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ABSTRACT 

Wireless power transfer technology (WPT) has been rapidly developed in recent 

years. The primary benefit of WPT is that it replaces the traditional wire charging with a 

cordless charging method. WPT technology has been applied in many fields, such as bio-

implants, electric vehicles, and wirelessly charging systems. According to the different 

energy transmission mechanism, WPT technology can be divided into magnetic field 

coupling (includes magnetically coupled inductive and magnetically-coupled resonant), 

microwave radiation, laser emission, electrical-field coupling, and ultrasonic transmission 

type. Among these technologies, the magnetic resonance coupling method has a better 

promise because of its long transfer distance and high efficiency. However, there are 

some questions that need to be resolved, among which the most prominent is that the 

technology has a low tolerance to the variations of the coupling factor because of the 

frequency splitting phenomenon, which would lead to transmission efficiency 

degradation of magnetic resonance coupling WPT systems. Hence, based on reviewing 

the research status and trend of WPT technology, this paper analyses the frequency 

splitting phenomenon of the wireless power transfer system, discusses the duffing 

resonator circuit and its properties, and designs a kind of high-efficiency wireless power 

transfer inductive system with both non-linear inductors and non-linear capacitors. The 

main research works of this paper are as follows: 
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Firstly, aiming at the frequency splitting problem during magnetic coupled 

resonance wireless power transmission, the frequency splitting phenomenon for the 

wireless power transfer system is studied by an electric circuit model method. The 

expression of the relationship between the load voltage, transmission efficiency, and 

coupling factor was derived, and the law of frequency splitting is discussed. Furtherly, an 

analysis of frequency splitting based on simulation also presented. Finally, the frequency 

splitting suppression method is proposed. The above research work provides a theoretical 

basis for solving the problem of frequency splitting and designing a kind of high-

efficiency WPT system. 

Subsequently, a duffing resonator circuit with a nonlinear capacitor, which can 

eliminate the frequency splitting and keep the high transmission efficiency and power 

delivered to the load is developed. With the help MATLAB software, the properties of 

the duffing resonance circuit are discussed furtherly. The results show that the duffing 

resonance circuit has significantly wider bandwidth than the conventional linear 

resonance circuit while achieving a similar amplitude level. 

Finally, the high efficiency non-linear wireless power transfer system based on non-

linear inductors with ferromagnetic thin film core and non-linear capacitors with 

ferroelectric thin film dielectrics is designed. Moreover, the system's performance is 

improved, the range of coupling factors significantly extended while both load power and 

high PTE were maintained. The reason for the high efficiency of the system is furtherly 

discussed, and the research result shows that non-linear inductor with ferromagnetic thin 

film core has variable inductance which can be synchronously changed along with the 

current through the inductor in the circuit. The non-linear capacitor with ferroelectric thin 



vi 

film dielectrics can also have variable capacitance, which can be synchronously changed 

along with the voltage applied to the capacitor. However, the voltage across the capacitor 

and current through the inductors are different initially, high power transmission 

efficiency can be achieved by self-tuning capability of inductance and capacitance from 

the film based non-linear resonators. 

Research results of this paper can lay the solid foundations for the application of 

WPT technology in the fields of bio-implants, electric vehicles, wirelessly charging 

systems, etc. 
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CHAPTER 1 

OVERVIEW 

1.1 Characteristics and application of wireless power transmission technology 

The wireless power transmission technology (WPT) is a new power transmission 

technology, which achieved power transmission without electrical contact from the 

power supply to the load by electromagnetic effect or energy exchange function. 

Comparing with the traditional wire transmission technology, it has advantages of safe 

and reliable and so on, especially in some applications. Therefore, it has been paid more 

and more attention [1]-[7]. In recent years, the growth momentum of WPT technology 

has become more powerful, which has gone from theoretical to commercialization, 

especially in bio-Implants, electric vehicles, and wirelessly charging systems etc. The two 

application examples of WPT technology are introduced as follows: 

Wireless charging is also widely used in electric vehicle charging [6]. The basic 

concept of the wireless power transfer system of EV structure is shown in figure 1.1. The 

RX coil is implanted at the bottom of the electric vehicle. Through the redesigned RX 

coil structure, which is a circular and bar-shaped core, the total size of this coil is reduced 

by 30%, and the core loss reduces by 17.5% comparing to the traditional wireless 

charging. This cordless charging technology could make charging convenient, and the 

EV can be charged anytime and anywhere, like the technology in [7]. 
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When people drive the electric vehicle and cross to the “charging” rod which sets 

up a series TX coil in the ground, the battery can be charged during the driving. This 

novel charging method saves much time compared to the traditional charging method.  

In the field of bio-implants, previously, most biomedical charging devices need 

cable, which means the conventional devices cannot be designed as compacted and 

wholly implanted into the human body because of this limitation of charging. However, 

as the wireless power transfer technology development, this new method gives an 

opportunity for implanted biomedical devices. It can make the implanted biomedical 

devices entirely embedded into the human body and recharge the devices without cord 

[8]-[10]. Due to this technology, the implanted devices can be designed to be very small 

and embedded into the human body for a whole life without taking out for charging. 

Overall speaking, the market for WPT is vast and rapidly growing. The WPT market 

is expected to reach a total of $15.2 billion in 2020 [11]. 

 

 Figure 1.1 EV basic wireless charging concept [6]
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Figure 1.2 EV charging with TX array [7] 

1.2 Overview of research status of WPT technology 

1.2.1 Research history of WPT technology 

The study of wireless power transfer (WPT) technology began in the 1880s, 

American scientist Nikola Tesla conducted the first WPT experiment. Thereafter, 

researches on wireless power transfer began [12]. In the early 1960s, W. C. Brown had 

done a lot of researches on WPT, which laid the foundation of its experiment and made 

this concept a reality [13]. In 1968, American aviation engineer P. E. Glaser [14] 

proposed using the microwave to transmit power from the solar satellites to the ground, 

namely the establishment of space solar power stations (SPS) in geosynchronous orbit. In 

the following 1977-1980, the U.S Department of Energy and National Aeronautics and 

Space Administration (NASA) jointly organized a study to demonstrate the concept of 

the SPS plan and confirmed its feasibility. In response to the global energy crisis, the 

central developed countries, such as America and Japan, have carried out the study of 

space solar power, which significantly promoted the development of WPT technology 

[15]-[16]. In the 1990s, J. T. Boys and others at the University of Auckland in New 
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Zealand conducted thorough research on the WPT technology and firstly proposed the 

Inductively Coupled Power Transfer (ICPT) technology [17]. Since the beginning of the 

21st century, WPT technology research has made breakthrough progress. In 2007, Marin 

Soljacic used the magnetic coupling resonant principle to realize the transmission of 

medium-range radio energy and light a 60 W bulb in more than 2 m distance with a 

transmission efficiency of about 40% [6]. In recent years, researchers from all over the 

world have made an in-depth study on WPT and have made significant progress in theory 

and practice. 

1.2.2 Comparison of the advantages and disadvantages of several typical WPT 

technology 

According to the different transmission mechanisms, WPT technology can be 

divided into magnetic field coupling, microwave radiation, laser emission, electrical-field 

coupling and ultrasonic transmission type, etc. According to the distance from the source, 

it can be divided into the near-field coupling and far-field. The magnetic field coupling 

includes magnetically-coupled inductive and magnetically-coupled resonant, which with 

the electric field coupling belong to the near-field coupling type. The microwave radiant 

and laser emission belong to far-field type. Due to these two groups are categorized by 

the distance or air gap of the transmitter and receiver coils. So, if the wavelength of the 

wave signal is smaller than the transfer distance, it can be consider as far filed 

technology. However, if the signal wavelength is larger than transmission distance, it is 

near field technology. Far field transmission or radiative transmission can always transfer 

the energy over a long distance with electromagnetic wave. While the system efficiency 
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is lower than near field method because of the radiative power emission’s 

omnidirectional nature. But the transfer frequency band is quite wide, from GHz to THz. 

The near field techniques can deliver high power with high efficiency. Nevertheless, it is 

sensitive to the distance various and only can achieve the high power transfer in short 

distance. 

Magnetically-coupled inductive WPT (MCI-WPT) technology is the oldest power 

transfer technology, which is still widely used now. During the inductive coupling 

transmission, the power passes through two coupled coils by the magnetic field. This 

mode of power transmission is similar to the transformer as shown in figure1.3 and 

figure1.4. Moreover, the inductive coupling technique is the only method applied to 

commercial products [18]. The transmission power depends on the mutual inductance M, 

𝑀 = 𝑘/√𝐿1𝐿2, where K is the coupling factor. L1 and L2 represent the two power 

transfer coils value, separately. The energy crosses the first coil and couples to the second 

coils. However, the distance between these two coils is not always fixed. And the power 

transfer efficiency and power delivered to the load are influenced by the distance and 

misalignment of the two coils, L1 and L2. So, how to decide the distance and 

misalignment for the two coils is crucial when designing the traditional wireless power 

transfer system.  
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Figure 1.3 Topology of WPT system 

Magnetically-coupled resonant becomes the most recommended method in 

wireless power transfer system since it’s discovered by scientist Marin Soljacic of 

Massachusetts Institute of Technology [18]. The main concept of magnetically-coupled 

resonant WPT is based on the principle which if the coils of both sides of transmitter and 

receiver are highly resonant, the magnetic field generated by oscillating current of first 

coil which is connected to high frequency source, relatively slowly is vanished over very 

many cycles and in this situation, if a second coil is brought near it, the coil can pick up 

most of the energy before it is lost, even if it is some distance away. Basic structure 

schematic diagram of MCR-WPT is shown in Figure. By using this technology, the 

power can be transferred for a greater distance because this method has high power 

exchange rate and high Q factor resonator. Although resonant inductive coupling has a 

high energy transmission rate merit, the drawback is also unique. When the two 

resonators close slightly tightly, the system resonant frequency becomes unstable and the 

frequency appears splitting phenomenon. At the original resonant frequency, the load 

power reduces a lot while the maximum load power will be achieved at the other two new 
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frequencies. So, if the system wants to achieve maximum power delivered to the load, the 

system's natural frequency should be tuned to one of the two new frequency points.  

 

Figure 1.4 Block diagram of wireless power transfer system 

Microwave radiation WPT is a far-field wireless power transmission technology. 

