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Abstract

In IP backbone networks, packets may get dropped due to: i) lack of viable next

hops when a link/router fails, ii) forwarding loops during network convergence, and

iii) buffer overflows in case of congestion. Similarly, packets may be lost in wireless

networks due to variations in signal strength between a pair of mobile nodes. This

dissertation explores the possibility of providing a predictable performance during

such network contingencies in wired backbone networks and robotic wireless networks.

First, we study the feasibility of developing a combination of local reroute and

global update mechanisms that can achieve loop-free convergence, while performing

disruption-free forwarding around a failed link/router, without carrying any addi-

tional information in the IP datagrams and with out needing any coordination be-

tween routers. We show that order of updates rarely matters for loop-free convergence

when failure inference based fast reroute (FIFR) scheme with interface-specific for-

warding is employed for dealing with link or router failures. In the rare cases where

order matters, it can be coupled with progressive link metric increments to ensure

loop-freedom with unordered updates of forwarding tables. We also demonstrate

that, apart from providing protection against failures, FIFR can also be utilized to

mitigate packet drops due to network congestion caused by micro traffic bursts.

Second, we address the problem of constructing a communication map, which

encodes information on whether two robots at given locations can communicate us-

ing a wireless network. Unlike previous offline approaches that do not utilize data

measured by robots, we propose an online method, utilizing Gaussian Processes, to

efficiently build a communication map with multiple robots, by exploiting prior com-
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munication models that can be derived from the physical map of the environment.

Our evaluation, using a team of TurtleBot 2 platforms, confirms that the proposed

method requires robots to take fewer signal strength measurements and travel less

distance, and yet obtain similar accuracy as methods that consider all the locations

in the environment.
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Chapter 1

Introduction

The fundamental service provided by a wired or a wireless network is to deliver packets

to their destinations. Packet delivery can however be adversely affected by some

network and traffic conditions. In IP backbone networks, packets may get dropped

due to: i) lack of viable next hops when an adjacent link or router fails, ii) transient

forwarding loops during network convergence, and iii) buffer overflows at routers in

case of sudden micro-bursts of traffic. Similarly, for a team of robots communicating

with each other to perform search and rescue operations, packets could be lost before

reaching the destination, due to bit errors caused by the variations in signal strength

between a pair of robots. This dissertation, which consists of two parts, explores the

possibility of providing a predictable performance during such network contingencies

in both wired backbone networks and robotic wireless networks.

1.1 Part One: Traditional Wired Networks

The key objectives of an intra-domain routing protocol such as OSPF in a tradi-

tional network with a distributed control plane are reachability, i.e., forward packets

to their destinations, and optimality, i.e., along the shortest paths. To ensure opti-

mality, any changes in the link state need to be propagated across the network, so

that all routers recompute new shortest paths and install corresponding forwarding

entries. On the other hand, to respond to failures quickly, due to relatively long con-

vergence delay associated with a link state update, optimality is often traded-off for

reachability, by having routers adjacent to failures perform local rerouting, without
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invoking the control plane. However, when a failure lasts beyond a certain duration,

it is desirable to trigger a link state update so that all routers recompute the opti-

mal routes in the new topology. But a straightforward link state update can cause

transient forwarding loops during the convergence process unless routers coordinate

to install their forwarding entries in a particular order. This dissertation studies the

feasibility of developing a combination of local reroute and global update mechanisms

that can achieve loop-free convergence, while performing disruption-free forwarding

around a failed link, without carrying any additional information in the IP datagram

and without requiring any signaling between routers.

Among all the IP fast reroute schemes that provide full protection against any

single non-partitioning failure, we consider failure inference based fast route (FIFR),

as it is an approach that does not need any changes to the IP datagram. We observe

that FIFR, due to the presence of back hop entries, mitigates the problem of forward-

ing loops during convergence with unordered updates. Specifically, we find that by

decoupling the installation of interface-independent forwarding entries and interface-

specific back hop entries, convergence can be made loop-free and order-agnostic, except

in rare cases. In those rare cases, we propose to employ the progressive increment

method and show that the resulting link metric sequence length is short. We extend

this approach to handle link up events and also ensure that convergence is loop-free

even for router down and up events. Overall, the proposed approach, referred to as

FIFR++, has four key features that make it attractive for deployment. 1) It guar-

antees loop-free fast rerouting around a failure to any reachable destination. 2) It

provides loop-free fast convergence to optimal forwarding after a failure. 3) It does

not require any changes to the IP datagram. 4) It does not require any coordination

between routers.

Apart from link or router failures, packets drops may also be caused by network

congestion [4, 56]. There have been several works on handling persistent congestion

2



through traffic engineering and network-wide redistribution of traffic. However, these

approaches are not suitable for dealing with sudden and short spikes of traffic, referred

to as micro bursts, that are fairly common. The time scale of network-wide reaction

is too slow for dissipating micro bursts that last for a few microseconds [66, 59].

This dissertation explored the feasibility of employing FIFR for performing local

rerouting when a buffer at an outgoing interface is full. We demonstrate that, apart

from providing protection against link/router failures, FIFR can also be utilized to

mitigate packet drops due to network congestion caused by micro traffic bursts.

1.2 Part Two: Robotic Wireless Networks

This dissertation also addresses the problem of building a communication map of

an environment using multiple robots. A communication map encodes information

on whether two robots can communicate using a wireless network when they are at

two arbitrary locations and plays a fundamental role in a multi-robot system de-

ployment to reliably and effectively achieve a variety of tasks, such as environmental

monitoring and exploration. Previous work considered only scenarios with a fixed

base station and designed offline methods, which did not exploit data collected online

by the robots. This dissertation proposes Gaussian Process-based online methods

to efficiently build a communication map with multiple robots. Such robots form

a mesh network, where there is no fixed base station. Specifically, we provide two

leader-follower online sensing strategies to coordinate and guide the robots while col-

lecting data. The number of RSSI measurements used to update the communication

map, and the number of candidate locations where robots should go are reduced, by

exploiting prior communication models that can be built from the physical map of

the environment. Our evaluation, using a team of TurtleBot 2 platforms, confirms

that the proposed method requires robots to take fewer measurements and travel less

3



distance, and yet get similar accuracy as methods that consider all the locations in

the environment.

1.3 Contributions

This dissertation makes the following research contributions.

1. It proposes FIFR++, a combination of local reroute and global update mecha-

nisms, that can achieve loop-free convergence, while performing disruption-free

forwarding around a failure, without carrying any additional information in the

IP datagram and without requiring any signaling between routers. To the best

of our knowledge, FIFR++ is the only scheme that has these desirable features.

2. It makes a creative reuse of interface-specific forwarding entries, meant for fast

reroute in case of a failure, to extend the FIFR++ approach to provide loop-

free fast convergence for link up events also. Further, it demonstrates that the

proposed approach works as well for handling router failure and restoration too.

3. It demonstrates that, apart from providing protection against link and router

failures, FIFR can also be employed for rerouting packets that encounter full

buffers at routers to mitigate packet drops due to micro traffic bursts.

4. It develops an online method for efficiently building a communication map with

multiple robots, leveraging prior communication models derived from the physi-

cal map of the environment. It shows that the proposed method requires robots

to take fewer measurements and travel less distance, and yet obtain similar ac-

curacy as methods that consider all the locations in the environment.
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Part I

Traditional Wired Networks
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Chapter 2

Background on IP Fast Reroute and

Network Convergence

The key objectives of an intra-domain routing protocol such as OSPF in a tradi-

tional network with a distributed control plane are reachability, i.e., forward packets

to their destinations, and optimality, i.e., along the shortest paths. To ensure opti-

mality, any changes in the link state need to be propagated across the network, so

that all routers recompute new shortest paths and install corresponding forwarding

entries. On the other hand, to respond to failures quickly, due to relatively long con-

vergence delay associated with a link state update, optimality is often traded-off for

reachability, by having routers adjacent to failures perform local rerouting, without

invoking the control plane. However, when a failure lasts beyond a certain duration,

it is desirable to trigger a link state update so that all routers recompute the opti-

mal routes in the new topology. But a straightforward link state update can cause

transient forwarding loops during the convergence process unless routers coordinate

to install their forwarding entries in a particular order. This dissertation studies the

feasibility of developing a combination of local reroute and global update mechanisms

that can achieve loop-free convergence, while performing disruption-free forwarding

around a failed link, without carrying any additional information in the IP datagram

and without requiring any signaling between routers.

There have been many proposals for performing fast reroute in traditional IP

networks with a distributed control plane [8, 1, 63, 54, 9]. Many of these schemes

6



require encapsulation [8] or modification to the IP header to carry additional bits of

information [1]. Among all the IP fast reroute schemes that provide full protection

against any single non-partitioning failure, we consider failure inference based fast

route (FIFR) [45], as it is an approach that does not need any changes to the IP

datagram. Under FIFR, routers adjacent to a failed link or router perform local

rerouting around the failure, without notifying non-adjacent routers about the failure.

The non-adjacent routers utilize back hop entries, which are associated with each

interface along the reverse shortest path and are precomputed based on potential

inferred failures that could cause a packet for a given destination to arrive at that

interface, to ensure loop-free forwarding to the destination. While FIFR is suitable

for short-lived failures, forwarding packets to the point of failure and then rerouting

them is undesirable for longer-lasting failures. In such cases, it is preferable to trigger

a link state update and initiate re-convergence to optimal routes.

During the convergence period, i.e., between the time a link state update is initi-

ated and the time all routers install new forwarding entries, packets may be forwarded

by some routers based on the new topology and others based on the old topology, po-

tentially leading to forwarding loops. To prevent loops, [19] proposed a scheme that

imposes a certain order between the FIB updates of different routers. While it guar-

antees loop-free convergence, it requires some form of coordination among routers to

order their updates. As an alternative, a progressive link metric increment method

has been proposed [20], which sends a sequence of updates such that each update is

loop-free, regardless of the order of updates. But the downside of this incremental

update method is that it takes longer to converge to the target state.

This dissertation explores how we can achieve fast loop-free convergence while per-

forming fast reroute with FIFR, without necessitating coordination between routers.

Before we discuss the proposed approach, in this chapter, we present some background

material about the schemes upon which the proposed approach is built.
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2.1 Failure Inference based Fast Reroute

In this section, we explain the core idea behind the FIFR approach, using a simple

example. We refer the reader to [63, 45] for full details. Consider the topology shown

in Fig. 2.1, where each link is labeled with its cost. Suppose the link between routers

B and E is down, and only B and E are aware of the failure. Imagine forwarding

a packet from source A to destination F. Based on the link costs, the shortest path

from A to F is A→B→E→F. So, router A will forward the packet to its next hop

B. Router B, being adjacent to the failed link B−E, initiates local rerouting. Since

the shortest path to destination F, without the B−E link, is B→A→C→E→F, it

forwards the packet back to A. Normally, this would cause the packet destined for F

to go back and forth between routers A and B, resulting in a forwarding loop.

A

B

C

D

E F

1

2

3

1

2

1

3

Figure 2.1: A topology used for illustration of FIFR and progressive updates.

Under FIFR, however, A infers potential failures along the shortest path to F

that would cause the packet to arrive at A from its usual next hop B (i.e., through

the unusual incoming interface B→A). It is apparent that the failure of link B−E

would cause the packet for F to arrive through interface B→A. Similarly, the failure

of E−F would also cause the packet destined for F to arrive through interface B→A,

as the shortest path from E to F without link E−F is E→B→A→D→F. Since A does
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not know which of these links actually failed, it excludes all such candidate links to

find an alternate next hop (which we refer to as back hop), which is D, for packets

destined for F arriving through interface B→A.

We observe that the resulting back hop would be the same, if we were to exclude

just one of those candidates links, referred to as the key link, that is closest to the

destination. In this example, the key link for destination F and interface B→A is

E−F. Router A can pre-compute a key link per destination for each of its interfaces

(which may be none if there are no candidate links), and compute the corresponding

back hops. Table 2.1 lists the key links and back hops for all combinations of unusual

incoming interfaces and destinations in Fig. 2.1.

Table 2.1: Key Links and back hops for unusual incoming interfaces for the topology
in Fig. 2.1

Interface Destination Key Link Back Hop

B→A E B−E C

B→A F E−F D

A→B C A−C E

A→B D A−D E

E→B C C−E A

E→B F E−F A

A→C B A−B E

E→C B B−E A

F→D E E−F A

B→E A A−B C

F→E D D−F B

Effectively, FIFR computes interface-specific forwarding entries, i.e., a packet’s

next hop depends not only on its destination but also on the incoming interface, i.e.,
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the previous hop. Most of these entries would be identical to usual forwarding entries

based on destination only, independent of the incoming interface (as if the packet

originated at this router). Only the unusual interfaces that lie along the reverse

shortest path from the point of failure to the destination have back hops.

To put this formally, under FIFR, each router i has a forwarding entry F d
i per

each destination d. In addition, it keeps a back hop entry Bd
j→i per each destination d

and neighbor j ∈ F d
i (both F d

i and Bd
j→i are sets, as there could be multiple shortest

paths of equal cost). Let Kd
j→i be the farthest link along a shortest path from i to d,

whose failure would cause the packet to d arrive through interface j→i. While F d
i is

the set of usual next hops from i to d, Bd
j→i is the set of next hops from i to d without

the link Kd
j→i. When Kd

j→i is �, B
d
j→i is the same as F d

i . Once the set of next hops and

back hops for each destination are computed, packets can be forwarded as follows.

A packet originating at i to destination d is forwarded to F d
i . A packet destined for

d arriving at i through neighbor j is forwarded to Bd
j→i if j ∈ F d

i , otherwise to F d
i .

Moreover, a packet to d that were to be forwarded to the next hop j is rerouted by

i to Bd
j→i when the link i− j is down and all other routers are not yet notified and

converged to the new topology.

The forward hop and back hop entries can effectively be combined into one

interface-specific forwarding table per interface, as shown in Table 2.4 for router

A (the first row shows the next hops for packets originating at A). Note that most

entries are usual next hops along the shortest paths to the destinations. But for the

interface B→A, the next hops for destinations B, E and F are different from the

usual forwarding entries. So, a packet to F is forwarded to the usual next hop B

if it originates at A (using A→A entry) or if it arrives at A from C (using C→A

entry) or D (using D→A entry). On the other hand, if the packet to F arrives at

A from B, it is forwarded to D (using the B→A entry for F). Also, when an A−B

link is down, packets to B, E, and F that were to be forwarded to B are rerouted to

10



back hops C, C, D respectively (using B→A entries), without involving the control

plane. It is also important to emphasize that these entries are computed apriori and

not when necessary. Moreover, since routers nowadays maintain a copy of the FIB at

each interface to perform forwarding at line speed, interface-specific forwarding can

be implemented without any changes to the forwarding plane.

