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ABSTRACT 

Since the most recent major mass-extinction event ~65 million years ago, birds 

have expanded to now occupy a wide range of habitats and exhibit diverse lifestyles. A 

major reason for this evolutionary success is the mechanical resilience and diversity of 

their epidermal appendages such as feathers, scales, and beaks. The diversity of these 

appendages, specifically feathers has played a critical role in their evolutionary success. 

The feathers of birds vary substantially across different species, as well as at different life 

stages and anatomical locations on an individual bird. Several of the genetic elements 

involved in the development and structure of feathers are located at a specific genetic 

locus known as the Epidermal Differentiation Complex (EDC). To gain a better 

understanding of the genes and proteins involved in these processes as well as how 

genetic variation in these elements has accompanied the evolution of diverse lifestyles 

and phenotypes in birds, we have characterized the organization and architecture of the 

EDC locus across 48 diverse bird species. We have also investigated two specific gene 

families within the avian EDC, loricrins and a group of EDC genes rich in aromatic 

amino acids, which also contain a conserved sequence of Methionine-Threonine- 

Phenylalanine (MTF) residues at their start (EDAA/EDMTFs), to analyze their evolution 

in birds as well as their roles in epidermal development. Our results demonstrate that the 

avian EDC is conserved across birds and evolved from a common amniote ancestor. 

Furthermore, we show that these ancestral EDC genes have expanded in birds into large 

gene families but have not translocated to other parts of the genome. We also provide 
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evidence that these gene families of the EDC have expanded via significant amounts of 

gene loss and duplication events many of which are lineage specific. Finally, given that 

the amino acid compositions of structural proteins play a significant role in function, we 

investigate the amino acid contents of identified avian EDC genes and demonstrate that 

they contain amino acid residues commonly associated with epidermal development and 

structure. Overall, our results support that the evolution of the avian EDC accompanied 

the evolution of bird species with diverse feather morphologies and phenotypes, which 

has played a key role in their evolutionary success. 
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INTRODUCTION 
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1.1 - Introduction 
 

The evolution of the epidermis as a physical barrier to limit water loss to the 

environment was crucial in the transition of amniotes to terrestrial lifestyles (Strasser et 

al. 2014). Adaptations to the amniotic epidermis have played a key role in the evolution 

of fully terrestrial organisms with diverse habitats and lifestyles (Chuong 2002). 

Mechanically resilient appendages such as hair, scales, and feathers perform a variety of 

important functions including but not limited to thermoregulation, camouflage, and 

sensory applications (Pierard et al. 2000; Strasser et al. 2014). Analyzing the evolutionary 

origin as well as developmental and genetic aspects of epidermal appendages is critical in 

understanding the history of life on earth and the adaptation of novel structures. 

The amniotic epidermis is a stratified organ that consists of an outer stratum 

corneum layer made up of dead cells which is constantly shed and replaced (Gilbert 

2014). The specific layers of the epidermis change depending on the type of organism as 

well as the stage of development, with some layers only being present during embryonic 

development and others becoming parts of epidermal appendages. Progressing from the 

Basal layer, the epidermis contains a spinous layer, a granular layer, and the outermost 

Cornified layer (Candi et al. 2005, Eckhart et al. 2013). The primary cell type of the 

epidermis is the keratinocyte. As keratinocytes differentiate, they move from the basal 

cell layer of the epidermis, through the spinous and granular layers before accumulating 

in the stratum corneum (Candi et al. 2005). Differentiation of keratinocytes involves a 

specialized mode of programmed cell death known as cornification which takes place as 

they migrate through the epidermis and results in the formation of dead corneocytes 

whose plasma membranes have been replaced by a cornified envelope (CE). The CE of 
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these terminally differentiated keratinocytes is what confers many of the unique physical 

properties to the epidermis and helps facilitate its barrier function (Kalinin et al. 2002). 

These dead cells are continuously desquamated, or shed from the top layer, and replaced 

by new cells from the basal layer (Eckhart et al. 2013). 

The specialized process of terminal differentiation of keratinocytes known as 

cornification confers many of the mechanically resilient properties to the epidermis by 

replacing the cells’ plasma membrane with an insoluble Cornified envelope (Candi et al. 

2005). The formation of the CE is a stepwise process which includes Initiation, 

Reinforcement, Lipid-envelope formation and finally desquamation. During the initiation 

stage, structural proteins and lipids are synthesized intracellularly by the epidermal cells 

of the spinous layer and packaged for transport toward the cell surface. Concurrently, 

important scaffolding components such as Envoplakin and Periplakin are anchored to the 

internal surface of the cell membrane (Candi et al. 2005). During reinforcement, the 

newly synthesized CE proteins and lipids are covalently attached within the granular 

layer and packaged into lamellar bodies for transport while important structural proteins 

such as loricrin and small-proline rich proteins (SPRs) are crosslinked to the cell 

membrane. In mammals, the primary method of crosslinking observed in CE assembly is 

transglutamination, however other types of protein-crosslinking such as disulfide bonding 

are also observed (Saathoff et al. 2004). Lipid-envelope formation entails the attachment 

and exposure of the CE proteins and lipids on the outside of the cell membrane and 

occurs concomitantly with reinforcement (Eckhart et al. 2013). The desquamation phase 

entails the shedding of the superficial corneocytes, which are then replaced with freshly 

cornified cells from the basal layers via repeating the entire process from initiation. The 
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specific physical properties of a cell’s CE depend on the identity of the protein 

components which comprise it, as well as the method and degree of protein crosslinking 

that takes place during the development (Candi et al. 2005). 

Avian feathers are hierarchically organized and branched structures of variable 

complexity, made of up cornified keratinocytes (Alibardi 2016). The anatomy and 

structure of avian feathers provide them with unique and physical properties. These 

properties are key in providing the aerodynamic prerequisites required for flight (Kondo 

et al. 2018). Much like mammalian epidermal development, the development of the avian 

epidermis and appendages is a complex process which involves several elements. 

Specifically, Feather development is a complex spatiotemporal process which entails a 

close association of the epidermis with the underlying mesenchymal dermal cells 

(Alibardi 2017). The anatomy of a mature feather generally consists of a hollow calamus 

or shaft anchored to a feather germ, which serves as the source of undifferentiated cells 

for the growing feather and an anchor point between the epidermis and underlying 

mesenchymal tissue. Extending from the calamus is the central rachis forming the central 

feather vane. Branching off from the central vane are the barbs and fused to the barbs are 

branches of smaller barbules, which can also contain hooklets (Ostmann et al. 1963) 

(Figure 1.1 – Kazilek 2009). It is the branching organization of the barbs and barbules 

from the central rachis which give feathers their complex hierarchical organization. These 

distinct anatomical aspects of feathers are made up by specialized populations of cells 

such as barb/barbule cells as well as other supportive cells, capable of differential 

expression of specific genes, which later cornify and fuse in a process unique to feather 

formation. 
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In general, feathers derive from thickenings in the embryonic epithelium of 

feather placodes in which the differentiation of barb/barbule and the degeneration of 

other supportive cells, forms a branching organization (Figure 1.2) (Alibardi 2017). 

Throughout embryonic development, several epidermal layers are formed, including the 

periderm and archosaur-specific subperiderm (Alibardi et al. 2009). In avian scale 

development, the subperiderm is sloughed off prior to hatching, while in feathers, studies 

have provided evidence it is incorporated as part of the mature feather (Sawyer et al. 

1974, Sawyer and Knapp 2003, Alibardi 2016). Initial feather formation begins with the 

formation of dermal condensations which in turn induce the thickening of the overlying 

epidermis (Sawyer and Knapp 2003). Next, the dermal condensations rise and form a 

cylindrical outgrowth composed of a mesodermal core surrounded by an epithelial sheath 

(Figure 1.2). As epithelial cells divide longitudinally, the feather grows longer and 

epidermal folds known as barb ridges form to accompany the additional volume of cells, 

which point inward towards the mesodermal core (Alibardi 2016). At the apex of each 

barb ridge, large columnar cells differentiate and fuse into elongated shafts know as 

Barbs which will eventually fuse with the rachis resulting in the branching pattern 

observed in feathers (Figure 1.2). With the help of additional supportive cells, the 

outermost cells of the barbs branch off into barbules. Eventually these supportive cells 

degenerate, the remaining barbs and barbule cells cornify and fuse and the epithelial 

sheath is lost resulting in the branched structure of a mature feather (Alibardi 2017). The 

fusion of the barb and barbule cells is a unique process only observed in feather 

development (Sawyer and Knapp 2003) 
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Feathers come in a large variety of colors, shapes and sizes across different bird 

species, and vary at different life stages as well as at anatomical locations on an 

individual bird. Plumaceous feathers, or down feathers, provide insulation to newly 

hatched chicks, while the structure of pennaceous or flight, feathers provide the 

aerodynamic structure that is key for flight (Kischer 1963, Norberg 1985). The 

development of plumaceous and pennaceous feathers both follow the same general 

process mentioned earlier, however the specific genetic and protein elements involved 

differ. Furthermore, differences in the distribution and molecular makeup of feathers can 

result in a wide range of physical properties. For example, the pennaceous feathers of 

penguins display anti-icing properties which prevent the accumulation of ice on their wet 

feathers (Li et al. 2014, Wang et al. 2016). The structural diversity and unique physical 

properties observed across feathers are the result of differences in the many genetic 

elements involved in their development (Strasser et al. 2014). 

In mammals, many of the genetic elements responsible for the development and 

structure of hair and nails are found at a genetic locus known as the Epidermal 

Differentiation Complex (EDC) (Kypriotou et al. 2012). These genes contain several 

sequence elements which are indicative of structural proteins, and they are expressed in 

various epidermal tissues throughout development as well as in mature epidermis and 

appendages (Strasser et al. 2014). There is also evidence that local, gene-specific factors 

are key in the regulation of EDC gene expression indicating that some EDC genes may 

be involved as enhancers or repressors of gene expression during epidermal 

differentiation (Elder and Zhao 2002). Mammalian EDC genes are rich in amino acid 

residues such as cysteine, tyrosine and serine, residues which are known to be involved in 
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the cornification process by facilitating and participating in protein crosslinking (Candi et 

al. 20015). Disulfide bonding, transglutamination and enzymes such as serine proteases 

have been shown to be crucial in proper epidermal development and function (Hynes and 

Destree 1977, Robinson et al. 1997, Leyvraz et al. 2005). During the development of 

mammalian epidermal appendages, these genetic elements serve various purposes 

including signal transduction, matrix assembly as well as direct structural roles 

(Kypriotou et al. 2012). For example, the mammalian EDC gene Loricrin, a major 

component of the cornified envelope, has been shown to influence both tensile and 

flexural properties of the epidermis and appendages (Steinert et al. 1991). Moreover, 

Loricrin-deficient mice did not initially develop a healthy or normal epidermis. Their 

epidermal cells exhibited several problems with epidermal barrier-function and 

maintaining homeostasis with desquamated epithelial cells during early development 

(Ishida-Yamamoto et al. 1998). Interestingly, loricrin-deficient mice regained mostly 

normal epidermal function as they aged indicating the complexity of the elements 

involved in epidermal development and that there is possible genetic redundancy in the 

process. Other mammalian EDC genes such as Cornulin (CRNN) have also been shown 

to play important roles in the assembly of the CE and development of the epidermis and 

appendages (Contzler et al. 2005). 

Until recently, many of the genes involved in the development and structure of 

feathers were unknown, however recently a genomic locus homologous to the 

mammalian EDC has been identified in birds and other reptiles (figure 1.3) (Strasser et al. 

2014, Strasser et al. 2015, Holthaus et al. 2015, Alibardi et al. 2016, Holthaus et al. 2018, 

Holthaus et al. 2018, Lachner et al. 2019). The Avian EDC contains mammalian EDC 
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homologs such as Lorcrin and CRNN, but also contains several avian-specific genes 

including a cluster of genes which encode β-keratins, the primary components of mature 

feathers (Strasser et al. 2014, Greenwold and Sawyer 2014). All avian EDC genes 

identified in the chicken were found to be expressed in at least 1 epidermal tissue (scale, 

claw, beak, feather, skin) on day 18 of embryonic development (Strasser et al. 2014). 

Additional studies on specific avian EDC genes such as Epidermal Differentiation 

Cysteine rich protein (EDCRP) and Epidermal Differentiation protein containing DPCC 

motifs (EDDM) have demonstrated that diversification and differential expression of 

EDC genes was instrumental in facilitating the evolution of complex structures such as 

feathers and scales (Strasser et al. 2015, Lachner et al. 2019). 

This dissertation aims to characterize the avian EDC as well as investigate its’ 

evolutionary history in order to gain a better understanding of how genetic diversity in 

the EDC has accompanied the adaptation and development of novel and diverse 

epidermal structures in birds. These aims are achieved by first identifying the EDC loci 

across 48 diverse bird species by performing iterative rounds of reciprocal blast searches. 

A clear understanding of the architecture of the avian EDC will give us insight into its 

evolution from early amniote and archosaur ancestors. In order to closer examine the 

evolutionary relationships of birds with one another as well as in the greater tree of life, 

we use phylogenetic methods to build detailed gene trees. We also investigate the 

possible function of several EDC genes by analyzing their respective amino acid and 

nucleotide compositions to provide evidence that EDC genes may function as important 

structural elements of epidermal appendages. Overall these results give insight into how 

evolution of genetic elements of epidermal differentiation has accompanied the 
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adaptation of diverse and morphologically complex appendages such as feathers. 

Furthermore, we provide a basis for future studies regarding the specific function of avian 

EDC genes in epidermal development. 

CHAPTER 2 of this study identifies and characterizes the avian EDC loci across 

48 diverse bird species, explores their respective architectures and serves a general 

introduction into the results of this detailed investigation of the avian EDC. It details the 

conserved organization of the avian EDC as well as the difficulties presented in 

identifying several EDC genes. We also provide evidence that avian EDC genes could be 

classified as Dark DNA, genomic regions or genes which contain higher than average 

G/C contents and often go undetected or are reported as missing from genomic databases 

(Hron et al. 2015, Bornelöv et al. 2017). Specifically, we analyze the G/C content of 

avian EDC genes as well as the presence of G/C nucleotide stretches and demonstrate 

that many avian EDC genes meet the criteria laid out by previous studies for Dark DNA. 

CHAPTER 3 investigates genes homologous to human Loricrin, a major 

component of the mammalian cornified envelope. We use phylogenetic analyses to 

explore the complex evolutionary history of avian loricrins as well as sequence and 

amino acid analyses which examine the repetitive yet extremely diverse loricrin 

sequences observed across birds. Finally, we provide evidence that avian loricrins are 

candidates to take on a specialized protein conformation known as a Glycine-loop which 

is key in contributing elasticity and tensile strength to the epidermis and its appendages. 

CHAPTER 4 analyzes a conserved avian EDC gene family known as Epidermal 

Differentiation protein rich in aromatic amino acids containing MTF motifs 
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(EDAAs/EDMTFs), including the previously reported chicken Histidine-Rich Protein 

(HRP). Like analysis of avian loricrins, we use phylogenetic methods to examine the 

evolutionary history of EDAAs in reptiles and birds. We demonstrate that the EDAA 

gene family originated in a common archosaur ancestor and has expanded in birds, 

crocodilians and testudines respectively. We also use sequence and amino acid analyses 

to investigate the possible function of EDAAs in epidermal development and provide a 

basis for future studies. 

CHAPTER 5 serves as a general conclusion to the dissertation and presents 

thoughts on future studies based on these results. 
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1.2 Figures 
 
 
 
 
 

 
 

 
Figure 1.1 : Feather Anatomy and structure. Image taken from Kazilek (2009). 
(https://askabiologist.asu.edu/explore/feather-biology). Image details the anatomy of a 
feather. The feather generally consists of a hollow shaft or calamus anchored to the bird 
which extends outward into the rachis. From the rachis branch of the Barbs. Branching 
off from the barbs are the barbules and from them the hooklets. Together this elements 
form the complex hierarchical branching structure of a feather. 
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Figure 1.2 – Details the general process of feather formation. (A) shows the initial 
formation of the feather placode via thickening of the epidermis and underlying dermis. 
This is followed by the formation of a cylindrical outgrowth with an epidermal sheath 
and resulting follicular cavity. (B) Details the general process of degeneration of the 
epidermal sheath and the branching of the barbs and barbules. (C) The final steps are the 
appearance of mature feather branching structure, complete with barbs, barbules and 
hooklets. * taken from National Center for the Study of Cladistic Existentialism 
(http://ncsce.org/pages/feathers.html). ** from Yu et al. 2002. *** from Science Learning 
Hub – The University of Waikato. (2007). Feathers and Flight. Retrieved from 
https://www.sciencelearn.org.nz/resources/308-feathers-and-flight 
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Figure 1.3 – Organization of Chicken EDC locus identified by Strasser et al. (2014). 
Figure depicts the organization and architecture of the EDC identified in the Chicken by 
Strasser et al. 2014. All genes were annotated by Strasser et al. 2014 . EDC genes focused 
on in this study have a black outline. The colors of the arrows indicate different groups of 
genes based upon amino acid contents and speculated ancestry. The box labeled “β- 
keratins” represents more than 50 genes. 
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2.1 Abstract 
 

The adaptation of novel epidermal appendages such as feathers and hair has 

played a key role in the evolution of amniotes into different terrestrial lifestyles and 

environments. They serve several purposes such as thermoregulation, collecting food as 

well as mating across different amniotes. These appendages form as the result of a tightly 

regulated spatiotemporal process which involves several elements (Alibardi et al. 2015). 

In mammals, several of the genetic elements involved in the development as well as the 

mechanical resilience of hair are found at a specific genetic locus known as the 

Epidermal Differentiation Complex (EDC). Recently, a locus homologous to the 

mammalian EDC has been identified in several archosaurian species including the 

chicken, anole lizard, snakes, turtles, and crocodilians. In order to better characterize the 

avian EDC, we screened the genomes 48 diverse bird species for EDC genes. We 

demonstrate that the EDC is conserved in birds, despite being difficult to identify due to 

several factors including its’ complex evolutionary history. Furthermore, our results 

support the hypothesis for evolution of the avian EDC from a single or small number of 

ancestral genes. We also provide support for the theory that avian genomes contain 

“Dark” DNA, areas with high G/C contents which can impair abilities to sequence and 

characterize them. 

2.2 Introduction 
 

The adaptation of unique integumentary structures has played a major role in the 

evolution of reptiles, birds and mammals (Holthaus et al. 2015). The ability of the 

embryonic epidermis to form discrete cell lineages capable of producing major structural 
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proteins was key in the evolution of scales, feathers and hair respectively (Sawyer and 

Knapp 2003). These diverse appendages are all made up of cells which have undergone a 

specialized mode of programmed cell death called cornification, which confers many of 

their mechanically resilient properties (Eckhart et al. 2013). In these cells, the plasma 

membrane has been replaced by an outer Cornified envelope made up of several 

covalently linked protein elements (Candi et al. 2005). 

Previous studies have found that the evolution of several of the structural proteins 

in the outermost epidermal layers of mammals, which are involved in the development of 

these epidermal appendages was driven by the diversification of several genes located at 

a specific genomic locus known as the Epidermal Differentiation Complex (EDC) 

(Kypriotou et al. 2012). The EDC is thought to have originated in an early amniote 

ancestor and was critical for the adaptation of a mechanically resilient physical barrier 

which protected and limited water loss to the environment (Strasser et al. 2014). The 

expansion of EDC gene families in birds, reptiles and mammals respectively has resulted 

in the diversity observed across their epidermal appendages such as hair and feathers. 