The working principle of microwave radiation WPT is that the microwave power 

generator converts the direct current power into microwave power and transfers the 

power effectively to the rectifying antennas by transmitting antennas after focusing the 

energy. Then, the microwave power is transmitted to the rectifying antenna through free 

space, and the energy is converted into DC power through the rectification and filtering 

circuit to supply the loads [19]. Depending on the antenna size, transmitting power, as 

well as the propagation environment, microwave radiation WPT may achieve power 

delivery over distances varying from a few meters to even hundreds of kilometers. It has 

a long the transmission distance, the loss of atmosphere in the process of transmission is 

less. This technology is relatively mature, but the microwave divergence angle is large, 

and the power density is low.  

The working principle of the laser emission WPT is a laser emission module 

sends out the specific wavelength of the laser. The laser beams are focused and 

collimated by the optical transmitting antenna, then launch and arrive at the receiver 
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through free space, and through the visual receiving antenna focus on photovoltaic 

modules complete laser-electric energy conversion. The transmission module controls the 

direction of a laser beam emission and makes the light beam, and the photovoltaic panels 

are incident to achieve the highest efficiency of photoelectric conversion [20]. The 

benefit of laser power transfer system is that it achieves long-distance transmission and 

merely without power loss. However, Laser radiation hazardous for humans and animals. 

The impact of natural environment also could cause 100% loss during the transmission, 

for example, atmospheric absorption, fog, etc. 

A comparison of the advantages and disadvantages of several typical WPT 

technology is listed in Table 1.1. 

Table 1.1 Comparison of different WPT technologies  

Technology  Transmission 

Range  

Frequency Benefit/ Drawback 

Magnetically-

coupled 

inductive WPT  

A few 

millimeters to 

tens of 

millimeters 

Hz to MHz High efficiency but short 

range  

Magnetically-

coupled 

resonant WPT 

Several 

centimeters to 

hundreds of cm  

KHz to MHz High efficiency but 

frequency splitting 

Microwave 

radiation WPT 

Hundreds of 

meters to 

thousands of 

meters  

MHz to GHz Long distance transmission 

but safety and health issue 

laser emission 

WPT 

Tens of meters to 

thousands of 

meters 

THz Compact size, high energy 

concentration but safety and 

health issues 
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1.3 Research progress on magnetically-coupled resonant WPT technology 

Among the above mentioned of several typical WPT technologies, magnetically-

coupled resonant WPT technology has more merits: delivering higher power at longer 

ranges and with more efficiency, non-radiative, and penetrability one of the research 

hotspots by the domestic and international scholar. Although the progress of technology 

in wireless power transfer via coupled magnetic resonances in the last few years is 

remarkable, there are more problems unsolved. Because the research work of this paper 

mainly focuses on this technology, hence, in this section, progress and the critical issues 

in the research on magnetically-coupled resonant WPT technology will be discussed. 

In 2007, MIT made a new theoretical breakthrough on wireless power transfer by 

using a non-radiative electromagnetic energy resonant effect, which successfully lit up a 

60 W bulb in 2 m [21]. This technology uses electromagnetic resonance technology, 

breaking through the previous transformer inductive power transfer mode, with 

characteristics of high efficiency, long distance, big power, but little dependence on 

media, opening up a new topic for the medium range (meter-scale range) in wireless 

power transfer. This technology quickly became the hot pursuing topic for research 

institutions in recent years. Recently, although some colleges and research institutes have 

already achieved some meaningful results in terms of magnetically-coupled resonant 

WPT, which mainly included the topics of system architectures, frequency splitting, 

impedance matching methods, optimization designs and practical applications, and etc. 

On the whole, it seems the research is still in its infancy, the following highlights of the 

research achievements in the aspect of system performance improvement and practical 

applications. 
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In the aspect of system performance improvement, to improve power transfer 

efficiency further, some scholars focused on changing the parameters of the resonator 

coils [22]-[23] by increasing the radius of the conductor, or using multi-turn wire coils 

and so forth; other scholars attempted to study and design different resonance 

compensation topologies to achieve maximum transfer efficiency. Mizuno et al. [24] 

proposed the use of magnetoplated wire to improve transfer efficiency. Magnetoplated 

wire is actually a copper wire whose circumference is plated with a magnetic thin film. 

Thus, the resistance caused by the proximity effect will decrease. Wang et al. [25] 

analyzed the equivalent circuits and power transfer capacity of various topologies based 

on inductive coupling mode, but their models are not precise enough due to the ignorance 

of parasitic parameters of coils in HF. In [26], an alternative method is proposed where 

the RF power source is replaced by a parity–time symmetric circuit incorporating a 

nonlinear gain saturation element. However, the circuit’s operating frequency varies as a 

function of the coupling factor, resembling the same drawback of the frequency tuning 

method. In addition, Zhang et al. [27] propose combining the electric and magnetic 

coupling to suppress the frequency splitting phenomenon. However, the variation in the 

power delivered to the load is significant, and the structure of the proposed resonators is 

complex. 

In the aspect of practical applications, magnetically-coupled resonant WPT 

technology has been reported to be applied in medical implantation, consumer 

electronics, transportation fields, because of its mid-range, non-radiative, and high-

efficiency merits [28]-[45]. 
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 In medical implantation applications, batteries are necessary because the micro-

system implanted in an organism needs to be powered. However, battery charging or 

replacements will cause additional economic burden and physical pains on patients. 

Fortunately, magnetically-coupled resonant WPT technology is appropriate to solve this 

tough problem. Chang et al. [28] pointed out that batteries can be replaced by this novel 

technology, the energy for implantable devices can be supplied wirelessly. Li et al. [29] 

proposed a wireless energy transfer system which is designed and implemented for the 

power supply of micro-implantable medical sensors, and the volume of the whole 

implanted part is pretty small.  

 In the consumer electronics applications, in 2008, based on MIT magnetic 

resonant technology, Energy transfer device developed by the research team of Seattle 

Laboratory of Intel with 60W electric energy transferred within one meter, can charge 

notebook or PDA electrical appliances, and transfer efficiency of 75% has been achieved 

[30]. In 2009, a wireless charging system based on magnetic resonant was successfully 

developed by Nagano wireless Co. Ltd in Japan, with a transfer efficiency of 90% within 

60 cm [31]. Kim et al. [32] designed a suit of power supply system for LED TV, the 

operating frequency, transfer efficiency and transfer power are 250 kHz, 80% and 150 W, 

respectively. Since the 1990s and 2000s, wireless charging technology for portable 

electronic devices has reached the commercialization stage through the launch of the 

“Qi” standard by the Wireless Power Consortium, now comprising over 135 companies 

worldwide.  

In the transportation fields, wired charging for power batteries may be dangerous 

and inconvenient. Fortunately, this charging process can be simplified by WPT [33]-[36]. 
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Except for this stationary charging, dynamic charging (or roadway-charging) attracts 

more and more attention. This concept was first proposed in the early 1970s [37]. At 

present, the commercialization processes of this charging technology have been started in 

many countries, such as Korea, the USA, the UK, and Germany. In summary, wireless 

power charging for electric vehicles is a promising technology, which is also supported 

by many companies, including Volvo, Citroen, Evatran, Witricity, Halo IPT, etc.  

Although active progress has been made in the research and application of 

magnetically-coupled resonant WPT technology, there are some critical problems that 

mainly include the sensitivity of system parameters change, different loads identification, 

multiple loads impedance matching, electromagnetic environment security, and 

electromagnetic compatibility. Furthermore, the magnetically-coupled resonant system 

has the phenomenon of frequency splitting when some parameters (such as resonant coil 

inductance, equivalent capacitance, and distance between resonant coils) of resonance 

system changed, the transmission characteristics of the system also changed obviously. In 

practical application, the magnetically-coupled resonant system often supplies for 

different loads or multi loads. At this time, the system is required to realize impedance 

matching well to ensure the system has an excellent performance. In addition, there are 

still some problems that need to be solved in practical applications, such as whether the 

electromagnetic environment security can meet the safety standards of the World Health 

Organization when the magnetically-coupled resonant system works, and how 

electromagnetic interference influence of the electronic equipment in the surrounding 

environment, and the anti-interference ability of WPT systems, etc.  
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1.4  Statement of problem 

 In recent years, wireless power transfer technologies (WPT) have been growing 

hot topics for researchers. WPT applications can be found in a wide range from 

implanted biomedical devices, consumer electronics chargers, and vehicle battery charges 

[1]-[3]. Among WPT technologies, the magnetic resonance coupling method has a better 

promise because of its long transfer distance and high efficiency. However, in the Design 

of magnetic resonance coupling WPT systems, there are still many problems to be 

solved, such as frequency splitting, prone to efficiency degradation as the operating 

condition changes, difficulty in maintaining a constant coupling factor between the two 

coils、limited dynamic range of rectifiers and so on. Among the problems mentioned 

above, the most critical is frequency splitting. This problem will become more severe as 

the quality factors of the resonators increase, which is often necessary for achieving high 

transfer efficiency over long distances. However, it is often difficult to maintain a 

constant coupling factor in practical applications. The frequency splitting problem will 

directly affect the transmission efficiency of magnetic resonance coupling WPT systems, 

which has become the biggest bottleneck hindering the application and promotion of 

magnetic resonance coupling WPT technology. 

Magnetic resonance coupling WPT technology is a cutting-edge topic in the 

international wireless transmission field at present, which is at the stage of essential 

theory and experimental research. How to solve the frequency splitting problem and 

improve transmission efficiency of magnetic resonance coupling WPT systems are 

related to broad application and promotion of this technology. 
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Although at present many scholars have done some useful exploration research 

workaround on how to solve the frequency splitting problem and furtherly improving 

transmission efficiency of magnetic resonance coupling WPT systems, microscopic 

researches are working on magnetic resonance coupling WPT technology. In addition, 

the seldom of studies give detailed analysis on how the splitting frequency changes and 

what the relationship of the splitting frequency to main circuit parameters is. 

The research work of this paper is the theoretical connotation of magnetic 

resonance coupling WPT technology and certain academic significance and practical 

value.   

1.5  Thesis outline 

This paper analyses the frequency splitting phenomenon of the wireless power 

transfer system, discusses the duffing resonator circuit and its properties, and designs a 

kind of high-efficiency wireless power transfer inductive system with both non-linear 

inductors and non-linear capacitors. The main research content of this paper is as follows: 

Chapter 1 presents the characteristics, application, and classification of WPT 

technology. The research status and trend of WPT technologies are overviewed. On this 

basis, the key problems to be solved for the magnetic resonance coupling WPT 

technology are brought out.  

