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ABSTRACT

 Previous research on the accuracy of p-values for the chi-square test of model fit 

has been limited to small models (around 10 variables), revealing that they are accurate 

provided sample size is not too small. At small sample sizes (N < 100), the usual p-

values, obtained using asymptotic methods, are more accurate. However, asymptotic p-

values incorrectly suggest that models fit poorly when the number of variables is large. 

We investigate whether Bollen-Stine (1992) bootstrap p-values are accurate in large 

models (up to 30 variables) for continuous outcomes using both normal and non-normal 

data. We found that as model size increases bootstrap p-values become too conservative 

(rejection rates are too small) and remarkably less accurate than asymptotic p-values 

obtained using robust methods (i.e., mean and variance corrected chi-square statistics). 

Further, there is a significant interaction between model size and sample size such that p-

values for bootstrap are less accurate when the model is large and the sample size is 

small. Bollen-Stine p-values cannot be recommended to assess the fit of large models.



iv 

TABLE OF CONTENTS

Abstract .............................................................................................................................. iii 

List of Tables .......................................................................................................................v 

List of Figures .................................................................................................................... vi 

Chapter 1: Introduction ........................................................................................................1 

 

Chapter 2: The likelihood ratio test statistics and its robust versions to account for non-

 normality ....................................................................................................................6 

 

Chapter 3: Obtaining bootstrap p-values for the chi-square test: Bollen and Stine’s (1992) 

 procedure ....................................................................................................................8 

 

 3.1 Naïve (aka non-parametric) bootstrapping  ..........................................................9 

 

 3.2 Model-based bootstrapping  .................................................................................9 

  

 3.3 Previous research on the performance of the Bollen-Stine method  ..................10 

 

Chapter 4: Methods ............................................................................................................14 

Chapter 5: Results ..............................................................................................................17 

 5.1 Bootstrap  ...........................................................................................................18 

  

 5.2 Maximum Likelihood  ........................................................................................18 

 

 5.3 Maximum Likelihood with Mean and Variance correction  ..............................19 

 

 5.4 Comparisons  ......................................................................................................19 

 

Chapter 6: An example: Fitting an exploratory factor analysis model to the Rational 

 Problem-Solving scale ..............................................................................................31 

 

Chapter 7: Discussion and conclusions..............................................................................33 

 7.1 Bootstrap confidence intervals for goodness of fit indices  ...............................34

 



v 

References ..........................................................................................................................38 

Appendix A: Mplus code for data generation of the first condition ..................................50 

Appendix B: Mplus code for analyzing generated datasets using ML or MLMV. ...........51 

Appendix C: R code for compiling MLMV results. ..........................................................52 

Appendix D: R code for bootstrap analyses. .....................................................................53 

Appendix E: R code for compiling bootstrap results .........................................................55 

Appendix F: R code and SPSS syntax for multiway ANOVA of p-value differences ......56

 

  



vi 

LIST OF TABLES

Table 4.1 Target item category probabilities and corresponding threshold values ...........16 

Table 5.1 Results for the Chi-Square Test of Model Fit. ...................................................22 

Table 5.2 Chi-square p-value difference: Bollen-Stine bootstrap versus MLMV .............26 

Table 5.3 Analysis of Variance for Bollen-Stine bootstrap vs. MLMV ............................28 

Table 7.1 Chi-Square Test of Model Fit results in Ichikawa & Konishi (1995) ...............37 



vii 

LIST OF FIGURES

Figure 5.1 Plot of Bollen-Stine bootstrap vs. MLMV p-values .........................................24 

Figure 5.2 Plot of ML vs. MLMV p-values .......................................................................25 

Figure 5.3 Two-way interactions between sample size and number of indicators ............29 

Figure 5.4 Mean differences in p-values: bootstrap vs. MLMV ........................................30 

  



 

  1  

 

CHAPTER 1 

INTRODUCTION

A key element of Structural Equation Modeling (SEM) is the assessment of the fit 

of the estimated model to the data at hand. Model fit evaluation should be performed 

before any interpretation of parameter estimates, since any conclusion based on a poorly 

fitted model could be misleading (Maydeu-Olivares, 2017a). A number of test statistics 

can be used to assess whether a SEM model fits exactly (M. W. Browne, 1984; Satorra & 

Bentler, 1994; Yuan & Bentler, 1997, 1998, 1999). However, in applications involving 

maximum likelihood (ML) estimation under normality assumptions, the most widely 

used test statistic to assess the goodness of fit in SEM is the likelihood ratio (LR) test 

statistic (Maydeu-Olivares, 2017b). If the data are multivariate normal, the LR follows 

asymptotically a chi-square distribution when the model is correctly specified, and a non-

central chi-square when the model is not correctly specified (Hoyle, 2012; Wang & 

Wang, 2012). As a result of its popularity, the LR test statistic is commonly referred to in 

the SEM literature as the chi-square test. For non-normal data, the most widely used test 

statistics when ML estimation is employed involves using a mean correction, or a mean 

and variance correction, to the likelihood ratio test (Satorra & Bentler, 1994). 

Generically, these test statistics robust to non-normality are generally referred to as 

"robust" chi-square tests.  
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Whether researchers should test the null hypothesis of exact fit has been and still 

is hotly debated in the SEM literature. A special issue of Personality and Individual 

Differences with a leading paper by Barrett (2007), is a good starting point for readers 

interested in this topic. Some of the arguments put forth for not assessing the exact fit of 

the model are (a) power may be excessive, leading to model rejection for misfits that 

have no practical significance, (b) it is unlikely that models fit perfectly because human 

knowledge in any field is not at the point where a perfect model is possible, and by 

definition models are essentially approximations in the first place, or (c) the focus should 

be on comparing alternative models and not on model fit. 

One of the main discussion points in the literature on evaluating fit in SEM is 

whether the null hypothesis of exact fit should be replaced by a null hypothesis of 

approximate fit. Assuming that no constraints are imposed on the mean structure, the null 

hypothesis of exact fit in SEM states that the covariance structure implied by the fitted 

model matches exactly the unknown population covariance matrix  (Bentler, 1990; 

Bollen, 1989; Hoelter, 1983). In a null hypothesis of approximate fit, this null hypothesis 

is relaxed, being replaced by a hypothesis that the covariance matrix implied by the fitted 

model matches the unknown population covariance matrix by a pre-specified margin of 

error. There are different ways to measure the discrepancy between population 

covariance matrix implied by the fitted model and the unknown data-generating 

population covariance matrix – effect sizes of model misfit in Maydeu-Olivares  

(Maydeu-Olivares, 2017a) terminology. The most widely used effect size of model misfit 

(a population parameter used to assess approximate fit) is the Root Mean Squared Error 

of Approximation (RMSEA: Browne & Cudeck, 1992; Steiger, 1990). In the RMSEA, 
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the discrepancy between the two population covariance matrices is unstandardized and 

adjusted for model parsimony. Alternatively, a standardized measure of population misfit 

may be used, such as the Standardized Root Mean Squared Residual (SRMR: Bentler, 

1995; Jöreskog & Sörbom, 1988; Maydeu-Olivares, 2017a).  