These appendages are adapted to fulfill specific functions such as thermoregulation, 

camouflage and protection against the environment. 

Birds specifically exhibit a large amount of physical variation in their epidermal 

appendages such as feathers, which correlate with the wide range of environments they 

inhabit and their diverse lifestyles. Feather morphogenesis is a complex process that is 

heavily reliant on a strict spatiotemporal regulation of gene expression as well as 

assembly of the protein components into mature structures (Alibardi et al. 2016). The 

feather formation process entails several interactions between the epidermis and the 
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underlying dermis which ultimately results in the complex hierarchical branching 

structure observed in feathers. Distinct cell populations of the embryonic epidermal 

layers differentiate into the barb and barbule cells which fill with several structural 

proteins including β-keratins, the primary component of mature barbs and barbules, and 

then fuse together in a unique process resulting in the mature feather (Shames et al. 1993, 

Sawyer et al. 2000, Alibardi 2003, Greenwold et al. 2014). 

The EDC has been extensively characterized in humans and contains genes which 

are involved in early Cornified Envelope (CE) formation and the mature structure of the 

epidermis and its’ appendages via processes such as disulfide bonding and 

translgutamination (Hynes and Destree 1977, Steinert et al. 1991, Robinson et al. 1997). 

Previous studies have identified homologous EDC loci in birds, crocodilians, testudines, 

lizards and snakes which contain genes of similar exon-intron organization to those of the 

mammalian EDC, contain amino acid residues associated with epidermal differentiation 

processes and are expressed in several epidermal tissues throughout development as well 

as in mature epidermal appendages (Strasser et al. 2014, Strasser et al. 2015, Holthaus et 

al. 2015, Alibardi et al. 2016, Holthaus et al. 2018, Holthaus et al. 2018, Lachner et al. 

2019). The EDC of the chicken was found to contain several unique EDC genes, as well 

as a cluster of β-keratins containing members of all β-keratin subfamilies of claw, feather, 

scale and keratinocyte (Greenwold et al. 2014). Studies have provided evidence that 

translocation of these β-keratins to additional loci outside of the EDC, as well as the 

respective expansion and diversification of their subfamilies has played a major role in 

evolution of the feather and the adaptation of birds into multiple ecological niches 

(Greenwold et al. 2014). 
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Further studies focusing on specific avian EDC genes such as epidermal 

differentiation cysteine rich protein (EDCRP) and epidermal differentiation protein with 

an MTF motif and rich in Histidine (EDMTFH) have found that some EDC genes are 

conserved across diverse bird species, however there was significant variation observed. 

For example, the sequences and total number of the repetitive units comprising EDCRP 

varied across closely related species (Alibardi et al. 2015). Moreover, the respective 

amino acid compositions of respective EDC genes, such as EDMTFH, also varied 

significantly (Alibardi et al. 2016). While these studies did identify that specific EDC, 

genes are conserved across a small subset of avian species, they did not characterize the 

overall conservation of the EDC across birds. 

In order to further analyze the role diversification of EDC genes has played in the 

evolution of avian epidermal appendages, as well as analyze the evolutionary history and 

expansion of specific EDC gene families, the EDC loci must be characterized across a 

larger sample of diverse bird species. Recently, as part of a larger coordinated effort to 

sequence the genomes of several diverse bird species, the genomes of 48 phylogenetical 

diverse bird species were sequenced and made available (Jarvis et al. 2014). Here we 

identify and characterize the EDC loci of these 48 bird species in order to better 

understand the role it has played in the evolution of the feather and the adaptation of birds 

into multiple ecological niches. We also investigate repetitive nature and genetic 

variation across the sequences of identified avian EDC genes. Our results support the 

hypothesis that the avian EDC evolved from a single or small number of ancestral EDC 

genes. Furthermore, we provide evidence that avian EDC genes contains biased GC 

nucleotide contents which can lead to problems with genomic library preparation and 
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blast algorithms resulting in the failure to identify some EDC genes which are indeed 

present. 

2.3 Methods 
 

2.3.1 Identification of Avian EDC genes 
 

All genomes were downloaded from NCBI genomic databases in Fasta formats 

(supplemental table 2.1). Avian EDC genes were identified using NCBI Blast+ (Altshcul 

et al. 1990, Gish and States 1993). Amino acid sequences of avian EDC genes identified 

by Strasser et al. (2014) as well as those of humans (Homo sapiens) and the green anole 

lizard (Anolis carolinensis) were added to the query file and tblastn searches were 

performed. Since initial searches using a cutoff e-value and blast score did not return 

significant results, we reduced the specificity of our searches by adjusting the e-value to 

0.1. Furthermore, in order to improve results, any identified amino acid sequences of 

avian EDC genes were added to the original query file and reciprocal blast searches were 

performed. 

Candidate sequences identified by blast searches were extracted as nucleotide 

fasta files and translated into amino acids using ExPasy Translate online analysis tool 

(Gasteiger et al. 2003). Identified sequences were aligned with chicken EDC genes as 

well as additional identified avian EDC genes using ClustalW (Thompson et al. 1997). 

Several sequences were only partially identified or contained unknown nucleotides 

(NNNs) which could not be translated. Genes which were only partially identified were 

not considered missing if at least one highly conserved sequence element was identified, 

and the genes’ orientation and genomic position corresponded with its location in other 
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avian genomes. Partially identified and genes which contained NNNs exceeding 15% of 

the coding sequence or disrupting a start or stop codon were excluded form all future 

analysis. A list of all complete and partially identified avian genes and their qualities 

investigated in this work can be found in supplemental table 2.3. 

The genomic organizations of avian EDCs were assembled using the chicken as a 

model (Strasser et al. 2014). Scaffolds were placed in linear organization by arranging the 

blast extraction positions of identified genes. In some cases, the N-terminal region of a 

gene was contained on the end of one genomic scaffold and the C-terminal region fond 

on the next. If at least 3 genes were present on a genomic scaffold, their linear 

organization could be discerned. The chromosomal orientation of EDC genes as well as 

the genetic rearrangements in the Turkey and Zebra Finch were also identified using this 

method. The species in figure 2.1 were selected because they represent phylogenetically 

diverse groups of birds as well as several different lifestyles. Their EDC regions were 

also contained on less that 3 genomic scaffolds increasing the accuracy of characterizing 

the linear organization of the EDC as well as determining if missing genes were not 

identified due to technical issues or truly missing. 

In supplemental table 2.2, a gene was considered not found if no elements of the 

gene were identified at all by blast, or by manual screening of its’ suspected locus. 

Manual screening for genes was done in combination with assembly of genomic 

organization by extracting large genomic regions between identified genes and manually 

screening the translations for EDC gene sequence. This method allowed us to identify 

several complete and partial avian EDC genes which were not found by blast algorithms 

and was able to confirm the conserved linear organization of the avian EDC. 
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Gene sizes in supplemental table 2.3 are represented as the number of amino acids 

in the second coding exon of EDC genes and were calculated using ExPasy ProtParam 

online analysis tool (Gasteiger et al. 2005). All genes containing length values in 

supplemental table 2.2 were identified and contained a start and stop codon and no more 

than 15% unknown residues (NNNs). Genes that did contain NNNs in this table are 

denoted with (XX) and genes which contained a resolved frameshift with (fs) following 

their length values respectively. 6 genes in supplemental table 2.2 contained more than 

the allowed value of NNNs and were excluded from analysis and are denoted with X, 

however partial evidence for these genes was identified. Genes that were not found are 

denoted with n/a. The species of Zebra Finch (Taeniopygia guttata), Ground tit 

(Pseudopodoces humilis), Budgerigar (Melopsittacus undulates), Bald Eagle (Haliaeetus 

leucocephalus), Adélie Penguin (Pygoscelis adeliae), Chicken (Gallus gallus) and 

Turkey (Meleagris gallopavo) were selected to represent a phylogenetically and 

physically diverse subset of birds. These species also contained fewer missing and 

incomplete EDC genes relative to others. 

2.3.2 GC Content Calculation 
 

GC content of avian EDC genes was done using a standard online GC content 

calculator (Endmemo.com/bio/gc.php). GC content calculations are based on the second 

coding exon only of EDC genes. Scatter plot of EDC GC contents was done using the 

calculated GC content as a percent on the y-axis and the average length of all GC 

stretches present in the gene on the x-axis. A GC stretch was defined as an undisrupted 

sequence of at least three consecutive G or C nucleotide residues. The average length of 

GC stretches was calculated by dividing the number of identified GC stretches by the 
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total number of GC residues present within those stretches. Only complete avian EDC 

genes containing no unknown nucleotides were used this analysis. 36 genes were selected 

from phylogenetically diverse species including the Zebra Finch (Passeriformes), 

Chicken (Galliformes) and the Emperor Penguin (Sphenisciformes) and are listed in 

supplemental table 2.4. 

2.4 Results 
 

2.4.1 The EDC is Conserved in Birds 
 

Strasser et al. 2014 identified 30 genes within the chicken EDC with the 

exon-intron organization identical to that of human EDC genes called Simple EDC genes 

(SEDCs). In order to determine if the organization and genes of the chicken EDC 

identified by Strasser et al. 2014 was conserved across all birds, we analyzed the 

genomes of 48 diverse bird species listed in supplemental table 2.1 using Blast+ using the 

amino acid sequences of chicken, anole lizard and human EDC genes as queries 

(supplemental table 2.1). Initial Blast searches did not return results for several avian 

EDC genes across different species. Identified EDC genes were added to the original 

query file and reciprocal blast searches were performed. 

Our results demonstrate that the EDC locus is present and conserved in all birds 

investigated. We confirmed the conservation of all avian SEDC genes identified by 

Strasser et al. (2014) except for EDGH, for which no complete ORS could be located 

outside of the chicken. Interestingly, the terminal sequence of EDGH was identified in 

most species, however no complete ORF with both start and stop codons were identified. 

For this reason, EDGH was excluded from our analyses. Supplemental table 2.2 details 
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the conservation of the remaining 29 EDC genes identified by Strasser et al. (2014) 

across the 48 bird species analyzed (supplemental table 2.2). The gene EDCH1 was only 

identified in the chicken and the turkey indicating it may be Galliforme-specific. We 

identified additional EDC genes in 4 species, the chicken, hummingbird, common 

cuckoo, and the zebra finch. In the Zebra Finch we identified 2 additional EDCH genes 

and in Anna’s Hummingbird, a single additional copy of the EDCH gene (supplemental 

table 2.2). In the Common Cuckoo we identified 2 additional copies of the Epidermal 

differentiation proteins rich in Aromatic amino acids containing MTF motifs 

(EDAA/EDMTF). We also identified an additional EDMTF in the chicken annotated 

EDMTF5. All additionally identified genes were duplicates. EDMTF2 was only 

identified in 5 of the 48 species investigated, including the chicken, and the previously 

characterized EDMTFH gene was not identified in any Passeriformes except for the 

Golden-Collared Manakin (Manacus vitellinus). Many of the genes identified contained 

sequence artifacts such as frameshifts or unknown nucleotides which impaired our ability 

to identify and further analyze them. The organization and completion status of each all 

EDC genes across the 48 species investigated and all values’ meanings are listed 

supplemental table 2.3 in the table key. 

We found that the linear organization of the EDC in the chicken is also conserved 

in birds, with S100A genes located on the borders, and the central region contains genes 

which consist of a 5’-terminal noncoding exon and a second exon which comprises the 

entire coding region (Figure 2.1). We identified 2 possible genetic rearrangements in the 

zebra finch and turkey respectively, however the chromosomal orientation of all genes 

was conserved (Figure 2.1). We outline the potential rearrangement in the turkey EDC in 
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Figure 2.2. All other avian EDC genes and gene families were conserved in syntenic 

locations across all species, however as mentioned previously, there is lineage-specific 

variation present in their exact copy-numbers (supplemental table 2.2). Unlike β-keratins 

which have expanded to other parts of the avian genome, all EDC genes identified were 

localized within the borders of the EDC. 

Previous studies found that the coding sequence of the conserved EDCRP gene is 

made up of alternating repetitive units that vary among different species, however contain 

highly conserved cysteine residues (Alibardi et al 2015). Our results demonstrate that 

several avian EDC genes are also made up of repetitive units, which can vary extensively 

across species resulting in a large amount of genetic variation across conserved EDC 

genes. Specifically, there are large differences in gene size corresponding to the numbers 

and sizes of the respective repetitive units which make of genes such as avian Loricrins, 

EDCRP, EDQrep, EDQM, and EDDM (supplemental table 2.4). 

Additionally, the amino acid contents of avian EDC genes are rich in amino acids 

associated with epidermal development and the structure of mechanically resilient 

appendages such as cysteine, serine and tyrosine. These amino acid residues are often 

associated with structural functions, specifically in extracellular matrix assembly on a 

cellular level and in the overall keratinization of epidermal appendages. Moreover, these 

residues are often more highly conserved than other residues indicating they are 

important in function. 
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2.4.2 Support for the presence of “Dark DNA” 
 

Hron et al. (2015) and Bornelöv et al. (2017) provided evidence that a subset of 

genes previously reported as missing in birds but present in most other vertebrate 

lineages were indeed present in the chicken genome. They attribute the 

underrepresentation of these genes in genomic databases to their strongly biased G/C 

patterns, with all the genes exceeding 60% G/C content due to studies which have found 

that excessive G/C contents present technical problems with genomic library preparation 

and in database searching algorithms (Hron et al. 2015, Bornelöv et al. 2017). In our 

current study, there were several species where some EDC genes were not identified 

(supplemental table 2.2 – Genes not found). In species where these genes were identified, 

their sequences often contain biased G/C contents of above 60%, as well as the presence 

of several G/C nucleotide runs (supplemental table 2.4, Figure 2.3). Specifically, 

EDQM1, EDQM2 or both were not identified in 25 different species however these genes 

contain a highly repetitive sequence elements as well as high G/C contents in species 

where they were identified (supplemental table 2.5). As mentioned previously, except for 

EDMTFH which was not identified in Passerine birds, we did not find any evidence 

among closely related species for loss of any EDC genes across an entire clade. For 

example, EDQM genes were not identified in the Northern Fulmar or Great Cormorant, 

however they were identified in both the Crested ibis as well as the Adélie Penguin which 

are closely related. It is possible that the high G/C contents of several avian genes, as well 

as their repetitive nature directly correlates with the failure to identify several avian EDC 

genes across closely related species, as well as the large number of incomplete and partial 

sequences identified. 



31  

These results demonstrate that the EDC region as well as its genomic organization 

is conserved across birds. They also show that much like EDCRP, several EDC genes are 

made up of highly repetitive units. Differences in the sequences of these units has led to a 

large amount of genetic variation across otherwise conserved genes, even among closely 

related species. Moreover, we found there are several conserved gene families in the 

avian EDC. These families include EDQM1/2, EDCH1/2/3/4, LOR1/2/3, and 

EDAA/EDMTF1/2/3/4/H. The EDQM and EDCH groups consist of duplicate genes 

which have not diverged in sequence. The Loricrins and EDAA/EDMTF groups consist 

of both duplicate copies as well as more divergent copies which may have taken on 

different functions (supplemental table 2.2) Loricrins and the EDAA/EDMTF gene 

families will be investigated and explored in chapters 3 and 4 respectively. Finally, we 

provide evidence that avian EDC genes contain biased G/C contents characteristic of 

“Dark” DNA, which has been shown to cause problems during genomic library 

preparation resulting in genes falsely being reported as missing. 

2.5 Discussion 
 

The results of this study demonstrate that the EDC is conserved across 48 

diverse species of birds and characterizes its organization as a conserved cluster of genes. 

These results also confirm that the genomic organization and architecture of the chicken 

EDC presented by Strasser et al. (2014) is also conserved across birds. We did not 

identify any avian EDC genes outside of the borders of the EDC locus; however, we did 

identify 2 possible genomic rearrangements in the Turkey and Zebra Finch respectively, 

however all genes were still localized within the borders of the EDC and their 
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chromosomal orientation was also conserved, indicating that it may be important in gene 

transcription. 

While no avian EDC genes were identified outside of the EDC locus, several 

EDC genes have evolved into conserved multigene families via tandem duplications such 

as EDCH, Loricrins, and EDAA/EDMTF genes. This supports the hypothesis presented 

by Strasser et al. (2014) that the EDC has evolved from a single or small number of 

ancestral EDC genes primarily through tandem gene duplications followed by 

diversification and ultimate neofunctionalization. Previous studies have found that 

members of all 4 β-keratin subfamilies are conserved in a cluster within the avian EDC, 

but the exact number of genes and proportions of the specific subfamilies varies 

significantly across different species (Greenwold et al. 2014). While feather β-keratins 

specifically have translocated and expanded in other parts of the genome and this is 

thought to have played a key role in the diversification of feathers, the presence of all 4 

subfamilies of β-keratins within the EDC indicates that the transposition of duplicated 

genes on the same locus is adequate to induce a relatively high level of sequence 

divergence and possible neofunctionalization (Greenwold et al. 2014). 

It has also been shown that like β-keratins, individual members of the EDC gene 

groups such as EDAA/EDMTFs and loricrins are capable of differential expression in 

developing epidermal tissues such as feathers and scales (Strasser et al. 2014, Alibardi et 

al. 2016). Our results this indicate that avian EDC genes are excellent candidates for gene 

duplication and subfunctionalization, which has been shown to ultimately lead to 

neofunctionalization (Rastogi and Liberales 2005). It is possible that the expansion of 
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EDCH and EDAA/EDMTF gene families and the capability for differential expression 

throughout development has also played a key role in the evolution of feathers. 

While several genes of the EDC are evolving via whole-gene duplication events, 

other avian EDC genes have undergone several intragenic duplications of specific 

sequence elements resulting in genes composed of repetitive units which substantially in 

size and number across different species. Strasser et al. (2015) analyzed the conserved 

Epidermal Differentiation Protein Rich in Cysteine (EDCRP) and found that it was 

composed of a highly variable number of repetitive units, which resulted in significant 

variation the size of the gene across different species. We found that several other avian 

EDC genes, Loricrins, EDQMs, EDQrep and EDDM are also composed of highly 

variable repetitive units. These genes are rich in amino acids such as cysteine, glycine 

and serine, all residues which are important in development and structure of epidermal 

appendages. If these genes do play structural roles in avian feathers, differences in their 

sizes due to variation in the number of repetitive units making them up, or specific amino 

acid composition of those units, could ultimately result in differences in physical 

properties such as elasticity and flexibility of feathers. This could have major 

implications on major aspects of avian lifestyle such as flying, hunting and habitat 

selection. 

The presence of these highly variable repetitive units within EDC genes also 

likely plays a direct role in the difficulty identifying them. It is known that highly 

repetitive DNA sequences present several technical challenges for sequence alignment 

and assembly programs (Treangen and Salzberg 2011). Strasser et al. (2015) identified an 

artificial frameshift in the Zebra Finch EDCRP sequence, which was resolved by direct 
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sequencing. We encountered several frameshifts and unknown nucleotides in the ORFs of 

EDC genes which impaired our ability to further analyze them. It is likely that many of 

these frameshifts and unknown sequences would be resolved due to direct sequencing, 

however given the high level of inter and intragenic duplications within the avian EDC, it 

is also possible that several duplicate genes do contain frameshift mutations. 

