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ABSTRACT 

Background: Elevated levels of circulating branched-chain amino acids (BCAA) 

and ketone bodies are recognized as biomarkers for cardiovascular disease 

(CVD) and other pathological conditions in type-2 diabetes mellitus (T2DM). 

Aerobic exercise interventions have been shown to decrease the levels of these 

markers, suggesting improved metabolic status and reduced risk of CVD. 

However, the efficacy of resistance training and concurrent programs in reducing 

BCAA and ketone body levels has not been well researched.  

Methods: The current study was performed as a secondary analysis of the 

HART-D trial, a 9-month randomized, controlled exercise-training trial of 262 

participants with T2DM. Participants were randomized to one of four groups: non-

exercise control, aerobic training (AT), resistance training (RT), or a combined 

aerobic and resistance training (ATRT). The effects of the 9-month intervention 

on BCAAs (leucine, valine, and isoleucine) and ketone bodies (β-hydroxy-

butyrate, BHB; acetoacetate, AcAc; and acetone) were quantified by nuclear 

magnetic resonance spectroscopy (NMR) at LabCorp (Morrisville, NC). 

Generalized linear models were used to examine effects of exercise training 

between groups with adjustments for age, sex, race, change in fat mass, 

glucose, and medication status and baseline trait value. Pearson correlation 

analysis was used to examine associations of the changes in BCAA and ketone 

levels with changes in concomitant cardiometabolic biomarkers. 
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Results: The ATRT group increased total BCAA and leucine levels compared to 

the AT group, and increased isoleucine compared to all other groups (all p<0.05). 

RT decreased BHB levels (p<0.05) compared to the AT group only. Across all 

exercise groups combined, changes in total ketone bodies (r=0.2), BHB (r=0.21), 

and Acetone (r=0.17) were weakly correlated with changes in HbA1c levels. 

Changes in total BCAAs (r=0.30) and valine (r=0.36) were moderately correlated 

with changes in fasting glucose levels, while isoleucine was weakly correlated 

with glucose (r=0.2) (all p<0.05). 

Conclusions: Our results show that the ATRT group increased isoleucine levels 

compared to the control group in diabetics, the mechanism of which is unclear. 

Exercise induced changes in BCAA and ketone body levels are weakly to 

moderately related to some concomitant cardiometabolic biomarkers such as 

fasting glucose and HbA1c levels. Further research is needed to examine the 

association of exercise training on circulating BCAA and ketone body levels in 

diabetics.
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CHAPTER 1 

 INTRODUCTION 

The branched-chain amino acids (BCAA); leucine, valine, and isoleucine 

are essential amino acids that distinguish themselves from the other amino acids 

due to very limited hepatic catabolism1. The majority of their metabolism resides 

in skeletal muscle. As such they play an important role in regulating muscle 

protein synthesis, and contributing to energy production via the tricarboxylic acid 

(TCA) cycle2. BCAAs are metabolized through two main processes. The first, a 

reversible transamination catalyzed by branched-chain aminotransferase 

(BCAT), produces branched chain α-ketoacids (BCKA) and glutamate. The 

second, is an irreversible oxidative decarboxylation of the BCKAs catalyzed by 

the branched chain α-ketoacid dehydrogenase (BCKDH) complex3. The complex 

is regulated by both covalent and allosteric mechanisms. Phosphorylation of its 

E1 component by BCKDH kinase downregulates activity, while mitochondrial 

protein phosphatase 2C (PP2Cm) dephosphorylates the complex, upregulating 

its activity1. BCKAs, specifically α-ketoisocaproate, can bind the BCKDH kinase 

and allosterically inhibit the phosphorylation of the complex, suggesting that 

deficiencies in BCAT activity could downregulate BCKDH activity4. A deficiency in 

the BCKDH complex can reduce its contribution to energy production and lead to 

a buildup of circulating BCAAs in the blood. 
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While the relationship is not completely understood, there appears to be 

an association between elevated levels of circulating BCAAs and T2DM, and 

related pathologies, such as cardiovascular disease (CVD)5-7. Improvements in 

insulin resistance levels, as measured by the homeostatic model assessment of 

insulin resistance (HOMA-IR), after weight loss have been found to have a 

greater correlation with decreases in BCAA levels (r=0.50) than the amount of 

weight lost (r=0.24) during an exercise intervention5. Elevated BCAA levels have 

also been identified as strong predictors of the development of T2DM as they 

have been shown to increase long before the onset of the condition6. Increased 

baseline levels of BCAAs more than doubled the risk of developing T2DM over a 

six-year period in men (OR 2.09: 95%CI 1.38-3.17)6. Tobias et al8 discovered a 

positive relationship between BCAA levels and coronary cardiovascular events in 

women both with and without T2DM, although the relationship was stronger in 

the diabetic population (Relative Risk 1.2: CI 1.08-1.32). This association has 

also been reproduced in other prospective cohort trials7,9. While there hasn’t 

been a determined causal link between BCAAs and CVD, impairment of BCAA 

catabolic pathways in the heart was associated with elevated superoxide 

production, oxidative injury, and mitochondrial permeability transition pore 

opening in heart failure10,11. 

Since BCAAs can be metabolized in skeletal muscle, unlike other amino 

acids, they can contribute to energy production during exercise. Therefore 

exercise has a large regulatory effect on the metabolism of BCAAs12. Aerobic 

exercise acutely13-15 and chronically16 increases BCKDH activity and decreases 
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expression of the BCKDH kinase protein. Due to enhanced oxidative capacity17 

and increased protein turnover18 in skeletal muscle from resistance training it is 

thought that regular resistance training would be beneficial in regulating BCAA 

metabolism, however no actual studies have been performed to date. One study 

looking at a concurrent exercise training program has been conducted which 

showed a decrease in isoleucine and valine levels, however leucine levels did 

not significantly decrease19.  

Ketone bodies are molecules produced by the liver as a result of fatty acid 

oxidation under conditions of low glucose availability20. The β-oxidation of fatty 

acids results in acetyl-CoA, which can be converted via multiple steps of 

enzyme-catalyzed reactions into one of three ketone bodies: acetoacetate 

(AcAc), 3-β-hydroxybutyrate (BHB), or the least abundant, acetone. They are 

mainly thought of as an alternate energy source, but can also be important 

mediators of cell signaling, drivers of protein post-translational modification, and 

modulators of inflammation and oxidative stress21. The rate of production of 

ketones is controlled by acetyl-CoA carboxylase and mitochondrial HMG-CoA 

synthase22, and the rate of clearance is regulated by succinyl-CoA-3-oxoacid 

CoA transferase (SCOT)23 and monocarboxylate transporters (MCT1)24  

Due to the role of insulin in regulating ketone production and metabolism, 

ketones are a metabolite with strong implications in T2DM20. Diabetic 

ketoacidosis is a serious condition that arises in diabetics, when ketone 

production becomes too deregulated25. In a study of over 9,000 men; levels of 

ketone bodies (AcAc & BHB) were significantly increased (p<0.01) in those with 
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diabetes compared to those with normal glucose control26. AcAc levels were 

increased by elevated in diabetics by 64% (95% CI, 16% to 109%), and BHB 

levels were increased by 99% (95% CI, 6% to 186%) compared with the 

reference group. After a five year follow up of over 4,000 of these men, elevated 

AcAc levels were associated with increased risk of incident T2DM in those with 

impaired fasting glucose (OR 1.49: 95%CI 1.12-1.99)26. Lower levels of 

adipocyte RNA expression of key enzymes in ketolysis, such as SCOT, were 

also found in those with diabetes and glucose tolerance issues26. Altered 

substrate utilization in myocardial metabolism is known to play a causative role in 

the development of CVD in those with diabetes27,28. A 2001 study29 found that 

ketone body utilization in patients with heart failure is altered in a tissue specific 

manner. Skeletal muscle has a significantly lower uptake of ketones in heart 

failure patients than in healthy controls. Therefore, elevated levels of ketone 

bodies are often observed in patients with heart failure29. 

