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ABSTRACT 

 The modification of inorganic nanoparticles with organic polymer chains 

has become a significant field of study for the engineering of advanced 

nanocomposite materials. This dissertation presents the design, synthesis, and 

characterization of novel polymer grafted silica nanoparticles as new strategies to 

combat bacterial resistance. Described herein is the synthesis of monomers that 

have been graft polymerized onto silica nanoparticles that can be used as a 

delivery drug vehicle for biomedical applications. The polymerization of these 

monomers was performed via reversible addition-fragmentation chain transfer 

(RAFT) polymerization. The molecular design of the RAFT agents that are 

attached to the surfaces of the nanoparticles has the main role in controlling the 

molecular weight and dispersity of the polymer chains grafted to the surface of 

the nanoparticles. The method of attachment of the RAFT agents additionally 

controls the surface graft density. The important properties of nanocomposites can 

be exploited in many different areas, such as biomedical applications. 

In the first chapter of this work, the overall background of antimicrobial 

polymers, the functionalization of nanoparticles using RAFT polymerization, and
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the concept of the modification of silica nanoparticles to afford a bimodal brush 

system is described. The second chapter focuses on designing a new type of 

stimulus-responsive polymer that can work as antibiotic-delivery carriers in 

biomedical applications. We reported pH-responsive “controlled release” 

polymers that were grafted on silica nanoparticles using reversible addition-

fragmentation chain transfer (RAFT) polymerization. Two monomers 2-((2-

(propionyloxy) propanoyl)oxy)ethyl methacrylate (HEMA-LA) and 4-(2-

(methacryloyloxy)ethoxy)-4-oxobutanoic acid (HEMA-SA), containing 

hydrolytically sensitive ester linkages were synthesized to functionalize on the 

surface of silica nanoparticles. The degradation rate was monitored by attaching 

dyes at the end of these monomers in each repeat unit to study the release rate, 

thus assessing the use of these monomers as delivery vehicles for anti-bacterial 

applications.  

In the following chapter, bimodal polymer chains grafted on the surface of 

silica nanoparticles was developed via RAFT polymerization to create water-

dispersible nanoparticles that have additional advantages as antibiotic-delivery 

vehicles in biomedical applications. Two different polymer chains populations 

were attached to silica nanoparticles; the first population is high graft density with 

low molecular weight, which is a pH-responsive controlled release polymer 

derived from two possible monomers (HEMA-LA) and (HEMA-SA), both 
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containing a hydrolytically sensitive ester linkage: the second population is a 

water-dissolvable polymer of methacrylic acid (MAA) at low graft density with 

high molecular weight. Fluorescent dyes were conjugated to the controlled release 

polymers to monitor the nanoparticles in biological systems. 

Finally, in the fourth chapter, we described a new approach using two 

different RAFT agents, 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid 

(CPDB), and 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid 

(CDSS) to create bimodal polymer brush grafted nanoparticle. These novel 

bimodal brush silica nanoparticles were designed successfully to combat 

antibiotic-resistant bacteria. The first population polymer brush is based on two 

potential “controlled release” monomers 2-((2-((2-hydroxy propanoyl)oxy) 

propanoyl)oxy) ethyl methacrylate (HEMA-LA), 2-(methacryloyloxy)ethyl 

succinate (HEMA-SA) containing a hydrolytically sensitive ester linkage as a high 

graft density, short brush to work as antibiotic-delivery carriers. However, the 

second population polymer brush was based on a sugar-containing monomer, 2-

methacrylamido glucopyranose (MAG), as a low graft density, long brush to 

enhance bacterial uptake of nanoparticles.  
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CHAPTER 1 

INTRODUCTION 
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 1.1 RAFT Polymerization: 

 Since 40 years ago, novel controlled polymerization techniques have been 

discovered in polymer chemistry.1 Reversible addition-fragmentation chain 

transfer (RAFT) polymerization is considered one of the controlled radical 

polymerization (CRP) techniques that give living characteristics to free radical 

polymerization.2–5 Living polymerization has emerged where the propagation of 

polymerization is continued by all chains and its process in the absence of chain 

termination.6 The RAFT polymerization technique can be used to improve the 

properties of polymers such as precise control over polymer molecular weights 

with narrow polydispersity and the abilities to create well-defined molecular 

architectures.7 Controlled radical polymerization techniques are generally 

classified by three major methods (Figure 1.1); nitroxide-mediated polymerization 

(NMP)8 which requires high reaction temperature, atom transfer radical 

polymerization (ATRP)9 that requires a metal catalyst, and reversible addition-

fragmentation chain transfer polymerization (RAFT).1,10 RAFT together with ATRP 

are the most widely used CRP techniques to date. RAFT is often preferred for its 

simplicity and versatility, usage with a wide range of monomers, lack of metal 

catalyst, and low polymerization temperatures.7,11 
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1.2 Mechanism of RAFT Polymerization: 

The RAFT technique employs a chain transfer agent (CTA), which works to 

control the polymerization due to its ability to create and participate in a chain 

equilibrium. Common CTAs are dithioester, dithiocarbamate, or trithiocarbonate 

compounds that referred to as RAFT agents and contain Z and R groups that are 

responsible for controlling the polymerization (Figure 1.2). Monomer structure 

and the structure of the R and Z group of the CTA are the main factors that affect 

control of the polymerization.13   

 

 

Figure 1.1: The three main CRP methods.12 
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The general proposed mechanism for RAFT polymerization is shown in 

Figure 1.3. Initiation begins due to the conventional initiation process by the 

homolysis of a free radical initiator. After the initiator attacks the monomer, 

propagating radical species (Pn*) will be created. (Pn*) will react with the RAFT 

agent (A) to form the intermediate (I), which can then fragment into dithioester (B) 

and a new radical (R*). The new radical (R*) will re-initiate the free monomer and 

form a new propagating radical species (Pm*). The equilibrium between two 

propagating radical species (Pn*, Pm*) will be established. The chain end of RAFT 

CTA will remain active, allowing for more additions for the synthesis of block 

copolymers or other advanced polymer architectures.14–20  High ratio of RAFT 

agent to the initiator in the polymerization is important to maintain the 

equilibrium between active radical species, and to avoid having a large number of 

active species which leads to termination between propagating radical species 

(Pn*, Pm*).  

The Z and R groups of the RAFT agent are responsible for controlling the 

equilibrium between active radical species CTA, and the rate of monomer 

addition. The Z group works to stabilizing the radical species that leads to  

Figure 1.2: Generalized dithioester RAFT agent and polymer formed using a RAFT agent. 
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control of the reactivity of CTA while the R group acts as an excellent leaving 

group with respect to (Pn*).10 

1.3 Polymer Grafted Nanoparticles: 

 

RAFT polymerization has a significant role in the development of 

nanoparticles for polymer nanocomposites due to the surface modification of 

nanoparticles.21 Properties of a polymer matrix can be significantly enhanced by 

using nanoparticles as fillers. Usually, preventing the agglomeration of 

nanoparticles is a necessary requirement for improving polymer nanocomposite 

Figure 1.3: General mechanism of RAFT polymerization. 
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properties. Ungrafted bare nanoparticles do not have favorable interactions with 

their environment.22 Therefore, a successful approach to overcome agglomerations 

caused by surface tension among nanoparticles is through surface modification 

with polymer chains, which can increase the dispersion of particles (Figure 1.4).  

 

RAFT polymerization provides an excellent method to attach well-defined 

polymer chains to the surface of nanoparticles.21–23 Polymer chains can be created 

Figure 1.4: Bare nanoparticles vs. polymer grafted nanoparticles in a polymer 

matrix. 
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following two methods: (i) Non-covalent attachment (physisorption) and (ii) 

Covalent attachment (chemisorption). Physisorption experimentally is very 

straightforward, but it has several limitations, such as desorption or weak linkage, 

that limits its applications. Furthermore, chemisorption attachment is more widely 

used due to its strong attachment between introduced polymer chains and the 

surface of nanoparticles.24 

The covalent attachment of chains can be achieved by two main strategies: 

grafting-to and grafting-from. The grafting-to technique covalently attaches 

polymer chains which have reactive end groups to the surface of nanoparticles. 

Grafting-to does not provide high graft density of polymer chains because of the 

steric repulsions between them. Furthermore, the reaction between the end group 

on polymer chains and the reactive group on the surface of the nanoparticles will 

be less efficient with increasing the molecular weight of the polymer. On the other 

hand, the grafting-from technique directly initiates the polymerization from 

initiator functionalized surfaces, which are covalently linked to the surface. 

Grafting-from is advantageous in that it achieves nanoparticles with higher graft 

densities because steric interactions are avoided (Figure 1.5).24,25  

The morphology of the polymer chains that are attached to the substrate 

surface of nanoparticles depends on grafting density. Higher graft densities do not 

allow for more distance between polymer chains. Therefore, steric hindrance leads   
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to brushes with more extended chain conformations. In contrast, low graft 

densities provide the polymer chain space to stretch back towards the substrate 

surface of nanoparticles and adopt various conformations such as mushroom 

structures (Figure 1.6).  Therefore, graft density plays a significant role that affects 

matrix interactions.26,27    

Figure 1.5: Techniques of polymer attachment A) physisorption, B) grafting-to 

approach, C) grafting-from approach. 

Figure 1.6: Polymer morphologies resulting from various grafting densities.28 
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1.4 Nanoparticles As Delivery Vehicles: 

The widespread use of antibiotic drugs that become essential for many 

medical interventions to reduce bacterial growth and to treat bacterial infections 

specifically, combined with the adapt-ability of bacterial types, has led to 

appearance a new phenomenon, antibacterial resistance, which has become a 

global issue. Antibacterial resistance is one of the issues that has gathered 

remarkable attention during the past three decades.29 Bacteria have developed 

their abilities to become more resistant to traditional antibiotics. β-lactam 

antibiotics are the common conventional antibiotics that have widely used and 

have a long history. Bacteria gradually started to develop resistance against these 

antibiotics by creating β-lactamase enzymes which work to deactivate antibiotics 

through hydrolyzing the β-lactam ring efficiently.30 Therefore, one of the 

significant approaches that are used to inhibit β-lactamase and overcome bacteria- 

resistance is developing antibacterial nanoparticles where the antibiotic linkage to 

the surface of nanoparticles will enhance their effectiveness against bacteria.31 

Antibacterial nanoparticles have been developed and investigated as therapeutic 

delivery vehicles. Nanoparticles can offer variable and structured surfaces having 

various types and densities of antibiotics.32 Consequently, this will permit the 

specificity of the quantities of antibiotic molecules that will be carried by 

nanoparticles that will reach infectious bacterial cells. Overcoming bacterial 
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resistance may occur by releasing antibiotics slowly into the system while 

preserving an effective antibiotic concentration for extended times.33 One of the 

synthetic strategies that can be used is the design of new monomers, containing an 

ester linkage which can be easily hydrolyzed. The slow degradation of the side 

chains will occur, resulting in the slow release of antibiotics from the surface of 

nanoparticles. 

1.5 Bimodal Nanocomposites: 

A novel architecture of grafting bimodal polymer brushes on nanoparticles 

can significantly improve the entanglement of nanoparticle fillers and matrix 

polymers. Improving the properties of polymers/ matrices will lead to the wider 

application of polymer nanocomposites. Extensive research has been done to 

understand the relationship between the polymer brushes on the nanoparticles 

and their matrices.34 However, controlling the graft densities of brushes and the 

interface of the brush/matrix are significant issues that need to be addressed to 

fully understand the structure-property relationship in polymer nanocomposites. 

Typically, the aggregation process of monomodal brush grafted nanoparticles is 

addressed by a delicate equilibrium between enthalpic and entropic interfacial 

interactions.35,36 Therefore, using a bimodal polymer brush architecture on 

nanoparticles is considered an improved approach currently to overcome the 

aggregation of nanoparticles that occurs in polymer nanocomposites. A bimodal 
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polymer brush is created by attaching two populations of polymer chains with 

different lengths to the surface of nanoparticles (Figure 1.7).37 Both approaches, 

grafting-from, and grafting-to are successfully used to prepare bimodal polymer 

brushes. 
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CHAPTER 2 

POLYMERIZATION OF “CONTROLLED RELEASE” MONOMERS 

CONTAINING A HYDROLYTICALLY SENSITIVE ESTER 

LINKAGE VIA RAFT POLYMERIZATION 1 

 

 

 

 

 

 

 

 

1Al-Ali, M.A. and Benicewicz B. C. To be submitted to Journal of Polymer Science. 
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2.1 Abstract: 

The aim of this work was to develop a novel type of drug-delivery carrier 

consisting of a pH-responsive “controlled release” polymer containing an 

antibacterial drug grafted onto the surface of a nanoparticle. Herein, we describe 

the first report of pH-responsive biodegradable polymers grafted from the surface 

of silica nanoparticles. Grafted “controlled release” polymers containing a 

hydrolytically sensitive ester linkage on silica nanoparticles were successfully 

prepared via reversible addition-fragmentation chain transfer (RAFT) 

polymerization. Two potential “controlled release” monomers, 2-((2-

(propionyloxy) propanoyl)oxy)ethyl methacrylate (HEMA-LA) and 4-(2-

(methacryloyloxy)ethoxy)-4-oxobutanoic acid (HEMA-SA), were synthesized by 

the ring-opening reaction of L-lactide and succinic anhydride with 2-hydroxyethyl 

methacrylate (HEMA), respectively. The polymerization of the methacrylate 

monomers was carried out using 4-cyanopentanoic acid dithiobenzoate (CPDB) as 

a RAFT agent. Both polymers poly(HEMA-LA) and poly(HEMA-SA) were 

characterized by NMR spectroscopy and gel permeation chromatography (GPC). 

The degradation rates of these two polymers were investigated using phosphate 

buffer solution (PBS, pH = 7.4) at 25ᵒC and 37ᵒC as a function time using conjugated 

dyes (NBD-aminohexanoic acid, NBD-hexamethylenediamine). The pH-

dependence of dye-loaded polymer grafted nanoparticles was confirmed by the 



 

18 

evaluation of the cumulative release rate at two temperatures 25ᵒC, 37ᵒC. Such 

polymer grafted nanoparticles are being developed for use as delivery vehicles for 

antibacterial applications. 

2.2. Introduction:  

Drug delivery of pharmaceutical compounds is considered the key to 

achieving a significant therapeutic effect, whether for humans or animals.1 

Nanotechnology methods have more significant potential in drug delivery 

systems (DDS) as the desired drug could be released using biodegradable 

polymers.2 For the ideal drug delivery system(DDS), preserving the drug level 

within a desired therapeutic range is the main aim because there is a toxic and 

ineffective plasma level for each drug.3 The design of a “Controlled Release” drug 

delivery technique using nanotechnology is one of the significant strategies to 

overcome various diseases.4 Globally, different stimuli-sensitive polymeric 

systems have attracted considerable attention in recent years that show a response 

to an external stimulus such as pH, temperature, specific ion, and electric field.5 

pH-sensitive nanopolymers, among the different types of stimuli-responsive 

polymers, have been advanced and most widely used to develop sensitive nano-

systems in which the drug will release in different pH environments.6 The use of 

polymers containing a pH-sensitive ester linkage on silica nanoparticles has 

gained significant importance during recent decades.7  
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Several strategies/ approaches of pH-responsive drug release have been 

studied. For instance, one of the important strategies is to introduce ionizable 

functional groups, such as esters, amides, phosphoric acids, and carboxylic acids 

with nanomaterials. These ionizable functional groups are biodegradable, which 

can result in the drug release through the mechanism of a pH-stimulus 

environment.8 pH-sensitive polymers with ionizable groups that are considered a 

class of polyelectrolytes that can be ionized and change their conformation. 

Several pH-sensitive polymers have been developed by using acidic or basic 

groups that accept or release protons in response to changes in the pH 

environment. Esters linkages have been preferred when engineering polymeric 

materials for controlled release compared to amides, carbonates, and carbamates 

because of their relative ease of hydrolysis at physiological pH (7.4).9 At pH 7.4, 

the esters groups that have a carbonyl adjacent to an ether linkage can be readily 

hydrolyzed to alcohol and carboxylic acid derivatives.10 

However, the current study is focused on the designing of pH-sensitive 

polymers grafted onto silica nanoparticles (SiO2@HEMA-LA, SiO2@HEMA-SA). 

Controlled release pH-responsive monomers containing ester linkage were 

synthesized. The Grafting-from RAFT polymerization technique was used to 

polymerize these controlled release monomers onto the surface of silica 

nanoparticles to get controlled and high loading capacity.11 The controlled release 
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study was investigated by attaching labeled-dyes to the pH-sensitive polymers to 

monitor the degradation rate. Furthermore, loading drugs or antibiotics could be 

attached to pH-sensitive polymers grafted on silica nanoparticles and study their 

release rate. 

2.3 Experimental: 

2.3.1 Materials:  

L-lactide (Sigma Aldrich, 95%) and succinic anhydride (Acros Organics, 

99%) were used as received. 2-Hydroxyethyl methacrylate (HEMA, Sigma 

Aldrich, 99%) was purified by passing through a column of basic aluminum oxide 

(Alfa Aesar, 99%) to remove the inhibitor, methyl ether hydroquinone (MEHQ). 

Colloidal silica nanoparticles (SiO2, spherical 14 ± 4 nm, 30 wt% in MEK) were 

purchased from Nissan Chemical Co. The RAFT agent 4-cyanopentanoic acid 

dithiobenzoate (CPDB) was purchased from Boron Molecular and used as 

received. 3-Aminopropyldimethylethoxysilane and dimethylmethoxy-n-

octylsilane were purchased from Gelest, Inc. (95%) and used as received. 

Azobisisobutyronitrile (AIBN) was used after purification by recrystallization in 

methanol. The catalysts, tin (II) 2-ethylhexanoate and 4-dimethylaminopyridine 

(DMAP), were purchased from Alfa Aesar and Chem-Impex Int'l Inc respectively. 

All other reagents and solvents were used as received unless otherwise noted. 
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2.3.2 Instrumentation: 

1H-NMR spectra were recorded with a Bruker Avance III-HD spectrometer 

(300 MHz) using CDCl3 as a solvent and measured with tetramethylsilane (TMS) 

as an internal reference. Gel permeation chromatography (GPC) was used to 

measure the molecular weights (Mn) and dispersity index (Đ) using a Varian 290-

LC pump, a Varian 390-LC refractive index detector, and three Styragel columns 

(HR1, HR3 and HR4, molecular weight range of 100-5000, 500-30000, and 5000-

500000) calibrated with polystyrene and poly(methylmethacrylate) standards 

obtained from Polymer Laboratories. Tetrahydrofuran (THF) was used as an 

eluent at 30ᵒC and a flow rate of 1.0 mL/min. Thermogravimetric analysis (TA 

Instruments Q5000) was used to obtain TGA characterization after preheating to 

100°C for 10 min to remove residual solvents for all the samples. After cooling to 

50°C, the samples were reheated to 800°C with a heating rate of 10°C/min under 

nitrogen flow. FT-IR spectra were recorded using a BioRad Excalibur FTS 3000. 

UV-vis absorption spectra were taken on a Shimadzu UV-2450 spectrophotometer. 