This study also provides support that avian genomes contain areas of “Dark” 

DNA which results in several genes being underrepresented in genomic databases. Dark 

DNAs are sequences which contain highly biased G/C nucleotide contents as well as 

many G/C stretches. These biased G/C contents present problems with genomic library 

preparation which results in conserved genes being reported as missing (Hron et al. 

2015). Already, several important genes which were originally reported as missing in 

birds, have now been identified and found to contain highly biased G/C contents 

(Bornelov et al. 2017). Our results show that of many of the avian EDC genes identified 

across diverse species such as the chicken, penguin, zebra finch and ground tit, contain 

biased G/C contents, characteristic of genes originally reported as missing by previous 

studies. Similarly, studies on the conservation of avian β-keratins have suggested that the 

very large discrepancy observed between numbers of identified genes could in part be 

related to problems associated with genomic library preparation as well as sequence 

alignment and identification algorithms (Greenwold et al. 2015). Except for EDGH, for 

which we did not identify a conserved start codon outside of the chicken, we did not 

identify any evidence for a conserved frameshift in avian EDC genes resulting in loss of 

the ORF. Given the overall conservation of the EDC across phylogenetically diverse 

species, it is more likely that many of these genes are indeed present and are missing 
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from genomic databases due to technical issues, than they have been lost in individual 

lineages. 

In this chapter we identified and characterized the avian EDC as a chromosomal 

gene cluster across a phylogenetically diverse group of birds. We found that while the 

EDC is conserved across birds, there is significant interspecific and intragenic variation 

observed. Our results support the hypothesis presented by Strasser et al. (2014) for 

evolution of the EDC from a single or small number of ancestral genes. The presence of 

several multigene families within the avian EDC indicates that much like β-keratins, the 

duplication and divergence of avian EDC genes has played a role in the adaptation of 

avian species to diverse lifestyles and habitats. We suggest the failure to identify several 

avian EDC genes, as well as the presence of unknown nucleotides and artificial 

frameshifts in many species is in part due to their repetitive nature and high G/C contents. 

It is likely that the direct sequencing would resolve several of these issues. 
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2.6 Figures 
 
 

 

 
Figure 2.1 : Organization of avian EDC across diverse species. This figure demonstrates 
the conservation of the avian EDC across 6 phylogenetically diverse species. The color of 
the genes correspond to those in Strasser et al. (2014). The boxes around Zebra Finch 
EDPE and in the turkey represent possible inversion events which have resulted in the 
variation in organization, however none of the genes orientation was changed. We 
identified an extra copy of EDMTF in the chicken which we annotated EDMTF5. 
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Figure 2.2: Possible Inversion Event in the EDC of the Turkey. The turkey and Zebra 
Finch were the only avian species where the organization of some EDC genes varied 
from that of the chicken. We present the possible inversion event in the turkey which may 
have led to its observed architecture. None of the genes’ orientations were affected by 
this potential inversion event. 
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Figure 2.3 : Scatter plot of avian EDC G/C contents. Y-axis represents overall percentage 
of G/C residues making up the coding sequence. X-axis indicates the average length of 
the G/C stretches present. G/C stretches were defined as runs of 3 or more uninterrupted 
G/C nucleotides. The scatter plot demonstrates that the majority of Avian EDC genes 
identified contained highly biased G/C contents. These biased G/C contents meet the 
criteria presented by Hron et al. (2015) of not being identified due to technical issues with 
genomic library preparation and search algorithms. 
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CHAPTER 3 
 

COMPLEX GENE LOSS AND DUPLICATION EVENTS HAVE 

FACILITATED THE EVOLUTION OF MULTIPLE LORICRIN GENES 

IN DIVERSE BIRD SPECIES1
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 Davis A, Greenwold MJ, Sawyer RH. 2018. Complex gene loss and duplication events 
have facilitated the evolution of multiple loricrin genes in diverse bird species. Oxford 
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3.1 Abstract 
 

The evolution of a mechanically-resilient epidermis was a key adaptation in the 

transition of amniotes to a fully terrestrial lifestyle. Skin appendages usually form via a 

specialized type of programmed cell death (PCD) known as cornification which is 

characterized by the formation of an insoluble cornified envelope (CE). Many of the 

substrates of cornification are encoded for by linked genes located at a conserved genetic 

locus known as the epidermal differentiation complex (EDC). Loricrin is the main protein 

component of the mammalian CE and is encoded for by a gene located within the EDC. 

Recently, genes resembling mammalian loricrin, along with several other proteins most 

likely-involved in CE formation, have been identified within the EDC of birds and other 

reptiles. To better understand the evolution and function of loricrin in birds, we screened 

the genomes of 50 avian species and 3 crocodilians to characterize their EDC regions. 

We found that loricrin is present within the EDC of all species investigated, and that 3 

loricrin genes were present in birds. Phylogenetic and molecular evolution analyses found 

evidence that gene deletions and duplications as well as concerted evolution has shaped 

the evolution of avian loricrins. Our results suggest a complex evolutionary history of 

avian loricrins which has accompanied the evolution of bird species with diverse 

morphologies and lifestyles. 

3.2 Introduction 
 

The major event that facilitated the adaptation of amniotes to a fully terrestrial 

lifestyle was the evolution of a mechanically resilient epidermis which provided a 

protective barrier and limited water loss to the environment (Chuong et al. 2002). The 
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development of the amniotic epidermis is largely characterized by the cornification of 

keratinocytes, which represent the main cellular component of the epidermis. (Candi et 

al. 2005). Cornification of keratinocytes is a multi-step process that ultimately results in 

the formation of the terminal layer of the epidermis known as the stratum corneum (SC). 

The SC confers mechanically resilient properties to the epidermis and its appendages 

such as hair, nails, and feathers which have aided amniotes in diversifying and inhabiting 

nearly every ecological niche on the planet, as well as adapt to changing environments, 

resource availabilities, and climate conditions (Pierard et al. 2000, Strasser et al. 2014). 

The stratum corneum is composed of terminally differentiated keratinocytes, or 

corneocytes, in which the plasma membrane has been replaced by an insoluble protein 

structure known as the Cornified Envelope (CE). The CE provides mechanically resilient 

properties such as flexibility and elasticity to the epidermis and its appendages (Candi et 

al. 2005, Eckhart et al. 2013). The process of CE formation requires strict spatiotemporal 

regulation of the expression of several different genes and protein substrates (Alibardi et 

al. 2016). Many of the genes which encode protein substrates involved in CE assembly 

and structure in mammals are clustered on the human chromosomal region 1q21, which 

has been termed the Epidermal Differentiation Complex (EDC) (Kypriotou et al. 2012). 

The EDC of mammals contains genes such as filaggrin, involucrin and loricrin which are 

expressed during CE assembly and are critical for proper function of the epidermis and its 

appendages (Hohl et al. 1990, Robinson et al. 1997, Chuong et al. 2002, Candi et al. 

2005). Recently, a genetic locus homologous to the mammalian EDC has been 

characterized in the chicken and anole lizard, which contains genes of similar exon-intron 

organization, amino acid composition and expression profiles (Strasser et al. 2014, 
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Strasser et al. 2015). Since then, the EDC locus has been identified in crocodilians, 

snakes and turtles that also contain genes characteristic of being involved in the CE 

assembly. This indicates the EDC locus was present before the divergence of birds and 

reptiles from mammals. There is no current evidence of an EDC in the genomes of ray- 

finned fishes (Takifugu rubripes), amphibians (Xenopus tropicalis, x. laevis), or the 

coelacanth (Latimeria chalumnae) supporting the hypothesis that the evolution of the 

EDC coincided with the adaptation of amniotes to a fully terrestrial lifestyle. (Holthaus et 

al. 2015, Holthaus et al. 2017). 

The main component of the mammalian CE is loricrin, and previous studies have 

suggested it constitutes 70-85% of the total CE protein content (Hohl et al. 1990, Candi et 

al. 2005, Eckhart et al. 2013). A more recent study found that while loricrin is a major 

protein of the CE, they calculated that loricrin has a 11.8-21.5 relative abundance in wild- 

type mice (Rice et al. 2016). Loricrin is a highly crosslinked structural protein which is 

extremely rich in glycine as well as polar residues. Studies have found that mutations in 

loricrin are associated with human skin diseases such as Vohwinkel’s syndrome (VS) and 

progressive symmetric erythrokeratoderma (PSEK) (Ishida-Yamamoto et al. 1998, Candi 

et al. 2005). In mammals, loricrin is preferentially crosslinked by transglutaminases 

(TGases) and provides both elasticity as well as mechanical resistance to the CE (Steinert 

et al. 1991). Mammals possess a single loricrin gene which contains 2 exons with the 

entire coding sequence contained in the second exon. The coding sequence (CDS) is 

composed of conserved N and C terminal domains rich in lysine and glutamine separated 

by 3 central Gly-Ser-Cys rich repeat domains of variable lengths which are interspersed 

by short Glutamine-rich regions. This central domain is thought to confer some of the 
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mechanically resilient properties to the CE by taking on a specialized conformation 

known as the Glycine-loop (Gly-Loop) (Hohl et al. 1990, Steinert et al. 1991). Gly-loops 

form when at least 2 quasi-peptide repeats of the form x(y)n are arranged in tandem, 

where x is an aromatic or aliphatic residue, y is usually a polar residue (glycine or serine) 

and n is the number of polar residues and is highly variable. Sequencing and proteolysis 

of normal human corneocytes has demonstrated that loricrin is primarily crosslinked to 

other loricrins via isodipeptide bonds, but loricrin was also found to be crosslinked with 

Small Proline-rich proteins (filaggrin, and Keratin Intermediate Filaments (KIF). These 

crosslinked proteins form a matrix referred to as the KIF-matrix-protein complex. 

Crosslinking of loricrin with the KIF-matrix-protein complex may provide a means of 

coordinating cellular structure (Robinson et al. 1997, Wang et al. 2000). 

Loricrin has been localized to the EDC in the chicken, two turtles, two snakes and 

the anole lizard, however the number of loricrin genes varied across different groups of 

organisms. Three loricrin genes were identified in the chicken, two in squamates and only 

a single loricrin was identified within the EDCs of crocodilians and testudines (Strasser et 

al. 2014, Holthaus et al. 2015, Holthaus et al. 2017, Holthaus et al. 2018). Furthermore, 

they found that the three chicken loricrin genes are differentially expressed in the beak, 

scale, comb, claw, feather and skin of both embryonic and adult individuals (Strasser et 

al. 2014). Recently, the genomes of several diverse avian species have been sequenced 

and published allowing researchers to further analyze the conservation and function of 

avian EDC genes (Strasser et al. 2015, Alibardi et al. 2016). Given the importance of 

loricrin in the structural properties of the mammalian epidermis as well as loricrins’ 

expression patterns found in the epidermal appendages of the chicken, studies focusing 
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on loricrins in birds and reptiles may provide insight into the formation epidermal 

appendages (Alibardi 2017). Previous studies have also demonstrated that the avian- 

specific β-keratins confer very specialized structural properties useful in a variety of 

applications ranging from applications as low-cost building materials to medicinal uses 

(Barati et al. 2016). Despite these advances, little is known about how these proteins 

interact with other epidermal proteins including loricrin (Barati et al. 2017). To gain a 

better understanding of the evolution of loricrin genes in birds and reptiles, as well as the 

roles they play in the development of feathers and scales, we used comparative genomics 

to screen for loricrin genes in 50 phylogenetically diverse species of birds (Cai et al. 

2013, Fankl et al. 2013, Jarvis et al. 2014, Zhang et al. 2014). 

3.3 Methods 

3.3.1 Identification and characterization of the Epidermal Differentiation Complex in 

Birds and Reptiles 

All genomes were downloaded from the NCBI FTP site in fasta format 

(supplemental table 1). All genomes had been previously assembled as unplaced genomic 

scaffolds with the exception of the chicken (Gallus gallus) and the zebra finch 

(Taeniopygia guttate) which were assembled at the chromosomal level (Jarvis et al. 2012, 

Zhang et al. 2014, Yang et al. 2015) Blast databases of each genome were created using 

blast-2.7.1+ makeblastdb. Using the tblastn command each nucleotide database was 

screened for EDC genes using the amino acid sequences of EDC genes from Strasser et 

al. (2014) as queries (Altschul et al. 1990, Altschul et al. 1997, Camacho et al. 2009, 



50  

Pierard et al. 2000, Holthaus et al. 2015, Holthaus et al. 2017).Potential EDC genes 

identified by tblastn searches were extracted using the blastdbcmd command as 

nucleotide sequences in fasta format. These sequences were then translated using the 

ExPASy translate online analysis tool, and aligned using ClustalW online analysis tools 

(Thompson et al. 1997, Jeanmougin et al. 1998, Gasteiger et al. 2003). 

The genomic organization of avian EDC loci was predicted by aligning identified 

EDC genes with their respective positions in the chicken. The linearity of DNA 

sequences was then used to align various genomic scaffolds to recreate each avian EDC 

region. Several EDC genes, including loricrins, were often not identified by tblastn 

algorithms, however manual screening of genome sequences often found evidence of 

loricrin genes. 

3.3.2 Phylogenetic Analysis of Loricrins 
 

The loricrin sequences of 15 avian species, 9 mammalian species, 2 crocodilian, 2 

testudine, and 3 squamates, which are listed in supplemental table 2, were used to 

construct Bayesian and maximum-likelihood (ML) phylogenetic trees. These avian 

species were selected because they each possess 3 loricrin genes with both start and stop 

codons, had no premature stop codons or frameshift mutations, and less than 70% of their 

central domain was composed of unknown nucleotides (NNNs). Amino acid alignments 

of loricrin sequences were done using ClustalW2 (Thompson et al. 1997) local alignment 

tools and edited using Bioedit software (Hall 1999). Using MEGA7 (Kumar et al. 2016) 

the substitution matrix PROTGAMMAJTTF (JTT+G) was determined to be the best fit 

substitution model based on Bayesian Information Criterion (BIC), Akaike Information 
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Criterion, corrected (AICc) and the substitution rate (BICJTT+G=1299.488, 

AICc
JTT+G=839.458). Bayesian analysis was done using Mrbayes-v3.2 tool (Huelsenback 

and Ronquist 2001, Ronquist and Huelsenbeck 2003). We ran 10,000,000 generations 

and checked for convergence using the Potential Scale Reduction Factor method (PSRF) 

(TL:PSRF=1.0 ; alpha: PSRF=1.0) (Gelman and Rubin 1992). ML analysis was 

performed on the same alignment file using RAxML-v8.2.10 by first using MRE-based 

bootstrapping until convergence was reached, followed by inferring the best tree 

produced from generating 1000 thorough ML trees, then mapping the MRE bootstrap 

values onto the best ML tree (Stamatakis 2014). Generated Bayesian and ML trees were 

viewed and edited using FigTree-v1.4.3 (Rambaut 2012). Protein sequence alignment 

(supplementary figure 2) was generated using T-Coffee online analysis tool (Notredame 

et al. 2000). 

3.3.3 Gene Conversion Tests 

Gene conversion analysis was done using GENECONV (Sawyer 1989). Loricrin 

sequences of only 6 phylogenetically diverse avian species (Struthio camelus, Manacus 

vitellinus, Chaetura pelagica, Gallus gallus, Haliaeetus leucocephalus, and 

Pseuopodoces humilis) were used due to GENECONV analysis requiring that no NNNs 

be present in the sequences. 

3.3.4 Prediction and Analysis of Gly-loop domains of avian loricrins 
 

The Gly-loop domains of 6 avian species (Gallus gallus, Haliaeetus 

leucocephalus, Chaetura pelagica, Manacus vitellinus, Pseudopodoces humilis, and 
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Melopsittacus undulatus) as well as the orca (Orcinus orca) were predicted using the 

x(y)n motif described by Hohl et al 1990. The number and size of Gly-loops of human 

and mouse loricrins were calculated using the schematic representations proposed by 

Steinert et al. 1991. Avian species were selected because they were phylogenetically 

diverse and possessed complete loricrin sequences. Furthermore, with the exception of 

the budgerigar (Melopsittacus undulatus) (supplemental table 3.1) they had no NNNs in 

their central domains. The total number of Gly-loops was predicted by counting the 

number of gly-ser-rich stretches of sequence present in the central domain ((y)n) that 

were also bordered by either an aromatic or an aliphatic residue (x). Loop sizes were 

predicted by counting only the number of residues located between aromatic/aliphatic 

residues which were thought to form gly-loops. The schematic representations of the Gly- 

loops of chicken LOR3 and LOR1 (figure 4 A and B) are based on the schematic 

representations of human and mouse loricrins proposed by Steinert et al. 1991 and are not 

intended to predict specific secondary structure. 

3.3.5 Amino Acid Composition and Statistical Analysis of Loricrin 
 

Amino Acid Analysis was performed using avian loricrin sequences classified as 

complete and which were composed of <15% NNNs’s, as well as mammalian, 

crocodilian, and squamate loricrin sequences. Translated amino acid loricrin sequences 

were analyzed for amino acid composition using ExPASy ProtParam tool (cite ExPASy). 

In order to account for the large amount of variation in size observed across loricrin 

genes, all amino acid analyses were done using the percentage of each amino acid present 

in the sequence as opposed to the total number of residues. The resulting percentage of 
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each amino acid residue for each loricrin sequence analyzed can be found in 

supplemental table 4 A and B. These data were used to generate the principal component 

analysis (PCA) in R (Figure 5) by means of the BiocLite- pcaMethods package by 

BioConductor. The PCA was done using thing Singular Value Decomposition (SVD) 

method. 

Further amino acid analyses were performed by comparing the percentage of 

each of the 20 amino acid residues observed across the respective loricrins of each 

species examined in order to identify significant differences in the amino acid contents of 

respective amino acid residues. Significance was determined using Analysis of Variance 

(ANOVA) and Welch’s t-test analysis which was performed using Microsoft Excel: Data 

Analysis ToolPak. 

3.4 Results 

3.4.1 Loricrin conservation within the EDC across birds and reptiles 
 

In order to establish whether the loricrin genes identified in the chicken and anole 

lizard by Strasser et al. [3] are conserved across birds and reptiles, we screened the 

genomes of 2 crocodilian species (Alligator mississippiensis and Crocodylus porosus) 

and 50 phylogenetically diverse avian species (supplemental table 1) using the amino 

acid sequences of the chicken, king cobra, burmese python, chinese soft-shelled turtle, 

western painted box turtle and the anole lizard EDC genes as BLAST queries (Altschul et 

al. 1990, Altschul et al. 1997, Camacho et al. 2009, Pierard et al. 2000, Holthaus et al. 

2015, Holthaus et al. 2017). Bird genomes searched in this analysis came from the 

recently sequenced genomes of 48 diverse bird species (Jarvis et al. 2012, Zhang et al., 
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2014). We also searched the genomes of the ground tit (Pseudopodoces humilis) and 

atlantic canary (Serinus canaria) (Cai et al. 2013, Fankl et al. 2013). All genomes were 

obtained from NCBI and were previously assembled at the scaffold level with the 

exception of the chicken, zebra finch and turkey which were assembled to the 

chromosome level. Identified loricrin (LOR) genes were added to the query file and 

iterative rounds of BLAST searches were performed on the avian genomes. 