 Regardless of whether exact or approximate fit is assessed, it is critical that the 

performance of the test statistic used to assess model fit be adequate, namely, that 

empirical rejection rates match Type I errors and that the statistic has sufficient power to 

detect models that are substantially misspecified. Unfortunately, it is well know that 

empirical rejection rates for the likelihood ratio test statistic, possibly robustified to 

address data non-normality, are in some situations inflated, leading to rejecting well-

fitting models (Anderson & Gerbing, 1984; Bentler & Yuan, 1999; P. Curran, West, & 

Finch, 1996; Fouladi, 2000; Herzog, Boomsma, & Reinecke, 2007; Hu, Bentler, & Kano, 

1992; Moshagen, 2012; Nevitt & Hancock, 2004). Similar results of over-rejection of 

well-fitting models in some setups is also found when the RMSEA is used to assess 

approximate model fit (Curran, Bollen, Chen, Paxton, & Kirby, 2003; Fan, Thompson, & 

Wang, 1999; Hu & Bentler, 1998; Kenny, Kaniskan, & McCoach, 2015; Maydeu-

Olivares, Shi, & Rosseel, 2018; Nevitt & Hancock, 2000). That is to be expected, as the 

sample RMSEA is a function of the likelihood ratio test statistic. As a result, if the 

empirical performance of the former is poor, the empirical performance of the latter is 

also likely to be poor.  

One of the main drivers of the performance of the likelihood ratio test statistic and 

of the RMSEA is model size, that is, the number of observed variables. A number of 

studies (Herzog et al., 2007; Moshagen, 2012; Shi, Lee, & Terry, 2018) have reported 
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that the empirical sampling distribution of the likelihood ratio statistic, possibly 

robustified to account for non-normality, is poorly approximated by its reference 

asymptotic distribution when the model involves a large number of observed variables. 

Similarly, the empirical sampling distribution of the estimated RMSEA is not well 

approximated by its reference asymptotic distribution when model size is large (Maydeu-

Olivares et al., 2018). The largest number of observed variables at which the likelihood 

ratio test statistic or the RMSEA yield accurate p-values is around 30 (Maydeu-Olivares, 

2017b; Maydeu-Olivares et al., 2018); beyond that, the use of both statistics leads to 

over-rejection of well-fitting models. Of course, the performance of these statistics 

depends on several additional factors (see the references above), such as sample size and 

average R2 of the observed variables (i.e., factor loading in factor analysis models). Yet, a 

number of observed variables way above 30 appears to be an unsurmountable barrier for 

the adequate performance of both the likelihood ratio statistic and the RMSEA. 

Of course, one approach to overcome the limitations of the likelihood ratio test 

statistic (and of the RMSEA) when the number of observed variables is large is to use 

alternative test statistics. For instance, Hayakawa (Hayakawa, 2019) has recently shown 

that a statistic originally proposed by Browne (1982) for normally distributed data 

performs well in large models under normality, and that when robustified adjusting it by 

its asymptotic mean and variance, it performs well under non-normality. Similarly, 

Maydeu-Olivares, Shi and Rosseel (Maydeu-Olivares et al., 2018) show that approximate 

fit can be reliably assessed in large models using the SRMR, for both normal and non-

normal data. 
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In this article, because of the popularity of the likelihood ratio test we take on a 

different path. Instead of identifying alternative test statistics that may yield accurate p-

values when assessing fit in large models, we investigate by simulation whether accurate 

p-values for the likelihood ratio test statistic can be obtained in conditions of large model 

size using the bootstrap (Bradley Efron & Tibshirani, 1993; Stine, 1989). In particular, 

we will focus on p-values obtained using the most widely used bootstrap procedure in the 

SEM literature, that proposed by Bollen and Stine (Bollen & Stine, 1992), and compare 

its performance to p-values obtained using asymptotic methods. Previous research 

(Grønneberg & Foldnes, 2018; Nevitt & Hancock, 2001) has shown that this procedure 

yields accurate p-values in small models but the behavior of this approach with large 

models remains to be investigated.  

The remaining of this article is organized as follows: First we describe the 

likelihood ratio test statistic and the robust version used for non-normal data that we will 

use as benchmark in our simulations. Next, we describe the bootstrap procedure proposed 

by Bollen and Stine (1992) to obtain p-values for a test of exact fit using the likelihood 

ratio test. In this section, we review previous research on the performance of this method. 

Next, we describe the simulation conditions employed and summarize the results 

obtained. We conclude with a discussion of the results, offer guidelines for applied 

researchers and outline future lines of research. 
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CHAPTER 2 

THE LIKELIHOOD RATIO TEST STATISTIC AND ITS ROBUST VERSIONS TO 

ACCOUNT FOR NON-NORMALITY

When no structure is imposed on the intercepts of the model (i.e., in covariance 

structure analysis), the null and alternative hypotheses of model fit can be written as 

0 0:H  =  and 1 0:H   , where   denotes the population covariance matrix, and 

0 ( )  =  denotes the covariance matrix implied by the theoretical model under 

consideration, expressed as a function of the model parameters  . When ML estimation 

is used, almost invariably, the test statistic used to test the null hypothesis is the 

likelihood ratio test 

 

( )

1

2 ˆ1

ˆ ˆˆ ln ( ) ln ( ( ))

ML

ML

MLX N F

where

F tr p−

= −

= − + −S S   

 (1) 

where S  is the sample covariance matrix, ̂  denote the estimated parameters, N denotes 

sample size, and p is the number of observed variables. We use 2

MLX  to refer to this 

statistic as it is commonly denoted the chi-square test in the SEM literature. When data is 

normally distributed and the model is correctly specified, 2

MLX  follows asymptotically a 

chi-square distribution with ( 1) / 2p p q+ −  degrees of freedom, where q is the number of 

mathematically independent elements in the parameter vector  .  
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When the data are not normally distributed, 2

MLX  will not follow a chi-square 

distribution even when the model is correctly specified, and the use of 2

MLX  leads to over-

rejecting well-fitting models (e.g., West, Finch, & Curran, 1995). The most widely used 

approach to solve this problem is to adjust 2

MLX  so that the resulting test statistic matches 

asymptotically a chi-square distribution either in its mean (e.g., Asparouhov & Muthén, 

2005; Satorra & Bentler, 1994; Yuan & Bentler, 2000), or in its mean and its variance 

mean (Asparouhov & Muthén, 2010b; Satorra & Bentler, 1994). Here, we focus on the 

mean and variance corrected statistics as they have been shown to provide more accurate 

p-values than mean corrected statistics (Foldnes & Olsson, 2015; Maydeu-Olivares, 

2017b) at the expense of additional computations. In particular, Maydeu-Olivares 

(2017b) showed that in large models (p  32) the mean corrected statistics over-reject the 

model unless N > 1,000 whereas the mean and variance corrected statistic examined 

maintained its nominal rates except in small samples (N ≤ 200). Of the two mean and 

variance corrected statistics proposed in the literature mean (Asparouhov & Muthén, 

2010b; Satorra & Bentler, 1994), the former slightly outperforms the latter (Foldnes & 