2.3.2 Synthesis of “Controlled Release” Monomers: 

Two methacrylate monomers were synthesized via the ring-opening 

reaction of the corresponding cyclic lactone compound, L-lactide, or succinic 

anhydride with hydroxyethyl methacrylate (HEMA) catalyzed by stannous 2-

ethylhexanoate and DMAP, respectively.  
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2.3.2.1 Synthesis of 2-((2-(Propionyloxy) Propanoyl)oxy)ethyl 

Methacrylate (HEMA-LA)    (Scheme 2.1):               

L-lactide (2.99 g, 20.7 mmol)  was placed in round flask and dried overnight 

under vacuum at rt. HEMA (2.8 mL, 23 mmol) and tin(II) 2-ethylhexanoate (52 μL, 

0.16 mmol) were then added to the flask, and the reaction was deoxygenated by a 

repeated vacuum nitrogen cycle. Subsequently, the mixture was heated to 115°C 

under vacuum for 3 hours with stirring. The crude product was dissolved in 

anhydrous chloroform and washed with 1 M HCl. Then, the organic phase was 

washed with deionized water, isolated, and residual chloroform removed using a 

rotary evaporator operating under vacuum. Yields varied from 70-75% based on 

the added amount of L-lactide. 1H-NMR (300 MHz, CDCl3): δ=1.38–1.63 ppm (6H, 

CH–CH3), δ= 1.94 ppm (3H, CH2=CCH3), δ= 2.79 ppm (1H, OH), δ= 4.26–4.39 ppm 

(4H, OCH2–CH2), δ= 4.39–4.51 ppm (1H, CH-(OH)CH3), δ= 5.08–5.29 ppm (1H, 

C(=O)–CH), δ= 5.58 ppm (1H, CH2=C), δ= 6.10 ppm (1H, CH2=C) (Figure 2.1). 

HRMS (EI) (m/z) calcd for C12H18O7: 274.1149; found: 274.1167.12,13 
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2.3.2.2 Synthesis of 4-(2-(Methacryloyloxy)ethoxy)-4-oxobutanoic Acid (HEMA-

SA) (Scheme 2.2):               

2-Hydroxyethyl methacrylate (HEMA; 6.1 mL, 50 mmol) was dissolved in 

anhydrous THF in a Schlenk flask (250 mL) at room temperature under nitrogen. 

Scheme 2.1: Synthesis of HEMA-LA monomer. 

Figure 2.1: 1H-NMR (300 MHz, CDCl3) spectrum of HEMA-LA monomer. 
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Succinic anhydride (6 g, 0.06 mol), 12 mL of pyridine, and 4-

dimethylaminopyridine (0.49 g, 4.0 mmol) were added to the flask. Then, the 

reaction mixture was stirred for 24 h at 40ᵒC under nitrogen. The reaction was 

cooled to the room temperature, and the solvent was evaporated under vacuum. 

The residue was dissolved in DCM, followed by washing three times with 0.1 M 

HCl solution. The organic phase was dried over anhydrous magnesium sulfate 

overnight and filtered. After evaporation of the solvent, the remaining HEMA-

COOH product was dried under vacuum at room temperature. A viscous liquid 

was obtained (yield 60%, 6.9 g). 1H NMR (300 MHz, CDCl3): δ = 6.13 (S, 1H, 

HCH=C(CH3)-), 5.54 (S, 1H, HCH=C(CH3)-), 4.36 (t, 4H, -OOC(CH2)2 OCO-), 2.68 

(t, 4H, HOOC(CH2)2COO-), 1.85 (S, 3H, H3CC(COO-)CH2) (Figure 2.2). HRMS (EI) 

(m/z) calcd for C10H14O6: 230.0842; found: 230.0873.14,15 

 

 

Scheme 2.2: Synthesis of HEMA-SA monomer. 
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2.3.3 Activation of 4-cyano-4-(thiobenzoylthio)pentanoic acid (CPDB): 

Dimethylamino pyridine (DMAP) (122 mg, 1.0 mmol) was added slowly to 

the solution of CPDB (2.80 g, 10.0 mmol), 2-mercaptothiazoline (1.2 g, 10.0 mmol), 

and dicyclohexylcarbodiimide (DCC) (2.5 g, 12.0 mmol) in 40 ml of 

dichloromethane. Then, the solution was stirred (6 h) at room temperature. The 

solids were removed from the solution by filtration. The solution was evaporated 

to remove the solvent, and silica gel column chromatography (5:4 hexane: ethyl 

acetate) was used to obtain activated CPDB as a red oil (80% yield, 4 g). 1H-NMR 

(300 MHz, CDCl3): δ (ppm) 7.90 (d, 2H), 7.56 (t, 1H), 7.38 (t, 2H), 4.58 (t, 2H, 

NCH2CH2S), 3.60-3.66 (m, 2H, (CN)C(CH3)-CH2CH2CON), 3.31 (t, 2H, 

Figure 2.2: 1H-NMR (300 MHz, CDCl3) spectrum of HEMA-SA monomer. 
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NCH2CH2S), 2.50-2.56 (m, 2H, (CN)C(CH3)CH2CH2CON), 1.95 (s, 3H, 

(CH3)C(CN)S).16 HRMS (EI) (m/z) calcd for C16H16N2OS4: 380.0193; found: 380.0203.  

2.3.4 Attachment of activated CPDB onto silica nanoparticles (SiO2@CPDB): 

Silica nanoparticles (10.0 g, 30 wt % in MEK) were added to a round bottom 

flask with 30 mL THF and 350 µL 3-aminopropyldimethylethoxy silane was 

added. After purging with N2 for more than 30 min, the solution was refluxed in 

a 75°C overnight. Then, the solution was cooled to r.t and precipitated into a large 

amount of hexanes. The solution was centrifuged at 3,500 rpm for 8 minutes and 

the solvent decanted. The precipitation-dissolution process was then repeated for 

another two times. The amine-functionalized nanoparticles were dispersed in 30 

mL of dry THF, which was added dropwise into a THF solution of 1.47 mL 

activated CPDB (0.19 M) at r.t. and stirred for 6 hours. The solution was 

precipitated into a large amount of hexane (approx. 500 ml), and the nanoparticles 

were recollected by centrifugation at 3500 rpm for 8 min. This precipitation-

dissolution process was repeated until the supernatant solution was colorless. The 

nanoparticles were dried under vacuum at r.t. The grafting density of CPDB 

anchored silica nanoparticles (0.3 ch/nm2) was determined using a calibration 

curve of made from standard solutions of free CPDB via UV-vis a spectrometer.17 
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2.3.5 RAFT Polymerization of “Controlled Release” Monomers From CPDB 

Functionalized Silica Nanoparticles: 

CPDB-anchored silica nanoparticles (1g, 56.18 µmol/g) were dispersed in 

THF (8 ml). HEMA-LA (7.7 g, 28.07 mmol) or HEMA-SA (6.5 g, 28.23 mmol), AIBN 

(0.562 ml of 10 mM THF solution) were added to the Schlenk tube, where the ratio 

between species of [CPDB]:[monomer]:[AIBN] was 1:500:0.1. The Schlenk tube 

was degassed by three freeze−pump−thaw cycles, filled with nitrogen, and then 

the Schlenk tube was placed in an oil bath at 65°C for the desired time. The Schlenk 

tube was quenched in ice water to stop the polymerization. The polymer-grafted 

silica nanoparticles were precipitated by pouring into 500 ml of hexanes and 

centrifuged at 3500 rpm for 8 min. The nanoparticles were dispersed back into 

THF. Polymer chains were cleaved from the nanoparticles by dissolving 50 mg of 

polymer-grafted nanoparticles in 3 ml of THF and treating with 0.2 ml aqueous 

HF (49%). The solution was stirred overnight, and the cleaved polymer chains 

were analyzed by GPC.18  

2.3.6 Cleavage of CPDB Agents From The Polymeric Chain Ends Of The Silica 

Nanoparticles: 

Polymer-grafted nanoparticles (1 g, SiO2-g-HEMA-LA, SiO2-g-HEMA-SA) 

were dispersed in 40 ml THF, and solid AIBN (0.12 g) was added at the ratio of 

([CTA]:[AIBN]= 1:20). The solution was heated under nitrogen at 65°C for 1 h. The 



 

28 

solution was poured into 500 ml of hexanes and centrifuged at 3500 rpm for 8 min 

to recover the nanoparticles.17 

2.3.7 Preparation Of NBD-Labelled Amino Acid: 

A solution of 6-aminohexanoic acid (1.2 eq, 3 mmol) and NaHCO3 (3 eq, 7.5 

mmol) in MeOH (30 mL) were stirred at room temperature for 30 min and refluxed 

at 65°C for 15 min. Then, 4-chloro-7-nitrobenzofurazan (NBD-Cl, 1 eq, 2.5 mmol) 

was dissolved in MeOH (5 mL) and added dropwise to the solution. After two 

hours, the reaction was cooled to room temperature and acidified to 

approximately pH=2 with 1M HCl. Subsequently, the mixture was extracted three 

times with EtOAc (20 mL), washed with brine, dried with MgSO4, filtered, and the 

solvent removed using a rotary evaporator. The resultant NBD-labelled amino 

acid was then recrystallized from aqueous MeOH.19 The prodect was yield as 

bright orange crystals (yield: 80%, 0.59 g). Tm= 156-158°C, UV (MeOH) λmax: 335, 

458. FT-IR νmax/cm-1 1700 (strong, sharp C=O). MS (EI+) m/z: [M]+ 294.  

2.3.8 Preparation Of NBD-Labelled Hexamethylenediamine: 

Hexamethylenediamine-NBD dye was synthesized in two steps, first 

preparing N-Boc-hexamethylenediamine-NBD that was converted to the 

hexamethylenediamine-NBD. A solution of 4-chloro-7-nitrobenzofurazan (NBD-

Cl) (1 eq, 2.5 mmol) and mono-Boc-hexamethylenediamine (1.1 eq, 2.76 mmol) was 

prepared in ethanol (30 mL). Pyridine (catalytic, 260 μL) was added to the stirred 
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solution and allowed to stir for 30 min. The mixture was concentrated and purified 

by column chromatography (toluene: ethyl acetate 7:3) to obtain the product as a 

red foam. Next, the Boc-protected dye was dissolved in a mixture of solvent (1:1 

of trifluoroacetic acid (TFA): dichloromethane (DCM)) and then stirred for one 

hour. The solution was concentrated and resuspended in acetonitrile. The final 

product was obtained as golden crystals after the solution was precipitated into 

cold diethyl ether (yield 81%, 0.6 g).20 UV (MeOH) λmax: 336, 460. FT-IR νmax/cm-1 

3380 (medium, sharp N-H). HRMS (EI) (m/z) calcd for C12H17N5O3: 279.1382; 

found: 279.3014.  

2.3.9 Aminohexanoic Acid-NBD Conjugate On HEMA-LA-g-SiO2 And 

Hexamethylenediamine-NBD Conjugate On HEMA-SA-g-SiO2: 

Polymer-g-SiO2 (1 equiv.) (HEMA-LA-g-SiO2 or HEMA-SA-g-SiO2), dye-

labeled NBD (1 equiv.) (aminohexanoic acid-NBD or hexamethylenediamine-

NBD, respectively), and dicyclohexylcarbodiimide (DCC) (1.2 equiv.) were 

dissolved in 30 mL of THF. (Dimethylamino) pyridine (DMAP) (0.1 equiv.) was 

added slowly to the solution. Subsequently, the solution was stirred at r.t. for 6 h. 

The solution was filtered, and the solvent was concentrated using a rotary 

evaporator. The solution was then precipitated by pouring into hexane (400 ml) 

and centrifuged at 3500 rpm for 8 min to recover the nanoparticles. The 
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precipitation-dissolution process was repeated twice until the supernatant layer 

after centrifugation was colorless to ensure the removal of free dyes. 

2.3.10 In Vitro Quantification Of Dye: 

The calibration curves for the dyes were achieved by preparing a standard 

solution of dye using 27 mg of dye dissolved in 50 ml THF. Then, various 

concentrations were prepared (13.6, 6.8, 4.3, 1.7, 0.8, 0.4) in 50 ml THF to obtain 

serial dilutions and assayed at 457- 460 nm using UV spectrophotometry. The data 

were plotted to obtain a straight lines for the quantification of the dyes (Figure 2.3 

a,b).21 

 

Figure 2.3: Images of serial dilutions, UV spectrum of various concentrations, and the 

resultant calibration curves of (a) NBD-COOH, (b) NBD-NH2 dyes. 
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2.3.11 Dye Release Rate Studies: 

Dye release kinetics were determined using pH = 7.4 phosphate-buffered 

saline solution (PBS) at pH = 7.4 at 25°C and 37°C for the dye attached polymer 

grafted nanoparticles. HEMA-SA-dye-g-SiO2 or HEMA-LA-dye-g-SiO2 (200 mg) 

were immersed in 250 ml of PBS solution at pH 7.4 using a dialysis membrane bag 

(MWCO 3500, Fisherbrand), which was tied at the ends after filling with 5 ml of 

the PBS buffer solution. The systems were incubated at different temperatures, 

25°C and 37°C, and provided with gentle shaking at 40 rpm over the test periods. 

PBS solution (5 ml) was sampled out and assayed for released dye at 480 nm using 

a (Shimadzu UV-2450) spectrophotometer, at predetermined time points. The UV-

vis was measured for these withdrawn samples at 25°C and 37°C, at determined 

intervals, and replaced with fresh buffer solution (PBS) following every sampling 

point to keep the same concentration during the full release period. The study was 

continued until the released amount reached an equilibrium.22  

2.4 Results And Discussion: 

2.4.1 Polymerization Of The "Controlled Release" (HEMA-LA, HEMA-SA) 

Monomers Mediated By Free CPDB: 

To praper for grafting HEMA-LA and HEMA-SA on the surface of silica 

nanoparticles via RAFT polymerization, the polymerization behavior of both 

monomers mediated by free CPDB RAFT agent was investigated. Generally, the 
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initial and significant aspect when using the RAFT technique is choosing a suitable 

RAFT agent which is compatible with the monomer which will provide successful 

control.23 In this work, we investigated two types of RAFT agents. A 

trithiocarbonate derivative 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] 

pentanoic acid (CDSS) and a dithiobenzoate derivative 4-cyanopentanoic acid 

dithiobenzoate (CPDB) were tested at 65ᵒC. Both monomers could be polymerized 

with the trithiocarbonate derivative CDSS. However, the polymerizations resulted 

in low monomer conversions and produced polymers with broad polydispersity. 

However, we found that the dithiobenzoate derivative CPDB RAFT agent 

provided a controlled polymerization, where was compatible with both 

monomers HEMA-LA and HEMA-SA. 

The synthetic procedure for the RAFT polymerization of both HEMA-LA 

and HEMA-SA monomers via free CPDB in solution is shown in Scheme 2.3. The 

feed ratio [CTA]/[Monomer]/[Initiator] of polymerization was 500: 1: 0.1 at 65ᵒC 

under inert gas conditions. Figure 2.4 shows the results of the kinetic study for the 

free RAFT polymerization and surface-initiated RAFT polymerization of both 

monomers HEMA-LA and HEMA-SA. By observing the consumption ln(Mo/Mt) 

of each monomer (HEMA-LA, HEMA-SA; individually), which increased 

concurrently with the time and the conversion of the polymerizations, we found a  
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good linear relationship. Increasing the molecular weight of both monomers 

gradually versus increasing the monomer conversion will indicate a constant 

radical concentration throughout the reaction and the living character of the 

polymerizations.24 Moreover, the SI-RAFT polymerization of both monomers 

(HEMA-LA, HEMA-SA) was faster than the free RAFT agent-mediated  

Scheme 2.3: Polymerization of (a) HEMA-LA and (b) HEMA-SA mediated by 

free CPDB RAFT agent. 
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Figure 2.4 (a) Pseudo first-order kinetic plots of HEMA-LA with free CPDB 

(black solid circle); CPDB grafted nanoparticles with 0.1 ch/nm2 density (black 

solid square) (b) dependence of molecular weight of HEMA-LA (red squares 

and circles), (solid black line, theoretical Mn), and the dispersity (blue squares 

and circles) on the conversion for the RAFT polymerization of HEMA-LA with 

ratio between species [CPDB]/[HEMA-LA]/[AIBN]=500:1:0.1 with free CPDB 

(squares); CPDB grafted nanoparticles with 0.1 ch/nm2 density (circles) (c) 

pseudo first-order kinetic plots of HEMA-SA with free CPDB (black solid circle); 

CPDB grafted nanoparticles with 0.1 ch/nm2 density (black solid square) (d) 

dependence of molecular weight of HEMA-SA (red squares and circles), (solid 

black line, theoretical Mn), and the dispersity (blue squares and circles) on the 

conversion for the RAFT polymerization of HEMA-SA with ratio between 

species [CPDB]/[HEMA-SA]/[AIBN]=500:1:0.1 with free CPDB (squares); CPDB 

grafted nanoparticles with 0.1 ch/nm2 density (circles). 
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polymerization. The molecular weight distribution (Đ) of HEMA-LA was 

generally narrow no more than (1.30) compared with the molecular weight 

distribution (Đ) of the monomer HEMA-SA which is (1.31). At this time, the 

reasons for these trends are unclear, although this study adds more data to 

understand these relationships as new monomers are evaluated. 

2.4.2 RAFT Polymerization of HEMA-LA and HEMA-SA from CPDB-

Functionalized On Silica Nanoparticles:  

Both HEMA-LA and HEMA-SA polymer-grafted nanoparticles via RAFT 

polymerization were prepared using the grafting-from approach using 

nanoparticles having CPDB RAFT agents covalently attached to the surface of the 

nanoparticles. The surface of the nanoparticles was modified by attachment of 3-

aminopropyl dimethylethoxysilane onto the surface. CPDB chain transfer agents 

were anchored onto the surface of silica nanoparticles by reacting a 

mercaptothiazoline activated-CPDB (4-cyano-4-(phenylcarbonylthioylthio) 

pentanoate) with amine-functionalized silica nanoparticles (Scheme 2.4).25 

Controlling the ratio of silica nanoparticles to 3-

aminopropyldimethylethoxysilane provides good control to prepare the CPDB-

grafted silica nanoparticles (CPDB-g-SiO2) with various graft densities from 

0.01−0.7 chains/nm2.26 The grafting density of the RAFT agents attached to the 

surface of silica nanoparticles was confirmed using UV-Vis spectrometry.  

(
a
) 

(
b
) 

(
c
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Comparing the UV absorption at 302.5 nm of CPDB agents anchored onto 

silica nanoparticles (SiO2-g-CPDB) to a standard absorption curve for known 

amounts of free CPDB was performed to determine the amount of the RAFT 

agents attached to the surface of nanoparticles before polymerization.17 RAFT 

polymerization of "controlled release" monomers HEMA-LA and HEMA-SA was 

studied in solution and on the surface of silica nanoparticles. Both polymers, 

Poly(HEMA-LA) brush anchored silica nanoparticles (HEMA-LA-g-SiO2), and 

Poly(HEMA-SA) brush anchored silica nanoparticles (HEMA-SA-g-SiO2), were 

Scheme 2.4: Synthetic scheme for the functionalization of SiO2 nanoparticles 

with CPDB RAFT agents. 
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prepared via surface-initiated polymerization of HEMA-LA and HEMA-SA, 

respectively, from the surface of CPDB-g-SiO2. In all RAFT polymerizations, we 

used azobisisobutyronitrile (AIBN) as the initiator for the polymerization at a 

molar ratio of [AIBN]/[CPDB] =1/10. An initiator to RAFT ratio of 0.1 was 

maintained in all polymerizations. We observed that the graft polymerization of 

HEMA-LA and HEMA-SA was affected by the ratio of [initiator]/[CTA]. When a 

polymerization was conducted at a higher ratio of an initiator, e.g., 0.2 or 0.3, 

partial and complete gelation of the polymerization solution, respectively, was 

observed after 12 h when we used a molar ratio of ([Monomer]:[CPDB] =1000:1). 

All polymerization reactions were carried out under similar conditions using 

AIBN as the initiator at 65ᵒC and with the ratio of ([CTA]:[monomer]:[initiator]= 

1:500:0.1). The molecular weight (Mn) and the dispersity (Đ) of HEMA-LA and 

HEMA-SA polymeric chains were evaluated using the gel permeation 

chromatography (GPC) analysis (Figure 2.5). HEMA-LA and HEMA-SA chains 

were cleaved from the surface of silica nanoparticles (50 mg) by stirring overnight 

in 4 mL of THF and 0.2 mL hydrofluoric acid.27 The GPC traces of both (HEMA-

LA, HEMA-SA) are shown from different polymerization times. All the curves are 

unimodal and continuously shifted to lower elution times with increasing 

polymerization time, which indicates an increase in the molecular weights. Table 

1 summarizes some of the RAFT polymerizations that used to synthesize various  
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Figure 2.5: GPC traces of (a) SiO2@P(HEMA-LA) and (b) SiO2@P(HEMA-SA) 

in THF using ratio 500:1:0.1 of [monomer]:[CTA]:[initiator] at different times. 