Table 2.2: Interface-specific forwarding entries at router A from the topology in
Fig. 2.1 (A→A is meant for packets originating at A).

Interface
Destination

B C D E F

A→A B C D B B

B→A C C D C D

C→A B B D B B

D→A B C B B B

FIFR for Node Failures

Thus far, we have described the FIFR approach for handling link failures. It has been

shown that FIFR can route around node failures by inferring key nodes, instead of

key links [63]. Here, we illustrate FIFR for dealing with node failures using a simple

example. Consider the topology shown in Fig. 2.2, where each link is labeled with

its cost. Now suppose node E in Fig. 2 failed. Imagine forwarding a packet from

source A to destination F. Based on the link costs, the shortest path from A to F

is A→B→E→F. So, router A will forward the packet to its next hop B. Router B,

being adjacent to the failed node E, initiates local rerouting. Since the shortest path

to destination F, without the router E, is B→A→C→E→F, it forwards the packet

back to A. Normally, this would cause the packet destined for F to go back and forth

between routers A and B, resulting in a forwarding loop.

11
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Figure 2.2: A topology used for illustration of FIFR for Node Failures.

Using FIFR for dealing with node failures, however, A infers potential failures of

nodes along the shortest path to F that would cause the packet to arrive at A from its

usual next hop B (i.e., through the unusual incoming interface B→A). It is apparent

that the failure of node E would cause the packet for F to arrive through interface

B→A.

The computation of forwarding table entries of an interface involves identifying a

set of key nodes Kd
j→i, whose failure causes a packet to arrive at the node through that

interface. In this example, the key node for destination F and interface B→A is node

E. Router A can pre-compute a key node per destination for each of its interfaces

(which may be none), and compute the corresponding back hops. Table 2.3 lists the

key nodes and back hops for all combinations of unusual incoming interfaces and

destinations in Fig. 2.2.

The forward hop and back hop entries can effectively be combined into one

interface-specific forwarding table per interface, as shown in Table 2.4 for router

A (the first row shows the next hops for packets originating at A). Note that most

entries are usual next hops along the shortest paths to the destinations. But for the

interface B→A, the next hops for destinations B, E and F are different from the

usual forwarding entries. So, a packet to F is forwarded to the usual next hop B if it

12



Table 2.3: Key Nodes and back hops for unusual incoming interfaces for the topology
in Fig. 2.2

Interface Destination Key Node Back Hop

B→A F E D

A→B C C E

A→B D D E

E→B C C A

E→B F −− A

A→C B B E

E→C B B A

F→D E E A

B→E A A C

F→E D D B

originates at A (using A→A entry) or if it arrives at A from C (using C→A entry)

or D (using D→A entry). On the other hand, if the packet to F arrives at A from B,

it is forwarded to D (using the B→A entry for F). Also, when an A−B link is down,

packets to B, E, and F that were to be forwarded to B are rerouted to back hops C,

C, D respectively (using B→A entries), without involving the control plane.

Table 2.4: Interface-specific forwarding entries at router A from the topology in
Fig. 2.2 (A→A is meant for packets originating at A).

Interface
Destination

B C D E F

A→A B C D B B

B→A C C D C D

C→A B B D B B

D→A B C B B B
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It has been shown that FIFR, by employing interface-specific forwarding, can

guarantee loop-free forwarding to all reachable destinations in case of a single link

or router failure [63, 45]. However, because the packets are rerouted along alternate

paths only from the point of failure, the resulting paths are sub-optimal. For instance,

in the above example, when link B−E is down, a packet from A to F traverses the

path A→B→A→D→F, compared to the optimal path A→C→E→F. Therefore, it is

of interest to initiate a link state update in case of a long-lasting failure, even while

performing fast reroute, so that all routers can forward along optimal routes.

2.2 Convergence with Progressive Link State Updates

An obvious approach to deal with any link state changes is to propagate them

network-wide so that all routers can recompute their next hops and forward packets

along the optimal routes. The problem is that, during the convergence period, i.e.,

between the time a link state update is initiated and the time all routers install new

forwarding entries, packets may be forwarded by some routers based on new state

and others based on old state, potentially causing forwarding loops.

Suppose the link B−E in Fig. 2.1 is being shut down for maintenance by changing

its cost from 1 to ∞, and all routers are notified of this change. Due to the delays in

propagation of the link state advertisements and re-computation/installation of new

forwarding entries, it is possible that B is in the ac (after change) era, i.e., starts

forwarding according to the new cost, whereas A is still in the bc (before change) era,

i.e., continues forwarding based on the old cost. Then, as per the new shortest path

B→A→C→E, a packet destined for E from B is forwarded to A. Being in the bc era,

router A, as per the old cost, forwards it back to B, resulting in a loop.

To prevent such forwarding loops during convergence, [19] proposed a scheme that

imposes a certain order among the FIB updates of different routers. In this example,

B installs new FIB entries only after A has done the same (and the link B−E is shut
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down only after its adjacent nodes B and E update their FIBs). Then, a packet from

B is forwarded to E, either along the old path B→E before the update or the new path

B→A→C→E after the update, avoiding loops at any time instant. Enforcing such

an order requires some form of coordination between routers. As we are interested in

an approach that does not require any such coordination, we consider the progressive

link metric increments approach proposed in [20].

The main idea behind the progressive link metric increments is as follows. Instead

of sending an update with B−E cost of∞, suppose we send a sequence of updates with

a cost of 2, 3, and so on, each with a progressively higher cost, until B−E is not along

any shortest path. Note that a subsequent update is sent only after the network has

converged to the previous update. Consider the first update in this sequence, where

the cost of B−E is increased from 1 to 2. With the old cost of 1 or the new cost of 2,

the shortest paths from A to E and B to E remain the same, and hence this update

would not cause a forwarding loop, even if A and B are in different eras.

When B−E cost is updated to 3, A→C→E becomes a shortest path with the

same cost as that of A→B→E, while the shortest path from B to E remains B→E.

Again, regardless of the eras A and B are in, this update does not cause a forwarding

loop. Now, by increasing B−E cost to 4, A→B→E ceases to be a shortest path. The

following update of cost to 5 makes A one of the next hops from B to E. Since B is no

longer a next hop from A to E after the previous update, this update does not cause

any back and forth between A and B. Next, updating the B−E cost to 6 or higher,

effectively eliminates the link from the topology, since it is not along the shortest path

between its adjacent nodes. We can then send a final update with B−E cost of ∞,

to inform all routers that the link is actually down. Thus, each update yields loop-

free convergence and progressively brings the network to the desired target topology

without B−E, allowing the B−E link to be shut down gracefully.
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It is not necessary that the link cost has to be incremented in steps of 1 to avoid

loops. It has been shown that loop-freedom can be assured with a shorter metric

sequence [20], which is specific to each link and depends on the topology. Table 2.5

shows the sequence of metric updates needed to bring down a link in the topology in

Fig. 2.1 gracefully.

Table 2.5: Metric sequence required to bring each link down, for the topology in
Fig. 2.1

Link Without FIFR With FIFR

A−B 2, 4, ∞ ∞

A−C 3, ∞ ∞

A−D 5, ∞ ∞

B−E 4, ∞ ∞

C−E 3, ∞ ∞

D−F 5, ∞ ∞

F−E 3, 5, 7, ∞ ∞

The downside of the above incremental update method is that it takes longer to

converge to the target state. In this dissertation, we explore how we can achieve fast

loop-free convergence while performing fast reroute with FIFR, without necessitating

coordination between routers.
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Chapter 3

Handling Contingencies in Wired Networks

This chapter presents how we can build upon the interface-specific forwarding em-

ployed by the FIFR approach described in the previous section to ensure disruption-

free forwarding before, during, and after network convergence in response to link

state changes. We show that the proposed approach, referred to as FIFR++, four

key features that make it attractive for deployment. 1) It guarantees loop-free fast

rerouting around a failure to any reachable destination. 2) It provides loop-free fast

convergence to optimal forwarding after a failure. 3) It does not require any changes

to the IP datagram. 4) It does not require any coordination between routers. In the

following, we describe the FIFR++ approach in stages and show that it can handle

both link down and up events. Then, we present how it can deal with node failures

and also mitigate packet loss due to network congestion.

3.1 Network Convergence during Link State Down Event1

We now explain how we incorporate the above ideas of FIFR and incremental updates

towards developing the FIFR++ approach for providing loop-free fast reroute/convergence.

First, we observe that even with traditional non-incremental link state updates FIFR

mitigates the problem of forwarding loops during convergence. Next, we find that

most of the loops can be avoided by installing new interface-specific backwarding

1Phani Krishna Penumarthi, Aaron Pecora, Jason O’Kane, Srihari Nelakuditi,
Failure-Inference-Based Fast Reroute with Progressive Link Metric Increments, in
Proceedings of IEEE ICCCN 2018.
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entries only after interface-independent forwarding entries are updated at all routers.

Finally, we show that only in some rare cases we need to employ progressive link state

updates to ensure loop-free convergence and disruption-free forwarding.

3.1.1 Traditional Link State Updates

We have already seen in Section 2.2 that, without FIFR, a straightforward updating of

B−E’s cost from 1 to ∞ causes transient forwarding loops during convergence. FIFR,

however, helps mitigate this problem. Again, consider the scenario of A forwarding a

packet destined for F, when A is in the bc era and B is in the ac era. A, being unaware

that B−E link is down, forwards that packet to its usual next hop B. Since B is in the

ac era, it will forward to its new next hop A. Without FIFR, this makes the packet

to loop between A and B. With FIFR, on the other hand, when B forwards a packet

destined for F to A, instead of forwarding it back to B, node A will forward that to D,

using interface-specific forwarding. D, no matter what era it is in, will in turn forward

the packet to F. Thus the packet from A to F takes the path A→B→A→D→F.

Now suppose A is in the ac era. Then its forwarding and backwarding table

entries will be updated as shown in Table 3.1. The new next hop from A to F is C.

So, A will forward the packet destined for F to C. Since B-E link is not along the

shortest path from C to F, regardless of the era C is in, it will forward the packet to

E, which in turn will forward to F. Thus, when A is in the ac era, packets destined

for F take the path A→C→E→F. Hence, packets from A to F are delivered along

the path A→B→A→D→F or A→C→E→F without causing any forwarding loop

irrespective of the order in which A and B are updated. For the topology in Fig. 2.1,

we find that updating about any link failure, not just B−E, does not cause loops

during convergence with FIFR, even with traditional link state updates, regardless

of the order of routers updating their FIBs.
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Table 3.1: Interface-specific forwarding entries at router A in Fig. 2.1 when it is up-
dated (in ac era) with the failure of B−E. Note that the set of back hops for rerouting
to B is empty in case the link A−B also goes down later making B unreachable.

Interface
Destination

B C D E F

A→A B C D C C

B→A − C D C C

C→A B D D D D

D→A B C C C C

3.1.2 Deferred Updating of Back Hops

The above observation does not hold across all topologies. Consider the topology in

Fig. 3.1, where the link U−W is down and a link state update is triggered with cost

∞. Assume that router T enters the ac era, as it has updated its forwarding and

backwarding entries, whereas the rest of the routers are still in the bc era. Suppose

P has a packet for destination W. Table 3.2 shows the next hop and back hop for

destination W at each router in the bc era. As per the bc topology, the shortest path

from P to W is P→R→T→U→W. So P forwards it to R. Router R, which is also in

the bc era, forwards it to T.

According to T, which is in the ac era, the new shortest path, without U−W

link, is T→R→S→V→X→W. Therefore, its new next hop to W is R. Accordingly,

the new back hop for packets destined for W arriving at T from R is V. This is

because, T determines, based on the ac topology without U−W link, that S−V is the

keylink, whose failure would cause a packet for W to arrive, along the (new) reverse

shortest path, at T from R. Consequently, T forwards the packet to its new back hop

V (Table 3.3 shows the next hops and back hops for destination W at each router

according to the ac topology). But, router V, which is still in the bc era, forwards it
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Figure 3.1: An illustrative scenario for pointing out the need for deferring updating
of back hops during convergence with FIFR. Link U−W is down and not all routers
have updated their tables. Only router T is in the ac era. Its new next hop and back
hop to W are R and V respectively. With the new back hop, packets from P to W
traverse a loop P→R→T→V→S→R→T. With deferred updating of back hops, they
take loop-free path P→R→T→R→S→V→X→W.

to its usual next hop S. Being in the bc era, S forwards it to R. Again, R forwards it

to T. Thus, the packet traverses the path P→R→T→V→S→R→T, forming a loop.

The reason for the above looping scenario is that T, which is in ac era, misinter-

prets the usual forwarding from R, which is in bc era, as unusual back hop due to

another failure along the new shortest path T→R→S→V→X→W, which obviously is

not the case. This does not happen if T does not treat R→T as a back hop interface.

Therefore, we propose to eliminate the possibility of such loops during convergence by

deferring the updating of back hops. In other words, a router in the ac era uses ac

next hop but bc back hop during convergence.

Table 3.4 shows this combination of ac next hops and bc back hops for destination

W. In this table, T has updated its next hop from U to R based on the ac topology,

but keeps the back hop as R for packets arriving at T from U (instead of changing it

to V as per Table 3.3). The new ac back hops as in Table 3.3 are installed once the

network converges to the ac era. Note that deferred updating of back hops does not
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Table 3.2: Next hops and back hops to destination W in bc era (with link U−W).
For instance, a packet destined for W is forwarded by node R to the usual next hop
T if it arrives from any node other than T. But if a packet to W arrives at R from
T, it is forwarded to the back hop S (avoiding the key link U−W).

Node Next Hop Back Interface Back Hop

P R R→P Q, Y

Q U U→Q P

R T T→R S

S R R→S V

T U U→T R

U W W→U T

V S S→V X

X W W→X V

Y Z Z→Y P

Z U U→Z Y

delay the network’s convergence to optimal routing, since back hops are needed only

for protection against a subsequent failure.

Now, let us revisit the above scenario of a packet being forwarded from P to W.

As before, the packet will go from P to T along the path P→R→T. Then, with

the deferred updating of back hops, T will forward it based on the bc back hop

to R. Thereafter, the packet will reach V from R, along the reverse shortest path

R→S→V. Therefore, V will forward it to its back hop X. Thus, the packet reaches

its destination, along the loop-free path P→R→T→R→S→V→X→W.