The results of these BLAST searches confirmed evidence of at least a single copy 

of loricrin in the two crocodilian species and the 50 bird species (supplemental table 1). 

When multiple loricrin genes were identified in the bird genomes, we found them to be 

tandemly arranged in the same orientation and conserved within the EDC between the 

EDGH and EDYM1 genes (figure 1). We found evidence of only a single loricrin gene in 

the crocodilian genomes, which is in agreeance with a recent study characterizing the 

crocodilian EDC (Holthaus et al., 2018). Previous studies found a single loricrin gene in 

turtles whereas two loricrin genes are present in squamates (figure 1) (Strasser et al. 

2014, Holthaus et al. 2014, Holthaus et al. 2017). In birds, evidence of three loricrin 

genes was identified in 39 of the 50 species examined, however, in many species this 

region of the EDC (in which loricrins are located) was either incomplete (assembled 

across multiple scaffolds) or composed almost entirely of unknown nucleotides (NNN’s) 

(supplemental figure 1 A and B). This resulted in only the ground tit (Pseudopodoces 

humilis), bald eagle (Haliaeetus leucocephalus) and chicken (Gallus gallus) having three 

uninterrupted, complete loricrin sequences (supplemental table 3.1). 

In order to analyze the number of loricrin genes conserved across birds, we 

narrowed our results by selecting species in which the loricrin containing region of the 
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EDC (Figure 1B) was assembled on a single scaffold. Twenty-five phylogenetically 

diverse avian species (supplemental table 3.1) were found to have this portion of the 

EDC; however, 22 of these species still possessed loricrin sequences containing NNN’s. 

We found evidence suggesting the presence of three loricrin genes in all but one (pigeon) 

of these 25 species (supplemental table 3.1). The pigeon (Columbia livia) was found to 

have only two loricrins with no evidence of a third loricrin. We did not find evidence 

suggesting the presence of more than three or less than two loricrin genes in any of these 

25 bird species. 

3.4.2 Phylogenetic analyses suggest a complex and dynamic evolutionary history of 

loricrins in birds 

Like the mammalian loricrin, avian loricrins are composed of highly conserved N- 

and C- terminal domains separated by a highly variable glycine rich repeat domain 

(figure 2 and supplemental figure 2) (Hohl et al. 1990). Likely due to the highly repetitive 

nature of loricrins, many loricrin genes did not assemble well in the avian genomes and 

are composed of unknown nucleotides (NNNs) (Milinkovitch et al. 2010, Hron et al. 

2015). Therefore, we used specific parameters to screen loricrin genes for inclusion in 

phylogenetic analyses. Loricrin sequences were considered complete provided that: (1) 

the N- and C- termini were both present without any NNNs, (2) within the central 

domain, at least 3 tandemly arranged repeat units are present without NNNs, and (3) no 

more than 15% of the central domain contained NNNs. Loricrin sequences in compliance 

with (1) and (2), but contained > 15% but less than 70% NNNs were considered partial 

sequences. This resulted in 15 avian species having 3 complete or partial loricrin genes 
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which were used in phylogenetic analyses (supplemental table 2, supplemental figure 3, 

figure 3). In addition to these 15 avian species and their three loricrin genes, we included 

a single loricrin gene from nine mammals, two loricrin copies from two snakes and a 

lizard (Holthaus et al., 2017), one loricrin from two turtle species (Holthaus et al., 2015) 

and a single loricrin we identified from the two crocodilian species (supplemental table 2) 

in the phylogenetic analyses. 

Bayesian (supplemental figure 3) and maximum likelihood (figure 3) analyses 

were performed using MrBayes v. 3.2 (Huelsenbeck and Ronquist, 2001; Ronquist and 

Huelsenbeck, 2003; Ronquist et al., 2011) and RAxML v. 8.0.0 (Stamatakis, 2014). The 

topology of these phylogenies largely agreed with a few exceptions related to node 

support values. The nine loricrins of mammals were used to root the phylogeny with the 

reptile and avian loricrins forming a well-supported monophyletic clade. Due to a low 

bootstrap value in the maximum likelihood phylogeny (figure 3), the reptile and avian 

loricrins are composed of four monophyletic clades comprising a crocodilian clade, 

squamate clade, testudines and avian loricrin 1 clade and an avian loricrin 2 and 3 clade. 

In contrast, a high posterior probability support value indicates that the crocodilian clade 

is the outgroup to all other reptile and avian loricrins (figure 3). These results conflict 

with the currently accepted topology of reptiles and birds which indicates that 

crocodilians and birds form the monophyletic clade of archosaurs and that squamates 

(excluding tuatara) are the outgroup to other reptiles (turtles, crocodilians) and birds 

(Miller et al. 2012, Crawford et al. 2012). 

The squamate loricrin clade consists of two subclades composed of a squamate 

loricrin 1 gene and a squamate loricrin 2 gene indicating that a duplication occurred early 
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in squamate evolution. Interestingly, the avian loricrin 1 and testudine loricrin genes form 

a monophyletic clade possibly indicating convergent evolution. In contrast, this may 

indicate that the avian loricrin 1 gene is highly conserved and represents the ancestral 

loricrin of turtles and archosaurs. The final clade (LOR2/LOR3 Clade; Figure 4) of avian 

loricrins consists of multiple loricrin copies with a dynamic duplication history. 

The LOR2/LOR3 clade (figure 3) containing avian loricrins was made up of 2 

major sister groups. One of these sister groups (LOR2; figure 3), contained passerine 

loricrin sequences as well as a single loricrin gene belonging to the Hoatzin (OPHHO; 

Ophisthocomus hoazin). While most of the passerine species had only one loricrin gene 

in this clade (LOR2), the budgerigar (MELUN; Melopsittacus undulatus) had two copies 

which were annotated as LOR2 and LOR2B. The other sister group (LOR3/LOR3B) 

contained representatives from all species including passerines, however the latter only 

contained a single loricrin gene while the former all contained 2 copies which displayed a 

lineage-specific duplication history. These Loricrin sequences were designated as LOR3 

and LOR3B (figure 3). LOR2B and LOR3B, or ‘B-type’ loricrins, were nearly identical 

to their paralogous LOR2 and LOR3 gene, respectively. 

The loricrin genes of the Hoatzin (OPHHO; Ophisthocomus hoazin) and Anna’s 

Hummingbird (CALAN; Calypte anna) displayed unique evolutionary histories relative 

to other avian species’ LOR2 and LOR3 sequences. The hoatzin was the only non- 

passerine bird which possessed a loricrin gene in the passerine LOR2 sister group. The 

hoatzin’s other loricrin gene was closely related to the LOR3/LOR3B gene of the adélie 

penguin, bald eagle, crested ibis, peregrine falcon and killdeer. In the case of Anna’s 

Hummingbird, one loricrin gene formed a sister group with both chimney swift loricrin 
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genes (LOR 3 and 3B) and the other formed a sister group with LOR3 of passerine birds. 

Our phylogenetic results within the LOR1 clade and the LOR2 and LOR3 clade were 

largely in agreeance with recent comprehensive avian phylogenies proposed by Prum et 

al. (2015) which places the enigmatic Hoatzin as a sister group to other landbirds 

(Ericson et al. 2002, Jarvis et al. 2014, Prum et al. 2015) (figure 3). 

The results of these phylogenetic analyses suggest 2 possible scenarios for the 

evolution of avian loricrins. The first scenario is detailed in figure 3 and involves 

multiple lineage specific duplications and deletions where, (1) Duplication of the 

ancestral loricrin gene (Anc_LOR) resulted in 2 copies of loricrin (LOR1 and LOR2) 

before the emergence of the crown birds (Prum et al., 2015). (2) Duplication of LOR2 

resulted in LOR2 and LOR3 genes. (3) Following the divergence of Passeriformes, 

deletion of LOR2 in all other major orders of birds resulted in a single copy of loricrin 

(LOR3) in most orders of birds whereas LOR2 was retained in Passeriformes. (4) In non- 

passerine lineages, LOR3 duplicated and produced LOR3B found in Palaeognathae, 

Galloanserae and Neoaves (excluding Passeriformes) species. (5) In the case of 

Psittacisformes, a suborder of passerine birds, the retained LOR2 duplicated and 

produced Psittaciforme-specific LOR2B in budgerigar. No evidence was found of a 4th 

loricrin gene in Psittaciformes suggesting that the LOR3 present in other birds may have 

been lost in this lineage (figures 3 and 4). 

The second possible scenario is that concerted evolution of LOR2B and LOR3B 

with LOR2 and LOR3 respectively, has resulted in the phylogenetic distribution of 

loricrin paralogs (figure 4). This second scenario may have occurred though gene 

conversion, a mechanism of concerted evolution. Gene conversion events occur through 
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unequal recombination where a stretch of DNA is replaced by a homologous region such 

as those found in duplicate genes that results in the homogenization of both genes 

(Daiquing 1999). We used GENECONV (Sawyer 1989) to assess the likelihood that gene 

conversion led to concerted evolution of LOR3/LOR3B. Due to complications associated 

with incomplete sequences and NNN’s, we were left with 7 diverse avian species 

(chicken, ostrich, ground tit, chimney swift, golden-collared manakin, bald eagle, 

Atlantic canary) which contained complete loricrin genes and no NNN’s. The results of 

the GENECONV analysis found strong evidence of a gene conversion event between 

LOR3 and LOR3B for one species, the chimney swift (Chaetura pelagica) (BC KA p= 

0.00213), which possessed a 91 nucleotide long global fragment that contained 43 

polymorphic sites. No other significant gene conversion events were detected between 

LOR2/LOR2B and LOR3/LOR3B in the other species (supplemental table 3). These 

results support scenario one, which is detailed in figure 5. 

3.4.3 Avian loricrin genes form Gly-loops of variable size and number 
 

The central domain of mammalian loricrin is thought to take on a specialized 

structural conformation termed the Glycine-loop (Gly-loop) which results from tandemly 

arranged quasi-repetitive, glycine-rich peptide sequences. The Gly-loop conformation is a 

key structural motif which provides both barrier-like function as well as elasticity to the 

epidermis and its appendages (Hohl et al. 1990, Candi et al. 2005). The properties 

conferred by the Gly-loop motif depend heavily on the relative composition of amino 

acids which make up the peptide repeats of the central domain as well as the presence of 

specific residues in the N- and C- termini (Steinert et al. 1991). In order for a protein 

sequence to take on the Gly-loop conformation, it must have the general form x(y)n , 
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where “x” is an aromatic or aliphatic residue, “y” is usually glycine or a polar residue 

such as serine and “n” is the number of polar residues. Another key characteristic of 

mammalian Gly-loops is a large amount of variation in the size and the number of 

repeating peptide units present in the central domain (Steinert et al. 1991). Here, we 

calculated the size and total number of Gly-loops for six diverse avian species as well as 

three mammals (supplemental table 3.2). This allowed us to analyze the interspecific and 

intraspecific amino acid variation of avian Gly-loops as well as the variation in the 

number and size of avian Gly-loops. 

We found that the repetitive units which comprise the central domain of avian 

loricrins conform to the general form (x(y)n) required for the formation of Gly-loops and 

that there is a significant amount of variation in the amino acid composition and 

organization of avian loricrins. In general, there are distinct amino acid differences 

between Gly-loops formed by the avian loricrin genes. LOR1 glycine rich loops are 

interspersed by glutamine and proline residues and are indexed primarily on aliphatic 

isoluecines, or the “x” of the x(y)n conformation (figure 5A). The glycine rich loops of 

LOR2 and LOR3 are interspersed by conserved lysine and cysteine residues. However, 

LOR2 loops are indexed primarily on aliphatic methionines, while LOR3 loops are 

indexed on either tyrosine or isoluecine residues (figure 4B). B-type loricrins (LOR2B 

and LOR3B) conform to the same general Gly-loop amino acid characteristics as their 

duplicates LOR2 and LOR3. 

Although all avian loricrins conform to the general form x(y)n, we observed 

considerable variation in the number and the size of Gly-loops (supplemental table 3.2). 

As previous studies (Hohl et al. 1990, Steinert et al. 1991) have shown, we found that 
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mammalian loricrins vary extensively in both size and number of Gly-loops. The lorcrin 

gene of the Orca (Orcinus orca) was predicted to contained 6 Gly-loop domains, while 

human (Homo sapiens) and mouse (Mus musculus) loricrin contained 21 and 22 Gly-loop 

domains respectively. Furthermore, the Gly-loops of mouse loricrin were generally 

longer (average loop size = 18.18) than those of humans (average loop size = 10.62) and 

the Orca (average loop size = 16.67) (supplemental table 3.2). Overall, the variation 

observed across mammalian loricrins is thought to result in slight differences in the 

mechanical properties exhibited by the CE (Steinert et al. 1991). 

Similar to mammalian loricrins, we observed significant variation in the size and 

number of Gly-loop domains of avian loricrins. Out of six avian species analyzed, the 

longest glycine loop contained 30 residues between “x” residues (x(y)n) (MANVI LOR2) 

and the shortest contained two (MANVI + PHUMI LOR2). The highest amount of 

interspecific variation in the number of Gly-loops was in LOR3/LOR3B, where the total 

number of predicted Gly-loops ranged from 8 in LOR3B of the bald eagle to 48 in 

LOR3B of the chicken (supplemental table 3.2). While there was considerable 

interspecific variation in the total number of Gly-loops making up LOR3/LOR3B, the 

size parameters of those loops were more conserved (LOR3: average loop size=10.52, 

SD=1.48, n=8) relative to the size parameters of the loops of other avian loricrins (LOR1: 

average loop size=11.98, SD=2.61, n=6 ; LOR2: average loop size=19.52, SD=2.99, n=2) 

(supplemental table 3.2). Despite the high amount of interspecific variation observed 

across the size and number of Gly-loops in LOR3/LOR3B, there was relatively little 

variation observed within species. For instance, LOR3 and LOR3B of the chicken are 

predicted to contain 43 and 48 total loops respectively, whereas LOR3 and LOR3B of the 
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bald eagle are predicted to contain 10 and 8 loops respectively (supplemental table 3.2). 

Overall, these results demonstrate that avian loricrins, much like mammalian loricrins, 

exhibit a large amount of variation in the size and number of the Gly-loops even between 

closely related species. Due to uncertainty with the number of actual NNNs present in 

incomplete avian loricrin genes, our analysis was restricted to a small sample size (n = 6). 

Therefore, more complete avian loricrin sequences are needed to make inferences relating 

the size and number of Gly-loops to functional properties of avian loricrins. 

3.4.4 Amino acid compositional differences between avian loricrin genes suggests 

functional diversity 

Similar to mammalian loricrins, the amino acid composition of avian loricrins are 

extremely biased with over 50% of the gene is composed of glycine and serine 

(supplemental table 4 A and B). Other prevalent amino acids are cysteine, tyrosine, lysine 

and glutamine, which are all associated with protein cross-linking (Hohl et al., 1990; 

Steinert et al., 1991; Candi et al., 2005; Eckhart et al., 2013). 

In order to further assess the potential functional properties of avian loricrins, we 

analyzed the amino acid composition of all loricrin sequences identified as having less 

than 10% NNNs. Using the ExPASy ProtParam tool (Gastieger et al. 2005) we calculated 

the percent composition of the 20 amino acids for 48 avian, 8 reptilian, and 9 mammalian 

loricrin genes (supplemental table 4 A and B). Using these data, we generated a Principle 

Component Analysis (PCA) using the Bioconductor pcaMethods package in R (Stacklies 

et al. 2007, R Studio Team 2015). The PCA plot (figure 6) was able to explain 46.79% 

(PC1 = 0.2764% , PC2 = 0.1915%) of the total variance between the amino acid 
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composition of loricrin sequences. The PCA also found that principle component 1 (PC1) 

differentiated avian LOR1 into a distinct cluster relative to all other loricrin genes. The 

amino acid composition of the remaining loricrin sequences failed to sort into unique 

clusters; however, LOR2 and LOR3 of birds did group together but could not be 

differentiated from one another. The loricrins of crocodilians, snakes and some mammals 

increased the vertical spread (PC2). Overall, these results demonstrate that avian LOR1 

has a conserved and unique amino acid composition, while avian LOR2 and 

LOR3/LOR3B loricrins could not be differentiated from reptilian and mammalian loricrin 

genes (figures 6 and 7). Together with our phylogenetic results (figures 3 and 4), these 

results suggest that avian LOR1 diverged early in the evolution of birds and has remained 

conserved within birds. 

To characterize which amino acid residues were primarily contributing to the 

PCA analysis results, we performed an analysis of variance (ANOVA) to analyze the 

differences of the mean amino acid content between avian loricrin genes. We observed 

statistically significant differences in 7 amino acid residues between LOR1 and LOR2 

and 11 amino acid residues between LOR1 and LOR3 (supplemental table 5). The most 

significant amino acid differences between LOR1 from LOR2 and LOR3 were observed 

in serine (LOR1: x̅ =12.64%, n=17 ; LOR2: x̅ =21.86%, n=4, F17,5=119.59, p<0.001 ; 

LOR3: x̅ =27.79%, n = 15, F17,14=372.9, p<0.001), cysteine (LOR1: x̅ =3.88%, n=17 ; 

LOR2: x̅ =8.82%, n=4, F17,5=156.83, p<0.001 ; LOR3: x̅ =6.12%, n=15, F17,14=43.15, 

p<0.001) and proline (LOR1: x̅ =3.38%, n=17 ; LOR2: x̅ =0.66%, n=4, F17,5=222.51, p < 

0.001 ; LOR3: x̅ =1.07%, n=15, F17,14=166.63, p<0.001). 
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We also conducted an ANOVA analysis of the amino acid composition between 

LOR2 and LOR3, which did not form unique groups in our PCA (figure 6). For these 

analyses, we included the LOR2 gene of the White-rumped munia (Lonchura striata) in 

the interest of identifying more subtle differences in amino acid composition (Yang et al. 

2015). We identified significant differences for 5 amino acid residues (serine, glycine, 

histidine, tyrosine, and cysteine) between LOR2 and LOR3. Moreover, 4 (serine, glycine, 

tyrosine, and cysteine) of these amino acid residues are known to be important 

throughout the cornification process as well as in maintaining the structure of the 

epidermis and its’s appendages (Candi et al. 2005) (figure 6 and supplemental table 5). 

We found that LOR2 contained significantly higher amounts of glycine (LOR2: 
 

x̅ =47.76%, n=5 ; LOR3: x̅ =38.3%, n=15 ; F5,15=22.28, p<0.001) and cysteine (LOR2: 

x̅  =8.82% n=5 ; LOR3: x̅  =6.1%, n=15 ; F5,15=27.68, p<0.001), and significantly less 

serine (LOR2: x̅ =21.86%, n=5 ; LOR3: x̅ =27.69%, n=15 ; F5,15=20.31, p<0.001) relative 

to LOR3. Additionally, LOR2 was found to have very low amounts of tyrosine 

(x̅ =0.175%, n=4, σ=0.12), with LOR2 of the Atlantic Canary (Serinus canaria) 

containing no tyrosine residues. This contrasts with avian LOR3 (x̅ =4.12%, n=15, 

σ=1.99) as well as mammalian loricrins (x̅ =3% n=9, σ=1.36) which have tyrosine 

residues conserved throughout their central domains. 