Table 2.1: Various molecular weights and chain densities of SiO2@P(HEMA-

LA) and SiO2@P(HEMA-SA) using RAFT polymerization. 
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chain densities and molecular weights of polymer-grafted silica nanoparticles. 

Both HEMA-LA and HEMA-SA grafted silica nanoparticles were prepared at a 

constant RAFT/monomer ratio, (1:500) with targeted molecular weights less than 

50 (kDa). Higher ratios and longer polymerization times will often resulted in 

gelation of the polymerization solutions.  

2.4.3 Dye Labelling On Polymer-g-Nanoparticles (HEMA-SA-g-SiO2, HEMA-

LA-g-SiO2):  

Two different dyes (aminohexanoic acid-NBD, hexamethylenediamine-

NBD) were synthesized (Scheme 2.5) and conjugated to the polymer grafted 

nanoparticles (HEMA-LA-g-SiO2, HEMA-SA-g-SiO2) (Scheme 2.6). After cleavage 

Scheme 2.5: Synthesis of the dyes, 6-aminohexanoic acid (NBD-COOH), and 

NBD-hexamethylenediamine (NBD-NH2). 
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of the RAFT   agent from the polymeric chain ends of the silica nanoparticles, both 

dyes were conjugated to the polymers via the Steglich esterification reaction using 

DCC/DMAP as the reagent and catalyst.28 The synthetic schemes show that two 

different conjugation chemistries were used to link the dyes to the polymer on the 

surface of nanoparticles. The conjugation of nanoparticles (SiO2-g-HEMA-LA, 

SiO2-g-HEMA-SA) with dyes (aminohexanoic acid-NBD, hexyldiamine-NBD) was 

made through the ester and amide bonds, respectively, and it was confirmed using 

UV-vis and FT-IR spectroscopy (Figure 2.6). The UV-vis analysis of the NBD-dye 

attached to polymer grafted nanoparticles was showed an absorption at 460 nm  

Scheme 2.6: Synthesis of dye-labelled SiO2@HEMA-LA, and SiO2@HEMA-SA 

grafted-nanoparticles. 
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for both dyes that indicated the successful attachment. Moreover, the FT-IR 

analysis for SiO2-g-P(HEMA-LA)-dye showed the ester group peak as a medium, 

sharp C=O stretching vibration peak at ∼1731 cm−1. Additionally, the amide group 

in SiO2-g-P(HEMA-SA)-dye appeared as a strong, sharp C=O stretching vibration 

peak at ∼1625 cm−1. 

The grafting density of the dye-attached polymer grafted nanoparticles 

could be estimated by comparing the graft density of the nanoparticles prior to 

and after attaching the dyes. The free dye showed an absorption at 460 nm. The 

amount of NBD-dyes on the polymer grafted silica nanoparticles was determined 

quantitatively by comparing the absorption at 480 nm for the dyes attached to 

silica nanoparticles to a standard calibration curve made from the free NBD-dyes. 

The amount of NBD-dye attached to the surface of the nanoparticles, 

Figure 2.6: UV-vis, FT-IR spectrums of SiO2-g-P(HEMA-LA)-dye (red curve), 

and SiO2-g-P(HEMA-SA)-dye (black curve). 
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SiO2@PHEMA-LA, SiO2@PHEMA-SA (0.1 ch/nm2 as determined by the RAFT 

agent) was calculated to be (22, 19.44 µmol/g, respectively) as determined by UV-

vis spectroscopy. The graft densities (0.093, 0.082 ch/nm2) of dye-attached polymer 

grafted nanoparticles (SiO2@PHEMA-LA-NBD-COOH, SiO2@PHEMA-SA-NBD-

NH2, respectively) were comparable to that of polymer grafted nanoparticles 

(SiO2@PHEMA-LA, SiO2@PHEMA-SA) (0.1 ch/nm2) as determined by the RAFT 

agent measurement. The small differences may be due to the incomplete 

conversion of the amine and acid groups into dye-labeled groups. 

Figure 2.7 shows the TGA analysis of the SiO2-g-HEMA-LA-dye and SiO2-

g-HEMA-SA-dye nanoparticles, where the weight gain was observed after the 

polymerization. Compared with the bare silica nanoparticles, the polymer-grafted 

nanoparticles showed a higher weight loss of approximately (82.01%, 81.69%) for 

HEMA-LA, and HEMA-SA, respectively. When measured over the temperature 

range of 50–800ᵒC, we observed increasing weight loss related to the increase in 

grafting organic materials on the surface of nanoparticles, such as 

unfunctionalized nanoparticles, amino-functionalized silica nanoparticles, CPDB-

functionalized silica nanoparticles, polymer-grafted silica nanoparticles(PHEMA-

LA, PHEMA-SA). That was clear by attaching the NBD-dyes to the polymer-

grafted silica nanoparticles. Where the TGA traces were showed a higher weight
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loss of approximately (97.38%, 94.71%) for dye-labeled polymer-grafted silica 

nanoparticles (PHEMA-LA-dye, PHEMA-SA-dye, respectively).    

2.4.4 Releasing Of Loaded Dyes From Nanoparticles (HEMA-LA-dye-g-SiO2, 

HEMA-SA-dye-g-SiO2):  

To evaluate the controlled release properties of both polymer grafted silica 

nanoparticles that could be used for applications in drug delivery, the cumulative 

release rates of the dye-attached grafted nanoparticles were determined in-vitro.29 

Dye release from both polymer grafted nanoparticles was studied in phosphate-

buffered saline (PBS) media with a pH value of 7.4 at two different temperatures, 

25°C and 37°C, to evaluate the thermo-responsive nature of the polymers. The dye-

attached grafted nanoparticles(HEMA-LA-dye-g-SiO2, HEMA-SA-dye-g-SiO2) 

were dispersed in 10 mL of dissolution media and placed in dialysis bags 

Figure 2.7: TGA trace of (a) SiO2-g-HEMA-LA-dye and (b) SiO2-g-HEMA-SA-

dye nanoparticles. 
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(molecular weight cutoff of 3500; Thermo Fisher Scientific, USA). The dissolution 

media used in this study were 200 mL phosphate-buffered saline (PBS), pH 7.4, 

under continuous stirring (100 rpm rotation speed) at 25ºC, 37ºC. The dye released 

into the PBS buffer medium from HEMA-LA-dye-g-SiO2 and HEMA-SA-dye-g-

SiO2 was collected, and the medium was replaced by fresh PBS at pre-determined 

time points. The dye released into the PBS buffer medium from HEMA-LA-dye-g-

SiO2 and HEMA-SA-dye-g-SiO2 was pursued and measured by UV/Vis 

spectroscopy over 58 days until the amount of dye released reached an 

equilibrium. The amount of released dye of both HEMA-LA-dye-g-SiO2 and 

HEMA-SA-dye-g-SiO2 was determined by observing the absorbance of the 

withdrawn samples at 25°C and 37°C, at predetermined intervals at 480 nm 

wavelength (Figures 2.8, 2.9), respectively. As expected, the amount of released 

dye of both polymers at 37°C was higher than at 25°C in the same period of time. 

As well as the amount of released dye of HEMA-SA-dye-g-SiO2 was higher than 

compared with the same amount (200 mg) of HEMA-LA-dye-g-SiO2 (Figure 2.10). 
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The cumulative release rate was calculated,30–32; it increases gradually 

within the time, and this trend will continue until reaching the equilibrium point 

Figure 2.8: UV-vis spectra of SiO2@P(HEMA-LA)-NBD-NH2 at (a) 25ᵒC and (b) 

37ᵒC for 58 days. 

Figure 2.9: UV-vis spectra of SiO2@P(HEMA-SA)-NBD-NH2 at (a) 25ᵒC and (b) 

37ᵒC for 58 days. 
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of dye release at pH value 7.4. HEMA-LA-dye-g-SiO2 showed the maximal release 

of grafted dye (69.23%) at 25ᵒC during the 1415 h (58 days) study period, compared 

to the HEMA-SA-dye-g-SiO2 that have a maximal release (51.28%) the grafted dye 

at the same period of time and temperature. In other words, HEMA-LA-dye-g-

SiO2, and HEMA-SA-dye-g-SiO2 provided a maximal amount of grafted NBD-dye 

(15.23, 9.97 µmol/g, respectively) at 25ᵒC during the study period. On the other 

hands, the cumulative release rate of HEMA-LA-dye-g-SiO2 showed the maximal 

release (82.62%) at a higher temperature (37ᵒC) during the same period of study 

(58 days), compared with the HEMA-SA-dye-g-SiO2 that showed a maximal 

release (65.17%) of the dye at the same period and temperature (Figure 2.10 a, b). 

Where the maximal amount of grafted NBD-dye that was released from HEMA-

LA-dye-g-SiO2, and HEMA-SA-dye-g-SiO2 was 18.18, 12.67 µmol/g, respectively 

at 27ᵒC during the 1415 h (58 days) study period.  

 
Figure 2.10: Cumulative release rate of (a) SiO2@P(HEMA-LA-dye) and (b) 

SiO2@P(HEMA-SA-dye), at 25ᵒC and 37ᵒC for 58 days. 
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Furthermore, both HEMA-LA-dye-g-SiO2 and HEMA-SA-dye-g-SiO2 were 

showed a high cumulative release rate of grafted dye at (37ᵒC) compared with low 

temperature (25ᵒC). By observing the cumulative release rate of the polymers, 

regardless of HEMA-LA-dye-g-SiO2 or HEMA-SA-dye-g-SiO2, there was an initial 

burst dye released within the first 24 hours at both 25°C and 37°C. The cumulative 

dye release from HEMA-LA-dye-g-SiO2 at the first 24th hours was 5.87 µmol/g 

(26.68%) at 25 °C and 7.6 µmol/g (34.6%) at 37 °C. Beyond the burst period, after 

24th hours, the cumulative dye release was gradually increased to reach a value of 

15.23 µmol/g (69.23%) at 25°C in 1415th hour (58 days) and 18.18 µmol/g (82.62%) 

at 37°C in 1415th hour (58 days). On the other hand, the amount of released dye of 

HEMA-SA-dye-g-SiO2 was lower in the same period of time. Within the 24th hour 

was 3.23 µmol/g (16.6%) at 25°C and 2.52 µmol/g (12.96%) at 37°C. After 24th hours 

the released dye was gradual to reach a value of 9.97 µmol/g (51.28%) at 25°C in 

1415th hour (58 days) and 12.67 µmol/g (65.17%) at 37°C in 1415th hour (58 days). 

However, since the driving force of dye diffusion depends on the concentration 

gradient.33 Therefore, the high concentration gradient of the dye between the 

surface of the nanoparticles and the PBS medium during the early stage of contact 

will lead to a higher initial burst and fast dye release rate (Figure 2.11). 
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One of the most attractive features of these polymers grafted on the 

nanoparticles, containing a hydrolytically sensitive ester linkage as drug carriers, 

is a thermos-responsive function to temperature changes. Overview, the 

cumulative release patterns observed for both two polymers grafted on the surface 

of nanoparticles showed a slow dye release during the first 20 days that could be 

assigned to release dye molecules that are adsorbed onto the surface of 

nanoparticles. Subsequently, the controlled release of released dye has occurred 

over a period of time. The release rates and extents of both polymers are different, 

although both exhibited very similar release profiles. The cumulative release rates 

Figure 2.11: Cumulative release rate of SiO2@P(HEMA-LA-dye), and 

SiO2@P(HEMA-SA-dye), at 25ᵒC and 37ᵒC for 58 days. 
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at 37°C at the end of the study period 1415 h (58 days) were higher than those at 

25°C for the polymers regardless of HEMA-LA-dye-g-SiO2 or HEMA-SA-dye-g-

SiO2, despite the cumulative release profiles at 37°C are the same as those at 25°C.  

2.5 Conclusion: 

In this research, the dye-loaded biodegradable PH-responsive polymers 

grafted on silica nanoparticles (SiO2@PHEMA-LA-dye, SiO2@PHEMA-SA-dye) 

were designed for usage in biomedical applications. These PH-responsive 

polymers have contained a hydrolytically sensitive ester linkage that can use as a 

drug delivery carrier. The polymers 2-((2-(propionyloxy) propanoyl)oxy)ethyl 

methacrylate (HEMA-LA) and 4-(2-(methacryloyloxy)ethoxy)-4-oxobutanoic acid 

(HEMA-SA) were successfully synthesized. Then, both were polymerized on the 

surface of silica nanoparticles using the RAFT polymerization and 4-

cyanopentanoic acid dithiobenzoate (CPDB) as a chain transfer agent (CTA). 

However, two kinds of dyes were prepared and attached to the polymer grafted 

nanoparticles to investigate the controlled release rate of the polymer via usage in 

drug delivery applications. The synthesized dyes (NBD-aminohexanoic acid and 

NBD-hexylenediamine) were used as modal compounds to study the releasing 

rate behavior from the surface of silica nanoparticles at two different temperatures 

(25ᵒC and 37ᵒC) as a result of degradation of the polymers that containing a 

hydrolytically sensitive ester linkage using phosphate buffer solution (PBS, pH = 
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7.4). To achieve highly efficient targeting in specific sites, drug ligands (e.g., 

antibiotics) could be conjugated onto the surfaces of nanoparticles. PH-sensitivity 

could be combined with other stimuli like temperature to develop nanomaterials 

that have multifunctional drug delivery. 
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CHAPTER 3 

ENGINEERING WATER-DISPERSIBLE BIMODAL POLYMER 

GRAFTED SILICA NANOPARTICLES AS ANTIBIOTIC-CARRIERS 1 

 

 

 

 

 

 

 

 

 

1Al-Ali, M.A. and Benicewicz B. C. To be submitted to Journal of Polymer Science. 
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3.1 Abstract: 

The growing global interest in bacterial resistance to conventional antibiotics 

has attracted much attention in the pharmaceutical industry. Thus, novel 

strategies to implement the efficient integration of antibiotics with nanomaterials 

are required in the drug delivery systems. Bimodal polymer chains functionalized 

on silica nanoparticles surface was designed using surface-initiated reversible 

addition−fragmentation chain transfer (RAFT) polymerization. Two populations 

of polymer chains were grafted to create water-dispersible nanoparticles that have 

the advantage of serving as antibiotic-delivery vehicles in biomedical applications. 

For the first chain population, a pH-responsive controlled release of two 

monomers (HEMA-LA) and (HEMA-SA) containing a hydrolytically sensitive 

ester linkage, were functionalized on silica nanoparticles at high graft density and 

low molecular weight to use as antibiotic-delivery carriers. A low graft density of 

the high molecular weight water-dispersible poly(methacrylic acid) (PMAA) was 

grafted as the second population. Additionally, fluorescent dyes (NBD-X) were 

conjugated to the ends of pH-sensitive polymers (HEMA-LA, HEMA-SA) via the 

Steglich esterification reaction using (DCC/DMAP) catalyst, which is helpful to 

monitor the nanoparticles in biological systems. Water-dispersible PMAA grafted 

silica nanoparticles may provide an important platform for usage in biomedical 

applications. 
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3.2 Introduction: 

Polymer grafted nanoparticles have gained much attention for a variety of 

biomedical applications.1,2 In particular, silica nanoparticles have received wide 

research attention because of their applications in drug delivery nanocomposites.3–

5 Maintaining good water-dispersibility of polymer grafted nanoparticles is still a 

challenge for biomedical applications.6 One of the important applications of the 

reversible addition−fragmentation chain transfer (RAFT) polymerization is 

functionalizing different polymers on the surface of nanoparticles,7 such as acid-

containing monomers that have a significant advantage in biomedical fields such 

as drug delivery.1 RAFT polymerization has many advantages, such as 

engineering "bimodal nanoparticles" that can be used by grafting two different 

polymeric chains, forming a nanocomposite that has new characteristics.8 One 

particular approach is using a bimodal polymer brush that contains a high graft 

density of short molecular weight homopolymer chains and the second set of 

chains, which are grafted at low graft density high molecular weight.9 This 

important approach, widely used and versatile, enables us to independently 

control the molecular weights, synthesis, and graft densities of the individual 

polymeric populations that are grafted on the surface of nanoparticles.10  

Stimuli-responsive polymers are a significant class that has been used in 

biomedical applications, such as poly(methacrylic acid) (PMAA) and other 
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polymers made from acid-containing monomers.11 RAFT polymerization is a 

useful technique that can be used to polymerize such monomers, while other CRP 

techniques (e.g., ATRP) cannot be used due to catalyst poison issues.12 A few years 

ago, several research groups reported the synthesis of PMAA on nanoparticle 

surfaces using the RAFT polymerization. For example, Feng et al.13 synthesized a 

quadruple-responsive nanocomposite that responds to temperature, pH, magnetic 

field, and NIR by incorporating iron oxide nanoparticles and gold nanorods into 

a dextran-based smart copolymer network that was prepared by sequential RAFT 

polymerization of methacrylic acid (MAA) and N -isopropyl acrylamide. Yilmaz 

et al.14 prepared a nanocomposite as a model anticancer drug via combined 

doxorubicin (DOX) with polymethacrylic acid (PMAA) grafted on the gold 

nanoparticles using the RAFT polymerization. Wang et al.15 engineered 

polymethacrylic acid (PMAA) functionalized silica nanoparticles and used them 

as a vehicle-delivery for antibiotics to bacterial cells. 

In biomedical applications, specifically, grafted polymers on nanoparticles that 

can be used as antibiotic carriers, the dispersibility of the polymer grafted 

nanoparticles in water is considered a particular challenge.6,16 Therefore, the nature 

of the polymer grafted on nanoparticles is a significant issue that affects the final 

dispersibility of nanoparticles in the water. The dispersibility and biocompatibility 

of the nanoparticles can be achieved by grafting polymers on the nanoparticle's 
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surface.17 Therefore, designing water-dispersible polymer grafted nanoparticles 

that work as an antibiotic-carriers are highly desirable in biomedical application.18 

In this work, we report on research of water-dispersible bimodal silica 

nanoparticles that consist of two different polymer populations prepared via 

RAFT polymerization. One of these two populations is a polymer of pH-sensitive 

antibiotic delivery carriers (HEMA-LA and HEMA-SA) grafted at a high graft 

density and low molecular weight of the polymer. The second chain population is 

the polymer of polymethacrylic acid (PMAA) grafted at a low graft density and 

high molecular weight, which imports water dispersibility to the nanoparticles.19 

We believe that these bimodal grafted silica nanoparticles have great potential for 

bioapplications. Biocompatibility, controllable particle size, and an extensive 

chemistry toolbox of surface functionalization are some of the important attributes 

of these nanoparticles.20 Additionally, polymer chains containing carboxylic acid 

moieties, such as poly(methacrylic acid), that are anchored on silica nanoparticles 

possess an important role in dealing with bacterial infections and as antibiotic 

delivery vehicles in the biomedical area.21,22  
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3.3 Materials and Methods: 

3.3.1 Materials: 

Colloidal silica nanoparticles (SiO2, 30 wt% in MEK) were purchased from 

Nissan Chemical. 3-Aminopropyldimethylethoxysilane and dimethylmethoxy-n-

octylsilane were purchased from Gelest, Inc (95%), and used as received. The 

reversible addition-fragmentation chain transfer (RAFT), 4-cyano-4-

(phenylcarbonothioylthio)pentanoic acid (CPDB) were purchased from Boron 

Molecular and used as received. 2,2’-Azobis(2-methylpropionitrile) (AIBN, 

Aldrich, 98%), L-lactide (Sigma Aldrich, 95%), succinic anhydride (Acros 

Organics, 99%), and methacrylic acid (MAA, Alfa Aesar, 99%)  were purchased 

and used as received. HEMA, 2-hydroxyethyl methacrylate (Sigma Aldrich, 99%) 

was purified by passing through a column of basic aluminum oxide (Alfa Aesar, 

99%) to remove the inhibitor, methyl ether hydroquinone (MEHQ). All other 

reagents and solvents were used as received unless otherwise noted. 