Olsson, 2015; Savalei & Rhemtulla, 2013), and will be our choice of robust likelihood 

ratio test statistic. We refer to the mean and variance corrected likelihood ratio statistic 

proposed by Asparouhov and Muthén (2010) as 2

MLMVX  using the nomenclature used in 

the widely used software Mplus (Muthén & Muthén, 2017) and we note that 

2 2 /MLMV MLa X cX = +  where a and c are shift and corrections to  2

MLX . See Asparouhov 

and Muthén (2010) for the expressions of these constants. 
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CHAPTER 3 

OBTAINING BOOTSTRAP P-VALUES FOR THE CHI-SQUARE TEST: BOLLEN 

AND STINE’S (1992) PROCEDURE

The bootstrap is a technique introduced by Bradley Efron in the 1970s (Efron, 

1979) as a more dependable and widely applicable version of the jackknife method; 

differences between the bootstrap and the jackknife are detailed in Efron and Tibshirani 

(1993). Stine (Stine, 1989) and Hartmann (2005) are two additional suitable introductions 

to these methods. Generally speaking, the bootstrap is a computer intensive procedure 

used to obtain confidence intervals for parameter estimates, or p-values for hypothesis 

testing. Standard procedures for obtaining confidence intervals and p-values rely on the 

use of distributional assumptions (e.g., normality of the data), or large sample 

assumptions (i.e., that the sample size is large enough to rely on the central limit 

theorem). The bootstrap provides an alternative elegant solution to the problem of 

approximating the sampling distribution of a statistic when the population distribution is 

unknown. Bootstrapping draws repeated samples with replacement (called bootstrap 

samples) from the parent sample; the parameter of interest is then determined for each 

bootstrap sample and the empirical distribution of each parameter’s bootstrap may be 

used for statistical inference. There are different approaches that can be used; they differ 

in what data set is used as the parent sample. 
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3.1 Naive (aka non-parametric) bootstrapping 

The simplest form of bootstrapping involves using the original data set as the 

parent sample (Bradley Efron, 1979). Confidence intervals (CIs) for parameters can be 

obtained, for instance, by taking the appropriate percentiles of the bootstrap sampling 

distribution of the parameter estimates. This method is referred to as percentile 

bootstrapping (Bradley Efron & Tibshirani, 1993). For instance, if a 95% CI is desired 

for a parameter, the 2.5th and 97.5th percentiles of the bootstrap sampling distribution of 

the parameter estimates are used as endpoints for the CI. This method has been 

successfully used in SEM to obtain CIs for parameter estimates in both complete 

(Hancock & Liu, 2012; Nevitt & Hancock, 2001; Yuan & Hayashi, 2003) and incomplete 

data (Enders, 2001) scenarios. Bootstrap methods can also be used to obtain confidence 

intervals for functions of parameter estimates, such as indirect effects, and have become 

the method of choice for obtaining CIs in mediation analysis (MacKinnon, Lockwood, 

Hoffman, West, & Sheets, 2002; Williams & Mackinnon, 2008). 

3.2 Model-based bootstrapping 

 The traditional naive bootstrapping just described cannot be used for the 

likelihood ratio test that is the focus of our research. Bollen and Stine (1992) have shown 

that the mean and variance of the bootstrap distribution of the likelihood ratio statistic are 

larger than mean and variance of the sampling distribution of the test statistic in the 

original sample. In other words, the naive bootstrap sampling distribution of  2

MLX  

“would contain noncentrality reflective of the degree to which the model under scrutiny 

is misspecified” (Hancock & Liu, 2012). The solution proposed by Bollen and Stine 
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(1992) is to transform the matrix of centered observed variables, Y, using the parent 

sample covariance matrix, S, and the estimated covariance matrix, ̂ , using  

 
1/ 2 1/ 2̂−=Z YS . (2) 

The bootstrap is then performed by resampling rows of Z instead of resampling rows of 

the original data matrix Y. This transformed parent sample has the same distribution than 

the original parent sample but with a perfect model fit (Hancock & Liu, 2012). We note 

that an earlier and more technical description of this model-based approach to 

bootstrapping was introduced by Beran and Srivastava (1985), including analytic proofs; 

nonetheless, we will use the Bollen-Stine reference for consistency within the field of 

SEM. 

The Bollen-Stine approach to bootstrap p-values of the chi-square test statistic has 

been implemented in the Mplus software (Muthén & Muthén, 2017) under the name 

residual parametric option, and is available only for continuous outcomes using ML 

estimation. The R (R Core Team, 2019) package lavaan (Rosseel, 2012) implements the 

Bollen-Stine bootstrap under the “bootstrapLavaan” command, with argument = 

“bollen.stine”. Finally, AMOS (Arbuckle, 2017) uses the Bollen-Stine approach to 

bootstrap p-values of the chi-square test statistic; in addition, it implements the Linhart 

and Zucchini (1986) bootstrap method for model comparison. 

3.3 Previous research on the performance of the Bollen-Stine method 

 Despite having been proposed in 1992, few articles have examined the 

performance of the Bollen-Stine approach to bootstrap p-values of the chi-square of fit. 

Fouladi (1998) investigated the performance of these p-values in two models 

involving p = 6 variables: an independence model, and a simplex model. Additional 
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conditions were obtained by crossing three different levels of skewness (0, 1, 2) and four 

different levels of kurtosis (-1, 0, 1, 3, 6). Sample sizes ranged from 30 to 750 

observations, 5,000 replications were used in each condition, and 1,000 bootstrap 

samples were used per replication. Results showed that the Bollen-Stine p-values 

performed well provided sample size was at least 150 observations.  

Nevitt and Hancock (2001) used models with p = 9 variables to compare the 

performance of Bollen-Stine bootstrap p-values to asymptotic p-values for 2

MLX  and for 

the mean corrected chi-square proposed by Satorra and Bentler (1994), 2

MLMX  in Mplus 

terminology. Using 200 replications per condition, they considered samples of sizes 100 

to 1,000 observations and the use of between 250 to 2,000 bootstrap samples. Three 

distributional conditions were employed: multivariate normal, moderately non-normal 

(skewness = 2, kurtosis = 7), and extremely non-normal (skewness = 3, kurtosis = 21). 

Bootstrap p-values yielded accurate rejection rates across all the models considered 

regardless of the number of bootstrap samples employed. In particular, they were more 

accurate than 2

MLX  p-values for all non-normal conditions, and more accurate than 2

MLMX  

p-values at the smallest samples considered (N < 200 in the normal and moderately non-

normal conditions, and N < 500 in the highly non-normal condition). 

Ichikawa and Konishi published a series of articles on bootstrap methods in 

structural equation models (Ichikawa & Konishi, 1995, 1997, 2001). The first paper 

considered an unrotated exploratory factor analysis model with p = 9 observed variables, 

normal and elliptical data, and sample sizes of 150 and 300. The Bollen-Stine bootstrap 

method provided robust rejection rates across conditions with normal data, but not with 
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elliptical data. The following paper (Ichikawa & Konishi, 1997) included more complex 

models with independent or just uncorrelated common and unique factors and sample 

sizes varying between 50 and 800, although the number of indicators was still small 

(between p = 6 and 10). They found that when common and unique factors were 

independent and sample size was small, the Bollen-Stine bootstrap retained the null 

hypothesis too often. When common factors and unique factors were just uncorrelated, 

the bootstrap rejected the null hypothesis too often. While the Bollen-Stine bootstrap 

performed better than ML overall, in both cases it was not clear whether model 

complexity affects the performance of the former. Finally, Ichikawa and Konishi 

(Ichikawa & Konishi, 2001) proposed an efficient bootstrap method to deal with the 

problem of non-convergence, which had promising results in terms of rejection rates. We 

will discuss this work in more detail in the discussion section. 