Our phylogenetic analyses (figure 3) found that with the exception of the Hoatzin, 

only passerine birds possess LOR2. However, most avian species, except Budgerigar, 

possess a LOR3 gene. In order to determine if the passerine LOR2 (P-LOR2) and 

passerine LOR3 (P-LOR3) differ in amino acid composition (Unlike LOR3/LOR3B of 

non-passerine birds); we repeated our ANOVA analyses between LOR2 and LOR3 using 
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either only passerine genes or only non-passerine genes (NP). Only tyrosine content (P- 

LOR3: x̅ =5.68%, n=6 ; LOR3-NP: x̅ =3.08, n=9 ; F6,9=10.14, p<0.01) was found to 

significantly differ between P-LOR3 and LOR3 of non-passerine birds indicating they 
 

have nearly identical amino acid compositions. In contrast, significant differences were 

observed in cysteine (P-LOR2: x̅ =8.82%, n=5 ; P-LOR3: x̅ =5.87%, n=6 ; F5,6=27.3, 

p<0.001), glycine (P-LOR2: x̅ =47.76%, n=5 ; P-LOR3: x̅ =40.57%, n=6 ; F5,6=12.76, 

p<0.01), serine (P-LOR2: x̅ =21.86%, n=5 ; P-LOR3: x̅ =26.57%, n=6 ; F5,6=18.42, 

p<0.001), tyrosine (P-LOR2: x̅ =0.22%, n=5 ; P-LOR3: x̅ =2.08%, n=6 ; F5,6=50.24, 

p<0.001) and valine (P-LOR2: x̅ =0.54%, n=5 ; P-LOR3: x̅ =2.08%, n=6 ; F5,6=25.2, 

p<0.001) between P-LOR2 and P-LOR3 (supplemental table 5). These results support the 

hypothesis that LOR2 is distinct from other avian loricrins and was most likely lost in 

most lineages of birds following the divergence of Passeriformes from other crown birds 

(figure 4). 

3.5 Discussion 
 

The results of this study demonstrate that loricrin genes are conserved within the 

EDC of birds and reptiles indicating that loricrin is an essential component of not only 

the mammalian cornified envelope (CE) (Hohl et al. 1990, Candi et al. 2005), but most 

likely of all amniotes. All loricrins identified were tandemly arrayed and found in the 

same orientation within the EDC between the genes EDQL (formerly EDQM3) and 

EDYM1. Although all species investigated had complete genome assemblies available on 

NCBI, the quality of the assemblies varied significantly (Zhang et al. 2014 and Jarvis et 

al. 2014; supplemental table 2). However, we were not able to find a relationship between 

the quality of loricrins and genome quality (results not shown). A frequent problem 
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observed is the interruption of loricrin genes due to scaffold breaks (supplemental figure 

1). Additionally, we encountered an abundance of unknown nucleotides interrupting the 

CDS of loricrin sequences resulting in artificial frameshifts. These problems are 

consistent with the results of previous studies (Milinkovitch et al. 2010, Hron et al. 2015, 

Peona et al. 2018) which have found that genome assemblers have difficulty resolving 

highly repetitive and GC rich regions of the genome, which can result in large numbers of 

gaps (i.e. fragmented sequences). Loricrins are highly repetitive which likely contributes 

to these problems. Similar problems have been encountered and resolved in other avian 

EDC genes through direct sequencing. Strasser et al. (2015) encountered a frameshift in 

the central domain of another avian EDC gene, the cysteine-rich EDCRP gene of the 

zebra finch. It has been demonstrated that EDCRP is expressed in the embryonic 

subperiderm of chickens as well as in the barbule cells of developing feathers (Strasser et 

al. 2015), which suggests it plays a role in the morphogenesis and structure of feathers 

and scales. Upon direct sequencing of zebra finch EDCRP, the frameshift was resolved 

and a single continuous open reading frame was identified (Strasser et al. 2015). 

Therefore, it’s likely the frameshifts and premature stop codons observed in several 

loricrins are artificial and would be resolved upon direct sequencing. 

The number of loricrin genes identified varied across different groups of 

organisms. Previous studies have identified 2 loricrin genes in squamates, and only a 

single loricrin gene in turtles while there are 3 loricrin genes which have been identified 

in the chicken (Strasser et al. 2014, Holthaus et al. 2014, Holthaus et al. 2017). Birds 

were the only group of species in our study which possessed 3 loricrin genes, whereas we 

were only able to identify a single copy of loricrin in crocodilian species. The results of 
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our analysis of the crocodilian EDC are consistent with the recently published findings of 

Holthaus et al. 2018. All avian loricrin genes identified were located at the same position 

within the EDC as the 3 loricrin genes identified in the chicken by Strasser et al. (2014) 

(figure 1). We identified evidence of 3 loricrins in all bird species where the entire region 

of the EDC in which loricrins are located was assembled on a single scaffold with the 

exception of the pigeon, Columbia livia, where only 2 copies were identified 

(supplemental table 3.1). We did not identify any avian species that contained more than 

3 copies or less than 2 copies of loricrin indicating that 3 copies of loricrin were most 

likely present in the most recent common ancestor (MRCA) of crown birds. These 

results, together with those of previous studies (citations), demonstrate a complex and 

dynamic duplication history of loricrins in birds and reptiles. 

Our phylogenetic analyses identified four major clades of loricrins across birds 

and reptiles (figure 3 and supplemental figure 3). In contrast to accepted comprehensive 

species phylogenies, crocodilian loricrins formed the outgroup to all other birds and 

reptiles, and the testudine loricrins grouped with avian LOR1 (St John et al. 2012, N.G. 

Crawford et al. 2012, Miller et al. 2012, Holthaus et al. 2018). These results demonstrate 

the evolutionary uncertainty described in previous studies (St John et al. 2012, N.G. 

Crawford et al. 2012, Holthaus et al. 2015) associated with defining the basal clade of all 

sauropsids. It is known that the epidermal appendages of birds and reptiles are highly 

specialized adaptations which exhibit significant molecular and genetic diversity even 

across phylogenetically similar species (Gremillet et al. 2005 and Wang et al. 2016). It is 

possible that the results of our phylogenetic analyses reflect evolutionary adaptations 

associated with specialization of epidermal appendages such as crocodilian scales or the 
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carapace of testudines, and are not indicative of the true phylogenetic history of birds and 

reptiles. These results suggest crocodilian loricrins have undergone little evolutionary 

divergence relative to those of birds and other reptiles. Additionally, these results suggest 

the possible convergent evolution of testudine loricrins with avian LOR1. Testudines, 

like birds, possess evolutionarily unique appendages in their shell and scutes, however 

unlike avian LOR1, testudines loricrins are ubiquitously expressed throughout the 

epidermis and its appendages (Strasser et al. 2014 and Holthaus et al. 2015). The 

presence of NNNs in the loricrin sequences of both testudine species (Green sea turtle = 

35.4% NNNs, Painted turtle = 54.5% NNNs) may have impacted our phylogenetic 

results. Finally, PCA analysis demonstrated that the amino acid composition of avian 

LOR1 is distinct from that of testudine loricrins (figure 6). 

The LOR2/2B group of the second clade of avian loricrins contained only 

passerine loricrin sequences and LOR3 of the Hoatzin. Conversely, LOR2 of the Hoatzin 

grouped with other loricrins in the LOR3/LOR3B group. The nomenclature for Hoatzin 

loricrins, as all other species, was based on the genomic orientation of loricrins relative to 

other EDC genes (Figure 1). These data suggest a genomic inversion of LOR2 and LOR3 

of the Hoatzin (Figure 1). We also found another, larger inversion in a different region of 

the turkey’s EDC indicating that inversions may be a major contributor to the evolution 

of EDC in birds (Holthaus et al., 2018; figure 1-A). 

These phylogenetic results support two likely scenarios for the evolution of avian 

loricrins (figure 4). The first scenario entails the loss of an ancestral LOR2 from most 

orders of birds and its retention in Passeriformes, followed by recent lineage-specific 

duplications of LOR3 in most orders of birds. Alternatively, scenario 2 entails concerted 
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evolution which has homogenized the LOR3/LOR3B and LOR2/LOR2B genes. 

Concerted evolution takes place when genes undergo gene conversion resulting in the 

homogenization of their DNA sequences (Daiquing 1999, Sawyer 1989). We found 

evidence of a statistically significant gene conversion event between LOR3 and LOR3B 

of the chimney swift (Chaetura pelagica) (CHAPE BC KA p=0.00213)(supplemental 

table 3). The likely concerted evolution in LOR3/LOR3B of the chimney swift, in 

combination with the absence of evidence supporting additional gene conversion events 

in other avian species suggest that a combination of concerted evolution, gene deletions 

and gene duplications have shaped the evolution of avian loricrins . 

In the first scenario of the evolution of avian loricrins (figure 4), the recent gene 

duplications of LOR3 in most species analyzed resulted in the nearly identical 

LOR3/LOR3B and LOR2/LOR2B genes. Gene duplications have long been accepted as a 

major mechanism promoting evolutionary change (Holland et al. 1994). The most 

commonly observed mechanism of gene duplication, which occurs at high frequencies in 

birds, is unequal crossing over which generates tandem duplicates that are nearly 

identical in sequence and are genetically linked (Zhang 2003). Previous studies (Ahlroth 

et al. 2001) have found that in the chicken, unequal crossing over has resulted in wide 

variation in the copy number of the avidin gene between individuals. The tandem linkage 

of avian loricrins is characteristic of gene duplications by unequal crossing over. 

Interestingly, previous studies (Dawson et al. 2007, Völker et al. 2010, Backström et al. 

2010) have provided evidence that recombination-based processes play a major role in 

avian evolution. This may correlate with the general absence of apparent loricrin 

“duplicates” (LOR3B/LOR2B) from all passerine birds except for the budgerigar (figure 
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3). In the case of the budgerigar, LOR3 may have been lost, and instead LOR2 was 

duplicated into LOR2B. These results highlight the dynamic evolutionary nature of avian 

loricrins, even at the species level. Future studies which include additional loricrins will 

further elucidate if the similarities observed between avian LOR3/LOR3B and 

LOR2/LOR2B are primarily the result of recent gene duplications, concerted evolution or 

the result of both mechanisms. 

In mammals, loricrin functions as the major reinforcement protein of the CE, but 

also provides high levels of flexibility to the epidermis and its’ appendages. These key 

properties are thought to be achieved through a specialized conformation known as a 

Gly-Loop which results from the tandemly arranged quasi-repetitive peptide units which 

make up the central domain of loricrins. These highly flexible loops consist of long 

stretches of primarily glycine and serine residues, but they do tolerate substitutions of 

other residues. These stretches of glycine and serine residues with occasional 

substitutions of polar residues are indexed upon aromatic and aliphatic residues which 

may associate to form a three-dimensional rosette-like array (Hohl et al. 1990, Steinert et 

al. 1991). Mammalian loricrins vary extensively in their size, exact organization and 

amino acid content, however they maintain the general form x(y)n required for the 

formation of Gly-loops. This variation in mammalian Gly-loops is thought to play a 

major role in the mechanical properties conferred to the CE, such as flexibility, and 

tensile strength (Ishida-Yamamoto et al. 1998). There are also known to be allelic 

variants of loricrin with slightly different amino acid compositions within individual 

populations which influence the properties of the epidermis and its’ appendages (Hohl et 

al. 1990, Steinert et al. 1991, Eckhart et al. 2013). Gly-loops provide their barrier 
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function via weak hydrophobic interactions between the glycine and serine residues of 

adjacent Gly-loops, as well as other components of the CE such as keratins and filaggrin 

(figure 5 A and B). These interactions are thought to be easily interrupted upon 

application of stress which induces the formation of a separate but similar set of 

interactions. Once the stress is released, these new interactions are released to form yet 

another set of interactions similar but not identical to the original unstressed state. This is 

termed the “Velcro hypothesis” and accounts for the known flexibility and elastic 

recovery of the mammalian CE (Steinert et al. 1991). 

Our results demonstrate that while there is significant variation across avian 

loricrins, they still adhere to the general form x(y)n. The observation that the sizes and 

sequences of avian Gly-loops are highly variable, but that the common structural motif of 

x(y)n is conserved implies that the structural motif is more important for proper loricrin 

function than the exact sequence itself. It is possible that this variation also contributes to 

the large amount of diversity observed in the feathers and scales of different species of 

birds; however more data is needed to identify any correlations between Gly-loop 

sequences and specific epidermal properties. 

The Glycine-loop domains of avian loricrins differ from those of mammals 

primarily in the identity of the aromatic/aliphatic amino acids upon which the loops are 

indexed. In mammals, these residues are primarily tyrosines, but there are occasional 

isoleucines, alanines, phenylalanines, and methionines. For example, the Gly-loops of 

mouse loricrin are indexed almost exclusively on tyrosine residues, whereas in human 

loricrin the loops are indexed on a combination of phenylalanine, tyrosine, isoleucine and 

valine residues. The general consensus repetitive unit of LOR1 is 
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HQ(G/S)QGPICI(Gx)SG which maintains the general form of x(y)n. The Isoleucine (I) 

residues serve as long-chain aliphatic residues which are known to associate with one 

another to form a hydrophobic core, while the variable stretches of glycine and serine 

residues form the ‘loops’ of the Gly-loop (figure 4A). The sequence HQ(G/S)Q is 

conserved preceding the glycine-rich loop sequences. These glutamine residues are 

possibly involved in transglutamination via transglutaminases. In avian LOR1, the 

primary residue upon which loops are indexed are aliphatic isoleucines while in LOR2/3 

the identity of these residues is more variable but primarily are tyrosines, isoleucines and 

methionines. Furthermore, in avian loricrins, long-chain aliphatic residues are often 

found as dimers or trimers, whereas Gly-loops associated with aromatic amino acids are 

generally indexed upon only a single residue. This may result from the strength of the 

respective interactions. It is known that an extended row of aromatic residues is likely to 

stack in an ordered manner so that the phenyl rings align at a preferential distance and 

these interactions contribute 1-2.5 kcal/mol per aromatic pair toward the overall stability 

of the protein (Burley et al. 1985, Singh et al. 1985). In contrast, aliphatic residues do not 

by themselves associate to form highly ordered arrays, but it is well known that they do 

associate to form a hydrophobic core. It is possible that the presence of multiple adjacent 

aliphatic residues aids in the association of aliphatic residues packing together to form a 

hydrophobic core (Rose et al. 1980, Zhu et al. 1993). 

Mammals possess a single loricrin gene which is preferentially crosslinked by 

different TGases throughout the process of cornification, whereas we found there are 

generally 3 loricrin genes in birds. It has been demonstrated that variation in the 

composition of amino acid residues which make up structural proteins, often correlates 
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with different functionality (Candi et al. 2005). We analyzed the variation in amino acid 

content of the different avian loricrin genes and found that the amino acid contents of 

each respective amino acid in LOR1 were significantly different from those of other 

avian loricrins (supplemental tables 4 and 5). Along with expression data from Strasser et 

al. (2014) which demonstrates LOR1 is differentially expressed in the chicken relative to 

LOR3/3B, these results indicate that the Gly-loops formed by the central domain of avian 

LOR1 likely have a unique functional role which is distinct from those of other loricrins. 

There were also significant differences in the amino acid compositions of LOR2 vs. 

LOR3/LOR3B, specifically in cysteine, glycine, serine and tyrosine contents all of which 

are known to be involved in the process of keratinocyte cornification (Rice et al. 2013, 

Eckhart et al. 2013). While we did observe that LOR3/LOR3B exhibited increased 

variation relative to LOR2, we contribute this to the fact that LOR2 is only found in 

Passeriformes while LOR3/LOR3B are represented by a much more diverse group of 

avian orders. There was no significant variation observed in the amino acid contents of 

type-B loricrins from their respective duplicates. This may be expected given that in the 

chicken, LOR3 and LOR3B have identical expression profiles in epidermal tissues 

(Strasser et al. 2014). Due to significant differences between the amino acid contents of 

LOR2 and LOR3/LOR3B, we predict that in passerine species LOR2 most likely exhibits 

a different expression profile than that of LOR3, and possibly a distinct function. 

The feathers and scales of different bird species are novel adaptations which 

possess highly specialized properties which correspond to the diverse environments and 

lifestyles associated with birds. For example, the feathers of the great cormorant 

(Nipponia nippon) exhibit a unique morphological-functional adaptation to diving which 
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balances the constraints of buoyancy and thermoregulation (Gremillet et al. 2005). The 

feathers of the Humboldt penguin (Spheniscus humboldti) exhibit unique hydrophobicity 

and anti-adhesion characteristics which endow them with excellent anti-icing properties 

and allow them to survive in arctic environments (Wang et al. 2016). Along with the 

variation previously described between different loricrin orthologs, we also observed 

interspecific variation in the amino acid contents of respective loricrin genes. This 

variation was most prevalent in LOR3, which was found in all species examined and is 

ubiquitously expressed in epidermal tissues (Strasser et al., 2014). This interspecific 

variation resembles that observed across mammalian loricrins, which is known to 

influence the mechanical properties endowed to the resulting CE (Hohl et al. 1990, 

Steinert et al. 1991). We propose that this variation in amino acid composition may 

correspond to specific evolutionary adaptations of feathers and other avian epidermal 

appendages . The least amount of interspecific variation in amino acid content was 

observed with LOR1 which interestingly is not expressed in feathers. 

In mammals, loricrins are crosslinked primarily by the process of 

transglutamination via TGases. TGases catalyze the formation of N-(γ-glutamyl)-lysine 

isodipeptide bonds through the preferential, step-wise covalent cross-linking of glutamine 

and lysine residues located in both the N- and C- termini as well as interspersed 

throughout the central domain (Eckhart et al. 2013). We found that avian loricrins also 

possess several glutamine and lysine residues located at conserved positions. In LOR1, 

there are conserved glutamine residues in the HQ(G/S)Q portion of each repeat (figure 5 

A). In LOR2 and LOR3, like mammalian loricrins, there are conserved glutamine 

residues in both the N- and C-termini that are located adjacent to lysines in the sequence 
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QQK. There are also conserved lysine residues located near the aromatic/aliphatic 

residues upon which the glycine loops or indexed, furthermore these lysines are 

occasionally located adjacent to glutamine residues (figure 5 B). Further analysis of the 

composition of avian epidermal appendages is required to determine if loricrins are 

indeed the primary substrates for crosslinking by TGases in birds, however due to the 

large amount of molecular similarities with mammalian loricrin and the presence of 

conserved glutamine and lysine residues, a similar function may be inferred. 

Along with transglutamination, it is also known that disulfide bonding between 

adjacent cysteine residues plays a major role in facilitating the development of the 

epidermis and epidermal appendages in both mammals and birds (Hynes et al. 1977, 

Kalinin et al. 2002). Strasser et al. (2015) characterized a cysteine-rich SEDC protein 

(EDCRP) in the chicken which is expressed in the subperiderm of feathers and scales. 