Chapter 2 studies the frequency splitting phenomenon for the wireless power 

transfer system. By simulated in ADS, frequency splitting results of the WPT system 

during the wireless power transmission are studied, and the frequency splitting 

suppression method is proposed. The above research work provides a theoretical basis for 
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solving the problem of frequency splitting and designing a kind of high-efficiency WPT 

system. 

Chapter 3 describes the duffing resonator circuit with the nonlinear capacitor, 

which can eliminate the frequency splitting and keep the high transmission efficiency and 

power delivered to the load. With the help MATLAB software, the properties of the 

duffing resonance circuit are discussed. This research work lays a reliable theoretical 

basis for designing a high efficiency non-linear wireless power transfer system. 

Chapter 4 designs a high amplitude non-linear wireless power transfer system 

based on non-linear inductors with ferromagnetic thin film core and non-linear capacitors 

with ferroelectric thin film dielectrics based on the above research work. The 

performance of this system is discussed. The reason for high amplitude of the system is to 

clarify furtherly. 

Chapter 5 summarizes all the works completed from this dissertation and points 

out future research directions.  
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CHAPTER 2 

FREQUENCY SPLITTING PHENOMENON ANALYZE FOR 

WIRELESS POWER TRANSFER SYSTEM  

Frequency splitting is an important phenomenon related to transmission efficiency 

(TE) and WPT capability within the over-coupled region. With the increases of the 

coupling coefficient, the power transferred to load drops sharply. The resonant frequency 

splits from one into two within the splitting region. Frequency splitting phenomena have 

an important influence on the transfer power of magnetic resonant coupling WPT. As a 

hot research spot, frequency splitting has been actively investigated [46]-[56]. In [46], the 

directional coupler-based method was suggested to track the splitting frequency in a 

magnetic resonance system. Reference [47] applied a root locus method to explain the 

double voltage-peak of frequency splitting of WPT systems. In [48], an asymptotic 

coupled-mode theory method has been used to analyze the frequency splitting 

phenomena in contactless power transfer systems. The critical coupling coefficient has 

been derived based on the energy equations. In [49], a precise analysis of the frequency 

splitting of the symmetrical and unsymmetrical contactless power transfer systems is 

shown in detail. However, the studies seldom give a detailed analysis of how the splitting 

frequency changes and the relationship between splitting frequency and main circuit 

parameters.
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This chapter mainly studies the frequency splitting phenomenon for the wireless 

power transfer system. The law and the cause of frequency splitting are discussed. By 

simulation, frequency splitting problems for the WPT system during wireless power 

transmission are analyzed; Finally, the frequency splitting suppression methods are 

proposed. The above research works provide a theoretical basis for solving the problem 

of frequency splitting and designing a kind of high-efficiency WPT system. 

2.1 Frequency Splitting Phenomenon 

The frequency splitting phenomenon is a significant characteristic in the inductive 

coupled wireless power transfer system.  When the distance between the two sperate coils 

decreases, the power transfer efficiency, PTE, and output power at the original frequency 

point reduces tremendous and the maximum PTE and 𝑃𝐿will be achieved at two new 

frequency points, figure2.1. Also, with the decreasing coupling distance, the coupling 

factor value increases at the same time and exceed the critical coupled value, the load 

power is dropped sharply at the original resonant frequency.  

Since the distance between the two coils is not easily fixed in the real 

applications. Even a small distance various will change the system power transmission. 

There are three situations of the coupling in the inductive wireless power transfer system: 

over coupled range, critical coupled range, and under coupled range. When the system is 

in a different range, the power transmission situation is different. In the under coupled 

range, the distance of the two circuits is quite large. Under this case, the coupling is really 

weak, the amplitude-frequency of the system has one peak, and the signal coupling is 

insufficient. So, the output signal is weak, and the bandwidth is small. Therefore, usually, 
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when we design the WPT circuit, people do not consider this situation. The ideal situation 

of the inductive coupling wireless power transfer system is the coupling factor precisely 

at the critical coupling point. In this situation, the two resonant circuits have the best 

coupling signal, small signal loss, high loop gain, and reliable output signal. The 

amplitude-frequency characteristic of the system has a single-peak state, and the 

bandpass characteristic of the system is better. During the critical coupled range, the 

receiver side circuit has the largest current, and load power and the PTE are highest. 

However, during the real application, the distance of the transmitter and receiver is 

varied. So, the coupling factor is hard to fix at the critical coupling point. The coupling 

factor value always larger than the critical coupling factor value. Therefore, this 

complicated situation happens frequently in an over-coupled situation. During this 

situation, the system amplitude-frequency response appears two peaks appearance. As the 

coupling coefficient increases, the double-peak characteristic becomes more and more 

serious in figure 2.1. When the critical coupling factor K increase, the output power 

decreases at the original frequency point. The circuit cannot obtain the ideal single-peak 

characteristic by adjusting the resonance frequency of the resonance circuit.  
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Figure 2.1 Frequency splitting phenomenon in two coils WPT system 

 

2.2 Analysis of frequency Splitting Phenomenon for wireless power transfer system 

based on equivalent model of mutual inductance 

There are two kinds of theoretical models of magnetically-coupled resonant WPT 

presented. One, based upon coupled-mode theory (CMT) [57]-[58], a perturbation theory, 

directly analyzes energy coupling between objects by avoiding the complex physical 

model. The other carries out the theoretical analysis by building up the system physical 

model and setting the internal equivalent parameters. We adopt the second one for our 

analysis in this paper. 

According to the magnetic coupled wireless power transfer technology’s 

correlation theories, the wireless power transfer system is composed of two resonance 

inductors L1 (transmitting coil) and L2 (receiving coil). By setting relevant parameters, 
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the two resonant coils manage to remain in their own resonant state so as to achieve 

strong energy coupling.  

 

 Figure 2.2 Conventional two coils CPT system  

Contactless power transfer is known as the CPT system or wireless power transfer 

system which is composed of two shot range resonant coils systems. The CPT structure is 

shown in Figure2.2. 

In figure 2.2, Vs, 𝑅𝑆, 𝐿1, 𝐶1, 𝑅1, 𝑅2, 𝐶2, 𝐿2, 𝑎𝑛𝑑 𝑅𝐿 represent power, source inner 

resistor, primary side inductor, transmitter side capacitor, loss resistance of primary coils, 

loss resistance of the secondary coil, receiver side capacitor, secondary-side inductor, and 

load, respectively. M is the inductive coupling between the transmitter and receiver coils. 

According to the KVL of circuit theory, we can obtain the following equation. 

𝑉𝑆 = 𝑍𝑇𝐼1 + 𝑗𝜔𝑀𝐼2                                                  (2-1) 

0 = 𝑗𝜔𝑀𝐼1 + 𝑍𝑅𝐼2                                                   (2-2)  

Where ZT and ZR stand for the impedances of primary and secondary coils 

respectively. 𝑍𝑇 = 𝑅𝑆 + 𝑅1 + 𝑗(𝜔𝐿1 − 1/𝜔𝐶1) = 𝑅𝑇 + 𝑗𝑋𝑇 ,  𝑍𝑅 = 𝑅𝐿 + 𝑅2 +
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𝑗(𝜔𝐿2 − 1/𝜔𝐶2) = 𝑅𝑅 + 𝑗𝑋𝑅. ω is the angular frequency. 𝐼1 and 𝐼2 are the transmitter 

resonant circuit and receiver resonant circuit currents, respectively. According to 

equation 2-1 and 2-2, the equivalent currents of two coils can be obtained. 

𝐼1 =
𝑍𝑅𝑉𝑆

𝑍𝑇𝑍𝑅+(𝜔𝑀)2
                                                        (2-3) 

𝐼2 =
−𝑗𝑉𝑆𝜔𝑀

𝑍𝑇𝑍𝑅+(𝜔𝑀)2
                                                        (2-4) 

Then the power transferred from the primary coil to the secondary coil can be 

expressed as:  

𝑃𝐿 =
𝜔2𝑀2𝑉𝑆𝑅𝐿

(𝜔2𝑀2+𝑅𝑇𝑅𝑅−𝑋𝑇𝑋𝑅)^2+(𝑅𝑅𝑋𝑇+𝑅𝑇𝑋𝑅)^2
                            (2-5) 

Alone with the coupling factor increasing, the maximum power delivery to the 

load split from one peak into two peaks at two different frequencies. And they are formed 

into two modes. The lower frequency point peak is the odd mode, and the higher 

frequency point peak is even modes. The load power is related to the partial derivative of 

itself. So, the load power 𝑃𝐿 derivates M and the value of the derivates function equal to 

zero. 

∂𝑃𝐿

∂ω
= 0                                                        (2-6) 

The name of this equation is splitting equation [59]. 

𝜔2𝑀4 + 𝜔2 𝑑𝑃𝑎

𝑑𝜔
𝑀2 + 𝑃𝑎

𝑑𝑃𝑎

𝑑𝜔
+ 𝑃𝑏

𝑑𝑃𝑏

𝑑𝜔
−

1

𝜔
𝑃𝑎

2 −
1

𝜔
𝑃𝑏

2 = 0           (2-7) 

In equation 2-7, 𝑃𝑎 and 𝑃𝑏 are 𝑃𝑎 = 𝑅𝑇(𝑅𝐿+𝑅𝑅) − 𝑋𝑇𝑋𝑅 and 𝑃𝑏 = 𝑅𝑇𝑋𝑅 + (𝑅𝐿 +

𝑅𝑅)𝑋𝑅, respectively. In order to simply calculation, primary and secondary part of circuit 
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component parameters are kept same. 𝑅𝑋 = 𝑅𝑅 = 𝑅, 𝐶1 = 𝐶2 = 𝐶, and 𝐿1 = 𝐿2 = 𝐿, 

when the load power reaches extremum, solving the solution of quadric equation of M of 

source angular frequency.  

When M<𝑀𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = √−𝐶2 [𝑅4 − 4
𝐿

𝐶
𝑅2] /4, the solution only has one solution. 