Enders (2002) considered the behavior of Bollen-Stine p-values with missing data 

using a very similar model to that of Nevitt and Hancock (Nevitt & Hancock, 2001): a 

confirmatory factor analysis (CFA) model with three latent variables and three indicators 

each, with higher factor intercorrelation (.40 as opposed to .30). Conditions were 

different combinations of three sample sizes (N = 100, 250 and 500), two missing data 

rates (10% and 20%) with missing completely at random (MCAR) pattern and three 

distributional forms: skewness = 0 and kurtosis = 7, skewness = 2.25 and kurtosis = 7.0, 

and skewness = 3.25, kurtosis = 20.0. He found that while overall the bootstrap had more 

accurate results than full-information maximum likelihood, it did not perform well in 

small sample conditions (N = 100), in which case this method is too conservative. This 

behavior was more pronounced as non-normality and missing data rate increased. 
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Grønneberg and Foldnes (2018) considered models with p = 11 observed 

variables, samples ranging from N = 100 to 900 observations and three levels of non-

normality: normal, moderately non-normal (skewness = 1, kurtosis = 7), highly non-

normal (skewness = 2, kurtosis = 7). Consistent with Nevitt and Hancock’s results, they 

found that Bollen-Stine bootstrapped p-values maintained nominal rates across the board, 

whereas 2

MLX  p-values over-reject the model in non-normal conditions and that 2

MLMX  p-

values over-reject the model in non-normal conditions and small samples (N = 100 for 

moderately non-normal data, and N ≤ 300 for highly non-normal data).
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CHAPTER 4 

METHODS

Using maximum likelihood estimation for continuous outcomes as implemented 

in Mplus (Muthén & Muthén, 2017), we performed a Monte Carlo simulation study to 

investigate the performance of p-values for the chi-square test of model fit (i.e., the 

likelihood ratio statistic) across 36 different conditions using three methods: Bollen-Stine 

bootstrapping using 1,000 bootstrap draws, asymptotic p-values under normality 

assumptions (choice ML in Mplus nomenclature), and asymptotic p-values robust to 

normality adjusting the chi-square statistic by its mean and variance (choice MLMV in 

Mplus, Asparouhov & Muthén, 2010). A total of 1,000 replications were generated for 

each possible condition. We then compared the empirical 1, 5 and 10% rejection rates of 

the bootstrap, ML and MLMV to their expected Type I error rates, that is, the proportion 

of replications in which the model is rejected at the α = 1, 5 and 10% levels of 

significance.  

The underlying populational model is a unidimensional CFA model with varying 

number of indicator variables (p = 10, 20, and 30). Population parameter values are such 

that the factor variance is set to 1.0, the factor mean is set to zero, all factor loadings are 

set to .70, and all error variances are set to .51 (i.e., 21 .70− ).  

Four sample sizes were included in the study: extremely small (100), small (200), 

moderate (500) and large (1,000). Three different distributional shapes were created by 
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varying values of skewness and kurtosis: normal (skewness = 0, kurtosis = 0); moderate 

non-normal (skewness = 0, kurtosis = 3.3); and severe non-normal (skewness = -2, 

kurtosis = 3.3). In all cases, we generated multivariate normal data with mean zero and a 

covariance structure conforming to the population model. Then, the continuous data were 

discretized into five categories coded 0 to 4. It has been shown that when the number of 

categories is large, it is appropriate to treat the discretized data as continuous (Bollen, 

1989; Dolan, 1994; Muthén & Kaplan, 1985; Savalei & Rhemtulla, 2013) and this 

practice has been routinely employed by substantive researchers (e.g., Skule et al., 2014). 

To introduce non-normality, we manipulated the threshold values to create targeted 

distributional properties for the population (Muthén & Kaplan, 1985). Population 

skewness and kurtosis were computed as described by Maydeu-Olivares, Coffman, and 

Hartmann (2007). We provide in Table 4.1 the threshold values used to generate the data. 

All code is provided in the Appendices section. 
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Table 4.1 

Target item category probabilities and corresponding threshold values used to generate 

the data 

   Expected area under the curve 

Kurtosis Skewness Thresholds 0 1 2 3 4 

0 0 -1.55, -0.64, 0.64, 1.55 6% 20% 48% 20% 6% 

3.3 0 -1.64, -1.04, -1.04, 1.64 5% 15% 60% 15% 5% 

3.3 -2.0 -2.05, -1.55, -1.08, -0.52 2% 4% 8% 16% 70% 
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CHAPTER 5 

RESULTS 

The quantitative measure of robustness of empirical model rejection rates was the 

criterion suggested by Bradley (1978). For a properly specified model, the empirical 

rejection rates will be considered adequate if they range within the interval [.5α, 1.5α]. 

For α = 1, 5 and 10%, the intervals are [.5, 1.5] %, [2.5, 7.5] % and [5, 15] % 

respectively. For all simulation conditions, results are summarized in Table 5.1. Model 

rejection in percentage values are presented for the ML and MLMV statistics as well as 

for the Bollen and Stine bootstrap p-values for α = .01, .05 and .10. Rejection rates falling 

within the interval criteria are shaded. Results in Table 5.2 show that overall, 

bootstrapping performs well only in the smallest model considered, p = 10, but it is too 

conservative (i.e., it does not reject enough) for p = 20 and 30. In contrast, asymptotic p-

values computed under normality (i.e., choice ML in Mplus), are generally too liberal, 

whereas the asymptotically robust p-values (i.e., choice MLMV) computed are 

marginally better than the ML estimator, but the MLMV method yields accurate p-values 

across most conditions. Results for ML and MLMV are consistent with previous findings 

in the literature (Ichikawa & Konishi, 1995, 1997; Maydeu-Olivares, 2017b). Results for 

bootstrap p-values are also consistent with previous findings (Enders, 2002; Grønneberg 

& Foldnes, 2018; Nevitt & Hancock, 2001).
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5.1 Bootstrap 

In particular, the results for the bootstrap reveal that it provides somewhat better 

p-values when data is normally distributed. First, let us consider the smallest model under 

study (p = 10). accurate p-values can be obtained provided the sample size is large 

enough (N  200). At smaller sample sizes it tends to be conservative, leading to the 

conclusion that the model fits better than it actually does. Sample sizes of at least 500 

observations may be needed to obtain accurate p-values provided that the data is not too 

far off from normality. With 1,000 observations, 5 and 10% rejection rates were robust 

regardless of normality, whereas the 1% rejection rate was always conservative. 

Second, in the intermediate size model (p = 20), when data is normal at least 500 

observations are needed for accurate 5 and 10% rejection rates, and a 1,000 for α = 1%. 