Due to the role of ketones as a fuel source under certain conditions, 

exercise can affect plasma ketone levels acutely and alter them chronically 

through both ketogenic inhibiting and ketolytic enhancing mechanisms. Since the 

rate of ketogenesis is increased as the ratio of glucagon to insulin increases, 

chronically, exercise works to inhibit the excess rates of ketogenesis by 

increasing insulin sensitivity in type 2 diabetics30,31. While specific long term 

training induced changes in expression of ketolytic enzymes has not yet been 

described in humans, changes are observed in ketone body metabolism during 

and after exercise in trained and untrained individuals, such as the attenuation of 
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post-exercise rises in ketone bodies32. However, rodent models have shown 

increased expression of ketolytic enzymes such as SCOT33 and MCT124 from 

aerobic training programs in an intensity dependent manner. 

In summary, circulating BCAAs and ketone bodies are heavily implicated 

with the development of T2DM and mediate some of the comorbidities and 

disease states that are synonymous with the condition, especially CVD. While 

some research has been published with promising results regarding the efficacy 

of regular exercise to manage these biomarkers, there is limited information on 

different training modalities or the pathways mediating these effects. In the 

original analyses performed on the HART-D cohort, their main outcome trait 

(HbA1c levels) was decreased compared to the control only in the combination 

training group (-0.34%: 95% CI, -0.64% to -0.3%)34. Therefore, it is of interest to 

research the effect of different training modalities on the levels of circulating 

BCAAs and ketone bodies to further develop our understanding and 

management of these biomarkers of complications in T2DM. We hypothesize 

that all modalities of exercise will elicit significant changes in circulating BCAAs 

and ketone bodies. We will test these hypotheses with the following aims: 

Aim 1: Determine the association of different modalities of 9-month exercise 

training plan on circulating BCAA and ketone levels in type 2 diabetics from the 

HART-D study. 

a. Determine the association of an aerobic training program on circulating BCAA 

and ketone levels 
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b. Determine the association of a resistance training program on circulating 

BCAA and ketone levels 

c. Determine the association of a combined aerobic and resistance training 

program on circulating BCAA and ketone levels 

We hypothesize that all exercise training modalities will significantly decrease 

circulating BCAA and ketone levels and ATRT will produce significantly greater 

decreases than AT and RT. 

Aim 2: Determine the association of exercise induced changes in circulating 

BCAA and ketones with changes in concomitant cardiometabolic biomarkers 

(body fat %, lean mass, HbA1c, fasting glucose, fasting insulin, C-reactive 

protein, and Vo2peak) in type 2 diabetics from the HART-D study. 

We hypothesize that exercise induced changes in circulating BCAA and ketone 

levels will be associated with changes in concomitant cardiometabolic 

biomarkers with no significant differences between groups.
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CHAPTER 2 

BCAAS AND KETONE BODIES IN DIABETES 

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by 

apoptosis and dysfunction of pancreatic β cells due to a decrease in insulin 

receptor sensitivity referred to as insulin resistance35. Chronic insulin resistance 

causes an upregulation of glucose transporter 2 (GLUT2) channels which leads 

to an increase in cytosolic calcium levels35, 36. These increased calcium levels 

cause the subsequent β cell apoptosis due to calcium activated intracellular 

cysteine protease calpain-237, and increased reactive oxygen species (ROS)38, 39. 

Calcium stimulates ROS through both, increased mitochondrial ROS 

metabolism38 and the NADPH oxidase dependent generation of ROS due to 

activation of protein kinase C (PKC)39.  The pancreatic β cells are believed to 

have increased exposure to ROS due to aging40, chronic hyperglycemia41, and 

elevated intracellular fatty acids42, which has led to the notion that advanced age, 

poor diet, and sedentary lifestyle have a deleterious effect on β cell function and 

play a role in the development of T2DM40-42.   

Through large systematic reviews and meta-analyses, a plethora of risk 

factors have been identified and evaluated for their efficacy in predicting T2DM 

outcomes. Factors pertaining to diet and lifestyle habits, psychosocial factors, 

medical history, and blood biomarkers have been strongly linked to T2DM43. 
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Obesity is the strongest risk factor known, with metabolically unhealthy obesity 

being associated with a 10-fold increase for the development of T2DM43. Lifestyle 

factors that promote obesity, such as increased sedentary time [risk ratio (RR) 

1.9: 95% Confidence Interval (CI) 1.66-2.19], smoking (RR 1.4: CI 1.33-1.44), 

and increased sugar-sweetened beverage (RR 1.3: CI 1.21-1.41) and processed 

meat consumption (RR 1.4: CI 1.25-1.49) also therefore increase the risk of 

developing T2DM43. Biomarkers including C-reactive protein (RR 1.26: CI 1.16-

1.37), alanine aminotransferase (RR 1.85: CI 1.57-2.18), and gamma-glutamyl 

transferase (RR 1.92: CI 1.66-2.21) are all positively associated with T2DM risk, 

while increased Vitamin D levels (RR 0.62: CI 0.54-0.70) are a negative risk 

factor43. 

Along with the transparent metabolic pathology of T2DM, there are a 

number of complications and comorbidities associated with the disease. 

Common complications of T2DM include hypertension, dyslipidemia, decreased 

glomerular filtration rate, and peripheral vascular disease44. In addition to the 

physical comorbidities that present themselves, an increased risk for mild 

cognitive impairment and depression is associated with T2DM45. Rates of 

clinically relevant depression among those afflicted with T2DM has been shown 

to be about 31%46 which is much higher than the rates in the general population. 

Diabetes and its’ complications are having a drastically increasing societal 

and economic impact on the United States. Over the 20 year period from 1990 to 

2010, the total number of adults diagnosed with diabetes tripled, while the 

incidence rate over that time period doubled47, with type 2 being the vastly more 
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prevalent diagnosis48. Based on data from the 2016 National Health Interview 

Survey, there are 21 million adults in the United States currently diagnosed with 

T2DM48, which equates to 8.58% of the population. Along with the myriad of 

health complications and comorbidities associated with it, adults diagnosed with 

diabetes have a 50% higher all-cause mortality rate than those without the 

diagnosis49. On top of the individual burden brought upon those diagnosed with 

diabetes, the burden on the healthcare system is enormous. In 2017, the cost of 

diabetes to the US healthcare system was $237 billion, more than double the 

$116 billion it cost in 200750. This total accounts for roughly a quarter of all 

healthcare dollars spent, and equals out to an average cost of $16,572 per 

annum for each individual with the condition50. 

Cardiovascular disease (CVD) is the leading cause of death in the United 

States, attributing to approximately one third of total deaths in 201651. The risk for 

developing CVD increases in diabetics one to three times for women and two to 

five times for men. Diabetics have 1.7 times the mortality risk from CVD52. 

Additionally, on average, atherosclerotic cardiovascular disease manifests itself 

14.6 years earlier in those with T2DM than the non-diabetic population53. There 

are many cellular and molecular pathophysiologic factors that elucidate the 

increased incidence and severity of cardiovascular disease in the diabetic 

population. The impairment of insulin signaling, hyperinsulinemia, and 

hyperglycemia presented by type-2 diabetics contributes to numerous issues 

such as elevated free fatty acids, protein kinase-C activation, mitochondrial 

dysfunction, oxidative stress, and advanced glycogen end-product, which causes 
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endothelial dysfunction and inflammation52. This leads to an increase in the 

formation of foam cells in the vulnerable subendothelial layers of vasculature. 

These foam cells release inflammatory mediators such as tumor necrosis factor-

α, leading to stenosis and necrosis of the vessel52. 