𝜔𝑤𝑒𝑎𝑘 = √(𝑅2−
𝐿

𝐶
)+√(𝑅2−2

𝐿

𝐶
)2+

12

𝐶2(𝐿2−𝑀2)

2(𝐿2−𝑀2)
                                  (2-8) 

When M>𝑀𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, the equation has two maximum solutions. 

𝜔1 = √(𝑅2−
𝐿

𝐶
)+√(𝑅2−2

𝐿

𝐶
)2+

4

𝐶2(𝐿2−𝑀2)

2(𝐿2−𝑀2)
                                   (2-9) 

 

𝜔2 = √(𝑅2−
𝐿

𝐶
)−√(𝑅2−2

𝐿

𝐶
)2+

4

𝐶2(𝐿2−𝑀2)

2(𝐿2−𝑀2)
                                  (2-10) 

When M=𝑀𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,  

ω = √
−(𝑅2−2

𝐿

𝐶
)

2(𝐿2−𝑀2)
                                             (2-11) 

𝑀𝑐𝑟𝑡𝑖𝑐𝑎𝑙  is a critical coupling point, and there is only one maximum point at one 

frequency while the distance between the transmitter and receiver is exactly situated at 

the critical distance. Alone with the transmission distance of the transmitter and receiver 
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become grater, and the mutual coupling M is smaller than 𝑀𝑐𝑟𝑡𝑖𝑐𝑎𝑙 . The whole system is 

at the weak coupling situation, and the largest load power is around frequency 𝜔𝑤𝑒𝑎𝑘.  

When the transmission distance of the two the coils is getting closer which is 

shorter than the critical transmission distance, M>𝑀𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, the system is at over coupled 

range, and the maximum load power will be split into two points and appeared at 𝜔1 and 

𝜔2, respectively.  

However, when the system situates at weak coupling range, although the load 

power at 𝜔𝑤𝑒𝑎𝑘 is maximum, compared to the maximum power deliver to the load at 

over coupled range, the 𝜔𝑤𝑒𝑎𝑘 point load power is smaller than the power at 𝜔1 and 𝜔2 

points. The ideal situation of the CPT system is M=𝑀𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. 

2.3 Efficiency, Power Transfer Efficiency, and |𝑆21|2 

Efficiency 

Effciency =
PL

Psystem−Pdis_source
=

RL

(
IT
IR

)2RT+RL−RR

                       (2-12) 

In this equation, Psystem is whole system power, and Pdis_source is disputed power 

of the power. According to equation 2-3 and 2-4, we can get the (
IT

IR
)2 =

ZR
2

(𝜔M)2 =

(RL+RR+jXR)2

(𝜔M)2
.  

 XR=0, 𝜔 euqals to
1

√LC
. So, the maximum efficiency is shown below  

Effciencymax =
(𝜔M)2RL

(RL+RR)2+(𝜔M)2∙(RL+RR)
                                (2-13) 
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As shown in equation 2-13, the whole system’s maximum efficiency does not 

have a frequency splitting phenomenon. The resonant frequency of the whole system is 

the same as the receiver side circuit resonant frequency during any strength of coupling. 

While the resonant frequency 𝜔 keeps the same, as the coupling strength, M, increases, 

the Effciencymax is increased. Otherwise, the Effciencymax is decreased when the 

coupling M decreases.  

However, Power Transfer Efficiency, PTE, is completely different with the 

system efficiency. PTE in [60] is defined as   

PTE =
PL

Pav,S
                                                 (2-14) 

where PL is load power, and Pav,S is power available from the source. PTE is similar with 

transducer efficiency. In the power transfer efficiency definition, the source and load 

matching has been considered, which means the maximum power can be transferred from 

the source to the load. However, PTE is also closely related to mutual inductance M, 

which is the function of the coupling factor. Similar with the PL, there is also frequency 

splitting phenomenon for power delivered to the load.  
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Figure 2.3 PTE versus resonant frequency versus coupling factor of           

WPT transfer system [61] 

PTE versus resonant frequency versus coupling factor response is given by figure 

2.3. In figure 2.3, the coupling factor is inversely proportional to the distance between the 

transmit and receive coils. f0 is the optimal operating frequency point, where the 

frequency splitting does not happen, and the maximum PTE is obtained. When the 

coupling factor k is less than Kc, 0<K<Kc, the system frequency still maintains at f0, but 

PTE decreases with K various. During this status, the frequency does not split while the 

power transfer efficiency keeps decreasing because the transmitter circuit power cannot 

deliver to the receive side through a large gap and weak coupling. Nevertheless, when the 

distance of the two coils is getting closer and K>KC, the frequency splitting phenomenon 

appears, and the maximum PTE only can be achieved at two different frequency points 

which are f0 − ∆f and f0 + ∆f. 

At the optimal frequency point, PTE arrives at the maximum point, and the 

transmitter and receiver circuits are matched. However, in the real world, the distance and 
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alignment of the transmitter and receiver coils are difficult to control, for instance, 

wireless phone charging, implanted biomedical devices charging, and EV charging. It is 

very difficult to maintain high PTE because it is hard to make the distance between the 

transmitter coil and receiver coils keeping at the critical distance. Once the distance 

changes, seriously fluctuation of PTE will happen. How to eliminate the frequency 

splitting phenomenon and keep high PTE during the over coupled range is currently a hot 

research topic. 

Definition of |𝑆21|2 is the same as the power transfer efficiency. It means the 

ratio of the power delivered to the load and the power available from source, but the loss 

of source resistor power is not included. 𝑆21 is shown in [62] 

𝑆21 = 2
𝑉𝐿

𝑉𝑆
√

𝑅𝑆

𝑅𝐿
                                                    (2-15) 

Substituting 2-1 and 2-2 into 2-15, 𝑆21 and |𝑆21|2  can be deduced below: 

𝑆21 =
2𝑗𝜔𝑘√𝐿1𝐿2√𝑅𝑆𝑅𝐿

𝑍𝑇𝑍𝑅+𝜔2𝑘2𝐿1𝐿2
                                        (2-16) 

|𝑆21|2 =
4𝜔2𝑘2𝐿1𝐿2𝑅𝑆𝑅𝐿

(𝑍𝑇𝑍𝑅+𝜔2𝑘2𝐿1𝐿2)2                                   (2-17) 

2.4  Design and Simulation of the Proposed Model 

After analyzing wireless power transfer circuit, we simulate the conventional two 

coils wireless power transfer model into ADS, Advance Design System. The schematic 

diagram is presented in figure 2.4. In this circuit, we design the whole system resonant 

frequency at 10 MHz. In order to simply the simulation, we make 𝐶1 = 𝐶2 = 12.67𝑝𝐹 
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and 𝐿1 = 𝐿2 = 20𝑢𝐻. The coupling factor, K, is various during the simulation. By 

changing the value of K, we can simulate the situations of under coupled range, critical 

coupled range, and over coupled range. The suggested circuit parameters are provided in 

Table 2.1. And the three situations’ efficiency and S21 of wireless power transfer circuit 

are shown in figure 2.5 to figure2.10. The coupling factor K in figure 2.5 and figure 2.6 is 

0.03 and 0.02, respectively. And they are under under-coupled range. The system is at 

critical coupled range when the coupling factor is at 0.04, in figure 2.7. The figure 2.8 

and figure 2.9 are presented the efficiency and S21 of system at over-coupled range. All 

the results are performing S-parameters and frequency analysis. 

According to the relationship f = F (k23), S21 magnitude against k23 of tuned 

frequency and fixed frequency is shown in below. 

 

Figure 2.4 Schematic of Two-Resonator-Coil WPT in ADS 
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(a)                                                                 (b) 

Figure 2.5 Efficiency and |S21|for WPT at K=0.03 (a) under-coupled range 

efficiency (b) under-coupled range mag(S21) 

      

(a)                                                                (b) 

Figure 2.6 Efficiency and |S21|for WPT at K=0.02 (a) under-coupled range 

efficiency (b) under-coupled range mag(S21)  

The results of the model for the coupling factor at the under-coupled range are 

shown in figure 2.5 and figure 2.6. When the coupling factor value decreases from 0.03 

to 0.02, the efficiency of the system decreases from 90% to 61%. The mag(S21) 

decreases from 0.95 to 0.79. So, when the system is at under-coupled range, as the 

coupling factor decreases, the system efficiency decreases. And there is only one peak of 

the largest efficiency point. The system efficiency decline is caused by the weak coupled 
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link between the two resonant coils. The power is hard for couple from one side to 

another.    

      

(a)                                                         (b) 

Figure 2.7 Efficiency and |S21|for WPT at K=0.18 (a) critical-coupled range 

efficiency (b) critical-coupled range mag(S21) 

Figure 2.7 showed the system at the critical coupled range when the coupling 

factor is 0.04. At this point, the efficiency is 100%, and mag(S21) is at 1 while the 

resonant frequency is 10 MHz. At the critical coupled point, the maximum efficiency 

only exists at system resonant frequency. There is only one peak in the results. 

 

(a)                                                             (b) 

Figure 2.8 Efficiency and |S21|for WPT at K=0.11 (a) over-coupled range 

efficiency (b) over-coupled range mag(S21) 
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(a)                                                       (b) 

Figure 2.9 Efficiency and |S21|for WPT at K=0.18 (a) over-coupled range 

efficiency (b) over-coupled range mag(S21) 

However, after the coupling factor increases, the maximum efficiency appears 

frequency splitting phenomenon, as shown in figure 2.8 and figure 2.9. The over-coupled 

range is between from 0,04 to 1 at this system. When the coupling factor, K, is up to 0.11, 

the maximum frequencies and mag(S21) emerge at 9.5 MHz and 10.5MHz. When the 

coupling factor, K, is up to 0.18, the maximum frequencies and mag(S21) emerge at 9.1 

MHz and 11MHz. Comparing the results in figure 2.8 and figure 2.9, as the coupling 

factor increases, the value between the lower maximum frequency point and the larger 

maximum frequency point increases. At the original frequency point, 10 MHz, the 

efficiency, and mag(S21) drop deeper and deeper. It means when the system at the over 

coupled range, the maximum efficiency cannot be achieved at the original frequency 

point. This is due to the system appears mismatch phenomenon. During this situation, all 

the power cannot be delivered at a resonant frequency point. But the maximum will 

achieve at the two new frequency pints and two peaks phenomenon presents. The odd 

mode and even mode appear, respectively. The lower frequency maximum point is odd 

mode, and the higher frequency maximum points is even mode. 
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Table 1.1 Calculated parameters for two-coil WPT system 

Parameter Value 

Frequency 10 MHz 

𝑪𝟏 = 𝑪𝟐 12.67𝑝𝐹 

𝑳𝟏 = 𝑳𝟐 20 𝑢𝐻 

𝑹𝑺 = 𝑹𝑳 50 Ohm 

K (coupling factor) 0-1 

 

2.5  Frequency splitting suppression method 

In order to eliminate the frequency splitting phenomenon and achieve maximum 

efficiency at one frequency point, four commonly used methods for suppression 

frequency splitting phenomenon are proposed in the previous WPT studies [63]-[69]. The 

first one is changing the WPT system's structural parameter, which adjusts the coupling 

coefficient between the power coil and the transmitter coil [63]-[64]. The second method 

is adjusting the system power supply frequency which means detecting the reflected 

power or current at the transmitter side and adjusting the system's resonant frequency to 

reach the resonant frequency again [65]. The third method is designing an impedance 

matching network. Frequency splitting happens due to mismatch. So, designing a tunable 

matching circuit [66]-[69] and adjusted capacitors' value can effectively solve this 

problem. The latter method is designing a transmitting coil that generates a reverse 
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magnetic flux. By designing a transmitting coil composed of two sets of coils that 

generate reverse magnetic flux and retarding, the rate of change of the coupling 

coefficient which dues to the change in distance curbs the frequency splitting.  