3.1.3 Progressive Link Metric Increments

While the above approach works fine in most cases, it is possible to handcraft a

topology where a particular scenario of link state updates can cause looping. Consider
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Table 3.3: Next hops and back hops to destination W in ac era (without link U−W).
The next hop from T to W is R and the back hop for packets to W arriving at T
from R is V.

Node Next Hop Back Interface Back Hop

P R R→P Q, Y

Q U U→Q P

R S S→R T

S V V→S R

T R R→T V

U T T→U V

V X X→V −

X W W→X −

Y P P→Y Z

Z U U→Z Y

the topology shown in Fig. 3.2, where the link I−M is down and a link state update

is triggered with cost ∞. Suppose J has a packet for M. Assume that I, J, K, and L

have recomputed their forwarding tables and are in the ac era, whereas the rest are

in the bc era.

Table 3.5 shows the next hop and back hop at each router for destination M.

Only the next hop entries at J, K, and L are based on the ac topology. As per the

ac topology, the shortest path is J→L→N→M, and so J forwards it to L. L, which

is also in the ac era, forwards it to N (here the deferred bc back hop and ac next hop

happens to be the same). According to N, which is in the bc era, the usual shortest

path is N→L→J→H→I→M. Based on its inference on bc view, only the failure of

J−L can cause a packet for M to arrive through L→N interface along the reverse

shortest path. Therefore, since the backward path from N to M without the key link

J→L is N→O→K→I→M, the packet is forwarded to O, which in turn forwards to K.
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Table 3.4: Next hops and back hops to destination W with deferred updating of back
hops. T, which is in ac era, updates its next hop but uses bc back hop. Note that
back interface for T is U→T instead of R→T and its back hop is R, which happens
to be the same as its next hop. All other nodes are in the bc era and hence use bc
next hops and back hops.

Node Next Hop Back Interface Back Hop

P R R→P Q, Y

Q U U→Q P

R T T→R S

S R R→S V

T R U→T R

U W W→U T

V S S→V X

X W W→X V

Y Z Z→Y P

Z U U→Z Y

Since K is in the ac era, its shortest path to M, without I−M, is K→J→L→N→M.

Hence, K forwards to J, which again forwards to L, causing a loop.

We propose to employ progressive updates for such links. The looping scenario

discussed above does not occur with this approach, since the cost of I−M is increased

gradually with a sequence of updates. One such metric sequence is 10, 14, 19, ∞.

Imagine the first update, where the cost of I−M is set to 10. With this cost, regardless

of the eras each router is in, packet from J to M is forwarded to I, which then reroutes

it to H, along the path I→H→G→M. H infers the failure of I−M, as the packet to M

arrives through unusual interface I→H, and forwards it to G. G does the same and

forwards it to M. Thus, with each update step, one or more source-destination pairs’

shortest paths are made equal to that passing through I−M or turned away from I−M,
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Figure 3.2: An illustration of transient forward loops during convergence with FIFR.
Suppose the link I−M is down and only J, K, and L are in the ac era and the rest are
in the bc era. Even with deferred updating of back hops, packets from J to M loop
along the path J→L→N→O→K→J→L.

while packets arriving at I are rerouted to the destination along a loop-free path with

the help of FIFR. At the end of progressive updates, each router can independently,

without any need for synchronization, install its new back hops corresponding to the

topology without the failed link, in preparation for a potential subsequent failure.

We refer to this combination of failure inference based fast reroute before and

during convergence, deferred updating of back hops, and progressive link metric in-

crements only when necessary as FIFR++. Operations under FIFR++ can be sum-

marized as in Algorithm 1 with notation in Table 3.6. A key aspect of FIFR++

is that while the forwarding entries at a router i, Fi, are recomputed upon receiv-

ing each progressive link state update, its backwarding entries corresponding to each

neighbor j, B j→i are recomputed only when the link is finally shut down. The advan-

tage of FIFR++ is that it guarantees loop-free forwarding both before and during

convergence in case of single link failures. We prove it in the next section.
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Table 3.5: Next hops and back hops to destination M. Next hops at J, K, and L are
based on the ac topology, whereas the rest of the entries including all back hops are
based on the bc topology.

Node Next Hop Back Interface Back Hop

G H H→G M

H I I→H G

I M M→I H

J L H→J K

K J I→K J

L N J→L N

N L L→N O

O K K→O N

Table 3.6: Notation

F d
i set of next hops from i to d

Bd
j→i set of back hops from j→i to d

Kd
j→i key link corresponding to j→i to d

Cu−v cost of the link u−v

Ti shortest path tree (SPT) rooted at i

P(T , d) shortest path from root of T to d

D(T , d) shortest distance from root of T to d

3.1.4 Performance Evaluation

We have validated the proposed FIFR++ [49] approach using 6 Rocketfuel topolo-

gies [47] (details of which are listed in Table 3.7) and 262 topologies in the Internet

Topology Zoo collection [32]. We have also generated 12 random topologies using

BRITE [40], varying the number of nodes from 25 to 150, each with average degrees

of 4 and 6. All together our evaluation set includes 280 topologies with a total of
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Algorithm 1 : Operations at router i under FIFR++
1: if originates a packet p to destination d
2: Forward p to F d

i
3: end if
4:
5: if receives a packet p to d from neighbor j
6: if j→i is a back interface
7: Forward p to Bd

j→i
8: else
9: Forward p to F d

i
10: end if
11: end if
12:
13: if detects a failure of an adjacent link to v

14: Reroute packets to d with next hop v to Bd
v→i

15: if Link i−v needs metric increments
16: Send LSAs to progressively update Ci−v to ∞
17: else
18: Send LSA to update Ci−v to ∞
19: end if
20: Recompute Fi without i−v
21: Recompute B j→i without i−v for each neighbor j
22: end if
23:
24: if receives an LSA with new cost c for link u−v
25: Cu−v ← c
26: Recompute Fi with new cost of u−v
27: if c = ∞
28: Recompute B j→i without u−v for each neighbor j
29: end if
30: end if

17339 bidirectional links. We have developed a customized simulator that brings

down one link at a time in the given topology and verifies if a packet from each af-

fected (whose shortest path passes through that link) pair of source and destination

nodes gets caught in a loop, considering all the possible combinations where each

node can be in either bc or ac state.

Figure 3.3 compares how different mechanisms fare in avoiding transient forward-

ing loops during convergence. They are labeled NoFIFR (traditional link state up-
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Table 3.7: Summary of Rocketfuel topologies

AS Number Name Nodes Edges

1221 Telstra 108 306

1239 Sprint 315 1944

1755 Ebone 87 322

3257 Tiscali 161 656

3967 Exodus 79 294

6461 Abovenet 141 748

dates without FIFR), FIFR (traditional link state updates with FIFR), FIFR+ (FIFR

with deferred updating of back hops), and FIFR++ (FIFR+ with progressive met-

ric increments when necessary). The results show that without FIFR around 35%

of links in Rocketfuel topologies can cause loops during convergence. By employing

FIFR alone even with traditional link state updates, this fraction can be brought

down drastically to around 2%. FIFR when coupled with deferred updating of back

hops completely eliminates the looping problem, obviating the need for progressive

metric increments, in Rocketfuel topologies.

Figure 3.3 also presents our evaluation results for Zoo and Random topologies. It

shows that in these topologies up to nearly 50% of the links when failed can cause

transient loops during convergence. FIFR by itself helps avoid most of these loops,

reducing the fraction of loopy links to below 3% in Random and below 0.5% in Zoo

topologies. Deferred updating of backhops along with FIFR nearly eliminates the

looping problem — only 2 links in Zoo topologies, labeled Missouri and Oteglobe,

and 1 link in Random topologies cause loops.
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Figure 3.3: Percentage of links that cause transient loops during convergence.
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Figure 3.4: A part of the Missouri topology. Failure of link 49 − −63 can cause
transient forwarding loop between 7 to 49 during convergence when only 10 and 62
are in the ac era.

Missouri Topology

Figure 3.4 shows a part of the Missouri topology with a link which when goes down

can cause a forwarding loop during convergence, even with deferred updating of back

hops. Suppose the link 63 − −49 is down and only the routers 10 and 62 are in the

ac era with updated FIBs. A quick observation at Tables 3.8, 3.9 reveal that packets
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Table 3.8: Nexthops for a few routers in the Missouri topology, in bc and ac eras.

Router 0 7 34 62 1 63 10 4 11 14 30 41 17 16

NH in bc 7 34 62 1 63 49 62 7,11 14 30 41 17 16 49

NH in ac 7 4 62 34,10 62 1 4 11 14 30 41 17 16 49

Table 3.9: Keylinks for a few edges in the Missouri topology.

Interface 7→ 4 1→ 62 62→ 10 62→ 34

Observed Keylinks NONE 63→ 49 63→ 49 NONE

from 0 to 49 should follow the path 0 → 7 → 34 → 62 → 1 → 63 → 49 in bc era,

and 0 → 7 → 34 → 62 → 10 → 4 → 11 → 14 → 30 → 41 → 17 → 16 → 49

in the ac era (where cost of edge 63 → 49 is ∞). When Routers {62, 10} are in

updated ac era, packets from 0 destined to 49 will observe loops along the path

0→ 7→ 34→ 62→ 10→ 7→ 34→ 62→ 10→ 7→ 34.

Oteglobe Topology

Table 3.10: Nexthops for a few routers in the Oteglobe topology, in bc and ac eras.

Router 2 73 74 80 81 82 75 76 90 87 83 3 5 79 4 17

NH in bc 73 74 80 81, 82 75 76 90 90 87 83 - 17 16 80 79 4

NH in ac 73 74 82 79 80 80 81 82 75,76 90 - 17 16 4 17, 49 15

Table 3.11: Keylinks for a few edges in the Oteglobe topology.

Interface 80→ 79 79→ 4 90→ 76 90→ 75 4→ 5

Observed Keylinks NONE 80→ 79 NONE NONE 79→ 80

Similarly, in Oteglobe topology (Figure 3.5 shows the relevant part) the shortest

path between 2 and 83 is 2→73→74→80→81→75→90→87→83. Next hops for rel-
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Figure 3.5: A part of the Oteglobe topology. Failure of link 87 − −83 can cause
transient forwarding loop between 2 to 83 during convergence when only 79 and 80
are in the ac era.

evant nodes is represented in Table 3.10, while the keylinks for some of the links is

represented in Table 3.11. A quick observation at Tables 3.10, 3.11 reveal that packets

from 2 to 83 should follow the path 2→ 73→ 74→ 80→ 81→ 75→ 90→ 87→ 83

in bc era, and 2 → 5 → 4 → 17 → 15 → 51 → 55 → 56 → 25 → 24 → 20 → 22 →

84→ 83 in the ac era (where cost of edge 83→ 87 is ∞). When Routers {80, 79} are

in updated ac era, packets from 2 destined to 83 will observe loops along the path

2→ 73→ 74→ 80→ 79→ 4→ 5→ 2→ 73....

Random Topology form BRITE Topology Simulator

Table 3.12: Nexthops for a few routers in a random topology, in bc and ac eras.

Router 1 4 5 6 7 2 3 6

NH in bc era 4 5 6 7 9 3 4 9

NH in ac era 2 3 4 5 8 6 2 9

30



1

2

3

4

5

6

7

8

9

10

11

38

11

30

29

58

56

5

3

80

97

54

39

35
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Table 3.13: Keylinks for a few edges in a Random topology.

Interface 3→ 2 4→ 3 5→ 4 8→ 5 7→ 8 2→ 1

Observed Keylinks 3→ 4 NONE 5→ 8 NONE NONE 3→ 4

Finally, in a Random topology we generated (a subgraph of which is shown in

Figure 3.6) the link 7−9 when down causes packets from 1 to 9, that were traversing

1→4→5→8→7→9, to loop along 1→4→3→2→1→4 when only nodes 3 and 4 are in

ac era. Next hops for relevant nodes is represented in Table 3.12, while the keylinks for

some of the links is represented in Table 3.13. A quick observation at Tables 3.12, 3.13

reveal that packets from 1 to 9 should follow the path 1 → 4 → 5 → 7 → 8 → 9

in bc era, and 1 → 2 → 6 → 9 in the ac era (where cost of edge 7 → 9 is ∞).

When Routers {3, 4} only are in the updated ac era, packets from 1 destined to 9 will

observe loops along the path 1→ 4→ 3→ 2→ 1→ 4→ 3→ 2.

Except in these 3 specific instances, where a particular combination of nodes

are in the ac era while all others are in the bc era, deferred updating of back hops

do not cause forwarding loops in any other scenarios. Even in those 3 rare cases

out of the total 17339 links in 280 topologies we have considered, by employing
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Figure 3.7: Percentage of links with different lengths of progressive metric increment
sequences (each bar is labeled with the absolute number of links).

progressive metric increments, FIFR++ ensures loop-free convergence and disruption-

free forwarding.
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Figure 3.8: Comparison of metric sequences without FIFR and with FIFR++.

Apart from avoiding loops during convergence, FIFR++ approach also helps ac-

celerate convergence after a failure for the following reasons: i) Except in very rare

in cases, FIFR++ can directly announce the link cost as ∞ instead of progressively

incrementing the cost to∞. ii) Each router can independently update its FIB without

having to wait for signaling from other routers to enforce a particular order. To illus-

trate this, in Figure 3.7 we plot the percentage of links in each category of topologies

that need a specific progressive metric sequence length to ensure loop-free conver-

gence. Note that the sequence length indicates the number of incremental changes

needed before the link cost is set to ∞. So the sequence length is considered to be

0 if the link cost can be updated directly to ∞. It is evident from Figure 3.7 that

without FIFR, many links require multiple rounds of progressive updates before the

network is converged to a state without the failed link. The progressive metric se-

quence length for some of the links could up to 8, causing a significant delay in the

network convergence.

With FIFR++, on the other hand, only 3 links out of all the topologies need

progressive updates. Furthermore, even for those links, the length of incremental

metric sequence with FIFR++ is less than that without FIFR, as shown in Figure 3.8.

Overall, these results demonstrate that order of FIB updates rarely matters with

FIFR and thus FIFR++ can not only achieve fast route but also fast convergence.
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3.1.5 Related Work

An approach most related to this work uses the combination of NotVia [8] and inter-

face specific forwarding [55] for loop-free convergence and fast reroute. The relative

merit of FIFR++, unlike NotVia which relies on encapsulation, is that it provides

the same service without any modification to the IP datagram.

Safeguard [35] aims to provide both fast route and transient loop prevention, by

carrying remaining path length in all packets. Compared with such schemes, FIFR++

provides failure resilience without additional information in the packet header.