Exercise has long been identified as a key factor in the prevention and 

management of T2DM. The most recent American Diabetes Association 

guidelines recommend at least 150 minutes per week of moderate to vigorous 

aerobic exercise and 2-3 days per week of resistance training54. The efficacy of 

aerobic exercise in the management and prevention of diabetes has been well 

studied with positive results. Lifestyle interventions in the form of dietary energy 

restriction and 150-175 minutes per week of aerobic exercise have shown a 40-

70% reduction in the risk of developing T2DM in subjects with impaired glucose 

tolerance54. Aerobic exercise has been shown to improve many markers 

associated with dysfunction in diabetics such as glycosylated hemoglobin levels, 

regulation of lipid and lipoprotein metabolism55, insulin resistance, fasting plasma 

glucose, fasting insulin, and systolic blood pressure56. More recently it has been 

acknowledged that resistance training is also a viable method of exercise to 

combat diabetes related complications. Along with the obvious beneficial 

physiological adaptations caused by resistance training, such as increased lean 

body mass, strength, and bone mineral density, it also has been shown to reduce 

HbA1c and blood pressure, and increase insulin sensitivity in type 2 diabetics30. 

There is an inverse association between skeletal muscle index, the ratio of 

estimated total skeletal muscle mass as a ratio of total body weight, and 
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developing insulin resistance. From the lowest quartile to the second lowest 

quartile the RR is 0.72 (CI 0.63-0.83) and from the lowest to highest quartile the 

RR is 0.59 (CI 0.48-0.72)31. This suggests resistance training may be important 

and beneficial in the diabetic population. There is evidence that a concurrent 

(resistance and aerobic training) program produces greater results than either 

modality by itself. Concurrent programs have been shown to produce greater 

improvements in body composition and performance characteristics, such as 

lean body mass, fat mass, strength, and VO2max, as well as HbA1c levels34, and 

pro-inflammatory biomarkers such as interleukin-6 and tumor necrosis factor-α57. 

A factor that has more recently been identified as having a strong 

association with metabolic disease and CVD is the circulating level of branched-

chain amino acids (BCAA) and their metabolites58. Metabolic profiling shows that 

changes in circulating levels of BCAAs have an inverse association with insulin 

sensitivity (r=-0.38), and are a potential predictor of CVD risk59.  The BCAAs; 

leucine, valine, and isoleucine are essential amino acids that play an important 

role in activating the anabolic signaling molecule, mammalian target of 

rapamyacin complex 1 (MTOR1C), regulating muscle protein synthesis, and 

energy production2. BCAAs are broken down through two main processes, the 

first catalyzed by branched-chain aminotransferase (BCAT), and the second 

catalyzed by the branched chain α-ketoacid dehydrogenase complex (BCKDH)3. 

In the first process, BCAT catalyzes the transamination of BCAAs, a substitution 

reaction that replaces the amine functional group of the BCAA with a ketone 

group to form branched-chain α-keto-acids(BCKA) and glutamate. In the BCKDH 
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complex the BCKA products then undergo oxidative decarboxylation to produce 

acyl-CoA derivatives which are subsequently converted through several 

downstream reactions into acetyl-CoA and succinyl-CoA which enter the 

tricarboxylic acid (TCA) cycle to be involved in energy production60. A deficiency 

in the BCKDH complex can reduce its contribution to energy production and lead 

to a buildup of BCAAs in the blood. Adipose specific over-expression of GLUT-4 

creates a concerted decrease in multiple BCAA catabolic enzymes in adipose 

tissue, resulting in increased levels of circulating BCAAs61. Deficiencies in the 

BCKDH complex can often be caused by overexpression of BCKDH kinase, an 

inhibitor of the complex, and a decrease in expression of mitochondrial BCAT, 

which catalyzes the initial transamination of BCAAs to produce BCKA for 

oxidative decarboxylation via the BCKDH complex62. 

While the relationship is not completely understood, there appears to be 

an association between T2DM and elevated levels of circulating BCAAs. 

Improvements in insulin resistance levels, as measured by the homeostatic 

model assessment of insulin resistance, after weight loss have been found to 

have a greater correlation with decreases in BCAA levels (r=0.50) than the 

amount of weight lost (r=0.24) during an exercise intervention59. Elevated BCAA 

levels have also been shown to be strong predictors of the development of T2DM 

as they have been shown to increase long before the onset of the condition5. 

Increased baseline levels of BCAAs more than doubled the risk of developing 

T2DM over a six year period in men (OR 2.09: CI 1.38-3.17)5. Increased levels of 

BCAAs, BCKAs, and medium and long‐chain acylcarnitines, by‐products of 
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mitochondrial catabolism of BCAAs, all distinguish between obese people who 

have features of insulin resistance versus those who do not3.  

There are several hypotheses as to how BCAA levels might affect insulin 

resistance especially in those with T2DM. There are some genetic factors, as 

genetic variants in the protein phosphatase, Mg2+/Mn2+ dependent 1K, are 

associated with T2DM. The PPM1K gene is responsible for encoding the 

mitochondrial protein phosphatase 2C (PP2Cm) which activates the BCKDH 

complex through dephosphorylation6. There are also theories involving the 

MTORC1 pathway. Activation of the MTORC1 pathway involves insulin and 

glucose, as well as crucially requiring BCAAs for signaling of translocation to the 

lysosome, so an overload of BCAA could play a role in developing insulin 

resistance63 with MTOR being a central signal in cross-talk between BCAAs and 

insulin64. There is also some evidence to suggest that inhibition of sodium-

glucose cotransporter-2 increases BCAA metabolism and therefore the sodium-

glucose cotransporter-2 may play a role in BCAA levels in T2DM as expression 

of these proteins is increased in diabetic nephropathy65. 

  While the relationship between BCAA’s and T2DM is relatively well 

documented, the association of BCAAs with CVD is more contentious. Tobias et 

al8 discovered a positive relationship between BCAA levels and coronary 

cardiovascular events in women both with and without T2DM, although the 

relationship was stronger in the diabetic population (RR 1.2: CI 1.08-1.32). This 

association has been reproduced in other prospective cohort trials7, 9, however 

some studies have found that after adjusting for cofounding variables, BCAA 
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levels are not a significant predictor of cardiovascular events66. While there 

hasn’t been a determined causal link between BCAAs and CVD, a recent study 

found that impairment of BCAA catabolic pathways in the heart was associated 

with elevated superoxide production and oxidative injury10, and were regulated by 

Kruppel-like factor 15 in which deficiencies have been shown to be linked to 

CVD67. 

As BCAAs, unlike other amino acids, can be metabolized in skeletal 

muscle, they can contribute to energy production during exercise, and therefore 

exercise has a large regulatory effect on the metabolism of BCAAs12. Aerobic 

exercise acutely increases BCAA metabolism by activating the BCKDH 

complex13-15 and decreasing BCKDH Kinase activity15. Chronic repeated bouts of 

aerobic exercise decrease BCKDH Kinase protein expression in skeletal muscle, 

thereby increasing activation of the BCDKH complex16. Exercise intolerance may 

develop in severe cases of deficiencies in BCAA metabolism, as exhibited in 

studies with BCAT knockout mice68.  

There is very little information to date on the impact of resistance training 

on BCAA metabolism. Due to the increased oxidative capacity in skeletal muscle 

from enhanced mitochondrial function17 and stimulation of muscle protein 

turnover18, it would be assumed to have a beneficial effect. The effects of a 

combined program of aerobic and resistance training on BCAA levels have been 

studied only once. In this study, leucine levels did not change with training, 

however, isoleucine and valine levels did decrease19. Due to the lack of studies 

regarding resistance and combination training, there is a need for further 
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research to increase our understanding of the efficacy of different modes of 

exercise as a treatment for lowering or maintaining circulating BCAA levels. It is 

also not known how exercise induced changes in BCAAs correlate with changes 

in some other important concomitant cardiometabolic biomarkers related to 

T2DM, such as HbA1c, C-reactive protein, and lipid panel. There is no accepted 

working model as to the exact physiological mechanisms underlying enhanced 

BCAA metabolism from exercise, and therefore the biological plausibility needs 

to be further examined. 