Finally, at the largest model size considered (p = 30), rejection rates were too small 

across the board, suggesting that the model fits better than what it does. The only 

exception are 10% rejection rates with at least 500 observations, and even in this case 

they are borderline small. In summary, assuming the typical choice of α = .05, the 

bootstrap can be used when a) p =10 and data is normal, b) p = 10 and N = 500 or more, 

and c) p = 20, data is normal and N = 500 or more. 

5.2 Maximum Likelihood 

 As expected, the ML estimator had poor performance in most conditions. Given a 

small model (p = 10), data must be normal and sample size should be 200 or greater when 

the choice of alpha is α = .05 or .10. In larger models, rejection rates are at best 

borderline robust for a few select conditions with large sample size (at least N = 500) and 

normality. When the number of indicators is 20 or 30 and data is severely non-normal 
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(skewness = -2, kurtosis = 3.3), rejection rates are close to 100% no matter the sample 

size. 

5.3 Maximum Likelihood with Mean and Variance correction 

 The MLMV test statistic, on the other hand, yielded robust rejection rates for 

most conditions tested. Rejection rates are mostly within the robust intervals even in the 

larger models with 20 and 30 observed variables, with the exception of the conditions 

with the smallest sample size (N = 100). In the more extreme case, with 30 indicators, the 

smallest sample size and severe non-normality, rejection rates are on average 33.8, 84 

and 96.7% instead of the expected 1, 5 and 10%, respectively. 

5.4 Comparisons 

 Further insight into the performance of the Bollen-Stine bootstrap p-values 

relative to the p-values obtained using asymptotic methods via the mean and variance 

corrected chi-square (MLMV) can be obtained by plotting them. We provide in Figure 

5.1 a scatter plot of the p-values for the condition involving p = 20 observed variables, 

sample size N = 500, skewness = 0 and kurtosis = 3.3. Clearly, the bootstrap p-values are 

uniformly larger than mean MLMV values, and from Table 5.1 we gather that the 

rejection rates at  = 1, 5, 10% for MLMV are .5, 4.5, and 9.1% respectively, whereas 

rejection rates for the bootstrap are .1, 1, and 4.10% respectively. In turn, the comparison 

of the two asymptotic methods (ML and MLMV) provided in Figure 5.2 clearly shows 

that on average ML p-values tend to be much lower than the mean and variance corrected 

alternative: rejection rates are 23.3%, 48.7% and 61.4% for the expected  = 1, 5, 10%, 

respectively. 
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 Using Table 5.2, we can have an in-depth view of the behavior of the p-values 

across all conditions. Even when the model is small (p = 10), normality (or lack thereof) 

and sample size can have a substantial impact on the decision to retain a model or not, no 

matter the chosen . If data are normal and sample size is small (N = 100), bootstrap p-

values are on average .08 greater than MLMV p-values, and this difference can be as 

large as .19 for some conditions. If data presents excess kurtosis, this difference goes up 

to an average of .15 and a maximum of .31. For this small model, the average difference 

only goes down to the third decimal place when sample size is 1,000 and normality holds 

– if data is non-normal, the average is .08 and up to a ceiling of .16. 

 Let us now consider the conditions involving a larger number of observed 

variables. When the number of indicators is p = 20, the average difference in p-values has 

a minimum magnitude of .02, obtained with sample size N = 1,000 and normal data, and 

a substantially higher sample size is required to obtain similar performance to that of the 

smaller model. For example, for the same condition exhibited in Figures 5.1 and 5.2, 

bootstrap p-values are on average .12 greater than MLMV p-values, although this 

difference can be as large as .21.  

 In the largest model tested (p = 30), the differences in performance are even more 

accentuated. The condition with the most extreme differences was the one with sample 

size N = 100, skewness = 0 and kurtosis = 3.3, the average difference is .45 with a 

maximum of .57; furthermore, the minimum difference is of .14. Differences are 

unsurprisingly less dramatic as sample size increases, although the mean difference 

between the bootstrapped and MLMV p-values is still a substantial .04 with the largest 

sample size tested and normally distributed data.  
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 For further insight into how p-values vary across methods, we used an ANOVA 

model to investigate the drivers of the p-value difference obtained using the bootstrap and 

robust chi-square methods. Results are summarized in Table 5.3. While neither of the 

two-way interactions between normality condition and a) number of indicators or b) 

sample size was significant, the interaction between number of indicators and sample size 

was significant, p < .001. Figures 5.3 and 5.4 are both visualizations of this interaction 

effect where p-values for the Bollen-Stine bootstrap get considerably higher as model 

size increases and sample size decreases.



 

    

 

2
2
 

Table 5.1 

Results for the Chi-Square Test of Model Fit. Empirical Rejection Rates at 1%, 5% and 10% Significance Levels 
     Bootstrap  ML  MLMV 

p  N Normal  1% 5% 10%  1% 5% 10%  1% 5% 10% 

   1  .20 2.90 7.60  2.30 10.30 17.60  1.70 7.00 13.60 

  100 2  .10 .70 3.20  10.40 26.60 37.90  .90 6.70 15.40 

   3  .10 1.90 4.20  70.30 86.20 91.40  1.40 8.30 19.10 

   1  .60 4.00 8.20  1.70 7.40 12.50  .80 5.70 10.70 

  200 2  .10 1.30 3.90  6.00 20.10 32.20  .60 5.00 10.70 

   3  .20 1.90 5.40  66.30 83.70 90.00  .60 5.20 11.50 

10   1  .80 5.40 11.10  1.50 7.10 12.60  1.10 6.10 11.60 

  500 2  .30 2.40 5.60  6.80 18.90 29.50  .70 5.40 11.70 

   3  .50 3.60 8.10  62.70 81.90 88.90  1.30 5.70 11.20 

   1  1.60 6.50 11.60  2.00 7.20 13.40  1.60 6.50 12.30 

  1000 2  .20 3.10 6.30  6.60 19.30 31.50  1.30 6.00 11.50 

   3  .40 3.10 7.70  62.30 80.00 87.20  .40 5.30 9.80 

   1  .10 .30 1.90  12.40 30.20 42.20  1.10 8.70 21.40 

  100 2  .00 .10 .40  54.50 77.70 86.20  1.10 13.00 28.40 

   3  .00 .10 .90  99.90 100.00 100.00  3.40 27.80 52.30 

   1  .00 .90 3.90  3.70 12.70 21.20  .20 4.90 11.30 

  200 2  .00 .50 2.20  35.60 59.70 72.80  .60 5.70 13.60 

   3  .00 .20 2.70  100.00 100.00 100.00  .30 6.30 18.20 

20   1  .30 3.30 9.00  1.80 9.10 14.70  .70 4.80 10.80 

  500 2  .10 1.00 4.10  23.30 48.70 61.40  .50 4.50 9.10 

   3  .10 1.30 5.40  99.60 100.00 100.00  .30 3.90 9.60 
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Table 5.1 (cont.) 