EDCRP consists of over 50% cysteine and most likely participates in disulfide bonding 

throughout epidermal development. Moreover, the cysteine content of several SEDC 

genes identified in the chicken exceeded 20% (Strasser et al. 2014). We identified 

adjacent cysteine residues located at conserved sites near the apex of many of the larger 

loricrin loops in avian LOR2 and LOR3. These residues potentially participate in 

disulfide bonding with other SEDC proteins such as EDCRP, other loricrins as well as 

various β-keratins. Disulfide bonding may also help facilitate the anchoring of loricrin 

and its associated proteins to the CE via interactions with SEDC genes similar to 

mammalian involucrin (Vanhoutteghem et al. 2008, Strasser et al. 2014). The presence of 

conserved adjacent cysteine residues throughout LOR2 and LOR3 suggest loricrins 

participate in not only transglutamination but may also take part in a combination of 



76  

covalent cross-linking interactions that result in the unique mechanical properties 

observed in feathers and other avian epidermal appendages. 

Overall, the results of this study demonstrate a complex and dynamic evolutionary 

history of loricrins in archosaurs which likely involved gene duplications and deletions as 

well as concerted evolution and chromosomal inversions. The availability of more 

complete avian genomes is necessary to gain further insight into the evolution of avian 

loricrins. Given the conservation of the Gly-loop structure and expression profile of the 

loricrins in the chicken (Strasser et al., 2014) it is likely that avian loricrins constitute a 

major portion of the CE. Future studies which focus on a detailed expression profile of 

loricrins in other birds such as the passerines may provide further insight into the 

evolution of avian loricrin genes as well as the role they play in conferring the unique 

mechanical properties observed across the feathers of birds. 
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3.6 Figures 
 
 

 
 

Figure 3.1 : Genomic organization of Loricrin within the EDC of archosaurs. (A) 
schematic overview of the conservation of the entire EDC of the Chicken (Gallus gallus), 
Turkey (Meleagris gallopavo), Adélie penguin (Pygoscelis adeliae), and Saltwater 
crocodile (Crocodylus porosus). Chicken EDC organization identical to that proposed by 
Strasser et al. (2014), with the exception of the identification of EDMTF5. Filled in 
arrows with black outlines represent complete SEDC genes, arrows with white fills 
indicate incomplete genes. Gene number annotations LOR1, LOR2, LOR3 come from 
annotations of chicken loricrins by Strasser et al. (2014). Colors correspond to 
classifications by Strasser et al. (2014). (B) Schematic representation of the region of the 
EDC which contains loricrins between the conserved genes EDQL (formerly EDQM3) 
and the β-keratin core box. The genes EDQL and EDYM1 are conserved across all 
species examined. EDGH sequences were identified in all avian species, however, the 
start codon from the chicken identified by Strasser et al. (2014) was not present in other 
bird species(*). The loricrin copy number varied across different groups of organisms, 
but in general squamates possessed 2, crocodilian and testudine species contained 1, and 
birds 3 loricrin genes. Arrow colors represent related genes. Parallel lines between 
EDYM1 and β-box indicate presence of variable number of lineage-specific EDC genes. 
King Cobra EDC genes identified by Holthaus et al. (2016), anole lizard EDC genes 
identified by Strasser et al. (2014), and Painted turtle EDC genes identified by Holthaus 
et al. (2015). 
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Figure 3.2 : Sequences of identified loricrin genes of chicken (GALGA; LOR1, LOR3, 
LOR3B) and ground tit (PUMI; LOR2) 

The identified sequences of loricrins identified in chicken (GALGA; LOR1, LOR3, 
LOR3B) and ground tit (PHUMI; LOR2). LOR1 contains unique N- and C-terminal 
sequences and a unique repeat unit compared with other loricrins. LOR3 and LOR3B are 
identical in sequences and differ only in individual amino acid substitutions and number 
of repeat units. LOR2 is found only in passerine birds and is highly similar to 
LOR3/LOR3B with the exception of the identify of aromatic/aliphatic residues in the 
repeat and a small Cysteine-rich stretch of amino acids at the N-terminus. 
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Figure 3.3 : Maximum Liklihood (ML) analysis of loricrin sequences. Phylogenetic tree 
generated by ML analyses. This tree is largely in agreeance with our baysian analysis tree 
(supplementary figure 3). Non-avian loricrins formed 3 distinct clades consisting of 
Mammals, Squamates, and crocodilian loricrin sequences respectfully. In contrast to 
currently accepted comprehensive phylogenetic data, our phylogeny places crocodilians 
as the basal group to all birds and reptiles. Avian loricrins were organized into 2 major 
clades. The First, LOR1 clade included all terminal avian loricrins that bordered EDYM1 
annotated as LOR1 as well as testudine loricrins as a sister group. The second avian clade 
was LOR2/LOR3 clade which consisted of 2 major sister groups of LOR3 and LOR2 
respectfully. Only passerine birds and the Hoatzin possessed LOR2 loricrins. All species 
possessed a LOR3 loricrin, and all species with the exception of Passeriformes, the 
hoatzin and Anna’s Hummingbird possessed a LOR3B gene organized in a lineage 
specific manner. 



80  

 

Figure 3.4 : schematic of possible scenario detailing evolutionary history of avian 
loricrins. A.) (1) Duplication of the ancestral loricrin gene (LOR1) resulted in 2 copies of 
loricrin (LOR1 and LOR2) before the emergence of the crown birds (Prum et al., 2015). 
(2) Duplication of LOR2 resulted in LOR2 and LOR3 genes. (3) Following the 
divergence of Passeriformes, deletion of LOR2 in other major orders of birds resulted in 
a single copy of loricrin (LOR3) in most orders of birds whereas LOR2 was retained in 
Passeriformes. (4) In non-passerine lineages, LOR3 duplicated and produced lineage 
specific LOR3B found in Palaeognathae, Galloanserae and Neoaves (excluding 
Passeriformes) species. (5) In the case of Psittacisformes, a suborder of passerine birds, 
the retained LOR2 duplicated and produced Psittaciforme-specific LOR2B in budgerigar. 
B.) Depicts a second scenario where the similarities between LOR3 and LOR3B are the 
result of concerted evolution of an ancestral duplication as opposed to similarity resulting 
from a recent duplication. Identical to scenario 1 until following duplication of LOR2. 
Ancestral LOR2 and LOR3 duplicate genes undergo gene conversion events resulting in 
concerted evolution. Evolution of LOR2 in Passeriformes (P-LOR2) resulted in its’ 
divergence. Continued concerted evolution in non-passerine birds has maintained nearly 
identical loricrin paralogs. This scenario 
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Figure 3.5 A + B : Schematic representation of the central domain of LOR Gly-loops in 
the chicken. (A) Chicken LOR1 likely contains extended arrays of glycine loops which, 
similarly to mammalian loricrins, are interspersed by glutamine rich domains of different 
structures. This representation does not infer any particular three-dimensional 
arrangement of the loops, but since mammalian loricrins are known to contain N-(γ- 
glutamyl) - lysine isodipeptide bonds, it is likely loricrins adopt a compact rosette-like 
structure. (B) There are 43 total predicted loops in GALGA LOR3. The loops range in 
size from 3 to 26 residues indexed on aromatic/aliphatic residues. Conserved adjacent 
cysteine residues are located at the apex of several of the larger loops and possible 
participate in disulfide bonding. This schematic does not infer any further three- 
dimensional structure of the loops. Glutamine and Lysine residues are also located at 
conserved positions throughout the sequence. Loops are generally indexed upon 
dimers/trimers of aliphatic residues or lone aromatic residues. 
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Figure 3.6 : Principle Component Analysis (PCA) of loricrin sequences. PCA generated 
in R, BiocLite-pcaMethods package using the singular value decomposition (SVD) 
method. Respective loricrin sequences are indicated by color as represented in the key. 
The black circle surrounds the avian LOR1 cluster. The amino acid contents of avian 
LOR1 were unique relative to all other loricrin sequences. All other loricrin genes 
including LOR2, LOR3 and LO3B of Aves failed to sort into distinct groups, 
highlighting the large amount of diversity observed across loricrin sequences. PCA plot 
was able to explain 46.79% (PC1 = 0.2764% , PC2 = 0.1915%) of the total variance 
between the amino acid contents of loricrin sequences. 
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Figure 3.7 : Significant variation in amino acid residues associated with epidermal 
development and structure across avian loricrins. In clockwise order starting at the top 
left: the average percentage of serine (S), tyrosine (Y), Cysteine (C), and Glycine (G) 
across avian loricrins. For all 4 residues pictured, there were significant differences 
(**=p<0.001) observed in LOR2 and LOR1 from other loricrins. Data from AA analysis 
in supplementary table 4 A and B. Respective LOR orthologues distinguished by color 
and from left to right: LOR2, LOR3, LOR3B, LOR1. 
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4.1 Abstract 
 

The transition of amniotes to a fully terrestrial lifestyle involved the adaptation of 

major molecular innovations to the epidermis, often in the form of epidermal appendages 

such as hair, scales and feathers. Feathers are diverse epidermal structures of birds, and 

their evolution has played a key role in the expansion of avian species to wide range of 

lifestyles and habitats. Like other epidermal appendages, feather development is a 

complex process which involves many different genetic and protein elements. In 

mammals, many of the genetic elements involved in epidermal development are located 

at a specific genetic locus known as the Epidermal Differentiation Complex (EDC). 

Studies have identified a homologous EDC locus in birds which contains several genes 

expressed throughout epidermal and feather development. A family of avian EDC genes 

rich in aromatic amino acids which also contain MTF motifs (EDAAs/EDMTFs) that 

includes the previously reported Histidine-rich or fast-protein (HRP/fp), an important 

marker in feather development, has expanded significantly in birds. Here we characterize 

the EDAA gene family in birds and investigate the evolutionary history and possible 

functions of EDAA genes using phylogenetic and sequence analyses. We provide 

evidence that the EDAA gene family originated in an early archosaur ancestor, and has 

since expanded in birds, crocodiles and turtles respectively. Furthermore, this study 

shows that the respective amino acid compositions of avian EDAAs are characteristic of 

structural functions associated with EDC genes and feather development. Finally, these 

results support the hypothesis that the genes of the EDC have evolved as the result of 

tandem duplications and diversification resulting in neofunctionalization and expansion 

of respective gene families, including the EDAA/EDMTF gene families. 
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4.2 Introduction 
 

The adaptation of novel and complex appendages such as hair, scales and 

feathers, were critical in the evolution of amniotes into a variety of terrestrial lifestyles 

(Sawyer and Knapp 2003, Alibardi 2003, Prum 2005). The epidermal appendages of 

amniotes exhibit a wide range of physical properties which serve a variety of functions 

including but not limited to thermoregulation, camouflage and mating (Chuong et al. 

2002). Generally, epidermal appendages form as the result of spatiotemporal interactions 

between cells of the epidermis and underlying dermis, and the process involves several 

different genetic elements (Haake et al. 1984, Alibardi 2016). While the specific elements 

and processes involved in the development of epidermal appendages vary, evidence 

suggests that they all evolved from a single or small number of conserved ancestral 

gene(s) (Strasser et al. 2014). In amniotes such as mammals and reptiles, many of the 

genes encoding proteins involved in the mechanically resilient structure of epidermal 

appendages are found at a specific genetic locus known as the Epidermal Differentiation 

Complex (EDC) (Kypriotou et al. 2012, Strasser et al. 2014, Holthaus et al. 2015, 

Holthaus et al. 2017, Holthaus et al. 2018). 

One major reason for the evolutionary success of amniotic skin appendages is 

their unique and mechanically resilient physical properties (Eckhart et al. 2013). To serve 

their various purposes, skin appendages tend to have increased tensile, flexural and yield 

strengths relative to the epidermis proper or internal organs, all of which have significant 

impacts on the physical characteristics exhibited by skin appendages (Velasco et al. 

2009). These unique properties are largely the result of the evolution of novel and 

complex developmental processes which make use of structural proteins capable of 
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covalently crosslinking with themselves and one another, often through 

transglutamination and disulfide bonding (Hynes and Destree 1977, Sawyer and Knapp 

2003). Studies have shown that differences in physical properties of different skin 

appendages can be correlated with differences in their respective amino acid contents. 

For example, Fujimoto et al. (2014) found that the number of disulfide bonds formed by 

keratin-associated proteins, enabled them to adhere to various structural proteins that they 

do not normally form associations with indicating that the number and positions of 

conserved cysteine residues would have a direct effect on the identity of the proteins 

involved in epidermal structure. These results suggest that differences between specific 

amino acid residues which are likely involved in protein crosslinking in structural genes 

could influence overall physical characteristics of the appendage in question. 

The feathers of birds display a wide range of physical properties which have 

allowed birds to expand and survive in diverse environments across every continent 

including Antarctica (Li et al. 2014). Feathers were a critical adaptation in the evolution 

of avian flight, and the diversity observed across different species of birds’ feathers are a 

major reason for their ecological success. Like other epidermal appendages, many the 

genes involved in the development and structure of feathers are located within the EDC 

locus and originated from a single or small number of ancestral genes (Strasser et al. 

2014). The physical diversity observed across feathers is accompanied by the genetic 

diversity displayed by several differentially expressed avian EDC genes. 

The avian EDC was first identified in the chicken (Gallus gallus) and was found 

to contain several genes which were characteristic of epidermal development and 

structure (Strasser et al. 2014). Several studies on the conservation of specific EDC genes 
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identified in the chicken such as Epidermal Differentiation Cysteine Rich Protein 

(EDCRP), Epidermal differentiation protein containing DPCC motifs (EDDM) and 

Epidermal differentiation protein with an MTF motif rich in histidine (EDMTFH) have 

found that the EDC region as well as some specific genes are conserved across a broader 

range of avian species (Strasser et al. 2015, Alibardi et al. 2016, Lachner et al 2019). 

These studies found that while these genes were conserved across a broad range of avian 

species, there was significant sequence variation present. Moreover, studies on loricirns, 

a major component of the mammalian cornified envelope, in birds found that intragenic 

duplications of repetitive units has resulted in huge disparities in gene size, as well as a 

complex evolutionary history (Davis et al. 2019). 

Both intragenic and whole gene duplication has been shown to play major roles in 

the evolution of genetic diversity as well as in that of novel form and function (Nam et al. 

2010). The EDC locus has been found to have likely evolved through tandem gene 

duplication and diversification resulting in subfunctionalization, and ultimately 

neofunctionalization (Strasser et al. 2014). Furthermore, studies have found that β- 

keratins, the primary protein component of the barbs and barbules of mature feathers, 

have diversified into several distinctly conserved subfamilies which have expanded 

outside of the EDC to other parts of the genome however they likely originated from 

ancestral genes within the EDC locus (Greenwold et al. 2014). 

In contrast to EDCRP, EDDM and loricrins which have evolved largely through 

intragenic duplications of repetitive units, other avian EDC genes represent members of 

conserved multigene families such as Epidermal Differentiation proteins containing 

cysteine histidine motifs (EDCHs) and Epidermal Differentiation proteins rich in 
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aromatic amino acids and containing MTF motifs (EDAA/EDMTFs). These genes were 

originally identified and annotated by Strasser et al. 2014 as only EDMTFs, however, the 

conserved “MTF motif” identified does not infer any specific functional motif, rather that 

the amino acid sequence of M-T-F was highly conserved in these genes. We also found in 

many avian species the Phenylalanine (F) residue of the MTF motif was substituted with 

another aromatic amino acid, often Tyrosine (Y). Furthermore, related genes identified in 

crocodilians and turtles lack the MTF sequence found in birds but are also rich in 

aromatic amino acids, therefore we refer to these genes as both EDAA/EDMTFs to avoid 

confusion. The EDAA/EDMTF genes are short sequences of less than 125 amino acids 

which have been shown to be differentially expressed in developing feathers and scales 

of the chicken (Strasser et al. 2014, Alibardi et al. 2016). Previous studies have found that 

EDAA/EDMTF genes are conserved across a diverse set of avian species as well as in 

crocodilians and turtles, however little is known of their evolutionary histories, functions 

and conservation across a wider range of birds (Holthaus et al. 2015, Holthaus et al. 

2018). It was also found that avian EDMTFH matches the sequence of the previously 

reported Histidine-rich or Fast-protien (HRP/fp) described by Barnes and Sawyer (1994) 

which plays an important role in epidermal development. 

It is known that the evolution and expansion of the β-keratin multigene family, 

which originated within the EDC, was critical in the evolution of avian feathers 

(Greenwold et al. 2014). Studies focusing on other conserved multigene families within 

the avian EDC would likely provide greater insight into the evolution of large conserved 

groups of genes as well as their roles in the adaptation of novel structures such as 

feathers. In this study, we use phylogenetic and statistical analyses to more closely 
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examine the evolution and conservation of the EDMTF genes in birds, as well as gain a 

better understanding of their possible functions in epidermal development. Furthermore, 

we provide a hypothesis that the evolution of novel structures such as feathers has largely 

been accompanied by the tandem duplication and diversification of EDC genes such as 

the EDAA/EDMTF gene family. 

4.3 Methods 
 

4.3.1 Identification and of EDAA/EDMTF gene families 
 

Avian EDAA/EDMTF genes were identified by Blast+, specifically the tblastn 

command which searches a nucleotide database using amino acid sequences as queries 

(Altshcul et al. 1990, Gish and States 1993). The amino acid sequences of chicken 

EDAA/EDMTF genes were used as the initial blast query, however each identified 

sequence was added back to the query file and reciprocal rounds of blast searches were 

performed. In order to ensure no genes were missed, we used manual genomic screening 

methods which entailed extracting entire genomic regions between two identified genes, 

and manually scanning the nucleotides for evidence of EDC genes not found by blast. 

Suspected EDAA/EDMTF sequences were extracted as nucleotide Fasta files and 

translated to amino acids using ExPasy Translate online analysis tool (Gasteiger et al. 

2003). Translated amino acid sequences were characterized via multiple sequence 

alignment to chicken and other identified EDAA/EDMTF genes using ClustalW online 

anlysis tool (Thompson et al. 1997). To determine genomic orientation and total number 

of EDAA/EDMTF genes in birds, manual screening was performed of syntenic genomic 

regions was performed for all species. Supplemental table 4.1 details all identified 
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EMDTF genes using the chicken as reference. Genes were considered complete if both N 

and C termini with start and stop codons were present as well as the minimal presence of 

unknown nucleotides. Supplemental table 4.1 legend details the status and justification 

for all EDAA/EDMTF genes. Genes were considered incomplete if; 1 - there were 

persistent unknown nucleotides within the coding sequence, 2 – there was a frameshift 

present in the sequence that could be resolved by switching reading frames, 3 – no start 

codon was observed, 4 – no stop codon was observed, 5 – there was significant 

misalignment with reference sequences (i.e. no conserved elements of the gene in 

question were identified via alignment), and 6 – There was a stop codon interrupting the 

ORF. The scores in supplemental table 4.1 indicate the alignment score of each 

respective gene when aligned with that of the Chicken (Gallus gallus). 