Ketone bodies are molecules produced by the liver as a result of fatty acid 

oxidation under conditions of low glucose availability20. They are mainly thought 

of as an alternate energy source, but can also be important mediators of cell 

signaling, drivers of protein post-translational modification, and modulators of 

inflammation and oxidative stress21. Normal ketone levels are below 0.6mmol/L, 

however issues with hormonal balance or enzyme malfunctions in ketolysis can 

lead to a build-up of unused ketone bodies in the blood, which causes a drop in 

pH and acidosis. The β-oxidation of fatty acids results in acetyl-CoA, which can 

be converted via multiple steps of enzyme-catalyzed reactions into one of three 

ketone bodies: acetoacetate (AcAc), 3-β-hydroxybutyrate (3HB), or the least 

abundant, acetone.  

The rate of production of ketones is controlled by three hormones: 

hormone-sensitive lipase, acetyl-CoA carboxylase, and mitochondrial HMG-CoA 

synthase. The activity of these hormones is determined by the ratio of circulating 

levels of insulin and glucagon20. Ratios favoring insulin act to inhibit ketogenesis, 
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while when glucagon is favored ketone production is stimulated22. Glucagon 

signals for the body to raise the concentration of glucose in the bloodstream 

whereas insulin lowers the concentration, signaling for the uptake of glucose into 

tissues to be used for energy production22. When the levels of glucagon are 

higher than insulin it promotes fatty acid oxidation in order to produce acetyl-CoA 

for energy production through the TCA cycle. If glucagon levels are raised too 

much, due to issues such as insulin resistance, acetyl-CoA production via fatty 

acid oxidation may increase beyond the body’s need for it as an energy substrate 

and will instead be converted to ketone bodies to be stored instead of entering 

the TCA cycle69. Insulin also promotes peripheral ketone body clearance, thus 

reduced insulin levels will cause increased plasma ketone levels due to both 

enhanced ketogenesis and diminished ketolysis70.  

Succinyl-CoA-3-oxoacid CoA transferase (SCOT) is an enzyme derived 

from the OXCT1 gene that catalyzes the transfer of CoA between carboxylic acid 

groups23. SCOT catalyzes the first and rate determining step of ketolysis by 

transferring a CoA group from succinyl-CoA to acetoacetate to form acetoacetyl-

CoA, which is further broken down into two acetyl-CoA groups to enter the TCA 

cycle for energy production71. Deficiencies in SCOT interfere with the ability to 

utilize ketones as an energy source, as the process of ketolysis cannot be 

initiated in order to produce Acetyl-CoA groups for the TCA cycle. As a result 

they build up in the blood and can cause recurrent episodes of ketoacidosis23. 

Monocarboxylate transporters (MCT1) are responsible for the transport of 

ketones through the cell membrane. Loss of function or decreased expression in 
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MCT1 can therefore reduce uptake in organs to cause elevated circulating 

ketone bodies24. 

Due to the role of insulin in regulating ketone production and metabolism, 

ketones are a metabolite with strong implications in T2DM20. Diabetic 

ketoacidosis is a serious condition that arises in diabetics, when ketone 

production becomes too deregulated. It is characterized by blood glucose levels 

of more than 13.9mmol/L, serum ketone levels of more than 3.0 mmol/L and 

arterial pH of less than 7.325. In a study of over 9,000 men; levels of ketone 

bodies (AcAc & BHB) were significantly increased (p<0.01) in those with diabetes 

compared to those with normal glucose control26. AcAc levels were increased by 

elevated in diabetics by 64% (95% CI, 16% to 109%), and BHB levels were 

increased by 99% (95% CI, 6% to 186%) compared with the reference group. 

After a five year follow up of over 4,000 of these men, elevated AcAc levels were 

associated with increased risk of incident T2DM in those with impaired fasting 

glucose (OR 1.49: 95%CI 1.12-1.99)26. Lower levels of adipocyte RNA 

expression of key enzymes in ketolysis, such as SCOT, were also found in those 

with diabetes and glucose tolerance issues26.  

Dysregulation of ketone levels in diabetics is a multi-factorial issue that 

stems from several deficiencies and pathologies caused by the condition within 

both the endocrine system and enzymatic proteins. The effects of T2DM on 

insulin resistance and β-cell function cause disparity in the glucagon/insulin ratio, 

which promotes ketogenesis and the diminished insulin secretion can also cause 

decreases in ketolysis70. Increased activity of free radicals of nitrogen and 
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oxygen species in diabetics can lead to non-enzymatic nitration of tyrosine 

residues of SCOT, which attenuate its function, as has been reported in diabetic 

mice models72. MCT1 expression is also lowered due to decreases in lactate 

production as a result of insulin resistance73 as well as muscle inactivity74 due to 

sedentary lifestyle. 

Altered substrate utilization in myocardial metabolism is known to play a 

causative role in the development of CVD in those with diabetes27, 28. Ketone 

metabolism is one substrate associated with cardiovascular events. One 

characteristic of CVD, such as cardiomyopathy, is decreased utilization of fatty 

acid oxidation for energy production in the cardiac muscle tissue, leading to an 

increase in glucose utilization in the heart28. Increased glucose utilization results 

in increased rates of gluconeogenesis and therefore acetyl-CoA produced by 

fatty acid oxidation is broken down into ketone bodies rather than reacting with 

oxaloacetate to enter the TCA cycle20. A 2011 study29 found that ketone body 

utilization in patients with heart failure is altered in a tissue specific manner. 

Skeletal muscle has a significantly lower uptake of ketones in heart failure 

patients than in healthy controls. Therefore, elevated levels of ketone bodies are 

often observed in patients with heart failure29. Further highlighting the importance 

of ketones in CVD, patients with recessive mutations of the OXCT1 gene that 

encodes the SCOT protein often present with dilated cardiomyopathy due to 

defects in ketone body metabolism75.  

Due to the role of ketones as a fuel source under certain conditions, 

exercise can affect plasma ketone levels acutely and alter them chronically 
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through both ketogenic inhibiting and ketolytic enhancing mechanisms. Since the 

rate of ketogenesis is increased as the ratio of glucagon to insulin increases, 

chronically, exercise works to inhibit the excess rates of ketogenesis by 

increasing insulin sensitivity in type 2 diabetics30, 31. Acute exercise promotes the 

ketolytic pathways to increase ketone body clearance. The relationship between 

plasma ketone concentrations and skeletal muscle oxidation of ketones is 

curvilinear with saturation kinetics. The contribution of ketones to skeletal muscle 

ATP production increases with elevating concentrations until it reaches saturation 

levels at approximately 1-2mmol/L and then declines as the concentrations 

increase further76, 77.  

While specific long term training induced changes in expression of 

ketolytic enzymes has not yet been described in humans, changes are observed 

in ketone body metabolism during and after exercise in trained and untrained 

individuals, such as the attenuation of post-exercise rises in ketone bodies32. 

However, these enzymatic pathways have been studied more in rodent models 

and suggest that intense aerobic exercise training results in increased 

expression of ketolytic enzymes SCOT, BDH, and ACAT33. It has been well 

established that MCT1 expression increases with training in an intensity 

dependent manner, to increase cells uptake of ketones24, 78. While research is 

lacking on the effects of resistance training on mechanisms of ketone body 

clearance, the resulting increased skeletal muscle mass would have a positive 

effect on insulin sensitivity31. This would decrease ketogenic activity via better 

regulation of the glucagon/insulin ratio of glucagon and inhibiting ketogenesis 
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promoting hormones20. Resistance training, like aerobic training, has also been 

shown to increase MCT1 expression in certain trials79.  