3.3.2 Instrumentation: 

1H-NMR (Bruker Avance III-HD 300 MHz) spectrometer instrument was used 

to acquire the proton NMR spectra using CDCl3 as a solvent and measured with 

tetramethylsilane (TMS) as an internal reference. Gel permeation chromatography 

(GPC) was used to measure the molecular weights (Mn) and dispersity index (Đ). 

The GPC was equipped with a Varian 290-LC pump, a Varian 390-LC refractive 



 

60 

index detector, and three Styragel columns (HR1, HR3 and HR4, molecular weight 

range of 100-5000, 500-30000, and 5000-500000, respectively). Tetrahydrofuran 

(THF) was used as eluent at 30ᵒC at a flow rate of 1.0 mL/min, calibrated with 

polystyrene and poly(methylmethacrylate) standards obtained from Polymer 

Laboratories. A thermogravimetric analyzer (TA) Instruments Q5000 was used to 

obtain TGA characterization. Samples were preheated to 100°C and kept at this 

temperature for 10 min to remove residual solvents for all the samples. After 

cooling to 50°C, the samples were reheated to 800°C at a heating rate of 10°C/min 

under nitrogen flow. FT-IR spectra were recorded using a BioRad Excalibur FTS 

3000. UV-vis absorption spectra were taken on a Shimadzu UV-2450 

spectrophotometer. 

3.3.3 Methods: 

3.3.3.1 Synthesis of “Controlled Release” Monomers: 

Methacrylate monomers (HEMA-LA, HEMA-SA) were synthesized via 

ring-opening reaction of the corresponding cyclic lactone compound, L-lactide, or 

succinic anhydride, respectively. The hydroxyethyl methacrylate (HEMA) was 

used as the initiator catalyzed by stannous 2-ethylhexanoate and DMAP, 

respectively.  
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3.3.3.1.1 Synthesis of 2-((2-(Propionyloxy) Propanoyl)oxy)ethyl Methacrylate 

(HEMA-LA)    (Scheme 3.1):               

L-lactide (5.98 g, 41 mmol) was dried overnight under vacuum and placed in a 

200 mL two-neck round bottom flask. Then, HEMA (5.6 mL, 46 mmol) and tin(II) 

2-ethylhexanoate (105 μL, 0.32 mmol) were added to the flask. The reaction 

mixture was deoxygenated by a repeated vacuum nitrogen cycle. The reaction was 

heated to 110°C under a sealed vacuum for 3 hours with stirring. Anhydrous 

chloroform (100 mL) was added to dissolve the crude product, which was washed 

with 1 M HCl. The organic phase of the chloroform was isolated after washing 

three times with deionized water. Finally, the residual chloroform was removed 

using a rotary evaporator operating under a vacuum, and the product was 

collected (yield: 75%, 8.55 g). 1H-NMR (300 MHz, CDCl3): δ = 1.38–1.63 ppm (6H, 

CH–CH3)2, δ = 1.94 ppm (3H, CH2=CCH3), δ = 2.79 ppm (1H, C-OH), δ = 4.26–4.39 

ppm (4H, OCH2–CH2), δ = 4.39–4.51 ppm (1H, CH-(OH)CH3), δ = 5.08–5.29 ppm 

Scheme 3.1: Synthesis of HEMA-LA monomer. 
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(q,1H), (C=O)CH(C-O), δ = 5.58 ppm (s,1H, CH2=C), δ = 6.10 ppm (s,1H, CH2=C) 

(Figure 3.1). HRMS (EI) (m/z) calcd for C12H18O7: 274.1149; found: 274.1167.23,24  

3.3.3.1.2 Synthesis of 4-(2-(Methacryloyloxy)ethoxy)-4-oxobutanoic acid 

(HEMA-SA) (Scheme 3.2):               

Anhydrous THF solution of 2-hydroxyethyl methacrylate (HEMA; 6.5 g, 50 

mmol) was placed in a Schlenk flask (250 mL) with a magnetic stirring bar at room 

temperature under nitrogen. Succinic anhydride (6 g, 60 mmol), 15 mL of pyridine, 

and 4-dimethylaminopyridine (0.49 g, 4 mmol) were added to the Schlenk flask. 

Then, the reaction mixture was stirred for 24 h at 40ᵒC under nitrogen. Thence, the 

reaction was cooled down to room temperature, and the solvent was evaporated 

under vacuum. DCM was added to dissolve the residue and washed three times 

with 0.1 M HCl solution. The organic phase of DCM was dried over anhydrous 

Figure 3.1: 1H NMR (300 MHz, CDCl3) spectrum of HEMA-LA monomer. 
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magnesium sulfate overnight. MgSO4 was filtered out, and the solvent was 

evaporated. The product (HEMA-COOH) was dried under vacuum at room 

temperature. A viscous liquid was obtained (6.4 g, yield 65%). 1H NMR (300 MHz, 

CDCl3): δ = 6.13 (S, 1H, HCH=C(CH3)-), 5.54 (S, 1H, HCH=C(CH3)-), 4.36 (t, 4H, -

OOC(CH2)2 OCO-), 2.68 (t, 4H, HOOC(CH2)2COO-), 1.85 (S, 3H, H3C-C(COO)CH2) 

(Figure 3.2). HRMS (EI) (m/z) calcd for C10H14O6: 230.0842; found: 230.0873.25,26 

 

Scheme 3.2: Synthesis of HEMA-SA monomer. 

Figure 3.2: 1H-NMR (300 MHz, CDCl3) spectrum of HEMA-SA monomer. 
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3.3.3.2 Activation of 4-cyano-4-(thiobenzoylthio)pentanoic acid (CPDB): 

4-Cyano-4-(thiobenzoylthio)pentanoic acid (CPDB) (3 g, 10.74 mmol), 2-

mercapatothiazoline (1.54 g, 12.88 mmol), and dicyclohexylcarbodiimide (DCC) 

(2.66 g, 12.88 mmol) were placed in a 250 ml round bottom flask and dissolved in 

40 ml of dichloromethane. Then, dimethylamino pyridine (DMAP) (0.13 g, 1.1 

mmol) was added slowly to the solution and stirred (6 h) at room temperature. 

The solution was filtered, and the solids were removed. The solution was 

evaporated to remove the solvent. The activated CPDB was obtained as a red oil 

(3.1 g, 76% yield), which was purified via silica gel column chromatography (5:4 

hexane: ethyl acetate).27 1H NMR (300 MHz, CDCl3): δ (ppm) 7.90 (d, 2H, aromatic 

ring), 7.56 (t, 1H, aromatic ring), 7.38 (t, 2H, aromatic ring), 4.58 (t, 2H, NCH2CH2S), 

3.60-3.66 (m, 2H, (CN)C(CH3)-CH2CH2CON), 3.31 (t, 2H, NCH2CH2S), 2.50-2.56 (m, 

2H, (CN)C(CH3)CH2CH2CON), 1.95 (s, 3H, (CH3)C(CN)S). FT-IR: 1700 cm-1 (C=O), 

1160 cm-1 (PhC=S), 1020 cm-1(NC=S). HRMS (EI) (m/z) calcd for C16H16N2OS4: 

380.0193; found: 380.0203. 

3.3.3.3 Attachment of Activated CPDB onto Silica Nanoparticles (SiO2@CPDB): 

3-Aminopropyldimethylethoxy silane (500 µL) was added to the 35 ml THF 

solution of 10.0 g silica nanoparticles. The solution was refluxed at 75°C overnight, 

after purging with N2 more than 30 min. Then, the solution was cooled to the room 

temperature and precipitated into a large amount of hexanes. The nanoparticles 
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were recovered by centrifugation at 3,500 rpm for 8 minutes, and the solvent was 

decanted. Then, the precipitation-dissolution process was repeated for another 

two times and dispersed in 30 mL of dry THF. Next, the THF solution of the amine-

functionalized nanoparticles was added dropwise into a THF solution of the 

activated CPDB at room temperature. Subsequently, the solution was stirred for 6 

hours at r.t. Then, the solution was poured into (500 ml) of hexane, and the 

nanoparticles were collected using the centrifugation at 4000 rpm for 7 min. This 

precipitation-dissolution process was repeated until the supernatant solution was 

colorless. After that, the CPDB anchored nanoparticles were dried using the 

vacuum at r.t for 24 h. The grafting density (0.35 ch/nm2) of CPDB anchored silica 

nanoparticles was determined using the calibration curve of the standard 

solutions of free CPDB via UV-vis spectrometry.9  

3.3.3.4 RAFT Polymerization of “Controlled Release” Monomers from CPDB 

Functionalized Silica Nanoparticles: 

A THF solution (10 ml) of monomer (HEMA-LA, or HEMA-SA), CPDB-

anchored silica nanoparticles with desired graft density, AIBN (10 mM) was 

prepared in a dried Schlenk tube. The molar ratio of [CPDB]:[monomer]:[AIBN] 

was 1:500:0.1. The solution was degassed via three cycles of freeze−pump−thaw, 

then filled with nitrogen. The Schlenk tube was placed in an oil bath at 65°C for 

the desired time. Later, the polymerization was stopped by quenching the Schlenk 
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tube in ice water. The polymer-grafted silica nanoparticles were precipitated by 

pouring into 400 ml of hexanes and centrifuged at 4000 rpm for 7 min. The 

nanoparticles were dispersed back into 40 ml of THF. The molecular weight and 

polydispersity index of the polymers grafted onto silica nanoparticles were 

evaluated using GPC by dissolving (50 mg) of the nanoparticles in (3 ml) of THF 

and treating with (0.2 ml) aqueous HF (49%). Then, the solution was stirred 

overnight, and the cleaved polymer chains were analyzed by GPC.28 

3.3.3.5 Cleavage of CPDB agents from the polymeric chain ends of the Silica 

Nanoparticles: 

The THF (40 ml) solution of dispersed polymer-grafted nanoparticles (SiO2-

g-HEMA-LA, SiO2-g-HEMA-SA) was placed in a round flask. The initiator AIBN 

was added at the ratio 1:20 of ([CTA]:[AIBN]). The solution was heated at 65°C 

under nitrogen for 1 h. Then, the nanoparticles were precipitated by pouring the 

solution into 500 ml of hexane, and the nanoparticles were recovered by 

centrifuging at 3500 rpm for 8 min.9  

3.3.3.6 Preparation of NBD-labelled Amino Acids (NBD-COOH): 

6-Aminohexanoic acid (1.2 eq, 4.5 mmol) and NaHCO3 (3 eq, 11.27 mmol) 

were dissolved in MeOH (30 mL) and stirred for 30 min at room temperature. A 

methanol solution (5 ml) of 4-chloro-7-nitrobenzofurazan (NBD-Cl; 1 eq, 3.76 

mmol) was added dropwise to the solution of 6-aminohexanoic acid, which was 
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refluxed to 65°C. After two hours, the reaction mixture was cooled to room 

temperature and acidified to approximately pH 2 with 1M HCl. Subsequently, the 

mixture was extracted three times with EtOAc (25 mL). The organic layer of EtOAc 

was washed with brine solution and dried with MgSO4 for two hours. The solution 

was filtered, and the solvent was removed out using a rotary evaporator. Then, 

the resultant NBD-labelled amino acid was recrystallized using an aqueous 

MeOH.29 The prodect was yield as bright orange crystals (yield: 77%, 0.85 g). Tm= 

156-158°C, UV (MeOH) λmax: 335, 458. FT-IR νmax/cm-1 1700 (strong, sharp C=O). MS 

(EI+) m/z: [M]+ 294. 

3.3.3.7 Preparation of NBD-labelled hexamethylenediamine (NBD-NH2): 

There are two steps for the synthesis of hexamethylenediamine-NBD dye. 

First, N-Boc-hexamethylenediamine-NBD was prepared, which was converted to 

the hexylenediamine-NBD. 4-Chloro-7-nitrobenzofurazan (NBD-Cl) (1 eq, 1 g, 5 

mmol) and mono-Boc hexamethylenediamine (1.1 eq, 1.19 g, 5.5 mmol) was 

dissolved in ethanol (30 mL). Pyridine was added (catalytic, 450 μL) and the 

solution was stirred for 30 min. The solution was concentrated and purified using 

column chromatography (toluene: ethyl acetate 7:3) to obtain the Boc-protected 

dye as a red foam. In the second step, the Boc-protected dye was dissolved in a 1:1 

solution of trifluoroacetic acid (TFA): dichloromethane (DCM) and stirred for one 

hour at the room temperature. Subsequently, the solution was concentrated and 



 

68 

resuspended in acetonitrile. The final product was obtained as golden crystals 

after the solution was precipitated into cold diethyl ether (1.1 g, yield 78%).30 UV 

(MeOH) λmax: 336, 460. FT-IR νmax/cm-1 3380 (medium, sharp N-H). HRMS (EI) 

(m/z) calcd for C12H17N5O3: 279.1382; found: 279.3014. 

3.3.3.8 Aminohexanoic acid-NBD conjugate on SiO2-g-HEMA-LA and 

hexamethylenediamine-NBD Conjugate on SiO2-g-HEMA-SA: 

Polymer-g-silica nanoparticles (1 eq, 0.5 g) (HEMA-LA-g-SiO2 or HEMA-

SA-g-SiO2) were dissolved in THF (50 mL) and placed in a 250 mL round flask. 

Then, dye-labeled (1.1 eq) (aminohexanoic acid-NBD, 0.59 g, 2 mmol or 

hexamethylenediamine-NBD, 0.66 g, 2.39 mmol), and dicyclohexylcarbodiimide 

(DCC) (1.3 equiv.) were dissolved and added to the flask. The mixture was stirred 

at room temperature for 9 h. The solution was filtered, and the solvent was poured 

into hexane (500 mL) to precipitate the nanoparticles. NP's were recovered via 

centrifugation at 4000 rpm for 7 min. Then, the precipitation-dispersion process 

was repeated until the supernatant layer after centrifugation was colorless to make 

sure there are no more free dyes. 

3.3.3.9 Modification of CPDB RAFT agent with phosphate group: 

Two synthetic steps were used to synthesize the CPDB-phosphate. 4-

Cyano-4-(thiobenzoylthio)pentanoic acid (CPDB) (5 g, 17.89 mmol), 1,6-

hexanediol (12.7 g, 107.38 mmol), and N, N′-dicyclohexylcarbodiimide (DCC) (4 g, 



 

69 

19.68 mmol) were placed in a 500 ml round bottom flask and dissolved in 100 ml 

of THF. The mixture was cooled to 0°C and flushed with N2 for 15 min. A solution 

of 4-dimethylaminopyridine (DMAP) (0.1 g, 0.89 mmol) in 15 ml THF was added 

dropwise over 30 min. The solution was stirred overnight and then allowed to 

warm to room temperature. Next, the solids formed during the reaction were 

filtered off and the solution was concentrated by removing the solvent using a 

rotary evaporator. The product residue was dissolved in 100 ml DCM and washed 

three times with DI water. The DCM layer was isolated and dried with MgSO4 for 

2 hours. MgSO4 was filtered off and the solvent was removed under a rotary 

vacuum. Then the residue was subjected to silica column chromatography (5:4, 

hexanes: ethyl acetate) and the product was recovered as a yellow oil (5.65 g, 83 % 

yield). 1H NMR (300 MHz, CDCl3): δ (ppm) 7.46 (d, 1H), 7.40 (t, 2H), 7.31 (t, 2H) 

(aromatic protons), 4.7 (s,1H), (CH2)OH, 4.20 (t, 2H), 4.11 (t,2H), (C=O)CH2(CH2), 

3.60 (t,2H) (CH2)CH2(OH), 2.60 (t, 2H), (CN)C(CH3)CH2(CH2CO), 2.34 (t, 2H), 

(CN)C(CH3)(CH2)CH2(CO) 1.65–1.40 (O=CCH2)(CH2)4(CH2OH). FT-IR: 1700 cm-1 

sharp (C=O), 3500 cm-1 broad (O-H). 

The previous product (CPDB-OH) (4.5 g, 11.85 mmol) and triethylamine 

(1.44 g, 14.23 mmol) were dissolved in 50 ml of dry THF in a 250 ml round bottom 

flask. The solution was flushed with dry N2 for 30 min, cooled to 0°C, and then 

phosphoryl chloride (6.36 g, 41.5 mmol) was added dropwise over one hour. The 
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solution was allowed to warm to room temperature and stirred overnight under 

an N2 atmosphere. Then, DI water (100 ml) was added to the solution and stirred 

for two hours. Using a separatory funnel, the solution was transferred to an 

organic layer by adding DCM (100 ml) which was isolated and washed with three 

portions of DI water. The organic layer was isolated and dried with MgSO4. The 

MgSO4 was filtered off and the DCM solvent was removed under reduced 

pressure. The product was recovered as a thick pink to a red oil (3.9 g, 72% yield). 

1H NMR (300 MHz, CDCl3): δ (ppm) 7.46 (d, 1H), 7.40 (t, 2H), 7.31 (t, 2H) (aromatic 

protons), 4.2 (s, 2H), (P=O)(OH)2, 4.14 (t, 2H), (C=O)CH2(CH2), 4.05 (t, 2H) 

(CH2)CH2(O-P=O), 2.61 (t, 2H), (CN)C(CH3)CH2(CH2CO), 2.33 (t, 2H), 

(CN)C(CH3)(CH2)CH2(CO) 1.72 (s, 3H) (CN)C(CH3), (1.70–1.43 

(O=CCH2)(CH2)4(CH2OH). 31P NMR (300 MHz, CDCl3): δ (ppm) 1.71, IR: 1700 cm-1 

sharp (C=O), 1200 cm-1 (P=O). HRMS (ESI) [M+H] Calcd for C19H26NO6PS2: 

459.0923; found 459.1031. 

3.3.3.10 Functionalization of nanoparticles SiO2-g-HEMA-LA-dye and SiO2-g-

HEMA-SA-dye with the second RAFT Agent (modified CPDB): 

The modified CPDB-phosphate agent was attached to the surface of 

monomodal silica nanoparticles, which was synthesized previously. CPDB-

phosphate was functionalized directly on the nanoparticles in a process similar to 

the one described for the first chain functionalization. THF solution (50 mL) of 
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monomodal nanoparticles (1 g) was placed in a two-necked round bottom flask. 

Then (0.37 g, 0.82 mmol, 5 ml) of CPDB-phosphate was added, and the solution 

was refluxed at 70°C overnight under nitrogen protection. Next, the reaction was 

cooled down to r.t. and poured into hexanes (500 ml). The nanoparticles were then 

recovered by centrifugation (3500 rpm for 7 min.). This redisperse−precipitation 

procedure was repeated two times until the supernatant layer after centrifugation 

was colorless. The second chains of the CPDB-anchored silica nanoparticles were 

dried and analyzed using UV-vis analysis to determine the graft density. 

