the clusters will be spherical having

the same size and shapes, as considered by Ward (1963). When the covariance struc-

ture can be defined as Σk = Σ for all clusters, then the shape of the clusters will be

ellipsoidal having the same size, shape, and orientation (Friedman and Rubin, 1967).

Banfield and Raftery (1993) proposed a method to change this so that additional

features could be found from the data, other families of distributions could be fit,

and noise could be implemented in the model. In particular, they proposed using

the eigenvalue decomposition of the covariance matrix to determine the features (like

orientation, size, and shape) of the clusters that will be the same across all clusters

and those that may differ across clusters.

To discuss this, the notation from Banfield and Raftery (1993) is borrowed. Con-

sider the eigenvalue decomposition of the covariance matrix, Σk=DkΛkD
T
k , where

Dk denotes the matrix of eigenvectors of Σk and Λk = λkAk denotes the square ma-

trix with the eigenvalues of Σk on the diagonal. Banfield and Raftery (1993) argues

18

that feature specification can be controlled by making changes to different matrices

from this decomposition. In particular, Dk determines the orientation of each cluster,

Ak determines the shape of each cluster, and λk determines the size of each cluster

(Banfield and Raftery, 1993).

In the case of the MVN(µk,Σk) distributions the complete likelihood function,

can be written as

L(x;θ) = Πn
i=1ΠG

k=1 (2πΣk)−
1
2 exp

{
−1

2(xi − µk)TΣ−1
k (xi − µk)

}

However, as aforementioned, the distributions need not be Gaussian. To this end,

Banfield and Raftery (1993) propose a method to extend the model-based frame-

work to non-Gaussian distributions. For a starting point, consider the complete data

likelihood function as shown in Equation (2.1). The paper recognizes that in gen-

eral, Equation (2.1) is enough for most non-Gaussian cases; however, they propose

the use of a local parameterization to fit other distributions. In this case, consider

zi = Dk(xi − µk), where Dk are matrices and let zi have the density denoted by

gk(zi;θ). From this framework then, much like Equation (2.1) was maximized, one

can instead maximize this likelihood with gk(zi;θ) in place of fk(x;θ).

Thus model-based clustering solves several issues that may plague other methods

of clustering. In this method, since each cluster refers to a subpopulation within

a probability model, and noise or outlying values are implemented as a component

of the model, issues involving the best number of clusters to be fit are solved using

criteria such as the Bayesian Information Criterion.

A popular algorithm that implements this type of clustering is the EM algorithm

(Dempster, Laird, and Rubin, 1977). This algorithm tries to find the appropriate

mixture distributions of the latent variables from which the data objects are assumed

to have arisen. To do this, there are two steps:

19

1. Expectation Step: The conditional expectation for the complete log-likelihood

given the observed data and current estimate for the parameters is evaluated.

2. Maximization Step: New estimates for the parameters are calculated by maxi-

mizing the expected log-likelihood found on the expectation step.

These two steps repeat until the log-likelihood no longer changes. The Mclust

function of the mclust package (Scrucca et al., 2016) and PROC MI function in SAS

can be used to implement model-based clustering via the EM algorithm. However,

the method employed in these packages assumes the clusters have arisen from a finite

mixture of Gaussian distributions.

2.1.5 Density-Based Methods

Density-based methods of cluster analysis try to find clusters based on the density

in a region. Pertinent to any density-based method of cluster analysis are the concepts

of neighborhood, density and connectivity. To illustrate these concepts, consider a

data point, x. In these methods, the ε-neighborhood refers to the ball that could be

formed of radius ε > 0 with x at the center. Density, then, often refers to the number

of observations or the fraction of observations (sometimes referred to as the mass)

contained within the ε ball centered at x. Perhaps the most popular algorithm im-

plementing this method of clustering is that of the “Density Based Spatial Clustering

of Applications with Noise” (Ester et al., 1996) often abbreviated as DBSCAN. The

different types of connectivity will be explained in terms of this particular algorithm.

In the DBSCAN algorithm, the previously mentioned observation x, may or may

not be considered a core point. DBSCAN requires an ε value and a minpt value to be

specified a priori. The value specified in the minpt command refers to the minimum

number of observations that must be contained within the ε-neighborhood of x for it

to be considered a core point. Any observation within the ε-neighborhood of x then

would be considered density reachable (one type of connectivity) from x. To motivate

20

an additional method of connectivity, suppose there exist two other points, x2 and x3,

such that x2 is density reachable from x but x3 is not. If x3 is density reachable from

x2, then x and x3 are said to be density connected. Through these concepts then, the

DBSCAN can also recognize points on a cluster boundary and points that are noise.

Any observation whose ε-neighborhood consist of less than the minpt specified, but is

density connected to at least one other point is called a border point. If a point were

not density connected to another point, then it would be considered a noise point.

Density-based methods of clustering are able to identify clustering formations that

are of different shapes and sizes and often employ a method to address issues such as

boundary point and noise identification; however for the DBSCAN algorithm, because

it requires the ε and minpt values to be given a priori without a proven method of

doing such clustering solutions may vary with different inputs (Albalate and Minker,

2011). This particular clustering algorithm can be implemented using the dbscan

function in the dbscan package of R.

2.1.6 Comparison of Methods

Each of the different methods for clustering observations are useful in various

settings. However, there are some cases in which one method may outperform an-

other. In particular, partitioning-based algorithms like the K-Means, K-Medoids,

and K-Modes algorithms have been found to be more computationally efficient than

hierarchical methods when the data set is large (see e.g., Sanse and Sharma (2015) or

Huang (1997a)). However, the K-Means algorithm is known to perform poorly in the

presence of noisy or outlying data. These methods also identify clustering solutions

that are locally optimum and not necessarily globally optimum (Sanse and Sharma,

2015) which may be a problem in some settings. Hierarchical methods, on the other

hand tend to be less sensitive to outliers and have the added advantage that a solution

with any number of clusters can be obtained by cutting the dendrogram wherever

21

one deems necessary. These algorithms also tend to be able to handle different types

of observations; however, they are not able to scale well, which is the reason they are

often not used in the clustering of very large data sets (Sanse and Sharma, 2015).

Hierarchical methods also are limited in that once a cluster is merged or divided, the

operation can not be undone.

Model-based clustering is another method that is robust to noisy data or outlying

values. It also has the advantage that the number of clusters can be found objectively

unlike many of the partitioning-based methods. However, model-based clustering

methods tend to be more complex in nature (Sanse and Sharma, 2015). Lastly,

density-based methods of clustering, too, perform well in the presence of noisy data.

However, many of these algorithms tend to break down in high-dimensional data sets.

Algorithms of this type have the additional advantage, like the model-based methods,

that they do not require the number of clusters to be known a priori. They also can

fit clusters of arbitrary shapes (Sanse and Sharma, 2015).

2.2 Cluster Goodness Evaluation

As cluster analysis is an unsupervised method of classification, it is important to

measure the quality of a clustering solution. Consequently, much study over the years

has focused in ways to adequately measure cluster goodness. Cluster goodness can be

thought of as a method of evaluating a clustering solution in terms of some specified

criterion. Methods that may be used vary depending on whether class labels are

available and the type of clustering algorithm being used. In this section, commonly

used relative, external, and internal measures will be discussed.

2.2.1 Relative Cluster Evaluation

Relative methods of evaluating clustering solutions compare the results of two

opposing methods. Two commonly used relative measures include the Rand (Rand,

22

1971) and Adjusted Rand Index (Hubert and Arabie, 1985). The formulas for each are

given below, as well as additional information about their range of possible values. To

motivate each method, consider Table 2.1 from McNicholas (2017), which shows the

cross-tabulation of two clustering solutions from two different clustering algorithms.

In the table, A denotes the number of pairs of data objects placed in the same group by

both methods, B denotes the number of pairs of data objects put in different groups by

method one and in the same group by method two (C denotes the reverse). D denotes

the number of pairs of data objects placed in different groups by both methods. Using

this table, the measures are defined as follows:

Table 2.1 Cross-Tabulation of Two Clustering
Partitions

Partition One
Partition

Two
Same
Group

Different
Group

Totals

Same
Group

A B A+B

Different
Group

C D C +D

Totals A+ C B +D N

1. Rand Index (RI):

RI = A+D

N

The RI takes values inclusively between 0 and 1 with smaller values indicating

less agreement between two clustering solutions and a larger value indicating

higher agreement. A value of 0 denotes no agreement and 1 denotes complete

agreement between two clustering solutions.

2. Adjusted Rand Index (ARI):

ARI = N(A+D)− [(A+B)(A+ C) + (C +D)(B +D)]
N2 − [(A+B)(A+ C) + (C +D)(B +D)]

23

The ARI (Hubert and Arabie, 1985) is a correction to the RI introduced to

adjust for inflation resulting from chance agreement between two partitions

(McNicholas, 2017). The ARI can take on negative values or positive values as

large as 1 with values closer to 1 denoting higher agreement between two parti-

tions. A value of 0 denotes partitions equivalent to matching by chance; while

negative values denote worse than chance classification (see e.g. McNicholas

(2017)).

2.2.2 External Cluster Evaluation

Sometimes the actual class labels may be known. This is usually the case in

artificial settings such as simulation studies or in simple examples. In this case,

cluster goodness is an evaluation of how a particular clustering solution compares to

these known labels. Some commonly used measures in this particular setting include

the entropy and purity.

1. Entropy:

ej = −
L∑
l=1

log2 (pjl) (2.2)

Equation (2.2) denotes the entropy for a particular cluster, j. Here, l denotes a

known class label with a total of L known classes, and pjl denotes the probability

that an object classified as l is in cluster j.

E(C) = −
K∑
j=1

nj
n
ej (2.3)

Equation (2.3) denotes the total entropy for a clustering solution, C. In this

equation, ej denotes the entropy of cluster j, K denotes the total number of

clusters, nj denotes the the total number of items in cluster j, and n denotes

the total number of data objects.

24

Entropy values are bounded below by 0 and bounded above by log(n) for finite

clusters. Since entropy is a measure of heterogeneity, lower values indicate

better clustering solutions (Albalate and Minker, 2011).

2. Purity:

Pj = max
l

(pjl) (2.4)

Equation (2.4) denotes the purity for an individual cluster, j. In this equation,

l and pjl are defined the same as for cluster entropy.

P (C) = −
K∑
j=1

nj
n
Pj (2.5)

Equation (2.5) denotes the purity for a particular clustering solution, C, with

j, K, nj, and n defined as before. Pj denotes the purity for cluster j.

Measures of purity are bounded between 0 and 1 with values closer to 1 indicat-

ing a better clustering solution. A purity value of 1 indicates that the clustering

solution aligns perfectly with the known class labels and a value of 0 denotes

no agreement.

2.2.3 Internal Cluster Evaluation

When class labels are not known and a practitioner is interested in evaluating one

particular clustering solution, cluster goodness may be evaluated using an internal

measure. These measures usually look to maximize the inter-cluster separation and

minimize the intra-cluster separation based on some criteria. They are commonly

used to address the appropriate number of clusters that should be fit from the data.

Some of the more commonly used measures for this purpose include the cluster silhou-

ette width (Rousseeuw, 1987), Gap statistic (Tibshirani, Walther, and Hastie, 2001),

cophenetic correlation, and the Davies-Bouldin index (Davies and Bouldin, 1979).

1. Silhouette width:

sil(xi) = b̄(i)− ā(i)
max(ā(i), b̄(i))

(2.6)

25

Equation (2.6) refers to the silhouette width of the ith data object, where ā(i)

denotes the average distance between the ith object and all other objects in its

respective cluster and b̄(i) refers to the average distance between the ith object

and all other objects in the nearest cluster.

sil(Cj) = 1
|Cj|

∑
xi∈Cj

sil(xi) (2.7)

sil(K) = 1
K

K∑
j=1

sil(Cj) (2.8)

Equation (2.7) refers to the silhouette width of cluster Cj, and Equation (2.8)

refers to the average silhouette width of a particular clustering solution with

K total clusters. The value of K that maximizes the average silhouette width

shown in Equation (2.8) is considered to be the optimum number of clusters.

2. Gap Statistic:

Wk =
K∑
j=1

1
2nj

∑
i,i′∈Cj

D(i, i′) (2.9)

Equation (2.9) measures the inter-cluster distance of a particular clustering

solution with K total clusters. In this equation, Cj refers to the jth cluster,

nj denotes the number of objects in the jth cluster, and D(i, i′) refers to the

distance between the ith and i′th object in cluster Cj.

Gap(K) = E(log(WK))− log(WK) (2.10)

Equation (2.10) gives the actual Gap statistic that is used in practice to deter-

mine the optimum number of clusters, K, to be fit within the data. Albalate

and Minker (2011) mention that often the E(log(WK)) is computed using a

Monte-Carlo simulation, thus the optimum value of K is denoted as

min
K

: Gap(K) ≥ Gap(K + 1)− sK+1

where sK+1 is a factor of the Monte-Carlo simulated standard error of WKb.

26

3. Cophenetic Correlation:

c =
∑
i<i′(D(i, i′)− x̄)(t(i, i′)− t)√

[∑i<i′(D(i, i′)− x̄)2][∑i<i′(t(i, i′)− t̄)2]
(2.11)

The c in Equation (2.11) refers to the cophenetic correlation for use with hi-

erarchical clustering solutions. In this equation, D(i, i′) denotes the Euclidean

distance between the ith and i′th data objects and t(i, i′) denotes the distance at

which the ith and i′th objects are joined together (height on the dendrogram).

x̄ refers to the average distance (across all observations) between the ith and

i′th object, and t̄ refers to the average of the t(i, i′) values. This measure is

commonly used in biostatistics to measure the quality of cluster-based models

created for DNA-sequences (Saraçli, Doğan, and Doğan, 2013). A higher value

of c denotes a better dendrogramatic solution.

4. Davies-Bouldin (DB) Index:

DB(K) = 1
K

K∑
j=1

max
k 6=j

D(C̄j) +D(C̄k)
D(Cj, Ck)

(2.12)

Equation (2.12) refers to the DB index for a particular clustering solution with

K total clusters. D(C̄j) and D(C̄k) refer to the average distance between

all cluster members and the centroid of the jth and kth cluster, respectively;

whereas D(Cj, Ck) refers to the distance between the centroids of the two clus-

ters. This index may be used to determine the optimum number of clusters to

be fit, by choosing the value of K that minimizes the DB index.

2.3 (Dis) Similarity Measures for Cluster Analysis

In the introduction of this chapter, it was mentioned that clustering methods seek

to group objects in a manner such that objects in the same group are more similar

to each other than they are to objects in different groups. Consequently, the concept

of similarity or dissimilarity is pertinent to many clustering methods. In this section,

27

commonly used measures of similarity and dissimilarity are defined in the context of

multivariate cluster analysis. To motivate these concepts, assume there are n data

objects, each having P attribute measurements that can be stored in a n × P data

matrix, X as shown below.

X =


x11 x12 · · · x1P

... . . .

xn1 xn2 · · · xnP

 .

In the matrix, X, each row corresponds to one data object, xi, and each entry in

the matrix, xip, gives the ith object’s measurement on the pth variable. To begin

the process of clustering, some algorithms will take the matrix, X, containing the

original data observation, as an input. Others allow for matrices containing measures

of similarity or dissimilarity to be used. These may be called proximity matrices. To

illustrate such a matrix, we first define the concept of pairwise dissimilarity.

Consider two observations from X, xi and xj. Pairwise dissimilarity may be

defined as shown in Equation (2.13).

D(xi,xj) =
P∑
p=1

dp(xip, xjp) (2.13)

In Equation (2.13), dp(xip, xjp) refers to how different the ith object is from the jth

object on the pth variable’s measurement. These values, in turn, can be stored in a

n × n dissimilarity matrix, D as shown below. For simpler notation, let dij denote

D(xi,xj).

D =


d11 d12 · · · d1n

... . . .

dn1 dn2 · · · dnn

 .

D is considered a type of proximity matrix. Similarly, if instead of dissimilarity,

similarities were stored in its place, this too would constitute a proximity matrix.

As aforementioned, regardless of whether clustering is being performed directly using

28

a matrix like X or with a proximity matrix like D, the definition of similarity and

dissimilarity are key components to any method. Therefore, some commonly used

methods will be defined next.

The most appropriate definition for similarity or dissimilarity will depend upon

the subject area and the types of attributes being used in the analysis. It will also

depend on whether the original data or some other measures are being used as input.

Even then, the most one could hope for is to choose a more appropriate measure

rather than best measure.

2.3.1 Quantitative Variable Measurements

The multivariate observations may be completely quantitative, completely quali-

tative or a mixture of both. When observation measurements are completely quan-

titative, similarity, rather than dissimilarity, is often used and is commonly defined

in terms of distance. For each method we assume there are two multivariate objects

xi and xj each with P attribute measurements. Some commonly used measures of

similarity that may be used include:

1. Euclidean Distance

d(xi,xj) =

√√√√ P∑
p=1

(xip − xjp)2

2. Manhattan Distance

d(xi,xj) =
P∑
p=1
|xip − xjp|

3. Pearson Correlation

ρ(xi,xj) =
∑
p(xip − x̄i)(xjp − x̄j)√∑

p(xip − x̄i)2∑
p(xjp − x̄j)2

4. Minkowski’s Distance

d(xi,xj) = (
P∑
p=1
|xip − xjp|k)

1
k

29

5. Cosine Similarity

s(xi,xj) = cos(θ) = xi · xj

||xi|| ||xj||

2.3.2 Qualitative Variable Measurements

When variable measurements are completely qualitative, similarity may be defined

in various manners since distance is not as natural in this setting. To discuss this,

consider the simplest case of qualitative data—the binary case.

Table 3.1 (taken from Everitt et al. (2011)) shows two binary data objects Yi and

Yj that, on each of the P variables, can have one of two outcomes denoted as 0 and

1. In the table, a denotes the number of variable measurements upon which both

Table 2.2 Pairwise Dissimilarity for Binary Data
Objects Yi and Yj

Yj

Yi 1 0 Totals
1 a b a+ b

0 c d c+ d

Totals a+ c b+ d P

objects, Yi and Yj, have variable outcomes in category 1. b denotes the number of

variable measurements upon which, object Yj has an outcome in category 0, while

Yi has an outcome in category 1. c denotes the number of variable measurements

upon which object Yi has a value of 1, when Yj has a value of 0. Lastly, d denotes

the number of variable measurements upon which both objects have a categorical

outcome of 0. The total number of variable measurements then, is a+ b+ c+ d = P .

Using this table’s notation, some similarity measures that can be used for the

clustering of binary data from Everitt et al. (2011) include:

1. Matching Coefficient

sij = a+ d

P

30

2. Jaccard coefficient

sij = a

a+ b+ c

3. Rogers and Tanimoto

sij = a+ d

a+ 2(b+ c) + d

4. Sneath and Sokal

sij = a

a+ 2(b+ c)

5. Gower and Legendre

sij = a+ d

a+ 1
2(b+ c) + d

A more extensive list of similarity measures that can be used for the clustering

(or classification) of binary data can be found in Choi, Cha, and Tappert (2009). In

this article, the measures are defined based on a similar table as shown in Table 3.1;

however, in this case, the binary outcomes of zero denote the absence of a particular

feature.

When the variable measurements being used have more than two categories, most

methods use similar methods that have been generalized to deal with more classes.

Boriah, Chandola, and Kumar (2008) gives an extensive survey of some of these

measures.

2.3.3 Mixed Variable Measurements

When data objects are mixed types, most measures of similarity are defined by

combining similarities of both types. One example is that of K-Prototypes (Huang,

1997b). K-Prototypes applies a different similarity measure for each variable type—

the quantitative variable measurements of each pair of observations are compared us-

ing Euclidean distance; whereas the qualitative parts are compared using the match-

ing coefficient. For a clearer discussion of how the matching coefficient could be

generalized, we take up the case for the tertiary case.

31

2.3.4 Similarity and Dissimilarity for Tertiary Data Objects

Similarity, for a pair of tertiary objects, typically refers to the proportion of vari-

able measurements upon which a pair of objects have the same outcome. Thus dis-

similarity for tertiary data observations is calculated as the proportion of mismatches

among P tertiary attribute measurements for each pair of observations.

Table 2.3 Pairwise Dissimilarity for Tertiary Data
Objects Yi and Yj

Yj

Yi 1 2 3 Totals
1 a b c a+ b+ c

2 d e f d+ e+ f

3 g h i g + h+ i

Totals a+ d+ g b+ e+ h c+ f + i P

Consider Table 2.3 which depicts the cross-tabulation of two objects, Yi and Yj,

from whence we demonstrate the notion of “pairwise dissimilarity" for the tertiary

case. In this table, each attribute has an outcome of 1, 2, or 3 denoting its mem-

bership. Letters a, e, and i represent the total number of variables upon which both

objects have outcomes denoted as 1, 2, and 3, respectively. The other letters denote

the number of attributes on which objects Yi and Yj have different membership. For

example, b denotes the number of variables for which object Yi has a value of 1 and

object Yj has a value of 2; similarly, c denotes the number of variables for which

object Yi has a value of 1 and Yj has a value of 3. Based on this 3 × 3 table, we

define similarity as

sij = 1
P

(a+ e+ i)

and dissimilarity as

dij = 1− sij.

32

Using these values a dissimilarity matrix D can be formed as before.

D =


d11 d12 · · · d1n

... . . .

dn1 dn2 · · · dnn

 .

This particular method of defining dissimilarity could be thought of as a generaliza-

tion of the matching coefficient method that is often used in the binary case or the

overlap method that may be used in computer science. In this method, matches and

mismatches are weighted equally. However, other methods of calculating dissimilari-

ties for use with categorical attributes are available and vary depending upon the field

of use. As aforementioned, Boriah, Chandola, and Kumar (2008) gives an extensive

survey of measures that can be used along with a comparison of each method’s ability

to detect outliers.

2.4 Literature Review: Algorithms for Clustering Categorical

Data

The problem of clustering categorical data does not appear to have been studied

much until the late 1990s after being recognized as a severe deficit in the field of

data mining. At this point in time, the K-Means algorithm (MacQueen, 1967) had

been cited in many articles (and continues to be cited) for being one of the most

computationally efficient algorithms for the processing of large data sets compared to

other competing algorithms (Huang, 2008). However, since the K-Means algorithm

assumes all attribute measurements are quantitative, it had not been able to be used

for clustering of categorical data objects. To remedy this, Ralambondrainy (1995)

proposed a method to handle this using the K-Means algorithm by first transforming

all the categorical variables into binary data objects. Huang (1997a) suggests that

this method, while it worked on smaller data sets, may not be feasible for use on

large data sets or with high dimensional data. It was further argued in Huang and

33

Ng (1999) that since binary coding was used, that the centers for the K-Means were

not really representative of the true underlying clusters of the data. Because of the

first reasoning, Huang (1997a) proposed the use of the K-Modes algorithm. The

K-Modes algorithms works similarly to the K-Means algorithm, but with a few key

differences. In the K-Modes algorithm, an initial set of k data objects are randomly

chosen as the modes of each cluster. Then the following three steps iterate:

1. The distance between each data object and each mode is calculated.

2. Data objects are assigned to the cluster within which the distance to the mode

is shortest.

3. A new mode is selected for each cluster.

If the values for the mode (in Step 3) are the same as the previous mode, the algorithm

stops. If not, the steps repeat until the modes no longer change.

The proposal of the K-Modes algorithm was and continues to be significant to

the clustering of categorical data as it allows for there to still be convergence to a

local minimum, as is done with K-Means, and maintains an equivalent computational

efficiency (Huang, 1997a) meaning it is possible to still work in the clustering of large

data sets of categorical data in sufficient time. One key difference between K-Means

and K-Modes is that the centers for the K-Modes algorithm are the modes, and thus

each center represents the modal categorical value of each attribute at each iteration.

Another is that there is no reliance on the Euclidean distance in K-Modes. Instead,

the K-Modes algorithm uses the simple matching coefficient to calculate distance. In

this case, Equation (2.13) has

dp(xip, xjp) =


0 for xip = xjp

1 for xip 6= xjp

.

34

In Huang and Ng (1999) a fuzzy K-Modes algorithm is proposed. This algorithm

mimics that of fuzzy K-Means with the difference being it allows for categorical

attribute measurements. Because this algorithm is a fuzzy method, data objects are

allowed membership in more than one cluster. This is one of the major differences

between fuzzy K-Modes and the original K-Modes algorithm. The original K-Modes is

considered a hard partitioning method because data objects are allowed membership

in only one cluster. The fuzzy method is considered a soft partitioning method as it

assigns objects to all clusters with a corresponding membership confidence. Thus with

the proposal of fuzzy K-Modes, Huang and Ng improved upon the original method via

the use of the fuzzy dissimilarity matrix and the corresponding confidence values that

allow for identification of boundary objects. Thus this algorithm provides a method

that may be useful in many data mining settings where an issue is identification of

boundary objects (Huang and Ng, 1999).

Another interesting approach to clustering of categorical data, proposed a few

years later, is that of K-Histograms (He et al., 2005). This algorithm is another

one that attempts to keep the desirable properties of the K-Means algorithm while

allowing for categorical data. However, it differs from that of K-Means, and both

versions of the K-Modes algorithms in that the centers of a cluster are represented

by histograms. The authors showed in this paper, that on real data sets, the cluster

partition accuracy beat that of K-Modes.

The original K-Modes and the fuzzy K-Modes algorithms, as well as the K-

Histograms algorithm, are examples of partitioning-based methods of clustering. The

Robust Clustering Algorithm for Categorical Attributes (ROCK) (Guha, Rastogi,

and Shim, 2000) was possibly the first hierarchical method proposed for the cluster-

ing of categorical data. This agglomerative method differs from that of traditional

hierarchical methods by using the concept of links instead of distance to merge data

objects. The motivation for this method appears to be the clustering of market bas-

35

ket transactions. Consequently, it uses the number of links between a pair of objects,

defined as the number of common neighbors between the two points, where objects

are neighbors if there similarity is above a common threshold, to measure similarity.

This measure is then used at each level of the hierarchy to determine observations

that should be merged together.

Since the invention of the four aforementioned algorithms, a plethora of additional

algorithms for the clustering of categorical data have been proposed. Several of the

more recent algorithm proposals have been influenced by the aforementioned ones and

encompass several diverse topics such as genetics, ensembles, and swarm intelligence.

Gan, Wu, and Yang (2009) proposed a genetic fuzzy K-Modes algorithm specifi-

cally for use with genetic categorical data. This algorithm amended the original five-

step genetic algorithm by adding the fuzzy K-Modes algorithm in the final crossover

step. By doing this, the author hoped the resulting clustering algorithms would be

more closely resemblant of the true underlying structure of genetic data.

Ensemble methods of clustering have also been proposed in recent literature.

These methods are based on the idea that no single clustering algorithm provides

the best and most accurate result in all settings (Vega-Pons and Ruiz-Shulcloper,

2011). Therefore, ensemble methods try to combine several algorithms in two steps.

The first step is the generation step in which several clustering algorithms may be run

to get several different clustering solutions. Many of these methods use the K-Means

algorithm here with different initial centers to create various clustering solutions. In

the second step, the consensus step, the clustering solutions are combined into one

final clustering partition. In Sarumathi, Shanthi, and Sharmila (2013) a survey of

different ensemble methods for categorical data are provided. These methods include

the Weighted Cluster Ensemble, K-Means Cluster Ensemble based on center match-

ing, Extended Evidence Accumulation Clustering Ensemble, Squared Error Adjacent

Matrix Cluster Ensemble, and Bayesian Cluster Ensemble Method, among many

36

other methods that have been used in particular for categorical data clustering for

data mining purposes. While each of these methods are based on the combination of

algorithms, other algorithms that have been proposed look to nature for inspiration.