While positive effects of aerobic training on ketone metabolism have been 

documented, there are large gaps in current knowledge regarding the effects of 

resistance training and concurrent training on ketone metabolism. Therefore, 

further research is required to determine the potential benefits of exercise 

programs for ketone body metabolism. It is also not known how exercise induced 

changes in ketones correlate with changes in some other important concomitant 

cardiometabolic biomarkers related to T2DM, such as HbA1c, C-reactive protein, 

and lipid panel. There is no accepted working model as to the exact physiological 

mechanisms underlying enhanced ketone metabolism from exercise, and 

therefore the biological plausibility needs to be examined. 

Exercise increases BCAA catabolism by increasing BCKDH activity while 

reducing BCKDH kinase activity. One proposed mechanism behind this effect is 

exercise-induced increases in adiponectin expression80, 81 and the subsequent 

activation of downstream substrates. Adiponectin is a protein hormone produced 

in adipose tissue that has roles in regulating glucose levels, fatty acid 

breakdown81 and has more recently been shown to be linked to BCAA 

catabolism82. One mechanism of action for adiponectin is activation of 5’ 

adenosine monophosphate-activated protein kinase (AMPK)83. Adiponectin, 

specifically through its downstream substrate AMPK works to activate PP2Cm. 

This causes an overall shift towards dephosphorylation of BCKDH82. 
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Dephosphorylated BCKDH is free to catalyze the decarboxylation of BCKA60, 82 

(Figure 2.1). 

Both aerobic training and resistance training have well established 

mechanisms behind physiological adaptions which improve insulin sensitivity to 

decrease ketone levels56, 30, 31. Ketogenesis becomes inhibited due to decreased 

release of ketogenic hormones; hormone-sensitive lipase, acetyl-CoA 

carboxylase, and mitochondrial HMG-CoA synthase55. However, the role of 

exercise on lowering ketones via mechanisms controlling ketolytic enzymes is 

less clear. MCT1, a plasma membrane transporter, catalyzes the proton-linked 

transport of monocarboxylates which includes not only ketones, but pyruvate and 

lactate, which are accumulated during exercise and transported in the cell to go 

through the TCA cycle to produce ATP78, 84. Lactate accumulation increases with 

increasing intensity of exercise85, which causes an increase in MCT1 activity78, 86. 

MCT1 communicates with basigin (CD147), a cell surface glycoprotein, which 

facilitates MCT1 turnover. As the activation of these transporters increases 

during exercise, CD147 causes an acute increase in degradation of MCT1 

through activation of matrix metalloproteinase-2/9 as well as directly increasing 

MCT1 transcription87. Increased CD147 activity results in upregulation and 

increased expression of MCT1 in heart and skeletal muscle which increases 

ketone body uptake into the cells for utilization in the TCA cycle (Figure 2.2). 
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Figure 2.1 Hypothetical working model of the effect of exercise on BCAA 

metabolism. 
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Figure 2.2 Hypothetical working model of the effect of exercise on ketone body 

metabolism.
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CHAPTER 3 

METHODOLOGY 

Study Design and Participants: 

The current study will be performed as a secondary analysis of the Health 

Benefits of Aerobic and Resistance Training in individuals with Type 2 Diabetes 

(HART-D) trial. The full design and methodology of the HART-D trial has been 

published previously56. Briefly, HART-D was a 9-month randomized, controlled 

exercise-training trial comparing the effects of different modalities of exercise 

training on HbA1c levels in sedentary participants with T2DM. A total of 262 

participants were recruited from the greater Baton Rouge, Louisiana area. They 

were then randomized to one of four groups; a non-exercise control group, an 

aerobic training group (AT), a resistance training group (RT), or a combination of 

aerobic and resistance training group (ATRT). Exclusion criteria for the study 

included a BMI >48 kg/m2, age <30 or >75 years, blood pressure ≥160/100 

mmHg, fasting triglyceride levels ≥500 mg/dL, use of insulin pump, urine protein 

levels >100 mg/dL, history of stroke, and advanced neuropathy or retinopathy or 

any serious medical condition that prevented adherence to the study protocol or 

the ability to exercise safely. For the current study, participants (n=180) who 

completed greater than 70% of their prescribed exercise program and had 

complete data were included in the per-protocol analysis. consent was obtained 

from all participants prior to screening. All training sessions were performed 
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under staff supervision in an exercise training laboratory at Pennington 

Biomedical Research Center, Baton Rouge, Louisiana. 

Exercise Interventions: 

Participants in the AT group (n=44) exercised 3–5 days/week at an 

intensity of 50–80% of their VO2 peak fitness for a total dose of 12 kcal/kg/week 

(KKW), which is estimated to be equivalent to the 150 minutes of physical activity 

per week recommended by the federal activity guidelines88. The caloric dose was 

adjusted on a weekly basis based on changes in body weight. American College 

of Sports Medicine equations were used to estimate caloric expenditure rates 

and, therefore, the time required per session89.  

The RT group (n=49) exercised 3 days/week, with each session consisting 

of two sets of four upper-body exercises (chest press, lateral pull-down, military 

press, and seated row), three sets of three lower-body exercises (leg press, leg 

extension, and hamstring curl), and two sets of abdominal and back exercises. 

Each set consisted of 10–12 repetitions. The prescribed weight was increased 

when the participant was able to complete 12 repetitions of a final set of each 

exercise on two consecutive sessions.  

The ATRT group (n=54) had the same guidelines for performing their 

aerobic training but had a lower weekly dose of 10KKW. The resistance training 

for the ATRT group required two sessions per week, with each session 

consisting of one set of each of the aforementioned nine exercises. They also 

used a progressive increase in weight when 12 repetitions could be performed on 
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an exercise, as described above. The training regimen for the combination 

training group was consistent with federal physical activity guidelines88 and 

ensured equal time commitment among all exercise groups. The non-exercise 

control group (n=33) was offered weekly stretching and relaxation classes and 

was asked to maintain their baseline activity levels during the 9-month study 

period.  

BCAA and Ketone body measurement: 

After a 10 hour fast, blood samples were obtained at baseline. Post-

training blood sampling was performed 24-48 hours after completion of the final 

exercise session and after a 10 hour fast. Plasma ketone and BCAA levels were 

quantified by nuclear magnetic resonance spectroscopy (NMR) at LabCorp 

(Morrisville, NC) using an optimized version of NMR LipoProfile algorithm 

(LP4)90. The methyl groups of the 3 branched-chain amino acids (valine, leucine, 

isoleucine) give rise to characteristic signals in the 1H NMR spectrum that enable 

their accurate quantification as validated by comparison with LC/MS/MS values91. 

The three ketone bodies (3-β-hydroxybutyrate, acetoacetate, acetone) give rise 

to resolved NMR signals that serve as the basis of their quantification91. 

Demographic and Cardiometabolic phenotypes measurement: 

Weight was measured on a GSE 450 electronic scale (GSE Scale 

Systems, Novi, Michigan) and height was measured using a standard 

stadiometer. Lean mass and fat mass were measured by Dual x-ray 
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absorptiometry scans using the QDR 4500A whole-body scanner (Hologic Inc, 

Bedford, Massachusetts). 

Diabetes status and duration was confirmed by medical history review. 

Diabetes medication type and dosage were assessed by detailed questionnaire 

with visual confirmation of prescription bottles. Participants were categorized as 

either increased, decreased, or no change in diabetes medications based on 

baseline and follow-up medication dosages. Race/ethnicity was obtained through 

written self-report. 

HbA1c was assessed from a finger prick sample run on an automated 

glycosylated hemoglobin analyzer (DCA2000+, Bayer, Dublin, Ireland). Fasted 

blood samples from baseline and post-intervention clinic visits were used to 

measure glucose and insulin levels. Glucose levels were analyzed on a DXC 600 

Pro (Beckman Coulter Inc, Brea, California). Insulin was measured using an 

immunoassay on the Siemens 2000 (Siemens, Deerfield, Illinois).  