3.3.3.11 Graft Polymerization of Methacrylic acid (MAA) from SiO2-g-(HEMA-

LA-dye, CPDB) and SiO2-g-(HEMA-SA-dye, CPDB) to synthesize the Second 

Brush: 

The nanoparticles (SiO2-g-(HEMA-LA-dye, CPDB) and SiO2-g-(HEMA-SA-

dye, CPDB)) (0.5 g by weight of silica) were dispersed in 20 mL THF and added to 

a Schlenk flask along with a predetermined amount of methacrylic acid (MAA) 

and AIBN (0.2 mL of 0.001 M THF solution). The Schlenk flask was degassed by 

three freeze-pump−thaw cycles, backfilled with nitrogen, and then placed in an oil 

bath at 65°C for the predetermined time, after which the polymerization was 

quenched in ice water. The nanoparticles were recovered by precipitating into 

hexanes and centrifugation at 4000 rpm for 7 minutes. 
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3.4 Results and Discussion: 

Water-dispersible materials were designed using the bimodal brush 

approach implemented using the RAFT polymerization technique. The bimodal 

nanoparticles consisted of two polymer chain populations that were grafted on the 

surface of the nanoparticles. The first polymer population was a short brush, high 

graft density of the pH-responsive monomers (HEMA-LA, HEMA-SA). The 

second polymer population was a long brush, low graft density of a water-

dissolvable polymer, which was methacrylic acid (MAA) in this study. The pH-

responsive monomers (HEMA-LA, or HEMA-SA) were synthesized, as described 

previously. Briefly, both methacrylate monomers were synthesized by reacting 

hydroxyethyl methacrylate (HEMA) with the corresponding cyclic lactone 

compounds, L-lactide, or succinic anhydride, via ring-opening reaction in the 

presence of the catalysts, stannous 2-ethyl hexanoate,31 and DMAP,25 respectively 

(Schemes 3.1, 3.2). Using the grafting-from approach and controlled radical RAFT 

polymerization technique, both monomers were grafted on the surface of silica 

nanoparticles (Scheme 3.3).   

 A kinetic study was conducted to test the compatibility of the grafted RAFT 

agent with the two monomers (HEMA-LA, HEMA-SA). Both monomers were 

easily polymerized with the grafted dithiobenzoate derivative RAFT agent, 4-

cyanopentanoic acid dithiobenzoate (CPDB), at 65ᵒC (Figure 3.3).  
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The plot between the consumption of monomer for HEMA-LA and the 

polymerization time showed a linear relationship while monomer consumption 

was linear for HEMA-SA at lower polymerization times (<10 hr). However, the 

molecular weight of both monomers gradually increased with increasing 

monomer conversion. Additionally, the polydispersity remained low (∼1.3-1.4) for 

both monomers over the entire polymerization time. The first population of 

polymer chains of the bimodal nanoparticles was obtained using the RAFT 

polymerization of both HEMA-LA and HEMA-SA monomers via grafted CPDB 

Scheme 3.3: Grafting-from Polymerization of HEMA-LA and HEMA-SA 

mediated by anchored CPDB on silica nanoparticles. 
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silica nanoparticles (Scheme 3.3), using the feed ratio of 

[Monomer]/[CPDB]/[Initiator] of 1:500:0.1 at 65ᵒC under inert gas conditions. First, 

a large amount of 3-aminopropyl dimethylethoxysilane was anchored to the 

surface of silica nanoparticles by refluxing the mixture at 75ᵒC overnight under 

Figure 3.3 (a) Pseudo first-order kinetic plot of HEMA-LA. (b) Dependence of 

molecular weight of HEMA-LA (red circle), theoretical molecular weight (solid 

line), and the dispersity (blue circle) on the conversion for the surface-initiated 

RAFT polymerization of HEMA-LA on modified silica nanoparticles with 

CPDB density: 0.1 chains/nm2 ([CPDB]/[HEMA-LA]/[AIBN]=500:1:0.1). (c) 

Pseudo first-order kinetic plot of HEMA-SA and (d) Dependence of molecular 

weight of HEMA-SA (red circle), theoretical molecular weight (solid line), and 

the dispersity (blue circle) on the conversion for the surface-initiated RAFT 

polymerization of HEMA-SA on modified silica nanoparticles with CPDB 

density: 0.1 chains/nm2 ([CPDB]/[HEMA-SA]/[AIBN]=500:1:0.1). 
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nitrogen. Next, the surface anchored amine groups were reacted with an excess of 

mercaptothiazoline activated-CPDB (4-cyano-4-(phenylcarbonylthioylthio) 

pentanoate) to obtain CPDB grafted silica nanoparticles.  

Figure (3.4 a,b) shows the TGA traces of unmodified silica nanoparticles, 

CPDB-functionalized silica nanoparticles, and both polymer-grafted silica 

nanoparticles(PHEMA-LA, PHEMA-SA). The unfunctionalized nanoparticles 

exhibit a weight loss of approximately 4.7% over the temperature range of 50–

800ᵒC. Compared with the unmodified silica nanoparticles, the CPDB-anchor 

nanoparticles showed a slightly higher weight loss (5.2%) with temperature. This 

of course is due to the presence of organic material on the surface of nanoparticles. 

Finally, the polymer-grafted silica nanoparticles (PHEMA-LA, PHEMA-SA) 

exhibited a weight loss of approximately 70.3% and 75.7%, respectively over the 

same temperature range of 50–800ᵒC. Thus, the TGA results provide further 

support that P(HEMA-LA) and P(HEMA-SA) had been successfully grafted on the 

surface of silica nanoparticles. From the measured graft density of the starting 

nanoparticles (0.237 ch/nm2) and the measured weight gain measured by TGA, it 

is possible to calculate the molecular weight of the grafted chains. The molecular 

weights of PHEMA-LA and PHEMA-SA were calculated to be 31 kDa and 41 kDa, 

respectively, which are only slightly different from the measured molecular 

weights by GPC (32.5 kDa and 49 kDa) of the starting nanoparticles (0.237 ch/nm2).
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Controlling the graft density of the RAFT agent on the surface of silica 

nanoparticles will depend on the ratio of silica nanoparticles to 3-

aminopropyldimethylethoxysilane in the initial grafting process.32–35 After the 

exhaustive conversion of the amine groups to the RAFT agent, the graft density of 

the RAFT agent on the surface of the nanoparticles prior to polymerization was 

measured accurately using the UV absorption at 302.5 nm of the CPDB agent. 

Then, it was compared to a standard calibration curve of free CPDB to determine 

the concentration of the attached CPDB on the surface of silica nanoparticles before 

polymerization. Azobisisobutyronitrile (AIBN) was the initiator of all RAFT 

polymerizations used at a molar ratio (0.1) of initiator to RAFT (CPDB). 

Controlling the graft polymerization of the monomers HEMA-LA and HEMA-SA 

was dependent on both ratios [Initiator]/[CTA] and ([Monomer]:[CPDB]. Gelation 
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was observed when the molar ratio of initiator to the CPDB  was >0.1, as well as 

molar ratios of monomer to RAFT agent greater than 1000:1 when polymerization 

times were greater than 12 h. The polymer chains of HEMA-LA and HEMA-SA 

were cleaved from the surface of silica nanoparticles using 0.2 ml HF,36 followed 

by GPC analysis to measure the molecular weight and polydispersity.  

After functionalizing the first polymer chains on the surface of the 

nanoparticles using the RAFT polymerization, it was necessary to cleave the RAFT 

(chain transfer) agent,37 which remained as an end group on the grafted chains 

prior to grafting the second population of polymer chains on the surface of the 

nanoparticles. The chain transfer agent was cleaved using the initiator (AIBN) via 

a radical cross-coupling mechanism. The efficient ratio for the cleavage reaction 

between AIBN: RAFT was 15:1 to 20:1. A color change was observed from pink to 

white polymer-coated nanoparticles when the reaction was complete and the 

particles were easily dispersed in THF. The cleavage reaction was confirmed by 

observing the disappearance of the CPDB peak using UV spectroscopy. 

A major objective of this research was designing water-dispersible polymer 

grafted nanoparticles that could work as antibiotic-carriers, which is highly 

desirable in biomedical applications. Thus, labeling the end of repeat units of the 

polymers of HEMA-LA and HEMA-SA on the surface of the nanoparticles with 

fluorescent dyes is valuable in monitoring the hydrolysis of the pH-responsive 
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groups in biological cells or other systems.38,39 Two fluorescent dyes, NBD-COOH 

and NBD-NH2, were synthesized and the UV-vis spectra showed absorption peaks 

at 460 nm compared with the absorption peak of commercially available dye,  N-

[2-{N-(7’-Nitrobenz- 2’-oxa-1’,3’-diazol-4’-yl) amino} ethyl-carbonyloxy] 

succinimide (NBD-NHS) (Figure 3.5). These prepared NBD-dyes were synthesized 

and attached to the polymers on the surface of silica nanoparticles (HEMA-LA-g-

SiO2, HEMA-SA-g-SiO2) using the DCC coupling reaction (Scheme 3.4). The dye-

labeled pH-sensitive polymer grafted silica nanoparticles served as convenient 

surrogates to drug attached nanoparticles and were further investigated for the 

time-release properties.  
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Figure 3.5: UV-vis spectra of prepared NBD-dyes NBD-COOH, NBD-NH2 and 

commercially available dye, NBD-NHS. 
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The next step after synthesizing the fluorescent-labeled monomodal silica 

nanoparticles was grafting the second population of polymer chains on the surface 

of nanoparticles to create the bimodal polymer brush architecture. Herein, the 

polymer of the methacrylic acid (MAA) was used in bimodal nanoparticles as a 

second polymer population to supply water solubility. The RAFT agent that is 

compatible with MAA is 4-cyano-4-(thiobenzoylthio) pentanoic acid (CPDB),40 the 

same that was used in the grafting of the first population of chains. Pelet and 

Putnam have studied the kinetics for the polymerization of MAA with the CPDB 

Scheme 3.4: Synthesis and attachment of the fluorescence dyes on silica 

nanoparticles. 
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and found a linear relationship between the Mn and conversion and Mn increased 

linearly with the conversion.19 Therefore, the attachment of the second population 

of polymer chains on the surface of the monomodal of nanoparticles (SiO2-g-

HEMA-LA-dye, SiO2-g-HEMA-SA-dye) was expected to proceed in a similar 

manner,9 as outlined in Scheme 3.5. 

In this case, the first step of this proposed approach did not succeed. The 

fluorescent dyes that were attached to the first population prevented grafting the 

3-aminopropyldimethylethoxysilane on the surface of nanoparticles, where we 

postulate that the amine group on the 3-aminopropyldimethylethoxysilane will 

react with nitrobenzoxadiazole on the NBD-dyes. This was confirmed via grafting 

Scheme 3.5: The proposed approach to grafting the second population of 

polymer chains on the surface of the nanoparticles. 
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the 3-aminopropyldimethylethoxysilane as a second chain on the surface of non-

fluorescent nanoparticles (SiO2-g-HEMA-LA, SiO2-g-HEMA-SA). Therefore, this 

proposed approach could not be followed.  

An alternative strategy for functionalizing the second population of 

polymeric chains on the surface of nanoparticles is grafting the RAFT agent 

directly on the surface of monomodal nanoparticles without using 3-

aminopropyldimethylethoxysilane. This was accomplished via modification of the 

RAFT agent (Scheme 3.6), using a phosphate containing RAFT agent where the M-

O-P bridges are more stable than M-O-Si bonds.41 CPDB was modified by reacting 

with 1,6-hexanediol to produce CPDB with a hydroxyl end group that was 

subsequently reacted with phosphorus oxychloride to obtain the modified RAFT 

agent. As with silane coupling agents control of the graft density of polymer chains 

on the surface of silica nanoparticles was achieved using various ratios of the 

modified CPDB to the SiO2 nanoparticles. Increasing the feed ratio of modified 

CPDB will lead to increased graft density on the surface of silica nanoparticles. 

The direct functionalization of CPDB on the surface of the polymer grafted-

silica nanoparticles of (HEMA-LA, HEMA-SA) was more straightforward. 

Scheme 3.6: Modification of RAFT agent (CPDB) with a phosphate group. 
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Furthermore, the modified RAFT agent was strongly attached to hydroxylated 

silica nanoparticles to produce CPDB anchored on the surface of silica 

nanoparticles42,43, as shown in Scheme 3.7. Despite the grafting of the first polymer 

chain population, the modified CPDB easily diffused to the surface of the 

nanoparticles. These CPDB functionalized nanoparticles were washed several 

times by precipitation in hexane and redispersed in THF to remove unreacted 

modified CPDB. The grafting density of the second RAFT chains was determined 

as in the first polymer chains using UV-Vis spectrometry.44 The polymerization of 

methacrylic acid (MAA) onto the nanoparticles was conducted using surface-

initiated RAFT polymerization to form water-dispersible bimodal brush silica 

Scheme 3.7: Synthetic strategy for synthesizing the bimodal grafted 

nanoparticles. 
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nanoparticles. Azobisisobutyronitrile (AIBN) was used as an initiator to start the 

polymerization using a ratio 1:250:0.1 [M]/ [CPDB]/ [AIBN]. Using GPC, the 

molecular weight and polydispersity of the second population of polymethacrylic 

acid (PMAA) were measured, as shown in Table 3.1. 

 

Bimodal polymer grafted nanoparticles were synthesized using either 

HEMA-LA or HEMA-SA monomers combined with MAA, where the polymer 

composition of the short, dense brush was different, but the second brush 

population was the same polymer. For bimodal nanoparticles using HEMA-LA 

monomer, a short, dense brush was polymerized at 0.237 ch/nm2 under controlled 

radical polymerization conditions with a molecular weight of 32.5 kDa and PDI of 

Table 3.1: Grafting densities and molecular weights of bimodal nanoparticles, 

SiO2@P(HEMA-LA-dye)-PMAA, and SiO2@P(HEMA-SA-dye)-PMAA. 
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1.18. A second long, dense brush population of MAA was polymerized at a density 

of 0.2 ch/nm2 with a molecular weight of 90 kDa and polydispersity of 1.35. Also, 

a short, dense brush of HEMA-SA monomer was polymerized at 0.237 ch./nm2 

with a molecular weight of 49 kDa and PDI of 1.21. A second long, dense brush 

was polymerized using controlled radical polymerization at 0.161 ch/nm2 with a 

molecular weight of 103 kDa and PDI of 1.29. 

Bimodal polymer brushes were synthesized while preserving independent 

control over grafting density, molecular weight, and polydispersity using 

sequential RAFT polymerizations. GPC of the cleaved polymer chains showed two 

separate peaks representing each population of grafted polymer chains and 

confirmed the bimodal polymer brush composition (Figure 3.6).45 

 

 

 

Figure 3.6: GPC analysis of bimodal grafted nanoparticles (a) SiO2-g-

P(HEMA-LA-dye)-PMAA, and (b) SiO2-g-P(HEMA-SA-dye)-PMAA. 
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The composition of the water-dispersible bimodal nanoparticles was also 

investigated by thermogravimetric analysis (TGA). Figure 3.7 a, b shows the TGA 

traces of the unfunctionalized silica nanoparticles, monomodal silica nanoparticles 

SiO2@PHEMA-LA-dye, SiO2@PHEMA-SA-dye, and bimodal silica nanoparticles 

SiO2@P(HEMA-LA-dye)-P(MAA), SiO2@P(HEMA-SA-dye)-P(MAA). The 

ungrafted nanoparticles exhibit a weight loss of approximately 4.7% over the 

temperature range of 50–800ᵒC. This weight loss is likely due to tightly bound 

water and surfactants on the surface of nanoparticles. The polymer-grafted silica 

monomodal nanoparticles (SiO2@PHEMA-LA-dye, SiO2@PHEMA-SA-dye) 

exhibited a weight loss of approximately 70.3% and 75.7%, respectively over the 

same range of temperature range 50–800ᵒC. Finally, the bimodal silica 

nanoparticles, SiO2@P(HEMA-LA-dye)-P(MAA), SiO2@P(HEMA-SA-dye)-

P(MAA), showed a higher weight loss of approximately 87.13% and 87.21%, 

respectively over the same range of temperature 50–800ᵒC. Therefore, the TGA 

results provide further support that bimodal nanoparticles have been successfully 

grafted on the surface of silica nanoparticles. Using TGA analysis, molecular 

weights of the grafted chains were calculated and compared with the molecular 

weights measured by GPC. The molecular weights of PHEMA-LA-dye and 

PHEMA-SA-dye were calculated to be 31 kDa and 41 kDa, respectively, which are 

compared with the measured molecular weights by GPC (32.5 kDa and 49 kDa) of 
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the starting nanoparticles (0.237 ch/nm2). The second population of polymeric 

chains (PMAA) grafted on the surface of silica nanoparticles SiO2@P(HEMA-LA-

dye)-P(MAA), SiO2@P(HEMA-SA-dye)-P(MAA), exhibited a weight loss of 

approximately 17.1% and 11.5%, respectively different from the first grafted 

polymer of population chains P(HEMA-LA-dye), P(HEMA-SA-dye) over the same 

range of temperature range 50–800ᵒC. Using TGA analysis, the molecular weights 

of the second grafted polymer of population chains were calculated to be 

approximately 105 kDa and 132 kDa, respectively which are slightly different 

compared with the measured molecular weights (90 kDa and 103 kDa) of 

nanoparticles using the GPC analysis in which the measured graft densities were 

(0.201 ch/nm2 and 0.161 ch/nm2) using the UV-vis absorption of the CPDB RAFT 

agents.   

 

 

Figure 3.7: TGA analysis of (a) Bare SiO2 , Monomdal NP’s SiO2-g-P(HEMA-

LA), and Bimodal NP’s SiO2-g-P(HEMA-LA)-(PMAA), (b) Bare SiO2 , 

Monomdal NP’s SiO2-g-P(HEMA-SA), and Bimodal NP’s SiO2-g-P(HEMA-

SA)-(PMAA). 
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The direct grafting approach described herein avoided the side reactions 

that occurred in the initial synthetic strategy when attempting to attach a second 

population via amino silane attachment of the RAFT agent.9 The successful 

grafting of MAA on dye-labeled polymer coated-silica nanoparticles, which are 

particularly prone to agglomeration,46,47 resulted in well-dispersed nanoparticles  

in both THF and water and were stable for a long time. Thus, this approach of 

preparing bimodal nanoparticles presents a good platform for synthesizing 

bimodal water-dispersible polymer grafted silica nanoparticles that should allow 

for broad use in biomedical applications. 

3.5 Conclusion: 

We demonstrated a new technique using RAFT polymerization to 

synthesize water-dispersible bimodal polymer grafted nanoparticles. Bimodal 

silica nanoparticles were prepared by grafting two different populations of 

polymer chains on the surface of silica nanoparticles. Short, dense polymer 

brushes of pH-responsive monomers HEMA-LA, HEMA-SA were grafted on 

silica nanoparticles using surface-initiated RAFT polymerization for the first 

population. These polymer brushes could be used as antibiotic-delivery carriers. 

Prior to grafting the second polymer population, the activity of the RAFT agent at 

the polymer ends of the first population was removed via a radical cleavage 

reaction. The second RAFT agent was attached directly to the surface of silica 
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nanoparticles using a modified chain transfer agent that contained a phosphate 

group. This was necessary to avoid a side reaction between the amino silane 

coupling agent and the dye containing grafted polymer chains of the first 

population. Then, the water-dissolvable monomer MAA was polymerized to a 

high molecular weight at a graft density different than the first chain population. 