Along the lines of progressive updates, [10] and [11] provide efficient algorithms

for determining metric sequences for shutting down a link or a router. Similar to [20],

they are, however, meant for planned maintenance. FIFR++ can leverage them and

handle both unplanned and planned failures gracefully.

An approach for mitigating transient forwarding loops during convergence using

interface-specific forwarding was proposed in [46]. But this method prevents loops

by discarding packets that arrive through unusual interfaces. In contrast, FIFR++

ensures loop-free convergence without any packet loss.

Failure carrying packets [34] does away with the need for convergence by carrying

the list of failed links in the packet. Packet Recycling [38] can deal with more than one

failure by rerouting packets leveraging cellular graph embeddings, but needs multiple

bits in the header. Both these require a significant modification to the packet header.

Software defined networking (SDN), with a centralized control plane, has been

gaining in popularity [16]. Yet, there have been attempts to combine the advantages

of SDN and traditional routing. In [62], Vissicchio et al propose a hybrid approach

called Fibbing, which introduces fake nodes in the network to induce the desired

forwarding tables. Since link failures will necessitate changes in the forwarding plane

and fake nodes, we believe approaches like FIFR++ for providing failure protection

and loop-free convergence are still relevant.
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A recent work [39] shows resiliency to 4 simultaneous failures using interface-

specific forwarding. We plan to study this approach and extend FIFR++ to provide

loop-free forwarding and convergence even in the presence of multiple failures.

3.1.6 Proof of Loop-Free Convergence with FIFR++

Now, we sketch a proof that FIFR++ is loop-free, based on the following assump-

tions: i) There is only one failed link in the network that is protected with FIFR; ii)

Only one link state update is being propagating throughout the network; iii) Each

progressive update increments the failed link cost by 1;2 iv) Links are bidirectional

with symmetric costs.

Let u−v, with original cost of Cu−v, be the failed link. Its cost is progressively

updated and currently it is being changed from←−C u−v (cost in the bc era) to −→C u−v (cost

in the ac era). For other symbols too, we use the overhead left arrow to refer to the

bc era state and right arrow to refer to that in the ac era.

Suppose a packet is being forwarded from source s to destination d. Without loss

of generality, let us assume that a packet from s to d, if it were to cross the link u−v,

will pass in the direction u→v. In the following, we show that, under FIFR++, this

packet does not get caught in a loop, i.e., does not traverse the same link in the same

direction more than once.

Property 1: A packet does not loop if u→v < P(
←−
T s, d)

If u→v < P(
←−
T s, d), then u→v < P(

−→
T s, d), i.e., if the shortest path from s to d in the

bc topology does not include u→v, then same is the case in the ac topology too. This

is true because the path through u→v gets costlier as the cost Cu−v is increased from

bc to ac. Since this is the only change between the bc and ac topologies, P(←−T s, d) =

P(
−→
T s, d). Therefore, all routers along that path forward the packet consistently to d.

2Using the arguments analogous to that in [20], which shows that updating with
optimized metric sequence is loop-free, it is possible to prove that similar sequence
with larger metric increments also does not cause loops with FIFR.
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Property 2: A packet does not loop if it is not rerouted by u.

As per FIFR++, a packet may be forwarded using back hops in B tables, only

after it reaches u and gets rerouted. In all other cases, it is forwarded using usual

next hops in F tables. Suppose that is not the case and a router i forwards the

packet using the back hop entry Bd
j→i. For this to happen, i should be a next hop to

d according to j and vice versa. Obviously this can not happen if i and j are in the

same era.

Let us assume that router i is in the ac era and j in the bc era. Then, in j’s view

of the topology, D(←−T j, d) > D(
←−
T i, d) and in i’s view, D(−→T i, d) > D(

−→
T j, d). This is

not possible considering that D(−→T j, d) = D(
←−
T j, d) or D(

−→
T j, d) = D(

←−
T j, d) + 1, and

D(
−→
T i, d) = D(

←−
T i, d) or D(

−→
T i, d) = D(

←−
T i, d) + 1. Similarly, when i is in the bc era

and j in the ac era, no back hops are used to forward the packet.

In other words, when a packet is not rerouted by u, all routers along the path

forward it using F tables only and FIFR plays no role in forwarding it. This scenario

is already shown be loop-free due to progressive link metric increments [20].

Property 3: A packet does not loop if it is rerouted by u.

The path taken by a packet rerouted by u can be split into 3 segments: a forward

segment to the point of failure s u, a backward segment u x→y to a turning point

y (where it switches from backwarding to forwarding), and an additional forward

segment y→z d to destination. Note that s and x can be u itself and similarly z

can be same as d. It follows from Property 2 that no looping occurs in the path s u.

Next, we prove that the other two segments are also loop-free.

From the properties of FIFR, it is known that both the segments are loop-free in

the original topology (with original cost of Cu−v for u−v). Since back hops B are based

on the original topology, backwarding is done consistently by the routers following

u. The only deviation is that some unusual incoming interfaces with associated back

hops in the original topology may no longer be unusual incoming interfaces in the bc or
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ac topology. Without loss of generality, let y be the turning point from backwarding

segment to forwarding segment.

We show that y can safely switch from using backhops, Bd
x→y, to either

←−
F d

y or
−→
F d

y ,

when x is no longer a next hop from y to d. First, consider the scenario when router

y is in the bc era. Let z be the next hop from y to d in the bc topology (with cost←−C u−v

greater than original cost of Cu−v for link u−v). Then, we can show that the packet

from z to d would not arrive back at u, avoiding any potential for looping. For z to be

a next hop from y in the bc topology, we must have D(←−T x, d)+Cx−y > D(
←−
T z, d)+Cy−z,

whereas D(Tx, d) + Cx−y < D(Tz, d) + Cy−z in the original topology. Considering that

there is no change in the cost of any other link except u−v, this is possible only if u→v

< P(
←−
T z, d), i.e., the shortest path from z to d does not pass through u→v. Therefore,

a packet gets forwarded from z to d without getting caught in a loop according to

Property 1.

Now, suppose router y is in the ac era with z as its next hop to d, whereas x

was the next hop in the bc topology. Since z or any other downstream routers may

be in the bc era, the question is whether the packet from z to d reaches u and then

gets rerouted to y, resulting in a forwarding loop. For that to happen, the backward

path u x→y must be shorter than u z→y, while the forward path y→z d must

be shorter than y→x d. This is an impossibility if z d were to pass through u,

considering that link costs are symmetric.

Finally, if the failure of u−v partitions the network and there is no path from s to

d, then the packet is dropped, instead of getting rerouted, by u or v. Thus, FIFR++

can guarantee loop-free forwarding to reachable destinations during convergence.
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3.1.7 Calculating FIFR++ Metric Sequence Efficiently

Our evaluation has shown that the number of links that need progressive metric

increments with FIFR++ approach is quite low. In this section, we focus on how to

determine such links efficiently.

Authors of [20] propose an algorithm to generate Route Metric sequences for ev-

ery link in the network, which ensures loop-freedom for packets between any source-

destination pairs. In this section, we update the original optimal route metric se-

quence generation algorithm, such that it is optimized for usage with FIFR++. The

updated algorithm is presented in Algorithm 2. The algorithm to calculate metric

sequences for interface independent forwarding is presented in Algorithm 3 and ar-

guments about loop freedom for that algorithm can be referred in detail at Fig.3

of [20]. We update the function OptimizeRMS such that Route metric sequences are

calculated only when FIFR does not handle packets incurring loops in the network.

The condition can be explained as follows: When a node in new era forwards the

packet to a node in old era, and the node in old era forwards the packet using next

hops, we claim that loops may occur in the network. One way to determine if FIFR is

not applicable between two neighboring nodes in the network is if: one node forwards

packets to neighboring node in old era, and the other node forwards packets in the

updated era, and the keylinks observed from next-node to initial-node are empty.

Mathematically speaking, the proposed condition can be represented as: v ∈ F d
u &

u ∈ (
−−→
F d
v ) & Kd

v→u = φ ∀u ∈ N , ∀v ∈ N . We list some of the properties and study the

efficiency of proposed condition.

Property 4: If the proposed condition appears in the network, some packets can

incur loops in the network.

Proof (by Contradiction): Assume none of the packets incur loops when this

condition is satisfied. Consider a packet originated at node u destined for d. Assume

u is in the before change (bc) era, v is in the updated (after change, ac era). u
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Algorithm 2 Route Metric Sequences for link A→ B using FIFR++
1: N, E: Number of Nodes, Edges in the Topology
2: F d

u : Forward hops from node u to destination d with link A→ B

3:
−−→
F d

u : Forward hops from node u to destination d without link A→ B
4: for destination d ∈ N
5: for (u, v) ∈ E
6: if v ∈ F d

u and u ∈ (
−−→
F d
v ) and Kd

v→u = φ
7: Md

A→B = Md
A→B

⋃
getORMS(u, v, A, B, d)

8: //getORMS defined in Algorithm 3.
9: else
10: Md

A→B = φ
11: end if
12: end for
13: end for
14:
15: MA→B =

N⋃
d=1

Md
A→B

16: OptimizedMetricA→B = φ
17: compareIndex = 0
18: for i ∈ |MA→B | − 1
19: When the metric changes from Mcompare

A→B to M i+1
A→B

20: for (src, dest) ∈ (N, N)
21: if Packets from src Reaches Destination dest
22: no loops // do nothing
23: else
24: compareIndex=i + 1
25: OptimizedMetricA→B = OptimizedMetricA→B

⋃
M i+1

A→B
26: end if
27: end for
28: end for
29: return OptimizedMetricA→B

forwards the packet to v, v in its updated state forwards to u, v → u does not infer

any link failure as KLd
u→v = φ and forwards the packet back to v. If KLd

v→u , φ,

v forwards the packet through backhops a again, and packets do not incur loops.

Otherwise, i.e., KLd
v→u = φ, v forwards the packet to u again, and the Loop occurs,

leading to contradiction. Clearly, some of the packets will incur loops in the network.

Property 5: If some of the packets incur loops, then this condition occurs in the

network.
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Algorithm 3 Route Metric Sequences for link A→ B using traditional routing
1: N : Number of Nodes in the Topology;
2:
←−−−−−
SPT d

x : Shortest path tree to destination d from node x with cost of link A→ B
as currCost

3:
−−−−−→
SPT d

x : Shortest path tree to destination d from node u with cost of link A→ B
as newCost

4:
5: procedure getORMS(node u, node v, node A, node B, dest d)
6: /*for the link A→ B, destination d */
7: currCost = cost o f link A → B
8: lastCost = ∞
9: newCost = currCost + 1
10: Md

A→B = φ
11: while newCost < lastCost
12: for each node x ∈ (u, v)

13:
←−−−−
SPT d

x = getSPT(x, d, A, B, currCost)
14:

−−−−→
SPT d

x = getSPT(x, d, A, B, newCost)
15: SPT d

x = merge(
←−−−−
SPT d

x ,
−−−−→
SPT d

x )
16: if cycles exist in SPT d

x
17: Md

A→B = Md
A→B

⋃
newCost

18: end if
19: currCost = newCost
20: newCost + +
21: end for
22: end while
23: return Md

A→B

Before we provide the argument, some basic axioms that can be formed from the

definition of FIFR techniques are listed here. S1: If a packet just follows Fd at every

node in its path, packet will NOT incur loops. S2: If a packet just follows
−→
Fd at

every node in its path, packet will NOT incur loops. S3: If a packet just follows Bd

at every node in its path, packet will NOT incur loops. S4: If a packet just follows

Bd and Fd at all nodes, packet will NOT incur loops. S5: If a packet just follows Bd

and
−→
Fd at all nodes, packet will NOT incur loops. S6: If a packet follows F d initially

and follows (
−−→
F d) later, proposed condition can occur, packet may incur loops. S7:
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If a packet follows (
−−→
F d) initially and follows F d later, proposed condition can occur,

packet may incur loops.

Proof: If a packet changes its next hops from Fd to
−→
Fd due to the router’s change

of state, and some of the nodes in its path are still following old state, then packet

will NOT incur loops if every node in its path follows Bd. This is due to the loop

freedom provided by the FIFR. A packet will follow Bd, only when KLd , φ from

previous node to current node.

At one of the nodes in a packet’s path, if KLd , φ from previous node to current

node, packet can follow Bd or Fd depending on the previous node. If previous node

appears in SPT d of current node, the node infers link failure and forwards the packet

using Bd, otherwise the node forwards the packet using Fd. In either case, packet

will NOT incur loops, due to S3, S4.

At one of the nodes in a packet’s path, if KLd = φ from previous node to current

node, packet can follow Fd or
−→
Fd depending on the state of the node. If the packet

follows Fd, we can conclude that packet will never incur loops, due to S1. If the

packet follows
−→
Fd, we can not conclude that packet will not incur loops. And the

proposed condition occurs in the network.

In essence: If a packet moves from a node in new state (ac era) to a node in old

state (bc era), and the observed keylinks are null at the node in old state; some of

the packets can incur loops in the network. The existence of proposed condition in

the 3 rare topologies, is mentioned in Tables 3.9, 3.11, 3.13. All the links that match

the condition are circled in their appropriate cells.

Efficacy of the Proposed Condition in Real Production Networks

We simulate 268 different real world topologies and verify if any of the link failures

will cause the proposed condition to appear in each of those topologies. The results

of our simulations are plotted in Figure 3.9.
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Figure 3.9: Accuracy of the proposed condition among topologies available in the in-
ternet of Zoo (262) and RocketFuel topologies (6): Percentage of link failures that will
miss the proposed condition in network, in turn eliminating the need for simulation.

The plot in Figure 3.9 shows that the condition mentioned above appears for a

minimum of 2% and a maximum of 35% of link failures among different topologies

of Zoo, suggesting that metric sequences may be necessary for only these 35% of

links in each topology. For the links where we need sequences, we suggest to use

the algorithm 3 and verify the resulting metric sequence via simulations. When we

compare the results: we can observe that only 2 of these total number of links really

need route metric sequences, even though we need to verify around 35% of the total

links among all the topologies available in the Internet of Zoo.

The plot in Figure 3.9 shows the number of times the proposed condition occurs

among Rocketfuel topologies, suggesting a minimum of 5% and maximum of 62%

of links among different RocketFuel topologies need to be simulated for finding the

FIFR++ metric sequence.

While the condition proposed above does not provide any false negatives, it can

be clearly seen that the number of false positives is high. While the number of links

for which we need progressive increments is 2 (in the extremely rare scenarios), we
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have around 35% of the links needing simulations for topologies in the Internet of

Zoo. A condition that determines those links accurately, is considered as part of the

future work.