Masmoudi et al. (2015) is a clustering method proposed for binary data, in par-

ticular, data that result from survey responses that may have multiple modes. The

algorithm uses swarm intelligence as its inspiration. Clustering methods inspired by

swarm intelligence seek to replicate the manner in which ants in nature are able to

group themselves with other similar ants and then act as one homogeneous unit. To

do this, Masmoudi et al. (2015) use the ideas of pheromone rates and thresholds

of affiliation to create clusters. Though this method is not considered an ensemble

method, it uses the K-Means algorithm as a precursory step to determine the initial

k centers for the CL-ant algorithm. Based on these a preliminary partition is formed.

The next step is where the clustering process for the ant-based method begins. In

this step a dynamic graph is formed that retains the original data clusters from the

first step. In this graph, the original cluster represent nodes on a graph, and artificial

ants are used to represent each data object. From here ants move from one cluster to

another cluster by choosing a path that has a stronger pheromone concentration than

its current cluster. At this point, if the similarity as measured between the ant and

the centroid of the desired cluster is greater than or equal to the specified threshold of

affiliation, the ant joins that cluster (Masmoudi et al., 2015). The CL-Ant method is

a swarm-based method for categorical data with roots in biomimetics, but statistical

methods of clustering categorical data have also been proposed.

Jacques and Biernacki (2018) presents a statistical-based method for the co-

clustering of ordinal data. Ordinal data is categorical data in which the categories

show order. Such data may result from surveys in which a customer is asked to list a

preference. Co-clustering, then, attempts to define partitions within both, the original

data set and within the variables measured upon each object, called features. Then

37

co-clusters, or blocks, are obtained by crossing the resulting partitions. The goal is

that the final blocks maintain all features and each observation is in one and only one

block. Jacques and Biernacki (2018) does this using a Binary Ordinal Search Model

probability distribution (Biernacki and Jacques, 2016) and estimates the model’s two

parameters, πkl and µkl, using a SEM-Gibbs algorithm. In this model, πkl denotes

the precision parameter and µkl denotes the position parameter.

Recently, Nguyen and Kuo (2019) proposed a two step algorithm, the Partition

and Merge Based Fuzzy Genetic Clustering Algorithm (PM-FGCA) with the intention

of providing more accurate clusters in chromosomes. The algorithm repeats two steps

until the desired number of clusters is reached. Step one consists of partitioning

the dataset into the maximum number of clusters possible and step two consists

of merging the two clusters whose inter-cluster distance is smallest. In this paper,

the authors find the PM-FGCA outperforms other categorical methods including the

K-Modes, the fuzzy K-Modes, and the genetic fuzzy K-Modes algorithms.

There are many other algorithms for the clustering of categorical data that have

been proposed beyond what has been covered in this section. Many of these algo-

rithms focus on computational efficiency and show algorithmic ways to handle noisy

data. In Chapter 3 we propose a method to handle noisy data with a connection to

statistics. In that chapter we present a method of clustering tertiary data objects

that may be used in any existing algorithm that can take a proximity or dissimilarity

matrix as an input. The focus in this method is to increase the cluster partition ac-

curacy in the presence of noisy data with the hope being that it can be implemented

in methods that are already computationally efficient to improve the accuracy of the

clustering solution.

38

Chapter 3

Clustering Smoothed Dissimilarities in Tertiary

Data

Suppose there exists a set of grade-school students upon which we measure perfor-

mance in subjects like Mathematics, Reading, English, and History as being “below”,

“meeting,” or “exceeding” the expectations set by a local school district. Suppose

further that the interest is to determine whether there exist subgroups within the

students such that students in the same group are more similar to each other than

they are to students in other groups. How can such groupings be formed, if possible,

when the only measurements recorded for each student is “below”, “meeting”, or “ex-

ceeding” the pre-determined standards in each subject? In this paper we introduce a

method of creating such groups in such settings using cluster analysis and show this

method results in the formation of more accurate cluster partitions than a standard

approach under certain conditions.

Cluster analysis is a method of separating a set of images, patterns, or data

objects into homogeneous groups such that objects placed in the same group share

some property that makes them more similar to each other than they are to any

other objects within different groups. Consequently, pertinent to many clustering

algorithms is a mathematically defined measure of similarity or dissimilarity that may

vary depending upon the type of variable measurements recorded on each object.

When variable measurements are completely quantitative, dissimilarity is usually

based on a measure of distance. For example, we may consider the Euclidean or

39

Manhattan distance between observations. In this setting, a smaller distance between

observations implies the observations are more similar while a larger distance implies

observations are less similar. Alternatives to the Euclidean and Manhattan distance

used in these settings can be found in Everitt et al. (2011), or Friedman, Hastie, and

Tibshirani (2017).

On the other hand, when variable measurements are completely qualitative, the

notion of distance is not as natural, and thus dissimilarity may be defined by looking

at the proportion of attribute measurements upon which objects disagree. However,

other methods of defining similarity and dissimilarity for qualitative data can be

found in Everitt et al. (2011) or Boriah, Chandola, and Kumar (2008).

It is also possible for variable types to be mixed, including both qualitative and

quantitative variables in the same dataset. In this setting, dissimilarity may be

defined in terms of distance for the quantitative variables and the proportion of

mismatches for the qualitative variables. Clustering algorithms like K-Prototypes

(Huang, 1997b) employ this methodology.

Let us consider the case where all variables are qualitative. The simplest case of

this is when each attribute measurement is binary, taking one of two outcomes. The

clustering of binary data has been studied and used extensively in several fields over

the last few years (see e.g., Cornell et al. (2009); Dolnicar and Leisch (2004); and

Hitchcock and Chen (2008)).

In this paper, however, we wish to focus on tertiary data. We propose a dissimilarity-

based method of creating clusters when the attribute measurements are tertiary:

qualitative with 3 classes. For example, a variable may measure level of autism with

the responses being “requiring support”, “requiring substantial support”, or “requir-

ing very substantial support.” Though algorithms exist within the field of cluster

analysis for use on such data, many of the algorithms that have been proposed for

40

use with qualitative attribute measurements tend to neglect two key issues that may

affect the accuracy of clustering solutions produced: variability and noise.

Consider the aforementioned example of clustering a set of grade-school children

based on their performance in various subjects. Based on the observed category,

one has no idea how close a student who was below the pre-determined standard in

Math was to meeting the standard. Similarly, one has no idea how close a student

who met the pre-defined standard was to exceeding those standards in that subject.

Furthermore, when working with qualitative data it is possible for some information

to be obscured within the categories such as variability within the latent variables

underlying the structure of the data. This can be an issue as cases of high variability

may complicate the clustering task. Another potential issue is that of random noise.

As is often the case with data in general, there is always possible measurement error,

data input issues, or perhaps issues with subjectivity that complicate the clustering

tasks. Therefore, it is important to use clustering methods that compensate for the

imperfections that may plague qualitative data. To this end, in this paper we propose

the use of statistical smoothing.

Statistical smoothing is a technique used commonly to help find a signal or un-

cover the true structure of the data that may be buried by noise. In this paper we

use smoothing via shrinkage which allows us to move the observed data towards a

particular model should such a model be supported by the data. This may help re-

duce misspecification errors that may occur when assuming a particular model (see

e.g., Agresti (2012) or Simonoff (2012)) and allows us to supplement the information

in a pair of observations with that of the entire data set (Hitchcock and Chen, 2008).

We propose a dissimilarity-based method for the clustering of tertiary observations

that uses a shrinkage-based smoother with the purpose of combating high variability

and underlying noise that may exist in the data. The ideas presented are an exten-

sion of the work of Hitchcock and Chen (2008) where it was shown pre-smoothing of

41

dissimilarities helped improve partitioning accuracy in the case of binary data that

had a noisy underlying structure.

The outline of the paper is as follows: We provide some background information

relevant to the method introduced in Section 2, formally define pairwise dissimilarities

for a set of tertiary data objects, and introduce a clustering algorithm based on a

smoothed version of the dissimilarity matrix in Section 3. In Section 4, we describe

a simulation study undertaken to illustrate the effect of the proposed method of

smoothing dissimilarities on the accuracy of cluster partitions. Then, in Section 5,

we apply the proposed algorithm to the Pima Indian Diabetes dataset. We conclude

the paper in Section 6 with a brief discussion of the methodology and its possible

ramifications.

3.1 Background

3.1.1 Estimation of Multiple Cell Probabilities

Table 3.1 Cell Probabilities for a Pair of Tertiary
Objects Yk and Yk′

Yk′

Yk 1 2 3
1 π11 π12 π13
2 π21 π22 π23
3 π31 π32 π33

When cross-classifying tertiary data objects, data on each pair of observations can

be summarized within a 3×3 contingency table as shown in Table 3.1 where the entries

within the table, {πkk′}, k = 1, 2, 3; k′ = 1, 2, 3 denote the true cell probabilities. For

example, the probability that object Yk has a value of 1 for a particular variable and

object Yk′ has value of 2 for that variable is denoted by π12. Since these true cell

42

probabilities are never known, we estimate them. To do this, we look at the data as

arising from a multivariate distribution.

Borrowing from categorical data analysis, Table 3.1 can be thought of as proba-

bilities of the distribution of multinomial random variables, X = (X1, X2, . . . , Xn),

where π = (π11, π12, π13, π21, π22, π23, π31, π32, π33) represents the true cell probabili-

ties, with the conditions 0 ≤ πij ≤ 1, i = 1, 2, 3, j = 1, 2, 3, and ∑i

∑
j πij = 1. Let

π̂ij, i = 1, 2, 3, j = 1, 2, 3, denote an estimate for the true cell probability πij. In this

setting, π̂ = n−1X is the unique minimum variance unbiased estimator (UMVUE) of

π (see, e.g., Fienberg and Holland (1973)). However, when the goal is to simultane-

ously estimate multiple cell probabilities, (in the 3× 3 case, we estimate 9, of which

8 are free parameters), Fienberg and Holland (1973) presented a shrinkage estima-

tor that we will denote as π∗ and showed the ordinary multivariate sample mean to

be inadmissible in terms of mean squared error loss. In this paper we will use this

estimator to smooth our dissimilarity matrix, D. In the next subsection, we discuss

smoothing.

3.1.2 Smoothing

Smoothing is a statistical technique that is used to aid in detecting the underlying

signal or latent structure that may be hidden by noisy data. The general form of a

smoothed estimator in the multinomial setting can be obtained as shown in equation

(3.1) where π̂ij denote the observed cell proportions and π̃ij denote estimated cell

probabilities under an assumed model (see, e.g., Hitchcock and Chen (2008); or Albert

(1987)).

π∗ij = (1− λ)π̂ij + λ(π̃ij). (3.1)

Equation (3.1) is a “data-dependent” form of a smoothed estimator, but the smoothed

estimator does not have to be in this form. Simonoff (1995) discussed other methods

of smoothing categorical data that could be used as alternatives to this approach. In

43

equation (3.1), λ denotes the degree of smoothing. For small λ, more emphasis would

be placed on the observed cell probabilities π̂ij and for larger values, more emphasis on

the estimated cell probabilities under the assumed model, π̃ij. Though the estimate

π∗ij is a biased estimator of π, we use it here since it proves to be more robust than

π̂ under certain settings like that of sparse multinomial tables, and because in the

multinomial setting, it allows us to use information from neighboring cells to garner

better estimates for cell probabilities (see Simonoff (1995) or Simonoff (1998)). This

method of smoothing is closely related to Stein estimation (see Efron and Morris

(1977)).

3.2 Method

In this section we discuss in detail our proposed method of pre-smoothing tertiary

dissimilarities as a precursory step to clustering and discuss the clustering algorithms

that will be used in this paper.

3.2.1 Dissimilarities for a tertiary data set

Table 3.2 Summary of matches and mismatches for a
pair of objects Yk and Yk′ .

Yk′

Yk 1 2 3 Totals
1 a b c a+ b+ c

2 d e f d+ e+ f

3 g h i g + h+ i

Totals a+ d+ g b+ e+ h c+ f + i P

Dissimilarities for tertiary data observations may be calculated as the proportion

of mismatches among P tertiary attribute measurements for each pair of observations.

Consider Table 3.2 which depicts the cross-tabulation of two multivariate objects, Yk

44

and Yk′ , from whence we demonstrate the notion of “pairwise dissimilarity.” In this

table, each attribute has an outcome of 1, 2, or 3 denoting its membership. Letters

a, e, and i represent the total number of variables for which both objects have an

outcome classified as 1, 2, and 3, respectively. The other letters denote the number of

attributes upon which objects Yk and Yk′ have different membership. For example,

b denotes the number of variables for which object Yk has a value of 1 and object Yk′

has a value of 2; similarly, c denotes the number of variables for which object Yk has

a value of 1 and Yk′ has a value of 3. Based on this 3× 3 table, we define similarity

for the kth and k′th object as

Skk′ = 1
P

(a+ e+ i)

and dissimilarity as

Dkk′ = 1− Skk′ .

This particular method of defining dissimilarity may be referred to as the matching

coefficient method when used in the binary case or the overlap method in the termi-

nology of computer science with matches and mismatches weighted equally. There

are a multitude of other methods besides the matching coefficient that can be used

with categorical attributes (see, e.g., Everitt et al. (2011) or Boriah, Chandola, and

Kumar (2008)); however, regardless of the method used to define the pairwise dis-

similarities, the smoothing method presented in Sections 3.2.2 and 3.2.3 should still

be applicable.

In some traditional methods, once the pairwise dissimilarities for each pair of

observations have been calculated, they are then used as the elements of a n × n

dissimilarity matrix D that is then used as the input to a clustering algorithm of

choice.

We propose, instead, pre-smoothing the dissimilarity matrix before implementing

the clustering algorithm. In the next subsection, we discuss possible choices for

models to be used in the smoothing step along with rationale underlying each model.

45

3.2.2 Choice for Model-Based Estimators

In this section we discuss possible choices for the model used to estimate π. For

notation, we use i and j to denote the ith row and jth column of the 3 × 3 table

formed for a particular pair of objects k and k′. However, this procedure would be

repeated for each pair of objects.

Previously (in Section 2) we discussed how data in a 3× 3 contingency table like

Table 3.2 could be thought of as data arising from a multinomial distribution. In

this context, we view the problem as that of estimating the cell probabilities of the

multinomial distribution. Recall, for each pair of tertiary objects, there are two cell

probabilities of interest—the true cell probabilities and the estimated cell probabilities

under an assumed model. Let

π = (π11, π12, π13, π21, π22, π23, π31, π32, π33)

denote the set of true probabilities for each cell in the 3× 3 table shown in Table 3.1,

and let

π̃ = (π̃11, π̃12, π̃13, π̃21, π̃22, π̃23, π̃31, π̃32, π̃33)

denote an estimate of the probabilities of observations falling in each cell of the 3× 3

table under the assumed model.

If the researcher has no prior information about the relationship between a pair of

observations, then a non-informative model may be used. In this case, one possibility

is an equal-probability model. Under this model, π̃ij = 1
9 , i = 1, 2, 3, j = 1, 2, 3. This

suggests observations are just as likely to fall into any cell in the 3 × 3 contingency

table. If, instead, the researcher has the belief that a pair of observations are inde-

pendent in their tertiary variable measurements, then an independence model may

be appropriate. In this setting, the rows and columns of Table 1 are independent;

therefore, π̃ij = π̂i+π̂+j, i = 1, 2, 3, j = 1, 2, 3. Lastly, if the researcher feels that a

pair of observations are more likely to match in a particular category and less likely

46

to match on another, then a model of dependence could be chosen to reflect those

prior beliefs. For example,

π̃ij =


1
10 , for i = j

1
60 for i 6= j

would mean the pair of observations are more likely to have the same tertiary at-

tribute membership for a particular attribute than to have any other combination of

membership classes. This method of choosing a model can be thought of similarly to

the Bayesian framework of choosing a prior distribution that reflects the researchers’

prior belief about the structure of the data. Just as it is important to choose an

appropriate prior in Bayesian inference, it is also important to choose a smoothing

model carefully, being mindful that an appropriate model should be supported by the

data.

Once the appropriate smoothing model is chosen, then shrinkage-based smoothing

is implemented.

3.2.3 Shrinkage-type Smoother for the 3× 3 table

In this section we specifically discuss our proposed method of smoothing the dis-

similarity matrix using the Fienberg-Holland estimator (Fienberg and Holland, 1973).

We begin with a discussion of the estimator and then show how each of the cells in

the 3× 3 table of pairwise dissimilarities can be smoothed.

Fienberg-Holland Estimator

The Fienberg-Holland estimator (Fienberg and Holland, 1973) has been shown to

be a better estimator of π than π̂ in terms of minimizing the total mean squared

error loss, and it can be used to reflect prior information about the data structure.

This is significant because when we perform clustering using the original observed

dissimilarities, this is akin to using π̂ to estimate the cell probabilities without using

47

knowledge about the latent structure of the data. Consider the motivation behind

the method.

Consider placing a Dirichlet prior with mean vector γ on π. The posterior mean,

then, is given by

(1− λ)π̂ij + λ(γij) (3.2)

with

λ = κ

P + κ
,

where P denotes the number of attributes recorded on each observation. Fienberg

and Holland (1973) denote the value that minimizes the expected squared error loss

between π and the estimate given in equation (3.2) by κ. Thus,

κ =
1−∑ π2

ij∑ (γij − πij)2 .

Then a pseudo-Bayes estimator can be written as shown in equation (3.3)

P

P + κ
(π̂ij) + κ

P + κ
(γij). (3.3)

Since γ represents prior estimates of the mean vector, model-based estimates for π

can be used as is traditionally done in an empirical Bayesian approach (see Fienberg

and Holland (1973)). Lastly, π and κ must also be estimated as their true values are

not known. Therefore, their maximum likelihood estimators are used, and equation

(3.3) can be rewritten with

κ̂ =
1−∑ π̂2

ij∑ (π̃ij − π̂ij)2 .

In the case of tertiary data, the Fienberg-Holland estimate of κ can be written specif-

ically as

κ̂ = 1− (π̂11 + π̂12 + · · ·+ π̂33)
(π̃11 − π̂11)2 + (π̃12 − π̂12)2 + · · ·+ (π̃33 − π̂33)2 .

48

Therefore, the Fienberg-Holland estimate for πij is given by

π∗ij = P

P + κ̂
(π̂ij) + κ̂

P + κ̂
(π̃ij). (3.4)

Equation (3.4) can be used to smooth each of the cells of the table for a particular

pair of observations.

Smoothing the 3× 3 Table

To smooth the 3× 3 table, we use the James-Stein-type estimator shown in equa-

tion (3.4) to obtain the final smoothed pairwise dissimilarities. To do this we multiply

the expression given in equation (3.4) by P as shown in equation (3.5).

{i, j}(smooth) = π̃∗ijP = [P

P + κ̂
(π̂ij) + κ̂

P + κ̂
(π̃ij)]P (3.5)

The multiplication by P allows us to change from the expected proportion of at-

tributes to fall in each cell (same as the cell estimate as given in equation (3.4)) to

the expected number of attribute outcomes falling in each cell. We use these to obtain

our inputs for the smoothed dissimilarity matrix.

For cell {i, j}, i = 1, 2, 3, j = 1, 2, 3, we use equation (3.5) to obtain smoothed cell

counts that correspond to each cell location as shown in Table 3.1. Then

Ssmoothkk′ = 1
P

(asmooth + esmooth + ismooth)

Dsmooth
kk′ = 1− Ssmoothkk′

Once these smoothed dissimilarities are formed for each pair of observations, they are

input into a n× n smoothed dissimilarity matrix, Dsmooth, that is used as the input

for the clustering algorithm of choice.

49

3.2.4 Clustering Algorithms Used

In this paper, we perform cluster analysis using two different algorithms: Average

Linkage and K-Medoids. The different algorithms are used here to glean in which

settings smoothing via shrinkage may be useful.

The Average Linkage algorithm (Sokal and Michener, 1958) is an agglomerative

hierarchical method of clustering. This means it starts with each individual observa-

tion being a singleton cluster and on each iteration merges pairs of observations or

clusters together based on a similarity measure until there is only one cluster con-

taining all observations at the highest level of the hierarchy. Since the output of

hierarchical clustering can be shown with a dendrogram that can be cut to obtain

the desired number of clusters, using such an algorithm eliminates the need to know

the number of clusters a priori (see e.g., Friedman and Rubin (1967) or Albalate

and Minker (2011)). The Average Linkage algorithm, in particular, is used here as it

merges observations based on the average pairwise distance between cluster members.

Using this helps to avoid issues that can occur when using single linkage or complete

linkage algorithms, which look at the shortest and longest distance, respectively, be-

tween the members of different clusters (see e.g., Albalate and Minker (2011)).

The K-Medoids algorithm (Kaufman and Rousseeuw, 1987) is a partitioning-based

method of clustering, which partitions observations into groups based on distance to

a central value (medoid) with the assumption that an observation can only belong to

only one cluster. The medoid is defined as the ”most representative” cluster member

(see Kaufman and Rousseeuw (1987) for details). This algorithm is used because it

can take a dissimilarity matrix as an input, does not require Euclidean distance to be

used as a dissimilarity measure, and has been shown to be a more robust method of

clustering than K-Means clustering (see e.g., Friedman and Rubin (1967) or Albalate

and Minker (2011)).

50

Each algorithm is implemented using R (R Core Team, 2019). The Average Link-

age algorithm is implemented using the hclust function in the stats package, while

the K-Medoids algorithm is implemented using the pam (Rousseeuw and Kaufman,

1987) function in the cluster package.

3.3 Simulations

In this section we discuss a simulation study undertaken to assess the performance

of the proposed method of pre-smoothing tertiary dissimilarities using the Fienberg-

Holland estimator. We examine its performance when using the Average Linkage

and K-Medoids algorithms and assess the method’s effect on the accuracy of clus-

tering partitions produced. To better assess the method, we perform simulations in

two settings: one in which we assume the data has arisen from a latent mixture of

multinomial distributions and in the other we assume it has arisen from a mixture of

continuous distributions. For each we measure this “accuracy” of the clustering solu-

tion in terms of the Adjusted Rand Index (ARI) as proposed by Hubert and Arabie

(1985). We begin with a brief introduction to this measure.

Table 3.3 Cross-Tabulation of Two Partitions

Partition One
Partition Two Same Group Different Group
Same Group A B

Different Group C D

3.3.1 Adjusted Rand Index

Consider Table 3.3 (see e.g., McNicholas (2017) for this type of table) which shows

the cross-tabulation of the results of two different clustering methods. In this table,

the columns refer to the partition created from one method and the rows denote the

51

partition created by another method. Here, A denotes the number of pairs of objects

that both partitioning methods put in the same groups. B denotes the number of pairs

of objects put in the same group by the first method but placed in different groups

by the second method. C denotes the reverse, the number of pairs of objects put in

the same group by the second method but in different groups by the first method,

and D denotes the number of pairs of objects that both partitioning methods put in

different groups. These values, then, can be used to assess cluster partition accuracy

when one of the partitions is assumed to represent the ground-truth partition.

Using the notation of McNicholas (2017), the ARI can be computed as:

ARI = N(A+D)− [(A+B)(A+ C) + (C +D)(B +D)]
N2 − [(A+B)(A+ C) + (C +D)(B +D)]

where N denotes the total number of possible pairings.

As the ARI is a correction to the Rand Index (Rand, 1971) it can take values

as large as 1, with higher values denoting more agreement between two clustering

solutions and values closer to 0 denoting chance agreement. For our study, one of

the partitions will denote the true clustering structure and the other, the proposed

clustering partition produced by either the Average Linkage or K-Medoids algorithm.

Thus, we will compare these two partitions using the values found in Table 3.3 to

assess accuracy. A method which results in higher ARI values is then considered to

be more reflective of the true latent structure of the data and hence a better method

of clustering the observations in the context of our simulation study.

3.3.2 Multinomial Simulation Setup

In this section we discuss the method used to perform our multinomial simulations

beginning with a discussion of the data generation and concluding with a discussion

of the clustering scenarios and separation settings used to assess cluster goodness.

52

Data Generation

In this simulation, we assume there are n data objects, each with P tertiary

features recorded on them, that have arisen from C clusters. We further assume

that each of these P measurements is independent of the other P − 1 measurements

(mutually independent). In this case, the tertiary observation, Ylkp, refers to the

specific categorical outcome of the kth object in cluster l on feature p where l =

1, 2, . . . , C, k = 1, 2, . . . , nl,
∑C
l=1 nl = n, p = 1, 2, . . . , P . Thus Ylkp ∈ {1, 2, 3}. Lastly,

the probability of an attribute measurement being in either category remains constant

for each of the P measurements. Therefore, in this setting, Ylk ∼ Multi(P, τl) with

τl = (al, bl, cl), 0 ≤ al ≤ 1, 0 ≤ bl ≤ 1, 0 ≤ cl ≤ 1. τl denotes the parameter vector

for the lth cluster, and al, bl, and cl refer to the probability of obtaining an attribute

measurement that falls in category 1, 2, or 3, respectively, for data objects in the lth

cluster.

Parameter Settings

For the simulations, we generate 5000 data sets each with a total of n = 600

objects each with P = 10 tertiary features. We assume these objects have arisen

from C = 3 clusters. In the first case, we assume an equal number of observations

from each cluster (n1 = n2 = n3 = 200). In the second case, we assume there are a

varying number of observations from each cluster (n1 = 100, n2 = 200, n3 = 300).

Table 3.4 Parameter Settings for Multinomial Simulations

Separation Setting
Parameter
Vector

I II III IV V

τ1 (0.40,0.30,0.30) (0.50,0.25,0.25) (0.60,0.20,0.20) (0.70,0.15,0.15) (0.80,0.10,0.10)
τ2 (0.30,0.40,0.30) (0.25,0.50,0.25) (0.20,0.60,0.20) (0.15,0.70,0.15) (0.10,0.80,0.10)
τ3 (0.30,0.30,0.40) (0.25,0.25,0.50) (0.20,0.20,0.60) (0.15,0.15,0.70) (0.10,0.10,0.80)

53

For each scenario, we generate the kth tertiary object in cluster 1, 2, and 3,

respectively, as follows: Y1k ∼ Multi(10, τ1), Y2k ∼ Multi(10, τ2), and Y3k ∼

Multi(10, τ3). The value of τ1, τ2, and τ3 are specified as shown in Table 3.4.

The cluster separation settings denoted I, II, III, IV, and V, represent the distance

between cluster centers. As we increase the settings, the distance between cluster

centers increases. Therefore, Setting I denotes the smallest distance between centers

and setting V denotes the largest. Table 3.4 shows the parameter vector τl used for

clusters l = 1, 2, 3 for each separation setting in our simulations. To better motivate

the purpose of these settings, consider separation setting V. Under this last setting,

observing an object with several attributes with measures of “1” would suggest it is

more likely that the object arose from sub-population 1 as opposed to either of the

other two sub-populations. On the other hand, if this same outcome was observed in

cluster separation setting I, it would be tougher to determine from which cluster it

had arisen. Thus, the overlap between clusters decreases, in general, as the separation

settings increase. This indicates that the clustering problem gets easier as we increase

from setting I to V.

After generating the tertiary data objects, each object is stored in a n × P data

matrix as shown below where object m’s measurements are stored in row m.

Y =



Y11 Y12 . . . Y1P

...

Ym1 Ym2 . . . YmP
...

Yn1 Yn2 . . . YnP

.


Once the tertiary objects are created, we perform clustering using the Average Linkage

and K-Medoids algorithms with the observed dissimilarities and the dissimilarities

smoothed under three smoothing models: independence, equal probability, and high

probability of match. For the independence model, we set our smoothed cell estimates

54

to π̃ij = π̂i+π̂+j, i = 1, 2, 3, j = 1, 2, 3. For the equal-probability model, we set

π̃ij = 1
9 , i = 1, 2, 3, j = 1, 2, 3. For the high probability of match model, we set

π̃ij =


1
10 , for i = j

1
60 for i 6= j

. We then compare the outcomes of each method using the

average ARI and show the results in the next section.