Figures 4.1, 4.2 and 4.3 were aligned using ClustalW online analysis tool and 

figures were created and annotated using Microsoft Powerpoint. Architecture and 

orientation of avian EDAA/EDMTF loci were analyzed using chicken genes identified by 

Strasser et al. 2014 as references. Identified genes were annotated based upon their 

position and genomic orientation corresponding to the chicken. Extra identified 

EDAA/EDMTF genes in addition to those in the chicken were also annotated based upon 

position and orientation. For example, the additionally identified EDAA/EDMTF gene in 

the chicken was annotated as EDMTF5 because it was located between EDMTF2 and 

EDMTF1 but presented different chromosomal orientation. In contrast, the additional 

genes identified in the Cuckoo were annotated as EDMTF1b and EDMTF1c because they 

were located adjacent to EDMTF1 and in the same chromosomal orientation suggesting 

they are recent tandem duplications. 
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4.3.2 Phylogenetic analysis of EDAA/EDMTF gene family 
 

Phylogenetic analysis of avian EDAA/EDMTF genes was done using both 

Bayesian and Maximum Likelihood (ML) methods. Alignments of EDAA/EDMTF 

amino acid sequences were generated using ClustalW2 local alignment tools (Thompson 

et al. 1997) and the alignments were edited using Bioedit (Hall 1999). MEGA7 sequence 

analysis software (Kumar et al. 2016) was used and identified PROTGAMMAJTT as the 

best fit substitution model based on Bayesian Information Criterion (BIC), Akaike 

information Criterion corrected (AICc) and the substitution rate (BICJTT = 3849.826 , 

AICcJTT = 2815.627). Bayesian analysis was done using Mrbayes-v3.2 (Huelsenback and 

Ronquist 2001, Ronquist and Huelsenbeck 2003) and was run for 10,000,000 generations 

and was checked for convergence using the Potential Scale Reduction Factor Method 

(PSRF) (TL:PSRF=1.0 ; alpha: PSRF=1.0). ML analysis was performed using RAxML- 

v8.2.10 (Stamatakis 2014) utilizing MRE-based bootstrapping until convergence was 

detected, followed by inferring the best tree produced out of 1000 generated ML trees, 

and finally mapping the MRE bootstrap values on the identified best tree. Sequences of 

EDAA/EDMTF genes from crocodilians and turtles identified by Holthaus et al. (2015) 

and (2018) respectively were used as outgroups in both analyses. Avian sequences used 

in phylogenetic analyses were selected to represent a phylogenetically diverse group of 

bird species and lifestyles. All sequences used were considered complete and lacked 

unknown nucleotides. All sequences used in phylogenetic analysis are listed in 

supplemental table 4.2. Trees were edited and viewed using FigTree-v1.4.3 (Rambaut 

2012). 
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4.3.3 Amino acid composition and principle component analysis (PCA) 
 

Amino acid analyses of avian EDAA/EDMTF genes was done using ExPasy 

ProtParm online analysis tools (Gasteiger et al. 2005). The total numbers as well as 

overall percentages of each amino acid residue making up the ORFs of avian 

EDAA/EDMTF genes were calculated. The sequences used in amino acid analyses can 

be found in an accessory data table, supplemental table 4.1.1, since this is too much raw 

data to present in the dissertation it can be obtained upon request. To compensate for 

variation in the size of sequences across different species, we used the total percentage of 

each amino acid residue instead of the number. All sequences used were complete and 

contained no unknown nucleotides. Our overall amino acid composition analyses 

included 22 EDMTFH genes, 27 EDMTF4 genes and 62 EDMTF1-3/5 genes from 32 

avian species. 

Statistical analyses examining significant differences in amino acid contents of 

EDAA/EDMTF genes across different species, lifestyles and subfamilies was done using 

standard Single Factor Analysis of Variance (ANOVA) tests with the Microsoft excel 

data analysis ToolPak. This ANOVA test was selected due to the small sample size 

available in the analyses. Principle Component Analysis (PCA) was done in R using the 

BiocLite-pcaMethods package by BioConductor (R Core Team 2013, Smyth 2005) using 

the Singular Value Decomposition (SVD) method (Gerbrands 1981). 
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4.4 Results 
 

4.4.1 The EDAA/EDMTF gene family is conserved in the avian EDC 
 

To better understand the evolution and function of the EDAA/EDMTF gene 

family, we screened the genomes of 48 phylogenetically diverse avian species for their 

presence using BLAST+ and manual genomic screening methods. We identified 3 major 

groups of EDAA/EDMTF genes across the birds investigated, the previously investigated 

EDMTFH (HRP) genes, EDMTF4s and finally EDMTF1-3/5+. These genes are 

annotated as they are described by Strasser et al. (2014). As expected, several genes 

identified were either partial or contained unknown sequence artifacts. Incomplete or 

partially identified genes were only used as evidence for presence or absence of a specific 

genes and were excluded from amino acid and phylogenetic analyses. Each of the 3 

major classes of EDAA/EDMTF genes are characterized by distinct conserved sequence 

elements, genomic orientations and amino acid contents, however there is considerable 

variation observed across different groups. 

EDMTF4 is generally characterized by highly conserved aspartic acid (D) 

residues in the N-terminal and central domains as well as the presence of several 

conserved tyrosine (Y) and glycine (G) throughout the gene (Figure 4.1 A). While 

EDMTF4 is conserved across all birds investigated, we found that EDMTF4 of the 

chicken and turkey contain several conserved histidine residues not present in other 

species, resulting in much greater conservation in EDMTF4 sequence when the chicken 

and turkey are excluded from the analysis (Figure 4.1 B). We found evidence for 

EDMTF4 in all 48 species investigated, however we identified partial or incomplete 
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copies in 9 species (supplemental table 4.1). The table shows the presence of 

EDAA/EDMTF genes across birds investigated, their alignment score relative to the 

corresponding gene in the chicken, as well as a descriptor if there was a problem or the 

gene was only partially found. 

Previous studies had identified that the sequence of EDMTFH matched that of the 

previously reported Histidine-rich protein (HRP), and it was conserved across a wide 

range of avian species (Alibardi et al. 2016). Our results confirmed the presence of 

EDMTFH in all species investigated by Alibardi et al. (2016), however, we did not 

identify any EDMTFH genes in passerine birds except for the Golden-collared Manakin 

(Manacus vitellinus). Evidence of EDMTFH was identified in all the remaining 41 

species, with 3 of those being partial or incomplete (supplemental table 4.1). As reported 

by Alibardi et al. (2016), only EDMTFH of the chicken and turkey was rich in histidine 

resulting in sequence variation, however all EDMTFH genes identified contained the 

highly conserved sequence ‘-PYGYRsFGsLYGNRG-‘ within their central domains 

(Figure 4.2 A - alignment). Outside of Galliformes, EDMTFH sequence was highly 

conserved across all species investigated, except for the passerines (Figure 4.2 B - 

alignment). 

The final group of EDAA/EDMTF genes identified were EDMTF1-3/5. These 

genes were highly conserved across closely related species, and in many cases appeared 

to represent species specific paralogs indicating a complex evolutionary history or 

possible concerted evolution. The most highly conserved elements of these genes across 

all species investigated were the presence of ‘-YQNQxED-‘ in the N-terminal region and 

‘-RYSYGS-‘ in the C-terminal region, however there is variation present across different 
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species in the exact amino acid content and gene lengths, specifically in those of the 

Galliformes (Figure 4.3). All species except for the Brown Mesite (Mesitornis uniclolor) 

contained at least a single copy of these genes. 36 of the 48 species were found to contain 

the genes EDMTF1 and EDMTF3, however were missing any additional copies. 

Specifically, these species were missing the gene annotated as EDMTF2 in the chicken. 

We did identify evidence of genes corresponding to the EDMTF2 position of the chicken 

in the Golden-collared Manakin (Manacus vitellinus), the Dalmatian Pelican (Pelicanus 

crispus), Common cuckoo (Cuculus canorus) and Ostrich (Struthio camelus). 

Furthermore, we identified an additional copy of EDMTF, annotated EDMTF5 in the 

chicken (Gallus gallus) and 2 additional copies in the Cuckoo annotated as EDMTF1b 

and EDMTF1c. These genes were annotated based on their sequence elements and 

genomic orientation and are indicated in the table as “+ genes” (supplemental table 4.1). 

The overall conservation of the EDAA/EDMTF gene family in 5 phylogenetically 

diverse birds is presented in Figure 4.4. Our results demonstrate that the EDAA/EDMTF 

gene family is conserved across birds, but with considerable variation. We found that 

there is variation in the overall size of this region across different avian EDC loci that 

corresponds to the number of genes found. For example, in the chicken and cuckoo who 

contain additional copies of EDMTF genes, this region of the EDC contains 20,913 and 

28,784 base pairs between EDMTF4 and EDMTF3 respectively. In contrast, this EDC 

region of the Bald Eagle, Adelie Penguin and Zebra Finch, which only possess 

EDMTF4/1/3 are 13,249, 14,562, and 12,422 base pairs in length respectively (Figure 

4.4). 
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4.4.2 The EDAA/EDMTF gene family originated in a common archosaur ancestor 
 

To investigate the evolutionary history of the EDAA/EDMTF gene family in 

birds and its role in the adaptation of complex appendages such as feathers and scales, we 

performed phylogenetic analyses using Bayesian and Maximum-Likelihood (ML) 

methods. Recent studies have identified homologous EDAA genes in the EDC loci of 

both crocodilians and turtles, and several of these genes were included in our analyses 

(Holthaus et al. 2015, Holthaus et al. 2018). In total we examined 149 EDAA/EDMTF 

genes including 108 avian genes from 28 different species, 22 from the Painted turtle 

(Chrysemys picta) as well as 19 from the two crocodilian species the American alligator 

(Alligator mississppiensis – 7 genes) and the Saltwater crocodile (Crocodylus porosus – 

12 genes) (supplemental table 4.2). 

In both ML and Bayesian analyses apart from EDAA10 of the Painted turtle, the 

EDAA genes of the crocodilians and turtles formed a large monophyletic clade with 

overall strong support and hence were selected as the outgroup. Our results confirmed the 

presence of 3 major groups of avian EDAA/EDMTF genes, EDMTFH, EDMTF4 and 

then the additional EDMTF1-3/5 genes (Figures 4.5 and 4.6). In both analyses, EDMTFH 

formed a monophyletic clade with strong support values. EDMTF4 and EDMTF1-3/5 

genes form a large clade, with EDMTF4 representing a basal paraphyletic group and 

EDMTF1-3/5 making up a monophyletic subclade, however the support values 

associated with these groups are low. Interestingly, EDAA10 of the Painted turtle formed 

a monophyletic clade with EDMTFH in our Bayesian analysis, whereas in our ML 

analysis it was observed within the EDMTF4 paraphyletic group further highlighting the 
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ambiguity associated with the low support values between the EDMTFH and EDMTF4 

clades. 

In both ML and Bayesian analyses, the EDMTF1-3/5 genes form a large 

monophyletic group (Figure 4.5 and 4.6). Within this group, the genes display a lineage- 

specific distribution like that observed in avian loricrins (Davis et al. 2018). The EDMTF 

genes of the Galliformes and Passerines form respective monophyletic groups within the 

major clade while all remaining avian EDMTF1-3/5 genes form a paraphyletic group. 

This distribution largely agrees with the currently accepted species phylogeny of birds 

and our own observations which show the sequences of EDMTF genes in Galliformes 

and Passeriformes contain unique amino acid contents relative to those of other species. 

To better understand the origin of EDAA/EDMTF genes in birds as well as 

archosaurs in general, we further examined the evolutionary relationship of the avian 

EDMTFH and EDMTF4 genes once again using the EDAA genes of crocodilians as the 

outgroup (Figure 4.7 – EDMTF4/EDMTFH phylogeny). Interestingly 2 crocodilian 

genes, EDAA9 of the American alligator and EDAA12 of the Saltwater crocodile, were 

present within the EDMTF4 paraphyletic group. In the overall gene trees, these were the 

only crocodilian genes located outside of the crocodilian monophyletic group and instead 

were found within the turtle group (Figures 4.5 and 4.6). As in our previous analysis 

EDMTFH formed its own monophyletic group but was also part of a larger monophyletic 

clade with EDMTF4. This was in contrast with the previous analysis of all 

EDAA/EDMTF genes, where EDMTFH and EDMTF4 formed a paralogous clade which 

excluded EDMTF1-3/5 genes. The general support values for this tree were higher than 

those of the previous trees. All major branches contained values of 1.0 and the lowest 
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support value observed was 0.5443 (Ach_EDMTF4) and was described for a terminal 

branch. All avian genes within the respective EDAA/EDMTF groups contained distinct 

groupings of the genes of Galliformes and Passeriformes respectively, and was largely in 

agreeance with the current avian species phylogeny proposed by Jarvis et al. (2012). 

4.4.3 EDAA/EDMTF genes contain amino acid contents indicative of epidermal 

development and structure 

Previous studies have demonstrated that the avian EDAA/EDMTF genes are 

differentially expressed in developing chicken epidermal tissues (Strasser et al. 2014). It 

is also known that the amino acid contents of several other avian EDC genes vary 

significantly across different species (Davis et al. 2018). Furthermore, amino acid 

composition of genes correlates directly with their general function. To gain a better 

understanding of their possible function or functions epidermal development of avian 

appendages, we analyzed the respective amino acid contents of the EDAA/EDMTF and 

performed statistical analyses such as principle component analyses (PCA). Like 

previous studies examining avian loricrins, due to the variation in overall size of the 

coding sequences of respective EDAA/EDMTF genes across different species their 

amino acid contents were analyzed as a percentage of specific residues instead of exact 

number. In order to ensure accuracy in our analyses, only complete genes containing no 

unknown residues (XXXs) were used. The raw data for amino acid analyses can be 

obtained upon request in a supplementary data file. 

We analyzed the 3 main groups identified by phylogenetic analysis and found that 

all avian EDAA/EDMTF genes are rich in amino acid residues associated with epidermal 
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structure and development processes (Strasser et al. 2014, Strasser et al. 2015, Alibardi et 

al. 2016, Lachner et al. 2019). The most abundant amino acid residues across all 3 groups 

were Tyrosine (Y), Glycine (G), Serine (S) and Cysteine (C) (supplemental table 4.3). 

EDMTFH and EDMTF4 contained similar amino acid contents with Tyrosine and 

Glycine making up 41.82% (Y=20.37%, σ=3.44; G=21.45%, σ=3.32) and 49.12% 

(Y=21.76%, σ=2.36; G=27.36%, σ=2.22) of each respective gene. The main difference 

between the amino acid contents of EDMTFH and EDMTF4 was the presence of 

increased Cysteine in EDMTF4 (EDMTF4:7.05%, σ=1.71 ; EDMTFH: 1.59%, σ=0.92). 

Both genes contained similar average Serine contents (EDMTF4=8.93%, σ=2.08 ; 

EDMTFH=8.47%, σ=2.16). EDMTF1-3/5 also was found to contain a very high Tyrosine 

content confirming all genes were indeed rich in aromatic amino acids (Y=22.19%, 

σ=4.3). In contrast to EDMTFH and EDMTF4 however, EDMTF1-3/5 was found to 

contain less Glycine (G=7.5%, σ=2.19), as well as higher amounts of Serine (S=15.48, 

σ=3.55) and Cysteine (C=15.17%, σ=2.67)(supplemental table 4.3). 

Alibardi et al. (2016) found that the amino acid content of the EDMTFH gene was 

significantly different in the Galliformes, chicken and turkey, than in any other species. 

Specifically, Galliforme EDMTFH was rich in Histidine, whereas other avian EDMTFH 

genes contained little or no Histidine however all EDMTFH genes were rich in aromatic 

amino acids. We found that a similar difference is observed in the EDMTF4 amino acid 

composition of Galliformes relative to other avian species. Specifically we observed 

significant differences in amino acid contents of Cysteine (C)(Galliforme C=1.95%, 

σ=0.071, n=2 ; Other C=7.456%, σ=0.904, n=25 ; F25,2=71.512, p<0.001), Histidine 

(H)(Galliforme H=8.75%, σ=1.77, n=2; Other H=0.172%, σ=0.43, n=25 ; 
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F25,2=450.8799, p<0.001) and Glycine (G)(Galliforme G=23.25%, σ=3.182, n=2 ; Other 
 

G=27.77%, σ=1.84, n=25 ; F25,2=9.89, p<0.005). 
 

We also performed a principle component analysis to further examine the 

differences observed between the amino acid compositions of avian EDAA/EDMTF 

genes. In this analysis we also included the respective lengths of each gene as variables 

along with the amino acid residue percentages. The resulting PCA was graphed using 2 

principle components which together described 52% of the total variation observed, 

however PC1 was considerably more significant than PC2 (R2 PC1= 0.41, PC2=0.11) 

(Figure 4.8-PCA). Our results confirmed that the 3 major groups of avian 

EDAA/EDMTF genes contained unique amino acid compositions. Furthermore, they 

demonstrated that the amino acid contents of EDMTF1-3/5 genes are significantly 

different from those of EDMTFH and EDMTF4, who possess similar amino acid 

contents. We observed 10 data points across all genes which displayed significant 

variation and could be considered to deviate from their respective groups (Figure 4.8). 

All but 2 of these 10 data points can be attributed to the significant diversity observed in 

the EDAA/EDMTF genes of Galliformes. We did not identify any significant groupings 

of respective genes based on avian lifestyles, however due to the limited number of 

complete genes identified from aquatic and predatory birds, more data is needed to 

further examine the possibility of correlation between amino acid contents and lifestyle. 

Finally, following the results of our phylogenetic analysis which demonstrated 

that EDMTFH and EDMTF4 are basal to other avian EDMTF genes, we looked for any 

trends in changes in their amino acid contents, specifically those associated with 

epidermal development and structure. We observed an interesting trend relating to 
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increasing Cysteine content of EDAA/EDMTF genes (supplemental table 4.3) (Figure 

4.9). While our results could not establish without a shadow of a doubt if EDMTFH or 

EDMT4 was basal, they clearly demonstrate that as the genes have evolved, their 

cysteine contents have increased. 

4.5 Discussion 
 

In this chapter we identified and characterized the EDAA/EDMTF gene family across a 

phylogenetically diverse set of avian species. Our results found that the EDAA/EDMTF 

gene family is conserved across birds and are rich in amino acid residues associated with 

epidermal structure and development. Furthermore, that it is likely to have originated in a 

common archosaur ancestor and since expanded in birds and other reptiles respectively. 

These results provide new insights into the function of specific EDC genes, as well as 

how the evolution and expansion of EDC genes has accompanied the adaptation of novel 

and complex skin appendages such as feathers. 

Using genome screening, we identified EDAA/EDMTF homologs in every avian 

species investigated, however there was variation in the number and identity of 

EDAA/EDMTF genes present. Previous studies identified 5 total EDAA/EDMTF genes 

in the chicken annotated as EDMTFH, EDMTF4, EDMTF1, EDMTF2, and EDMTF3 

(Stasser et al. 2014). We identified an additional duplicate of EDMTF1/2/3 in the chicken 

which was not previously reported which we annotated as EDMTF5. We found that of 

the 5 EDAA/EDMTF genes identified in the chicken by Strasser et al. (2014) and the 

additional EDMTF5, EDMTFH, EDMTF4 and EDMTF1/3 were conserved across birds, 

however we found that no passerine birds possessed and EDMTFH gene except for the 

Golden-collared Manakin. Given our phylogenetic results and the overall conservation of 
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EDMTFH in other avian species, it is likely that EDMTFH has been lost in passerines. 

Alternatively, EDMTFH may be present within the genomes of passerine birds but due to 

problems with genomic library preparation and sequencing associated with EDC genes 

could not be identified (Hron et al. 2016, Davis et al. 2018). 