This approach also allowed for independent control of the molecular weight and 

the chemical composition of each chain population. The bimodal brush 

architecture was confirmed by GPC analysis of the cleaved polymer chains, which 

showed two separate peaks. The first large peak was assigned to the high 

molecular weight of the low graft density PMAA, and the second smaller peak 

was assigned to the lower molecular weight (HEMA-LA, HEMA-SA) at high graft 

density. This GPC analysis confirmed the composition of bimodal polymer grafted 

nanoparticles. The water-dispersible bimodal polymer grafted silica nanoparticles 

provide a platform to synthesize bio-nanoparticles as antibiotic vehicle carriers 

that could be used in bioapplications. 
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CHAPTER 4 

DESIGNING “SWEET-NANOPARTICLES” AS A NOVEL 

STRATEGY TO COMBAT ANTIBIOTIC-RESISTANT BACTERIA1 
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4.1 Abstract: 

The bacterial resistance of antibiotics has become one of the most important 

medical issues that pose a public health threat and, thus, needs urgent intervention 

around the world because of the widespread infectious diseases. In this work, we 

investigate a novel design of grafted nanoparticles that may be used to combat 

antibiotic-resistant bacteria. Herein, we explore the concept of “sweet-

nanoparticles” via grafting bimodal polymer brushes on nanoparticles using 

reversible addition-fragmentation chain transfer (RAFT) polymerization. A sugar-

containing monomer, 2-methacrylamido glucopyranose (MAG) was grafted as a 

low graft density, long brush on silica nanoparticles using 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CDSS) as a chain transfer 

agent. Two potential “controlled release” monomers 2-((2-((2-

hydroxypropanoyl)oxy)propanoyl)oxy)ethyl methacrylate (HEMA-LA) and 2-

(methacryloyloxy)ethyl succinate (HEMA-SA) containing potentially 

hydrolytically sensitive ester linkages were grafted individually as a high graft 

density, short brush using a different RAFT agent (4-cyano-4-

(phenylcarbonothioylthio)pentanoic acid, CPDB). Conceptually, the addition of 

sugar-containing monomers in the long brushes should enhance bacterial uptake 

while delivering concentrated amounts of drugs via the short, controlled release 

monomers. The polymerization kinetics of the bimodal populations will be 
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described, and the structural characterization will be reported by 1H-NMR 

spectroscopy and gel permeation chromatography (GPC). Then, the antimicrobial 

activities of these polymers will be investigating against clinically relevant Gram-

positive and Gram-negative bacteria. Bimodal polymer grafted nanoparticles are 

envisioned for use as more efficient delivery vehicles for anti-bacterial 

applications. 

4.2 Introduction:  

Scientists describe the situation between antibiotics and bacteria as a global 

and ongoing medical condition.1 Whenever new antibiotics emerge that kill some 

types of bacteria, the bacteria evolve to acquire new immunity that enables them 

to resist these antibiotics.2 Bacterial resistance of β-lactam antibiotics has been 

widely spread around the world via antibiotic overuse and misuse.3 However, 

globally, it has become necessary to discover novel techniques to prevent antibiotic 

resistance in bacteria,4 since the global consumption of antibiotics is increasing 

incessantly.5,6 Therefore, the search for and development of new strategies and 

methods to try to eliminate bacteria that are resistant to traditional antibiotics has 

become imperative and urgent to avoid a global medical disaster. The use of 

nanoparticles has become one of the most promising strategies to combat bacterial 

resistance.7 Thus, designing polymer grafted nanoparticles for use as more 

efficient delivery vehicles for anti-bacterial applications is considered as the main 
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goal of this work. In particular, we propose to explore the use of bimodal polymer 

grafted brushes that contain two different polymer chain populations.8 One 

population would consist of a high graft density of short brushes that contain pH-

responsive “controlled release” monomers to work as antibiotic-delivery carriers,9 

and a second population of low graft density of long brushes that consist of sugar-

containing monomer that work to enhance bacterial uptake for these "sweet" 

nanoparticles. 

During the last 20 years, interest in carbohydrates (sugars) grafted on 

nanoparticles, which are referred to as glyconanoparticles,10,11 has increased 

dramatically due to their importance and expanded uses in the biomedical field.12 

Moreover, glyconanoparticles possess many properties, such as hydrophilicity, 

stability, and biodegradability, which make them attractive for a wide range of 

biomedical applications.13 Much research has been done using glyconanoparticles 

in biomedical applications. Cerisy et al. explained the mechanisms by which 

bacteria uptake and translocate sugars across the cell membrane.14 Disney et al. 

used carbohydrates to detect pathogens through the use of carbohydrate 

functionalized polymers as a detection method for bacteria.15 Disney et al. also 

developed an efficient bacterium capturing system by designing specific 

glyconanoparticle materials. Their results showed that the reusable antimicrobial 

magnetic glyconanoparticles have high efficiency and excellent performance 
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(more than 98%) for effective bacterial removal from water solutions by increasing 

bacterial capturing efficiencies.16 

As part of the current approach, we considered the preparation of grafted 

glycopolymers on the surface of nanoparticles using one of the controlled 

polymerization techniques such as controlled  radical,17-20, and ring-opening 

metathesis polymerization.21 Glycomonomers have been synthesized by 

incorporating many olefinic groups, such as (meth)acrylates,18,22–24 

(meth)acrylamides,17,25,26, and styrene derivatives27 with monosaccharides such as 

glucose,17,18,20–23,28 galactose,24,29 and mannose,19,30 as well as disaccharides such as 

lactose.27,31,32 Reversible addition−fragmentation chain transfer (RAFT) 

polymerization is a desirable technique used to control the polymerization of 

many monomers that have relatively fast polymerization rates, such as 

(meth)acrylates and (meth)acrylamides and can be performed in many solvents 

without the use of metal catalysts.17,19,20,23,25,26,30  

This research is the first report that incorporates glycopolymers grafted on 

nanoparticles that serve as antibiotic-delivery carriers in a bimodal grafted silica 

nanoparticle architecture. Sugar-containing polymers grafted on the surface of 

silica nanoparticles were used to increase the bacterial uptake as compared with 

that of non-glyconanoparticles. Specifically, we investigated the polymerization of 

the trimethylsilyl (TMS)-protected monomer, α-2-deoxy-2-methacrylamido-
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1,3,4,6-tetra(O-trimethylsilyl)D-glucopyranose (TMS-MAG) as a glycomonomer 

grafted on the surface of silica nanoparticles. This was combined with a second 

population of polymeric chains nanoparticles with stimuli-sensitive moieties that 

work as antibiotic delivery carriers to create a bimodal architecture exhibiting both 

controlled release and enhanced bacterial uptake properties. 

4.3 Materials and Methods: 

4.3.1 Materials: 

Unless otherwise noted, all chemicals were purchased from Fischer and 

used as received. Colloidal silica nanoparticles (SiO2, 30 wt% in MEK) were 

purchased from Nissan Chemical. 2,2’-Azobis(2-methylpropionitrile) (AIBN, 98%) 

was obtained from Aldrich. 2-Hydroxyethyl methacrylate (HEMA, Sigma Aldrich, 

99%) was purified by passing through a column of basic aluminum oxide (Alfa 

Aesar, 99%) to remove the inhibitor, methyl ether hydroquinone (MEHQ). L-

lactide (Sigma Aldrich, 95%), succinic anhydride (Acros Organics, 99%), D-

glucosamine hydrochloride (Acros, 98+%),  N,O-bis(trimethylsilyl)acetamide 

(BSA, Acros, 95%), methacryloyl chloride (Acros, 95%), and triethylamine (TEA, 

Acros, 99.7%) were used as received. Two different radical addition-fragmentation 

transfer (RAFT) chain transfer agents (CTA), 4-cyano-4-

(phenylcarbonothioylthio)pentanoic acid (CPDB) and 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CDSS) were purchased 
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from Boron Molecular and used as received. 3-Aminopropyldimethylethoxysilane 

(95%) and dimethylmethoxy-n-octylsilane (95%) were purchased from Gelest, Inc, 

and used as received. Hydrochloric acid (Sigma-Aldrich, 37%) was diluted with 

DI water to a solution of 1.3 M before use.  

4.3.2 Instrumentation: 

1H NMR spectra were recorded using a Bruker Avance III-HD 300 MHz 

spectrometer instrument using CDCl3 as a solvent and measured with 

tetramethylsilane (TMS) as an internal reference. Gel permeation chromatography 

(GPC) was used to measure the molecular weights (Mn) and polydispersity index 

(Đ). The GPC was comprised of a Varian 290-LC pump, a Varian 390-LC refractive 

index detector, and three Styragel columns (HR1, HR3 and HR4, molecular weight 

range of 100-5000, 500-30000, and 5000-500000, respectively). Tetrahydrofuran 

(THF) was used as eluent at 30ᵒC and a flow rate of 1.0 mL/min and calibrated 

with polystyrene or poly(methylmethacrylate) standards obtained from Polymer 

Laboratories. A Thermogravimetric Analyzer (TA) Instruments Q5000 was used 

to obtain TGA characterization. Samples were preheated to 100°C and kept at this 

temperature for 10 min to remove residual water and solvents for all the samples. 

After cooling to 50°C, the samples were reheated to 800°C at a heating rate of 

10°C/min under nitrogen flow. FT-IR spectra were recorded using a BioRad 
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Excalibur FTS 3000. UV-vis absorption spectra were taken on a Shimadzu UV-2450 

spectrophotometer. 

4.3.3 Synthesis of “controlled release” monomers: 

(HEMA-LA, HEMA-SA) monomers were synthesized using the ring-

opening reaction of the symmetrical cyclic lactone compound, L-lactide, or 

succinic anhydride with hydroxyethyl methacrylate (HEMA) catalyzed by 

stannous 2-ethylhexanoate and DMAP, respectively.  

4.3.3.1 Synthesis of 2-((2-(propionyloxy) propanoyl)oxy)ethyl methacrylate 

(HEMA-LA):               

Hydroxyethyl methacrylate (HEMA, 5 g, 38.42 mmol) and tin(II) 2-

ethylhexanoate (0.1 g, 0.27 mmol) were placed in a 100 mL one-neck round bottom 

flask. L-lactide (4.98 g, 34.57 mmol), dried overnight under vacuum, was added to 

the flask, and the mixture was deoxygenated by a repeated vacuum nitrogen cycle. 

Subsequently, the reaction mixture was stirred and heated to 110°C under vacuum 

for 3 hours. The crude product was dissolved in anhydrous chloroform (100 mL) 

and washed with 1 M HCl. Then, the organic phase was washed with deionized 

water, isolated, and residual chloroform removed using a rotary evaporator 

operating under vacuum. The colorless viscous liquid product, L-lactide, was 

obtained (yield: 85%, 8.95 g). 1H-NMR (300 MHz, CDCl3): δ = 1.38–1.63 ppm (t,6H) 

(CH–CH3)2, δ = 1.94 ppm (s,3H) (CH2=CCH3), δ = 2.79 ppm (s,1H) (C-OH), δ = 4.26–
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4.39 ppm (t,4H) (OCH2–CH2), δ = 4.39–4.51 ppm (q,1H) (CH-(OH)CH3), δ = 5.08–

5.29 ppm (q,1H) (C=O)CH(C-O), δ = 5.58 ppm (s,1H) (CH2=C), δ = 6.10 ppm (s,1H) 

(CH2=C). HRMS (EI) (m/z) calcd for C12H18O7: 274.1149; found: 274.1167.33,34 

4.3.3.2 Synthesis of 4-(2-(methacryloyloxy)ethoxy)-4-oxobutanoic acid (HEMA-

SA): 

2-Hydroxyethyl methacrylate (HEMA; 5.00 g, 38.42 mmol) was placed in a 

250 mL Schlenk flask and dissolved in anhydrous THF (100 mL) with a magnetic 

stirring bar at room temperature under nitrogen. Succinic anhydride (4.6 g, 46.1 

mmol), pyridine (15 mL), and 4-dimethylamiopryidine (0.375 g, 3 mmol) were 

added. Then, the reaction mixture was stirred for 24 h at 40ᵒC under nitrogen. 

Next, the solvent was evaporated under vacuum after cooling the reaction to room 

temperature. The residue was dissolved in DCM (100 mL) followed by washing 

three times with 0.1M HCl solution. The organic phase was dried over anhydrous 

magnesium sulfate overnight and filtered. After evaporation of the solvent, the 

remaining HEMA-SA product was dried under vacuum at room temperature. A 

viscous liquid was obtained (yield 84%, 7.45 g). 1H NMR (300 MHz, CDCl3): δ = 

6.13 (S, 1H, HCH=C(CH3)-), 5.54 (S, 1H, HCH=C(CH3)-), 4.36 (t, 4H, -OOC(CH2)2 

OCO-), 2.68 (t, 4H, HOOC(CH2)2COO-), 1.85 (S, 3H, H3CC(COO-)CH2). HRMS (EI) 

(m/z) calcd for C10H14O6: 230.0842; found: 230.0873.35,36 
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4.3.4 Synthesis of α-2-deoxy-2-methacrylamido 1,3,4,6-tetra-(O-trimethylsilyl) 

D-glucopyranose (TMS-MAG): 

The glycomonomer (TMS-MAG) was synthesized via two synthetic steps. 

Glucosamine hydrochloride (10.1 g, 46.84 mmol) was placed in a two neck flask 

(500 ml) and flushed with nitrogen, then 200 mL of dry pyridine was added. 

Bis(trimethylsilyl)acetamide (41.7 g, 205 mmol) was added using a funnel or a 

syringe over 10 minutes, and the mixture was stirred at rt for 12 hours. 

Subsequently, the mixture was poured into 1.5 L of ice-cold 0.1 M solution of 

K2HPO4 cooled to 0°C using an ice bath. Next, the solution was allowed to warm 

to rt, and the white solids that formed were filtered off. The white solids were 

collected and redissolved in 400 mL of DCM, after which the DCM solution was 

washed with water and brine solution, and finally, the solution was dried over 

MgSO4 for 2 hours at rt. A colorless oil was obtained after DCM evaporation.  

In the second step, the colorless oil was dissolved in DMF (400 mL), and 10 

mL (70 mmol) of triethylamine (TEA) was added after the solution was cooled to 

0°C using an ice bath. A solution of methacryloyl chloride (5.4 g, 51.65 mmol) in 

50 mL of dry DCM was added to the previous solution of the colorless oil and TEA 

over 20 minutes. The mixture was stirred for 1 hour in an ice bath (0°C) followed 

by 3 hours at 25°C. The DCM solvent was evaporated under vacuum, and the 

remaining solution in DMF was cooled to 0°C before being poured into 1.5L of an 
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ice-cold 0.1M solution of K2HPO4. The aqueous mixture was extracted with 3×200 

mL of hexanes after it was allowed to reach rt. The organic layer in hexane was 

collected and washed with water and brine solution two times and finally dried 

over MgSO4 overnight. The product was obtained after the MgSO4 was filtered off, 

and the hexanes were evaporated to yield 7.8 g (91%) of an off-white crystalline 

material and which re-crystallized in cold hexanes.37 1H NMR (300 MHz, CDCl3): 

δ (ppm): 5.85 (d, 1H, Hk), 5.65 (s, 1H, Hj), 5.40 (s,1H, Hi), 5.10 (d, 1H, Hh), 4.10 (td, 

1H, Hg), 3.60 – 3.75 (m, 5H, Hc,d,e,f,f'), 2.00 (s, 3H, Hb), 0.17 (s, 9H, TMS), 0.14 (s, 

9H, TMS), 0.10 (s, 18H, TMS) (Figure 4.7). 13C NMR (300 MHz, CDCl3): δ (ppm): 

168 (C=O, C11), 140 ((C–C(=C)–C),C10), 120 ((H2C=),C9), 93 (C8), 74 (C7), 72.5, 

72(C6, C5), 62(C4), 55 (C3), 19 ((CH3),C2), 1.09, 0.83, –0.10, –0.28 (((CH3)3Si),C1) 

(Figure 4.8). HRMS (EI) (m/z) calcd for C22H49NO6Si4: 535.2638; found: 535.2692. 

4.3.5 Activation of 4-cyano-4-(thiobenzoylthio)pentanoic acid (CPDB): 

Dichloromethane solution of CPDB (2 g, 7.16 mmol), 2-mercapatothiazoline 

(0.94 g, 7.87 mmol), and dicyclohexylcarbodiimide (DCC) (1.77 g, 8.59 mmol) were 

placed in a 250 mL two-neck round bottom flask. Then, dimethylamino pyridine 

(DMAP) (0.087 g, 0.716 mmol) was added slowly to the solution. The solution was 

stirred for 6 h at room temperature. The solution was filtered to remove the solids. 

The solution was evaporated to remove the solvent and after silica gel column 

chromatography (5:4 hexane: ethyl acetate), activated CPDB was obtained as a red 
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oil (2.3 g, 84% yield). 1H NMR (300 MHz, CDCl3): δ (ppm) 7.90 (d, 2H, aromatic 

ring), 7.56 (t, 1H, aromatic ring), 7.38 (t, 2H, aromatic ring), 4.58 (t, 2H, NCH2CH2S), 

3.60-3.66 (m, 2H, (CN)C(CH3)-CH2CH2CON), 3.31 (t, 2H, NCH2CH2S), 2.50-2.56 (m, 

2H, (CN)C(CH3)CH2CH2CON), 1.95 (s, 3H, (CH3)C(CN)S). FT-IR: 1700 cm-1 (C=O), 

1160 cm-1 (PhC=S), 1020 cm-1(NC=S). HRMS (EI) (m/z) calcd for C16H16N2OS4: 

380.0193; found: 380.0203.38 

4.3.6 Attachment of activated CPDB onto silica nanoparticles (SiO2@CPDB): 

Silica nanoparticles (15.0 g, 30 wt % in MEK) were dispersed in 50 mL THF 

and placed in a round bottom flask, and 3-aminopropyldimethylethoxy silane 400 

µL was added. The solution was purged with N2 for 1 h, and then the solution was 

refluxed in a 70ᵒC oil bath overnight. The solution was then cooled to r.t and 

precipitated into hexanes (500 mL). The solution was centrifuged at 4000 rpm for 

7 minutes and the solvent decanted. The precipitation-dissolution process was 

repeated for another two times. After that, the amine-functionalized nanoparticles 

were dispersed in 50 mL of dry THF and were added dropwise into a THF solution 

of activated CPDB (0.14 g, 0.185 M) at r.t and stirred for 6 hours. The solution was 

precipitated into a large amount of hexane (approx. 400 ml), and the nanoparticles 

were recollected by centrifugation at 4000 rpm for 7 min. This precipitation-

dissolution process was repeated until the supernatant solution was colorless. 

Then, the nanoparticles were placed in a vacuum at r.t. The grafting density of 
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CPDB anchored silica nanoparticles (0.35 ch/nm2) was determined using the UV-

vis calibration curve made from standard solutions of free CPDB.8 

4.3.7 RAFT polymerization of “controlled release” monomers from CPDB 

functionalized silica nanoparticles: 

A THF solution (10 mL) of HEMA-LA or HEMA-SA, CPDB-anchored silica 

nanoparticles (1g) with desired graft density, was placed in a 50 ml dried Schlenk 

tube. AIBN (10 mM THF solution) was added to the Schlenk tube using a ratio 

between species of [CPDB]:[monomer]:[AIBN] =1:500:0.1. The solution was 

degassed by three freeze−pump−thaw cycles and filled with nitrogen. Then the 

Schlenk tube was placed in an oil bath at 65ᵒC for the desired time. The 

polymerization was stopped by quenching the Schlenk tube in ice water. The 

polymer-grafted silica nanoparticles were precipitated by pouring into 400 ml of 

hexanes and centrifuged at 4000 rpm for 7 min, and the particles were dispersed 

back into THF. The polymer chains were cleaved by dissolving 50 mg of polymer-

grafted nanoparticles in 3 mL of THF and treating with 0.2 ml aqueous HF (49%). 