Results

In this simulation, the Average Linkage algorithm produced the highest average

ARI values overall. This suggests that a hierarchical method of clustering may be

a better method to use in this setting rather than a partitioning-based method like

K-Medoids. Furthermore, in most cases smoothing under the assumption of indepen-

dence produced more accurate cluster partitions, as measured by the average ARI,

compared to not smoothing, and always performed better than any other smoothing

method considered. This suggests clustering via smoothing with an independence as-

sumption may be the better method to use when working with tertiary data arising

from a multinomial setting.

Table 3.5 Average ARI Values for the Average Linkage Clustering of Multinomial
Simulated Tertiary Data Assuming 200 Observations in Each Cluster.

Average Linkage Algorithm
I II III IV V

0.678 o 0.870 o 0.983 o 0.993 o 0.998 o
0.688 s/i 0.873 s/i 0.987 s/i 0.993 s/i 0.998 s/i
0.002 s/E 0.072 s/E 0.516 s/E 0.857 s/E 0.978 s/E
0.008 s/H 0.187 s/H 0.560 s/H 0.856 s/H 0.977 s/H

In Table 3.5, the resulting cluster accuracy obtained using the Average Linkage

algorithm is shown when we assume there are an equal number of observations from

each subpopulation. Note: Each value is the average (across 5000 data sets) ARI for

the clustering produced from an Average Linkage algorithm based on (top within each

55

cell) the observed dissimilarities (o); (second within cell) the smoothed dissimilarities

based on the independence model (s/i); (third within cell) the smoothed dissimi-

larities based on the equal-probability model (s/E); (last within cell) the smoothed

dissimilarities based on the high probability of match model (s/H). Within this table,

the average ARI value tends to increase from cluster separation setting I to cluster

separation setting V. This is to be expected as the distance between the cluster centers

is increasing. Furthermore, we see that the highest average ARI values are obtained

in all cases by first pre-smoothing the dissimilarities towards a model of independence

except in cluster separation settings IV and V. In these two settings, the clustering

solutions produced from both pre-smoothing the dissimilarities towards a model of

independence and for using the observed (non-smoothed) dissimilarities result in the

same cluster partition accuracy of 0.993 and 0.998, respectively. It is also worth

noting that the clustering solutions obtained after pre-smoothing the dissimilarities

towards a model of equal probability or high probability of match result in a lower

average ARI, suggesting the solutions obtained in these cases are not as reflective

of the true latent structure of the data as are the other two methods (observed and

pre-smoothed toward independence). In the most challenging cases (separation set-

tings I and II) the average ARI values are near 0. An average ARI value close to 0 is

comparable to forming clusters by chance. These results can be seen graphically in

the left plot of Figure 3.1.

Table 3.6 provides the clustering accuracy obtained when using the K-Medoids al-

gorithm and assuming an equal number of observations from each sub-population. In

this case, the majority of the average ARI values are lower in most separation settings

than in Table 3.5. However, we see smoothing towards a model of equal probability

with the K-Medoids algorithm results in higher clustering accuracy in each cluster

separation setting than in Table 3.5. The same is true for pre-smoothing the dissim-

ilarities towards a model of high probability of match in cluster separation settings

56

Figure 3.1 Average ARI value assuming 200 observations from each cluster. The
left plot corresponds to the Average Linkage clustering results and the right
corresponds to the K-medoids clustering results.

III through V. Despite the aforementioned differences, the same general trends ob-

served in Table 3.5 are replicated in Table 3.6. In particular, the average ARI value

still increases from cluster separation setting I to cluster separation setting V (this

means the lowest accuracy is observed when there is less separation between cluster

centers), and we still observe the highest average ARI value when the dissimilarities

are first smoothed towards a model of independence in each of the first three cluster

separation settings. However, in separation settings IV and V (as before), the aver-

age ARI values are the same for the clustering solutions produced using the observed

dissimilarities. The average ARI values obtained from the K-Medoids algorithm in

this setting are shown graphically in the right plot of Figure 3.1.

Table 3.7 shows the accuracy of the clustering solutions produced using the Av-

erage Linkage algorithm when there are an unequal number of observations from

each sub-population. In this case, the average ARI values for the clustering solu-

57

Table 3.6 Average ARI Values for the K-Medoids Clustering of Multinomial
Simulated Tertiary Data Assuming 200 Observations in Each Cluster.

K-Medoids Algorithm
I II III IV V

0.009 o 0.263 o 0.668 o 0.911 o 0.988 o
0.058 s/i 0.349 s/i 0.692 s/i 0.911 s/i 0.988 s/i
0.036 s/E 0.287 s/E 0.669 s/E 0.907 s/E 0.987 s/E
0.002 s/H 0.010 s/H 0.579 s/H 0.910 s/H 0.988 s/H

Table 3.7 Average ARI Values for the Average Linkage Clustering of Multinomial
Simulated Tertiary Data Assuming an Unequal Number of Observations in Each
Cluster.

Average Linkage Algorithm
I II III IV V

0.541 o 0.579 o 0.985 o 0.990 o 0.997 o
0.551 s/i 0.877 s/i 0.987 s/i 0.990 s/i 0.997 s/i
0.011 s/E 0.084 s/E 0.551 s/E 0.868 s/E 0.980 s/E
0.014 s/H 0.235 s/H 0.601 s/H 0.872 s/H 0.979 s/H

tions produced using the unsmoothed dissimilarities and for those resulting from

pre-smoothing the dissimilarities towards an independence model are all lower than

the corresponding values found in Table 3.5. The opposite, however, is true when

the dissimilarities are pre-smoothed towards a model of equal probability or high

probability of match. Under these two assumptions the resulting clustering accuracy

is higher than their corresponding values in Table 3.5. However, the latter two pre-

smoothing methods (equal probability and high probability of match), still do not

produce clustering solutions with as high accuracy as those produced using either the

observed dissimilarities or those pre-smoothed towards an independence model. This

can be seen visually in the left plot of Figure 3.2.

In Table 3.8, the resulting clustering accuracy is shown when observations are

clustered using the K-Medoids algorithm assuming there are an unequal number of

58

Figure 3.2 Average ARI value assuming 100 observations from cluster one, 200
from cluster two, and 300 from cluster three. The left plot corresponds to the
Average Linkage clustering results and the right corresponds to the K-medoids
clustering results.

Table 3.8 Average ARI Values for the K-Medoids Clustering of Multinomial
Simulated Tertiary Data Assuming an Unequal Number of Observations in Each
Cluster.

K-Medoids Algorithm
I II III IV V

0.010 o 0.147 o 0.649 o 0.902 o 0.986 o
0.060 s/i 0.355 s/i 0.689 s/i 0.903 s/i 0.986 s/i
0.036 s/E 0.299 s/E 0.671 s/E 0.902 s/E 0.986 s/E
0.002 s/H 0.009 s/H 0.582 s/H 0.902 s/H 0.986 s/H

observations from each subpopulation. In this table, many of the accuracy measures

differ in various ways from their corresponding values in Table 3.6. For example,

under cluster separation settings III through V, the clustering solutions resulting

from the use of the observed dissimilarities obtain lower accuracy values with average

59

ARI values of 0.649, 0.902, 0.986 from Table 3.8, for cluster separation settings III,

IV, and V, respectively, and 0.668, 0.911, and 0.988 in Table 3.6. Similar results are

shown for when the dissimilarities are pre-smoothed towards a high probability of

match model. On the other hand, pre-smoothing the dissimilarities towards a model

of independence, in this case, results in higher accuracy measures than observed in

Table 3.6 with the exception of cluster separation setting IV, in which the average

ARI is marginally lower than before. Lastly, for dissimilarities pre-smoothed towards

a model of equal probability, the results are more diverse. In some cases (separation

settings II, III, and V) the accuracy increases slightly from Table 3.6, but in others

it decreases from the aforementioned table. On the other hand, for the clustering

solutions produced from pre-smoothing the dissimilarities towards a high probability

of match model results stay fairly the same in all cluster separation settings. Each

method’s performance can be seen graphically in the right plot of Figure 3.2.

Overall the simulation results suggest that if smoothing will be performed, it

is better to smooth the dissimilarities towards a model of independence when the

data is believed to have arisen from a multinomial setting. In each setting explored,

the accuracy obtained regardless of algorithm used from using the pre-smoothed

dissimilarties in the aforementioned manner were as high or higher than that resulting

from the observed dissimilarities. This finding agrees with Hitchcock and Chen (2008)

where it was found pre-smoothing may not be necessary in cases of larger separation

between cluster centers, but may result in better performance when this is not the

case. The results also suggests that the Average Linkage algorithm may be the better

algorithm to use under such settings in general as the accuracy obtained from this

algorithm is typically higher than what is seen with the K-Medoids accuracy. Thus

smoothing (while influential for the Average Linkage algorithm) may be even more

beneficial if a practitioner will be using the K-Medoids algorithm.

60

3.3.3 Normal Simulation Setup

Within this simulation study we assess the proposed method’s performance while

assuming the tertiary objects have arisen from an underlying continuous process. We

examine this performance after placing various structural settings on the data. In

this section, we explain these settings specifically along with their rationality. We

begin our discussion with data generation.

Data Generation

For each data set we assume there are n data objects with P tertiary observa-

tions recorded on each of them. We further assume these objects have arisen from

C subpopulations (clusters) and that the tertiary values have resulted from the dis-

cretization of P latent Gaussian distributed features. To simulate this, we generate

each feature of the kth object in cluster l such that Y ∗lk ∼ NP (µl,Σ), k = 1, 2, ...nl, l =

1, 2, ...C, C ≤ n, where µl may be different for each subpopulation.

For feature generation, we consider two settings. In setting I, we assume the P fea-

tures are mutually independent and set Σ = σ2IP . In setting II, we assume the P la-

tent features are positively (and equally) correlated with {σ2
pp′} =


σ2 for p = p′

σ2

4 for p 6= p′
.

To generate the tertiary observations for object m (we use m here to denote a general

object and not an object specific to a particular cluster) we define a cutoff for each

of the P latent variables as shown below

Ymp =


0, if Y ∗mp ≤ −ξp

1, if − ξp < Y ∗mp ≤ ξp

2, if Y ∗mp > ξp

,

61

where ξp denotes the specific cutoff for the p-th latent variable. After doing this for

each of the n objects, the final tertiary dataset can be represented in a n×P matrix,

Y , where object m’s features are represented within row m:

Y =



Y11 Y12 . . . Y1P

...

Ym1 Ym2 . . . YmP
...

Yn1 Yn2 . . . YnP


For the simulation study presented here we generate 5000 datasets. Each dataset

consists of n = 400 objects with P = 10 tertiary features. We assume these objects

have arisen from C = 3 subpopulations with n1 = 200, n2 = 100, and n3 = 100.

Their P features are simulated as follows: We generate Y ∗1k ∼ NP (µ1,Σ) for k =

1, 2, ..., n1, Y ∗2k ∼ NP (µ2,Σ) for k = 1, 2, ..., n2, and Y ∗3k ∼ NP (µ3,Σ) for k =

1, 2, ..., n3. For our simulations, the mean vectors were randomly generated by gen-

erating µ1 ∼ NP (δ, I) for each object from cluster one, µ2 ∼ NP (0, I) for objects

from cluster two, and µ3 ∼ NP (−δ, I) for each object from cluster three. Next, each

of these P = 10 variables is converted to a tertiary variable based on the following

cutpoints

Ymp =


1, if Y ∗mp ≤ −0.43

2, if − 0.43 < Y ∗mp ≤ 0.43

3, if Y ∗mp > 0.43

where the 0.43 refers to the value below which 2
3 of all observations would fall on a

standard normal distribution (Note 2
3 = Pr(X ≤ 0.43) where X ∼ N(0, 1)). This

process is repeated for all n observations with the resulting tertiary values being

stored in row m of the aforementioned data matrix, Y.

62

Parameter Settings

The method proposed in this paper is hypothesized to be most effective in cases

in which the data objects have arisen from a noisy underlying structure that may be

exhibited by a vast amount of variation within clusters themselves or from a large

amount of overlap occurring between clusters. To examine this, we vary the values

of δ and σ for our simulations. δ represents the distance between the cluster centers

and σ represents the within-cluster variability. We look at the performance of the

proposed method for δ ∈ {0.5, 2, 3.5} and σ ∈ {1, 5, 10}. Larger values of δ denote

more distance between cluster centers which should lead to more separation between

clusters (all other factors held constant) and hence an easier clustering problem. On

the other hand, larger values of σ represent more intra-cluster dispersion. Therefore,

holding other things constant, this would signify a harder cluster problem. Lastly,

we assess the performance using the observed dissimilarities (traditional method)

versus 3 smoothing models: independence, equal-probability, and high probability of

match. For the independence model, we set our smoothed cell estimates to π̃ij =

π̂i+π̂+j, i = 1, 2, 3, j = 1, 2, 3. For the equal-probability model, we set π̃ij = 1
9 , i =

1, 2, 3, j = 1, 2, 3. Finally, for the high probability of match model, we set π̃ij =
1
10 , for i = j

1
60 for i 6= j

.

Thus in our simulation, we examine the proposed method of pre-smoothing dis-

similarities and study its effects on cluster accuracy when the P = 10 latent features

are considered to be mutually independent and pairwise correlated. We vary the

within-cluster variation and between cluster separation to simulate a noisy underly-

ing structure and judge our method’s performance when using the Average Linkage

and K-Medoids algorithms. The results are discussed in the next section.

63

Results

Tables 3.9-3.12 show the average ARI values obtained from the cluster solutions

formed using the Average Linkage and K-Medoids algorithms. Tables 3.9 and 3.10

give the accuracy when the features are assumed to be mutually independent and

Tables 3.11 and 3.12 give the accuracy when the features are assumed to be equally

and positively correlated as specified previously. Overall, the highest accuracy was

obtained in most cases by clustering with the Average Linkage algorithm. The general

trend (though violated in some places) shows an increase in accuracy as the distance

between cluster centers increase, and a decrease in accuracy as the intra-cluster vari-

ability increases.

Table 3.9 Average ARI Values for the Average Linkage Clustering of Normally
Simulated Tertiary Data Assuming Mutually Independent Features.

Average Linkage Method
δ σ = 1 σ = 5 σ = 10

0.9532(0.001) o 0.4826(0.001) o 0.3776(0.003) o
0.5 0.9526(0.001) s/i 0.4809(0.001) s/i 0.4030(0.003) s/i

0.8482(0.001) s/E 0.0849(0.001) s/E 0.0093(0.000) s/E
0.7852(0.001) s/H 0.0476(0.001) s/H 0.0096(0.000) s/H
0.9711(0.001) o 0.9039(0.002) o 0.5917(0.002) o

2 0.9779(0.001) s/i 0.9688(0.001) s/i 0.5561(0.002) s/i
0.9548(0.001) s/E 0.7079(0.001) s/E 0.0505(0.001) s/E
0.9244(0.001) s/H 0.7081(0.001) s/H 0.0277(0.000) s/H
0.9779(0.001) o 0.9737(0.001) o 0.5738(0.002) o

3.5 0.9883(0.000) s/i 0.9810(0.001) s/i 0.5240(0.002) s/i
0.9772(0.001) s/E 0.8873(0.001) s/E 0.5878(0.002) s/E
0.9633(0.001) s/H 0.8879(0.001) s/H 0.5066(0.003) s/H

For the Average Linkage algorithm with mutually independent features, we see

the highest accuracy is obtained mostly when the observed dissimilarities are pre-

smoothed towards an independence model. However, there are a few cases in which

the accuracy obtained using the observed dissimilarities is marginally higher than

64

Table 3.10 Average ARI Values for the K-Medoids Clustering of Normally
Simulated Tertiary Data Assuming Mutually Independent Features.

K-Medoids Method
δ σ = 1 σ = 5 σ = 10

0.5115(0.002) o 0.1515(0.001) o 0.0128(0.000) o
0.5 0.4380(0.000) s/i 0.0546(0.000) s/i 0.0255(0.000) s/i

0.5499(0.003) s/E 0.0852(0.001) s/E 0.0135(0.001) s/E
0.5955(0.003) s/H 0.1644(0.001) s/H 0.0132(0.000) s/H
0.9049(0.000) o 0.6834(0.001) o 0.1084(0.000) o

2 0.4770(0.001) s/i 0.5446(0.001) s/i 0.0284(0.000) s/i
0.8656(0.000) s/E 0.5975(0.001) s/E 0.0734(0.000) s/E
0.9168(0.000) s/H 0.6422(0.002) s/H 0.1384(0.001) s/H
0.9418(0.000) o 0.8599(0.001) o 0.3907(0.001) o

3.5 0.7878(0.000) s/i 0.8638(0.000) s/i 0.1895(0.001) s/i
0.8840(0.000) s/E 0.8648(0.000) s/E 0.2504(0.001) s/E
0.9253(0.000) s/H 0.7701(0.001) s/H 0.4893(0.002) s/H

Table 3.11 Average ARI Values for the Average Linkage Clustering of Normally
Simulated Tertiary Data Assuming Dependency within the Features.

Average Linkage Method
δ σ = 1 σ = 5 σ = 10

0.9228(0.002) o 0.5126(0.002) o 0.2047(0.003) o
0.5 0.9168(0.001) s/i 0.4820(0.001) s/i 0.2440(0.004) s/i

0.7950(0.001) s/E 0.0733(0.000) s/E 0.0088(0.000) s/E
0.7297(0.001) s/H 0.0500(0.000) s/H 0.0106(0.000) s/H
0.8982(0.002) o 0.7416(0.002) o 0.4967(0.003) o

2 0.9052(0.002) s/i 0.8558(0.002) s/i 0.4931(0.003) s/i
0.8546(0.001) s/E 0.5058(0.001) s/E 0.0292(0.000) s/E
0.8006(0.001) s/H 0.5282(0.001) s/H 0.0275(0.000) s/H
0.8822(0.002) o 0.8846(0.002) o 0.6029(0.002) o

3.5 0.9138(0.001) s/i 0.9083(0.002) s/i 0.5612(0.002) s/i
0.8843(0.001) s/E 0.7786(0.001) s/E 0.2818(0.002) s/E
0.8604(0.001) s/H 0.7789(0.001) s/H 0.1981(0.002) s/H

what is obtain by pre-smoothing in the aforementioned manner. We see this happen,

for example, when δ = 0.5 and σ = 1. This may suggest that when there is not a lot

of separation between cluster centers, that pre-smoothing may not be as influential

as it is when the distance is a bit larger. However, the increase in accuracy in these

65

Table 3.12 Average ARI Values for the K-Medoids Clustering of Normally
Simulated Tertiary Data Assuming Dependency within the Features.

K-Medoids Method
δ σ = 1 σ = 5 σ = 10

0.4906(0.002) o 0.1374(0.001) o 0.0104(0.000) o
0.5 0.4012(0.000) s/i 0.0595(0.000) s/i 0.0253(0.000) s/i

0.4955(0.002) s/E 0.0880(0.001) s/E 0.0108(0.000) s/E
0.5305(0.003) s/H 0.1575(0.001) s/H 0.0112(0.000) s/H
0.8661(0.000) o 0.5263(0.001) o 0.0982(0.001) o

2 0.4446(0.000) s/i 0.3449(0.001) s/i 0.0150(0.000) s/i
0.8373(0.001) s/E 0.4121(0.001) s/E 0.0518(0.000) s/E
0.8831(0.000) s/H 0.5013(0.002) s/H 0.1570(0.001) s/H
0.8922(0.000) o 0.7851(0.000) o 0.2968(0.001) o

3.5 0.7669(0.000) s/i 0.7168(0.001) s/i 0.1394(0.001) s/i
0.8576(0.000) s/E 0.7736(0.001) s/E 0.1772(0.001) s/E
0.8855(0.000) s/H 0.7790(0.001) s/H 0.3452(0.001) s/H

cases is only at most by 0.0013 or .13%—that may be a by-chance variation. These

results are shown graphically in Figure 3.3.

For the K-Medoids algorithm and mutually independent features, the results are

completely different than what we observed with the Average Linkage algorithm.

In Table 3.10, the highest accuracy is obtained in most cases when the clustering

solutions are formed by pre-smoothing the observed dissimilarities towards a high

probability of match model. However, in some places these results contradict what we

would expect to happen. For example, for δ = 2 and σ = 1, the average ARI is 0.4770

when the clusters are formed by pre-smoothing the observed dissimilarities towards

an independence model. However, at σ = 5, for the same value of δ and smoothing

model, the average accuracy increases to 0.5446. Intuitively, we would expect the

average ARI to decrease as σ increases. Instead, within the K-Medoids algorithm, we

see the reverse. Upon further inspection, we also note for the independence model

with δ = 2 and δ = 3, the trend shows an increase in accuracy for 1 ≤ σ ≤ 5 as

seen graphically in Figure 3.4. A possible explanation for this may be due to the

66

Figure 3.3 The average ARI statistic from 5000 clustering formed using the
Average Linkage algorithm while assuming mutually independent features. From
left to right, the graphs show the change in average ARI (or accuracy) as the
intra-cluster dispersion increases for between-cluster center distances of 0.5, 2, and
3.5 units.

relationship between the two parameters. As mentioned, δ represents the distance

between cluster centers and σ represents the intra-cluster dispersion. What may be

occurring in these cases is that the distance between cluster centers may be large

enough that even with a small bit of intra-cluster dispersion, it is not a challenging

clustering problem. Whereas, when σ > 5, the intra-cluster dispersion overpowers the

distance between cluster centers and makes the problem more challenging. In other

words, in the latter case, the clusters exhibit more overlap than what is seen in the

cases when 1 ≤ σ ≤ 5. This could potentially explain why an increase would occur.

Furthermore, it may occur based on the difference in the way the two algorithms

(K-Medoids and Average Linkage) create partitions (see e.g., Section 3.2).

67

Figure 3.4 The average ARI statistic from 5000 clustering formed using the
K-Medoids algorithm while assuming mutually independent features. From left to
right, the graphs show the change in average ARI (or accuracy) as the intra-cluster
dispersion increases for between-cluster center distances of 0.5, 2, and 3.5 units.

When we examine the results for the clustering partitions created using the Av-

erage Linkage algorithm with the assumption that the features are correlated, the

results mirror Table 3.9 overall; however, the accuracy is a bit lower in some cases.

For example, when the features are assumed to be independent with δ = 0.5, and

σ = 10, the highest accuracy is obtained by smoothing the dissimilarities towards

a model of independence. The same is true here; however, the mean ARI is 0.2440

versus the previous 0.4030. Overall, the same findings remain; the highest accuracy is

obtained in most cases by smoothing the dissimilarities towards a model of indepen-

dence with the accuracy increasing as the separation between cluster centers increase

and the intra-cluster dispersion decreases. This can be seen in Figure 3.5.

68

Figure 3.5 The average ARI statistic from 5000 clustering formed using the
Average Linkage algorithm while assuming features are positively correlated. From
left to right, the graphs show the change in average ARI (or accuracy) as the
intra-cluster dispersion increases for between-cluster center distances of 0.5, 2, and
3.5 units.

On the other hand, when assuming the features are correlated and using the

K-Medoids algorithm, the results are much more conclusive compared to what was

observed in Table 3.10. The findings in this case support the hypothesis that pre-

smoothing the dissimilarities improves the accuracy of the clustering formed especially

in potentially noisier cases. This can be seen by thoroughly examining the first section

of Table 3.12 with δ = 0.5 or by looking at the leftmost plot of Figure 3.6. However,

the overall accuracy is much lower than in the previous setting as evidenced by the

lower mean ARIs in Table 3.12 compared to Table 3.10. Yet, we still see the accuracy

is highest in almost all cases when pre-smoothing the dissimilarities towards a high

probability of match model.

69

Figure 3.6 The average ARI statistic from 5000 clustering formed using the
K-Medoids algorithm while assuming features are positively correlated. From left to
right, the graphs show the change in average ARI (or accuracy) as the intra-cluster
dispersion increases for between-cluster center distances of 0.5, 2, and 3.5 units.

Overall the simulation results do support the hypothesis that pre-smoothing is

influential in some noisier settings as well as in settings where clusters are clearly

defined. This seems most evident and useful when using the K-Medoids algorithm in

particular, regardless of whether the features are mutually independent or positively

correlated. However, the results also show the importance of choosing a smoothing

model carefully. For example, in the Average Linkage cases, when using a smoothing

model of equal probability or high probability of match, the accuracy suffers signifi-

cantly. However, in the K-Medoids case, the high probability of match typically gives

the best performance, with smoothing towards an independence model often giving

a worse performance in terms of clustering accuracy. We can take these results and

70

advise that if pre-smoothing of the dissimilarities will be done, than it should be done

with a model of independence when using the Average Linkage algorithm or with the

high probability of match model when using the K-Medoids algorithm. A similar

conclusion was reached with Hitchcock and Chen (2008).

In Section 3.4, we will compare the performance of clustering pre-smoothed dis-

similarities with that of clustering the unsmoothed dissimilarities on a real dataset

to assess the proposed method’s applicability to such data.

3.4 An Application To Diabetes

We here apply the pre-smoothing method proposed in Section 4.2 of this paper

to the Pima Indian Diabetes data, obtained from the UCI Repository for Machine

Learning (Dua and Graff, 2019). The original dataset consists of n = 768 Pima

women with recordings for P = 8 variables: Number of pregnancies (Preg), plasma

glucose (Glucose), blood pressure (BP), tricep skinfold thickness (Tricep), serum

insulin level (Insulin), body mass index (BMI), diabetes pedigree function (Ped),

and age (Age) at time of study are recorded. The original dataset also includes a

ninth variable denoting diabetes status. We omit the diabetes status variable from

the cluster analysis, as we are treating this as an unsupervised problem and will

compare our results against the diabetes status grouping. We cluster the data using

C = 2, 3, and 4 clusters. The value of C that results in the highest average silhouette

width (Rousseeuw, 1987) will be used to identify the best number of clusters. Once

the optimum C has been identified, clustering results obtained using the Average

Linkage and K-Medoids algorithm will be discussed. These results will be shown in

Section 3.4.2.

71

3.4.1 Data Preprocessing and Variable Transformations

The original Pima Indian Diabetes dataset included several observations of 0 for

variable measurements, such as plasma glucose level, where such a value is nonsensical.

Therefore, such observations were removed from the dataset. The final dataset used

in this section thus consists of n = 391 observations with P = 8 variables.

Since the 8 variables recorded for each subject are either discrete or continuous

variables, at the next stage of preprocessing, each variable was converted to a tertiary

variable. Measurement values of each variable that fall in the first category are

denoted as 0. Measurement values of each variable that fall in the second category

are denoted as 1. Measurement values for each variable that fall in the last category

are denoted as 2.

The variables Preg, Tricep, and Age were transformed into the categories given

based on careful examination of each variables’ distribution. The remaining variables

were transformed into their respective categories based on practical cutoffs described

in readily available literature. For example, research suggests a glucose tolerance

test outcome below 140 mg/dL is normal, while a measure between 140 mg/dL and

199 mg/dL is considered pre-diabetic, and a level above 199 mg/dL is considered

diabetic (Mayo Clinic, 2019). Similarly, for diastolic blood pressure, research suggests

a reading below 80 beats/min is considered normal, whereas a diastolic blood pressure

between 80 beats/min and 89 beats/min denotes stage I high blood pressure. The

last category combines stage II high blood pressure and hypertensive crisis values

(American Heart Association, 2017). The remaining 3 variables were treated similarly.

The resulting ordinal categories are shown in Table 3.13.

72

3.4.2 Results

The average silhouette widths were highest when C = 2. Therefore, the results

presented in this section assume there are two sub-populations in the Pima Indian

Diabetes Dataset.