We found that both EDMTFH and EDMTF4 were more highly conserved across 

species that EDMTF1-3/5, which displayed more lineage-specific conservation where 

genes in each respective species appeared to be duplicates. For example, we identified at 

least a single copy of EDMTF1-3/5 in all species investigated except for the Brown 

Mesite, whereas EDMTF2 was only identified in 4 species other than the chicken 

indicating that the additional genes are the result of recent gene duplications and are not 

conserved across all birds. Furthermore, it is likely that EDMTF2 of the Cuckoo is not 

homologous with EDMTF2 of the chicken, but instead is the result of a recent duplication 

of another Cuckoo EMDTF gene. This is like the evolutionary history observed for avian 

loricrins where although LOR3 and LOR3b were conserved across birds, they appeared 

to be lineage-specific duplications (Davis et al. 2019). The identification of the EDMTF5 

gene in the chicken, as well as additional EDMTF genes in the cuckoo, ostrich, pelican 

and manakin indicate that these genes are currently in the process of duplicating and 

expanding in many avian species. 

To better understand the evolutionary history and origin of the avian 

EDAA/EDMTF gene family, we examined identified sequences of phylogenetically 

diverse birds using both Bayesian and ML methods. Previous studies examining the EDC 

loci in crocodilians and turtles have identified homologous EDAA genes in syntenic 

locations within their EDCs and we included these genes as outgroups in our analysis. 
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We found that there are 3 major groups of avian EDAA/EDMTF genes in birds 

(EDMTFH, EDMTF4, EDMTF1-3/5) and that they likely originated from a single 

ancestral archosaur EDC gene. Based upon these results, we hypothesize that the 

divergence of an ancestral archosaur gene resulted in EDMTFH in birds. Duplication and 

diversification of EDMTFH in birds resulted in EDMTF4, which was conserved across 

all species investigated. Further duplication and divergence of EDMTF4 resulted in an 

ancestral form of the EDMTF1-3/5 gene, which has continued to expand in some lineages 

such as the chicken and cuckoo. As mentioned previously, it is possible that at this point 

EDMTFH was lost in passerine birds except for the manakin which may have retained 

this gene. 

It is known that different amino acid composition of genes correlates with 

different functions, and therefore can also correlate with differential expression of related 

genes (Misawa and Kikuno 2011). Strasser et al. (2014) found that avian EDAA/EDMTF 

genes exhibited differential expression in developing epidermal tissues such as feathers, 

scales and skin. We analyzed the amino acid contents of the EDAA/EDMTF genes to 

look for significant variation in amino acid composition which could correlate with 

different functions. We found that the amino compositions of EDMTFH and EDMTF4 

were similar yet distinct, and significantly different from that of EDMTF1-3/5 (Figure 

4.8). These results provide evidence that the differences in amino acid composition are 

significant enough to indicate differential function of avian EDAA/EDMTF genes. This 

is further supported by the results of Strasser et al. (2014) which showed that the 

expression profiles for EDMTFH and EDMTF4 were slightly different from one another, 

and significantly different from EDMTF1 suggesting differential functions. Together 
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with the results of our phylogenetic analyses which indicate that the EDAA/EDMTF gene 

family originated from a single ancestral gene, these results provide further evidence that 

the tandem duplication and diversification of an ancestral EDC gene is sufficient to 

induce the divergence of gene sequences and differential expression. 

Our amino acid analyses also identified the primary amino acid residues making 

up avian EDAA/EDMTF genes. Specifically, we found that the most prevalent amino 

acid residues across all EDAA/EDMTF genes are Tyrosine, Glycine, Cysteine and 

Serine, all residues which are known to be involved in epidermal development processes 

and mechanical structure. Tyrosine and Glycine are both heavily involved in 

transglutamination which has been demonstrated to play a major role in the mechanically 

resilient properties of the skin and appendages (Steinert et al. 1991). In chapter 3 of this 

study, we examined how avian loricrins are excellent candidates for transglutamination. 

Cysteine residues are known to facilitate disulfide bonding, which has been shown to be 

important in feather and scale structure (Hynes et al. 1977, Alibardi et al. 2008). 

Furthermore, several other avian EDC genes examined such as EDCRP, EDDM and 

loricrins have been found to contain high contents of cysteine as well as highly conserved 

cysteine residues, which are indicative of proteins involved in disulfide bonding (Steinert 

et al. 1991, Strasser et al. 2015, Lachner et al. 2019, Davis et al. 2019). Finally, Serine 

has been found to be essential in epidermal development processes by facilitating serine 

protease activity, which is essential for the development of epidermal permeability and 

indispensable for postnatal survival (Leyvraz et al. 2005; Elias et al. 2014). 

Alibardi et al. (2016) reported that EDMTFH of the chicken and the turkey 

contained a high amount of Histidine, whereas EDMTFH of all other species contained 
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little to no Histidine, however all were rich in aromatic amino acids. We identified a 

similar discrepancy in EDMTF4, which was histidine rich in the chicken and turkey, but 

also contained much less cysteine relative to other species. Moreover, the EDMTF1-3/5 

genes of the chicken contained an abundance of Tryptophan which was absent from other 

species, however this can potentially be explained by the lineage-specific duplication 

history suspected for these genes. Some studies have suggested domestication as a 

possible factor in differences associated with EDC genes such as EDMTFH and β- 

keratins, however we find it unlikely domestication is the reason for this due to the lack 

of evolutionary time required for the degree of change observed (Nam et al. 2010). Future 

studies which compare specific physical properties of feathers across different groups of 

birds such as Galliformes may identify correlation with amino acid differences in EDC 

genes. Further research is required to better understand the significance of the increased 

Histidine contents of Galliformes’ EDMTFH and EDMTF4. 

Our phylogenetic analysis of the EDAA/EDMTF gene family highlighted a 

similar pattern of evolution with other avian EDC genes. Primarily, evolution through 

tandem duplications and divergence ultimately resulting in neofunctionalization, however 

there are 2 major contrasting “types” of evolution observed. The first is what is observed 

primarily in the EDC genes EDDM and EDCRP which are single genes conserved within 

the EDC of all birds investigated which have evolved primarily through tandem 

intragenic duplications (Strasser et al. 2015, Lachner et al. 2019). This has resulted in 

genes of highly variable size and exact amino acid composition across different species. 

The avian EDAA/EDMTF gene family, in contrast has evolved largely through tandem 

gene duplication entire genes of much smaller size. It is likely that the EDCH gene family 
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described by Strasser et al. (2014) also follows this method of evolution. Interestingly, we 

found that evolution of avian loricrins constitutes both of these methods of evolution, 

where they have expanded into multiple conserved genes with differential expression, but 

they have also evolved through significant intragenic gene duplications resulting in 

variation between species (Davis et al. 2018). 

These results highlight the overall evolutionary history of the EDAA/EDMTF 

gene family and show that there are several similarities to the proposed evolutionary 

history of the β-keratin gene family. β-keratins are the primary protein component of 

mature barbs and barbules of feathers and their genetic components have evolved into 

multiple conserved subfamilies (Greenwold and Sawyer 2011). Evidence suggests that all 

β-keratin subfamilies originated from a single or few β-keratin gene(s) located within the 

EDC of an ancestral archosaur and have since expanded to multiple parts of the genome 

and diversified (Greenwold et al. 2014). It is this diversification and expansion of 

differentially expressed β-keratin genes which is thought to have played a major role in 

the adaptation of birds to diverse lifestyles (Sawyer et al. 2000). Our results show that the 

avian EDAA/EDMTF gene family also likely evolved from a single or small number of 

ancestral genes and has since expanded and diversified within the EDC locus into 

multiple conserved subgroups which are differentially expressed. While there is no 

evidence that the EDAA/EDMTF genes have expanded outside the EDC, these results 

demonstrate that tandem duplication and divergence of genes has taken place and in light 

of the results of other studies which show differential expression of EDAA/EDMTF 

genes, this may be enough to induce neofunctionalization resulting in differentially 

expressed genes. Furthermore, we suggest that the avian EDAA/EDMTF gene family 
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may continue expanding via gene duplication and divergence in birds therefore it is 

possible they may translocate and expand to other parts of the genome like β-keratins. 

Further research is needed, however, to better speculate about the specific function of the 

EDAA/EDMTF genes in feather structure and development, as well as the selective 

pressures driving their evolution. 
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4.6 Figures 
 

 

 
 
 
 
 

 
Figure 4.1 A +B : (A) Alignment of EDMTF4 sequences from phylogenetically diverse 
group of birds. Red lines indicate Galliforme EDMTF4 which has a higher Histidine (H) 
content not conserved in other species. However, all EDMTF4 contain conserved 
aromatic amino acid residues in these positions. (B) Alignment of non-Galliforme 
EDMTF4 genes. When Galliformes are removed from the alignment, there is much 
higher conservation of EDMTF4. 
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Figure 4.2 A + B : (A) Alignment of EDMTFH sequences from Galliformes (Chicken 
and turkey) + Duck on left ; Emperor penguin, Will’s Widow, Fulmar, Manaking, and 
Chicken on right. Red box highlights the highly conserved sequence shown in the green 
box. (B) Alignment of EDMTFH sequences minus the galliformes. Indicates that like 
EDMTF4, there are differences in the amino acid contents of EDMTFH genes, however 
aromatic amino acid residues are conserved. 
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Figure 4.3 : Alignment of EDMTF1-3/5 paralogs. On left alignment of all chicken 
paralogs EDMTF1, EDMTF2, EDMTF3 and the newly identified EDMTF5. Alignment 
shows that with exception of small deletion in Chicken EDMTF3, these genes represent 
duplicate genes. (B) Alignment of EDMTF paralogs from additional species demonstrate 
high lineage-specific conservation. Red and Blue boxes indicate highly conserved 
sequences found across avian EDMTF genes. 
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Figure 4.4 : Overall conservation of genomic organization of EDAA/EDMTF gene 
family. The region of the EDC containing EDAA/EDMTF genes from 5 diverse bird 
species. The conserved β-keratin gene, EDbeta, is included for reference. Figure depicts 
variation in number of EDAA/EDMTF genes across different species as well as the 
variation in the overall size of this region. Brackets with numbers indicate the number of 
nucleotide residues between EDAA/EDMTF ORFs. The Cuckoo was the only species 
presented here where this entire region was not found on a single genomic scaffold. 
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Figure 4.5 : Bayesian Phylogenetic Analysis of EDAA/EDMTF gene family. Figure 
depicts Bayesian Phylogenetic analysis of avian EDAA/EDMTF genes, using the EDAA 
genes of crocodilians and testudines as outgroups. The results demonstrate there are 3 
conserved groups of avian EDAA/EDMTF genes. Group 1 contains avian EDMFH 
genes, Group 2 contains EDMTF4 genes and Group 3 contains the remaining EDMTF1- 
3/5 genes. Group 3 genes display a lineage specific organization like that of LOR3 and 
LOR3B genes in Davis et al. 2019. The turtle gene cp_EDAA10 was located within the 
avian EDMTFH group and was the only non-avian species present in the 3 
EDAA/EDMTF groups. 
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Figure 4.6 : Maximum Likelihood (ML) phylogenetic analysis of EDAA/EDMTF gene 
family. ML results display similar phylogenetic organization as Bayesian results 
confirming conservation of 3 distinct groups of avian EDAA/EDMTF genes. The turtle 
gene cp_EDAA10 was in the avian EDMTF4 group. This contrasted with the Bayesian 
analysis which placed this gene in the avian EDMTFH group. 
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Figure 4.7 : Bayesian phylogenetic analysis of EDMTF4 and EDMTFH genes. 
Previously identified crocodilian and testudine EDAA genes were used as outgroups. In 
contrast with complete phylogenetic analyses, here avian EDMTF4 is basal to EDMTFH. 
Interestingly, the crocodilian genes, Ami_EDAA9 and Cpo_EDAA12 were found in the 
avian EDMTF4 group. 
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Figure 4.8 : Principle Component Analysis (PCA) of avian EDAA/EDMTF gene amino 
acid contents. Results demonstrate that the amino acid contents of EDMTFH and 
EDMTF4 are significantly distinct from those of EDMTF1-3/5. Also that EDMTF4 and 
EDMTFH have conserved amino acid differences, though not as significant as compared 
with EDMTF1-3/5. Outliers likely represent the sequences of Galliformes which have 
unique amino acid compositions, but are still rich in aromatic amino acids. 
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Figure 4.9 : Increasing Cysteine content of avian EDAA/EDMTF genes. Bars indicate the 
percentage of the total coding sequence which is made up of cysteine residues across 
avian EDAA/EDMTF genes. Based upon these and phylogenetic results, there appears to 
be a trend toward increasing cysteine content. The stars indicate that our phylogenetic 
results did not clearly distinguish without a doubt which gene (EDMTFH or EDMTF4) is 
basal. 
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5.1 General Conclusion 
 

In this dissertation, we characterized and examined the EDC locus across 48 

diverse bird species in order to gain a better understanding of the role it has played in the 

evolution of feathers. This was accomplished using observational studies, bioinformatics 

techniques and statistical analyses. Specifically, we utilized the EDC gene sequences of 

the chicken identified by Strasser et al. (2014) to identify, analyze and compare the avian 

EDC across 48 diverse species of birds. Since the amino acid composition of a protein 

has a direct influence on its physical properties and therefore its function, in depth 

statistical analyses of the amino acid contents of avian EDC genes can provide insights 

into their functions in epidermal development and structure, as well as provide clues to 

how they interact with one another and other elements known to be involved in the 

development process. In this dissertation we utilized amino acid and phylogenetic 

analyses to better investigate the evolutionary origins and possible functions of avian 

EDC genes. 

In Chapter 2, we used the sequences of the EDC genes identified in the chicken 

by Strasser et al. (2014) as queries to identify and characterize the conservation of the 

EDC across 48 diverse species of birds. We found that the architecture of the EDC 

identified in the chicken is generally conserved across all birds examined, with some 

exceptions. We did not identify any avian EDC outside of the EDC locus indicating. We 

also examined the amino acid contents of identified avian EDC genes and found that 

many of them contain high amounts of residues which are known to be involved in 

epidermal development and structure such as cysteine, tyrosine and glycine. Furthermore, 

several EDC genes were only partially identified, contained frameshifts, and some were 
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not identified at all however were not believed to be missing since they were identified in 

a closely related species. In order to examine the possibility that many of the avian EDC 

genes that were either partially or not identified at all were actually complete/present, we 

investigated the nucleotide sequences of identified avian EDC genes for biased G/C 

contents which could have an impact on their ability to be detected by sequences 

algorithms or assembled in genomic libraries. We found that many avian EDC genes did 

in fact contain biased G/C contents which could result in failure to be identified in some 

species. We propose this as a more likely explanation for the absence or partial 

identification of many avian EDC genes, as opposed to species-specific gene loss events. 

Previous studies have demonstrated that in the chicken, the EDC genes are 

differentially expressed in several tissues both during epidermal development as well as 

in mature appendages such as feathers and scales (Strasser et al. 2014). Given the amount 

of physical diversity observed across avian feathers, a characterization of the 

conservation of the EDC as whole across birds is critical in further evaluating the specific 

roles played by EDC genes in feather structure and development. We found that the 

general organization and architecture of the EDC observed in the chicken, is highly 

conserved across all birds. We did however identify significant intragenic variation in 

several EDC genes, as reported by Strasser et al. (2015) in EDCRP, in several genes. 

These results indicate that avian EDC genes are likely important in the development and 

structure of feathers due to their high conservation across birds. Furthermore, the 

presence of significant intragenic variation, even between closely related species 

indicates that the diversification of the avian EDC has accompanied the evolution of 

feathers with diverse structures and physical properties. Further research is needed to 
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explore correlation between variations in specific avian EDC genes with the structure and 

physical properties of feathers. 

In Chapter 3 we examined a specific group of conserved avian EDC genes which 

are homologous to mammalian loricrin, an important structural component of the 

mammalian cornified envelope and appendages such as hair (Steinert et al. 1991, Candi 

et al. 2005). We used phylogenetic and statistical analyses techniques to discern the 

unique and complex evolutionary history exhibited by avian loricrins. Our results 

demonstrate that in contrast to the single loricrin gene observed in mammals, avian 

loricrins have expanded into multiple conserved orthologues which are differentially 

expressed. Furthermore, our phylogenetic analyses showed that the gene reported as 

LOR2 by Strasser et al. 2014 in the chicken, of all non-passerine birds was actually the 

result of a more recent gene duplication of LOR3 and was therefore annotated as LOR3B 

whereas true LOR2 had been lost in all lineages except for passerine birds (Figure 3.4). 

Our results also indicate that avian loricrins are important aspects of epidermal 

appendage development and structure due to the presence of several amino acids 

associated with epidermal processes. We also show that avian loricrins likely take on the 

same specialized protein conformation proposed for mammalian loricrins known as the 

glycine loop, which results from the abundant presence of stretches of glycine residues 

followed conserved aromatic amino acids results that take on large loop formations. 

These structures play a significant role in the mechanically resilient properties of 

epidermal appendages such as flexural and elastic strength. 
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In chapter 4, we examined another family of avian EDC genes which is rich in 

aromatic amino acids and which begin with MTF motifs (EDAA/EDMTFs). This group 

of genes was first identified and annotated in the chicken by Strasser et al. (2014) and 

contained 5 genes named EDMTFH, and EDMTF1 through EMDTF4. It was soon found 

that EDMTFH was the previously reported Histidine-rich/fast protein (HRP/fp). Our 

results showed that the EDAA/EDMTF gene family is conserved across birds. 

Interestingly, we did not identify EDMTFH in the passerine birds suggesting that it may 

have been lost. Furthermore, we identified and additional duplicate gene which we 

annotated EDMTF5 in the chicken as well as additional copies of EDAA/EDMTF genes 

in the cuckoo. These results suggest, that like several other avian EDC genes, the 

EDAA/EDMTF gene family has evolved through a series of complex gene loss and 

duplication events. In contrast to the evolution of other avian EDC genes such as 

Epidermal Differentiation Protein Rich in Cysteine (EDCRP) and Epidermal 

Differentiation Protein containing DPCC motifs (EDDM), which have undergone 

significant intragenic duplication events resulting in long, highly repetitive genes, the 

EDAA/EDMTF genes have evolved largely through whole gene duplication and 

divergence. Further studies which focus on the implications of these two contrasting 

evolutionary histories are needed to further understand how they influence the evolution 

of novel structures such as feathers. 

Further studies are needed to better examine the functions of specific avian EDC 

genes in epidermal development and feather structure. Preliminary studies investigating 

the expression of EDMTFH throughout feather development of both wild type and 

scaleless mutant (sc/sc) chickens have demonstrated that there are potential differences in 
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expression. Further expression studies focusing on EDC genes in the sc/sc chicken may 

provide insight into the developmental pathways EDC genes are involved in. Overall, 

these results demonstrate that the avian EDC is conserved across a diverse set of bird 

species and it contains genes which are involved in the development and structure of 

epidermal appendages such as feathers. Moreover, these studies demonstrate that the 

evolution and diversification of the genes in the avian EDC has accompanied the 

adaptation of birds to a wide variety of diverse habitats and lifestyles via involvement in 

the development and structure of the feathers and scales of birds. The genes of the avian 

EDC also represent a model evolutionary system that demonstrates that the tandem 

duplication and diversification of genes is enough to induce sub/neofunctionalization 

capable of the adaptation of novel and complex form and function such as that observed 

epidermal appendages like feathers. 
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