The solution was stirred overnight and the cleaved polymer chains were analyzed 

by GPC.39 
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4.3.8 Cleavage of CPDB agents from the polymeric chain ends of the Silica 

nanoparticles: 

Polymer-grafted nanoparticles (1 g) of HEMA-LA-g-SiO2 or HEMA-SA-g-

SiO2 were dispersed in 40 ml THF and solid AIBN (20 eq, 0.12 g) was added at the 

ratio of ([CTA]:[AIBN]= 1:20). The solution was heated at 65ᵒC under nitrogen for 

1 hr. The solution was poured into 400 ml of hexanes and centrifuged at 4000 rpm 

for 7 min to recover the nanoparticles.8 

4.3.9 Preparation of NBD-labelled amino acids (NBD-COOH): 

A solution of 6-aminohexanoic acid (1.2 eq, 0.39 g, 3 mmol) and NaHCO3 (3 

eq, 0.63 g, 7.5 mmol) in MeOH (40 mL) were stirred at room temperature for 30 

min and then refluxed in a 65°C oil bath. Then, the 4-chloro-7-nitrobenzofurazan 

(NBD-Cl, 1 eq, 0.5 g, 2.5 mmol) was dissolved in MeOH (5 mL) and added 

dropwise to the solution. After two hours, the reaction mixture was cooled to room 

temperature and acidified to approximately pH 2 with 1M HCl. Subsequently, the 

mixture was extracted three times with EtOAc (25 mL), washed with brine, dried 

with MgSO4 filtered, and the solvent removed using a rotary evaporator. The 

resultant NBD-labelled amino acid was then recrystallized from aqueous MeOH.40 

The product was isolated as bright orange crystals (yield: 82%, 0.6 g). Tm= 156-

158°C, UV (MeOH) λmax: 335, 458. FT-IR νmax/cm-1 1700 (strong, sharp C=O). MS 

(EI+) m/z: [M]+ 294. 
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4.3.10 Preparation of NBD-labelled hexamethylenediamine (NBD-NH2): 

Hexamethylenediamine-NBD dye was synthesized in two steps, first 

preparing N-Boc-hexamethylenediamine-NBD that was converted to the desired 

product. Preparation of N-Boc-hexamethylenediamine-NBD: A solution of 4-

chloro-7-nitrobenzofurazan (NBD-Cl) (1 eq, 0.75 g, 3.76 mmol) and mono-Boc-

hexamethylenediamine (1 eq, 0.89 g, 4.31 mmol) was prepared in 40 mL ethanol. 

Pyridine (catalytic, 3400 μL) was added to the stirred solution and allowed to stir 

for 30 min. The mixture was concentrated and purified by column 

chromatography (toluene: ethyl acetate 7:3) to obtain the product as a red foam. 

Preparation of hexamethylenediamine-NBD: At room temperature, the Boc-

protected dye was dissolved in a 1:1 solution of trifluoroacetic acid (TFA): 

dichloromethane (DCM) and stirred for 1 h. Subsequently, the solution was 

concentrated and resuspended in acetonitrile. The final product was obtained as 

golden crystals (Tm= 149-152°C) after the solution was precipitated into cold 

diethyl ether (0.84 g, yield 80%).41 UV (MeOH) λmax: 336, 460. FT-IR νmax/cm-1 3380 

(medium, sharp N-H). HRMS (EI) (m/z) calcd for C12H17N5O3: 279.1382; found: 

279.3014. 
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4.3.11 Aminohexanoic acid-NBD Conjugate on HEMA-LA-g-SiO2 and 

Hexamethylenediamine-NBD conjugate on HEMA-SA-g-SiO2: 

Polymer-g-SiO2 (1 eq.) (HEMA-LA-g-SiO2, 0.53 g, 1.94 mmol or HEMA-SA-

g-SiO2, 0.5 g, 2.13 mmol), dye-labeled (1.1 eq) (aminohexanoic acid-NBD, 0.63 g, 

2.13 mmol or hexamethylenediamine-NBD, 0.66 g, 2.39 mmol, respectively), and 

dicyclohexylcarbodiimide (DCC) (1.2 eq, 0.48 g or 0.53 g respectively) were 

dissolved in 40 mL of THF. (Dimethylamino) pyridine (DMAP) (0.1 eq, 0.194 

mmole, or 0.217 mmole, respectively) was added slowly to the solution. 

Subsequently, the solution was stirred at room temperature for 6 h. Then, the 

solution was filtered, and the solvent was concentrated using a rotary evaporator. 

The solution was precipitated by pouring into 400 mL of hexane and centrifuged 

at 4000 rpm for 7 min to recover the nanoparticles. The precipitation-dissolution 

process was repeated twice until the supernatant layer after centrifugation was 

colorless to ensure the removal of free dyes. 

4.3.12 Modification of CDSS RAFT agent with phosphate group: 

Two synthetic steps were used to synthesize the CDSS-phosphate. 4-Cyano-

4-(dodecylsulfanylthiocarbonyl) sulfanyl pentanoic acid (CDSS) (4 g, 9.9 mmol), 

1,6-hexanediol (7 g, 59.45 mmol), and N, N′-dicyclohexylcarbodiimide (DCC) (2.25 

g, 10.9 mmol) were placed in 500 ml round bottom flask and dissolved in 100 ml 

of THF. The mixture was cooled to 0°C and flushed with N2 for 15 min. A solution 



 

110 

of 4-dimethylaminopyridine (DMAP) (0.06 g, 0.49 mmol) in 15 ml THF was added 

dropwise over 30 min. The solution was stirred overnight and then allowed to 

warm to room temperature. Next, the solids formed during the reaction were 

filtered off and the solution was concentrated by removing the solvent using a 

rotary evaporator. The product residue was dissolved in 100 ml DCM and washed 

three times with DI water. The DCM layer was isolated and dried with MgSO4 for 

2 hours. MgSO4 was filtered off and the solvent was removed under a rotary 

vacuum. Then, the residue was subjected to silica column chromatography (5:4, 

hexanes: ethyl acetate). The product was recovered as a yellow oil (4.2 g, 84% 

yield). 1H NMR (300 MHz, CDCl3): δ (ppm) 4.70 (s, 1H) (CH2OH), 4.12 (t, 2H) 

(O=CCH2CH2), 3.65 (t, 2H) (CH2CH2OH), 3.33 (t, 2H) (CH2CH2S), 2.64–2.60 (t, 2H) 

(CN-CCH2CH2), 2.38–2.33 (t, 2H) (CN-CCH2CH2C=O), 2.0-1.9 (t, 2H) 

(CH2CH2CH2S), 1.80 (s, 3H) (CH3C-CN), 1.65–1.40 (m, 8H) (OCH2(CH2)4CH2OH), 

1.25-1.29 (s, 18H), 0.88 (t, 3H) (CH3CH2CH2). 13C NMR (300 MHz, CDCl3): δ (ppm) 

217, 171.6, 119, 65.1, 62.7, 46.4, 37, 33.9, 32.6, 31.9, 29.8, 29.6, 29.5, 29.4, 29.3, 29.1, 

28.9, 28.5, 27.7, 25.7, 25.4, 24.9, 22.7. FT-IR: 1700 cm-1 sharp (C=O), 3500 cm-1 broad 

(O-H). HRMS (EI) [M+H] Calcd for C25H45NO3S3: 503.2562; found 503.2573. 

The second step of synthesizing CDSS-phosphate was accomplished using 

the following procedure. The previous product (CDSS-OH) (4 g, 7.94 mmol) and 

triethylamine (0.96 g, 9.52 mmol) were dissolved in 50 ml of dry THF using a 250 
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ml round bottom flask. The solution was flushed with dry N2 for 30 min and cooled 

to 0°C, followed by the dropwise addition of phosphoryl chloride (4.26 g, 27.79 

mmol) over one hour. The solution was allowed to warm to room temperature and 

stirred overnight under an N2 atmosphere. Then, DI water (100 ml) was added to 

the solution and stirred for two hours. Using the separatory funnel, the solution 

was transferred to an organic layer by adding DCM (100 mL) which was washed 

with three portions of DI water. The organic layer was isolated and dried with 

MgSO4. The MgSO4 was filtered off and the DCM solvent was removed under 

reduced pressure. The product was recovered as a thick yellow to a brown oil (3.57 

g, 77% yield). 1H NMR (300 MHz, CDCl3): δ (ppm) 6.29 (s, 2H) O-P(OH)2, 4.12 (t, 

2H) (O=CCH2CH2), 4.01 (t, 2H) (CH2CH2O-P), 3.33 (t, 2H) (CH2CH2S), 2.64–2.60 (t, 

2H) (CN-CCH2CH2), 2.38–2.33 (t, 2H) (CN-CCH2CH2C=O), 2.0-1.9 (t, 2H) 

(CH2CH2CH2S), 1.80 (s, 3H) (CH3C-CN), 1.65–1.40 (m, 8H) (OCH2(CH2)4CH2OH), 

1.25-1.29 (s, 18H), 0.88 (t, 3H) (CH3CH2CH2). 13C NMR (300 MHz, CDCl3): δ (ppm) 

217, 171.7, 119, 67.4, 65.1, 46.4, 37.1, 33.9, 31.9, 29.8, 29.6, 29.4, 29.3, 29.1, 29, 28.4, 

27.7, 25.4, 25, 24.8, 22.7. 13P NMR (300 MHz, CDCl3): δ (ppm) 1.71. FT-IR: 1700 cm-

1 sharp (C=O), 1195 cm-1 (P=O). HRMS (EI) [M+H] Calcd for C25H46NO6PS3: 

584.2300; found 584.2298. 
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4.3.13 Functionalization of monomodal nanoparticles SiO2-g-HEMA-LA-dye 

and SiO2-g-HEMA-SA-dye by the second modified CDSS RAFT Agent: 

The second modified CDSS-phosphate agent was attached to the surface of 

monomodal silica nanoparticles, as previously described. CDSS-phosphate was 

functionalized directly on the nanoparticles in a process similar to the one 

described for the first chain functionalization. THF solution (50 mL) of (1 g) 

monomodal nanoparticles was placed in a two-necked round bottom flask. Then, 

CDSS-phosphate (0.124 g, 0.21 mmol, 5 mL) was added, and the solution was 

refluxed at 70°C overnight under nitrogen protection. Next, the reaction was 

cooled to r.t. and poured into hexanes (500 mL). The nanoparticles were recovered 

by centrifugation (3500 rpm for 7 min.). This redispersion−precipitation procedure 

was repeated two times until the supernatant layer after centrifugation was 

colorless. The second chains of the CDSS-anchored silica nanoparticles were dried 

and analyzed using UV-vis analysis to determine the graft density. 

4.3.14 Graft Polymerization of glycomonomer (TMS-MAG) from SiO2-g-

(HEMA-LA-dye, CDSS) and SiO2-g-(HEMA-SA-dye, CDSS) to synthesize the 

second brush: 

The nanoparticles (SiO2-g-(HEMA-LA-dye, CDSS) and SiO2-g-(HEMA-SA-

dye, CDSS)) (0.5 g by weight of silica) were dispersed in 20 mL THF and added to 

a Schlenk flask along with predetermined the glycomonomer (TMS-MAG) and 
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AIBN (0.2 mL of 0.001 M THF solution). The mixture was degassed by three freeze-

pump−thaw cycles, backfilled with nitrogen, and then placed in an oil bath at 65°C 

for 24 h after which the polymerization was quenched in ice water. The 

nanoparticles were recovered by precipitating into hexanes and centrifugation at 

4000 rpm for 7 minutes. 

4.4 Results and discussion: 

4.4.1 Synthesis of bimodal nanoparticles: 

Designing bimodal nanoparticles using the RAFT agent technique for 

various monomers has been investigated for less than 10 years.8,42,43 Using the 

RAFT polymerization technique and the grafting-from approach, several 

researchers have previously shown this to be an effective method of synthesizing 

bimodal polymer brushes on various surfaces of nanoparticles.44–46 In the current 

work, we initially attempted to use a strategy shown in Scheme 4.1. This was 

modeled after our previous work on bimodal grafted nanoparticles.8,44,47 However, 

the attachment of the second round of aminosilane was not successful. We 

hypothesize that during the addition of the amine containing silane, the amine 

group also attached the ester groups in the first population of HEMA-LA and 

HEMA-SA grafted chains, leading to side reactions that prevented the grafting of 

the second population of polymer chains.  
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To overcome this limitation, we re-designed the synthetic strategy. In this 

new successful strategy, we prepared high graft density, low molecular weight 

polymer chains of the pH-sensitive monomers HEMA-LA, HEMA-SA that 

contained a hydrolytically sensitive ester linkage on the surface of silica 

nanoparticles as the first polymeric population. The polymerization was 

conducted using 4-cyano-4-(phenylcarbonothioylthio) pentanoic acid (CPDB) as 

the first RAFT agent. For the second population of chains at low graft density and 

high molecular weight, the glycomonomer 2-methacrylamido glucopyranose 

(MAG), was polymerized using the 4-cyano-4-[(dodecylsulfanylthiocarbonyl) 

Scheme 4.1: Initially proposed synthesis of bimodal brush nanoparticles using 

two different RAFT agents. 
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sulfanyl]pentanoic acid (CDSS) as a second RAFT agent. This chain transfer agent 

was modified to contain a phosphonate group that was grafted directly on the 

surface of silica nanoparticles and avoids using the 3-

aminopropyldimethylethoxysilane (Scheme 4.2). 

4.4.2 Grafting first polymer population chains: 

The monomers HEMA-LA, HEMA-SA that containing a pH-sensitive ester 

linkage were synthesized according to our previous work, using the ring-opening 

reaction of the corresponding cyclic lactone compound, L-lactide or succinic 

anhydride, with hydroxyethyl methacrylate (HEMA) catalyzed by stannous 2-

Scheme 4.2: Proposed strategy to synthesis bimodal brush nanoparticles using 

two different RAFT agents. 
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ethylhexanoate and DMAP, respectively. The graft densities of polymer chains on 

the surface of silica nanoparticles were controlled by varying the ratio of silica 

nanoparticles to 3-aminopropyldimethylethoxysilane to prepare SiO2-g-CPDB  

nanoparticles.38,48–50 As reported earlier, the 2-(2-cyanopropanyl dithiobenzoate) 

(CPDB) RAFT agent provided a controlled polymerization with both monomers 

HEMA-LA and HEMA-SA. Both have compatibly polymerized with CPDB using 

1/500 as the feed ratio [CPDB]/[Monomer] for the polymerization under the 

standard conditions of 65ᵒC and inert gas. The grafting density of the chains 

attached to the surface of silica nanoparticles prior to polymerization was 

measured using UV-Vis spectrometry. Azobisisobutyronitrile (AIBN) was used as 

the initiator for the polymerization with a ratio of 10:1 [CPDB]/[AIBN] for all 

polymerizations of both monomers (HEMA-LA, HEMA-SA). The molecular 

weights of the various P(HEMA-LA) and P(HEMA-SA) were evaluated using GPC 

by cleavage the polymeric chains from the surface of silica nanoparticles using 

hydrofluoric acid (HF). 

4.4.3 CPDB RAFT agent cleavage: 

After completing the first RAFT polymerization, the CPDB agent remains 

active on the chain ends and could be further polymerized upon the attempts to 

prepare a second chain population. Therefore, prior to the attachment of the 

second polymer population, it was necessary to cleave the first RAFT agent end 
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group from the first polymer population.51 Therefore, the cleavage reaction was 

achieved using a high ratio of the AIBN (monomer/initiator; 1/20) via a radical 

cross-coupling mechanism.52–54 As shown in Figure 4.1 for HEMA-LA and HEMA-

SA grafted silica nanoparticles, UV spectroscopy was used to detect the CPDB 

peaks before and after the cleavage reaction.55 Prior to cleavage, the nanoparticles 

were pink in color and showed absorbance at 302.5 nm. This peak disappeared 

from the UV spectrum after the cleavage reaction, and the color of the 

nanoparticles changed to white polymer-coated nanoparticles. The disappearance 

of the 302.5 nm absorbance peak provided evidence to the nearly quantitative 

removal of RAFT moieties.  

 

 

 

 

 

 

 

 

Figure 4.1: UV absorption spectra of polymer grafted nanoparticles with 

cleaved CDSS RAFT agent (red line), and with CDSS attached to the polymers 

on the surface of silica nanoparticles (black line). 
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4.4.4 NBD-dyes attachment 

The main goal for synthesizing the bimodal brush nanoparticles is to 

provide a platform to use in biological applications. Therefore, it became necessary 

to develop a method to monitor the release of an attached group from the polymer 

grafted nanoparticles. Accordingly, labeling the polymer grafted nanoparticles 

with fluorescent dyes is advantageous in monitoring the presence, payload release 

and movement of bimodal nanoparticles in biological systems.56 Two different 

dyes (aminohexanoic acid-NBD, hexamethylenediamine-NBD) were synthesized, 

as shown in our previous work. Both dyes were covalently conjugated to the 

polymer grafted nanoparticles SiO2-g-HEMA-LA, SiO2-g-HEMA-SA via the 

Steglich esterification reaction using (DCC/DMAP) catalyst to form the ester and 

amide bonds,57 respectively (Scheme 4.3).  

This method was successful for attaching the fluorescent dyes to the 

polymer grafted silica nanoparticles for release and tracking studies. The UV-vis 

analysis of the nanoparticles confirmed the existence of the absorption peak at 

∼460 nm for NBD dyes in both dye-labeled polymer grafted nanoparticles (SiO2-

g-P(HEMA-LA)-dye, SiO2-g-P(HEMA-SA)-dye). In addition, the presence of a 

medium, sharp C=O stretching vibration peak at ∼1731 cm−1 using the FT-IR 

analysis, have ascribed to the formed ester group in SiO2-g-P(HEMA-LA)-dye. 

Likewise, the presence of a strong, sharp C=O stretching vibration peak at ∼1625 
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cm−1, has indicated to the amide group in SiO2-g-P(HEMA-SA)-dye, as shown in 

Figure 4.2. Both UV-vis and FT-IR demonstrated the successful attachment of dyes 

to the polymer grafted nanoparticles. The dispersion and the fluorescence under 

UV-vis of the dye-labeled nanoparticles were shown in Figure 4.3.   

 

 

Scheme 4.3: Attaching (a) NBD-COOH dye to the SiO2@P(HEMA-LA) and (b) 

NBD-NH2 dye to the SiO2@P(HEMA-SA). 
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4.4.5 Grafting the second RAFT agent (CDSS-phosphate): 

After attachment of the first population of polymer chains, the removal of 

the RAFT agent and the attachment of the dyes, the second population was 

synthesized by attachment of the second RAFT agent, 4-cyano-4-

((dodecylsulfanylthiocarbonyl) sulfanyl)pentanoic acid (CDSS), which is different 

from the first chain transfer agent, 4-cyano-4-(phenylcarbonothioylthio)pentanoic 

acid (CPDB) that was used to synthesize the first polymer brush-grafted silica 

Figure 4.2: UV-vis, FT-IR spectrums of SiO2-g-P(HEMA-LA)-dye (red curve), 

and SiO2-g-P(HEMA-SA)-dye (black curve). 

Figure 4.3: The dispersion of dye labeled polymer grafted nanoparticles (SiO2-

g-P(HEMA-SA)-dye) and the fluorescence under UV-vis light. 
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nanoparticles. The modification of a novel phosphate-containing CTA agent for a 

RAFT polymerization was previously explored in our group.58 The modified 

phosphate-CDSS was used to avoid using 3-aminopropyldimethylethoxysiline, 

which apparently reacted with the ester groups of dye-labeled side chains of the 

first population of bimodal nanoparticles.  

Phosphate-containing CDSS agents are quite useful as a method for robust 

attachment on the surface of silica nanoparticles. The resultant Si-O-P bond is 

readily formed and hydrolytically stable. Synthesis of the phosphate-containing 

CDSS agent was performed in two synthetic steps (Scheme 4.4). In the first step, 

the esterification of the acid-containing CDSS RAFT agent was achieved using an 

excess of 1,6-hexanediol in dilute solution to prevent the formation of difunctional 

CDSS agents. In the second step, the unreacted alcohol moiety that resulted from 

the first step was converted to the phosphate using phosphoryl chloride (POCl3).  

 The conversion of the alcohol to the phosphate moiety was confirmed via 

1H-NMR and 31P-NMR analysis. Clearly, we could observe the difference among 

1H-NMR spectrums of CDSS, CDSS-OH, and CDSS-phosphate. The chemical 

peaks of adjacent protons at -(C=O)-O-CH2-(CH2)5 (δ = 4.1 ppm), (CH2)5-CH2-OH 

Scheme 4.4: Synthesis of phosphate-containing CDSS agent. 
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(δ = 3.6 ppm), were shifted to the downfield when going from alcohol functionality 

to phosphate moiety -(C=O)-O-CH2-(CH2)5, (CH2)5-CH2-O-P (δ ∼4.2-4.0 ppm), as 

shown in Figure 4.4. Also, the presence of the phosphorus was confirmed by 31P-

NMR which showed a peak at δ ∼1.7 ppm. Furthermore, the successful conversion 

of the carboxylic acid in the RAFT agent (CDSS) to the phosphate moiety in the 

modified RAFT agent (CDSS-phosphate), was confirmed using the UV-vis 

analysis (no degradation of the trithiocarbonate moiety occurred), and FT-IR 

analysis (medium sharp peak at ∼1200 cm-1 for P=O) (Figure 4.5).   