So far, most approaches of suppression frequency splitting phenomenon in the 

literature need active circuits or active feedback control circuits. Therefore, those designs 

make the whole WPT system more complete and lose more power. They achieve 

suppression frequency splitting but introduce more energy loss.  

The nonlinear components can provide nonlinear characteristic for the circuit, 

such as nonlinear capacitor and nonlinear inductor [70]-[73]. The nonlinear characteristic 

some time could give the circuit unimagined benefits. The new nonlinear passive 

suppression frequency splitting circuit, duffing resonator, is proposed in [60]. They use 

duffing oscillator characteristic to eliminate the frequency splitting phenomenon. The 

author by replacing the linear capacitor to nonlinear capacitor, NC, achieves duffing 

resonator design. This thesis’ design is based on this “duffing” theory. We replace the 

nonlinear capacitor and nonlinear inductor, NCNL at same time in the circuit. The 

numerical analysis is presented in chapter 3 and chapter 4. 
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CHAPTER 3 

DUFFING RESONATOR BASED WIRELESS POWER TRANSFER 

SYSTEM THEORY 

Although magnetically-coupled resonant WPT(MCR-WPT) technology has 

become the mainstream method for wireless power transfer due to its high efficiency, 

MCR -based systems are prone to efficiency degradation as the operating condition 

changes. Additionally, as mentioned in Chapter 2, one of the most significant challenges 

in the design of SCMR WPT systems is its low tolerance to the coupling factor variations 

because of the frequency split phenomenon. To fundamentally solve the above problems, 

we investigate a nonlinear resonance circuit described by the duffing equation replacing 

linear capacitor into the nonlinear capacitor, as well as the properties of the duffing 

resonator circuit by MATLAB software. This idea is first proposed by Dr. Amir 

Mortazawi’s team. 

3.1 Duffing equation was proposed by Georg Duffing in 1918. The basic form of the 

which is usually written as (3-1) [74]: 

�̈� + 𝛿�̇� + 𝛼𝑥 + 𝛽𝑥3 = γ cos(𝜔𝑡)                                    (3-1) 
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Where x is displacement ,t is the time, 𝛿 is the amount of damping, 𝛼 is the linear 

stiffness, 𝛽 is the amount of non-linearity in the restoring force, γ is the amplitude of the 

periodic driving force, and 𝜔 is the periodic driving force angular frequency. 

In [64] and [74], the duffing equation is described as: 

�̈� + 2𝛾�̇� + 𝜔0𝑥 + 𝜖𝑥3 = 𝐹 cos(𝜔𝑡)                                (3-2) 

Where 𝑥 is displacement, 𝛾 is the damping coefficient, 𝜔0 is the natural 

resonant/oscillate frequency, 𝜖 is the third order nonlinearity coefficient, and 𝐹𝑐𝑜𝑠(𝜔𝑡) is 

the excitation with the amplitude 𝐹 and angular frequency 𝜔. 

The steady state solution of 3-2 in [12, 63] is x(ω, t) = A(ω) cos(𝜔t − 𝜃). A is 

frequency-dependent amplitude and 𝜃 is phase difference in reference to the excitation 

signal. So, the amplitude as function of excitation frequency can be get: 

𝐴2 [(𝜔0
2 − 𝜔2) +

3

4
𝜖𝐴2]

2

+ (2𝛾𝐴𝜔)2 = 𝐹2                        (3-3) 

The representative amplitude response of a Duffing resonator is shown in figure 

3.1 [74]. It can be observed from Fig.3.1 that the frequency response curve of the linear 

resonator and duffing resonator amplitude are drawn into the same axis, and the duffing 

resonator response always tilted to one side (right side in this figure). Unlike the 

frequency response curve of the linear resonator which only has one maximum stable 

amplitude point, the frequency response curve of the duffing resonator has three distinct 

root regions (upper equilibrium brunch/point, unstable solution, and lower equilibrium 

brunch/point) [74]. Among these three root regions, the middle solution point is unstable, 

while the upper and lower points are stable (called equilibrium points). It can also be 

https://en.wikipedia.org/wiki/Stiffness
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observed from figure 3.1 that a steady-state solution of the system converges to the upper 

equilibrium point or lower equilibrium point. 

  

Figure 3.1 The amplitude-frequency responses of duffing resonator and linear 

resonator [74] 

In addition, it can also be observed from figure 3.1 that the region between the 

two red dash lines is an unstable solution, which is very important when the response of 

the duffing resonator is analyzed. If the circuit is excited to converge to the high-

amplitude solution point, the amplitude will follow the upper curve when frequency 

changes. Once the right boundary of the three-root region is crossed, the amplitude drops, 

which is known as a drop-down phenomenon [74].  However, if the circuit is excited to 

converge to the low-amplitude solution point, the amplitude will remain the small unless 

the three-root region’s left boundary (the jump up to point) is crossed. So, when nonlinear 

duffing resonator has the same Q with linear resonator, the nonlinear duffing resonator 

has more bandwidth. 



36 

 

The direction of the response curve of the duffing resonator is dependent on ϵ as 

shown as the 3-2 and 3-3. When ϵ is larger than zero, the amplitude-frequency response 

curve tends to move to the right which is hardening system, shown as figure 3.2. When ϵ 

equals to zero, the system is linear. However, when ϵ is a negative number, the curve is 

tended to move to the left. 

 

Figure 3.2 The amplitude-frequency responses of duffing resonator with different 

nonlinearity coefficient 𝜖 [74]. 

3.2 Analysis on Nonlinear duffing resonator 

After analyzing the characteristic of the duffing equation, we implant this method 

into a magnetic coupled WPT circuit, as shown in figure 3.3. In figure 3.3, C2 is a 

nonlinear capacitor. Differently with the traditional WPT circuit, in the nonlinear system, 

the original linear capacitor of the second circuit has been replaced by nonlinear capacitor 

C2. The linear capacitor and a sinusoidal excitation voltage Vs(t) = vs(ωt) still be used 

in the primary circuit. According to Thevenin's theorem, the coupled wireless power 
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transfer circuits can be synthesized into one RLC circuit, and the equivalent circuit is 

shown as figure 3.4. The circuit consists of a voltage source, an inductor, load, and a 

nonlinear capacitor C.  

 

Figure 3.3 Topology of nonlinear WPT system  

 

Figure 3.4 Equivalent nonlinear WPT system circuit 

The nonlinear capacitor C usually has a symmetric C-V relationship, i.e. C(VC) =

C(−VC). In the practical circuit design, the nonlinear capacitor with symmetric C-V curve 

characteristics can be provided with anti-series diode, ceramic capacitors, and 

ferroelectric varactor devices. BST, barium strontium titanate, based varactor is an 
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example of ferroelectric varactor diodes. BST varactor displays low loss. In [75], the C-V 

response of the BST-based varactor is shown in figure 3.5. 

𝐶(𝑉) =
𝐶0

1+(
4𝑉𝐶
3𝑉2

)2
                                                     (3-4) 

Where C = 0.5C0 when V2 is bias voltage. Vc is derived by [76]. 

𝑉𝐶 =
1

𝐶0
𝑄𝐶 +

16

9𝑉2
2𝐶0

3 𝑄𝐶
3                                          (3-5) 

When the BST-based varactor is used in duffing resonator, 𝑎1 and 𝑎3 equations 

presented in 3-6 and 3-7. The C-V curve response of the BST-based varactor with 𝐶0 =

100 PF and 𝑉2=5 V is shown in figure 3.5, which is simulated in MATLAB. 

𝑎1 = 𝐶0                                                        (3-6) 

𝑎3 =
9𝑉2

2𝐶0
3

16
                                                    (3-7) 

 

Figure 3.5 Bell shape symmetric C-V curve of BST-based varactor 
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The dynamic equation of nonlinear wireless power transfer resonator based on 

Kirchhoff voltage law (KVL) is given as follows:  

𝑉𝐶(𝑡) + 𝑅
𝑑𝑞

𝑑𝑡
+ 𝐿

𝑑2𝑞

𝑑𝑡2
= 𝑉𝑆𝑐𝑜𝑠(𝜔𝑡)                                     (3-8) 

Where  𝑉𝐶(𝑡) is the voltage across nonlinear capacitor, and 𝑉𝑆(𝜔𝑡) is the source 

voltage q(t) is the charge amount of the nonlinear capacitor. q is the amount of charge 

stored in the capacitor which is the function of 𝑉𝐶. So, the charge amount can be 

expressed as q = f(Vc), and the voltage across the nonlinear capacitor can be furtherly 

written as 𝑉𝐶 = 𝑓−1(q). Because the nonlinear capacitor has symmetric bell shape or wall 

shape C-V relationship, the even order terms of Taylor expansion vanish. The Taylor 

series expansion can be expressed by: 

𝑉𝐶 =
1

𝑎1
𝑞 +

1

𝑎3
𝑞3 + ⋯ ⋯                                                (3-9) 

Neglecting the higher than third-order terms for simplicity, 3-9 can be rewritten 

as:  

𝑉𝐶 =
1

𝑎1
𝑞 +

1

𝑎3
𝑞3                                                   (3-10) 

Substituting 3-10 into 3-8 results in 3-11: 

1

𝑎1
𝑞 +

1

𝑎3
𝑞3 + 𝑅

𝑑𝑞

𝑑𝑡
+ 𝐿

𝑑2𝑞

𝑑𝑡2 = 𝑉𝑆(𝜔𝑡)                             (3-11) 

Comparing equation 3-11 with 3-2, it is found that the forms of these two 

equations are the same. So, the nonlinear resonator equation 3-11 can be used in a 

nonlinear RLC resonator, which has the same characteristic with the duffing system. q =
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Qcos(ωt − θ) is the solution of 3-11. Q is the amplitude of the charge amount dependent 

on time. The restoring effect is contributed by both the linear term 
1

𝑎1
 and the nonlinear 

term 
1

𝑎3
. In order to simplify the calculation, the equivalent liner term is written as [27]. 