The original dataset included the diabetes test result for each subject, which we

treat as a type of standard against which to compare our clustering results. Note that

this may not be a perfect gold standard as a representation of the “true” clustering

structure, but it does provide some sort of standard partition to which we can compare

our clustering results. It is common practice to use principal component plots to help

visualize clusters in lower dimensions (see e.g., Everitt et al. (2011)). We first visually

compare our clustering solutions using such plots.

Figures 3.7 and 3.8 show the Average Linkage and K-Medoids clustering, respec-

tively, of the subjects using the unsmoothed dissimilarities and the three models for

pre-smoothing the dissimilarities. Note, in Figure 3.7, the Average Linkage algo-

rithm seemingly places negative diabetic test results in cluster 2 when using either

the unsmoothed dissimilarities or the dissimilarities pre-smoothed towards an inde-

Table 3.13 This table shows the variable cutoffs used to change the data into
tertiary categories. The final categories are ordinal.

Category
Variable 1 2 3
Preg {0,1} {2,3,4} over 4
Glucose under 140 [140,199] over 199
BP under 80 [80,89] 90 or more
Tricep ≤ 24 (24,33] over 33
Insulin under 16 [16,166] over 166
BMI under 24.9 [25,29.9] 30 or more
Ped under 0.299 (0.299,0.527] over 0.527
Age ≤ 26 (26,36] over 36

73

Figure 3.7 The plots above show the clustering of the Pima Indian subjects
produced using the unsmoothed dissimilarities (top-left), equal probability
pre-smoothed dissimilarities (top-right), independence pre-smoothed dissimiliarities
(bottom-left), and high probability of match pre-smoothed dissimilarities
(bottom-right) within the Average Linkage clustering algorithm.

pendence model. For the other two smoothing models (equal probability and high

probability of match) a negative result appears to correspond to cluster 1 (see Figure

3.9 for reference). The K-Medoids algorithm, on the other hand, seemingly places all

negative diabetes test results in cluster 1 regardless of the type of dissimilarities used.

(Note that since the numerical labeling of the clusters in the output is arbitrary, it

is irrelevant whether a cluster is labeled 1 or 2; what matters is how the individuals

are partitioned into the two clusters.)

In Figure 3.7 the dissimilarities pre-smoothed towards a model of equal probability

or high probability of match appear to result in a clustering structure with more

inter-cluster separation and less overlap than that obtained using the unsmoothed

74

Figure 3.8 The plots above show the clustering of the Pima Indian subjects
produced using the unsmoothed dissimilarities (top-left), equal probability
pre-smoothed dissimilarities (top-right), independence pre-smoothed dissimiliarities
(bottom-left), and high probability of match pre-smoothed dissimilarities
(bottom-right) within the K-Medoids clustering algorithm.

dissimilarities or those pre-smoothed towards an independence model. In Figure 3.8,

the results are not as definite. Here, the use of any of the options for the dissimilarities

(except those pre-smoothed towards a high probability of match model) results in a

similar amount of overlap between each cluster. To assess the clustering solutions

objectively the ARI is used.

Table 3.14 shows the classification accuracy for each algorithm, as measured by

the ARI for the clustering solutions from both smoothing and not smoothing the dis-

similarities. The highest accuracy, as indicated by the highest ARI for each algorithm,

is denoted in bold for each algorithm. Table 3.14 suggests with each algorithm that

the clustering accuracy is highest when the dissimilarities are pre-smoothed. When

75

Figure 3.9 The image above shows the Pima observations based on diabetic test
results. Observations shown in blue (class=0) represent a negative diabetic test
result; whereas observations in green (class=1) represent a positive diabetic test
result.

the Average Linkage algorithm is used, the cluster accuracy is the highest when pre-

smoothing the dissimilarities towards an equal probability model. The second-best

performance was achieved by pre-smoothing towards a high probability of match

model. For the K-medoids algorithm, the cluster accuracy is highest for smoothing

towards a model of independence, followed by pre-smoothing towards an equal prob-

ability model. In both algorithms the highest ARI seems noticeably higher for the

leading smoothing method than for the clustering using the unsmoothed dissimilari-

ties. This suggests that in each case, clustering the pre-smoothed dissimilarities (via

equal probability or independence) may better reflect the true underlying structure

of the data than does the clustering of the unsmoothed dissimilarities.

76

Table 3.14 ARI values for the clustering of Pima Indian Women using K-medoids
and Average Linkage Algorithms using the unsmoothed dissimilarities and three
different smoothing methods.

Cluster Goodness
Smoothing Method Average Linkage K-medoids

Unsmooth 0.637 0.640
Equal Probability 0.725 0.703
Independence 0.637 0.736

High Probability of Match 0.688 0.638

Table 3.15 Confusion Matrix Formed Based on Average Linkage Clustering of
Unsmoothed Dissimilarities

Unsmoothed
Test Result 1 2

Positive 64 66
Negative 96 165

To obtain a better picture of the actual differences in clustering results obtained,

Tables 3.15–3.18 are provided. Since the ARI was highest for pre-smoothing dis-

similarities towards an equal probability model for the Average Linkage algorithm,

Tables 3.15 and 3.16 show the cross-tabulation of outputs of each method compared

to the actual diabetic test results obtained from the subjects. Based on this, there

are 19 subjects who tested negative for diabetes that are placed in different clusters

between the smoothing and non-smoothing methods (about 5% of the observations).

Similarly, there are 30 subjects who tested positive for diabetes that are placed in

different clusters between the smoothing and non-smoothing method (about 8% of

the observations).

For the K-Medoids algorithm, cluster accuracy was highest for the dissimilarities

smoothed towards a model of independence. Table 3.17 gives the cross-tabulation of

the actual diabetes test results for each subject compared to the cluster result given

for the unsmoothed dissimilarities with the K-Medoids algorithm. Table 3.18 shows

77

Table 3.16 Confusion Matrix Formed Based on Average Linkage Clustering of
Dissimilarities Pre-Smoothed under a Model of Independence

Equal Probability
Test Result 1 2
Negative 184 77
Positive 36 94

Table 3.17 Confusion Matrix Formed Based on K-Medoids Clustering of
Unsmoothed Dissimilarities

Unsmoothed
Test Result 1 2
Negative 218 43
Positive 60 70

Table 3.18 Confusion Matrix Formed Based on K-Medoids Clustering of
Dissimilarities Pre-Smoothed under a Model of Independence

Independence
Test Result 1 2
Negative 187 74
Positive 34 96

the analogous result obtained from usage of the dissimilarities smoothed towards an

equal probability model. The two methods result in a difference for 31 and 26 subjects

who tested negative and positive, respectively—a difference in clustering output for

about 15% of the subjects.

3.5 Discussion

In this paper we proposed a dissimilarity-based method for the clustering of ter-

tiary observations. The proposed method utilizes statistical smoothing to help com-

bat a potentially noisy underlying structure to help aid in recovering the true latent

78

structure from whence observations have arisen. An introduction to the theory be-

hind this method was given in Section 3.1; while instructions for its implementation

were given in Section 3.2. In Section 3.3, a simulation study was conducted to assess

the method’s ability to accurately partition observations into clusters under various

settings. Lastly, in Section 3.4, the proposed method was applied to the Pima Indian

Diabetes data set.

The results from the simulation study suggest that when the tertiary observations

are believed to have arisen from a multinomial setting, more accurate clusters are

formed in most cases by using pre-smoothed dissimilarities. Within the Average

Linkage algorithm, it appears to be best to pre-smooth the dissimilarities towards a

model of independence; whereas, in the K-Medoids algorithm, the high probability of

match model appears to be most effective. The main findings suggest pre-smoothing

is most influential, in this setting, when there is more overlap between clusters. In

the cases when there is much more distance between cluster centers, the accuracy

obtained using the pre-smoothed dissimilarities is comparable to using the observed

dissimilarities.

When it is assumed the tertiary data have arisen from a latent Gaussian process,

the same general findings are found: More accurate cluster partitions are created

in general from the Average Linkage algorithm. Furthermore, they suggest that

if pre-smoothing will be implemented, when using the K-Medoids algorithm, pre-

smoothing towards a model of high probability of match may be best as it results

in higher accuracy in most cases; whereas, if using the Average Linkage algorithm,

pre-smoothing should be done towards a model of independence. In the Gaussian

setting, we also observe that in some cases (more variability within clusters and

less separation between centers) the performance of pre-smoothing was marginally

below that of using the observed dissimilarities, but was better than that of using the

observed dissimilarities as the clusters became more defined.

79

Another conclusion drawn from the simulation study is that the pre-smoothing

appears to be more influential for the K-medoids algorithm rather than the Average

Linkage algorithm. As aforementioned, this is most prevalent in the noisier and more

variable settings; however, in the more well-separated settings, the accuracy obtained

by pre-smoothing and not pre-smoothing are comparable. This may suggest that

pre-smoothing may be a good idea to implement regardless of the believed distance

between the cluster centers or within cluster variability in many cases, if a good

smoothing model that is supported by the data can be applied.

As for the diabetes application, results here suggest cluster partitions produced

more accurately reflected the underlying structure of the data and were more com-

parable to the blood diabetes test results when the pre-smoothed dissimilarities were

used rather than when the traditional (non-smoothed) dissimilarities are used.

Overall, the hypothesis that pre-smoothing the observed dissimilarities may result

in the formation of clusters that more accurately reflect the true underlying structure

seems to be supported in many cases within the multinomial and Gaussian settings.

A natural next step would be to explore other methods by which smoothing could be

performed and methods to generalize to the K categorical case. Some suggestions in

how to do this may consist of putting a Bayesian prior on the smoothing parameter

or even exploring other estimators of π that could be used in place of the Fienberg-

Holland estimator. It is also worth noting that the increase in accuracy resulting

from pre-smoothing the dissimilarities within the K-Medoids algorithm suggests pre-

smoothing may be more influential when using partitioning-based methods of clus-

tering rather than a hierarchical algorithm. This is promising as it has been noted in

many papers that such partitioning-based methods tend to be more computationally

efficient than other methods of clustering (see, e.g., Huang (2008)). Consequently,

a generalized method could have the ability to impact a variety of fields and appli-

cations. Some such tasks may include those of clustering large datasets based on

80

the Likert scale, the clustering of microarray data in genomics, or even images and

documents in information retrieval.

81

Chapter 4

Fuzzy Ensemble-Based Algorithms for Cluster

Analysis

The last century has seen a rapid change in the methods through which humans

make decisions. This is likely in part due to technological advances that have made

it easy to collect data. As a result, we now live in a world in which data controls

and directs much of the decision-making processes, not just for individuals, but also

for governmental policy makers in education and for marketing corporations around

the world (see e.g., Smith (2019), Mandinach (2012), or Elgendy and Elragal (2016)).

With such an increase in data and an increased importance placed on it, there is also

an increased need to make sense of it. One method used to do this is data mining.

Data mining may be used to refer to any of numerous multivariate analysis tech-

niques that seek to discover meaning within data that may be stored in large databases

(Everitt et al., 2011). Some examples include techniques like classification using de-

cision trees, cluster analysis, association rules, or regression-based methods (Borole,

2020). There have been many approaches proposed for each of the statistical meth-

ods; however, in practice none of these approaches always preforms best. In fact the

astute statistician or data scientist has a repertoire of tools that he or she may employ

depending upon the task. A technique that has emerged over the past few years is

that of ensemble learning.

Ensemble learners are composite algorithms that are composed of more than one

algorithm. Such methods may be used for supervised tasks in which ensemble learners

82

composed of simpler “base” models are used to create a stronger prediction model

based off the strengths of each base model (Friedman, Hastie, and Tibshirani, 2017).

Ensemble methods may also be used in unsupervised tasks. In fact, another area that

has seen an increase in the usage of ensemble approaches is that of cluster analysis

(Sarumathi, Shanthi, and Sharmila, 2013).

Cluster analysis is an unsupervised learning method in which a set of objects,

patterns, documents, or images are partitioned into homogeneous groups based on a

measure of similarity. Within a particular clustering solution, objects placed in the

same group possess some property that make them more similar to objects within

their own group than to the other objects in other groups. It is referred to as an

“unsupervised” method because there are no training data that guide the cluster-

ing process. Instead the multivariate observations recorded on each data object are

used to cluster the objects. Currently there are many clustering algorithms that have

been proposed in literature, which each employ a particular methodology to create

clusters. Some popular algorithms include partitioning-based methods like K-Means

(MacQueen, 1967), K-Modes (Huang, 1997a), and K-Medoids (Rousseeuw and Kauf-

man, 1987), fuzzy methods like Fuzzy C-Means (Bezdek, Ehrlich, and Full, 1984),

Fuzzy K- Modes (Huang and Ng, 1999), and Fuzzy K-Medoids (AL-Akhras, 2010),

density-based methods like DBSCAN (Ester et al., 1996), and hierarchical methods

like ROCK (Guha, Rastogi, and Shim, 2000), BIRCH (Zhang, Ramakrishnan, and

Livny, 1996), and CURE (Guha, Rastogi, and Shim, 1998). Unfortunately, none of

these algorithms is always best as they each may have properties desired in some

settings, but not in others. For example, partitioning-based methods of cluster anal-

ysis are traditionally known to be computationally efficient (see e.g., Huang (2008)

or Huang (1997a)). However, when the desire is to see the hierarchy that may exist

in data, a hierarchical method may be preferred. Even within the same method of

clustering, one algorithm may be preferred over another. For example, it is com-

83

mon knowledge that the K-Medoids algorithm is more robust to outliers than the

K-Means algorithm though they are both partitioning-based methods (Albalate and

Minker, 2011). Another problem with cluster analysis is that using different initial-

ization points within the same algorithm may result in different clustering solutions

for the same data set. This can even happen when employing two different clus-

tering algorithms (perhaps K-Means versus Average Linkage) on the same data set.

Therefore, it should not be surprising that combining different clustering algorithms

would be beneficial. To this end, ensemble-based methods of cluster analysis have

been proposed (see e.g., Sarumathi, Shanthi, and Sharmila (2013) or Vega-Pons and

Ruiz-Shulcloper (2011)).

Ensemble-based methods of cluster analysis are typically composed of several

clustering algorithms and consist of two steps—a generation and a consensus step.

Traditionally within the generation step, several different clustering partitions are

created either from several different clustering algorithms or from initializing several

starting points within the same clustering algorithm. In the consensus step, these

possibly diverse partitions are combined into a final partition using a consensus func-

tion (Vega-Pons and Ruiz-Shulcloper, 2011). The ultimate goal for ensemble-based

methods of clustering is to garner a clustering solution that is “better” than what

could be obtained by any single iteration of a clustering algorithm in the generation

step. The term “better” is subjective and may refer to properties such as robustness,

novelty, consistency, or stability (Vega-Pons and Ruiz-Shulcloper, 2011). Recently,

several ensemble-based clustering algorithms have been proposed. Such examples in-

clude the Ensemble-Based Fuzzy with Particle Swarm Optimization Based Weighted

Clustering (EFPSO-WC) algorithm (Thangamani and Ibrahim, 2018) which com-

bined three types of fuzzy clustering algorithms to aid in the clustering of microarray

gene expression data and an ensemble for the clustering of text proposed by Ma-

teen et al. (2018) that combines the K-Means, K-Medoids, Gustafson-Kessel, Fuzzy

84

C-Means and a hierarchical clustering algorithm. Additionally, a survey of ensemble-

based methods that have been proposed specifically for the clustering of categorical

data can be found in Sarumathi, Shanthi, and Sharmila (2013), while a more general

survey of ensemble clustering methods can be found in Vega-Pons and Ruiz-Shulcloper

(2011).

In traditional ensemble-based methods of clustering, as aforementioned, the gen-

eration step typically consists of creating clustering solutions solely from clustering

algorithms. As such, none of the previously mentioned clustering ensembles used su-

pervised learners within the generation step to aid in the clustering process. In this

paper, however, we propose 3 ensembles for cluster analysis that utilize a fuzzy clus-

tering algorithm and a supervised learner within the generation step. When building

an ensemble for clustering, Vega-Pons and Ruiz-Shulcloper (2011) suggest using a

clustering algorithm within the generation step that allows for more information to

be learned about the data. Consequently, we propose the use of the Fuzzy C-Means

procedure as the first step in the generation, because as a soft partitioning method,

objects belong to each cluster with a certain strength of membership rather than be-

longing only to one cluster as is traditional in hard clustering methods. As such, we

are able to tell which cluster the objects are most similar to, without excluding the

possibility that the object may share similarity with another cluster. Furthermore,

since cluster analysis is often employed to impose structure on the data when much is

not known about the latent underlying structure (see e.g., Simonoff (2012)), we pro-

pose using nonparametric learners within the generation step that utilize information

from the Fuzzy C-Means algorithm. We use nonparametric methods because if model

assumptions for parametric methods are violated, results can be invalid. A similar

methodology was employed successfully in opinion mining by Wang et al. (2018). In

that paper an ensemble-based method of clustering was proposed in which a slightly

amended Fuzzy C-Means algorithm was used in conjunction with support vector ma-

85

chines to create a final clustering solution. In our method, however, we create our

clustering partitions in a different manner—one that takes advantage of the member-

ship matrix obtained from the Fuzzy C-Means algorithm in a statistical manner and

then uses bagged supervised learners to generate different clustering solutions. These

solutions are then combined into one final clustering solution and used to create a

new fuzzy membership matrix.

Additionally, this paper explores the performance of the ensembles when the data

is assumed to have arisen from various multivariate distributions. In this sense, it

provides insight into the performance of such ensembles when additional information

is known about the underlying structure of the data.

The outline of the paper is as follows: In Section 4.1, the algorithms within

the ensembles are discussed. In Section 4.2 we discuss the ensembles proposed and

their implementation. In Section 4.3 a simulation study is conducted to assess the

properties of the proposed ensembles as compared to Fuzzy C-Means, and in Section

4.4 our ensembles are applied to two real data sets. We conclude with a discussion of

the main paper findings in Section 4.5.

4.1 Background

In this section, the algorithms employed in the ensembles proposed in this paper

are discussed. We consider some advantages and disadvantages of each algorithm and

note the reasoning for their use in the ensemble. We begin with the first algorithm

employed, Fuzzy C-Means.

4.1.1 Fuzzy C-Means

The Fuzzy C-Means algorithm is considered a soft partitioning method. This

means objects are not partitioned into only one cluster as is done in a hard clustering

method, but instead are a part of each cluster with a certain grade of membership.

86

To motivate the algorithm, consider first the difference between the two types of

partitioning methods.

Let X = [x1,x2, . . . ,xn]T denote a set of multivariate objects to cluster, and

let C = {C1, C2, . . . , Cc} denote a set of c disjoint and non-empty partitions of X

such that ⋃cj=1Cj = X. Now define uj(xk) = ukj where ukj denotes the grade of

membership for the kth object in the jth cluster. In the special case in which

ukj =


1 if xk ∈ Cj

0 otherwise

{uj : j = 1, 2, . . . , c} denotes a hard partition of X. In the more general case in

which ukj ∈ [0, 1], {uj : j = 1, 2, . . . , c} is considered a fuzzy partition of X. For the

Fuzzy C-Means algorithm in particular there are also the additional stipulations that∑c
j=1 ukj = 1 and 0 ≤ ∑n

k=1 ukj ≤ n.

The algorithm seeks to minimize the objective function

Qv(U ,m) =
c∑
j=1

n∑
k=1

uvkjd(xk,mj)

where U denotes a n× c matrix that contains the membership grades ukj, v denotes

the fuzzifier that controls the amount of fuzziness in the clustering solution, and

d(xk,mj) refers to the distance between object k and the center of cluster j, mj.

While various measures of distance can be used, for the version of the algorithm

employed in our paper, this distance refers to the Euclidean distance. Thus we seek

to minimize the objective function shown in Equation (4.1). (Note, xkp refers to the

pth feature of object k and mjp refers to the pth feature of the centroid of cluster j).

Qv(U ,m) =
c∑
j=1

n∑
k=1

uvjk

√√√√ P∑
p=1

(xkp −mjp)2 (4.1)

Before the Fuzzy C-Means algorithm can commence, values of c and v must be fixed,

as well as an ε value that measures the accuracy of the output and sets the threshold

value at which the algorithm ends. For most applications, v is between 1.5 and 3.0

87

with v = 2 commonly being considered the standard value for the fuzzifier; conse-

quently, v = 2 is used within our paper (see e.g., Everitt et al. (2011)). The steps

involved in the algorithm are as follows:

1. Input an initial membership matrix, U (0), that contains initial estimates or

guesses for ukj. These estimated elements, within each step, are denoted as ûkj.

2. On the sth step, compute an estimate for the center of cluster j, m̂j, as shown

in Equation (4.2) for s = 1, 2, . . . , S where S denotes the maximum number of

iterations.

m̂j =
∑n
k=1 û

v
kjxk∑n

k=1 û
v
kj

(4.2)

3. Update U (s) using Equation (4.3).

ûkj = 1∑c
i=1(d(xk,mj)

d(xk,mi))
2

v−1
(4.3)

4. Compare U (s+1) to U (s).

If d(U (s+1),U (s)) < ε in step 4, then the algorithm ends. If not, steps 2-4 repeat until

the constraint is met.

Since its proposal, the Fuzzy C-Means algorithm has been used in many applica-

tions. One of the reasons for this may be due to the fact that as a soft clustering

method, it provides a natural method through which to measure an object’s similar-

ity to every cluster via the fuzzy membership functions. Consequently, one is able

to determine if there may be a secondary cluster in which a particular observation

shares similarity that is comparable to its similarity to the “best” cluster. Everitt et

al. (2011) notes the previously mentioned property as one not often observable when

using other clustering algorithms. Another advantageous aspect of Fuzzy C-Means

clustering is its ability to identify clusters of different shapes (Bezdek, Ehrlich, and

Full, 1984). While the shapes that can be identified will vary based on the norm that

88

is used, when the Euclidean norm is used, as is done in this paper, hyperspherical

clusters are identified. In other cases, more hyperellipsoidal clusters may be identified

through the utilization of different norms (see Bezdek, Ehrlich, and Full (1984) for

more information). Another factor worth noting for the version of the algorithm de-

scribed here is that the clustering solutions produced provide locally optimum fuzzy

clusterings of the original data set when xk 6= mj ∀k and ∀j (Bezdek, Ehrlich, and

Full, 1984). However, as the solutions in this case are locally optimum, they may not

necessarily represent the globally optimum solution, which in some cases may be a

potential problem.

We use the Fuzzy C-Means algorithm here because Everitt et al. (2011) suggest

that when fuzzy membership grades are scaled to be between 0 and 1 there is the

ability to interpret the fuzzy grades as probabilities. Since this is true for the Fuzzy

C-Means algorithm, the membership grades then provide a natural method through

which we can define pseudo-classes to the observations and treat the clustering process

as a pseudo-supervised problem. It is in this manner that we use the algorithm in

this paper.

4.1.2 k-Nearest Neighbors

The k-nearest neighbor algorithm is a supervised learning method that can be used

to classify observations into classes based on the classification of their k closest (called

neighbors) points. To classify a particular observation, xi, the k-nearest neighbor

algorithm employs the following steps:

1. Calculate the distance d(xi,xi′) between the ith and i′th observations for all

i′ 6= i.

2. Record the classes of the closest k observations as measured by d.

3. Assign the modal class to xi. (If there is a tie, the decision is randomized).

89

The d(xi,xi′) may be measured using any metric suitable for the data type, but for

the purposes of this paper, it refers to Euclidean distance between observation xi and

xi′ .

The algorithm is used here because it has been successfully used in a gamut of

classification tasks including that of classifying satellite imagery and handwritten

digits, to name a few and can be used to classify observations in cases involving

irregular boundaries (Friedman, Hastie, and Tibshirani, 2017). These results have

been observed despite the fact that the variability and bias of estimates provided by

the nearest neighbor algorithm depend heavily on the value of k (Friedman, Hastie,

and Tibshirani, 2017). (Methods like cross-validation can help minimize this problem

(see Friedman, Hastie, and Tibshirani (2017) for additional information). Another

reason it is used in this paper is because it is known, to be a stable classifier (Friedman,

Hastie, and Tibshirani (2017)). With this being the case, it is of interest to determine

whether bagging a stable classifier, while not necessary for true classification tasks,

has an observable effect on accuracy when used within a clustering task.

4.1.3 Decision Trees

Decision trees are supervised learners that can be used for classification or re-

gression tasks that present solutions in terms of decisions. To do this, trees seek to

partition the feature space Ω into disjoint and rectangular regions, Rm, such that⋃M
m=1Rm = Ω. A function then is fit in each region that is used for classification

purposes. The decision tree used in this paper is a CART model that works by

recursively making binary splits in the feature space to make classifications.

At the highest point of the tree, the initial split occurs at a root node, j, based

on the feature upon which an impurity measure is maximized. For our paper we use

90

the Gini index. Using the notation of Friedman, Hastie, and Tibshirani (2017), this

can be written as

Qm(t) = ΣK
k=1p̂mk(1− p̂mk)

with m defined as before, k = 1, 2 . . . , K denoting the class, and p̂mk denoting the

proportion of observations from the kth class within themth node computed as shown

in equation (4.4).

p̂mk = 1
Nm

Σxi∈RmI(yi = k) (4.4)

In (4.4), Nm refers to the total number of observations from the training set in

node m.

The initial split in a tree leads to two partitions within the observations. The

recursiveness comes in because the process repeats, with each successive split occur-

ring at a new node represented by the feature that maximizes the Gini index. The

process repeats until no more splits can be performed, at which point a terminal node

is reached. To classify an observation xi at the mth node, the algorithm assigns

k(xi) = max
k

p̂mk.

Several measures may be used to measure the impurity at each node. Other popular

methods that can be used in lieu of the Gini index can be found in Friedman, Hastie,

and Tibshirani (2017).

Trees are often used in practice because of their ease of interpretability even

though as weak and unstable learners, their performance may vary widely based on

the training set used to build them (see e.g. Friedman, Hastie, and Tibshirani (2017)

or Dietterich (2000)). We use decision trees in an ensemble here because it has been

shown that ensemble learners built with decision trees often obtain better predictive

performance than when only one tree is used (see e.g Dietterich (2000)). In fact, in

the manner in which it is used in this paper (as a bagged classifier) the method has

led to good performance in a multitude of learning task (see e.g., Friedman, Hastie,

91

and Tibshirani (2017) or Wang et al. (2018)). Trees are also used here because it is

of research interest to explore clustering ensembles built using weaker learners and

those built with stronger learners to measure their impact on the clustering accuracy

obtained when used in a non-traditional method, as part of an ensemble clustering

algorithm.

4.1.4 Support Vector Machines

Support vector machines (SVMs) are supervised learners that too can be used for

regression or classification; however, in our paper, we use it as a classifier. SVMs, as

described here are the “standard” form of the SVM classifier according to Friedman,

Hastie, and Tibshirani (2017) in which there is more overlap between classes rather

than clear separation. The version we use in this paper creates a nonlinear bound-

ary in the feature space after first fitting a linear boundary within a transformed

version of the feature space. To explain the method we use, we first start with the

more simplistic version in which linear boundaries are fit between a pair of classes in

the original feature space. We define the procedure in this section using a slightly

amended version of the notation of Friedman, Hastie, and Tibshirani (2017).

Denote the observations in the training set as (x1, y1), (x2, y2), . . . , (xn, yn) with

yi ∈ {−1, 1} for i = 1, 2, . . . , n. The SVM classifier seeks to find the optimal hyper-

plane, f(x) = xTβ + β0 that separates the two classes. Let M denote the margin

which measures the distance between observations from the different classes closest to

the separating hyperplane and set M = 1
||β|| . Then the algorithm solves the following

optimization problem:

min ‖β‖ subject to


yi(xTi β + β0) ≥ 1− ξi ∀i

ξi ≥ 0, Σξi ≤ K

(4.5)

In equation (4.5), ξi refers to the ith slack variable and denotes the proportional

amount by which f̂(xi) is on the wrong side of its margin, in comparison to the

92

true group label for yi, while K provides an upper bound on the total number of

training observations that are misclassified. Given the resulting values of β̂0 and

β̂ (estimates for the true parameters β0 and β) the decision function is given by

Ĝ(x) = sign[xT β̂ + β̂0]. As aforementioned, this version creates a linear boundary

within the feature space.