Exercise testing to determine VO2peak was conducted on a treadmill 

(Trackmaster 425, Carefusion, Newton, Kansas), with respiratory gases sampled 

using a True Max 2400 Metabolic Measurement Cart (Parvomedics, Salt Lake 

City, Utah).  

For all continuous variables, change in response to the exercise training 

program (Δ) was calculated by subtracting the baseline value from the post-

training value. 
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Statistical Analysis:  

Primary outcome analyses used the per-protocol principle and included 

only participants who completed greater than 70% of their prescribed exercise 

program (n=180). 

Within-group exercise induced changes in levels of circulating BCAA and 

ketones were analyzed using a paired t-test. Exercise induced changes in levels 

of circulating BCAA (total, leucine, isoleucine, valine) and ketones (total, AcAc, 

BHB, acetone) were analyzed between intervention groups using generalized 

linear regression models adjusting for age, race, sex, Δfat mass, Δglucose, 

cholesterol and blood pressure medications, diabetes medication changes, and 

baseline trait value. If the main effect of intervention group showed a p-value 

<0.05 in the model, post-hoc analyses determined between-group differences in 

adjusted least squared means values across all pairwise comparisons (Aim 1).  

As an exploratory analysis for aim 1, changes in total circulating BCAA 

levels were analyzed within intervention groups using unadjusted generalized 

linear regression models stratified by baseline total circulating BCAA levels. 

Participants were stratified as less than/equal to or greater than the proposed risk 

cut-off threshold of 450 μmol/L.  

Pearson Correlation analysis was used to determine the association 

between exercise induced changes in circulating BCAA (total, leucine, isoleucine, 

valine) and ketone (total, AcAc, BHB, acetone) levels (independent variable) and 

changes in concomitant cardiometabolic biomarkers (HbA1c, fasting glucose, 



29 
 

fasting insulin, CRP, lean mass, and body fat %) (dependent variable). Due to 

the small sample sizes of the exercise intervention groups, all exercise groups 

were combined for correlation analyses (Aim 2).  

All statistical analyses were performed using SAS version 9.4 (Cary, NC). 

P<0.05 was considered significant for all analyses.
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CHAPTER 4 

RESULTS 

Baseline characteristics, and average changes from baseline to post-

intervention, for participants by group including age, BMI, and other 

cardiometabolic risk factors are shown in Table 4.1. No significant differences 

were found between groups at baseline. Within exercise groups, ATRT 

experienced an increase of 27.0 μmol/L for total BCAAs, 8.10 μmol/L in leucine, 

and 6.69 μmol/L in isoleucine (all p<0.05) while no significant changes were 

found in the AT or RT groups (Table 4.2). Between groups, the adjusted exercise 

induced changes in total BCAA and leucine levels in the ATRT group were 

significantly increased compared to the control and AT groups, while changes in 

isoleucine levels in ATRT were significantly increased compared to other groups 

(Table 4.3). 

Within exercise groups, RT exhibited a -33.0 μmol/L decrease in BHB 

(p<0.05) and was the only change in ketone bodies from the exercise program 

(Table 4.4). The only significantly different change between groups in ketone 

bodies was that the RT group had significantly larger decreases in BHB 

compared with the AT group. The decrease in the RT group was not significantly 

larger compared to the control group though (table 4.5). 
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There was a large amount of heterogeneity in intraindividual responses to 

the exercise program throughout all groups. There were large ranges in levels of 

all traits at baseline and the changes in response to exercise varied within 

groups. The SE of calculations for within-group changes in the exercise groups 

ranged from 19.2–21.5 μmol/L in total BCAA levels (Table 4.2) and 23.4-26.3 

μmol/L in total ketone body levels (Table 4.4). 

Exercise induced changes in the outcome traits in all exercise training 

groups combined were (p<0.05) correlated with changes in a few concomitant 

cardiometabolic biomarkers (Table 4.6). Exercise induced changes isoleucine 

were weakly, negatively correlated with the duration since diagnosis of T2DM 

and weakly, positively correlated with fasting blood glucose levels. Changes in 

total BCAA and valine levels were also moderately positively correlated with 

changes in glucose. Changes in leucine levels were weakly negatively correlated 

with change in VO2 peak. Total ketone body, BHB, and Acetone levels were all 

weakly positively correlated with changes in HbA1c (Table 4.6). 

When stratified by baseline total circulating BCAA levels, participants 

across all exercise groups above the threshold at baseline (n=47) experienced 

average decreases of 6.7 μmol/L, compared to 19.91 μmol/L increases 

experienced across all exercise groups in participants below the threshold 

(n=100) (p<0.05). Within exercise groups, those in the AT group above the 

threshold experienced an average decrease of 28.73 μmol/L compared to 3.90 

μmol/L increases experienced by those above the threshold in the AT group 

(n=33) (p<0.05) (figure 4.1).
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Table 4.1. Participant baseline characteristics. 
 

Variable Timepoint Control,  

n=33 

AT,  

n=44 

RT,  

n=49 

ATRT, 

 n=54 

Age  58.6 (1.3) 52.7 (1.1) 56.9 (1.0) 55.4 (1.0) 

BMI (kg/m2) Baseline 

Change 

34.8 (1.0) 

0.2 (0.3) 

34.7 (0.7) 

-0.2 (0.2) 

34.1 (0.6) 

-0.2 (0.2) 

35.8 (0.7) 

-0.5 (0.2) 

Body fat 

(%) 

Baseline 

Change 

38.8 (1.2) 

0.2 (0.3) 

37.0 (1.2) 

-0.1 (0.3) 

37.6 (1.1) 

-1.2 (0.3)a 

38.1 (0.9) 

-1.1 (0.2)a 

Fat mass 

(kg) 

Baseline 

Change 

37.9 (2.1) 

0.2 (0.6) 

34.7 (1.4) 

-0.3 (0.4) 

37.2 (1.4) 

-1.5 (0.4)a 

38.2 (1.6) 

-1.7 (0.4)a 

Lean mass 

(kg) 

Baseline 

Change 

56.0 (2.1) 

0.1 (0.4) 

56.5 (1.7) 

-0.4 (0.3) 

58.7 (1.5) 

0.8 (0.3)a 

58.6 (1.7) 

0.0 (0.3) 

VO2peak 

(mL/kg/min) 

Baseline 

Change 

19.7 (0.7) 

-0.3 (2.4) 

21.2 (0.8) 

0.5 (2.0) 

20.4 (0.7) 

0.3 (2.1) 

18.9 (0.5) 

1.3 (2.6)a 

SBP 

(mmHg) 

Baseline 

Change 

127.1 (2.2) 

1.9 (2.3) 

124.5 (1.5) 

-0.8 (2.0) 

124.2 (1.5) 

-0.9 (2.0) 

129.4 (1.5) 

-4.2 (1.9)a 

DBP 

(mmHg) 

Baseline 

Change 

76.4 (1.3) 

-3.8 (1.4)a 

75.8 (1.1) 

-0.2 (1.4) 

75.1 (1.0) 

-0.1 (1.3) 

75.3 (18.9) 

-0.2 (1.2) 

Insulin 

(pmol/L) 

Baseline 

Change 

17.7 (2.3) 

-1.0 (2.2) 

18.5 (2.0) 

-1.7 (1.2) 

20.3 (1.7) 

-4.5 (1.7)a 

16.9 (6.3) 

-0.8 (1.1) 

HbA1c (%) Baseline 

Change 

7.9 (1.3) 

0.1 (0.2) 

7.6 (1.0) 

-0.1 (0.2) 

7.6 (0.9) 

-0.2 (0.1) 

7.6 (1.0) 

-0.3 (0.1)a 

Glucose 

(mg/dL) 

Baseline 

Change 

158.4 (6.4) 

4.6 (8.8) 

146.4 (3.6) 

11.2 (6.5) 

153.8 (4.6) 

0.9 (5.9) 

148.8 (4.1) 

2.9 (4.1) 

*All values expressed as means (standard error). 
ap<0.05 for difference between post-training and baseline value from paired t-test
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Table 4.2. Within-group changes in BCAA traits. 