∫ (
1

𝐿𝑎3
Qcos(ωt − θ)3)𝑑(Qcos(ωt − θ)) = ∫ (

1

𝐶𝑒𝑓𝑓
Qcos(ωt − θ))

𝑇

2
0

𝑇

2
0

d(Qcos(ωt − θ))   

(3-12) 

From equation 3-12, 𝐶𝑒𝑓𝑓 can be calculated as 3-13: 

 
1

Ceff
=

1
a3

3
4

Q3

                                                     (3-13) 

Substituting 3-13 into 3-11 results in 3-14: 

𝑅
𝑑𝑞

𝑑𝑡
+ 𝐿

𝑑2𝑞

𝑑𝑡2 +
1

𝑎1
𝑞 +

1

Ceff
𝑞 = 𝑉𝑆𝑐𝑜𝑠(𝜔𝑡)                           (3-14) 

Simplifying equation 3-14:  

�̈� +
𝑅

𝐿
�̇� +

1

𝐿𝑎1
𝑞 +

1

LCeff
𝑞 =

𝑉𝑆

𝐿
𝑐𝑜𝑠(𝜔𝑡)                          (3-15) 

Thus, the natural resonant frequency 𝜔0 can be obtained: 

𝜔0 = √
1

𝐿𝑎1
+

1

LCeff
= √1

𝐿
(

1

𝑎1
+

3

4
𝑄2

𝑎3
)                             (3-16) 

The natural resonant frequency 𝜔0 is dependent on the charge amount of 

nonlinear capacitor Q, which varies with voltage 𝑉𝐶 of the nonlinear capacitor. The 

frequency-domain format of 3-15 can be written as: 
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(jω)2𝑄 +
𝑅

𝐿
𝑄(𝑗𝜔) +  

1

𝐿
(

1

𝑎1
+

3

4
𝑄2

𝑎3
)𝑄 =

𝑉𝑆

𝐿
                     (3-17) 

where Q is Qe−𝑗𝜃. 

Substituting Q into 3-17 results in: 

𝑄2(
1

𝐿𝑎1
+

3

4
𝑄2

𝐿𝑎3
− 𝜔2)2 + (

𝑅

𝐿
𝑄𝜔2)2 = (

𝑉𝑆

𝐿
)2                             (3-18) 

 

         Figure 3.6 Frequency-amplitude response of Duffing resonator circuit 
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          Figure 3.7 Amplitude-frequency response of linear RLC resonator 

Based on equations 3-6, 3-7, and 3-18, the duffing resonator with nonlinear 

capacitor frequency-amplitude response is drawn in figure3.6. The blue curve is the high 

equilibrium brunch, and the red curve is low equilibrium brunch. Figure 3.7 is the 

amplitude-frequency response of the linear RLC resonator. Figure 3.6 and figure3.7 has 

the same Q. In the linear RLC system design, the bandwidth is extremely narrow. The 

maximum amplitude only can get at a small range. However, nonlinear capacitor duffing 

resonator ameliorates this situation. The high amplitude bandwidth is enhancement. This 

difference is caused by the capacitor nonlinear term 
1

𝑎3
𝑞3. 
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CHAPTER 4 

NCNL DUFFING RESONATOR FOR IMPROVING THE WPT SYSTEM 

The research results of the previous chapter have shown that as a very promising 

solution in designing WPT systems, duffing resonator can not only exhibit a significant 

advantage in improving the WPT system’s tolerance to coupling factor variations without 

degrading the system’s efficiency but also having more wider bandwidth, as compared 

with the conventional linear resonator. 

In order to furtherly improve properties of WPT systems, based on the research 

work of the previous chapter, this chapter firstly designs a higher efficient non-linear 

resonator with non-linear ferromagnetic thin film core inductors and non-linear 

ferroelectric thin film dielectrics capacitors and derives a new of non-linear differential 

equations governing the non-linear dynamical behavior of the non-linear resonator. 

Secondly, by numerical simulation, the effects of different parameters on the system 

behavior are discussed. Finally, the performance comparison between the new system 

and the duffing resonator mentioned in the previous chapter is compared.  

4.1 Analysis of duffing resonator with nonlinear inductor and nonlinear capacitor 

In this chapter, we come up with a new “duffing” circuit by replacing the 

conventional RLC circuit’s inductor and capacitor with nonlinear capacitor and nonlinear
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inductor. The new equivalent nonlinear WPT circuit with a nonlinear capacitor and 

nonlinear inductor, NCNL circuit, is shown as figure4.1. 

 

Figure 4.1 New equivalent NCNL circuit 

The time-domain dynamic equation of NCNL circuit can be obtained based on the 

Kirchhoff voltage law.  

𝑅
𝑑𝑞

𝑑𝑡
+ 𝑉𝐶(𝑡) + 𝑉𝐿(𝑡) = 𝑉𝑆(𝑡)                            (4-1) 

Where i =
dq

dt
 and VS(t) = VScos(𝜔t). VS(t) is the excitation voltage. 𝑉𝐿(𝑡) is the 

inductor voltage. 𝑉𝐶(𝑡) is the voltage across the capacitor. q(t) is the charger amount into 

the nonlinear capacitor which is same as q(t) in the chapter 3.  

The nonlinear inductor is different from the linear inductor in structure. If the coil 

does not contain a permeable magnetic medium, it is called nonlinear inductor or air-core 

inductor. The L of the linear inductor is constant in the circuit and is not be influenced by 

the applied voltage or current. However, If the coil contains a magnetically conductive 

medium, such as the inductance L. L will not be constant. It has been called nonlinear 
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inductor. Inductance L is related to the applied voltage or current. The most practical 

nonlinear inductor is made by ferromagnetic material. It makes the inductor which has 

the nonlinear characteristic. The inductance L(i) of the nonlinear inductor can be 

expressed as: 

L(i) = 𝐿0 + 𝐿1𝑖 + 𝐿2𝑖2 + 𝐿3𝑖3 + 𝐿4𝑖4 + ⋯ ⋯                      (4-2) 

Where 𝐿0, 𝐿1, 𝐿2, 𝐿3, 𝐿4, and 𝐿𝑛 are the coefficients of L(i).  According to the 

linear Inductor voltage, the voltage of nonlinear inductor is given as: 

𝑉𝐿 = 𝐿(𝑖)
𝑑𝑖

𝑑𝑡
=

𝑑∅

𝑑𝑡
                                            (4-3) 

 ∅ = L(i)i=𝐿0𝑖 + 𝐿1𝑖2 + 𝐿2𝑖3 + 𝐿3𝑖4 + 𝐿4𝑖5 + ⋯ ⋯                  (4-4)                    

Based on the physical characteristic of nonlinear inductor component, we only 

consider the odd terms in  ∅ expression, mainly based on consideration as follows: Using 

even terms means that the current direction dose not varies with the change of the flux 

direction. But, in real life, the direction of the current is varied with the change of 

magnetic flux direction. In addition, the even term coefficients are smaller than odd 

terms’ coefficients. So, in the design, we only consider the odd terms while neglecting 

terms higher than the third order in  ∅ expression. The new expression of  ∅ is given as: 

  ∅ = L(i)i=𝐿0𝑖 + 𝐿2𝑖3                                            (4-5) 

Substituting 4-5 into 4-3, the nonlinear inductor voltage can be obtained: 

𝑉𝐿 = 𝐿(𝑖)
𝑑𝑖

𝑑𝑡
=

𝑑∅

𝑑𝑡
=

d(𝐿0𝑖+𝐿2𝑖3 )

dt
= 𝐿0

𝑑𝑖

𝑑𝑡
+ 3𝐿2𝑖2 𝑑𝑖

𝑑𝑡
                     (4-6) 
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By substituting i =
dq

dt
  expression into 4-6, we have the voltage - q relationship 

response of nonlinear inductor as follow: 

𝑉𝐿 = 𝐿0�̈� + 3𝐿2�̇�2�̈�                                         (4-7) 

Substituting 3-10 and 4-7 into 4-1 results in  

�̈� +
3𝐿2

𝐿0
�̇�2�̈� +

𝑅

𝐿0
�̇� +

1

𝐿0𝑎1
𝑞 +

1

𝐿0𝑎3
𝑞3 =

𝑉𝑠

𝐿0
𝑐𝑜𝑠(𝜔𝑡)

̇
          (4-8) 

Equation 4-8 has a similar form with duffing equation 3-1. However, unlike 

equation 3-15, this equation has exactly same form with duffing equation. Comparing 

with the equation 3-1, the second term in figure 4-8, 
3𝐿1

𝐿0
�̇�2�̈�, is extra, which is consisted 

of the first derivate and second derivate of the charge amount of the capacitor. 

q = Qcos(ωt − θ)                                                  (4-9) 

Where Q is the store charge amplitude in the nonlinear capacitor. θ is the phase 

difference with the excitation voltage signal. Although equation (4-8) has a little bit 

difference, compared with the conventional duffing equation, we can still use the method 

[77]. 