For the version of the SVM employed within this paper, we use a radial kernel

to fit a nonlinear boundary between a pair of classes in the original feature space.

In this version, V basis functions, which we will denote as hv(x), v = 1, 2, . . . , V are

used to fit the classifier. For this case, equation (4.6) represents a nonlinear function

that replaces the hyperplane used in the linearly separable case with h(xi) defined as

in equation (4.7).

f(x) = h(x)Tβ + β0 (4.6)

h(xi) = (h1(xi), h2(xi), . . . , hv(xi)) (4.7)

Friedman, Hastie, and Tibshirani (2017) shows that equation (4.6) can be written as

in (4.8):

f(x) =
n∑
i=1

αiyi〈h(x), h(xi)〉+ β0 (4.8)

with the inner product in equation (4.8) being replaced with a kernel function,

K(x,x′) = 〈h(x), h(x′)〉. They note that this allows a manner through which to

sidestep the identification of the basis functions hv(x). For our paper, we employ

the radial kernel shown in equation (4.9) where γ is a tuning parameter that can be

identified using cross-validation; however, other popular kernel choices can be found

in Friedman, Hastie, and Tibshirani (2017).

K(x,x′) = exp(−γ||x− x||2) (4.9)

93

SVMs are considered in this paper as they are stable classifiers and are known to

have high accuracy when used for classification tasks. The version used in this paper,

as mentioned, is expected to perform well in cases when there is overlap between

classes and allows for a certain amount of observations to be misclassified to deal with

this issue (Friedman, Hastie, and Tibshirani, 2017). Because we want to examine the

performance of the ensembles both when the clusters are well defined and not so well

defined, this particular property may prove to be invaluable. A downside to the SVM

is that it can be sensitive to the tuning parameters that are used to train the model.

However, using cross-validation can deal with this issue. We should also note that

the algorithm described in this section was described in the two-class case. For the

method employed in this paper, there are more than two classes. This does not pose

a problem as the SVM in the multiclass proceeds by fitting several two-class problems

and choosing the best classification based on these (see e.g., Friedman, Hastie, and

Tibshirani (2017)).

4.2 Method

In this section we discuss the methodology employed to create the ensembles pro-

posed in this paper using the algorithms of Section 4.1. The methodology used here

differs from the traditional way in which clustering ensembles are built; consequently,

we begin with a sketch of the algorithm in Section 4.2.1. We then proceed to ex-

plain it in the traditional framework of an ensemble based clustering method, with

additional justification for the steps provided in Sections 4.2.2 and 4.2.3.

4.2.1 The Ensemble Sketch

1. Divide the dataset of size n into a training set, T , of size m and test set, S, of

size r using randomization.

2. Perform fuzzy-based clustering on observations within T .

94

3. Create B new training sets (denoted Tb, where b = 1, 2, . . . , B) by randomly

sampling m observations from T with replacement.

4. Use the cluster membership grades obtained from step 2 to randomly generate

pseudo-classes for observations within training set Tb for each b by treating the

membership grades as probabilities.

5. Train the selected supervised learner on the observations within Tb using the

pseudo-classes.

6. Apply the trained learner to the observations within S to obtain clustering

solutions, Sb, for b = 1, 2, . . . , B.

7. Aggregate the B clustering solutions into final hard and soft clustering solutions.

4.2.2 The Generation Step

The generation step for each of the proposed ensembles is composed of Steps 1-6 of

Section 4.2.1. The 3 ensembles considered in this paper only differ in step 5 in which

the different classifiers of Section 4.1 are used. We develop our clustering ensemble

after seeing ensembles of supervised learners perform in a successful manner (see e.g.,

Vega-Pons and Ruiz-Shulcloper (2011) or Sarumathi, Shanthi, and Sharmila (2013)).

We mirror this process as closely as possible to determine whether the same results can

be observed when the ensemble method is used for clustering instead; consequently,

step 1 is done to mimic the training and test sets that would be used within the

generation step of a supervised ensemble. Step 2 provides the mechanism through

which we can place the clustering problem within the framework of an ensemble

classification model since, as mentioned, the membership grades can be interpreted

as probabilities. Thus they provide a natural manner through which to randomly

assign class labels. In steps 3-6 we use the membership grades obtained from fuzzy

clustering to label the observations within the training set and employ bagging with

95

the traditional classifications obtained corresponding to clustering solutions. (Note,

our labels are artificial labels as opposed to supervised classification tasks in which

the labels are truly observed).

Bagging is used, because it is an ensemble learning method that has been shown

to perform well in prediction tasks and is one of the ways in which supervised predic-

tion ensembles can be created (see e.g., Dietterich (2000) and Friedman, Hastie, and

Tibshirani (2017)). As this process often results in better performance by the ensem-

ble than what is obtained by any one base learner when used for classification, we

use it in the clustering ensembles to determine if the same can be done in clustering.

More specifically, we use bagging here to determine whether the proposed ensembles

create more accurate clustering solutions than what would be created if we were to

use the Fuzzy C-Means algorithm alone.

4.2.3 The Consensus Step

Step 7 of the aforementioned algorithm represents the consensus step. In this

step we use a relabel and voting method to obtain the final hard and soft clustering

solutions. To explain the relabelling, we begin with the completion of step 6 in

Section 4.2.1 in which all clustering solutions, S1, S2, . . . , SB have been created. In

Table 4.1 Possible Relabeling of 3 Clusters

Cluster
1 2 3
1 2 3
1 3 2
2 1 3
2 3 1
3 2 1
3 1 2

the relabeling process, we assume S1 represents the true cluster labelling. Then for

96

the remaining B−1 clustering partitions, we relabel them based on the labelling that

maximizes the Adjusted Rand Index (Hubert and Arabie, 1985) between the 1st and

bth partition. To do the relabelling, we consider all possible relabels of solutions. For

example, if there are 3 clusters in a dataset, the different clusters can be denoted as

1, 2, and 3. In this case, there are 6 possible relabelling schematics possible as shown

in Table 4.1. (In the general case with J clusters, there are J ! possible relabelings).

Sb’s original clustering solution is relabelled using all 6 possible labelings and the final

solution, S∗b , is denoted in the labeling that maximizes the ARI between S1 and Sb.

To demonstrate this, consider Table 4.2 which shows the partition created from S1

and Sb where b 6= 1. In the table, borrowed from McNicholas (2017), A denotes the

total number of pair of objects placed in the same groups by S1 and Sb. D denotes the

total number of pair of objects placed in different groups by S1 and Sb. B denotes the

total number of pair of objects placed in different groups in S1, but the same group

by Sb and C refers to the total number of pair of objects placed in the same group

by S1 and in different groups by Sb.

Using Table 4.2 and the notation of McNicholas (2017) the ARI between S1 and

Sb can be computed as

ARI = N(A+D)− [(A+B)(A+ C) + (C +D)(B +D)]
N2 − [(A+B)(A+ C) + (C +D)(B +D)]

where N denotes the total number of pairs possible from the r objects in the test

set. As the ARI is an adjustment for possible inflation due to chance agreement

between two clustering partitions that can occur with the Rand Index (Rand, 1971),

we use it here. In this measure, a value of 0 denotes no agreement between the two

partitions while a value of 1 denotes perfect agreement between the two partitions.

The better partition is that having the highest ARI. Once this process is done for all

B − 1 clustering solutions, S1 and the resulting S∗b , for b = 2, 3, . . . , B are then used

to obtain the fuzzy and hard solutions resulting from the ensemble. Let pij denote

97

the proportion of the B relabeled clustering solutions in which object i is in the jth

cluster. The fuzzy solutions then can be represented in a r × J matrix as

p11 p12 . . . p1J

...

pi1 pi2 . . . piJ
...

pr1 pr2 . . . prJ

.


where the membership grades for object i are stored in the ith row. The hard solution

for object i is found as

c(xi) = max
j
pij

where c(xi) ∈ {1, 2, . . . , J}.

4.2.4 Algorithms Used

To build the ensembles R (R Core Team, 2019) was used. To implement the

k-nearest neighbor algorithm, the knn function in the class package (Venables and

Ripley, 2002) was used. To implement the CART classification tree, the rpart func-

tion was used from the rpart package (Therneau and Atkinson, 2019). Lastly, for the

support vector machine and the Fuzzy C-Means algorithms, the svm and the cmeans

functions of the e1071 package (Meyer et al., 2019), respectively, were used.

Table 4.2 Cross-Tabulation of Two Partitions

S1
Sb Same Group Different Group

Same Group A B

Different Group C D

98

4.3 Simulation Study

In this section we discuss a simulation study undertaken to assess the performance

of the ensemble algorithms proposed in this paper. We consider the performance of

each ensemble as compared to the Fuzzy C-Means algorithm when the data has

been generated from a mixture of Normal distributions, Lognormal distributions,

and Student t’s distributions. We look in particular at the accuracy of the ensembles

proposed as measured by the average ARI when examining the hard solutions and at

the average absolute loss when comparing the soft clustering solutions. The average

absolute loss is first discussed.

4.3.1 Average Absolute Loss

The absolute loss is a way to gauge the effectiveness of each soft solution. To

compute this, we first create a r × J truth matrix, M , such that:

{mij} =


1 for i ∈ j

0 otherwise
,

where i refers to the ith observation in the pseudo-testing set of size r and j refers

to the jth cluster with j = 1, 2, . . . , J total clusters in the dataset. We next create a

r × J fuzzy membership matrix, F such that

{fij} =


πij for i ∈ j

0 otherwise
,

where πij denotes the membership probability for observation i in cluster j. Then,

the absolute loss is found as:

L =
∑
i

∑
j

|mij − fij|

A better soft clustering solution is one that has a lower absolute loss. To gauge

the soft accuracy for the simulations presented in this section, we take the average

absolute loss for each clustering ensemble under each clustering scenario.

99

4.3.2 Normal Simulation Setup

When performing the normal simulations, we assume the n data objects to be clus-

tered have arisen from J clusters. We assume each object has P attributes recorded

on each of them with each object’s features having arisen from a latent Gaussian

normal process. To simulate this, we generate each object in the jth cluster such

that Yi ∼ NP (µj,Σ), i = 1, 2, . . . , nj, j = 1, 2, ...J,∑J
j=1 nj = n, and J ≤ n.

For feature generation, we consider two settings. In setting I, we assume the P

features are mutually independent and set Σ = σ2IP . In setting II, we assume the P

latent features are positively (and equally) correlated with

{σ2
pp′} =


σ2 for p = p′

σ2

10 for p 6= p′
.

Once the features have been generated in each setting, the resulting measurements

for the ith object are stored in the ith row of the data matrix, Y ,

Y =



Y11 Y12 . . . Y1P

...

Yi1 Yi2 . . . YiP
...

Yn1 Yn2 . . . YnP


.

We divide Y into two sets, a testing set, T , and a training set, S. To do this, we

randomly sample 40% of the observations from Y (with replacement) to use as the

training set. The remaining observations are used as the testing set. Once these two

sets are created the ensemble procedure as discussed in Section 4.2.1 is performed.

For the simulation study presented here we generate 1000 datasets. Each dataset

consists of n = 300 objects with P = 10 features. We assume these objects have

arisen from J = 3 subpopulations with n1 = 100, n2 = 100, and n3 = 100. Their

P features are simulated as follows: We generate Yi ∼ NP (−δ,Σ) for i = 1, 2, ..., n1,

100

Yi ∼ NP (0,Σ) for i = 1, 2, ..., n2, and Yi ∼ NP (δ,Σ) for i = 1, 2, ..., n3 for the ith

observation in cluster 1, 2, and 3, respectively.

Parameter Settings

One goal of this paper was to determine if using an ensemble-based method of

clustering would produce more accurate clustering solutions than the Fuzzy C-Means

algorithm; as well as to determine in what settings the different ensembles perform

most effectively. To do this, we vary the structure of the data generated and used

in the clustering process. We simulate this by varying the δ and σ parameters used

to generate the data. In our simulation, δ represents the distance between the clus-

ter centers and σ represents the within-cluster variability. Holding σ constant and

increasing δ constitutes an easier clustering problem. On the other hand, holding

δ constant and increasing σ represents a harder clustering problem. We look in

particular at the performance of the proposed ensembles for δ ∈ {0.5, 2, 3.5, 5} and

σ ∈ {1, 3, 5, 10}.

Once each dataset has been generated, T and S are randomly created. The

procedure as indicated in Section 4.2.1 is then implemented with B = 200 clustering

solutions created. For the particular learners, KNN, decision tree, and SVM, the

tuning parameter values were obtained from using cross-validation after 1 iteration of

the Fuzzy C-Means labelling procedure. The obtained values were then held constant

for all of the normal simulations. The resulting tuning parameter values were as

follows: For the KNN, the 9 nearest neighbors were used for classification. For

the decision tree, a cost pruning value of 0.10 was used and for the support vector

machine, γ = 0.01 and a cost of 1 were used. This method of choosing parameters

served as a guiding method to keep comparisons fair. Perhaps future research can be

done on the best methods to choose tuning parameters for ensemble based methods

of clustering that utilize supervised learners.

101

We gauge the accuracy obtained by each of the clustering methods. When consid-

ering the hard solutions, we use the average ARI obtained over the 1000 datasets to

measure accuracy, and when considering the soft clustering solutions, we utilize the

average absolute loss. A higher average ARI indicates a better hard solution while a

lower average absolute loss indicates a better soft clustering solution.

Results

Tables 4.3 and 4.4 show the accuracy obtained by each of the ensemble methods

proposed as well as that by the Fuzzy C-Means algorithm when the features observed

on each object are mutually independent. In most cases, the highest accuracy, as

measured by the average ARI, is obtained when clusters are produced with the Fuzzy

C-Means algorithm. This is most noticeable in the cases where the clusters are less

defined as evidenced by more overlap between the clusters and more variability within

the clusters themselves. However, when there is more separation and more clearly

defined clusters, the proposed ensembles appear to perform better. In several cases

(for e.g., when δ = 3.5 and σ = 1) the accuracy obtained by the ensembles based on

the KNN and the SVM match that of the Fuzzy C-Means algorithm. In others, for

example when δ = 3.5 and σ = 3 or σ = 5, the performance of the Fuzzy C-Means

algorithms is only marginally better than the performance of the KNN and SVM

ensembles. Among the ensembles themselves, the highest accuracy tends to be given

by the the ensemble with SVM as the base learner followed by the ensemble that

uses the KNN in most cases. This suggests that in the case of data that has arisen

from a latent Gaussian process with mutually independent features, it is better to use

the Fuzzy C-Means algorithm in general if interest is in the hard solutions; however,

if there is evidence that the clusters are clearly defined, then the ensemble based

method that utilizes the SVM or KNN are also viable options. The ensemble based

on the decision tree, in this setting, yields the worst performance in every case. So it

102

would be better in this case to not use such an ensemble. These results can be seen

graphically in Figure 4.1.

Figure 4.1 Hard accuracy of the clustering solutions produced by each clustering
method when the data objects have arisen from a latent Gaussian process with
independent features.

When examining Table 4.4, no clear patterns can be discerned. The fuzzy re-

sults merely suggest that each of the clustering methods (Fuzzy C-Means and each

proposed ensemble) seems to be consistent in its accuracy. This is evidenced by the

small change in the average absolute mean loss obtained by each method irrespective

of the values of δ and σ. However, it is also worth noting that in this case the mean

absolute loss is lowest for the SVM ensemble. In fact, in this table, there are instances

in which each proposed ensemble gives lower mean loss than the Fuzzy C-Means al-

gorithm. Together Tables 4.3 and 4.4 suggest that there is a clear better clustering

method (Fuzzy C-Means) when one is interested in only the hard clustering solution.

103

However, if one is interested in the fuzzy clustering, any of the methods may be used

regardless of the variability within the clustering process.

Tables 4.5 and 4.6 show the accuracy obtained by each clustering method when

the features are assumed to be positively and pairwise correlated. Compared to Table

4.3, the overall average accuracy measured over the 1000 datasets is lower in nearly

every case except for when δ = 0.5 for the proposed ensembles. When δ = 0.5, each

of the proposed ensembles has a higher average ARI than in the previously mentioned

table. However, the highest accuracy values from the proposed ensembles are still

lower than those from the Fuzzy C-Means algorithm, in this case with an average

ARI of 0.1309 versus 0.1431 and 0.0494 versus 0.0581, for the SVM ensemble versus

the Fuzzy C-Means algorithm when σ = 1 and σ = 5, respectively. Overall Table 4.5

shows the same general findings and suggests that the proposed ensemble that works

best in the cases where the clusters are more clearly defined is the SVM ensemble,

whose accuracy matches that of the Fuzzy C-Means algorithm when δ = 5 and σ = 1.

These results suggest that if an ensemble-based method will be used, it is better to

use the SVM method; however, the best hard accuracy is obtained by the Fuzzy

C-Means algorithm when the data is believed to have arisen from a latent Gaussian

process with dependent features.

104

Table 4.3 Hard Accuracy for Normally Distributed Data with Independent Features

Accuracy of Hard Clustering Solutions
δ σ = 1 σ = 3 σ = 5 σ = 10

0.0001(0.0000) KNN 0.0024(0.0003) KNN 0.0041(0.0003) KNN 0.0048(0.0002) KNN
0.5 0.0559(0.0016) D.T 0.0206(0.0007) D.T 0.0117(0.0004) D.T 0.0081(0.0003) D.T

0.0550(0.0024) SVM 0.0126(0.0007) SVM 0.0086(0.0005) SVM 0.0053(0.0003) SVM
0.3446(0.0012) Fuzzy 0.1492(0.0015) Fuzzy 0.0686(0.0013) Fuzzy 0.0223(0.0007) Fuzzy
0.9034(0.0029) KNN 0.6205(0.0032) KNN 0.4612(0.0021) KNN 0.2100(0.0041) KNN

2 0.9397(0.0018) D.T 0.6351(0.0037) D.T 0.4142(0.0022) D.T 0.1442(0.0032) D.T
0.9955(0.0003) SVM 0.8114(0.0025) SVM 0.5354(0.0030) SVM 0.2441(0.0046) SVM
0.9965(0.0002) Fuzzy 0.8527(0.0013) Fuzzy 0.6742(0.0017) Fuzzy 0.4280(0.0013) Fuzzy
1.0000(0.0000) KNN 0.9923(0.0003) KNN 0.9416(0.0011) KNN 0.7055(0.0028) KNN

3.5 0.9891(0.0006) D.T 0.9423(0.0018) D.T 0.8883(0.0019) D.T 0.5887(0.0035) D.T
1.0000(0.0000) SVM 0.9958(0.0003) SVM 0.9642(0.0007) SVM 0.7697(0.0029) SVM
1.0000(0.0000) Fuzzy 0.9970(0.0002) Fuzzy 0.9708(0.0007) Fuzzy 0.8270(0.0015) Fuzzy
1.0000(0.0000) KNN 1.0000(0.0000) KNN 0.9981(0.0001) KNN 0.9531(0.0009) KNN

5 0.9989(0.0001) D.T 0.9446(0.0019) D.T 0.9351(0.0022) D.T 0.8925(0.0019) D.T
1.0000(0.0000) SVM 1.0000(0.0000) SVM 0.9988(0.0001) SVM 0.9668(0.0007) SVM
1.0000(0.0012) Fuzzy 1.0000(0.0000) Fuzzy 0.9990(0.0001) Fuzzy 0.9724(0.0006) Fuzzy

105

Table 4.4 Soft Accuracy for Normally Distributed Data with Independent Features

Accuracy of Soft Clustering Solutions
δ σ = 1 σ = 3 σ = 5 σ = 10

270.948(0.2507) KNN 268.4766(0.2058) KNN 268.1215(0.1889) KNN 267.8040(0.1743) KNN
0.5 267.7189(0.2840) D.T 267.9782(0.2111) D.T 268.0893(0.1904) D.T 267.8851(0.1760) D.T

268.4669(0.3944) SVM 268.2381(0.2347) SVM 268.1932(0.2154) SVM 267.9770(0.1931) SVM
268.0003(0.1480) Fuzzy 268.0641(0.1508) Fuzzy 268.1306(0.1498) Fuzzy 267.8907(0.1458) Fuzzy
270.2662(2.6785) KNN 268.5003(2.7062) KNN 268.8103(2.0337) KNN 268.6427(0.8850) KNN

2 271.7535(2.9374) D.T 267.1564(1.7660) D.T 267.9283(1.2208) D.T 268.0789(0.4672) D.T
272.2513(4.0979) SVM 267.6436(3.0406) SVM 267.1379(2.2680) SVM 268.7998(1.0097) SVM
269.2180(2.7890) Fuzzy 267.3035(1.6889) Fuzzy 269.2985(1.1693) Fuzzy 267.9921(0.3664) Fuzzy
267.456(4.2168) KNN 259.6945(4.3199) KNN 261.7489(3.9249) KNN 264.7711(2.8523) KNN

3.5 267.3880(3.8022) D.T 262.1644(3.1632) D.T 264.0424(2.6109) D.T 267.1636(1.7335) D.T
267.6301(4.2369) SVM 260.0747(4.4003) SVM 262.1026(4.0796) SVM 265.0330(3.0089) SVM
271.1741(3.6140) Fuzzy 268.7908(2.7810) Fuzzy 267.0282(2.3744) Fuzzy 264.8604(1.6674) Fuzzy
262.6846(4.2677) KNN 269.7865(4.1821) KNN 259.8997(4.3385) KNN 266.4836(3.8489) KNN

5 262.9342(4.1013) D.T 269.8081(3.4997) D.T 261.9558(3.2729) D.T 268.4169(2.5568) D.T
262.6980(4.2689) SVM 269.8336(4.1907) SVM 259.9042(4.3700) SVM 266.6566(3.9501) SVM
267.2087(3.8548) Fuzzy 266.0577(3.4517) Fuzzy 265.8562(3.0330) Fuzzy 265.6818(2.4383) Fuzzy

106

Table 4.5 Hard Accuracy for Normally Distributed Data with Mutually Dependent Features

Accuracy of Hard Clustering Solutions
δ σ = 1 σ = 3 σ = 5 σ = 10

0.0518(0.0015) KNN 0.0335(0.0008) KNN 0.0234(0.0006) KNN 0.0147(0.0004) KNN
0.5 0.1167(0.0012) D.T 0.0420(0.0007) D.T 0.02446(0.0006) D.T 0.0127(0.0004) D.T

0.1309(0.0012) SVM 0.0494(0.0007) SVM 0.0301(0.0006) SVM 0.0158(0.0004) SVM
0.1431(0.0011) Fuzzy 0.0581(0.0007) Fuzzy 0.0363(0.0007) Fuzzy 0.0186(0.0005) Fuzzy
0.5859(0.0029) KNN 0.3778(0.0020) KNN 0.2810(0.0018) KNN 0.1794(0.0014) KNN

2 0.7407(0.0018) D.T 0.4036(0.0017) D.T 0.2862(0.0016) D.T 0.1732(0.0014) D.T
0.7802(0.0016) SVM 0.4302(0.0017) SVM 0.3087(0.0016) SVM 0.1912(0.0013) SVM
0.7965(0.0015) Fuzzy 0.4436(0.0017) Fuzzy 0.3209(0.0014) Fuzzy 0.2034(0.0012) Fuzzy
0.9835(0.0005) KNN 0.7530(0.0019) KNN 0.5917(0.0020) KNN 0.3955(0.0017) KNN

3.5 0.9743(0.0006) D.T 0.7460(0.0018) D.T 0.5893(0.0019) D.T 0.3818(0.0018) D.T
0.9886(0.0004) SVM 0.7871(0.0016) SVM 0.6198(0.0018) SVM 0.4104(0.0018) SVM
0.9898(0.0004) Fuzzy 0.8023(0.0015) Fuzzy 0.6371(0.0017) Fuzzy 0.4241(0.0017) Fuzzy
0.9998(0.0001) KNN 0.9489(0.0009) KNN 0.8372(0.0015) KNN 0.6097(0.0019) KNN

5 0.9946(0.0003) D.T 0.9195(0.0012) D.T 0.8018(0.0018) D.T 0.5933(0.0021) D.T
0.9998(0.0001) SVM 0.9545(0.0008) SVM 0.8501(0.0014) SVM 0.6261(0.0019) SVM
0.9998(0.0000) Fuzzy 0.9596(0.0007) Fuzzy 0.8603(0.0013) Fuzzy 0.6441(0.0018) Fuzzy

107

Table 4.6 Soft Accuracy for Normally Distributed Data with Mutually Dependent Features

Accuracy of Soft Clustering Solutions
δ σ = 1 σ = 3 σ = 5 σ = 10

272.2713(0.7479) KNN 267.8064(0.6004) KNN 267.7257(0.4940) KNN 268.0212(0.3998) KNN
0.5 269.0558(0.7488) D.T 267.7318(0.4182) D.T 268.0885(0.3283) D.T 268.090(0.2643) D.T

270.7736(1.2222) SVM 267.5925(0.7092) SVM 268.0429(0.5440) SVM 268.1742(0.4307) SVM
268.5164(0.6648) Fuzzy 268.0813(0.3873) Fuzzy 267.9271(0.2956) Fuzzy 268.1760(0.2436) Fuzzy
267.8107(3.1615) KNN 269.3790(2.3886) KNN 265.5262(1.9788) KNN 263.7016(1.4905) KNN

2 268.2220(2.9073) D.T 269.9730(1.9317) D.T 265.4328(1.4989) D.T 264.2901(1.4905) D.T
268.7015(3.6686) SVM 270.3842(2.6178) SVM 264.8701(2.1266) SVM 263.6091(1.5714) SVM
265.2620(2.6952) Fuzzy 270.5767(1.6407) Fuzzy 267.8717(1.3196) Fuzzy 267.6501(0.9112) Fuzzy
272.4486(4.2059) KNN 265.9061(3.5030) KNN 267.2806(3.1393) KNN 271.3598(2.3776) KNN

3.5 272.2788(3.8204) D.T 266.9722(2.8925) D.T 268.4242(2.5079) D.T 270.7004(1.8342) D.T
272.7951(4.2404) SVM 266.5332(3.6284) SVM 268.1039(3.2614) SVM 271.6697(2.4835) SVM
269.6799(3.5243) Fuzzy 264.2019(2.8204) Fuzzy 266.1830(2.2039) Fuzzy 269.7485(1.6194) Fuzzy
270.7203(4.1840) KNN 275.4992(3.9709) KNN 269.0979(3.7064) KNN 269.9895(3.0953) KNN

5 270.4191(4.0164) D.T 274.7169(3.4089) D.T 268.9617(3.0350) D.T 269.1268(2.4573) D.T
270.7246(4.1855) SVM 275.6832(3.9985) SVM 269.2045(3.7633) SVM 270.5216(3.1763) SVM
262.5122(3.9666) Fuzzy 266.2430(3.3985) Fuzzy 262.8911(2.9123) Fuzzy 267.4213(2.2336) Fuzzy

108

The results of Table 4.5 are shown graphically in Figure 4.2. In the top two

plots, we can see a notable difference in the accuracy obtained in the cases where

the distance between clusters is smaller. However, the bottom two plots indicate the

proposed ensembles obtained accuracy values that are closer to that obtained by the

Fuzzy C-Means algorithm.

Figure 4.2 Hard accuracy of the clustering solutions produced by each clustering
method when the data objects have arisen from a latent Gaussian process with
dependent features.