This section investigated the possibility of using failure inference based fast reroute

(FIFR) along with a link state update mechanism for loop-free fast convergence while

performing fast reroute. We have observed that FIFR alone drastically reduces the po-

tential forwarding loops during convergence, even with traditional link state updates.

Furthermore, when coupled with deferred updating of back hops, it nearly eliminates

the looping problem. In our evaluation, only 3 out of 17339 links corresponding to 280

real and random topologies could cause transient loops for a particular combination

of updated and not-yet-updated nodes. We proved that loop-free convergence can be

guaranteed by employing FIFR with deferred updating of back hops and progressive

metric increments (called FIFR++). We showed that FIFR++ rarely requires incre-

mental updates and in those rare instances needs fewer metric increments. Next, we

present how to provide loop-free convergence with link up events and then discuss

how node failures can be handled with FIFR++.

3.2 Network Convergence during Link State Up Event

A link that is down because of an unplanned failure or routine maintenance is typically

brought up again, necessitating a network-wide convergence. Similar to link down

scenario, a link up event can also cause forwarding loops during convergence. These

loops can be avoided by maintaining a strict order for updating the routers. However,

routers need to communicate among themselves to ensure that this ordering is met. In

this section, we show that we can make a creative reuse of interface-specific forwarding

entries to extend the FIFR++ approach to provide loop-free fast convergence for link

up events also without any coordination between routers.
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First, let us see the need for a new mechanism for loop-free convergence in case

of a link up event. Consider the topology shown in Figure 3.10. Assume that all

the solid lines correspond to the current (bc) topology, while the dashed link between

H−M is a new link (corresponding to the ac topology) and all the routers received

the link up event. While each node in the network received the link state updates,

assume that only nodes K and O already processed the LSA update and are in the

updated (ac) state. Consider the packets destined towards the node M. The forward

and back hops to the destination M at each node of the topology is mentioned in

Table 3.14. Now suppose a packet originates at K that is destined to M. If each node

just follows the FIFR approach as above, a packet destined to M from K will traverse

the path of K→J→L→N→O→K→J, resulting in a loop.
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Figure 3.10: A topology used for illustration of FIFR for Link State Up Event.

3.2.1 Proposed Method

We now present how FIFR++ achieves fast loop-free convergence by making a cre-

ative use of interface-specific forwarding. Interface-specific forwarding implies that
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Table 3.14: Next and back hops for destination M at each node of the topology in
Fig. 3.10

Node NH (bc) BH (bc) NH (ac) BH (ac)

G M - H M

H I G M -

I M O H M

J L H H L

K J O,I J O,I

L N J J N

N O M L O

O I N N K

a packet’s next-hop is determined based on both its destination and incoming inter-

face. Let ISF R[prv] be the forwarding table corresponding to the incoming interface

prv→R. Then, a packet p arriving at R from the previous hop prv gets forwarded to

the next-hop ISF R[prv](p.dst). Apart from interface-specific forwarding, FIFR++

assumes that all the links in the network are bidirectional with equal weight in both di-

rections, which is generally true for backbone networks. With symmetric link weights,

a forwarding loop happens only when a packet traverses two neighboring routers that

are in different eras and each router is the other router’s next-hop for the packet’s

destination according to their view of the network topology. Therefore, a router R

in the ac era can infer that a packet’s previous hop Q is in the bc era, if in the ac

era the next hop from R to destination is Q. In that case, R can forward the packet

according to its bc table and avoid a potential forwarding loop. When R has only

the bc table, a packet is forwarded under FIFR++ based on its destination alone

regardless of the incoming interface.
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We describe the proposed approach using an example. Consider again the topol-

ogy shown in Figure 3.10 where a packet is being forwarded from source K to des-

tination M. As mentioned earlier, suppose nodes K and O are in ac state while all

other nodes in bc state. In this scenario, the initial path remains the same as before,

K→J→L→N→O. But at O, the ac next hop is N and the back hop for packets

arriving from N is its bc next hop which is I. So, when O receives the packet, its

forwards it to I. Therefore, with the proposed approach, the packet traverses the

path of K→J→L→N→O→I→M and reaches the destination. Thus, the proposed

method can be used to eliminate loops during network convergence of a link up event.

FIFR++ operations are formally specified in Algorithm 4. When a packet p

arrives at R from the previous hop prv, it is simply forwarded to ISF R[prv](p.dst).

Upon computing a new FIB, the new next hops are pushed to all the interfaces as

usual, except for the interfaces corresponding to the next-hops (could be multiple

with ECMP) of each destination. Only for those interfaces, where the next hop is

neighbor, will be set to the next-hops corresponding to the bc table. When the router

receives an LSA, these entries are reset to the usual next-hops, and thus effectively

purging the bc table.

3.2.2 Proof of Loop-Free Convergence with FIFR++

We now prove that FIFR++ is loop-free, under the following constraints: 1) Only

one network event propagates throughout the network until the convergence for that

event is complete; 2) A router R does not install a new FIB and change its R.era until

its direct neighbors are notified of the corresponding LSA. 3) Links are bidirectional

with symmetric weights. We show that under FIFR++, a packet does not traverse

the same link in the same direction more than once.

We first analyze the loop freedom property of a shortest path routing protocol.

The only property assumed in this generic routing protocol is that each router delivers
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Algorithm 4 : Operations under FIFR++
1: if Router R receives a packet p from previous hop prv
2: forward p to ISF R[prv](p.dst)
3: end if
4:
5: if Router R receives a new LSA
6: for each destination dst
7: ISF R[FR[R.era](dst)](dst)←FR[R.era](dst)
8: end for
9: purge FR[R.era]
10: end if
11:
12: if Router R has recomputed a new FIB
13: R.era← R.era
14: FR[R.era] ← new FIB
15: for each neighbor prv of router R
16: ISF R[prv] ← FR[R.era]
17: end for
18: for each destination dst
19: ISF R[FR[R.era](dst)](dst)←FR[R.era](dst)
20: end for
21: end if
22:
23: if Packet p originates at router R
24: forward p to FR[R.era](p.dst)
25: end if
26:
27: if Router R initializes its state
28: R.era← 0
29: FR[1] ← FR[0]
30: end if

a packet to the next hop in the shortest path to the destination according to its view

of network. We show that shortest path routing can avoid a certain type of routing

loop. Once loop freedom is established for the shortest path routing, we extend the

argument for FIFR++ to prove its loop freedom in general.

Property 6: The generic shortest path routing protocol is free from circular loops

in symmetric link networks.
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Figure 3.11: A generic circular loop scenario in a symmetric link network.

We use the term circular routing loop to refer to a scenario where a packet reaches

the initial router (can be any of the participating routers that is considered as the

starting point of the looping packet) without traversing any edge twice in the same

direction, Consider an example scenario shown in Fig. 3.11. In this loop, the updated

and non-updated routers are arbitrarily chosen. The darker nodes depict the updated

routers that use the new topology and lighter nodes are for non-updated/uninformed

ones that use the old topology to forward a packet. Uninformed nodes can not be

neighbors of any updated node as per our assumptions, however they would use the

same topology as the non-updated nodes. Since the path used by uninformed nodes

does not differ from a non-updated neighbor, we can consider uninformed nodes as

non-updated ones in this proof without loss of generality.

The circular loop consists of segments of consecutive updated/non-updated nodes

that follow the same path to the destination. These segments can contain one or more

possible nodes. For example, the segment consisting of routers Rnew
1 through Rnew

p
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follows the new topology path to the destination. The last router in this segment

Rnew
p forwards the packet to Rold

1 , the first node of the next segment. This node uses

the old topology shown by the dotted lines from router Rold
1 to router Rold

q . We define

the collective edge weight of the links from Rnew
1 to Rold

1 as l1 and that of the links

along the old path from Rold
1 to the destination as d1. Similarly, the values for next

segment are l2, d2 respectively and so on. We consider i such segments in the circular

loop. To show that the shortest path routing will not complete any circular loop in

a symmetric link network, it will be sufficient to show that the loops are not possible

with shortest path routing.

We first assume that a loop exists and then we prove the loop free property by

showing a contradiction. In a circular loop as shown in Figure 3.11, the router Rnew
1

can forward the packet from Rnew
1 { Rold

1 and then follow the new path shown with

the dotted line from router Rold
1 . Alternately, Rnew

1 can forward the packet from Rnew
1

{ Rold
k and then follow the path shown with the dotted line from the router Rold

k .

Rnew
1 chooses the first path as the shortest path to the destination, therefore the total

weight of the first path must be less than the second one as captured in the following

inequality:

l1 + d1 < li + di−1

Following the similar argument for all of the i segments, we can obtain the following

inequalities.

l2 + d2 < l1 + di

l3 + d3 < l2 + d1

...
...

li−1 + di−1 < li−2 + di−3

49



li + di < li−1 + di−2

Now adding the left and right hand sides yields a contradiction,

i∑
n=1
(ln + dn) <

i∑
n=1
(ln + dn)

Therefore, in symmetric link networks, no generic shortest path routing protocol will

cause circular loops.

Property 7: FIFR++ is free from circular routing loops.

In FIFR++ an updated router does not follow the old or new topology indepen-

dently. The previous hop decides the choice of topology in updated routers. However,

a non-updated router, which is a neighbor of any updated one, has only the old ta-

ble and therefore no choice of topology. It always forwards with the old topology

view. As the generic routing algorithm proves freedom from circular loops without

any restriction on the choice of topology in updated nodes and FIFR++ does not

contradict any assumption made therein, it is evident that FIFR++ is also free from

a circular loop.

Next, we consider what we refer to as the linear routing loop, where a packet

reaches the initial router by traversing all the edges of the loop exactly once in each

direction, as in Figure 3.12. We prove that FIFR++ does not cause a packet to go

around a linear routing loop more than once. Towards that end, we establish some

invariants under FIFR++.

Invariant 1 : ∀Rn ∈ N(R), R.era , Rn.era if exactly one of FR[R.era] and FRn[Rn.era]

does not exist.

According to the FIFR++ scheme, a router R changes its era value only when it

has completed a FIB update. Therefore, the value of the era bit for R differs from

its neighbor Rn only if one of them, say Rn, has installed a new FIB and the other

hasn’t. Then, according to our assumptions, the neighbor R of the updated router Rn
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should have received the LSA and purged its forwarding table FR[R.era] immediately

after receiving it. Therefore, FR[R.era] will not exist until R completes a FIB update.

Conversely, if FRn[Rn.era] does not exist, that implies Rn is computing an update and

would have the same era value as R until its FIB update is complete.

Invariant 2: In FIFR++ an updated node can not return a packet to the router

that last forwarded the packet to it.

Suppose an updated node R gets a packet from a neighboring node Q. For R to

return the packet to Q, in the new topology Q must be its next hop, which implies

that Q must be using the old topology. In this case, R will forward this packet using

the old topology. When both Q and R use the same old topology for forwarding, R

can not return the packet to Q.

Invariant 3: Though an uninformed node has two forwarding tables, it always uses

the old topology to forward packets.

FIFR++ assumes that there can not be any uninformed node as a neighbor of

an updated node. Therefore an uninformed node can only get a packet from another

uninformed node or a non-updated node. Moreover, at any time there can be at

most a single event which an uninformed node is unaware about. Therefore, when an

uninformed node A forwards a packet to another uninformed node B, it always uses

its FA[A.era] table and it in turn leads B to use its FB[B.era], both new tables in

their view. But, FA[A.era] and FB[B.era], in uninformed nodes A and B respectively,

actually correspond to the old topology. Now, in case a non-updated node C forwards

a packet to B, C uses its only table FC[C.era] which represents the topology before

the failure according to the FIFR++ actions. Therefore, from B’s view the packet
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Figure 3.12: A generic linear loop scenario in a symmetric link network.

comes following a new topology and it uses its FB[B.era] to forward this packet.

This shows that under all circumstances an uninformed node uses the old topology

to forward a packet.

Invariant 4: In FIFR++, an uninformed node does not get a packet returned from

the node it forwarded the packet to.

We use the similar argument as in Invariant 1 to claim that an uninformed node

can only pass a packet to another uninformed node or a non-updated node. Now,

according to the Invariant 1, in both of the cases the recipient node uses the old

topology, which is also used by the uninformed sender node. As both the sender

and receiver nodes use the same topology to forward the packet, the receiver will not

return it to the sender.
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Property 8: FIFR++ does not cause a packet to go through a linear routing loop

more than once.

We consider a generic linear loop repetition scenario in a symmetric link network

as shown in Fig. 3.12 and argue that the scenario is not possible with FIFR++.

According to the Invariant 2, such a loop must have more than two nodes. Moreover,

the nodes at the extreme ends of the loop must return the packet to the router that

last forwarded it. Therefore, these two nodes must be non-updated as indicated

by Invariant 2. The intermediate nodes have to forward a packet to two different

neighbors and it is possible if the nodes contain two tables for old and new topologies.

In FIFR++, a router can have two tables if it is an uninformed or updated node.

Note that an uninformed node can not be a neighbor of an updated node. So, the

intermediate nodes of the repeatable linear loop must be either all uninformed or

all updated. According to Invariant 4, the node adjacent to the end nodes must be

updated, therefore all intermediate nodes are updated. The two non-updated nodes

at the extreme ends of the loop forward a packet with old topology paths in opposite

directions in the loop. To make this possible, there must be an old topology path

from the router Rold to the destination that deviates from the loop at an intermediate

node, R, as shown in the figure.

The linear loop as shown in Fig. 3.12 must involve forwarding a packet from R′old

to Rold and back twice to be an incident of loop repetition. Lets consider a packet

being forwarded from R1 to R. If R→R1 exists in the new shortest path tree, then

R uses the old path and forwards it to Rany and thus breaks the loop. Otherwise,

the packet will follow the new shortest path from R to R2, and then through the

consecutive updated nodes to R′old. Now, suppose packet comes back to the router

R from R2. Since we have considered R→R2 as being part of the new shortest path,

when the packet goes from R to R′old, R2→R can not be part of the new path. So, R
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forwards the packet to Rany and thus breaks the loop again. Thus, in networks with

symmetric links, forwarding with FIFR++ is loop-free [55].

In this section, we extended the FIFR++ approach for preventing forwarding

loops during the convergence period of a link up event, and restore the network to

an optimal routing state as soon as possible. We have proved that it is possible to

achieve the fast convergence with fast rerouting using interface-specific forwarding in

networks with symmetric link weights, without any changes to the packet format.

3.3 Integrated Approach for Handling All Link State Events

In this section, we integrate the proposed methods for ensuring loop-free convergence

for both link up and link down events. A fine state machine diagram for the integrated

approach is depicted in Fig 3.13.

