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ABSTRACT

Rolling element bearings perform an essential role in most all rotating machinery. 

To prevent degradation to machine performance, unforeseen costs and unexpected system 

failure, bearing fault diagnosis and prognosis are used. Acoustic Emission (AE) introduces 

high sensitivity, early and rapid detection of cracking, and real time monitoring that can 

alarm once cracking is noticed.  

The purpose of this research is to nondestructively monitor the crack growth in 

rolling element bearings in a marine environment and to determine the acoustic emission 

parameters which embody crack initiation and propagation. The intellectual merit lies in: 

1.! the signal alarm developed from an AE data pattern recognition method,  

2.! the damage quantification procedure based on intensity analysis parameters, 

and  

3.! the specially made rotating machine test bed to simulate a bearing in use on 

a submarine.  

The gap in current literature addressed a shortage of data and findings on acoustic 

emission signal alarm notification and use of shipboard machinery parameters for acoustic 

emission monitoring of rolling element bearings. Four rolling element bearings were tested 

in a specially made rotating machine test bed at various load and rotation cycles to 

exemplify shipboard machinery operation at various depths. Acoustic emission data 

classification was done through pattern recognition and neural network software 
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(NOESIS).  All AE data was clustered using k-means unsupervised method and the lowest 

correlated features were selected for pattern recognition. 

 It was concluded that the clustering method used successfully classified crack 

initiation and propagation. Useful AE parameters for classifying crack initiation and 

propagation are amplitude, initiation frequency, absolute energy, frequency centroid, peak 

frequency, and signal strength. With use of intensity analysis, it was determined that the 

intensity at crack initiation and propagation is much higher than at the final section where 

failure occurred. Acoustic emission is suitable for remote monitoring of bearing 

degradation. With the use of signal alarms based upon the clustering method and 

parameters discussed, one can be notified when a crack is initiating and propagating, and 

prepare for failure of the bearing. The ability to be notified when cracks are initiating and 

propagating will prevent unexpected system failure and reduce maintenance cost.
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LITERATURE REVIEW
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1.1!Introduction 

Rolling element bearings perform an essential role in most all rotating machinery. Their 

reliability and carrying capacity allow for quality machine performance. However, rolling 

element bearings do not have an infinite life expectancy. To prevent degradation to 

machine performance, unforeseen costs and unexpected system failure, bearing fault 

diagnosis and prognosis are used.  

Acoustic Emission (AE) has become one of the paramount bearing condition 

monitoring systems. Acoustic Emission introduces high sensitivity, as well as, early and 

rapid detection of cracking. Overall, the ability to detect cracking is vital for all rotating 

machinery. 

There have been many studies investigating the AE response of defective bearings. It 

was shown that certain AE parameters can detect defects prior to the appearance on the 

vibration acceleration range for thrust loaded ball bearings (Yoshioka & Fujiwara, 1987). 

Another study demonstrated the usefulness of some acoustic parameters for the recognition 

of defects in radially loaded ball bearings at low and normal speeds (Tandon & Nakra, 

1990). It was suggested that the area under the amplitude time curve is the principal method 

to distinguish defects in rolling element bearings (Tan, 1990). It appears from the literature 

that acoustic emission monitoring of crack growth of rolling element bearings simulated 

with shipboard machinery parameters and signal alarm notifications have yet to be 

undertaken.  

1.2!Rolling Element Bearing 

Rolling element bearings are used in substantial amounts of industrial rotating 

machinery, especially submarines. These bearings are comprised of an inner race, a set of 
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rollers separated by a cage, an outer race and sometimes a shield or seal. Figure 1.1 shows 

a visual representation of the components of a ball bearing. In the case of this thesis, ball 

bearings are being investigated. Ball bearings exceed in radial load support and have 

average axial load support amongst other bearing rollers such as cylindrical, tapered, barrel, 

and needle (Hamrock et al., 2004). This allows for ball bearings to succeed in high-speed 

conditions while producing low friction.  