Next, the attachment of the second RAFT agent (CDSS-phosphate) on the 

surface of SiO2@P(HEMA-LA) or SiO2@P(HEMA-SA) was achieved using a similar 

approach as employed for the first RAFT polymerization. The synthetic RAFT 

agent CDSS-phosphate was able to diffuse to the surface of the silica nanoparticles 

Figure 4.4: (a) 1H-NMR spectrums of CDSS RAFT agent, CDSS-OH, and 

CDSS-Phosphate and (b) 31P-NMR spectrum of CDSS-Phosphate. 
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even in the presence of the grafted brushes from the first polymer population. The 

grafting density of the second polymer brushes relied on the concentration of the 

CDSS-phosphate agent. Various graft densities (0.05−0.4 ch/nm2) of the second 

population were successfully achieved by controlling the ratio of RAFT agent 

(CDSS-phosphate) to the first brush grafted nanoparticles. The CDSS grafted 

nanoparticles were precipitated in hexanes and re-dispersed three times in THF to 

remove unreacted CDSS-phosphate. The attachment of the CDSS-phosphate 

RAFT agent on the surface of the nanoparticles was confirmed using the UV 

spectrum of the RAFT agent peak at 305 nm (Figure 4.6).  

4.4.6 Synthesis and polymerization of the second monomer (TMS-MAG): 

RAFT polymerization of the second polymer brush population was 

accomplished using the glycomonomer, trimethylsilyl-protected 2-deoxy-2-

methacrylamido glucopyranose (TMS-MAG), as a second monomer, to give 

Figure 4.5: UV-vis, FT-IR spectrums of synthesized RAFT agent (CDSS-

Phosphate). 
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bimodal nanoparticles. The glycomonomer (TMS-MAG) was synthesized, as 

shown in Scheme 4.5, in two steps.37,59   

 

 

 

 

 

 

 

 

First, the glucosamine was protected via a trimethylsilylation reaction by 

reacting with N, O-bis(trimethylsilyl)acetamide in pyridine. Second, the TMS- 

MAG was synthesized by reacting to the TMS-protected glucosamine with 

methacryloyl chloride in DMF. Characterizations of the glycomonomer (TMS-

MAG) show high purification via simple extractions with hexanes because of the 

Figure 4.6: UV-vis of the CDSS-Phosphate grafted on the surface of 

monomodal nanoparticles. 

Scheme 4.5: Synthesis of the glycomonomer TMS-MAG. 
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nonpolar nature of the product. The chemical shifts of Hh (doublet, 5.1 ppm) and 

Ca (93 ppm), as shown in the 1H-NMR and 13C NMR spectra of TMS-MAG in 

(Figures 4.7 and 4.8, respectively) confirmed the chemical structure.60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: 1H-NMR of the glycomonomer TMS-MAG. 

Figure 4.8: 13C-NMR of the glycomonomer TMS-MAG. 
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In initial graft polymerization experiments, we observed the slow 

polymerization of TMS-MAG that led to the hypothesis that the propagation step 

of TMS-MAG is slow because of the steric hindrance around the methacrylamido 

reactive group caused by the surrounding trimethylsilyl groups. These results can 

be compared with the solution polymerization of the unprotected monomer 

(MAG), as reported by separate groups,17 where the polymerization was fast and 

high molecular weight polymers were obtained. The molecular weight of the 

second grafted polymer P(TMS-MAG) could be increased by maintaining the  ratio 

of monomer (TMS-MAG) to RAFT agent at 500/1 to avoid gelation (Table 4.1).  

Table 4.1: Polymerization of the glycomonomer (MAG-TMS) using CDSS as 

RAFT agent and AIBN as an initiator at 65oC. 
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Gel permeation chromatography (GPC) was used to measure the molecular 

weight (Mn) and dispersity index (Đ) of the second polymer brush of bimodal 

nanoparticles,61 indicating reasonable control over the second polymerization. The 

quantitative GPC results of both bimodal nanoparticles, SiO2-g-P(HEMA-LA-

dye)-P(TMS-MAG), and SiO2-g-P(HEMA-SA-dye)-P(TMS-MAG) are summarized 

in Table 4.2. 

 

Figure 4.9 a, b, shows the GPC traces of the bimodal polymer brushes on 

the nanoparticles compared to the GPC traces of the first brushes on the 

nanoparticles. The GPC trace for bimodal nanoparticles, SiO2-g-P(HEMA-LA-

dye)-P(TMS-MAG), and SiO2-g-P(HEMA-SA-dye)-P(TMS-MAG), distinctly show 

Table 4.2: Molecular weights and grafting densities of bimodal nanoparticles, 

SiO2@P(HEMA-LA-dye)-PMAG, and SiO2@P(HEMA-SA-dye)-PMAG. 
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that the cleaved polymers have a binary distribution of molecular weight. The 

appearance of these two distributions has confirmed the composition of bimodal 

nanoparticles.62 In both bimodal grafted nanoparticles, the higher peak of 

molecular weight distribution indicates the long polymer brushes on the surface 

of nanoparticles that have a short elution time. A short, dense brush of SiO2-g-

P(HEMA-LA-dye) was polymerized under controlled radical polymerization 

conditions at 0.237 ch/nm2 with a molecular weight distribution of 12 kDa and Đ 

of (1.2). As well, the low distribution peak has the same average molecular weight 

Figure 4.9: GPC traces of bimodal grafted silica nanoparticles a) bimodal 

grafted nanoparticles SiO2-g-P(HEMA-LA-dye)-P(TMS-MAG) (blue line), 

deconvoluted peaks of monomodal nanoparticles SiO2-g-P(HEMA-LA-dye) 

(green line), and SiO2-g-P(TMS-MAG) (red line), measured monomodal grafted 

nanoparticles SiO2-g-P(HEMA-LA) (black line). b) bimodal grafted 

nanoparticles SiO2-g-P(HEMA-SA-dye)-P(TMS-MAG) (blue line), 

deconvoluted peaks of monomodal nanoparticles SiO2-g-P(HEMA-SA-dye) 

(green line), and SiO2-g-P(TMS-MAG) (red line), measured monomodal grafted 

nanoparticles SiO2-g-P(HEMA-SA) (black line). 
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as the distribution in monomodal nanoparticles that have a long elution time. The 

second population of TMS-MAG was polymerized at a density of 0.128 ch/nm2 

with a molecular weight of 45 kDa and dispersity (Đ) 1.44. On the other hand, the 

short, dense brush of SiO2-g-P(HEMA-SA-dye) was polymerized at 0.237 ch/nm2 

with a molecular weight of 15 kDa and Đ of 1.24. While a long, dense brush was 

polymerized at 0.156 ch/nm2 under controlled radical polymerization with a 

molecular weight of 38 kDa and Đ of 1.39.  

  As the last step, deprotection of the glycopolymer was performed to 

remove the TMS groups from TMS-MAG polymer using the acid-catalyzed 

method in THF; 2 min of reaction at 25°C produced a quantitative and nearly 

instantaneous removal (>99%) of the TMS groups as confirmed by 1H-NMR 

spectroscopy. On the basis of this scheme, we have successfully achieved the 

synthesis of bimodal sugar-monomer containing (or “sweet”) grafted 

nanoparticles containing two different sets of polymer chains. Bimodal grafted 

nanoparticles of high graft density, low molecular weight of HEMA-LA and 

HEMA-SA and low graft density, high molecular weight of a sugar-containing 

monomer (MAG) were synthesized. 

The entire strategy for the synthesizing of “Bimodal Sweet Nanoparticles” 

using two different RAFT agents (CPDB, CDSS), via grafting-from approach, is 

described in Schemes 4.6, 4.7. 
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The bimodal RAFT polymerization grafting-from approach described 

above could be used to prepare several different types of bimodal polymer brush-

anchored silica nanoparticles using different RAFT agents. Additionally, labeling 

the bimodal grafted nanoparticles with fluorescent dyes will be valuable to 

monitor the possible uptake by bacteria in biological systems. Figure 4.10 shows 

the fluorescence of the nanoparticles under UV light demonstrating that the 

particles retain this property even in the presence of other functionalities attached 

to the nanoparticle surface.  The novel strategy described here opens up the 

Scheme 4.6: Total synthesis of bimodal “sweet nanoparticles” SiO2-g-

P(HEMA-LA-dye)-P(MAG). 
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Scheme 4.7: Total synthesis of bimodal “sweet nanoparticles” SiO2-g-

P(HEMA-SA-dye)-P(MAG). 

Figure 4.10: The fluorescence under UV light of the “Sweet Bimodal 

nanoparticles, (a)SiO2@P(HEMA-LA-dye)-PMAG, and (b) SiO2@P(HEMA-SA-

dye)-PMAG.  
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opportunity for designing a wide range of multifunctional nanoparticles and 

advanced polymer nanocomposites that could be used in various applications. 

4.5 Conclusion: 

We describe a novel synthesis of bimodal brush grafted nanoparticles that 

use two different RAFT agents (CPDB, CDSS) on the same nanoparticle. All of the 

previous reports of bimodal grafted nanoparticles were synthesized by grafting 

the same or different monomers using one RAFT agent, but in this research, we 

were able to polymerize two very different monomers using the grafting-from 

technique and two different chain transfer agents (CTA’s), further expanding the 

types of functionality that can be installed on the surface of nanoparticles. These 

bimodal polymer grafted nanoparticles are envisioned for use as antibiotic 

delivery vehicles for biomedical applications. High graft density, low molecular 

weight of one of the “controlled release” monomers 2-((2-((2-

hydroxypropanoyl)oxy)propanoyl)oxy)ethyl methacrylate (HEMA-LA) or 2-

(methacryloyloxy)ethyl succinate (HEMA-SA) that contained hydrolytically 

sensitive ester linkages were initially grafted on the surface of the silica 

nanoparticles using 4-cyano-4-(phenylcarbonothioylthio) pentanoic acid (CPDB) 

as the first RAFT agent. The second polymer population of low graft density, high 

molecular weight chains made from a glycomonomer were grafted on the surface 

of silica nanoparticles using 4-cyano-4-[(dodecylsulfanylthiocarbonyl) 
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sulfanyl]pentanoic acid (CDSS) as the second RAFT agent. The bimodal grafted 

architecture was confirmed by GPC that showed two different peaks representing 

the two different polymer chain populations. 
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CONCLUSION AND FUTURE WORK  
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5.1 Conclusion: 

The reversible addition-fragmentation chain transfer (RAFT) 

polymerization technique was used to functionalize polymer chains on the surface 

of silica nanoparticles. Monomodal and bimodal grafted silica nanoparticles were 

designed, synthesized and characterized to create an important platform for 

synthesizing nanoparticles for medical applications, especially novel strategies to 

combat bacterial resistance. Polymer grafted silica nanoparticles were synthesized 

and characterized with the goal to demonstrate new properties or functionality 

including: polymerization of “controlled release” monomers containing a 

hydrolytically sensitive ester linkage, engineering water-dispersible bimodal 

brush grafted silica nanoparticles as potentially antibiotic-carriers, and designing 

“Sweet-Nanoparticles” to enhance cell uptake of nanoparticles as part of a larger 

strategy to combat antibiotic-resistant bacteria. 

Controlled release of polymer grafted silica nanoparticles containing a 

hydrolytically sensitive ester linkage was studied. Two monomers were 

synthesized and polymerized, 2-((2-(propionyloxy) propanoyl)oxy)ethyl 

methacrylate (HEMA-LA), and 4-(2-(methacryloyloxy)ethoxy)-4-oxobutanoic acid 

(HEMA-SA). We found the RAFT agent, 4-cyanopentanoic acid dithiobenzoate 

(CPDB), is compatible with the controlled radical polymerization of these 

monomers (HEMA-LA, HEMA-SA), with control of the molecular weight and 
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polydispersity. Labeled-dyes were synthesized and attached to the polymer 

grafted nanoparticles to monitor the release rate from the polymers. The release 

rates were investigated using phosphate buffer solution (PBS, pH = 7.4) at two 

different temperatures, 25ᵒC and 37ᵒC. The cumulative release rates of dye-loaded 

polymer grafted nanoparticles were studied over 58 days. SiO2-g-P(HEMA-LA-

dye) nanoparticles showed a dye release rate of approximately 69.23% at 25ᵒC 

during the 58 days, which is an average of 18% greater than the release rate of SiO2-

g-P(HEMA-SA-dye) (51.28%). Additionally, SiO2-g-P(HEMA-LA-dye) showed a 

higher release rate of approximately 82.62% at 37ᵒC during the same period (58 

days), compared with SiO2-g-P(HEMA-SA)-dye) nanoparticles that showed a 

65.17% release rate. Overall, the cumulative release rates of SiO2-g-P(HEMA-LA-

dye) nanoparticles were higher than the release rates of SiO2-g-P(HEMA-SA-dye) 

at both temperatures. We ascribe these differences to the higher hydrolytic 

susceptibility of the lactide ester linkage compared to the “normal” esters of the 

succinic ester linkages.   

Water-dispersible bimodal brush grafted silica nanoparticles were 

designed as a platform that could be used in biomedical applications as antibiotic-

carriers. Bimodal grafted silica nanoparticles were synthesized using RAFT 

polymerization via grafting two different polymer chain populations. The first 

population, HEMA-LA or HEMA-SA, were functionalized on silica nanoparticles 
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at a high graft density and low molecular weight to use as antibiotic-delivery 

carriers. Subsequently, a water-dispersible monomer (methacrylic acid, MAA) 

was polymerized on the surface of nanoparticles at low graft density and high 

molecular weight for the second polymer chain population. GPC analysis 

confirmed the composition of the bimodal silica nanoparticle architecture. Two 

GPC peaks were observed, a large peak which appeared at low elution time that 

indicated the presence of high molecular weight and low graft density of P(MAA) 

chains. A second smaller peak appeared at higher elution time which represented 

the short brush, high graft density of the P(HEMA-SA-dye) or P(HEMA-LA-dye) 

chains. 

Bimodal “sweet-nanoparticles” were synthesized using the grafting-from 

RAFT polymerization technique. This strategy created a novel platform to prepare 

various bimodal nanoparticles that could be used to enhance nanoparticle uptake 

and combat antibiotic-resistant bacteria. Additionally, we believe this is the first 

example of a synthesis of bimodal grafted nanoparticles using two different RAFT 

agents on the surface of silica nanoparticles. The first polymer chain population 

was polymerized on the surface of the silica nanoparticles using 4-cyano-4-

(phenylcarbonothioylthio)pentanoic acid (CPDB) as a RAFT agent. Cyano-4-

[(dodecylsulfanyl thiocarbonyl)sulfanyl]pentanoic acid (CDSS) was used as the 

second RAFT agent also anchored on the surface of the silica nanoparticles. The 
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first population was the high graft density and low molecular weight of P(HEMA-

LA) or P(HEMA-SA). The second polymer chain population was the low graft 

density and high molecular weight polymer made from the glycomonomer, α-2-

deoxy-2-methacrylamido 1,3,4,6-tetra-(O-trimethylsilyl) D-glucopyranose (TMS-

MAG). 

Furthermore, the composition of the bimodal brush grafted silica 

nanoparticle architecture was confirmed via GPC and TGA analysis. In the GPC 

analysis, the first peak at the low elution time was ascribed to PMAG chains of 

high molecular weight and low graft density. The second brush population 

indicated by the second GPC peak at higher elution times, was attributed to the 

P(HEMA-LA-dye) or P(HEMA-SA-dye) chains. TGA weight loss data correlated 

reasonably well with the GPC findings.   

5.2 Future Work: 

This thesis focused on the design, synthesis, and characterization of 

polymer grafted silica nanoparticles that are considered as an important platform 

towards designing functionalized nanoparticles that could be used in biomedical 

applications to combat bacterial resistance. 

In this work, we polymerized two types of "controlled release" monomers 

(HEMA-LA, HEMA-SA) that have a reasonable release rate over 58 days. One 

suggestion for future research is the synthesis of different kinds of monomers that 
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will have a higher release rate over shorter times and to investigate their RAFT 

polymerization on the surface of silica nanoparticles. For instance, HEMA-GL, 

HEMA-DO, and HEMA-DA are derivatives formed by reacting 

hydroxyethylmethacrylate (HEMA) with different ring-opening compounds such 

as glycolide, p-dioxanone, and diglycolic anhydride, respectively (Scheme 5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5.1: Synthesis various kinds of monomers HEMA-GL, HEMA-DO, 

and HEMA-DA. 
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In each of these cases, the less sterically hindered and the glycolic acid 

linking structures are expected to increase the rate of ester hydrolysis. Comparing 

the cumulative release rate of HEMA-GL, HEMA-DO, and HEMA-DA with the 

release rate of HEMA-LA, HEMA-SA would provide further insights on tuning 

release rates useful for antibiotic-delivery vehicles in biomedical applications. In 

addition, antibiotics (instead of dyes) could be attached to the polymer (PHEMA-

LA, or PHEMA-SA) that are grafted on the surface of silica nanoparticles. Once 

nanoparticles are grafted with polymer brushes that have antibiotics in each repeat 

unit, these samples will be used to study the effectiveness against bacteria using 

the "controlled release monomers" concept. Locally, the concentration and release 

of antibiotics should be much higher than many other types of drug delivery. With 

changes in pH conditions of the environment, it becomes possible to cleave the 

antibiotic from the polymer brush that is selective to the pH of the type of tissue. 

One of the essential and significant roles behind synthesizing bimodal 

grafted nanoparticles and modifying the surface with various polymer chains is 

controlling the interface between the organic polymer matrix and the inorganic 

filler core. Moreover, achieving better properties of the polymer matrix will 

depend on the polymer chain populations that are grafted on the surface of 

nanoparticles. In many applications, water-dispersible bimodal brush grafted 

nanoparticles are needed where the grafting density and molecular weight of both 
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polymer chain populations are clearly different to enhance the various properties 

and dispersion in a polymer matrix. In the current work, we outlined the problem 

of using an aminosilane for the grafting of a second population when the first 

population had a sensitive ester group linkage. This was solved by using a 

modified RAFT agent, CPDB-phosphate group, to polymerize the methacrylic acid 

(MAA) as a second polymer population. In the future, another approach could be 

used to design water-dispersible bimodal nanoparticles by grafting the high 

molecular weight, low grafting density of MAA as a first polymer population and 

then grafting the low molecular weight, high grafting density of (HEMA-LA-dye, 

HEMA-SA-dye) as a second polymer population of the water-dispersible bimodal 

grafted nanoparticles as outlined in Scheme 5.2. 

Bimodal polymer grafted silica nanoparticles were successfully synthesized 

via grafting two different RAFT agents (CPDB, CDSS). HEMA-LA and HEMA-SA 

were polymerized using CPDB as RAFT agent of the first, short brush polymer 

population while the second, long polymer population was made from the 

glycomonomer using CDSS as a RAFT agent. Thus, one of the important future 

works would be an investigation of the bacterial uptake of the sweet nanoparticles 

as the sugar coating could enhance the uptake of the nanoparticles. 

Overall, this novel strategy of designing bimodal grafted nanoparticles 

could establish an exciting synthetic platform for various applications. Although  
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we demonstrated a system where one of the polymer brushes of the bimodal 

grafted nanoparticles were dye-labeled polymers, antibiotics could be attached to 

the grafted-polymer instead of the dyes. This will lead to a design of bimodal 

grafted nanoparticles that could be used as more efficient delivery vehicles for 

anti-bacterial applications. 

  

Scheme 5.2: The proposal new synthesis of bimodal nanoparticles SiO2-g-

P(MAA)-P(HEMA-LA-dye), and SiO2-g-P(MAA)-P(HEMA-SA-dye). 
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