Figure 3.13: A Router’s state diagram, while handling link state advertisement
messages.

Each router remains in its Converged conventional state. In its Converged state,

each router follows interface specific forwarding, in the sense that the next hop for

forwarding a packet is based not only on the destination, but also on the previous

hop of that packet.
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When an LSA is received and it corresponds to a new link that has come up,

the router enters Converging Up - BC state. In Converging Up - BC state, the

router stops using back hops and forwards packets from all interfaces using interface-

independent next hops. Once the new ac next hops are calculated, the forwarding

entries are updated to the new next hops while the back hops are set to the bc next

hops, and the router switches to the Converging Up - AC state. Once all the routers

have updated their next hops (after the maximum convergence time), every router in

the network returns to the Converged state by installing the updated ac backhops.

When a link cost increase LSA is received, the router infers one of the existing

links is going down and reaches Converging Down - BC state. In its Converging

Down - BC state, the router follows Interface specific forwarding. Once the new next

hops are calculated, the forwarding entries are updated to the new ac next hops while

the backhops remain as the previous bc backhops. Once all the routers have updated

their next hops (after the maximum convergence time), every router in the network

returns back to the Converged state by installing the updated backhops.

Note that we assume that there is only ONE network wide event at any point

of time. In other words, If we observe a link cost decrease event once, we will keep

observing link cost decrease event before we observe any other event. Therefore, all

the routers in the network would either be in Converging Up state or all in Converging

down state. We will not observe some nodes in Converging Up state and some others

in Converging Down state at the same time. Under these assumptions, the proposed

integrated approach ensures loop-free convergence for both link up and link down

events in a network with symmetric link weights.

3.4 Network Convergence during Node Down Event

We have shown thus far that FIFR++ approach can ensure loop-free forwarding

before, during, and after network convergence in case of any single link state change.

55



In this section, we discuss how this approach can provide the same in case of a single

router failure. Note that when a router fails, that amounts to the failure of all its

adjacent links. So, one way to address a router failure is as a multiple link failure

scenario. Unfortunately, FIFR and consequently FIFR++ can not deal with multiple

independent link failures. However, by treating the router failure as a single event, it is

still possible to address it and forward packets to their destinations without incurring

loops. We briefly discuss the approach below and then evaluate its effectiveness.

First, when a node fails, we need to perform fast reroute around the failure without

causing loops. We have already shown in Chapter 2 that by inferring key nodes,

instead of key links, FIFR provides loop-free forwarding in case of a single node

failure. Second, we need to ensure that during network convergence, due to LSAs

generated by the node down event, packets do not loop. Note that a node failure

causes multiple link failures and they in turn trigger several LSAs. A straightforward

application FIFR++ approach discussed earlier does not work, as it assumes that a

single link state event is being propagated in the network. Instead, we propose that

a router should wait to collate multiple LSAs, compute the next hops corresponding

to the state change, and update its FIB once, treating it as a single event. In other

words, in the finite state machine shown in Figure 3.13, the router should stay in

Converging Down - BC state till it gathers all the LSAs associated with the router

failure event and then switch to Converging Down - AC state once it computes the

new forwarding table. With this change, FIFR++ can deal with node failures too.

The remaining question then is how fast FIFR++ will converge in case of a node

failure. As is the case with link state changes, we would like to avoid progressive

metric increments if possible, otherwise convergence would be slow. To study the

effectiveness of FIFR++ in case of node failures, we considered a wide variety of

network topologies and brought down each router in the topology to identify if any

of the packets will incur transient loops. We used Rocket Fuel (6) topologies, topolo-
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gies from the Internet of Zoo (262), and Random topologies (12). Results from the

simulations are presented in Figure 3.14. The percentage of router failures that cause

packets to incur loops in the network for each of the topologies is shown without

FIFR and with FIFR++. Note that FIFR++ here refers to the case that does not

include progressive metric increments.

The results show that without FIFR, nearly 30%, 60%, and 40% of routers in

Rocketfuel, Random, and Zoo topologies respectively when down can cause loops

during convergence. On the other hand, none of the router failures in Rocketfuel

topologies cause loops with FIFR++, resulting in fast convergence. In case of Zoo

topologies, only around 0.57% of all routers (62 out of 10877 routers) cause loops

with FIFR++ without progressive increments. Similarly, only 2 routers (0.07%)

in Random topologies require progressive increments with FIFR++. In all of the

studied topologies, we observed that a packet does not loop if it reaches a node

adjacent to the failed node. Otherwise, it is possible for a packet loop between two

intermediate nodes. However, our evaluation has shown that only a small fraction

of routing failures could cause looping with FIFR++ during convergence and they

can be avoided by employing progressive increments. Overall, in almost all situations

FIFR++ provides fast convergence, while always ensuring loop-free forwarding.
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Figure 3.14: Percentage of node failures that cause packets to incur transient loops
during network convergence
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3.5 Alleviating Micro-Congestion

The above sections discussed how FIFR++ can avoid packet drops due to forwarding

loops during convergence. In this section, we study another cause for packet drops:

Network Congestion. Congestion occurs fairly frequently in modern networks [66, 42].

A recent study on network data sets (measured every second) of one large cloud

network operator observed that packet drops occur, but are uncorrelated or weakly

correlated with observed link utilization [66]. Surprisingly, authors found that packet

drops occur even when a link is less than 1% utilized, when the utilization is computed

over a 4 second interval. On the other hand, when link load statistics are gathered

every 25µ seconds, authors observe a very important phenomena, the link queue builds

up and becomes empty very fast. Clearly, most of the congestion events are too short-

lived to be characterized by the average link utilization over 4 second interval. It is

this phenomena, named as Micro-Congestion, where the congestion occurs due to

bursty traffic for a very short period of time, that we study in this section.

Traditionally, congestion at a link is handled by end-hosts using variants of TCP

(for example: DCTCP, TCP Reno). The router that observes congestion, sets the

ECN bit of the packet and forwards it to the receiver. When the destination receives

a packet with ECN bit set, it notifies the source about congestion in the network

and then the source reduces rate of transmitting packets into the network. However,

due to the time lag in setting ECN bit and destination notifying the source, some

packets in the network get dropped during high congestion (traffic burst). Since the

destination needs to receive and process the ECN bit and update the source about

congestion, it might take multiple (>1) RTTs for the sender to reduce the rate of

transmission (at least RTT/2 for the sender to receive congested signal and some

more time to adapt to the congested signal). The authors of [66] show not only that

the bursts exist in network, but also that almost all the high utilization in the network

is part of a burst that starts and ends in a few µ seconds. Clearly, the RTT is in the
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order a few ms, which is far longer than any burst duration. It is this observation

that motivates the study of this section.

As mentioned in the previous chapter, FIFR can be used to reroute packets in

the network in case of transient link failures. In this section, we explore the idea of

using FIFR when micro-congestion is detected. When a micro burst occurs in the

network, we propose that routers adjacent to that link use backup paths provided by

the FIFR to reroute the traffic. One main challenge in this scheme is to show that

the packets do not observe loops, when they are rerouted. In the remainder of this

section, we handle the case of controlling congestion using a variant of FIFR method.

Subsection 3.5.1 provides a comprehensive study of the work related to this problem

setting. In Subsection 3.5.2, we propose a design that mitigates packet loss due to

congestion in the network. In Subsection 3.5.3, we explain the evaluation details for

the proposed idea and present the observed results.

3.5.1 Related Work

The authors of [2] show that congestion in the network can be detected by (un)setting

the ECN bits of packets. Any intermediary switch that observes congestion sets the

ECN bit in packet header . Based on the received packet, destination of a flow notifies

the sender to reduce the rate of transmission. On other hand, our proposal does not

necessitate to modify any of the packets.

Authors of [59] suggest the intermediary switches append their switch Identifiers

and epoch Ids into the packet headers, before forwarding a packet. The edge desti-

nation device that receives the packet, uses the Identifiers listed in packet header to

debug the congestion (or) link failure event in the network.

Authors of EverFlow [67] suggest that controller configures a set of rules on each

switch and any packet that matches those rules to be mirrored in the network. These

mirrored packets are sent to the analyzers, which processes a set of packets for loops,
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drops, link load counters etc. All the information about the network is gathered from

these mirrored packets. Since these packets act as a representative sample of the flows

in the network, configuring these rules is very important for working on EverFlow.

Authors of SFlow [12] suggest to monitor flows on all ports of a switch contin-

uously, by sampling packets of each flow, using which congested links are instantly

highlighted. Additionally, SFlow suggests to use statistical properties of packet sam-

pling, to provide quantifiable measurements. Authors of [43] suggest that counters

maintained in software provide more control in the network than maintaining them

on ASICs.

Authors of [4] propose that end host votes for every link in the network path of a

flow to be the faulty link whenever it observes TCP Re-transmissions for that flow.

They further show that as long as a flow goes through one faulty (failed/congested)

link at any time, it can be proved that the failed link will be determined accurately

by using their proposed scheme.

Authors of [56, 65] propose to correlate transport layer metrics and network system

call delay with the path taken by each flow, and apply statistical techniques to localize

the faulty link. Some of the switches in the network are responsible for signaling the

network path for each flow. Hence, this proposal needs modifications to the switch

functionality, which is not a common option to many other proposed techniques.

Authors of [13] propose a congestion control algorithm in the hypervisor host OS,

that is decoupled from the congestion control algorithm used in guest OS. The authors

claim that though the guest OS believes the Congestion Control algorithm is private.

However, their proposed algorithm is common across all the guest OSes (dependent

on the CC policy on hypervisor). The authors propose to add a translational layer,

that translates the legacy TCP into a newer variant of TCP. The main advantage

of this approach is that the classical guest OSes need not be modified with updated

TCP versions, but can get the functionality of recent TCP variations.
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3.5.2 Proposed Design

The problem studied in this section can be concisely stated as: ’Can we handle bursts

occurring and ending at the granularity of microsecond in a network, by using Fast

Reroute techniques?’ Since micro-congestion occurs for a very short period of time, we

can model micro-bursts occurring at a link as transient link failure for a micro-second

interval. We can then apply FIFR techniques for routing around congestion similar to

the way it routes around failures. We propose to extend the FIFR technique to infer

not only link failure, but also link congestion (micro-bursts). Inferring which link is

congested will be same as inferring which link is failed in the network. Therefore,

packets do not incur loops by inferring congestion, just as they do not incur loops by

inferring failures (routers avoid such links in both cases).

When a link is congested and an arriving packet finds that the link queue is full,

normally, this would result in a packet drop. Under the proposed approach, however,

any packet that were to be dropped due to an overflowing queue would be rerouted

using a back hop for that link, that was computed for performing fast reroute in

case that link fails. In other words, a router adjacent to a congested link with a full

queue as a failed link and initiates fast reroute. All other routers perform interface-

specific forwarding as they typically do under FIFR to route around a failure. So,

only change needed to employ the proposed approach on a network that already uses

FIFR is to treat a congested link as a failed link and initiate fast reroute. While the

proposed approach is appealing, the downside is that FIFR can only handle single

link or router failures. Therefore, it can guarantee loop-free forwarding when only

one link is congested in the network at any time instant. But when multiple links

are simultaneously congested and they appear on the primary and backup paths to

a destination, it is possible under the proposed approach to have packet drops due

to looping. To study how often this occurs in practice, we evaluate the proposed

approach on multiple real world IP backbone networks.
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3.5.3 Performance Evaluation

We used the standard network simulator (ns-3) [24, 58, 30, 14] tool to evaluate the

proposed approach to alleviate micro-congestion. Some of the parameters considered

while evaluating the scheme are: the topology, amount of traffic entering into the

network, the location through which bursty traffic enters into the network, link that

observes micro-congestion due to the bursty traffic, the total number of packets that

get affected due to micro-congestion (size of each burst), the presence of backup paths

at each node, the number of links that cause micro-congestion at the same time, the

location of multiple links that cause micro-congestion at the same time, and the

average degree of the network.

We evaluated on three different topologies: A standard Abilene and Exodus

topologies and a Random topology generated from BRITE topology simulator [40].

Abilene topology has 11 nodes and 14 links associated; Exodus topology has 79 nodes

and 294 links; while the random topology has 25 nodes and 60 links. The fact that

each node Exodus topology has a higher degree compared to other topologies is an

important parameter to be observed. Across all the topologies, we create enough

number of flows between every source destination pair such that the average link

utilization reaches a threshold ( 70%) [65]. Once the network contains enough traffic,

we start the bursty traffic from one of the nodes to another node (both randomly

picked). We vary several parameters of the bursty traffic and measure the metrics

such as average end to end delay and observed packet drop ratio in the network. For

each of the varying parameter, the results are provided below.

Burst Duration: We varied the amount of time each burst lasts, once it is

generated by a flow. The results for different topologies are provided in Figure 3.15.

The peak burst and queue size are maintained constant at 0.4ms and 400 packets.

From the results, it can be clearly observed that the proposed technique reduces the

drop ratio with a minimal increase in the end to end delay. As the burst duration
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Figure 3.15: Varying the Burst Duration for Abilene (a,b), Random (c,d) and Exodus
(e,f) Topologies

increases, the effect of using the proposed technique is more visible. The difference

in the drop ratio becomes significant with increase in the degree of the network.
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Peak Burst: We varied the ratio between the maximum number of packets

generated at the time of burst and non-burst time intervals. The results for different

topologies are provided in Figure 3.16. The queue size and burst duration are kept

constant at 200 packets and 0.4ms. From the results, it can be clearly seen that the

drop ratio is significantly lower by using the proposed technique, with a very minute

increase in the end to end delay. Also, as the peak burst increases, we observe that

both drop ratio and end to end delay are significantly different with Abilene topology,

but not that different for Random topology. This is due to the presence of very few

links in Abilene topology, Abilene has 2 bottleneck links that affect the results more

rapidly than others. Due to the presence of multiple links at each node, nodes in

Exodus topology can maintain the drop rate consistently.

Queue Size: We also varied the number of packets each node can store on one

interface, or the size of buffer at each interface. The results for different topologies

are provided in Figure 3.17. The peak burst and burst duration are kept constant

at 8 and 0.4ms. From the results, it is clear that increasing the queue size reduces

the drop ratio and end to end delay, to some extent. Once a threshold is reached,

increasing the queue size do not have any affect on the drop ratio. This is because

all the peak burst is already handled at that queue size.