Like Table 4.4, Table 4.6 does not have a clear pattern nor does it differ much

from the loss accrued when the features are independent. This seemingly suggests

that the fuzzy clustering solutions obtained by all the proposed ensemble clustering

methods and the Fuzzy C-Means algorithm are approximately equal in terms of their

fuzzy solutions. They do tend to be more volatile than the hard clustering solution;

109

however, in this case, as before, either of the clustering methods are seemingly viable

options regardless of the values of δ and σ.

The findings of the normal simulation study give a few general guidelines about

which clustering method should be used in different cases: If one is only interested in

the hard clustering solutions, the simulations suggest the Fuzzy C-Means algorithm

is best in the case of less defined clusters. If the clusters are clearly defined, regardless

of feature independence or dependency, the Fuzzy C-Means algorithm or the SVM

ensemble-based method may be best. However, if one is interested in only the fuzzy

solution, either of the clustering methods will suffice. Lastly if one is interested in

both the hard and fuzzy solutions, the Fuzzy C-Means algorithm appears to be the

better option.

4.3.3 Lognormal Simulation Setup

For the lognormal simulations, we assume there are n data objects to be clustered

that have arisen from a latent lognormal process. We assume we have observed

P features on each object, and that the objects have arisen from J clusters. To

generate the features in this case, we assume Y ∗i ∼ LognormalP (0,Σ), where 0 is a

column vector of zeroes and Σ denotes a P ×P covariance matrix. For the lognormal

simulations, we consider the case in which the features are mutually independent as

well as, when the features are pairwise positively correlated. When the features are

mutually independent, Σ = σ2IP , where IP is the identity matrix multiplied by a

vector of ones. Alternatively, in the case of pairwise positively correlated features,

σ2
pp′ =


σ2 for p = p′

σ2

10 for p 6= p′
.

110

Parameter Settings

As one of the primary interests of the paper is to judge the proposed ensembles’

performance in various settings, we use parameters δ and σ to simulate the variability

that may be present between within the clustering task. Specifically, δ represents the

variability between clusters, while σ represents the variability within the clusters

themselves.

For the lognormal simulation presented here, we generate 1000 datasets each with

n = 300 objects arising from J = 3 clusters. For the clusters themselves, we set

n1 = 100, n2 = 100, and n3 = 100. We further assume each object has P = 10 features

that have been generated from a lognormal process. To do this, we generate our

multivariate objects as follows: we generate Yi = Y ∗i − δi for observations in cluster

1, Yi = Y ∗i for observations in cluster 2, and Yi = Y ∗i + δi for observations in cluster

3. To vary the variability in the clustering process, we consider δ ∈ {0.5, 2, 3.5, 5}

and σ ∈ {1, 3, 5, 10}. In each of the datasets, once the multivariate observations have

been generated, the procedure outlined in Section 4.2.1 is followed.

For the ensembles proposed, B = 200 clustering solutions were obtained in each

parameter setting. The tuning parameters were found using cross validation after

1 iteration of the Fuzzy C-Means labelling procedure. This resulted in the follow-

ing values for the tuning parameters in each ensemble: For the KNN ensemble, 10

neighbors were used for classification. A cost pruning value of 0.01 was used for the

decision tree ensemble. Lastly γ = 0.001 with a cost of 10 was used to fit the SVM

ensemble. These values were held constant over all the lognormal simulations. The

results are presented in Section 4.3.3.

Results

Tables 4.7 and 4.8 show the clustering accuracy obtained by each clustering

method when the data has arisen from a lognormal process with independent features.

111

The overall findings suggest for the hard clustering solutions, the best accuracy is ob-

tained from either the Fuzzy C-Means algorithm or the decision tree ensemble-based

method of clustering. In particular, Table 4.7 suggests when the clusters are more

defined, the decision tree ensemble obtains better accuracy than the Fuzzy C-Means

algorithm. For example, when δ = 2 and σ = 1, the decision tree ensemble obtains an

average ARI of 0.8519 while Fuzzy C-Means obtains an average ARI of 0.8154. When

σ increases to 3 for the same value of δ, the accuracy obtained by the decision tree en-

semble is 0.0910 versus 0.0774 for the Fuzzy C-Means. Similarly, as δ increases for the

same σ values, the same relationship between the two clustering methods is observed.

However, when σ increases to 5 for δ = 2 and δ = 3, the Fuzzy C-Means methods

does better. This may occur due to the relationship between the two parameters. It

may be the case that for σ ≥ 5 when δ is equal to 2 or 3.5, that the within cluster

variability overpowers the inter-cluster separation making the cluster themselves less

defined. After this point, however, the Fuzzy C-Means algorithm performs the best.

This can perhaps be seen more clearly in Figure 4.3 where, for δ ∈ {2, 3.5, 5}, each

plot shows a notably higher accuracy being obtained by the decision tree ensemble

for 0.5 ≤ σ. However, when σ ≥ 5, the average ARI values show a leveling trend in

which the accuracy obtained by the proposed ensemble becomes marginally different

and lower than the average ARI values obtained by the Fuzzy C-Means algorithm.

112

Table 4.7 Hard Accuracy for Lognormally Distributed Data with Independent Features

Accuracy of Hard Clustering Solutions
δ σ = 1 σ = 3 σ = 5 σ = 10

0.0025(0.0003) KNN 0.0018(0.0001) KNN 0.0006(0.0000) KNN 0.0001(0.0000) KNN
0.5 0.0797(0.0023) D.T 0.0130(0.0009) D.T 0.0014(0.0001) D.T 0.0003(0.0000) D.T

0.0004(0.0001) SVM 0.0007(0.0000) SVM 0.0009(0.0000) SVM 0.0009(0.0000) SVM
0.1471(0.0013) Fuzzy 0.0059(0.0007) Fuzzy 0.0031(0.0007) Fuzzy 0.0012(0.0000) Fuzzy
0.6412(0.0004) KNN 0.0153(0.0012) KNN 0.0006(0.0000) KNN 0.0001(0.0000) KNN

2 0.8519(0.0062) D.T 0.0910(0.0033) D.T 0.0020(0.0002) D.T 0.0004(0.0000) D.T
0.5654(0.0040) SVM 0.0010(0.0001) SVM 0.0009(0.0000) SVM 0.0001(0.0001) SVM
0.8154(0.0015) Fuzzy 0.0774(0.0011) Fuzzy 0.0042(0.0002) Fuzzy 0.0012(0.0000) Fuzzy
0.9161(0.0015) KNN 0.3003(0.0035) KNN 0.0011(0.0002) KNN 0.0001(0.0000) KNN

3.5 0.9828(0.0014) D.T 0.4376(0.0044) D.T 0.0050(0.0006) D.T 0.0004(0.0000) D.T
0.9292(0.0016) SVM 0.0783(0.0037) SVM 0.0009(0.0000) SVM 0.0009(0.0000) SVM
0.9401(0.0011) Fuzzy 0.2959(0.0012) Fuzzy 0.0089(0.0004) Fuzzy 0.0012(0.0000) Fuzzy
0.9759(0.0007) KNN 0.3809(0.0019) KNN 0.0081(0.0011) KNN 0.0001(0.0000) KNN

5 0.9960(0.0006) D.T 0.4889(0.0027) D.T 0.0330(0.0027) D.T 0.0004(0.0000) D.T
0.9784(0.0008) SVM 0.3200(0.0041) SVM 0.0010(0.0000) SVM 0.0010(0.0000) SVM
0.9807(0.0008) Fuzzy 0.3236(0.0011) Fuzzy 0.0277(0.0010) Fuzzy 0.0013(0.0000) Fuzzy

113

Table 4.8 Soft Accuracy for Lognormally Distributed Data with Independent Features

Accuracy of Soft Clustering Solutions
δ σ = 1 σ = 3 σ = 5 σ = 10

267.6551(0.2334) KNN 267.9251(0.2723) KNN 268.0603(0.2861) KNN 268.3057(0.2930) KNN
0.5 268.4420(0.3323) D.T 268.3003(0.2543) D.T 268.0419(0.2689) D.T 268.2579(0.2912) D.T

267.8206(0.2745) SVM 267.7875(0.2797) SVM 267.9869(0.2932) SVM 268.2636(0.2989) SVM
267.9554(0.1465) Fuzzy 267.7497(0.2014) Fuzzy 268.1178(0.2539) Fuzzy 268.0119(0.2870) Fuzzy
263.9760(3.1063) KNN 267.8792(0.4506) KNN 267.5476(0.2890) KNN 267.4671(0.2741) KNN

2 264.0729(2.4209) D.T 267.6645(0.4940) D.T 267.9099(0.2858) D.T 267.4301(0.2773) D.T
262.8362(2.9903) SVM 267.4868(0.3047) SVM 267.5218(0.2928) SVM 267.6312(0.2789) SVM
265.1799(1.9787) Fuzzy 267.2005(0.3532) Fuzzy 267.3044(0.0000) Fuzzy 267.6761(0.2800) Fuzzy
268.9826(4.0521) KNN 270.5687(1.9563) KNN 268.2041(0.2936) KNN 267.9547(0.2892) KNN

3.5 269.7226(3.4842) D.T 268.8664(1.3311) D.T 268.2396(0.3258) D.T 267.9356(0.2868) D.T
269.7736(4.0462) SVM 269.0753(1.1020) SVM 268.2776(0.2958) SVM 267.9775(0.2954) SVM
269.4922(2.9089) Fuzzy 268.4562(1.0241) Fuzzy 267.7183(0.2822) Fuzzy 267.6762(0.2940) Fuzzy
266.4116(4.2227) KNN 266.2120(2.4856) KNN 268.5802(0.4253) KNN 267.798(0.2969) KNN

5 266.4389(3.8596) D.T 265.7546(1.9098) D.T 268.4211(0.4587) D.T 267.7768(0.2948) D.T
266.5263(4.2269) SVM 266.2009(2.1515) SVM 268.3874(0.2906) SVM 267.7768(0.3023) SVM
268.1034(3.3664) Fuzzy 267.7777(1.3560) Fuzzy 267.9581(0.3396) Fuzzy 267.6743(0.2926) Fuzzy

114

Figure 4.3 Hard accuracy of the clustering solutions produced by each clustering
method when the data objects have arisen from a latent Lognormal process with
independent features.

Similarly to Tables 4.4 and 4.6, Table 4.8 appears to suggest that the accuracy

obtained by the soft clustering solutions are pretty similar regardless of the method

used to create the clusters. A closer examination of Table 4.8 shows that irrespective

of changes in δ and σ, the average absolute losses for the proposed ensembles and the

Fuzzy C-Means algorithm, appear to remain consistent and marginally close to each

other in each setting.

Tables 4.9 and 4.10 show the accuracy obtained when the data objects were simu-

lated from a lognormal process with dependent features. Overall, compared to Table

4.7, the average accuracy is lower for all settings compared to the previously men-

tioned table. However, the same general trends remain present in this dependency

case. We see in particular, that for a δ value of 2 or 3.5 when σ is 1 or 3, the accuracy

115

obtained by the clustering solutions tends to be highest for the decision tree-based en-

semble with an average ARI of 0.5667 (D.T) versus 0.4750 (Fuzzy) and 0.0517 (D.T)

versus 0.0374 (Fuzzy) when δ = 2 and σ = 1 and σ = 3, respectively. It is also worth

mentioning that in the case of the most separation between cluster centers (δ = 5)

the KNN ensemble method also either matches or outperforms the Fuzzy C-Means

algorithm for σ values of 1, 3, and 5. These results are shown graphically in Figure

4.4. It shows the same visual findings, from the independence case: that in cases of

more defined clusters, the decision tree ensemble is better, whereas in the case of less

defined clusters, the Fuzzy C-Means method appears to be better.

Alternatively, when looking at the soft clustering solutions produced by each clus-

tering method, the results are not so definitive. In fact, a careful examination of Table

4.10 suggests similar findings to Table 4.8 in which either of the clustering methods

(any proposed ensemble or the Fuzzy C-Means) appear to be viable options.

Together Tables 4.7-4.10 can be used to guide the decision of which clustering

method to use when observations have arisen from a latent lognormal process. In

particular, they suggest that if a person is interested in only the hard clustering

solutions from clustering, then the decision tree ensemble should be used when the

clusters are clearly defined regardless of whether features are independent or pos-

itively correlated. However, if the clusters are not clearly separated, but instead

exhibit greater intra-cluster variability or less inter-cluster variability, then the Fuzzy

C-Means algorithm should be used. If one is only interested in the soft solutions

produced, then, as previously mentioned, any of the proposed ensembles or the Fuzzy

C-Means algorithm is a feasible option. Finally, in the case of interest in both the

hard and soft clustering solution, either the Fuzzy C-Means or the decision tree en-

semble are viable options; however, attention should be shown to how well clusters

are defined to make a final decision. Overall, in terms of the proposed ensembles,

the findings suggest the best hard accuracy is given by the decision tree ensemble

116

followed by the KNN ensemble in the lognormal case. Because the SVM ensemble

did not perform as well as the other proposed ensembles in many settings, we would

not recommend such a method of clustering in this case.

The lognormal simulation results are particularly enlightening when we consider

one of the fields that Bezdek, Ehrlich, and Full (1984) cites as benefiting from soft

clustering is geology. Interestingly, Limpert, Stahel, and Abbt (2001) provides some

examples in which the lognormal distribution naturally arises—one of these is in

geology. In particular, Limpert, Stahel, and Abbt (2001) mentions certain elements’

concentrations may be described by a lognormal process. They also mention other

fields, like medicine, in which the lognormal distribution can be used to describe the

latency period in diseases like chicken pox. What the simulations suggest is that in

these cases when clusters are clearly defined there may be value in using an ensemble

such as the decision tree to cluster observations rather than the Fuzzy C-Means

algorithm.

117

Table 4.9 Hard Accuracy for Lognormally Distributed Data with Dependent Features

Accuracy of Hard Clustering Solutions
δ σ = 1 σ = 3 σ = 5 σ = 10

0.0320(0.0012) KNN 0.0014(0.0001) KNN 0.0005(0.0000) KNN 0.0001(0.0000) KNN
0.5 0.0757(0.0013) D.T 0.0027(0.0001) D.T 0.0011(0.0000) D.T 0.0003(0.0000) D.T

0.0057(0.0003) SVM 0.0011(0.0000) SVM 0.0009(0.0000) SVM 0.0010(0.0000) SVM
0.0596(0.0008) Fuzzy 0.0039(0.0001) Fuzzy 0.0021(0.0001) Fuzzy 0.0010(0.0000) Fuzzy
0.4249(0.0033) KNN 0.0158(0.0014) KNN 0.0005(0.0000) KNN 0.0001(0.0000) KNN

2 0.5667(0.0063) D.T 0.0527(0.0027) D.T 0.0013(0.0001) D.T 0.0003(0.0000) D.T
0.4517(0.0037) SVM 0.0016(0.0001) SVM 0.0010(0.0000) SVM 0.0008(0.0001) SVM
0.4750(0.0040) Fuzzy 0.0374(0.0010) Fuzzy 0.0026(0.0001) Fuzzy 0.0009(0.0000) Fuzzy
0.7606(0.0019) KNN 0.2260(0.0044) KNN 0.0010(0.0000) KNN 0.0001(0.0001) KNN

3.5 0.9061(0.0018) D.T 0.3523(0.0055) D.T 0.0037(0.0005) D.T 0.0004(0.0000) D.T
0.7876(0.0019) SVM 0.1029(0.0041) SVM 0.0010(0.0000) SVM 0.0008(0.0000) SVM
0.8118(0.0014) Fuzzy 0.2664(0.0027) Fuzzy 0.0033(0.0001) Fuzzy 0.0010(0.0000) Fuzzy
0.9044(0.0011) KNN 0.3480(0.0025) KNN 0.0083(0.0013) KNN 0.0001(0.0000) KNN

5 0.9601(0.0011) D.T 0.4470(0.0029) D.T 0.0223(0.0025) D.T 0.0004(0.0000) D.T
0.8908(0.0014) SVM 0.2856(0.0043) SVM 0.0014(0.0028) SVM 0.0009(0.0000) SVM
0.9044(0.0011) Fuzzy 0.3259(0.0016) Fuzzy 0.0070(0.0005) Fuzzy 0.0010(0.0000) Fuzzy

118

Table 4.10 Soft Accuracy for Lognormally Distributed Data with Dependent Features

Accuracy of Soft Clustering Solutions
δ σ = 1 σ = 3 σ = 5 σ = 10

275.0548(0.5255) KNN 268.3680(0.2903) KNN 267.8451(0.2865) KNN 267.6278(0.2830) KNN
0.5 268.3654(0.7254) D.T 268.3043(0.2993) D.T 267.7884(0.2808) D.T 267.6539(0.2830) D.T

268.3124(0.4512) SVM 268.2369(0.2925) SVM 267.8013(0.2907) SVM 267.7625(0.2900) SVM
267.5993(0.4870) Fuzzy 268.1349(0.2638) Fuzzy 267.8493(0.2752) Fuzzy 267.4281(0.2781) Fuzzy
273.9079(2.4673) KNN 270.0237(0.5736) KNN 267.6039(0.3030) KNN 267.7922(0.2774) KNN

2 268.0776(2.4517) D.T 268.8184(0.7346) D.T 267.7647(0.3197) D.T 267.8680(0.2773) D.T
267.0087(2.7862) SVM 267.9307(0.3206) SVM 267.4927(0.3020) SVM 267.7362(0.2863) SVM
268.6401(1.9382) Fuzzy 267.6608(0.4860) Fuzzy 268.2749(0.0000) Fuzzy 267.9354(0.2790) Fuzzy
269.5869(3.6856) KNN 268.5489(1.9807) KNN 267.8913(0.3035) KNN 268.1416(0.2864) KNN

3.5 270.9175(3.4612) D.T 267.1997(1.7663) D.T 268.0017(0.3615) D.T 268.1433(0.2882) D.T
271.3533(3.7155) SVM 266.4832(1.2468) SVM 267.7900(0.2856) SVM 268.1216(0.2900) SVM
265.6199(3.0618) Fuzzy 267.6835(1.4011) Fuzzy 268.0481(0.2802) Fuzzy 267.9571(0.2922) Fuzzy
273.7498(4.0060) KNN 267.9921(2.6102) KNN 268.2870(0.4518) KNN 267.9704(0.2939) KNN

5 274.0338(3.8134) D.T 267.5807(2.3215) D.T 268.5354(0.5246) D.T 267.8825(0.2958) D.T
274.2680(4.0094) SVM 267.5354(2.2385) SVM 268.0964(0.2969) SVM 267.9569(0.2987) SVM
263.0274(3.5565) Fuzzy 268.5479(1.8313) Fuzzy 267.5058(0.3303) Fuzzy 268.0177(0.2957) Fuzzy

119

Figure 4.4 Hard accuracy of the clustering solutions produced by each clustering
method when the data objects have arisen from a latent Lognormal process with
dependent features.

4.3.4 Student’s t Simulation Setup

For the simulations on data following the multivariate Student’s t distribution

done in this section, we assume there are n data objects to be clustered upon which

we have observed P latent features arising from a continuous process. We also as-

sume these observations have arisen from J clusters and consider the cases where the

features are mutually independent and dependent. To generate the data, suppose

Y ∗i ∼ tP,ν(0,Σ∗), where ν refers to the degrees of freedom for the t distribution, 0

denotes a vector of zeroes, and Σ∗ is a P × P matrix. We generate the ith object

in cluster J as Yi = Y ∗i − δ for i = 1, 2, . . . , n1, Yi = Y ∗i for i = 1, 2, . . . , n2, and

Yi = Y ∗i +δ for i = 1, 2, . . . , n3 for clusters j = 1, 2, 3, respectively. Once the data are

120

generated, they are stored in a n × P matrix Y where the ith object’s observations

are stored in row i.

Parameter Setting

For the simulations in this section, we assume there are n = 300 objects each with

P = 10 features that have arisen from J = 3 clusters. We set n1 = 100, n2 = 100,

and n3 = 100. In the independent feature case, we set Σ∗ to be the identity matrix.

In the dependent case, Σ∗ is a P × P matrix with 1’s along the diagonal and 1
10 on

the off-diagonals. The resulting covariance matrix for each case is given as:

Σ = ν

ν − 2Σ∗.

We introduce variation within the clustering process using parameters δ and ν where δ

represents the distance between cluster centers and ν represents the degrees of freedom

used for the specified t distribution, but is used here to measure the within-cluster

variability. (Note, the within-cluster variability is given specifically by ν
ν−2). For the

simulations done in this paper, we consider δ ∈ {0.5, 2.0, 3.5, 5.0} and ν ∈ {3, 4, 5, 6}.

As the value of δ or ν increases (while holding the other constant), we expect the

clustering process to become easier.

We generate the features as described above and store the ith object’s measure-

ments in the ith row of matrix Y . Next, 40% of the observations are randomly

selected from Y (with replacement) and used as the training set. The remaining

observations are then used as the test set. At this point, the algorithm outlined in

Section 4.2.1 is employed. For the results presented in this section, B = 200 cluster-

ing solutions were produced in the generation step. The tuning parameters used for

each algorithm (obtained after 1 iteration of the Fuzzy C-Means labelling procedure)

are as follows: For the kNN, 4 neighbors were used. For the decision tree, a cost

pruning value of 0.0001 was used. Lastly, for the SVM algorithm, γ = 0.0001 and a

121

cost of 1000 is used. These values were held constant for all the simulations used in

this section. The results are shown in Section 4.3.4.

Results

Tables 4.11 and 4.12 show the clustering accuracy obtained by each clustering

method when the data has arisen from a t distribution with independent features.

Overall, the best hard accuracy was obtained in this setting by the Fuzzy C-Means al-

gorithm; however, of the proposed ensemble methods, the best hard accuracy was ob-

tained using the SVM ensemble. In Table 4.11 we notice specifically when δ = 0.5 that

the performance of the Fuzzy C-Means algorithm is substantially higher than that of

the proposed algorithms with an average ARI in each case near 0.3000; whereas, for

the ensemble algorithms, the highest ARI is obtained by the SVM algorithm when

ν = 6 at 0.0522. When the clusters become more defined, e.g., when δ = 3.5 or δ = 5,

we see the performance of the proposed algorithms get closer to that of the Fuzzy

C-Means algorithm, with the SVM and KNN ensemble algorithms only performing

marginally worse than Fuzzy C-Means algorithm in these cases. For example when

δ = 5 and ν = 5, the average ARI values are 0.9988, 0.9986, and 0.9989, for the

ensemble based on the KNN, SVM, and the Fuzzy C-Means algorithm, respectively.

Overall these simulations suggest that when there is more overlap between clusters

and the features are independent, the Fuzzy C-Means algorithm may be the better

method to use. Whereas when there is more separation between clusters (lower right-

hand side of Table 4.11), the accuracy of the clusters formed using the KNN and

SVM ensembles are only marginally below that of the Fuzzy C-Means algorithms.

These results can be seen visually in Figure 4.5

122

Table 4.11 Hard Accuracy for Student’s t-Distributed Data with Independent Features

Accuracy of Hard Clustering Solutions
δ ν = 3 ν = 4 ν = 5 ν = 6

0.0006(0.0003) KNN 0.0004(0.0001) KNN 0.0002(0.0001) KNN 0.0002(0.0001) KNN
0.5 0.0424(0.0013) D.T 0.0445(0.0014) D.T 0.0448(0.0014) D.T 0.0489(0.0015) D.T

0.0362(0.0017) SVM 0.0426(0.0018) SVM 0.0537(0.0020) SVM 0.0522(0.0018) SVM
0.2693(0.0013) Fuzzy 0.2883(0.0013) Fuzzy 0.2996(0.0013) Fuzzy 0.3046(0.0012) Fuzzy
0.7202(0.0037) KNN 0.7236(0.0039) KNN 0.7207(0.0040) KNN 0.7152(0.0040) KNN

2 0.8065(0.0021) D.T 0.8475(0.0018) D.T 0.8681(0.0018) D.T 0.8857(0.0017) D.T
0.8703(0.0018) SVM 0.9088(0.0012) SVM 0.9322(0.0011) SVM 0.9458(0.0009) SVM
0.8984(0.0013) Fuzzy 0.9310(0.0009) Fuzzy 0.9504(0.0009) Fuzzy 0.9605(0.0008) Fuzzy
0.9689(0.0015) KNN 0.9871(0.0006) KNN 0.9930(0.0003) KNN 0.9961(0.0002) KNN

3.5 0.9081(0.0019) D.T 0.9336(0.0013) D.T 0.9454(0.0012) D.T 0.9550(0.0012) D.T
0.9675(0.0016) SVM 0.9870(0.0006) SVM 0.9931(0.0003) SVM 0.9965(0.0002) SVM
0.9762(0.0008) Fuzzy 0.9894(0.0004) Fuzzy 0.9946(0.0003) Fuzzy 0.9973(0.0002) Fuzzy
0.9893(0.0008) KNN 0.9969(0.0002) KNN 0.9988(0.0002) KNN 0.9995(0.0001) KNN

5 0.9633(0.0010) D.T 0.9811(0.0006) D.T 0.9875(0.0005) D.T 0.9916(0.0004) D.T
0.9889(0.0008) SVM 0.9966(0.0002) SVM 0.9986(0.0001) SVM 0.9994(0.0001) SVM
0.9903(0.0007) Fuzzy 0.9971(0.0002) Fuzzy 0.9989(0.0001) Fuzzy 0.9996(0.0001) Fuzzy

123

Table 4.12 Soft Accuracy for t-Distributed Data with Independent Features

Accuracy of Soft Clustering Solutions
δ ν = 3 ν = 4 ν = 5 ν = 6

270.1162(0.2408) KNN 270.4716(0.2363) KNN 270.6972(0.2480) KNN 270.6678(0.2391) KNN
0.5 267.7484(0.2635) D.T 267.9312(0.2591) D.T 267.7405(0.2772) D.T 268.1239(0.2728) D.T

267.9494(0.3836) SVM 267.9133(0.3789) SVM 267.7564(0.4144) SVM 268.0741(0.3889) SVM
267.5910(0.1480) Fuzzy 267.9640(0.1416) Fuzzy 267.8599(0.1592) Fuzzy 268.1039(0.1401) Fuzzy
261.3194(3.3090) KNN 266.5249(3.1473) KNN 271.4824(3.1434) KNN 267.2241(3.1650) KNN

2 261.8182(2.7670) D.T 265.4955(2.7195) D.T 270.4135(2.7650) D.T 266.6034(2.8163) D.T
259.7904(3.8122) SVM 265.5945(3.7122) SVM 271.6628(3.7899) SVM 266.7188(3.8640) SVM
263.1706(2.4872) Fuzzy 267.2594(2.4445) Fuzzy 270.5907(2.4353) Fuzzy 266.2824(2.5799) Fuzzy
262.9585(4.1158) KNN 264.4337(4.0783) KNN 271.3773(3.9023) KNN 270.6418(3.8637) KNN

3.5 263.7311(3.5323) D.T 265.3380(3.5771) D.T 271.3899(3.4953) D.T 270.8368(3.5005) D.T
263.0842(4.2735) SVM 264.9276(4.2722) SVM 272.2220(4.1211) SVM 271.5132(4.0982) SVM
268.2577(3.2338) Fuzzy 264.0256(1.4011) Fuzzy 270.9344(3.3491) Fuzzy 266.8103(3.4433) Fuzzy
265.6139(4.1677) KNN 275.7006(3.9578) KNN 265.0200(4.2411) KNN 272.1589(4.2236) KNN

5 266.0299(3.7996) D.T 274.9938(3.6868) D.T 265.4488(4.1120) D.T 272.0647(4.0095) D.T
265.7223(4.2187) SVM 274.9938(3.6868) SVM 265.1907(4.3115) SVM 272.6009(4.3018) SVM
269.3869(3.6184) Fuzzy 272.3676(3.6752) Fuzzy 269.9758(3.7887) Fuzzy 274.4975(3.6996) Fuzzy

124

Figure 4.5 Hard accuracy of the clustering solutions produced by each clustering
method when the data objects have arisen from a t-distribution with independence
in the features.