 

4.2  Analysis Approach of new NCNL duffing equation 

By putting  b1 =
3𝐿2

𝐿0
, 𝑏2 =

𝑅

𝐿0
, 𝑏3 =

1

𝐿0𝑎1
, 𝑏4 =

1

𝐿0𝑎3
, and F=

𝑉𝑠

𝐿0
 into equation (4-8)  , 

a new equation can be obtained: 



 

47 

 �̈� + 𝑏1�̇�2�̈� + 𝑏2�̇� + 𝑏3𝑞 + 𝑏4𝑞3 = Ḟ cos(ωt)            (4-10) 

By the new simplified equation 4-10, we can use an approximation method which 

is called a harmonic balance method, which is used to calculate the steady-state response 

of the nonlinear differential equation. The excitation voltage can be rewritten as  

Fcos(ωt) = Psin(𝜔𝑡) + Ecos(𝜔𝑡)    ,  F = √𝑝2 + 𝐸2                         (4-11) 

and the response expression is 

𝑞 = 𝐴𝑐𝑜𝑠(𝜔𝑡)                                                               (4-12) 

Where A is the amplitude of store charge which is the same as Q in eq. 4-9. 

Substituting 4-11 and 4-12 into 4-10, we can have the detailed derivation process of 

equation 4-10 as below: 

−A𝜔2𝑐𝑜𝑠(𝜔𝑡) + 𝑏1(−𝐴𝜔𝑠𝑖𝑛(𝜔𝑡))2(−𝐴𝜔2𝑐𝑜𝑠(𝜔𝑡)) + 𝑏2(−𝐴𝜔𝑠𝑖𝑛(𝜔𝑡))

+ 𝑏3𝐴𝑐𝑜𝑠(𝜔𝑡) + 𝑏4(𝐴𝑐𝑜𝑠(𝜔𝑡))3 = 𝑝𝑠𝑖𝑛(𝜔𝑡) + 𝐸𝑐𝑜𝑠(𝜔𝑡) 

−A𝜔2𝑐𝑜𝑠(𝜔𝑡) − 𝑏1𝐴3𝜔4𝑠𝑖𝑛2(𝜔𝑡)cos(ωt) − 𝑏2𝐴𝜔𝑠𝑖𝑛(𝜔𝑡) + 𝑏3𝐴𝑐𝑜𝑠(𝜔𝑡)

+ 𝑏4𝐴3𝑐𝑜𝑠3(𝜔𝑡) = 𝑝𝑠𝑖𝑛(𝜔𝑡) + 𝐸𝑐𝑜𝑠(𝜔𝑡) 

where 

𝑐𝑜𝑠3(𝜔𝑡) =
1

4
(3cos(ωt) − cos(3ωt)) 

𝑠𝑖𝑛2(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡) =
1

4
(𝑐𝑜𝑠(𝜔𝑡) − 𝑐𝑜𝑠(3𝜔𝑡)) 
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In the calculation, we neglect term cos(3𝜔𝑡). So 𝑐𝑜𝑠3(𝜔𝑡) and 𝑠𝑖𝑛2(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡) 

can be presented as: 

𝑐𝑜𝑠3(𝜔𝑡) =
3

4
cos(ωt) 

𝑠𝑖𝑛2(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡) = 0.5𝑐𝑜𝑠(𝜔𝑡) 

So, the previous expression is derived as 

(𝑏3A +
3

4
𝑏4𝐴3 − A𝜔2 − A𝜔2 − 0.5𝑏1𝐴3𝜔4)cos(ωt) − (𝑏2Aω)sin(ωt) = 𝑝𝑠𝑖𝑛(𝜔𝑡) +

𝐸𝑐𝑜𝑠(𝜔𝑡)  (4-13) 

The same harmonic terms’ coefficients are equating in equation (4-13) and using 

F = √𝑝2 + 𝐸2  gives  

((0.75𝑏4 − 0.5𝑏1𝜔4)𝐴3 + (𝑏3 − 𝜔2)𝐴)2 + (𝑏2𝜔𝐴)2 = 𝐹2           (4-14) 

4.3  System Modeling and Analysis 

The current-inductance response of linear inductor and nonlinear inductor are 

plotted shown, as shown in figure 4.1. The blue line is the I-L curve of the linear 

inductor. The inductance of the linear inductor does not vary with the current. The red 

curve represents the nonlinear I-L response. It can be seen that the NL inductor show 

very good nonlinear characteristics. The maximum inductance is around zero current 

points. As the current changes, the inductance behaves differently. The red curve is 

slightly higher than the blue curve at the maximum point. This is mainly because in the 

polynomial expression of nonlinear inductor, higher order terms are considered when 
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calculating. Because the coefficients 𝐿𝑛 is involved in the I-L response of the NL 

inductor from the equation 4-2, resulting in that the coefficients are not optimized in 

figure 4.2, and one part line for the red curve is higher than the blue line. Through 

adjusting the coefficient, we can have a more perfect bell-shape curve in figure 4.2. The 

maximum inductance of the nonlinear inductor is the same as the linear inductor when 

the current is equal to zero.  

 

       Figure 4.2 Current-Inductance responses of linear and nonlinear inductors 

 

   Figure 4.3 Optimal I-L curves of nonlinear inductor and linear inductor 
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Figures 4.4 and 4.5 show the amplitude-frequency relationship of the inductance 

at the different nonlinear coefficient of the nonlinear inductor.  

 

Figure 4.4 I-L curves of nonlinear inductor with different L0 values 

L0 is the most important parameter in the nonlinear inductor, which determines 

the largest inductance when the current is at zero. Figure 4.4 presents the different I-L 

responses when the L0 value is changed. From fig.4.4, it is shown that as the L0 

increases, the shape of the lines is almost same, but the slope of line and the maximum of 

the induction moves up. 
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Figure 4.5 I-L curves of nonlinear inductor with different L2 values 

The nonlinear characteristic of the nonlinear inductor depends on coefficient L2. 

As the value of L2 is getting smaller, the I-L curve becomes more curved. In figure 4.5, 

the red, blue, and green lines are cross when the current is zero. Except for this point, the 

blue line is higher than the others, which means that as the L2 value increases, the 

induction becomes larger when the circuit is the same. That is to say, only when the L2 is 

within the range from -10e to -4 H, the optimizing property of the nonlinear inductor can 

be obtained. In addition, it is also seen in figure 4.5, the maximum of the induction for 

the red and blue line are obtained when at current is a specific value. When the current is 

equal to zero, the inductance values are in maximum point. 

By applying optimal parameters of nonlinear inductor into equation (4-14), we 

can have either amplitude-frequency response or amplitude-voltage response which are 

shown in figure 4.6 and figure 4.7. The blue curve is high equilibrium brunch, and the red 

curve is lower equilibrium brunch in the schematics. In figure 4.6, the three roots region 

is plotted as a blue curve. Moreover, the frequency response is till to the right which is 
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the high-frequency side. This region is also called the bistable interval. There are 

coexisting solutions excited in this region. Only the blue curve and red curve are stable. 

These two points are equilibrium points. The steady-state solution of the NCNL system 

converges to the upper point or lower point is decided by the initial condition. When we 

design the whole system the highest amplitude frequency point is the system frequency 

because it can deliver maximum power to the load. Figure 4.7 shows the amplitude and 

excitation voltage relationship at the desired. When the excitation voltage of the NCNL 

system increases from 0 V, the response amplitude moves to the red curve. When the 

voltage arrived around 40 V, the amplitude jumps up to the upper equilibrium blue 

brunch. As the excitation voltage decreases, the amplitude response keeps at high 

equilibrium brunch until the voltage decreases to nearly 0 V, and the jump down 

phenomenon happens.  

 

Figure 4.6 The amplitude-frequency response of NLNC system 
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Figure 4.7 Amplitude-Voltage response of NCNL resonator. Blue curve is upper 

equilibrium brunch. Red curve is lower equilibrium brunch. 

The different L0 of the nonlinear inductor coefficient can influence the jump 

down frequency point and bandwidth. In figure 4.8, the L0 values change from 2e-3 to 

3.5e-3 H, respectively. As the value of L0 increased, the jump down frequency point is 

shifting to the right and the bandwidth is increased a little bit. The red curve peak and the 

blue curve peak slightly move to the right at the same time. However, the amplitude of 

the curves is almost the same.  
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Figure 4.8 The amplitude-frequency responses of NLNC system with different L0 

values 

Figure 4.9 shows the NCNL circuit relationship of amplitude-frequency responses 

at different L2 from -10e-4 H to -1.9e-4 H. We observe that in the lower 

frequency region, the frequency-amplitude response curves corresponding to different L2 

value are coincident, showing that the system exhibits almost the same nonlinear 

characteristics, bandwidth, and maximum amplitude. It means that nonlinear behavior 

and maximum amplitude of the system do not rely on L2 much. During the higher 

frequency region, when L2 increases, frequency-amplitude response curves move to the 

right side, showing stronger hardening behavior and increased bandwidth. However, the 

maximum amplitude remains unchanged. It means that the maximum amplitude of the 

system does not rely on L2. But the bandwidth can be influenced by L2 changing. 
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Figure 4.9 The amplitude-frequency responses of NLNC system with different L2 

values 

 

 

Figure 4.10 Amplitude-Frequency response of nonlinear inductor and nonlinear 

capacitor, NLNC, system with coupling factor changing  

In the NCNL circuit, the equivalent Thevenin voltage of the wireless power 

transfer circuit is the function of the coupling factor. In reality, when the receiver 

resonator and transmitter get closer, the coupling factor is larger. So, the amplitude of the 
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equivalent voltage changes as the two resonators distance changing. The relationship of 

equivalent voltage and coupling factor is shown below. 

𝑈𝑒 =
𝑉𝑠𝜔𝑀

𝑅𝑆
                                                   (4-15) 

Where 𝑈𝑒 is equivalent Thevenin voltage. M is the mutual inductance and is a 

function of K. 𝑅𝑆 is the inner resistance of source. And 𝜔 is angular frequency of 

excitation voltage. In the design, source voltage and excitation frequency are fixed. The 

only various parameter is mutual inductance, which is the coupling factor. So, when the 

mutual inductance or coupling factor increases, the amplitude of the equivalent voltage is 

increased. The relationship of coupling factor and amplitude for NCNL resonator is 

presented in figure 4.10. The blue curve is a high equilibrium point and red curve is the 

lower equilibrium point. The response of amplitude as a function of the coupling factor, 

K, is depicted in Fig. 10. When K increases from K = 0, the resonance 

amplitude increases slightly and moves on the lower equilibrium branch. When K reaches 

0.4, a jump up in response to the upper equilibrium branch occurs. If K is decreased, a 

jump down occurs when K is close to the zero, representing the same trend as Amplitude-

Voltage response shown as Fig4.7. Nonlinear resonant circuits are capable of 

adjusting their resonance frequencies based on the voltage amplitude across the 

nonlinear capacitors. Since the voltage amplitudes across the nonlinear capacitors 

in coupled nonlinear resonant circuits depend on the coupling factor, the resonance 

frequencies of the nonlinear resonators will be adjusted automatically based on the 

coupling factor. This self-adjustment characteristic is exploited to design the position 

insensitive WPT circuit. 
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4.4 NC and NCNL system comparison  

 

Figure 4.11 The amplitude-frequency response of the NCNL resonator circuit, in 

comparison with a LC circuit and duffing resonator with the same Q 

Comparing to the amplitude-frequency response of NC duffing resonator, the 

NCNL system has narrow bandwidth at the same quality factor. Although the bandwidth 

is smaller than the NC system, it is still larger than the linear WPT system. The 

amplitude-frequency responses of the three different systems is drawn in figure 4.11. All 

the blue curves are high equilibrium brunch and red curves are lower equilibrium points. 