3.6 Conclusion

In this chapter, we presented an approach called FIFR++, that extends a previously

proposed scheme called FIFR, for dealing with network contingencies such as link and

router failures and micro bursts. We have shown that FIFR++ provides loop-free

convergence during link/router down/up events an IP back bone network. We have

evaluated FIFR++ using 280 real and random topologies and our results confirm that

the order of updates does not matter with FIFR++ for 17,336 out of 17,339 links and

11,707 of the 11,772 routers in those topologies, leading to fast convergence. More-
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Figure 3.16: Varying the Maximum Burst (Peak) for Abilene (a,b), Random (c,d)
and Exodus (e,f) Topologies

over, for those outlier links and routers, FIFR++ uses progressive metric increments

to ensure loop-free convergence. We have also demonstrated that FIFR++ can be

employed to mitigate packet loss due to micro traffic bursts in IP backbone networks.
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Figure 3.17: Varying the Queue Size at each router for Abilene (a,b), Random (c,d)
and Exodus (e,f) Topologies
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Part II

Robotic Wireless Networks
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Chapter 4

Building Wireless Communication Maps for

Avoiding Network Disruptions 1

1Alberto Quattrini Li, Phani Krishna Penumarthi, Jacopo Banfi, Nicola Basilico,
Jason M O’Kane, Ioannis Rekleitis, Srihari Nelakuditi, Francesco Amigoni, Multi-
robot online sensing strategies for the construction of communication maps, Springer
Autonomous Robots, 1-21, 2019.
Reprinted here with permission of publisher.
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4.1 Introduction

This chapter aims at increasing the efficiency of a multirobot system that builds an

ad-hoc network communication map by using prior information from the environment

map.

A communication map encodes the information about whether robots in two ar-

bitrary locations can communicate or not. Building communication map can not

only be a standalone task—for example to decide where to optimally place routers in

an indoor environment—but also is important to efficiently accomplish other robotic

tasks, such as exploration [64, 50, 6], environmental monitoring [15], and search and

rescue [44]. Indeed, it is experimentally shown that communication constraints de-

grade the system performance [60]. Many recent works are explicitly considering

communication in the multi-robot systems design [27, 6, 22]. All these works share in

common the assumption that: robots have a communication map readily available,

which is not available in practice [37], or that a conservative communication model

is used, such as limited range line-of-sight, limiting the capabilities of the robots.

Having a reliable communication map allows the robots not to be hindered by the

communication constraints, when choosing where to go, and to have a more efficient

multirobot coordination.

Figure 4.1: The robots, TurtleBots 2 equipped with a Wi-Fi dongle, deployed in an
environment to build its communication map.
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In this chapter, we build on a previous work [29], in which a system for the effi-

cient construction of communication maps, where the communication source is not

stationary, is generated. We use a team of robots capable of measuring signal strength

between them and a Gaussian Process (GP) to model the communication map. Con-

sidering every location in the free space where robots can take measurements would

make the robots travel extensively and so the construction of a communication map

would be too time consuming to be feasible. Thus, limiting the numbers of candidate

locations to informative places is important to accomplish such a task in an efficient

manner. Specifically, we use a priori communication models that can be built out

of the physical map of an environment to reduce the number of candidate locations

to those that provide some distinctiveness, decreasing the exploration time and the

total traveled distance. In addition, we filter out input measurements to the GP to

reduce GP’s computational complexity; which is O(n3) [53] for n observations, result-

ing in a system that scales better over time and space. We describe four different

communication models for Wi-Fi communication along with experiments to test how

close to real data they are. We then present how such models can be used to filter

observations to update the communication map and to generate candidate locations

used by the sampling strategies. A series of experiments with a team of TurtleBots

2 (see 4.1) demonstrate the effectiveness compared to methods which do not exploit

such information.

In the literature, typically, the problem of building a communication map with

respect to a fixed router in the environment is considered [41, 17]. Such a commu-

nication map can be used to improve indoor localization [33]. Some previous work

involved the use of hand-held devices to create a radio map [57]. Other approaches

exploited a single robot exploring an environment and localizing a radio source [61]

and multiple robots to map a stationary source without any coordination [18]. Kemp-

painen et al. [31] proposed a method for a single robot to explore a magnetic field that

70



can be measured in an environment so that it can localize. Hsieh et al. [28] propose

some offline methods to compute efficient joint paths for small teams of robots, with

the aim of collecting signal strength measurements from a set of predefined locations.

The chapter is structured as follows: the next section describes the problem in

detail. Section 4.2.1 presents an overview of the system that our contributions are

based on, highlighting the proposed approach in this chapter. Section 4.3 describes

communication models for Wi-Fi communication and how such information is used by

the robots to make the communication map building process more efficient. Section

4.4 shows experimental results from numerous experiments with real robots. The

chapter concludes with lessons learned and a discussion with interesting research

directions. This chapter is concluded in section 4.5.

4.2 Problem Statement

Similar to [29], m mobile robots are deployed in a known bounded environment with

obstacles, where free space is denoted as A ⊂ R2 and p ∈ A denotes a location that

can be occupied. Robots can localize themselves within a global coordinate system

with a laser range finder. Further, they are equipped with an omni-directional Wi-Fi

transceiver, to communicate with peers over the radio channel within a maximum

communication range allowed by the device.

The robots select a sequence of candidate locations in an online fashion, to mea-

sure the signal strength between two locations. Measurements are included in the

communication map. Note that robots can collect data while traveling to a selected

location.

A communication map represents information about communication links avail-

ability between ordered pairs of locations in A. It is defined as a function f̂ :

A×A → R≤0 estimating the received radio signal strength, RSSI in dBm, f between

any two locations pi and p j . The closer it gets to zero, the higher the reliability and
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Figure 4.2: Example of communication map. For clearly differentiating the locations
where robot can not visit in the physical map, we are not allowing the GP to predict
(and plot) RSSI values at locations inaccessible to the robots.

reachable bandwidth between pi and p j . Let us call xi j = (pi, p j) pair of locations

in the freespace and f̂ (xi j) the estimate of the signal strength from pi to p j . As

communication links not necessarily are symmetric, in general, f (xi j) , f (x ji) [26].

An example of a 2-Dimensional communication map is presented in Figure 4.2,

by fixing the location of the transmitting robot. Obviously, locations with highest

RSSI value will be the locations closest to the transmitting robot.

This chapter, differently from [29] that considers all possible locations in an en-

vironment (up to a discretization), focuses on the following two questions: First,

which measurements xi j, f (xi j) should be used for updating the communication map;

Second, which candidate locations p j should be considered by the robot, to visit

and collect data, for a fixed pi. Given that the free space of an environment can be

arbitrarily large, reducing the number of observations both for building on-line the

communication map and deciding where to go is important for reducing the traveled

distance and increase the scalability.
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4.2.1 Background

A communication map maps the physical location to its communication strength and

is helpful in determining the next destination for the robot [3]. We are interested in a

multi-robot system that learns and updates the communication map during the space

exploration. The problem of choosing optimal locations is studied in [7]. The multi-

robot system that the proposed approach is going to be integrated in is composed

of two main components, that are presented in the following two subsections: a

modeling of the communication map, and a decision on the next destination location.

A detailed description is available at [29].

4.2.2 Gaussian Process based Communication Map

The communication map is generated from a GP [53], given the spatial correlation

that radio signal strength displays. Such a model can also be used to predict signal

strengths in areas where measurements have not been collected yet, with an associated

uncertainty. Specifically, f̂ can be estimated as a posterior distribution fitted over

a set of noisy observations made by robots which explore and coordinate in the

environment to collect signal strength measurements. Assume that the robot team as

a whole collected q measurements over the environment. Let Y = [y1, y2, . . . , yq]T and

X = [x1, x2, . . . , xq]T be the set of those measurements and the set of the corresponding

pairs of locations from where they have been collected, respectively; recall that xi ∈

A2. The signal strength observation yi = f (xi)+ε is affected by additive sensing error,

which is assumed to be i.i.d. and ε ∼ N(0, σ2
n ). The covariance function expresses the

spatial correlation between any two values of f . It takes as input the two location

pairs corresponding to each value. Let us denote the covariance function as k(x, x′).

A radial basis kernel (RBF) is used, as done in the mainstream approach:

k(x, x′) = σ2
f exp

(
−
|x − x′|2

2l2

)
. (4.1)
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where the signal variance σ2
f and length scale l2 are parameters that indicate the

amplitude and the smoothness.

To make notation easy to follow, given X1 = [x1
1, . . . , xa

1 ]
T and X2 = [x1

2, . . . , xb
2]

T ,

we identify with K(X1, X2) the a×b matrix, where Ki j = k(xi
1, x j

2) and with Iq the q×q

identity matrix. The correlation between the observed function values is represented

by the following equation:

cov(Y) = K(X,X) + σ2
n Iq (4.2)

Here, the GP is assumed to have a zero mean function, as typically done in

literature [53]; therefore it is fully specified by the parameter vector θ = [σ2
n , σ

2
f , l

2]T .

Such a parameter vector is computed as the one maximizing the observations log-

likelihood, that is, θ∗ = arg maxθ log p(Y | X, θ) where:

log p(Y | X, θ) = −1
2

(
YTcov(Y)−1Y − log |cov(Y)| − n log 2π

)
. (4.3)

To calculate an estimate of the signal strength, θ∗ optimal parameter vector is

used in unobserved regions by evaluating the posterior. Specifically, called W =

[w1,w2, . . . ,wl]T a set of arbitrary location pairs for which a signal strength estimate

is requested, p( f (W) | X,Y) ∼ N(µW,ΣW), where the mean vector is obtained as

µW = K(W,X)cov(Y)−1Y and represents the estimate f̂ (W), while the covariance

matrix is given by ΣW = K(W,W) − K(W,X)cov(Y)−1K(W,X)T . Note that the main

diagonal of ΣW is called predictive variance and quantifies the uncertainty of estimates

in W.

Because of the inverse operation of the covariance matrix, the complexity of up-

dating the GP with n number of observations is O(n3). As such, in this chapter we

address the following question: is it possible to wisely select observations to include

in the update of the GP so that the model is still accurate, but at the same time the

multirobot online system is not overloaded?
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4.2.3 Sensing strategies

Computing and planning the optimal set of locations robots should reach during the

exploration of an environment is a hard problem [7]. In this work, two main sensing

strategies are adopted to decide pairs of location for collecting measurements, and

both are based on a leader-follower scheme. Specifically, the first sensing strategy,

called Pairwise Mapping (PM), divides a team of robots into pairs, where one acts

as a leader, and the other one as a follower. Pairs of locations are selected by the

leader preferring pairs of locations that display high predictive variance inferred from

the GP. In addition, other robots’ plan is considered in this decision: if two selected

locations are close to locations selected by other robots, they are discarded. To

ensure robustness, a backup pair of locations where robots could communicate is

also selected, in case robots cannot communicate from the new locations. The two

locations are then assigned to the robots to minimize the maximum traveled distance.

The second sensing strategy, called Region Mapping (RM), allows one leader to

have more than one follower. The idea is that instead of minimizing the uncertainty

of the communication map by iteratively selecting pairs of locations, with RM, the

objective is to select and minimize the uncertainty of a given region centered in a

selected location from the leader. First, the leader randomly selects a location pc, as

a center for the region, taking into account the associated uncertainty and possible

overlaps with other teams of robots. In that region, locations to be assigned to the

followers are iteratively chosen, considering the highest sum of predictive variance

when paired with pc and sufficiently far apart from the already chosen waypoints.

Also with the RM strategy, backup locations are decided to avoid any significant

disconnection between robots.

In [29], the whole free space was discretized according to a minimum distance

set between locations and sampled, up to a maximum communication range for an

arbitrary location. This results in a large number of possible observations. In this
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chapter, we pose the question: can we utilize some prior models to reduce the set of

possible candidate locations, to improve the performance of the system?

4.3 Filtering based on Empirical Channel Models

In this section, first, we present the a priori communication models used, with an

evaluation of their fidelity; second, we show how such models can be used to filter

observations for updating the communication map and locations where robots should

go; see Figure 4.3 to see how the proposed approach modifies the one in [29].

Current 
robots' 
locations 
with 
associated 
RSSI

GP

Sensing 
strategy

Assigned 
goals to 
robots

Measurements 
and candidate 
locations filter

Figure 4.3: Block diagram representing the proposed system integrated with that
of [29]; in red, the proposed modification to the communication exploration system.

4.3.1 Prior from Communication Models

In general, it is hard to directly estimate the RSSI value knowing the map of an

environment, because the compositions of the obstacles are not known. However,

in the communication literature, some models—such as Free space, Two-ray, Ten-

ray, Wall Attenuation Factor model, and Multi Wall Attenuation Model [21]—have

been proposed, by estimating the signal’s power loss during propagation (also known

as path-loss)2. Each of these models vary in terms of computation complexity and

accuracy. Further, each model usually has several parameters and quantifying them

2It should be noted that all these path-loss models are independent of the used
communication frequency, i,e., not restricting the analysis to Wi-Fi/LTE etc.
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accurately is hard, as they depend on the considered physical environment. However,

such models have been shown to perform relatively well, when the parameters are

predicted from the training data obtained from the actual measurements [5].

We selected and evaluated four communication path-loss models with varying

complexity that have been tested in indoor environments. In the following the equa-

tions for the different models3, referring to transmitter pi and receiver p j :

Distance Model (DIST) A free space distance based path-loss model assumes

the signal is passing through vacuum; the path-loss observed by the signal depends

only on the Euclidean distance between locations of transmitter and receiver [52, 21]:

Ldist(pi,p j) = −10 log10

[ √
GLλ

4πd(pi,p j)

]2

(4.4)

where, GL is the product of transmitted and receiver antenna gains4; λ is the wave-

length of the transmitted signal; and d() is the Euclidean distance between transmitter

and receiver locations.

Wall Attenuation Factor Model (WAF) An empirical path loss model [5],

which assumes physical map of the environment to be available beforehand, as path-

loss is influenced by the number of walls between transmitter and receiver, in addition

to the euclidean distance:

Lwaf(pi,p j) = Ldist(pi,p0) − 10n log10
(d(pi,pj ))

d0
−

{
w(pi,p j) ×WAFi f w(pi,p j) < C,C ×WAF Otherwise

} (4.5)

where, Ldist(pi,p0) is the path loss at reference distance between transmitter pi and

arbitrary p0; n indicates the rate of change in path-loss; w(pi,p j) is the number of

3Note a slight change of notation compared to the previous works to make notation
uniform and highlight variables and parameters.

4Gain is defined in terms of the antenna’s capability to send/receive signals in a
direction.
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walls on a straight line between transmitter and receiver, C is an empirical constant—

i.e., the maximum number of walls that can make a difference in path-loss; WAF is

a constant factor specific to the type of each wall.