Tables 4.13 and 4.14 show the clustering accuracy obtained when assuming the

data objects have arisen from a t distributions with dependent features. Overall the

average ARI values are lower than seen previously in Table 4.11. The soft clustering

accuracies, however, remain relatively the same as that seen in Table 4.12. A closer

examination of Table 4.13 suggests the highest accuracy is obtained in most settings

still with the Fuzzy C-Means algorithm; however, as opposed to the independence

case, the performance of the SVM ensemble method is much closer to the performance

of the Fuzzy C-Means algorithm in most settings than before. It is also worth noting

that when δ = 0.5 in the dependent case, the performance obtained by the proposed

ensembles are higher than what was observed in Table 4.11 for the same δ value even

125

though they still are notably worse-performing than the Fuzzy C-Means algorithm.

The results in the hard accuracy can be seen graphically in Figure 4.6.

When looking at the soft clustering accuracy, there is not as clear of a pattern in

the results. As we observed in the normal and lognormal cases, these indicate that the

clustering accuracy remains pretty consistent amongst all the algorithms regardless

of the separation between clusters and the within cluster dispersion.

Overall, the accuracy findings in this setting mimic those in the normal case. This

should not be surprising as both distributions exhibit a symmetric shape. Combining

these results with those obtained from the lognormal setting, it appears the ensemble

based methods of clustering have the potential to be more influential in cases where

the observations have arisen from a highly skewed distribution. Our simulation results

suggest in particular that for observations arising from a highly skewed distribution,

it may possible for an ensemble based method of clustering to create more accurate

clusters than the Fuzzy C-Means algorithm. Consequently, future research endeavors

should look at ways to make these ensemble-based methods more efficient, and any

users should consider strongly both the shape of the distribution from which clusters

have arisen and whether they are expected to be well-defined before implementing

either method.

126

Table 4.13 Hard Accuracy for Student’s t-Distributed Data with Dependent Features

Accuracy of Hard Clustering Solutions
δ ν = 3 ν = 4 ν = 5 ν = 6

0.0344(0.0012) KNN 0.0328(0.0011) KNN 0.0341(0.0011) KNN 0.0322(0.0011) KNN
0.5 0.0868(0.0011) D.T 0.0924(0.0011) D.T 0.0961(0.0011) D.T 0.0996(0.0011) D.T

0.0845(0.0013) SVM 0.0925(0.0012) SVM 0.1002(0.0013) SVM 0.1046(0.0012) SVM
0.1135(0.0010) Fuzzy 0.1182(0.0010) Fuzzy 0.1242(0.0010) Fuzzy 0.1277(0.0010) Fuzzy
0.4607(0.0025) KNN 0.4746(0.0018) KNN 0.4777(0.0027) KNN 0.4858(0.0028) KNN

2 0.5902(0.0020) D.T 0.6294(0.0018) D.T 0.6510(0.0019) D.T 0.6670(0.0019) D.T
0.6067(0.0020) SVM 0.6493(0.0018) SVM 0.6704(0.0018) SVM 0.6892(0.0018) SVM
0.6368(0.0017) Fuzzy 0.6733(0.0017) Fuzzy 0.6957(0.0017) Fuzzy 0.7137(0.0017) Fuzzy
0.8512(0.0015) KNN 0.8851(0.0014) KNN 0.9061(0.0012) KNN 0.9150(0.0012) KNN

3.5 0.8365(0.0015) D.T 0.8750(0.0014) D.T 0.9223(0.0010) D.T 0.9087(0.0011) D.T
0.8620(0.0015) SVM 0.8992(0.0012) SVM 0.9223(0.0010) SVM 0.9344(0.0010) SVM
0.8709(0.0014) Fuzzy 0.9051(0.0011) Fuzzy 0.9279(0.0010) Fuzzy 0.9389(0.0009) Fuzzy
0.9413(0.0011) KNN 0.9668(0.0007) KNN 0.9771(0.0006) KNN 0.9851(0.0001) KNN

5 0.9286(0.0012) D.T 0.9557(0.0081) D.T 0.9663(0.0007) D.T 0.9740(0.0006) D.T
0.9423(0.0011) SVM 0.9676(0.0007) SVM 0.9782(0.0006) SVM 0.9856(0.0005) SVM
0.9452(0.0010) Fuzzy 0.9695(0.0006) Fuzzy 0.9790(0.0006) Fuzzy 0.9866(0.0005) Fuzzy

127

Table 4.14 Soft Accuracy for t-Distributed Data with Dependent Features

Accuracy of Soft Clustering Solutions
δ ν = 3 ν = 4 ν = 5 ν = 6

270.0434(0.5906) KNN 270.8531(0.5933) KNN 270.5916(0.5897) KNN 269.4788(0.6588) KNN
0.5 267.2866(0.6284) D.T 268.0222(0.6454) D.T 268.4668(0.6659) D.T 268.1954(0.6871) D.T

266.6877(0.8676) SVM 268.2597(0.9230) SVM 267.7139(0.9651) SVM 268.1532(0.9826) SVM
269.2722(0.6413) Fuzzy 267.9887(0.6852) Fuzzy 267.8249(0.6465) Fuzzy 269.4788(0.6588) Fuzzy
266.0053(2.5979) KNN 267.2211(2.6225) KNN 267.0818(2.6519) KNN 264.3354(2.6410) KNN

2 266.0506(2.5515) D.T 267.2211(2.6255) D.T 266.8566(2.7248) D.T 263.8852(2.7178) D.T
265.8258(3.0820) SVM 267.4185(3.1728) SVM 266.2695(3.2938) SVM 263.1466(3.2876) SVM
265.2705(2.3756) Fuzzy 270.3195(2.3938) Fuzzy 270.9315(2.3795) Fuzzy 268.4948(2.4734) Fuzzy
259.8139(3.8967) KNN 264.9391(3.7490) KNN 260.6363(3.9082) KNN 266.2785(3.7859) KNN

3.5 261.3488(3.5761) D.T 265.8829(3.4817) D.T 262.0293(3.6729) D.T 266.7903(3.5771) D.T
260.2613(4.0993) SVM 265.1280(3.9701) SVM 261.0914(4.1765) SVM 266.8156(4.0644) SVM
264.1869(3.2439) Fuzzy 270.4869(3.1752) Fuzzy 266.8554(3.3846) Fuzzy 267.5221(3.4313) Fuzzy
259.6949(4.2280) KNN 271.0366(3.9091) KNN 267.4828(4.1188) KNN 266.1241(4.0835) KNN

5 260.5524(3.9492) D.T 270.8284(3.6957) D.T 267.5334(3.9286) D.T 266.3379(3.9127) D.T
259.7936(4.2922) SVM 271.2930(3.9834) SVM 267.5940(4.2032) SVM 266.2053(4.1722) SVM
271.0047(3.4870) Fuzzy 266.5686(3.7836) Fuzzy 269.1636(3.7793) Fuzzy 266.7475(3.6607) Fuzzy

128

Figure 4.6 Hard accuracy of the clustering solutions produced by each clustering
method when the data objects have arisen from a t-distribution with dependency in
the features.

4.4 Data Application

In this section, we apply each of the proposed ensembles of Section 4.2.1 to a wine

dataset and a forensic glass identification dataset obtained from the UCI Machine

Learning Repository (Dua and Graff, 2019). The two datasets are used to access the

applicability of the proposed algorithms on a dataset with clearly defined clusters

(wine) and a more noisy dataset (glass) as can be seen in Figures 4.7 and 4.8, respec-

tively. Since the simulation results of Section 4.3 suggested our proposed methods of

clustering perform better than Fuzzy C-Means clustering in particular cases in which

the data has arisen from a skewed distribution, we believe the methods are more

applicable to data arising from an underlying skewed distribution. Figure 4.9 shows

129

-0.2

-0.1

0.0

0.1

-0.1 0.0 0.1
PC1 (36.2%)

P
C

2
(1

9.
21

%
) wine_classes

1

2

3

Wine Dataset Observations

Figure 4.7 The graph above shows the wine observations plotted in the space of
the first two principal components. The different colors represent the true
classification for each observation in the dataset.

Chi-Square plots for the wine and glass datasets. The graphs indicate the distribu-

tions both depart from normality and instead suggest the datasets are both skewed

in at least some of the dimensions. Because of this clear departure, we believe the

datasets are suitable for use with our proposed alogrithms. In the following sections,

we begin with a description of each dataset and conclude with a discussion of the

clustering results.

4.4.1 Wine Dataset

The wine dataset consists of n = 178 wines each with P = 13 attributes from 3

locations in Italy. The attributes record the following in each wine: alcohol, malic

acid, ash, alkalinity, magnesium, phenols, flavanoids, nonflavanoids, proanthocyanins,

130

-0.1

0.0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0.0 0.1 0.2
PC1 (27.9%)

P
C

2
(2

2.
78

%
)

glass_classes

1

2

3

5

6

7

Glass Dataset Observations

Figure 4.8 The graph above shows the glass observations plotted in the space of
the first two principal components. The different colors represent the true
classification for each observation in the dataset.

color, hue, dilution, and proline. Because each attribute is measured in different

scales, the dataset was first scaled. (Note: Scaling here refers to standardization

of each variable done by transforming each variable to have a mean of zero and

unit variance). Next, the tuning parameters for the ensembles were found. For

the ensembles, cross-validation was used to obtain the tuning parameters after 1

iteration of the Fuzzy C-Means labelling process. The resulting parameter values

include 6 neighbors for the k-nearest neighbor ensemble, a cost pruning value of

0.01 for the decision tree ensemble, and a γ = 0.1 with a cost of 1 for the SVM

ensemble. Next, 40% of observations were randomly selected with replacement from

the original dataset and the procedure in Section 4.2.1 was applied with B = 300

clustering solutions. The results are discussed in the next section.

131

20

40

60

10 20 30
Chi-square quantile

O
rd

er
ed

 d
is

ta
nc

es

Wine Dataset Chi-Square Plot

0

25

50

75

5 10 15 20
Chi-square quantile

O
rd

er
ed

 d
is

ta
nc

es

Glass Dataset Chi-Square Plot

Figure 4.9 The Chi-Square plots above provide a method through which to check
for normality of the wine (left) and glass (right) data. Both plots indicate a
departure from normality and suggest at least some of the dimensions may be
skewed.

Table 4.15 Confusion Matrix Formed from k-Nearest Neighbor-Based Ensemble
Clustering of Wine Dataset

KNN
Truth 1 2 3

1 3 27 11
2 8 40 0
3 30 0 0

132

Table 4.16 Confusion Matrix Formed from Decision Tree-Based Ensemble
Clustering of Wine Dataset

Decision Tree
Truth 1 2 3

1 0 0 41
2 1 46 1
3 30 0 0

Table 4.17 Confusion Matrix Formed from Support Vector Machine-Based
Ensemble Clustering of Wine Dataset

Support Vector Machine
Truth 1 2 3

1 0 0 41
2 0 47 1
3 30 0 0

Table 4.18 Confusion Matrix Formed from Fuzzy C-Means Clustering of Wine
Dataset

Fuzzy C-Means
Truth 1 2 3

1 41 0 0
2 1 2 45
3 0 30 0

Results

Figure 4.7 suggests J = 3 clusters and each of the clustering algorithms also pro-

duce 3 clusters. Tables 4.15-4.18 show the cross-tabulations of the true classifications

and the clustering results obtained by each of the clustering algorithms (also called

the confusion matrices). Table 4.19 shows the hard and soft accuracy that corre-

sponds to each of these algorithms. Based on these results, the most accurate hard

solutions are obtained by the SVM-based ensemble algorithm with an ARI of 0.9720.

133

The decision tree ensemble method and the Fuzzy C-Means algorithms, too, obtain

a high accuracy with ARIs of 0.9478 and 0.9241, respectively. When looking at the

soft clustering accuracy, the highest accuracy is obtained by the k-nearest neighbor

ensemble at around 148. The next best soft accuracy is given by the Fuzzy C-Means

algorithm.

To better visualize the clusters, each of the resulting solutions are plotted in

the space of the first two principal components in Figure 4.10. Each of these plots

also contain frames to allow for quicker cluster identification and to help visualize

the differences between each method. Note that cluster 1 in the proposed ensemble

algorithms appears to correspond to cluster 2 in the Fuzzy C-Means algorithm. This

is not an issue of concern as clustering labels are completely arbitrary and do not

represent true labels. What is worth noting is that in the middle-left of each plot

in Figure 4.10, the ensemble-based methods all show some degree of overlap between

two clusters while the Fuzzy C-Means algorithm shows clear separation between the

clusters. Revisiting Figure 4.7 we note there is some overlap in the groups when the

principal components plot is coded based on the true class labels. More specifically,

the principal components plots displaying the clusterings from the SVM and decision

tree-based algorithms suggest that there may be some overlap between two of the

three clusters, while the Fuzzy C-Means results suggest a lack of overlap. This may

suggest an erroneous finding in the Fuzzy C-Means algorithm.

Table 4.19 Accuracy of Wine Clustering Solutions

Accuracy
Algorithm Hard Soft

KNN 0.3584 147.9067
DT 0.9478 163.0200
SVM 0.9720 163.8533
Fuzzy 0.9241 150.6017

134

-0.2

-0.1

0.0

0.1

0.2

-0.1 0.0 0.1 0.2
PC1 (36.28%)

P
C

2
(1

9.
5%

) knn_cluster

1

2

3

Wine K-Nearest Neighbor Ensemble Clusterings

-0.2

-0.1

0.0

0.1

0.2

-0.1 0.0 0.1 0.2
PC1 (36.28%)

P
C

2
(1

9.
5%

) tree_cluster

1

2

3

Wine Decision Tree Ensemble Clusterings

-0.2

-0.1

0.0

0.1

0.2

-0.1 0.0 0.1 0.2
PC1 (36.28%)

P
C

2
(1

9.
5%

) svm_cluster

1

2

3

Wine Support Vector Machine Ensemble Clusterings

-0.2

-0.1

0.0

0.1

0.2

-0.1 0.0 0.1 0.2
PC1 (36.28%)

P
C

2
(1

9.
5%

) fuzzy_cluster

1

2

3

Wine Fuzzy C-Means Hard Clusterings

Figure 4.10 Wine clusters plotted in the first two principal components created
using the (left to right and top to bottom) k-Nearest Neighbor ensemble, decision
tree ensemble, support vector machine ensemble, and the Fuzzy C-Means algorithm.

4.4.2 Glass Identification Dataset

The glass identification dataset consists of n = 214 glass samples with P = 9

attributes from 7 classes of glass (Note: Only 6 classes are actually represented in

the dataset). The classes of glass found in the dataset are: float-processed build-

ing window glass, non-float-processed building window glass, float-processed vehicle

glass, container glass, tableware glass, and headlamp glass. The attributes recorded

upon them include: refractive index and the weight percentage in oxides of sodium,

magnesium, aluminum, silicon, potassium, calcium, barium, and iron. We use these

attributes to cluster the glass and begin with finding the tuning values for each of

the proposed ensemble algorithms after one iteration of the Fuzzy C-Means labelling

procedure. The resulting tuning values include 8 neighbors for the k-nearest neighbor

135

ensemble, a cost pruning value of 0.01 for the decision tree ensemble, a γ = 0.1 and

a cost of 1 for the support vector machine ensemble. Next, 40% of the observations

were chosen with replacement from the original glass dataset and used as a training

set. Then the procedure as outlined in Section 4.2.1 was employed with B = 300

clustering solutions. The results obtained from each clustering algorithm are next

discussed.

Table 4.20 Confusion Matrix Formed from k-Nearest Neighbor-Based Ensemble
Clustering of Glass Dataset

KNN
Truth 1 2

1 0 47
2 5 42
3 0 12
5 4 5
6 2 3
7 13 8

Results

We note a major difference in the clustering results of the glass dataset—each

clustering algorithm results in a different number of clusters. This is not surprising

since Figure 4.8 displays overlap between observations in different classes, at least

in the first two principal components. The k-nearest neighbor ensemble resulted

in 2 clusters. The decision tree-based ensemble resulted in 4 clusters. The SVM-

based algorithm resulted in 5 clusters, and the Fuzzy C-Means algorithm resulted in

6. When looking at the true nature of the dataset, what appears to be happening

is that different classes of glass compose a single cluster. For example, in the k-

nearest-neighbor-based method of clustering, the majority of the building glass (both

float and non-float processed) and the float-processed vehicle glass are placed in

136

the second cluster (see Table 4.20 where Truth=1, 2, and 3 denotes float-processed

building glass, non-float-processed building glass, and vehicle glass, respectively);

however, this represents three classes in the original dataset. When we examine the

decision tree-based ensemble results, we note more segmentation between each class

of glass. For example, the majority of the headlamp glass (Truth=7) is represented in

cluster 6 from the decision tree-based algorithm, while float-processed window glass

(Truth=1) has been split among clusters 2, 5, and 6 (see Table 4.21). Similar results

can be found from the SVM-based ensemble and the Fuzzy C-Means algorithm.

Tables 4.20-4.23 show the confusion matrices obtained from each clustering algo-

rithm. (We note the absence of a 4 label under the truth column. This is due to the

absence of non-float-processed vehicle glass within the original dataset). Despite the

differences in clustering results, we see in Table 4.24 that the accuracy of the hard

clustering solutions do not differ much between each method. We note in particu-

lar here that the ARI for the decision tree-based ensemble, SVM ensemble, and the

Fuzzy C-Means algorithm all are around 0.25. A lower ARI value is not unantici-

pated as this dataset exhibits more variability compared to that of the wine dataset

previously presented. However, the soft clustering solutions have more variation in

accuracy, with the SVM-based algorithm producing the lowest absolute loss. Figure

Table 4.21 Confusion Matrix Formed from Decision Tree-Based Ensemble
Clustering of Glass Dataset

Decision Tree
Truth 1 2 5 6

1 0 30 17 0
2 1 39 3 4
3 0 9 3 0
5 0 3 1 5
6 0 0 2 3
7 0 1 1 19

137

4.11 and Table 4.24 raise an interesting question regarding the number of clusters

present in this dataset. The algorithms suggest that there are anywhere between

2 and 6 clusters in the data (and such distinct solutions are similar in accuracy).

Perhaps methods like these could be used in a way not previously explored, to help

determine an initial number of clusters within a dataset when a method producing a

hard solution is employed.

Table 4.22 Confusion Matrix Formed from Support Vector Machine-Based
Ensemble Clustering of Glass Dataset

Support Vector Machine
Truth 1 2 4 5 6

1 0 33 0 14 0
2 5 41 0 1 0
3 0 11 0 1 0
5 6 2 1 0 0
6 1 2 0 2 0
7 0 1 1 1 18

Table 4.23 Confusion Matrix Formed from Fuzzy C-Means Clustering of Glass
Dataset

Fuzzy C-Means
Truth 1 2 3 4 5 6

1 0 0 17 8 22 0
2 0 3 2 25 15 2
3 0 0 1 9 2 0
5 1 7 0 1 0 0
6 1 2 2 0 0 0
7 18 1 1 1 0 0

138

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.1 0.0 0.1 0.2
PC1 (29.31%)

P
C

2
(2

1.
9%

)

knn_cluster

1

2

Glass K-Nearest Neighbor Ensemble Clusterings

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.1 0.0 0.1 0.2
PC1 (29.31%)

P
C

2
(2

1.
9%

) tree_cluster

1

2

5

6

Glass Decision Tree Ensemble Clusterings

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.1 0.0 0.1 0.2
PC1 (29.31%)

P
C

2
(2

1.
9%

)

svm_cluster

1

2

4

5

6

Glass Support Vector Machine Ensemble Clusterings

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.1 0.0 0.1 0.2
PC1 (29.31%)

P
C

2
(2

1.
9%

)

fuzzy_cluster

1

2

3

4

5

6

Glass Fuzzy C-Means Hard Clusterings

Figure 4.11 Glass clusters plotted in the first two principal components created
using the (left to right and top to bottom) k-Nearest Neighbor ensemble, decision
tree ensemble, support vector machine ensemble, and the Fuzzy C-Means algorithm.

Table 4.24 Accuracy of Glass Clustering Solutions

Accuracy
Algorithm Hard Soft

KNN 0.2444 195.5867
DT 0.2554 179.3067

SVM 0.2528 166.6333
Fuzzy 0.2513 265.5141

139

4.5 Discussion

The main goal of this paper was to introduce 3 new fuzzy ensemble algorithms for

clustering that utilized the information from the Fuzzy C-Means membership matrix

in a statistical manner and combined this information with knowledge of ensem-

ble supervised learners. A secondary goal included learning about which supervised

learners showed the most promise in this pursuit and to determine in what settings

each learner-based ensemble algorithm was most applicable. In Section 4.1 we dis-

cussed the background of each learner used in the paper. In Section 4.2 we provided

the outline for each ensemble, the rationale behind their development, and explained

how they fit into the framework of an ensemble clustering algorithm. In Section 4.3 a

detailed simulation study was conducted to assess the properties of each proposed en-

semble and to learn in what scenarios their performances were best. Lastly, in Section

4.4, the ensembles were applied to two different datasets to assess each ensemble’s

performance on well-defined and less-defined clustering problems.

Simulation results suggest the Fuzzy C-Means algorithm is a better method of

clustering when the data are believed to follow a Gaussian or t distribution regardless

of intra-cluster dispersion, inter-cluster variability, or presence or lack of dependence

among attributes. Furthemore, the simulation results also suggest that if an ensemble

method is to be used in the normal or t case, that it should be one based upon the

support vector machine learner. However, in cases in which the data has arisen from

a latent lognormal process, the ensemble based on the decision tree learner gives

better accuracy than all of the other clustering algorithms irrespective of feature

dependency or independence when clusters are clearly defined. When the clusters

contain substantial overlap, the Fuzzy C-Means algorithm appears to be a better

choice.

When we consider the wine data application, an application with clearly defined

clusters, we see the ensembles based on the SVM and the decision trees produce more

140

accurate clusters than the Fuzzy C-Means algorithm. However, when we consider the

glass data application, we see the results from the different clustering methods differ.

Each method of clustering yields a different number of clusters in the final dataset

while obtaining similar accuracy. This may suggest that ensemble-based methods of

clustering may be useful in helping to determine the best number of clusters that

exists within a dataset when there is a high amount of overlap between clusters if a

hard solution must be made. However, the methodology presented in this paper is a

novel approach and one that can be improved upon with future research.

As mentioned in the introduction to this paper, proposed clustering ensemble al-

gorithms should exhibit properties such as robustness, novelty, consistency, and sta-

bility (Vega-Pons and Ruiz-Shulcloper, 2011). Based on this, future research should

be done to ensure proposed algorithms like those presented in this paper meet such

criteria. Specific suggestions for future research include objective methods to choose

tuning parameters for the supervised learners used in each algorithm; methods for

choosing the number of clustering solutions to be generated in the generation step;

objective assessment of the proper size necessary for the pseudo-training set; methods

to check convergence of clustering algorithms; and methods for assessing stability of

clustering results. Future research on ensemble-based methods of clustering that uti-

lize supervised learners is valuable since many applications may be affected by their

use. Such applications include fuzzy clustering in geology or medicine, as well as, big

data analytics where ensemble methods have already proven effective.

141

Chapter 5

Plans for Future

One goal of this dissertation was to explore more efficient methods of cluster

analysis that can be used in the clustering of multivariate categorical data. To this

end, in the future I hope to explore methods of clustering spatial binary data with an

end goal of creating a clustering algorithm that produce accurate clustering solutions

in this special case. To do this I suggest the utilization of supervised methods of

classification—similar to what was done in Chapter 4.

5.1 Introduction

The idea for the spatial binary clustering project was motivated by a previous

study by Hiers et al. (2009) in which there was a need to cluster point-intercept data

collected from controlled forestry burns in the Southeastern region of the United

States. In Hiers et al. (2009), wildlife fuel cells were studied to examine the relation-

ship between fuel and fire behavior at ”fine” (very small) scales. The authors noted

that much of the information pertaining to this relationship was lost in the controlled

burns; therefore improvement could come through understanding the variation in

those burned areas. The hope was that past burns could be used to predict the ef-

fects that may be observed in future burns—a major concern for forestry. Within

this previous study, cluster analysis was performed to group the fuel cell plots based

on various binary features; however, the spatial components of the data were ig-

nored. It is possible that, had the spatial information been used, the final clustering

produced could have been different. To remedy such issues, it is pertinent to con-

142

sider clustering methods that can make use of different aspects of the objects being

clustered–including their spatial components.

5.2 Clustering Binary Spatial Data

The clustering of spatial data has been studied extensively in the last few years

due to increased technological advances that allow for spatial information to be eas-

ily collected for example, through the use of satellite imaging or Global Positioning

System (GPS) tracking software. However, as mentioned in Section 2.4, the cluster-

ing of categorical data has only been studied extensively since the early 1990s. A

problem that has seen less investigation is that of clustering binary spatial data. One

of the more popular algorithms for the clustering of spatial data appears to be that

of the CLARANS (Ng and Han, 2002) algorithm. This algorithm, while a partition-

based method, solves the problem of clustering by searching through a graph. In

this context, the algorithm begins like K-Medoids by randomly selecting k objects as

medoids. Then the graph is constructed with each node on the graph being repre-

sented as a set of objects with each neighboring node differing by only one object.

The algorithm iterates by randomly choosing new neighboring nodes. If it represents

a better medoid, the neighboring node becomes the medoid. Otherwise, the current

node is considered a local minimum (see Ng and Han (2002) for more information).

This particular algorithm is one that has been generated with the intent of being ap-

plicable in the clustering of large databases of spatial data. In this section we present

an idea for an algorithm that may be used for the clustering of spatial binary data

that uses a simpler idea of distance relevant to the nature of the spatial component.

Binary spatial data can be thought of as data that has arisen from various spatial

regions with each variable denoting the absence or presence of some notable feature.

For example, a spatial data set may contain a feature that records whether mountain

ranges or oceans are a part of a region. The spatial component is based on the fact

143

that every location can be represented by a latitude and longitude measurement. The

goal of clustering then, would be to cluster the geographical regions in such a manner

that those in the same cluster share more features with each other than they do to

other geographical regions in other clusters. To do this, we propose reformulation of

the problem into one of clustering mixed variable data. In this context, the spatial

component can be thought of as a quantitative variable and the binary variables

as qualitative. For the point-intercept problem, we propose using a distance metric

more appropriate for the fine-scale nature of the data for the quantitative parts and

a dissimilarity measure like those given in Chapter 2 for the binary parts. Another

option in that case is to use down-weighting of more distant points if something like

Euclidean distance will be used. When viewed in this context, the clustering of such

spatial binary data may not be a new idea.

The forestry-burn data, however, motivated an additional problem for investigation—

that of clustering binary spatial data when the spatial observations correspond to

various locations across the Earth. Such a framework can be utilized in clustering

problems associated with the Global Terrorism Database (LaFree and Dugan, 2007).

This database records global terrorism attacks that have occurred since 1970 and

records location (in latitude and longitude) as well as additional properties relevant

to the attack such as country, means, and whether an attack was ongoing. Within

this framework of spatial data, a natural idea for clustering of such binary spatial

data is to use the Vincenty formula (which is typically used for geodesic length) as a

way to calculate the distance between the locations for each pair of data objects and

to use a dissimilarity measure (based on a similarity measure shown in Chapter 2)

to calculate distance between the binary attributes. Combining these two methods

in an appropriate manner may allow for a way to cluster such binary spatial data.