 In rotating machinery, bearings are the most used and are the source of faults in 

such machinery. For example, in a survey done about medium-voltage induction motors, 

it was found that bearing faults accounted for 44% of the total failures (Georgoulas et al., 

2013; Zhang et al., 2011). Since bearings make up most faults, understanding the types of 

faults that can occur is necessary.  

There are three different types of bearing faults: single point defect, multiple-point 

defect, and generalized roughness. Single point defects are cracks, and holes that are due 

to a bearing running for a long period (Cerrada et al., 2018).  Cracks and holes in the inner 

and outer race make up 90% of all rolling bearing faults while only 10% occur in the balls 

or cage of the bearing (Kateris et al., 2014).  

 Multiple-point defect is a collection of several point defects. They differ from single 

point defects because of their quantity and the change in relative amplitudes of the 

components (McFadden et al., 1985). Generalized roughness faults are when a large area 

of the bearing becomes irregular, deformed or rough. Common causes of generalized 

roughness faults are contamination, loss of lubricant, or misalignment (Stack et al., 2004). 

These three faults can happen to a bearing and it should be recorded which faults occur 

during a test.  
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1.3!Acoustic Emission 

The American Society for Testing and Materials defines acoustic emission as, “the 

class of phenomena whereby transient elastic waves are generated by the rapid release of 

energy from localized sources within a material, or the transient waves so generated” 

(ASTM E1316, 2006). Acoustic Emission (AE) is a type of nondestructive testing. 

Nondestructive testing is “the application of physical principles employed for assessing the 

inhomogeneities and harmful defects without impairing the usefulness of such materials or 

components or systems” (Raj et al., 2002). Some advantages to nondestructive testing are 

ability to test directly on a test specimen, repeated checks throughout testing are possible, 

and most tests are rapid. A couple downfalls to nondestructive testing are measurements 

are indirectly reliable and must be verified, and only scholars skilled in that field can 

interpret the data.  

AE sensors are piezoelectric crystals mounted on a testing specimen. Piezoelectric 

crystals generate an electric charge when they are compressed or struck. The AE waveform 

created from this strike is called a hit. These transient elastic waves hold a multitude of 

properties that are used to filter and cluster data sets. Some of those properties being: signal 

amplitude, duration, rise time, signal strength, signal energy, count, and frequency. Figure 

1.2 shows a typical waveform with different waveform properties.  

Signal amplitude is the magnitude of the highest voltage attained by a waveform from 

a single hit. Hits with a lower signal amplitude normally are considered background noise 

(Drummond et al., 2007). So, these types of hits can be removed to focus on data that will 

be more informative about fault propagation. The duration is the time between the AE 

signal crossing the first and last threshold. Rise time is the time between signal start and 
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the peak amplitude of that hit. If a hit has an abnormally short or long duration or rise time, 

it is an indicator of a poor hit.  

The signal strength is the measured area of the amended AE signal. A significant jump 

in signal strength could indicate a fault. Signal energy is the energy within a burst signal. 

The count of a hit is the number of times a signal passes the threshold. Frequency is the 

number of cycles per second of pressure variation in a hit (ElBatanouny, 2012). Some other 

types of frequency are average frequency, peak frequency, and initiation frequency. All 

these properties of a hit can be used to better cluster and filter data based on an experiment’s 

scope.  

Three different contact fatigue stages have been identified, those being run-in phase, 

permeant-wear phase, and wear-out phase (Zykova et al., 2006). The run-in phase occurs 

at the beginning of the test and shows and increases in AE activity. When there is a 

reduction of AE events and becomes stable, the permeant-wear phase begins. The wear-

out phase arises when AE activity increases rapidly up to failure. These contact fatigue 

stages were also identified in a couple other papers (Baby et at., 2006; Fiala et al., 2011; 

Mazal et al., 2011;Muravaev et al., 2008). 