Multi-Wall Model (MWM) Another empirical path loss model [68], whcih as-

sumes the number of walls on ceiling and floow to be known follows Equation 4.6:

Lmwm(pi,p j) = LFSL(pi,p j) +

N∑
l=1

klwl(pi,p j) + k f f(pi,p j) (4.6)

where, LFSL(pi,p j) = Ldist(pi,p0)+ 10n log(d(pi,p j)) models a free space path-loss

model; wl() is the number of walls of lth type between transmitter and receiver, kl

is a parameter for the attenuation affecting the signal for wall of type l; f(pi,p j)

is the number of floors between transmitter and receiver, and k f is the attenuation

parameter observed by signal due to the type of that floor.

ITU Radio communication Model (ITU) An empirical model, used by IEEE

802.15 Working Group for Wireless Personal Area Networks [25], for testing the

proposed channel model of a signal propagating in an arbitrary environment:

Litu(pi,p j) = 20 log10 f + n log10 d((pi,p j)) + k f f((pi,p j)) − 28 (4.7)

where, n is the distance power loss coefficient; f is the communication frequency

(MHz); d() is the distance between the transmitter and receiver (in meters); k f is the

floor penetration loss factor (dBm); f() is the number of floors between transmitter

and receiver.

Each parameter should be fine-tuned according to the specific environment. Val-

ues for parameters are heuristically suggested in the related papers, usually for a

communication signal at 2.4GHz (WiFi) for different scenarios, including indoor of-

fice environment.
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Considering the transmitting power Tpower (dBm), the RSSI between transmitter

and receiver can be then calculated as:

RSSI(pi,p j) = Tpower − L()(pi,p j) (4.8)

As a physical map of the environment is available, a prior communication map can

be computed for every location reachable by a receiver robot, given a fixed location

for a transmitting robot. Note that as robots cannot access some locations—e.g.,

because of doors—and maps are pre-built by the robots, the number of walls is an

estimate of the actual number of walls. Specifically, every change from freespace

cell and occupied cell in the grid is counted as one wall. Maps are preprocessed in

such a way that small objects are removed from the map and thus not counted as

wall. Generating a prior communication map using the different models shows that

locations closer to the fixed robot observe higher RSSI values, while distant locations

have lower values. While the trend seems to be similar, the RSSI values from these

priors are different; among them, WAF model seems to weigh more the different terms

and as such the returned values are smaller.
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Table 4.1: Errors observed in the calculated RSSI values, for SIX experiments performed varying locations of fixed robot; while
moving robot follows a stable fixed path and collects data

Path-loss Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6

Model Mean stdev Mean stdev Mean stdev Mean stdev Mean stdev Mean stdev

Distance 8.09 4.98 9.40 7.27 9.40 7.28 17.56 9.27 10.89 8.54 6.14 5.62

WAF 12.02 10.24 15.33 12.08 15.34 12.09 27.29 10.87 20.06 11.85 17.47 7.04

MWM 7.98 5.01 9.37 7.26 9.38 7.27 17.66 9.29 11.15 8.58 4.03 3.66

ITU 11.33 7.84 15.49 10.28 17.79 7.09 29.02 11.74 20.51 9.66 15.40 6.43
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We evaluate the accuracy of such models, calculating the difference between the

measurements collected by two robots described in Section 4.4 and the RSSI values

from the communication models (error). In particular, we conducted six different

experiments in the engineering building of the University of South Carolina5. Each

experiment involved one robot fixed at a different location, and the other robot fol-

lowing a precomputed coverage path. Each robot measures the Wi-Fi signal 10 times

a second along with its position in the map. The physical environment used for these

experiments is depicted in Figure 4.4a.

Table 4.1 shows mean (and standard deviation) error for the six different exper-

iments. It is worth mentioning that: we observed a change of 8 dBm to 10 dBm in

the RSSI value while changing the height of the antenna (by a few centimetres) at

the moving robot multiple times. An accuracy error of < 20 dBm is comparable to

what is shown, for example in [5]. As such models display a relatively low error, es-

pecially MWM, it is justified to use such models as priors for the robots constructing

a communication map, as shown in the next section.

4.3.2 Use of Communication Models Prior

For a given location of a transmitting robot—leader in the strategies described in

Section 4.2.1—we propose an algorithm to automatically generate a set of locations

that can be provided as goal to the followers and can be used also for integrating

measurements in the GP. The main idea is to choose locations that are informative,

namely those which present some change in the field, as constant values can be easily

approximated by a model.

Mathematically speaking, the slope of RSSI is determined at each location, based

on the prior communication map built from the communication models. This is

5All experiments were conducted at night time, so the interference due to moving
objects/humans is minimal, except for the people performing the experiment.
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basically the first order derivative of the RSSI value at every location. We also

determine the change of slope between neighbor locations in the map. If the change

of slope between two locations crosses a threshold (τ), we select that location as one

of the possible goals of the moving robot (follower). This idea is explained in detail

in the Algorithm 5.

Algorithm 5 Goals for Moving Robot to Pick Observations
1: INPUT:A (physical map of the environment), pi (possible locations that robots

can occupy)
N = |A|, comm_model,
(x1, y1) ∈ A (considered location of transmitter), τ (threshold)

2: Notation: comm_model = {itu,wa f , dist,mwm}
{Communication model of the environment}

3: Location of the fixed robot, Notation: (x1, y1) ∈ Pi
Ensure: List of candidate goals for the moving robot {(xd

i , y
d
i )}, ∀i ∈ goals

4: for (x2, y2) ∈ pi − (x1, y1)
5: rssi (x1, y1, x2, y2) = calculate_rssi (x1, y1, x2, y2, comm_model);

{Using appropriate Equation from 4.4, 4.5, 4.6, 4.7}
6: end for
7: goals = get_goals(rssi, x1, y1, N, pi);
8: return goals

1: procedure: get_goals(rssi, x1, y1, N, pi)

2: goals={}
{Return variable}

3: for (x2, y2) ∈ pi
4: rssi_slope(x1, y1, x2, y2) = calculate_slope(x1, y1, x2, y2, rssi)

{Calculate the slope of RSSI}
5: end for
6: for (x2, y2) ∈ A
7: rssi_change_slope(x1, y1, x2, y2) = calculate_slope(x1, y1, x2, y2, rssi_slope)

{Calculate the slope of rate of change of RSSI }
8: end for
9: for (x2, y2) ∈ pi
10: if rssi_change_slope(x1, y1, x2, y2) > τ
11: goals.add((x2, y2))
12: end if
13: end for
14: return goals
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Additionally, locations generated from the algorithm can be used to filter the

measurements. If measurements are taken close to those locations within a given

range, they are included in the communication model. It is important to note that: τ

needs to be generated heuristically, for each communication model separately. When

τ is high, robot may not receive sufficient number of goals to predict accurately,

while lower τ could result in too many goals for the robot. From our preliminary

experiments, τ value of 11 seemed reasonable (±10%) to all the four models, and

provided between 30 − 120 goals for various communication models–among 212 pos-

sible locations–in the tested environments. Note that to account for inaccuracies of

the prior model, locations within a given radius are added to the list of candidate

locations.

The proposed method to select locations is integrated in the PM and RM strategies

by filtering the locations considered for the follower. PM and RM algorithm chooses

the set of goals, i.e., leader choosing one (or) many followers according to the strategy

briefly described in Section 4.2.1. Further, such selected locations are also used to

determine which measurement to include in the communication map.

Using the data collected during our experiments described in the previous section—

i.e., one robot fixed at a location, while the other moving along a fixed, known path—

we evaluate the GP with all measurements, and the GP with filtered measurements

from the proposed method.

In general, the GP with filtered data maintains low variance in GP predictions

and low Root Mean Square Error (RMSE), and at the same time the GP training

time reduces by 50%, compared to the GP with all data. For example, the Root Mean

Square error between the observed data and the predicted values from the GPs, in

one of the experiments, is 11.014 for the GP with all data and 11.03 for the GP with

filtered data.
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This experimental results validate the use of such a filtering approach. Note that

such a priori information could also be used within a GP, by changing the mean

function, however, the standard definition for the GP worked well enough, without

adding complexities for estimating the hyperparameters.

The next section shows the proposed method in an online scenario where robots

decide “where to go” to build the communication map.

4.4 Experimental Evaluation using TurtleBot2 Robots

As we already showed a validation for filtering the training data on the GP and

as we are assessing whether such prior communication models could work in a real

scenario, simulations are not run as they would not reflect the real world commu-

nication channel performance. We use a fleet of TurtleBot 2 platforms6, equipped

with an RGB-d sensor (Microsoft Kinect) that allows the robots to localize together

with odometry information [48, 36, 51, 7, 3]. The maps used for localization are built

in a setup phase and are represented as an occupancy grid. Specifically, a single

robot is manually driven around the environment to collect RGB-d readings which

are then processed using the ROS gmapping package [23]. Figure 4.4 shows two dif-

ferent environments with different characteristics in Swearingen Engineering Center

at University of South Carolina: one map depicting a corridor passing through the

labs and the other map depicting a corridor passing through faculty workspace.

We considered two relatively big indoor environments with different characteristics

in the Swearingen Engineering Center at the University of South Carolina, depicted in

Figure 4.4. Figure 4.4a is characterized by long corridors with some intersecting short

corridors and one small loop. Note that between the two long corridors, there is an

outdoor space, which the robots cannot access. Figure 4.4b is instead an environment

with corridors surrounding small office rooms.

6http://www.turtlebot.com
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(a) Corridor surrounding Lab Workspace
(Lab-Corridors 66m x 92m)

(b) Corridor surrounding the Faculty
Workspace (Office-Corridors 30m x
70m).

Figure 4.4: Two environments, portions of third floor at Swearingen Engineering
Center, University of South Carolina.

After running some preliminary experiments, we decided to use MWM as the

communication model to generate candidate locations using Algorithm 5, because

it provides a good number of candidate locations and has good accuracy (see Sec-

tion 4.3.1). We execute the updated algorithm on a real system with two Turtlebot 2

robots. The modified versions of PM and RM are compared against the basic version

defined in [29], and on a baseline strategy, RAND, where robots independently move

to random destinations over the environment while taking Wi-Fi measurements with

respect to other teammates.

For each of the two physical environments mentioned in Figure 4.4, we verified the

performance of both proposed and base line methods; by using 2 Turtlebot 2 robots,

for a 20 minute duration. The strategies are evaluated by considering the quality of

the GPs that is obtained; by merging all the collected data in a global rendez-vous

after every 5 minute, i.e., traveled distance and the GP processing time. Quality is

measured both in terms of RMSE, calculated as the difference between measurements

collected with locations along fixed trajectories (described in the previous section) and

the predicted values at those locations by the GP trained online, as well in terms of

the average predictive standard deviation of the predictions. Note that, obviously, it
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Figure 4.5: Evaluating the Proposed (PM-MWM and RM-MWM) Approaches with
Experiments Performed by TurtleBot 2 in Lab-Corridors.

is impossible to have a full ground truth as it would take too long for the robots to

cover continuously the 4D space.

Figures 4.5 shows results for experiments performed on the map shown in Fig-

ure 4.4a. Our proposed PM-MWM approach spends less time updating the GP-based

communication map—e.g., at 20 minute, about 1.2 seconds for PM-MWM, compared

to 3 sec for PM. Moreover, robots consistently travel less distance at a given time

slice (about 30%), preserving good quality in terms of RMSE and predictive stan-

dard deviation compared to the other strategies without communication prior—e.g.,

at 5 minute with PM-MWM the traveled distance is about 15 m with a predictive
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standard deviation of 10 dBm, compared to 20 m with PM and 12 dBm as standard

deviation. Also, note that with Random strategy robots cover longer distance but

has higher predictive standard deviation. Figures 4.5c and 4.5d show that the pre-

dictive standard deviation of the proposed models is lower than remaining models

while maintaining approximately the same RMSE value. Similar results are obtained

in the other environment.

4.5 Conclusion

In this chapter, we presented a method for making the process of building com-

munication maps more efficient. In particular, measurements to be integrated into

a communication map and candidate locations to be chosen as goals by robots are

filtered, by using communication models as prior. Communication models built start-

ing from physical environment map, can provide information about distinctiveness

of locations, by calculating first and second order derivatives. Experiments with real

robots validate the accuracy of such models for the purpose of building communi-

cation maps. Moreover, the proposed approach showed an improvement over other

methods in terms of traveled distance and computation time, while maintaining com-

parable RMSE and predictive variance.
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Chapter 5

Conclusion

In this dissertation, we handled the problem of packet losses due to various network

events, across both traditional wired networks and robotic wireless networks.

In Part 1, we addressed the problem of forwarding loops during convergence in

response to various changes in the network such as link/router down/up. We pre-

sented an approach called FIFR++, which extends a previously proposed scheme

called FIFR, for dealing with network contingencies such as link and router fail-

ures and micro bursts. We have shown that FIFR++ provides loop-free convergence

during link/router down/up events in an IP backbone network. We have evaluated

FIFR++ using 280 real and random topologies and our results confirm that the order

of updates does not matter with FIFR++ for 17,336 out of 17,339 links and 11,707

of the 11,772 routers in those topologies, leading to fast convergence. Moreover, for

the remaining outlier links and routers, FIFR++ uses progressive metric increments

to ensure loop-free convergence. We have also demonstrated that FIFR++ can be

employed to mitigate packet loss due to micro traffic bursts in IP backbone networks.

One major limitation of FIFR++ is that it assumes that at most one link or router

down or up event is being propagated in the network. Otherwise, routers’ notion of

bc and ac eras can get mixed up leading to unexpected behavior and forwarding

loops. Therefore, it is desirable to revise the approach to ensure graceful degradation

when network needs to absorb multiple independent link state changes simultaneously,

which is part of our future work. Another limitation is that the proposed approach

works only for networks consisting of bidirectional links with symmetric link weights.
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So, another avenue for future work is to extend the FIFR++ approach for networks

with asymmetric link weights.

In Part 2, utilizing a Gaussian Process representation of the WiFi signal strength

distribution, we designed and tested multi-robot online sensing strategies for mapping

the quality of WiFi communication links between pairs of locations in an environ-

ment. We used communication models as prior to improve the overall performance

and computational efficiency. Experiments using simulations and 4 Turtlebots show

how distributed coordination schemes can effectively perform such a mapping task.

The proposed schemes require robots to take fewer measurements and travel less

distance, and yet get similar accuracy as methods that consider all the locations in

the environment. Future work along these lines would be to extend the proposed

approach to explicitly consider temporal variations and employ more complex com-

munication models that account for multiple paths. Also, extrapolating this work

to outdoors, under-water, and aerial environments opens several interesting research

directions.
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