 

Intervention  
Group 

  
Baseline Follow-up 

Within-
group 

changes   

N Mean SD Mean SD Mean* SE   

Total BCAA (μmol/L)  
Control 33 402.5 66.4 397.9 67.5 -13.8 21.6  

AT 44 407.5 68.5 403.3 67.8 -15.8 21.5  

RT 49 419.3 86.4 426.8 80.3 3.2 21.1  

ATRT 54 421.3 69.6 448.9a 103.4 27.0 19.2  

Valine (μmol/L) 
Control 33 224.7 40.2 222.8 35.1 -3.5 11.2  

AT 44 226.0 33.4 227.1 33.9 -5.1 11.1  

RT 49 235.3 42.4 236.1 42.1 1.2 10.9  

ATRT 54 238.1 36.2 248.1 51.6 11.1 9.9  

Leucine (μmol/L) 
Control 33 120.2 21.1 122.6 26.1 -5.1 8.9  

AT 44 123.4 28.5 118.2 30.7 -9.4 8.8  

RT 49 122.4 35.2 129.7 31.2 1.7 8.7  

ATRT 54 123.1 28.0 133.9a 37.2 8.1 7.9  

Isoleucine (μmol/L) 
Control 33 57.7 14.7 55.3 14.1 -4.3 5.0  

AT 44 58.2 15.5 58.0 15.7 -2.5 4.9  

RT 49 61.5 17.1 61.1 16.5 -1.0 4.9  

ATRT 54 60.0 14.4 66.9a 22.6 6.7 4.4  

*Values adjusted for age, sex, race, change in fat mass and glucose, cholesterol 
and blood pressure medication status, change in diabetes medication, and 
baseline trait value.  
ap<0.05 for difference between post-training and baseline value from paired t-test 
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Table 4.3. Between-groups comparison in BCAA traits. 
 

Intervention  
Group 

  
Between-group: comparison vs 

Control group changes 

N Mean* 95% CI 
pairwise  
p-value 

Total BCAA (μmol/L) 
AT 44 -1.9 (-31.2 to 27.3) 0.90 
RT 49 17.0 (-11.1 to 45.1) 0.24 

ATRT 54 40.8a (12.2 to 69.4) 0.005 

Valine (μmol/L) 
AT 44 -1.6 (-16.7 to 13.6) 0.84 
RT 49 4.7 (-9.8 to 19.3) 0.53 

ATRT 54 14.6 (-0.26 to 29.5) 0.054 

Leucine (μmol/L) 
AT 44 -4.4 (-16.5 to 7.7) 0.48 
RT 49 6.7 (-5.0 to 18.4) 0.26 

ATRT 54 13.1a (1.2 to 25.0) 0.03 

Isoleucine (μmol/L) 
AT 44 1.8 (-4.9 to 8.5) 0.60 
RT 49 3.3 (-3.2 to 9.8) 0.32 

ATRT 54 11.0b (4.4 to 17.5) 0.001 

 *Values adjusted for age, sex, race, change in fat mass and glucose, cholesterol 

and blood pressure medication status, change in diabetes medication, and 

baseline trait value 

ap<0.05 for difference compared to AT group, bp<0.05 for difference compared to 

all other groups 
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Table 4.4. Within-group changes in ketone bodies traits. 
 

Intervention  
Group 

  
Baseline Follow-up 

Within-
group 

changes 

N Mean SD Mean SD Mean* SE 

Total Ketone Bodies (μmol/L) 
Control 33 156.1 51.1 181.3 64.3 -15.7 26.4 
AT 44 164.9 65.3 189.4 116.5 -8.3 26.3 
RT 49 190.2 95.7 170.2 59.8 -49.3 25.8 
ATRT 54 185.7 69.4 172.8 76.8 -30.5 23.4 

Betahydroxybutyrate (BHB) (μmol/L) 
Control 33 91.4 30.5 103.1 37.1 -15.4 16.4 
AT 44 97.3 41.7 113.4 76.4 -3.4 16.3 
RT 49 106.5 59.8 96.5a 37.8 -33.0 16.0 
ATRT 54 105.4 42.5 99.8 43.3 -20.5 14.5 

Acetoacetate (AcAc) (μmol/L) 
Control 33 41.1 18.2 47.9 22.5 -0.6 8.2 
AT 44 42.5 19.1 48.0 29.8 -2.7 8.2 
RT 49 53.3 27.3 45.9 21.4 -10.8 8.0 
ATRT 54 49.8 21.3 47.1 29.8 -4.7 7.3 

Acetone (μmol/L) 
Control 33 23.6 10.7 30.3 15.4 0.1 4.5 
AT 44 25.1 13.2 28.0 15.9 -2.5 4.4 
RT 49 30.4 15.7 27.8 10.7 -5.3 4.4 
ATRT 54 30.4 13.9 25.9 12.3 -5.0 4.0 

*Values adjusted for age, sex, race, change in fat mass and glucose, cholesterol 
and blood pressure medication status, change in diabetes medication, and 
baseline trait value. 
ap<0.05 difference between post-training and baseline value from paired t-test
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Table 4.5. Between-group changes in ketone bodies traits. 
 

Interventi
on  

Group 

  
Between-group: comparison vs 

Control group changes 

N 
Mean

* 95% CI 
pairwise  
p-value 

Total Ketone Bodies (μmol/L) 
AT 44 7.4 (-28.4 to 43.2) 0.68 
RT 49 -33.6 (-68.3 to 1.2) 0.06 
ATRT 54 -14.8 (-50.1 to 20.6) 0.410 

Betahydroxybutyrate (BHB) (μmol/L) 
AT 44 12.0 (-10.2 to 34.3) 0.29 
RT 49 -17.5a (-39.0 to 4.0) 0.11 
ATRT 54 -5.1 (-26.9 to 16.8) 0.65 

Acetoacetate (AcAc) (μmol/L) 
AT 44 -2.1 (-13.3 to 9.0) 0.71 
RT 49 -10.2 (-21.1 to 0.6) 0.06 
ATRT 54 -4.2 (-15.1 to 6.8) 0.46 

Acetone (μmol/L) 
AT 44 -2.6 (-8.7 to 3.4) 0.39 
RT 49 -5.4 (-11.3 to 0.5) 0.07 
ATRT 54 -5.1 (-11.1 to 0.9) 0.09 

*Values adjusted for age, sex, race, change in fat mass and glucose, cholesterol 
and blood pressure medication status, change in diabetes medication, and 
baseline trait value. 
ap<0.05 for difference compared to AT group. 



37 
 

Table 4.6. Correlation between BCAA and ketone body traits and concomitant 
cardiometabolic biomarkers 
 

 T2DD bf% lean 

mass 

CRP HbA1c insulin glucose VO2 

peak 

BCAA  NS NS NS NS NS NS 0.30 NS 

Val  NS NS NS NS NS NS 0.36 NS 

Leu  NS NS NS NS NS NS NS -0.18 

Ileu  -0.17 NS NS NS NS NS 0.20 NS 

KetBod  NS NS NS NS 0.20 NS NS NS 

BHB  NS NS NS NS 0.21 NS NS NS 

AcAc  NS 0.17 NS NS NS NS NS NS 

Acetone  NS NS NS NS 0.17 NS NS NS 

Values in bold indicate significant correlations. All correlations listed were 
significant at p<0.05. NS, not significant (p>0.05). T2DD: duration since T2DM 
diagnosis, bf%: body fat %, CRP: C-reactive protein. 



38 
 

  
 

Figure 4.1. Change in BCAA levels stratified by baseline threshold groups.   
 