Results for the Chi-Square Test of Model Fit. Empirical Rejection Rates at 1%, 5% and 10% Significance Levels 

 

     Bootstrap  ML MLMV 

p  N Normal  1% 5% 10%  1% 5% 10% 1% 5% 10% 

   1  .80 4.20 10.60  2.00 8.10 14.90 1.00 5.10 11.80 

  1000 2  .40 1.80 5.10  23.00 46.00 58.50 1.00 5.20 10.70 

   3  .40 2.00 6.10  99.80 100.00 100.00 .90 3.80 9.50 

   1  .00 .10 .10  40.60 66.60 78.10 1.00 11.60 30.90 

  100 2  .00 .00 .00  96.40 99.30 99.90 2.30 30.00 60.50 

   3  .00 .00 .00  100.00 100.00 100.00 33.80 84.00 96.70 

   1  .00 .30 .80  11.30 27.60 39.60 .40 4.50 14.60 

  200 2  .00 .10 .50  80.00 92.50 96.30 .20 7.00 20.30 

   3  .00 .00 1.50  100.00 100.00 100.00 1.40 19.50 45.60 

30   1  .30 2.10 5.50  3.80 12.90 20.70 .80 4.30 9.90 

  500 2  .10 .60 2.60  60.40 79.70 87.70 .40 4.10 9.90 

   3  .00 1.10 4.30  100.00 100.00 100.00 .30 4.50 13.30 

   1  .30 2.00 5.60  1.50 8.40 16.10 .60 3.90 9.50 

  1000 2  .00 1.30 3.80  51.10 75.50 85.70 .50 5.00 10.00 

   3  .20 1.20 4.40  100.00 100.00 100.00 .30 3.50 9.00 

 

Notes: p = number of observed variables, N = sample size, Normal = normality condition: 1 → skewness = 0, kurtosis = 0 (normal), 2 → skewness = 0, kurtosis = 

3.3, 3 → skewness = -2, kurtosis = 3.3, boots. = Bollen-Stine bootstrap p-values, ML = asymptotic p-values under normality, MLMV = asymptotic p-values for 

the mean and variance corrected statistic.
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Figure 5.1. Plot of Bollen-Stine bootstrap vs. MLMV p-values: p = 20, N = 500, skewness 

= 0 and kurtosis = 3.3 
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Figure 5.2. Plot of ML vs. MLMV p-values: p = 20, N = 500, skewness = 0 and kurtosis = 

3.3 
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Table 5.2 

Chi-square p-value difference: Bollen-Stine bootstrap versus MLMV 
      

p N Normal Range Minimum Maximum Mean 
Standard 

Deviation 

  1 .195 -.010 .185 .077 .033 

 100 2 .306 .006 .312 .146 .048 

  3 .300 -.010 .290 .133 .050 

  1 .176 -.038 .138 .037 .024 

 200 2 .228 .006 .235 .108 .038 

  3 .231 -.027 .203 .074 .035 

10  1 .121 -.052 .069 .010 .018 

 500 2 .196 .000 .196 .081 .034 

  3 .162 -.039 .123 .040 .026 

  1 .093 -.042 .051 .004 .015 

 1000 2 .160 -.002 .158 .075 .032 

  3 .141 -.030 .112 .034 .022 

  1 .324 .007 .331 .234 .055 

 100 2 .391 .032 .423 .290 .066 

  3 .442 .037 .479 .302 .079 

  1 .186 .011 .196 .118 .032 

 200 2 .243 .028 .271 .183 .043 

  3 .246 .030 .276 .164 .041 

20  1 .119 -.009 .110 .041 .020 

 500 2 .208 .000 .208 .118 .035 

  3 .145 .002 .147 .074 .026 

  1 .092 -.023 .069 .021 .016 

 1000 2 .183 .000 .183 .099 .035 

  3 .121 -.001 .120 .052 .022 

  1 .476 .041 .517 .437 .063 

 100 2 .434 .138 .573 .447 .083 

  3 .526 .125 .651 .431 .108 

  1 .296 .028 .324 .217 .043 

 200 2 .327 .026 .353 .259 .053 

  3 .336 .047 .383 .244 .064 

30  1 .144 .001 .145 .085 .027 

 500 2 .224 .006 .230 .148 .037 

  3 .171 .013 .184 .114 .032 

  1 .102 -.001 .102 .043 .017 

 1000 2 .187 .003 .190 .115 .034 

  3 .137 -.001 .136 .071 .022 
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Table 5.2 (cont.) 

Notes: p = number of observed variables, N = sample size, Normal = normality condition: 1 → skewness = 

0, kurtosis = 0 (normal), 2 → skewness = 0, kurtosis = 3.3, 3 → skewness = -2, kurtosis = 3.3, MLMV = 

mean and variance corrected statistic. All differences were computed so that tabled values are results from 

the subtraction (bootstrap p-value) – (MLMV p-value). 
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Table 5.3 

Analysis of Variance for Bollen-Stine bootstrap vs. MLMV p-value mean differences 

Source df SS Mean Square F-value p-value 

Model 23 .498 .022 209.768 .000 

Intercept 1 .730 .730 7067.524 .000 

p 2 .134 .067 647.907 .000 

N 3 .267 .089 863.217 .000 

Normal 2 .023 .012 112.324 .000 

N : Normal 6 .001 .000 2.399 .093 

p : N 6 .071 .012 115.135 .000 

p : Normal 4 .001 .000 2.334 .115 

Error 12 .001 .000   

Total 36 1.229    

Corrected total 35 .499    

 

Notes: p = number of observed variables, N = sample size, Normal = normality condition, df = degrees of 

freedom, SS = type III sum of squares. 
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Figure 5.3. Two-way interactions between sample size and number of indicators 
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Figure 5.4. Mean differences in p-values: bootstrap vs. MLMV



 

 31   

 

CHAPTER 6 

AN EXAMPLE: FITTING AN EXPLORATORY FACTOR ANALYSIS MODEL TO 

THE RATIONAL PROBLEM-SOLVING SCALE

 The Social Problem Solving Inventory-Revised (SPSI-R: D’Zurilla, Nezu, & 

Maydeu-Olivares, 2002) is the most widely used instrument to assess social problem 

solving skills, that is, problem solving as it occurs in the natural environment or “real 

world” (D’Zurilla, Nezu, & Maydeu-Olivares, 2004). It consists of five scales aimed at 

measuring three different problem-solving styles (rational, impulsive/careless, and 

avoidant) and two different albeit related orientations towards problems (positive and 

negative). In turn, rational problem solving, a constructive problem-solving style that is 

defined as the rational, deliberate, and systematic application of effective problem-

solving skills includes four major skills: (a) problem definition and formulation (PDF), 

(b) generation of alternative solutions (GAS), (c) decision making (DM), and (d) solution 

implementation and verification (SIV).  

