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Abstract 
 

Carbon molecular sieves (CMS) have grown more desirable over the years as an 

adsorbent for industrial separation processes as CMS technology has advanced. CMS is 

commonly used in nitrogen inerting (i.e, oxygen removal from air), carbon dioxide removal 

from methane and oxygen purification. However, knowledge of the dynamic behavior of 

these gases on CMS is needed to design and operate efficient and effective separation 

processes. For this reason, the mass transfer resistances within the micropore at both low 

and high frequencies were characterized using frequency response, COMSOL 

Multiphysics modeling, and MATLAB optimization , because frequency response methods 

have demonstrated the ability to discriminate between limiting mass transfer mechanisms. 

This method is performed through a sinusoidal perturbation of volume, pressure, or 

concentration. Each method has unique advantages and disadvantages that need to be 

considered when determining the most appropriate for the adsorbate-adsorbent at hand. 

Due to the robustness and applicability of the volumetric frequency response system 

(VFRS), the current study focused on a previously constructed VSFR system to utilize the 

wide range of frequencies it handles, allowing for analysis of both slow and fast diffusing 

gases. Mass transfer mechanisms were identified utilizing the data obtained from this 

VFRS system and fitting it to a mathematical model for oxygen adsorbed by Shirasagi 

CMS 3K 172 from Takeda Chemicals at 750 torr at 20, 30, 40 and 50 °C and 100 and 200 

torr at 25 °C. Three distinct zones were identified in which isothermal local equilibrium, 

micropore diffusion resistance, and mouth resistance dominated at low, intermediate and
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high frequencies, respectively. The model did not fit the phase lag data well at high 

frequencies but showed that an increase in temperature resulted in a decrease in the 

amplitude. 

Additionally, a parametric study was performed to demonstrate the effect of the 

heat transfer coefficient, heat of adsorption, adsorbent heat capacity, micropore diffusion, 

and mouth resistance on the adsorption kinetics. For the base case of oxygen at 760 torr 

and 20 °C, curves displayed a delayed drop in intensity as micropore diffusion limitations 

decreased. With an increase in mouth resistances, the slope of the intensity curves became 

steeper and the phase lag was shifted right. An increase in the heat capacity of the adsorbent 

caused a developing hill between 0.001 and 0.015 Hz, while an increase in the heat of 

adsorption shifted this hill downwards. An increase in the heat transfer coefficient caused 

an increase in the starting location of the intensity curve until equilibrium was reached and 

an increase in the heat transfer coefficient no longer had an effect. The heat transfer 

coefficient had no effect on phase lag amplitude.  
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local equilibrium is shown, the starting position of this plateau is increased with an increase 

in the heat transfer coefficient. Upon reaching 0.01J/K/s, the upper envelope is reached, 

and the heat transfer coefficient does not have any effect (Figure 4.12). The phase lag also 

displays a change in starting position (Figure 4.13).  

 

               Figure 4.12. Effect of the Heat Transfer Coefficient on the Intensity. 

 

                  Figure 4.13. Effect of the Heat Transfer Coefficient on the Phase Lag. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0001 0.001 0.01 0.1 1 10

In
te

ns
it

y

Frequency (Hz)

0.01

0.05

0.1

0.42

1

0

5

10

15

20

25

0.0001 0.001 0.01 0.1 1 10

P
ha

se
 L

ag

Frequency (Hz)

0.01

0.05

0.1

0.42

1



32 
 

The results for the base case utilized in the parametric study are shown in Figure 

4.14. They parameters in Table 4.1 were obtained by fitting the micropore model to the 

experimental intensity and phase lag O2 data using the multiparameter optimization Matlab 

code. The initial plateau shown at the lowest frequencies was due to isothermal local 

equilibrium. There is an intermediate plateau seen up to around 0.0011 Hz that is due to 

micropore diffusion resistances. This plateau appears to decrease in size with an increase 

in temperature. This is also apparent on the phase lag plots (Figure 4.15). The third 

distinguishable feature appears at high frequencies and is due to the mouth resistance. 

It appears the model may have optimized to a local, rather than a global, minimum. 

This is apparent due to the rather large sum square error of 11.9. Upon conducting the 

parametric study, intuition suggests that the micropore diffusion coefficient should be 

larger than the mouth resistance, allowing the mouth resistance to be the limiting mass 

transfer resistance. The model is also not capturing an additional feature seen on the phase 

lag plot at high frequencies. This feature deviates more so at lower pressures.  

 

         Figure 4.14. Intensity versus Frequency for Oxygen on CMS 172: model and        
         experimental data.  
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         Figure 4.15. Phase Lag versus Frequency for Oxygen on CMS 172: model and       
         experimental data.  
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feature at high frequencies due to the mouth resistance. The micropore diffusion resistances 

may have a temperature dependence, which should be implemented in future work. As 

temperature increased, the phase lag amplitude decreased with a decrease in adsorption. 

The model and experimental phase lag peaks do not perfectly overlap and the model does 

not fit the high frequency feature of phase lag at low pressures.  

Additionally, a parametric study was performed to demonstrate the effect of the 

heat transfer coefficient, heat of adsorption, adsorbent heat capacity, micropore diffusion 

coefficient, and mouth resistance mass transfer coefficient on the adsorption kinetics. For 

the base case of oxygen on CMS 172 at 760 torr and 20 °C, intensity curves displayed a 

delayed drop in intensity as micropore diffusion limitation decreased. The phase lag shifted 

right and showed an increase in amplitude with an increase in the micropore diffusion 

coefficient. With an increase in the mouth resistance, the slope of the intensity curves 

became steeper while the phase lag curve shifted right and decreased in amplitude. An 

increase in the heat capacity of the adsorbent caused a developing hill between 0.001 and 

0.015 Hz, while an increase in the heat of adsorption shifted this hill downwards. The 

increased heat capacity caused a slight increase in phase lag amplitude and caused the 

feature at low frequencies to become less prevalent. An increase in the heat transfer 

coefficient caused an increase in the starting location of the intensity curve until 

equilibrium was reached and an increase in the heat transfer coefficient no longer had an 

effect. This increase had no effect on the phase lag amplitude.  
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