 

*

*

*

*

-40

-30

-20

-10

0

10

20

30

40

All groups AT RT ATRT

C
h
a

n
g
e

 i
n
 B

C
A

A
 l
e
v
e

ls
 (

μ
m

o
l/
L

)

Exercise Group

Change in BCAA Levels Stratified by Baseline Threshold 
Groups

Baseline BCAA <=450 μmol/L Baseline BCAA >450 μmol/L



39 
 

CHAPTER 5 

DISCUSSION 

Our findings do not support our hypothesis that all exercise modalities 

would result in significant decreases in BCAA and ketone body levels, as no 

exercise groups showed a significant decrease in any outcome trait when 

compared with the control group. In fact, we found significant exercise induced 

increases in measures of isoleucine in the ATRT group compared to controls. 

Exercise induced changes over the nine-month period in some of the BCAA and 

ketone bodies also showed some weak and moderate correlations with 

concomitant cardiometabolic biomarkers such as bf%, glucose, HbA1c, and VO2 

peak. To our knowledge this is the first large scale randomized exercise control 

trial that has analyzed the changes in circulating BCAA and ketone body levels in 

response to different long-term exercise training modalities in type 2 diabetics. 

While the existing body of literature suggests that aerobic training 

improves both BCAA and ketone body metabolism, this studies results did not 

find the aerobic, resistance, or combination training provided any significant 

benefits (i.e., decreased levels) for circulating BCAA or ketone body metabolism 

in those with T2DM. The RT group experienced a significantly larger decrease in 

BHB levels compared to the AT group, however this change was not different 
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than the control group. Moreover, the AT group experienced decreased 

levels compared to the AT and ATRT groups, but not different compared to the 

control.  

The baseline levels of participants in this study for both circulating BCAA 

and Ketone body levels are consistent with the elevated levels expected for type 

2 diabetics from previous research. The average total circulating ketone bodies 

within exercise groups in this study ranged from 156 μmol/L to 190 μmol/L 

compared to 182 μmol/L that was found to be the average level in a cohort of 373 

subjects with T2DM in the Insulin Resistance Atherosclerosis Study (IRAS) 

cohort91. As expected, these levels are elevated compared to the average of non-

diabetic subjects from the IRAS cohort, who had average circulating ketone body 

levels of 142 μmol/L91. Diabetics from the IRAS cohort had average levels of 

circulating BCAAs of 393 μmol/L, which was significantly elevated compared to 

the average of the non-diabetic cohorts (337 μmol/L)5. The average circulating 

levels of BCAAs in the HART-D cohort within groups range from 403 μmol/L to 

421 μmol/ which is similar to the elevated levels that were found in the IRAS 

cohort. 

While increased circulating BCAA levels are associated with increased 

risk for CVD and associated metabolic risk factors, there is some evidence that 

there may be a cut-off threshold that exists where increased BCAAs become a 

risk biomarker. Sun et al.92 calculated this threshold concentration to be 

approximately 450 μmol/L in a longitudinal study of over 600 people. Results 

from a 2019 study support this proposed cut-off threshold. They found that for 
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males, compared to their reference group (Total BCAA concentration <361.9 

μmol/L), only those in the upper quartile of their cohort (>448 μmol/L) were at a 

significantly increased risk of incident hypertension (Hazard Ratio 1.36: 95% CI 

1.11-1.68) after an 8 year follow up93. Despite their diabetic status, the average 

BCAA concentration of participants in this study ranged was below that threshold 

at baseline. When stratified into those that started above (n=47) or below (n=100) 

this threshold from the exercise groups as an exploratory analysis, we did find 

that those above decreased compared to those below across all exercise groups. 

Those with baseline levels >450 μmol/L had an average change of -6.7 μmol/L 

and those with baseline levels >450 μmol/L had an average change of 19.9 

μmol/L. When examined by exercise group, those above the baseline threshold 

in the AT group showed decreases in total BCAA levels compared to those 

above the threshold at baseline. The RT group decreased but not significantly 

different to the increases that were seen in those above the baseline, while the 

ATRT group still exhibited increases. 

Despite a body of literature suggesting that aerobic exercise increases 

ketone body clearance acutely76-78, there were no decreases shown from any 

exercise group. The RT group did experience decreases in BHB compared to 

AT. As muscle mass is a key regulator in the regulation of glucagon and insulin 

ratios31, an increase in lean mass mediated by resistance training may be a 

potential mechanism behind RT experiencing larger decreases than AT. 

Given the unhealthy metabolic status and age of the individual participants 

the possibility of exercise resistance also may have played a factor. A notable 
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quantity of non-responders to exercise in diabetic and obese individuals has 

been observed for several traits including glucose and insulin sensitivity 

measures94. Aging is also known to lead to anabolic resistance and non-

response to exercise95. We found large heterogeneity in the exercise responses 

across all eight traits, regardless of exercise modality or adherence. This 

heterogeneity may be explained by a combination of numerous factors, such as 

genetic and epigenetic factors, differing clinical profiles of individuals (despite 

being similar at baseline), and other as of yet unknown factors. 

Exercise may also just be a mediating factor for regulating concentrations 

of these metabolites. Individuals who are physically fit (higher VO2max) and 

have higher lean mass and lower fat mass have lower circulating BCAA levels 

compared to obese individuals63. The relationship between fitness and BCAA 

was minimally found in this study with a weak negative correlation between 

leucine concentration and VO2 peak. 

The relationship between ketone bodies and HbA1c levels is not well 

established. Different associations have been shown between HbA1c and AcAc 

and between HbA1c and BHB, between prediabetics and diabetics, and even 

between sexes and different races96. Zhang et al96 found that increasing 

concentrations of HbA1c were associated with decreasing concentrations of 

acetoacetate in those with European background (regression coefficient in 

males=−0.13: 95% CI −0.24 to −0.004, females −0.17: 95% CI −0.30 to −0.05), 

but were associated with increasing concentrations of acetoacetate in African 

Surinamese men (0.09: 95% CI 0.02–0.17) as well as subjects with Ghanaian 
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background (males 0.13: 95% CI 0.05–0.20, females 0.08: 95% CI 0.01–0.154). 

Total ketone bodies, BHB, and acetone showed a weak positive correlation with 

HbA1c in this study, while AcAc showed no association, further suggesting that 

while circulating ketone body concentrations and HbA1c may be associated, the 

relationship is quite contentious. No mediating factor between the two biomarkers 

is known.  

Increase in BCAAs, especially isoleucine, has been shown to correlate in 

increase with fasting glucose in both Caucasians (OR 1.021: 1.006-1.030), and 

African Americans (OR 1.021: 1.006-1.038) without impaired fasting glucose96. 

The correlation becomes even stronger in those with impaired fasting glucose, 

Caucasians (OR 1.026: 1.015-1.037) and African-Americans (OR 1.034: 1.019-

1.050)96. Our results further support these findings although total circulating 

levels of total BCAAs and valine were found to have a stronger correlation than 

isoleucine. 

Strengths of the HART-D study include that this is a large, randomized 

control trial using a diverse population in age, sex, ethnicity, medication use, and 

comorbidities leading to generalizable findings. All exercise sessions were tightly 

controlled and completed in a laboratory and were monitored by exercise training 

professionals. However, these ideal training conditions also represent a limitation 

in terms of dissemination. A food frequency questionnaire was administered at 

baseline and follow-up to assess changes in diet which limits the ability to identify 

changes in caloric intake. 
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Although the findings from this study do not fully support our hypothesis 

there is some evidence provided that different exercise modalities can have 

different impacts in management of circulating BCAA and ketone body levels in 

individuals with T2DM. Associations with other important cardiometabolic 

biomarkers in diabetes such as HbA1c and fasting blood glucose levels also 

further support the notion that ketone bodies and BCAAs are clinically significant 

metabolites in the treatment and management of T2DM. As this was the first 

large scale study looking at the association of different exercise modalities with 

circulating BCAA and ketone body levels in diabetics more research is needed to 

establish a better understanding of how exercise effects the concentrations of 

these metabolites and the mechanisms that mediate these changes.
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