To illustrate the effect of the choice of method to obtain p-values for the chi-

square test of fit, we used a random sample of 200 females from the Spanish normative 

sample (Maydeu-Olivares et al., 2000). These data consist of 5 items for each subscale 

(PDF, GAS, DM, and SIV) for a total of 20 rating items. The items are scored in 5 

categories and are quite normally distributed: skewness is at most |.3| and (excess) 

kurtosis is at most |.9|, a single item shows a kurtosis of 1.5.  
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We fitted an exploratory factor model with four factors to match the theoretical 

model underlying this scale. The estimated likelihood ratio statistic is X2 = 147.43 on 116 

df. The asymptotic p-value obtained under normality assumptions is 0.03, whereas the 

Bollen-Stine bootstrapped p-value is 0.25. Our simulation results indicate that the p-value 

obtained under normality is too small, as rejection rates for a similar condition at  = 1, 

5, 10% are 3.70, 12.70, and 21.20%, respectively. Our simulation results also suggest that 

the Bollen-Stine p-value is too large, as rejection rates for a similar condition at  = 1, 5, 

10% are <.01, .90, and 3.90%, respectively. The asymptotic p-value we obtain using the 

Asparouhov and Muthén (2010a) mean and variance corrected is 0.21. Our simulation 

results suggest that this is the most accurate p-value for our example as rejection rates for 

a similar condition at  = 1, 5, 10% are .20, 4.90, and 11.30%, respectively. We 

recognize that the difference between the p-values obtained using the mean and variance 

adjusted statistic and using bootstrap methods is small. 
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS

Bootstrapping has been in use in structural equation models for quite some time. 

For instance, Chatterjee (1984), Boomsma (1986), Bollen and Stine (Bollen & Stine, 

1990) and Yuan and Hayashi (Yuan & Hayashi, 2006) used bootstrap to study standard 

errors in covariance structure models. Yung and Bentler (1996), Yuan and Hayashi 

(2003) and Yuan and Marshall (2004) used bootstrap to estimate power and lack of fit in 

these models.  

In particular, bootstrapping procedures (Beran & Srivastava, 1985; Bollen & 

Stine, 1992; Stine, 1989; Yung & Bentler, 1996) provide an alternative to the use of 

asymptotic methods for obtaining p-values for tests of exact fit in SEM models. Despite 

having been around for over 25 years, few studies had investigated the performance of 

these p-values and all of the studies focused on small models (up to 11 observed 

variables). In this article, we have investigated the accuracy of Bollen-Stine bootstrapped 

p-values in larger models (up to 30 observed variables). Consistent with previous studies, 

we found that Bollen-Stine p-values are accurate in small models (p = 10); in particular, 

we highlight the results of Ichikawa and Konishi (1995) who also obtained robust 

rejection rates across small sample size and normality conditions. In Table 7.1, rejection 

rates are provided based on the results reported on their Table 5 (e.g., in R, we can use the 

“pchisq” function with 19 degrees of freedom). However, as model size increases, 
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Bollen-Stine p-values become conservative (they reject the model less than they should) 

and that asymptotic p-values obtained robust chi-square statistics (in this study, the mean 

and variance chi-square) are considerably more accurate. Since obtaining a p-value for 

the chi-square test of exact fit using the Bollen-Stine bootstrap is computationally more 

intensive than using asymptotically robust methods, the latter (i.e., an asymptotic mean 

and variance correction to the likelihood ratio statistic) is preferred.  

Asymptotic methods have another advantage over the use of the Bollen-Stine 

bootstrap in that they yield a) p-values for RMSEA tests of approximate fit, and b) 

standard errors for parameter estimates a byproduct. In contrast, if bootstrapping is to be 

performed, naïve bootstrapping is to be performed to obtain standard errors, model-based 

bootstrapping is to be performed to obtain p-values for tests of exact fit, and an 

alternative bootstrapping is needed to obtain confidence intervals for goodness of fit 

indices.  

7.1 Bootstrap confidence intervals for goodness of fit indices 

The earliest attempt to obtain confidence intervals for goodness of fit indices is 

Bone et al. (1989) who suggested using the bootstrap to compute the standard error of 

goodness of fit indices (and significance tests) using a fully specified alternative model. 

Kim and Millsap (Kim & Millsap, 2014) used a somewhat similar procedure. First, they 

consider an alternative model similar to the fitted model and estimated it using the sample 

data. Using the estimated covariance matrix under this alternative model, they use the 

Bollen-Stine method to transform the observed data into the parent sample used for 

bootstrapping. This procedure enables them to determine how plausible are the observed 

goodness of fit indices under this alternative model. Thus, Kim and Millsap method 
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requires that bootstrapping is performed once if a bootstrapped p-value for the test of 

exact fit is desired, and again if a p-value for the goodness of fit indices is desired. Of 

course, if a researcher considers several alternative plausible models, for each of them a 

bootstrap run is needed using this procedure.  

Yuan, Hayashi and Yanagihara (YHY: 2007) added a very useful tool to the 

bootstrapping arsenal to assess model fit. Whereas naïve bootstrapping involves a parent 

population with covariance matrix S and Bollen-Stine bootstrapping involves a parent 

population with covariance matrix ̂ , their procedure involves transforming the observed 

data using a covariance matrix that is between S and ̂ . More specifically, the data is 

transformed so that the “population noncentrality parameter in the transformed data is 

equal to the estimated sample noncentrality in the original data” (Zhang & Savalei, 

2016). In other words, the covariance matrix of the parent population is chosen so that the 

model-based bootstrapped CIs for goodness of fit indexes based on non-centrality 

parameter estimates such as the RMSEA and the CFI (Comparative Fit Index: Bentler, 

1990) can be obtained. Zhang and Savalei (2016) performed a simulation study to 

compare the performance of the naïve, Bollen-Stine and YHY CIs for a number of 

goodness of fit indices including the RMSEA, CFI, SRMR and GFI (Goodness of Fit 

Index: Jöreskog & Sörbom, 1988). Both correctly specified and mispecified conditions 

were included but model size was at most 18 observed variables. As expected, the YHY 

procedure provided more accurate covarage rates for the RMSEA and the CFI than for 

the SRMR and GFI, the use of Bollen-Stine procedure yielded unacceptable coverage 

rates for all conditions. Of particular interest in the Zhang and Savalei (2016) study is the 

comparison between analytic (i.e., based on asymptotic methods) and YHY bootstrapped 
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CIs for the RMSEA. They found that there is not a clear advantage of bootstrap CIs over 

analytic ones. 

In closing, in this study we have investigated whether bootstrapped p-values are 

more accurate than analytic p-values (obtained using aysmptotic methods) to solve the 

thorny issue of assessing the exact fit of SEM models when the number of observed 

variables is large. Within the conditions investigated, analytic p-values provide 

substantially better results than bootstrap p-values. Further research is needed to develop 

alternative bootstrapping schemes that successfully adress this issue. A promising venue 

of research is the efficient bootstrap method proposed by Ichikawa and Konishi 

(Ichikawa & Konishi, 2001): by avoiding fitting the model to each bootstrap sample, their 

procedured is computationally more efficient and avoids problems of convergence in 

smaller samples. Altough they reported that their bootstrap method accepted the null 

hypothesis to often, calculating rejection rates from the data they made available shows 

robust rejection rates across all conditions of sample size (N = 150, 250, 500, 1000) and 

normality (mixture parameter ε = 0.0, 0.1 and 0.3) with p = 15 observed variables, for a 

nominal 5% rejection rate. The shorter computational time makes it a particularly 

interesting method for studying large models.