In the context of the Global Terrorism Database datafile, this amounts to clustering

the terrorism attacks (restricted to the United States) based on some of the binary

144

measurements present. In this dataset the variables considered include: Extended

incident (yes or no), criterion 1 (yes or no), criterion 2 (yes or no), criterion 3 (yes or

no), doubt terrorism proper (yes or no), part of multiple incident (yes or not), success

(yes or no), suicide attack (yes or no), claim of responsibility (yes or no), competing

claim (yes or no), casualties (yes or no). One should note that each of the criterion

(1-3) refer to the type of terrorism attack. The last variable (casualties) is one that

we measure based on whether a casualty is reported. Note this classification could

also be formed based on a certain threshold casualty level. My future research consid-

ers clustering in this framework. The proposed method relies heavily on Vincenty’s

inverse formula for geodesics, which will be discussed next.

5.2.1 Vincenty’s Formula for Geodesics

Geodesics can be defined as a “natural straight line defined as the line of mini-

mum curvature for the surface of the Earth” (Karney, pg.1, 2011). Such lines are of

interest as the “shortest path between any two points on Earth is always a geodesic”

(Karney, pg.1, 2011). Vincenty (1975) presents a solution to two common problems

in geodesics. For this project, the second solution, that of finding the length of the

geodesic between two points on an ellipsoid, is most relevant. To discuss the al-

gorithm, the notation from Vincenty (1975) and Karney (2011) are borrowed (and

mixed), as well as an image from the latter to aid with visualization. For notation,

assume there are two points, denoted A and B, for which interest is in determining

the length of the geodesic, denoted AB, connecting them.

Notation:

• a, b major and minor semi-axes

• f = a−b
a
, flattening parameter

• φ, geodetic latitude

145

Figure 5.1 Depiction of an ellipsoid (from Karney (pg. 1, 2011)) used here to
clarify notation used for (Vincenty, 1975) inverse solution. In this figure φ1 and φ2
denote the latitude of points A and B, respectively. α1 and α2 denote the azimuths
of the geodesics at points A and B, respectively. α0 denotes the azimuth of the
geodesic at the equator (here E is a point on the equator that lies on an extension
of the geodesic AB). s12 denotes the length of geodesic AB. N denotes the North
Pole, and points E, F , and H are just points on the equator EFH. λ12 denotes the
longitude of B relative to A. (Karney, 2011)

146

• L, difference in longitude between A and B, positive east.

• s, length of the geodesic

• α1, α2 azimuths (bearings) of the geodesic at point A and point B, respectively,

measured clockwise from the north

• α0, azimuth of the geodesic at the equator

• u2 = (cos α0(a2−b2)
b2)2

• U , reduced latitude defined as tanU = (1− f) tanφ

• λ, difference in longitude on an auxiliary sphere.

• σ, angular distance AB on the sphere

• σ1, angular distance on sphere from the equator to A

• σm, angular distance on the sphere from the equator to the midpoint of the line

Using this notation, Vincenty (1975) presents a method that can be used to give an

approximate distance between the two points. This algorithm is given below.

λ = L (first approximation) (5.1)

(sin σ)2 = (cosU2 sin λ)2 + (cosU1 sinU2 − sinU1 cosU2 cosλ)2 (5.2)

cosσ = sinU1 sinU2 + cosU1 cosU2 cosλ (5.3)

tan σ = sin σ
cosσ (5.4)

sinα0 = cosU1 cosU2
sin λ
sin σ (5.5)

cos 2σm = cosσ − 2 sinU1
sinU2

(cosα0)2 (5.6)

The calculation of the geodesic length begins using the difference in the longitude of

points A and B as an initial starting approximation for λ as shown in Equation (5.1).

147

Next, Equations (5.2)—(5.6) are iterated with λ being updated each round according

to Equations (5.7) and (5.8) until λ remains relatively constant.

C = f

16(cosα0)2{4 + f(4− 3(cosα0)2} (5.7)

λ = L+ (1− C)f sinα0{σ + C sin σ[cos 2σm + C cosσ(−1 + 2(cos 2σm)2)]} (5.8)

s12 = bX(σ −∆σ) (5.9)

X = 1 + u2

16384{4096 + u2[−768 + u2(320− 175u2)]} (5.10)

Y = u2

1024256 + u2[−128 + u2(74− 47u2)] (5.11)

∆σ = Y sin σ
{

cos 2σm + 1
4Y

[
cosσ(−1 + 2(cos 2σm)2

−1
6Y cos 2σm(−3 + 4(sin σ)2(−3 + 4(cos 2σm)2)

]} (5.12)

At this point the geodesic length between points A and B can be calculated as given

in Equation (5.9) with X, Y , and ∆σ defined as in Equations (5.10), (5.11), and

(5.12) respectively.

Vincenty’s inverse formula gives the geodesic distance between two points on an

ellipsoid; however, of interest to this project is distance when two points are on

Earth. In this setting, Earth represents a specific ellipsoid. To this end, the focus is

on the World Geodetic System (National Imagery and Mapping Agency, 1997) with

the latest version denoted as WGS84. This particular model of the Earth provides

a 3-dimensional coordinate system for geospatial data (National Imagery and Map-

ping Agency, 1997). It is this specific model of the Earth (WGS 84) that modern

technology like GPS receivers reference. With this being the case, it is considered for

this project. To use the WGS84 model with Vincenty’s inverse formula we define the

following parameters as shown below, borrowed from National Imagery and Mapping

Agency (1997):

• a = 6378137.0 meters

148

• b = 6356752.3142 meters

• 1
f

= 298.257223563

The gdist function in the Imap package of R (R Core Team, 2019) employs Vincenty’s

inverse formula with reference to the WGS84. This function may be used to calculate

the distance between the ith and jth observations within the analysis. One possible

ensemble method of doing this could be given as shown below:

1. Select a random sample of observations to be used as a training set.

2. Cluster these observations (ignoring the spatial variables) using the Jaccard

similarity measure.

3. Assign the clustering solutions obtained as labels for each observation in the

training set.

4. Use a k-nearest neighbor classifier trained using Vincenty’s distance to assign

a cluster membership to the remaining observations.

5. Output the final results as a clustering solution.

In the aforementioned algorithm, the binary parts of the observations are being

considered within the clustering, and the spatial parts are being considered within

the k-nearest neighbor step. Therefore, each aspect, which is equally important, is

influencing the final clustering result. If this method works, then it may be possible

to weigh each component differently so that the spatial or binary components can

be given more importance. After reviewing results from Chapter 4, it may also be

helpful to consider an ensemble approach.

To reiterate, for the purposes of clustering the original fine-scale data set, the

aforementioned method may not be appropriate as Vincenty’s distance is more ap-

propriate for calculating the distance between objects many degrees of latitude and/or

149

longitude apart. For the point-intercept data the locations are close together, thus

the Vincenty’s distance should replaced with a more appropriate method for dealing

with small-scale distances. Vincenty’s method is mentioned as it appears to be a

possible approach to solve a widely-applicable problem needing further investigation

and it makes use of GPS. Promising results in this project have the ability to impact

many other geospatial applications. This will be the initial focus for my future re-

search; however, other measures of distance could also be used depending on the type

of spatial data included.

150

Chapter 6

Conclusion

Technological innovations of the 21st century have made it fairly easy to collect

a wealth of data from various sources resulting in a need to then process such data.

Cluster analysis is one of the ways conclusions can be made from such data and

in fact, has helped researchers and practitioners in business, psychology, anthropol-

ogy, information retrieval, and many other fields to solve real-life problems and find

meaning in massive datasets. New methods that seek to improve pre-existing cluster

analysis algorithms are pertinent as any improvements to the state of the art of cluster

analysis have the potential to impact a multitude of fields outside of statistics. With

this in mind, this dissertation sought to introduce improved multivariate methods of

cluster analysis for just this purpose.

In Chapter 3 the focus was on the clustering of tertiary data. In this chapter,

the outcomes of the simulation studies and the Pima Indian Diabetes data applica-

tion suggested the accuracy of cluster solutions could be improved by the use of the

Fienberg-Holland estimator. By pre-smoothing dissimilarities using this shrinkage-

type estimator, cluster solutions produced were shown to be more reflective of the true

latent structure of the data in noisy settings as well as those in which the clusters are

not well-defined when measured by the Adjusted Rand Index. In the cases where the

data was not noisy nor the clusters well-defined, pre-smoothing of the dissimilarities

was not necessary.

In Chapter 4 novel ensemble-based methods of cluster analysis were introduced

and investigated. In this chapter, we discovered several promising findings when con-

151

sidering the combination of supervised and unsupervised methods of classification

for fuzzy clustering. In particular, our results suggest using decision trees, support

vector machines, or the k-nearest neighbor algorithms within a clustering ensemble

yields more accurate soft and hard clustering solutions in some settings as compared

to the Fuzzy C-Means algorithm. These conclusions depend upon the type of dis-

tribution from whence data objects have arisen as well as the variability within the

latent structure of the data.

When the data had arisen from a symmetric distribution like a Gaussian or t-

based distribution, the clustering algorithms based on the support vector machine or

decision tree showed the most promising results of all the proposed algorithms, espe-

cially in the cases where the latent structure of the clusters exhibit high variability.

In the cases where there was less variability in the latent structure, the improve-

ment decreased. In both cases, however, the performance by the best proposed fuzzy

ensemble algorithm still was not better than that produced by the Fuzzy C-Means

algorithm.

On the other hand, when the variables measured on the data objects had arisen

from a highly-skewed distribution, like the Lognormal distribution, the performance

by the decision tree-based fuzzy ensemble algorithm produced the best results of all

the proposed fuzzy ensemble algorithms. Furthermore, in the cases where the latent

structure of the data showed high variability, the decision-tree based method produced

the most accurate hard clustering partitions as measured by the average Adjusted

Rand Index via simulations, even outperforming the Fuzzy C-Means algorithm. When

the clusters were more defined, the differences were not as drastic, though the decision

tree-based methods still performed well.

When considering the wine and glass data applications, the proposed fuzzy ensemble-

based algorithms also showed promise. In the case where the clusters were well-defined

(wine dataset), the most accurate hard clusters were produced through the use of the

152

support vector machine-based ensemble followed by the decision tree-based method.

When considering the soft clustering solutions, the most accurate solutions were pro-

duced by the k-nearest neighbor-based ensemble followed by the Fuzzy C-Means

algorithm.

When considering the case where the clusters were not well-defined, (the glass

dataset), the results were not as straightforward. In this case the hard clustering ac-

curacy was marginally higher for the decision tree-based and support vector machine-

based fuzzy ensembles. Both were trailed closely by the Fuzzy C-Means algorithm.

When considering the soft clustering solutions, the support vector machine-based al-

gorithm, followed by the decision-tree based method, produced the best accuracy. In

this case, however, the accuracy of these methods were notably better than the Fuzzy

C-Means algorithm. The general findings of this chapter suggest it is best to first

consider whether the interest lies in a soft or hard solution, as well as the believed

latent structure of the data before concluding which ensemble is the better method

of choice.

The ongoing project of Chapter 5 also has the potential to improve the field of

cluster analysis through its novelty. This chapter in particular seeks to produce a new

algorithm for the clustering of binary spatial data through an approach similar to that

used in Chapter 4 with motivations arising from the Global Terrorism Database. It

sketches a tentative outline to use supervised learners with geodesic application in

order to cluster the locations of terrorist attacks. If this approach proves fruitful,

to my knowledge, at the time of this dissertation it would be one of the simplest

methods proposed to deal with the clustering of such binary spatial data and one

that uses a seemingly unrelated field of knowledge (geodesics).

Many of the methodologies introduced in this dissertation have used ideas from

other fields with the goal of producing updated algorithms that are also more efficient.

This should not be surprising considering the history of cluster analysis (see e.g.,

153

Chapter 1) in which much innovation has been sparked by researchers outside of the

field of cluster analysis. This dissertation does similarly. More specifically, the goal in

Chapter 3 was to improve the accuracy of clustering solutions produced for tertiary

data objects using statistical smoothing, while in Chapter 4 the focus was on creating

fuzzy ensemble algorithms that could produce more accurate clustering solutions than

the well-known Fuzzy C-Means algorithm (Bezdek, 2013) through the use of machine

learning methodologies. Finally, in Chapter 5, an idea was produced with a goal to

create stable and accurate clustering solutions in binary spatial data objects using

applications of geodesics. Each of the methods showed promise in certain settings

and provide evidence in support of combining traditional methodology from various

fields with that of cluster analysis. It is my hope that this dissertation has effectively

showcased the need for such work and sparked interests in future collaborative efforts

in the field of cluster analysis.

154

Bibliography

Agresti, Alan. 2012. Categorical Data Analysis. Hoboken, New Jersey: John Wiley &

Sons, Inc.

AL-Akhras, Mousa. 2010. “An Efficient Fuzzy K-Medoids Method”. World Applied

Sciences Journal 10:574–583.

Albalate, Amparo and Minker, Wolfgang. 2011. Semi-Supervised and Unsupervised

Machine Learning: Novel Strategies. Hoboken, New Jersey: John Wiley & Sons,

Inc.

Albert, James H. 1987. “Empirical Bayes Estimation in Contingency Tables”. Com-

munications in Statistics-Theory and Methods 16 (8): 2459–2485. doi:10.1080/

03610928708829518.

American Heart Association. 2017. Understanding Blood Pressure Readings. http://

www.heart.org/en/health-topics/high-blood-pressure/understanding-

blood-pressure-readings.

American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental

Disorders. Fifth Edition. Arlington, Virginia: American Psychiatric Association.

Banfield, Jeffrey D and Raftery, Adrian E. 1993. “Model-Based Gaussian and Non-

Gaussian Clustering”. Biometrics 49 (3): 803–821.

Bezdek, James C. 2013. Pattern Recognition with Fuzzy Objective Function Algo-

rithms. Boston, MA: Springer. doi:10.1007/978-1-4757-0450-1.

Bezdek, James C, Ehrlich, Robert, and Full, William. 1984. “FCM: The Fuzzy C-

Means Clustering Algorithm”. Computers & Geosciences 10 (2-3): 191–203.

155

Biernacki, Christophe and Jacques, Julien. 2016. “Model-Based Clustering of Multi-

variate Ordinal Data Relying on a Stochastic Binary Search Algorithm”. Statistics

and Computing 26 (5): 929–943.

Boriah, Shyam, Chandola, Varun, and Kumar, Vipin. 2008. “Similarity Measures for

Categorical Data: A Comparative Evaluation”. In Proceedings of the 2008 SIAM

International Conference on Data Mining, 243–254. SIAM.

Borole, Rachana Tushar. 2020. “A Survey on Data Mining Techniques”. Advance and

Innovative Research: 209.

Choi, Seung-Seok, Cha, Sung-Hyuk, and Tappert, Charles C. 2009. “Correlation Anal-

ysis of Binary Similarity and Distance Measures on Different Binary Database

Types”. In Proceedings of the International Conference on Artificial Intelligence

and Pattern Recognition. Orlando, Florida, USA.

Cornell, John E et al. 2009. “Multimorbidity Clusters: Clustering Binary Data from

Multimorbidity Clusters: Clustering Binary Data from a Large Administrative

Medical Database”. Applied Multivariate Research 12 (3): 163–182. doi:10.1080/

03610928708829518.

Davies, David L and Bouldin, Donald W. 1979. “A Cluster Separation Measure”.

IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1 (2):

224–227.

Dempster, Arthur P, Laird, Nan M, and Rubin, Donald B. 1977. “Maximum Likeli-

hood from Incomplete Data Via the EM Algorithm”. Journal of the Royal Statis-

tical Society: Series B (Methodological) 39 (1): 1–22.

Dietterich, Thomas G. 2000. “Ensemble Methods in Machine Learning”. In Interna-

tional Workshop on Multiple Classifier Systems, 1–15. Springer.

156

Dolnicar, Sara and Leisch, Friedrich. 2004. “Segmenting Markets by Bagged Cluster-

ing”. Australasian Marketing Journal (AMJ) 12 (1): 51–65. doi:10.1016/S1441-

3582(04)70088-9.

Dua, Dheeru and Graff, Casey. 2019. UCI Machine Learning Repository. University

of California, Irvine, School of Information and Computer Sciences. http : / /

archive.ics.uci.edu/ml.

Efron, Bradley and Morris, Carl. 1977. “Stein’s Paradox in Statistics”. Scientific

American 236 (5): 119–127. doi:10.1038/scientificamerican0577-119.

Elgendy, Nada and Elragal, Ahmed. 2016. “Big Data Analytics in Support of the

Decision Making Process”. Procedia Computer Science 100:1071–1084.

Ester, Martin et al. 1996. “A Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise.” In Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, 96:226–231. 34.

Everitt, Brian S et al. 2011. Cluster Analysis. West Sussex, United Kingdom: John

Wiley & Sons.

Fienberg, Stephen E and Holland, Paul W. 1973. “Simultaneous Estimation of Multi-

nomial Cell Probabilities”. Journal of the American Statistical Association 68

(343): 683–691. doi:10.1080/01621459.1973.10481405.

Fraley, Chris and Raftery, Adrian E. 2002. “Model-Based Clustering, Discriminant

Analysis, and Density Estimation”. Journal of the American Statistical Associa-

tion 97 (458): 611–631.

Friedman, Herman P and Rubin, Jerrold. 1967. “On Some Invariant Criteria for

Grouping Data”. Journal of the American Statistical Association 62 (320): 1159–

1178.

157

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert. 2017. The Elements of

Statistical Learning: Data Mining, Inference,and Prediction. New York, New York:

Springer Series in Statistics. doi:10.1007/b94608.

Gan, Guojun, Wu, Jianhong, and Yang, Zijiang. 2009. “A Genetic Fuzzy K-Modes

Algorithm for Clustering Categorical Data”. Expert Systems with Applications 36

(2): 1615–1620.

Grabowski, Mary Kate, Herbeck, Joshua T, and Poon, Art FY. 2018. “Genetic Cluster

Analysis for HIV Prevention”. Current HIV/AIDS Reports 15 (2): 182–189.

Guha, Sudipto, Rastogi, Rajeev, and Shim, Kyuseok. 1998. “CURE: An Efficient

Clustering Algorithm for Large Databases”. In ACM Sigmod Record, 27:73–84. 2.

ACM.

— . 2000. “ROCK: A Robust Clustering Algorithm for Categorical Attributes”. In-

formation Systems 25 (5): 345–366.

He, Zengyou et al. 2005. “K-Histograms: An Efficient Clustering Algorithm for Cat-

egorical Dataset”. arXiv preprint cs/0509033.

Hiers, J Kevin et al. 2009. “The Wildland Fuel Cell Concept: An Approach to Charac-

terize Fine-Scale Variation in Fuels and Fire in Frequently Burned Longleaf Pine

Forests”. International Journal of Wildland Fire 18 (3): 315–325.

Hitchcock, David B and Chen, Zhimin. 2008. “Smoothing Dissimilarities to Cluster

Binary Data”. Computational Statistics and Data Analysis 52 (10): 4699–4711.

doi:10.1016/j.csda.2008.03.012.

Huang, Anna. 2008. “Similarity Measures for Text Document Clustering.” In Pro-

ceedings of the Sixth New Zealand Computer Science Research Student Confer-

ence(NZCSRSC2008), Christchurch, New Zealand, 4:9–56.

Huang, Zhexue. 1997a. “A Fast Clustering Algorithm to Cluster very Large Categor-

ical Data Sets in Data Mining.” DMKD 3 (8): 34–39.

158

— . 1997b. “Clustering Large Data Sets with Mixed Numeric and Categorical Val-

ues”. In Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery

and Data Mining, 21–34. Singapore.

Huang, Zhexue and Ng, Michael K. 1999. “A Fuzzy K-Modes Algorithm for Clustering

Categorical Data.” IEEE Transactions on Fuzzy Systems 7 (4): 446–452.

Hubert, Lawrence and Arabie, Phipps. 1985. “Comparing Partitions”. Journal of

Classification 2 (1): 193–218. doi:10.1007/bf01908075.

Jacques, Julien and Biernacki, Christophe. 2018. “Model-Based Co-Clustering for

Ordinal Data”. Computational Statistics & Data Analysis 123:101–115.

Karney, Charles FF. 2011. “Geodesics on an Ellipsoid of Revolution”. arXiv preprint

arXiv:1102.1215.

Kaufman, Leonard and Rousseeuw, Peter J. 1987. “Clustering by Means of Medoids”.

Statistical Data Analysis based on the L1 Norm: 405–416.

LaFree, Gary and Dugan, Laura. 2007. “Introducing the Global Terrorism Database”.

DOI:10.1080/09546550701246817, Terrorism and Political Violence 19 (2): 181–

204.

Limpert, Eckhard, Stahel, Werner A, and Abbt, Markus. 2001. “Log-normal distri-

butions across the sciences: keys and clues: on the charms of statistics, and how

mechanical models resembling gambling machines offer a link to a handy way to

characterize log-normal distributions, which can provide deeper insight into vari-

ability and probability—normal or log-normal: that is the question”. BioScience

51 (5): 341–352.

MacQueen, James. 1967. “Some Methods for Classification and Analysis of Multi-

variate Observations.” In Proceedings of the Fifth Berkeley Symposium on Math-

ematical Statistics and Probability, 1:281–297. 14. Oakland, CA, USA.

159

Maechler, Martin et al. 2018. cluster: Cluster Analysis Basics and Extensions. R

package version 2.0.7-1.

Mandinach, Ellen B. 2012. “A Perfect Time for Data Use: Using Data-Driven Decision

Making to Inform Practice”. Educational Psychologist 47 (2): 71–85.

Masmoudi, Nesrine et al. 2015. “How to Use Ants for Data Stream Clustering”. In

2015 IEEE Congress on Evolutionary Computation (CEC), 656–663. IEEE.

Mateen, Muhammad et al. 2018. “Text Clustering using Ensemble Clustering Tech-

nique”. International Journal Of Advanced Computer Science and Applications 9

(9): 185–190.

Mayo Clinic. 2019. Glucose Tolerance Test. http://www.mayoclinic.org/tests-

procedures/glucose-tolerance-test/about/pac-20394296.

McNicholas, Paul D. 2017. Mixture Model-Based Classification. Boca Raton, Florida:

Taylor & Francis Group.

Meyer, David et al. 2019. e1071: Misc Functions of the Department of Statistics,

Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-2.

https://CRAN.R-project.org/package=e1071.

National Imagery and Mapping Agency. 1997. Department of Defense World Geode-

tic System 1984: Its Definition and Relationship with Local Geodetic Systems.

National Imagery / Mapping Agency.

Ng, Raymond T and Han, Jiawei. 2002. “CLARANS: AMethod for Clustering Objects

for Spatial Data Mining”. IEEE Transactions on Knowledge & Data Engineering,

no. 5: 1003–1016.

Nguyen, Thi Phuong Quyen and Kuo, RJ. 2019. “Partition-and-Merge Based Fuzzy

Genetic Clustering Algorithm for Categorical Data”. Applied Soft Computing

75:254–264.

160

R Core Team. 2019. R: A Language and Environment for Statistical Computing.

https://www.R- project.org. Vienna, Austria: R Foundation for Statistical

Computing.

Ralambondrainy, Henri. 1995. “A Conceptual Version of the K-Means Algorithm”.

Pattern Recognition Letters 16 (11): 1147–1157.

Rand, William M. 1971. “Objective Criteria for the Evaluation of Clustering Meth-

ods”. Journal of the American Statistical Association 66 (336): 846–850. doi:10.

1080/01621459.1971.10482356.

Rousseeuw, Leonard and Kaufman, Peter J. 1987. Clustering by Means of Medoids.

Ed. by In: Dodge Y and editor.

Rousseeuw, Peter J. 1987. “Silhouettes: A Graphical Aid to the Interpretation and

Validation of Cluster Analysis”. Journal of Computational and Applied Mathe-

matics 20:53–65. doi:10.1016/0377-0427(87)90125-7.

Sanse, Keshav and Sharma, Meena. 2015. “Clustering Methods for Big Data Anal-

ysis”. International Journal of Advanced Research in Computer Engineering &

Technology 4 (3).

Saraçli, Sinan, Doğan, Nurhan, and Doğan, İsmet. 2013. “Comparison of Hierarchical

Cluster Analysis Methods by Cophenetic Correlation”. Journal of Inequalities and

Applications 2013 (1): 203.

Sarumathi, S, Shanthi, N, and Sharmila, M. 2013. “A Comparative Analysis of Dif-

ferent Categorical Data Clustering Ensemble Methods in Data Mining”. Interna-

tional Journal of Computer Applications 81 (4).

Scrucca, Luca et al. 2016. “mclust 5: Clustering, Classification and Density Estimation

using Gaussian Finite Mixture Models”. The R Journal 8 (1): 205–233.

Simonoff, Jeffrey S. 1995. “Smoothing Categorical Data”. Journal of Statistical Plan-

ning and Inference 47 (1-2): 41–69. doi:10.1016/0378-3758(94)00121-b.

161

— . 1998. Smoothing Methods in Statistics. New York, New York: Springer-Verlag

New York, Inc. doi:10.1007/978-1-4612-4026-6.

— . 2012. Smoothing Methods in Statistics. New York, New York: Springer-Verlag,

New York, Inc.

Smith, Andrew. 2019. Consumer Behaviour and Analytics: Data Driven Decision

Making. Routledge.

Sokal, R R and Michener, C D. 1958. “A Statistical Method for Evaluating Systematic

Relationships”. University of Kansas Science Bulletin 38:1409–1438.

Soltysiak, Arkadiusz and Jaskulski, Piotr. 1999. “Czekanowski’s Diagram: A Method

of Multidimensional Clustering”. BAR International Series 757:175–184.

Thangamani, M and Ibrahim, S Jafar Ali. 2018. “Ensemble Based Fuzzy with Particle

Swarm Optimization Based Weighted Clustering (Efpso-Wc) and Gene Ontology

for Microarray Gene Expression”. In Proceedings of the 2018 International Con-

ference on Digital Medicine and Image Processing, 48–55.

Therneau, Terry and Atkinson, Beth. 2019. rpart: Recursive Partitioning and Regres-

sion Trees. R package version 4.1-15. https://CRAN.R-project.org/package=

rpart.

Tibshirani, Robert, Walther, Guenther, and Hastie, Trevor. 2001. “Estimating the

Number of Clusters in a Data Set via the Gap Statistic”. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 63 (2): 411–423.

Vega-Pons, Sandro and Ruiz-Shulcloper, José. 2011. “A Survey of Clustering En-

semble Algorithms”. International Journal of Pattern Recognition and Artificial

Intelligence 25 (03): 337–372.

Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S. Fourth.

ISBN 0-387-95457-0. New York: Springer. http://www.stats.ox.ac.uk/pub/

MASS4.

162

Vincenty, Thaddeus. 1975. “Direct and Inverse Solutions of Geodesics on the Ellipsoid

with Application of Nested Equations”. Survey Review 23 (176): 88–93.

Wang, Gang et al. 2018. “FCE-SVM: A New Cluster Based Ensemble Method for

Opinion Mining from Social Media”. Information Systems and e-Business Man-

agement 16 (4): 721–742.

Ward, Joe H. 1963. “Hierarchical Grouping to Optimize an Objective Function”.

Journal of the American Statistical Association 58 (301): 236–244.

Windgassen, S et al. 2018. “The Importance of Cluster Analysis for Enhancing Clin-

ical Practice: An Example from Irritable Bowel Syndrome.” Journal of Mental

Health (Abingdon, England) 27 (2): 94–96.

Zhang, Tian, Ramakrishnan, Raghu, and Livny, Miron. 1996. “BIRCH: An Efficient

Data Clustering Method for Very Large Databases”. In ACM Sigmod Record,

25:103–114. 2. ACM.

Zubin, Joseph. 1938. “A Technique for Measuring Like-Mindedness”. The Journal of

Abnormal and Social Psychology 33 (4): 508–516.

163

	Categorical and Fuzzy Ensemble-Based Algorithms for Cluster Analysis
	Recommended Citation

	tmp.1614908087.pdf.scnAQ