The black curve in the figure is linear system response. Comparing with the linear RLC 

circuit, the two branches of frequency-amplitude response curves for NC and NLNC 

circuits bent to the left, showing the hardening behavior and resulting in increased 

bandwidth. The maximum amplitude of the response stays unchanged. Moreover, 

comparing the NC and NLNC circuits, although the bandwidth of the NLNC circuit is 

slightly narrower than that of the NC circuit, the frequency value corresponding to the 

maximum amplitude is respectively 0.8 MHz and 1.0 MHz for NLNC circuit and NC 
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circuit. It means that for the NLNC circuit, the same maximum amplitude as the NC 

circuit can be obtained by using lower frequency value. Besides, during the lower 

frequency region, the higher maximum amplitude value can be obtained by using the 

NLNC circuit. It also means that better amplitude or efficiency can be achieved using the 

NLNC circuit than by NC circuit when we design a WPT system with a lower frequency 

and higher quality factor.  

 

Figure 4.12 The amplitude-voltage responses of NLNC resonator and NC duffing 

resonator with the same quality factor.  

In figure 4.12, the amplitude-voltage responses of NLNC resonator and NC 

resonator are described. The blue curves are high equilibrium points and red curves are 

lower equilibrium points. Under the same Q, the upper brunch of the NCNL circuit is 

lower than this due to the nonlinear term L2 of nonlinear inductor. Comparing to the 

jump up point of these two systems, the NCNL resonator needs less voltage to achieve 

this phenomenon. The NC system needs almost double voltage if it wants to realize the 

jump up phenomenon. In figure 4.13, When the two systems work at the same frequency, 
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the shapes of amplitude-voltage responses of NLNC and NC resonators are almost the 

same. The nonlinear capacitor system’s amplitude dropping to the NCNL point is due to 

the excitation voltage of NC tuning down to the NCNL maximum frequency point. The 

NC quality factor is less than NCNL. 

 

Figure 4.13 The amplitude-voltage responses of NLNC resonator and NC duffing 

resonator at the same excitation frequency.  

 

Figure 4.14 The amplitude-voltage response of NLNC resonator and NC duffing 

resonator starting at the same amplitude.  
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Figure 4.14 shows the amplitude frequencies of the NLNC system and NC system 

start at the same amplitude. The blue curves and red curves represent the high 

equilibrium brunch and lower equilibrium brunch, respectively. Comparing to the 

nonlinear capacitor duffing resonator, a nonlinear capacitor with a nonlinear inductor 

resonator has a better amplitude than NC resonator. Moreover, the needed jump up the 

voltage of the NLNC circuit is also smaller than the NC circuit. It means when the system 

unfortunate excites at lower frequency brunch. The NLNC system needs less power to 

jump up to the high equilibrium brunch while the NC resonator needs twice the time 

voltage than the NLNC system. Moreover, the peak amplitude of NLNC is larger than 

NC, representing more power that could be delivered to the load, and the efficiency is 

better than the NC resonator under the same amplitude voltage source. 

In the wireless power transfer system design, the mutual inductance is the 

function of distance. So, at the same time, the coupling factor is also as the function of 

distance. The expressions are presented in [78]: 

M =
𝜇𝜋𝑛1𝑛2𝑎2𝑏2

√(𝑎+𝑏)2+𝑑2[(𝑎−𝑏)2+𝑑2]
                                          (4-16) 

Where 𝜇 is permeability of free space. 𝑛1 and 𝑛2 are the two coils terms. a and b 

are the radius of the coils. d is the distance between the two coils. In order to simplify the 

calculation. We assume that all the parameters of two coils are the same, 𝑛1 = 𝑛2 = 10, 

and a=b=10 mm. Due to the coupling factor is k=M/√𝐿1𝐿2. So, the response of distance 

and coupling factor is shown in figure 4.15. As the two coils distance increasing from 0, 

the coupling factor decreases from 0.56 to 0. It indicates that when the two coils air gap 
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becomes larger, the coupling capability of the tow coils is getting weak. As the distance 

become larger, the coupled energy is reducing.  

 

Figure 4.15 Coupling factor as a function of distance 

The relationship between amplitude and two coils’ distance response is presented 

in figure 4.16. The proposed NCNL system could maintain a high amplitude when the 

distance of the system is different. It also indicates the system efficiency can keep at high 

value when the distance is changing. The NCNL system effectively solves the problem of 

frequency splitting. When the distance between the two resonator coils increasing from 

zero to 100 mm, as shown in figure 4.16, the system's amplitude decreases a little bit but 

still situates above 0.7. This system could be applied to various charging applications 

without considering the power transfer efficiency reduced by distance changing of 

transmitter and receiver.  
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Figure 4.16 Amplitude-distance response of NLNC system  

In order to furtherly improve properties of WPT, this chapter design a higher 

efficient nonlinear resonator with nonlinear ferromagnetic thin film core inductors and 

nonlinear ferroelectric thin film dielectrics capacitors and derives a new of nonlinear 

differential equations governing the nonlinear dynamical behavior of the nonlinear 

resonator. The obtained numerical results display that the new system presents good 

softening behavior. The effects of different parameters on the system behavior are 

discussed. It is found that the parameters of the nonlinear components can be used to 

control the amplitude of the nonlinear response of the NCNL system. Finally, the 

properties between the new system and the duffing resonator and linear RLC circuit are 

compared. The results show that compared with the linear RLC circuit, the NCNL 

resonator and duffing resonator show the hardening behavior and result in increased 

bandwidth. Although the bandwidth of the new NCNL system is slightly narrower than 

that of NC circuit, in the lower frequency region, the higher maximum amplitude value 

can be obtained by using this system, which means that better efficiency can be achieved 
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by using the new system when we design a WPT system with a lower frequency and 

higher quality factor. Besides, by comparison between amplitude- voltage response 

curves of NC circuit and new system, we can be found that circuit, to maintain high PTE 

values, the much lower excitation voltage value is required for the new system. As an up-

and-coming solution, the new system will have broad application prospects in many 

wireless power transfer fields without adding active circuits to track the frequency.
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CHAPTER 5 

CONCLUSION  

5.1 Summary 

This thesis overviews the research status and trend of WPT technologies, analyses 

the frequency splitting phenomenon for wireless power transfer system, discusses the 

duffing resonator circuit and its properties, and design a kind of high-efficiency wireless 

power transfer inductive system with both non-linear inductors and non-linear capacitors. 

The main research conclusion of this paper is as follows: 

 Firstly, the research status and trend of WPT technologies are overviewed. The 

characteristics, principles of operation, research status, and critical problems of the four 

mainstream WPT technologies are elaborated, analyzed, and compared. Application 

researches of the technology in wireless charging, bio-implants transportation, and 

consumer electronics fields are summarized.  

Secondly, aiming at the frequency splitting problem during magnetic coupled 

resonance wireless power transmission, a system model was built based on the theory of 

mutual inductance coupling, the power, and efficiency expressions of conventional two 

coils CPT system is presented. Meanwhile, by analyzing the response of PTE versus 

resonant frequency versus coupling factor, the frequency characteristics, regularity, and 

occurrence condition of the frequency splitting phenomenon for the magnetic resonant 



 

65 

coupling WPT system are summarized. Moreover, the frequency splitting phenomena are       

analyzed with the power transfer capability S21 and the system efficiency curves at 

different coupling by the aid of simulation. The results show that the three regions are 

existing in the WPT system. They are over-coupled range, critically coupled range, and 

under-coupled range. The frequency splitting phenomena only occur in the over-coupled 

region. The S21 and efficiency split into two peak values. Finally, the frequency splitting 

suppression methods are proposed. The above research work provides a theoretical basis 

for solving the problem of frequency splitting and designing a kind of high-efficiency 

WPT system. 

Thirdly, a duffing resonator circuit with nonlinear capacitor, which can eliminate 

the frequency splitting and keep the high transmission efficiency and power delivered to 

the load is developed. With the help MATLAB software, the properties of the duffing 

resonance circuit are discussed. The results show duffing resonator can not only exhibit a 

significant advantage in improving the WPT system’s tolerance to coupling factor 

variations without degrading the system’s efficiency but also having more wider 

bandwidth with a conventional linear resonator. Therefore, it is an up-and-coming 

solution in designing WPT systems that require insensitivity to coupling factor variations. 

Finally, to further improve properties of WPT, we design a higher efficient 

nonlinear resonator with nonlinear ferromagnetic thin film core inductors and nonlinear 

ferroelectric thin film dielectrics capacitors and derives the nonlinear differential 

equations governing the nonlinear dynamical behavior of the nonlinear resonator. The 

obtained numerical results show that the new system presents good hardening behavior. 

The effects of different parameters on the system behavior are discussed.



 

66 

5.2 Future work 

NCNL circuit has been successfully simulated in MATLAB. In future works, we 

will apply this circuit into the experiment and real applications to test the performance 

and properties for the response of efficiency and distance. In the next step’s experiment, 

except test the needed phenomenon, we will also try to use different material made 

nonlinear inductors and nonlinear capacitors in the test. By using different types 

components, we want to achieve best performance of the power transfer efficiency 

response. Multi receiver resonators also be an important study in future design. Because 

in reality, one source to multiple devices charging is needed, such as the multiple phone 

charging in the same room. So, this study could provide an efficient method to solve the 

space occupation when charging many devices. 
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