 

 37   

 

Table 7.1 

Chi-Square Test of Model Fit results in Ichikawa & Konishi (1995): Bollen-Stine p-

values  

 

  Rejection rates (nominal versus empirical) 

ε N 1% 2.5% 5% 10% 

0 150 0.80 2.14 4.51 9.49 

0 300 0.85 2.26 4.63 9.61 

0.1 150 1.55 4.00 8.17 16.19 

0.1 300 2.11 5.14 9.92 18.74 

0.3 150 2.41 6.02 11.70 21.92 

0.3 300 3.34 7.72 14.16 25.30 

 

Notes: ε = normality condition, where zero represents normal data and the mixture parameter epsilon 

represents increasing degrees of nonnormality, N = sample size. Shaded values indicate robust rejection 

rates. 
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APPENDIX A 

MPLUS CODE FOR DATA GENERATION OF THE FIRST CONDITION

Specifications: p = 10, N = 100, skewness = 0 and kurtosis = 0. The underlying populational 

model is a unidimensional CFA model parameter values are such that the factor variance 

is set to 1.0, the factor mean is set to zero, all factor loadings are set to .70, and all error 

variances are set to .51. 

 

MONTECARLO: 

 names=x1-x10; 

 generate = x1-x10(4);  

 nobservations=100; 

 nreps=1000; 

 seed=123; 

 repsave=all; 

 save=C1.*.dat; 

MODEL POPULATION: 

 f by x1-x10@0.7; 

 f@1; 

 [f@0]; 

 x1-x10@0.51; 

 [ 

 x1$1-x10$1*-1.55477  

 x1$2-x10$2*-0.643345 

 x1$3-x10$3*0.643345 

 x1$4-x10$4*1.55477 

 ];
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APPENDIX B 

MPLUS CODE FOR ANALYZING THE 1,000 GENERATED DATASETS UNDER 

CONDITION 1 USING ML OR MLMV

DATA: 

 file=C1.list.dat; 

 type=montecarlo; 

VARIABLE: 

 names are x1-x10; 

ANALYSIS: 

 ! alternatively, for MLMV estimation use “ESTIMATOR=MLMV;” 

 ESTIMATOR=ML;                  

MODEL: 

 f by x1-x10*.70; 

 f@1; 

 x1-x10*; 

SAVEDATA: 

 ! save all results including chi-square statistic p-values 

 RESULTS=C.SAV;
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APPENDIX C 

R CODE FOR COMPILING MLMV RESULTS

CON=c(rep(NA,36)) 

one=c(rep(NA,36)) 

five=c(rep(NA,36)) 

ten=c(rep(NA,36)) 

for(i in 1:36){ 

setwd("C:\\") 

library(stringr) 

     

read<-paste0('c',i,'Condition',i,'MLMV.out') 

con=file(read) 

line=readLines(con) 

ten[i]<-unlist(strsplit(line[grep("Chi-Square Test of Model 

Fit",line)+19]," "))[unlist(strsplit(line[grep("MODEL FIT 

INFORMATION",line)+24]," "))!=''][2] 

 

five[i]<-unlist(strsplit(line[grep("Chi-Square Test of Model 

Fit",line)+20]," "))[unlist(strsplit(line[grep("MODEL FIT 

INFORMATION",line)+24]," "))!=''][2] 

 

one[i]<-unlist(strsplit(line[grep("Chi-Square Test of Model 

Fit",line)+22]," "))[unlist(strsplit(line[grep("MODEL FIT 

INFORMATION",line)+24]," "))!=''][2] 

CON[i]=i 

} 

 

Fresult=data.frame(CON, 

                   one,five,ten) 

setwd("C:\\ ") 

write.table(Fresult, "mlmv.csv",col.names=TRUE,row.names=FALSE, sep = 

",")
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APPENDIX D 

R CODE FOR BOOTSTRAP ANALYSES

# Compile p-values for each repetition of each condition 

SIM10=function(c){   

 path=sprintf("C:/ c%d",c) 

 setwd(path) 

 CHI=c(rep(NA,1000))  

 REP=c(rep(NA,1000))  

 library(stringr) 

 

# Generate Mplus code for data analysis of models with p = 10 using the 

Bollen-Stine bootstrap 

for(r in 1:1000){ 

imp<-paste0('DATA: 

              file=C',c,'.',r,'.dat; 

              variable: 

              names are x1-x10; 

              analysis: 

              model=nomeanstructure; 

              ESTIMATOR=ML; 

              BOOTSTRAP = 1000 (RESIDUAL); 

              MODEL: 

              f by x1-x10*.70; 

              f@1; 

              x1-x10*;') 

 

write.table(imp, "boot.inp", sep="",row.names=F,col.names = F,quote = F)  

batch<-paste0('C:\\Program Files\\Mplus',' 

              ', 

              'Mplus ', path,'\\boot.inp', ' ', path,'\\boot.out',' 

              EXIT') 
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write.table(batch, "BATCH.bat", sep="",row.names=F,col.names = F,quote = 

F)  

shell ("BATCH.bat")  

 

# Compile p-values 

con=file("boot.out") 

line=readLines(con) 

p<-as.numeric(unlist(as.character(line[grep("Chi-Square Test of Model 

Fit",line)+5])%>% str_match_all("[0-9.^-]+"))[2]) 

 

CHI[r]=p 

REP[r]=r 

} 

 

result=data.frame(REP,CHI) 

write.table(result, "bootresult.csv",col.names=TRUE,row.names=FALSE, sep 

= ",")  

} 

 

#Execute condition 1 

SIM10(c=1)
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APPENDIX E 

R CODE FOR COMPILING BOOTSTRAP RESULTS

con=c(rep(NA,36)) 

one=c(rep(NA,36)) 

five=c(rep(NA,36)) 

ten=c(rep(NA,36)) 

 

for(i in 1:36){ 

   

  path=sprintf("C: /c%d",i) #define path using condition number 

  setwd(path) # Specify the dictionary   

   

  data<-read.csv("bootresult.csv") 

 

  one[i]=mean(data$CHI<0.01) 

  five[i]=mean(data$CHI<0.05) 

  ten[i]=mean(data$CHI<0.10) 

  con[i]=i 

} 

 

Fresult=data.frame(con, 

                  one,five,ten) 

 

setwd("C:/ ") 

write.table(Fresult, 

"all.bootresults.csv",col.names=TRUE,row.names=FALSE, sep = ",")
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APPENDIX F 

R (VERSION 3.6.3) CODE AND SPSS (VERSION 25) SYNTAX FOR MULTIWAY 

ANOVA OF P-VALUE DIFFERENCES

# Three-way Factorial Design using Table 5.2 data 

options(contrasts=c("contr.sum", "contr.poly")) 

fit <- aov(mean ~ p + N + normal + N:normal + N:p + normal:p, data=table3) 

drop1(fit,~.,test="F") # type III SS and F Tests 

 

 

 

 

UNIANOVA mean BY p N normal 

/METHOD=SSTYPE(3) 

/INTERCEPT=INCLUDE 

/POSTHOC=p N normal(TUKEY) 

/PLOT=PROFILE(p*N) 

/CRITERIA=ALPHA(0.05) 

/DESIGN=p N normal N*normal N*p normal*p. 
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