An extensive amount of research has been done on vibrational signal processing for 

bearing fault detection (Zarei & Poshtan, 2007; Immovilli et al., 2009; McInerny & Dai, 

2003). Acoustic Emission signal fault detection has become a fault detection method more 

enticing than vibrational signal processing. AE signals are more insensitive to noise and 

disturbances caused by different operation conditions than that of vibrational signals. AE 

can also offer earlier fault detection than vibrational signals because of its sensitivity to 
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fault size (Niu et al., 2019). Because of these advantages, AE signal processing is more 

applicable for bearing fault detection.  

1.4!AE Data Filtering 

To extract the most pertinent information for the scope of an AE project, one can use 

data filtering. AE data that is usually not pertinent to fault detection are noise, wave 

reflections, and friction. To reduce these non-pertinent hits, a quite testing area was upheld, 

and grease was applied evenly around the test bearing. Even with these precautions, noise 

from operating the motor and wave reflection will still be detected. Therefore, data filtering 

was the best course of action. Some data filtering techniques are front end-filtering, pass 

filtering, D-A (Swansong II filtering), and wavelet analysis. 

1.4.1! Front End-Filtering 

Front End-Filtering is when a hit is either accepted or rejected based on a predetermined 

hit property range. Some properties that a front end-filter accepts, or rejects are signal 

amplitude, energy, counts, duration, rise time, etc. For example, a front end-filter is set to 

reject any hits that are below a signal amplitude of 40 dB. So, if a hit has a signal amplitude 

of 38 dB it will be rejected and not recorded, but if it has a signal amplitude of 45 dB it 

will be accepted and recorded in the data for said test.  

Front End-Filtering allows a user to cut out data simultaneously during testing. 

Unfortunately, if a user sets a front end-filter then wants to access data from the rejected 

range they would be unable to do so. Front End-Filtering is great for reducing large portions 

of data that is known to be not useful for the scope of a project. 

 

 



7!

1.4.2! Pass Filtering 

Pass filters focus on the frequency property of waveforms. Three different types 

of pass filters are low-pass, high-pass, and band-pass. Low-pass filters pass signals with a 

frequency lower than a preselected cutoff frequency. High-pass filters pass signals with a 

frequency higher than a preselected cutoff frequency. Low-frequency noise components 

are deemed to be not correlated with specimen’s condition hence useless for data analysis 

(Jemielniak, 2001). High-pass filters cut out these low nonessential frequency signals. 

Band-pass filters utilize low-pass and high-pass filters to select a range of frequencies. 

The band-pass filters allow the user to cut out noisy low-frequency unimportant data as 

well as outlying spikes in frequency. 

1.4.3! D-A Filtering (Swansong II) 

D-A Filtering meaning duration-amplitude filtering is a filter used by the masses to cut 

out noise related external sources and reflections (Tinkey et al., 2002).  Some of the 

external sources can be due to noises created by running a motor or friction between two 

moving objects. This form of filtering is based on the belief that noise has a low amplitude 

and long duration. This external emission can be viewed on a graph of amplitude versus 

log duration in Figure 1.3.  

To determine what criteria should be used for the Swansong II filter, Tinkey created a 

table depicting when data should be cut off based on the “tell-tail” hit. This table is shown 

as Table 1.1. R-A filtering has been used with Swansong II Filters to further improve the 

filtering method. R-A filters are used similarly to D-A filtering (ElBatanouny et al., 2014; 

Anay et al., 2016). It is believed that low amplitude and high rise time are noise hits. The 
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combination of D-A and R-A filtering may further reduce external emissions than just D-

A filtering. 

1.5!AE Pattern/Damage Recognition 

Once the data is filtered to a point where excess emission has been disregarded, it is 

time to evaluate the data. A variety of evaluation methods can be used to determine when 

and how severe damage is. Some of these evaluation methods are intensity analysis, 

cumulative signal strength, clustering, and signal alarms. These methods are further 

discussed below.  

1.5.1! Intensity Analysis 

Intensity analysis is a way to evaluate the structural significance of AE signals and the 

degree of deterioration of a structure. Intensity analysis utilizes historic index (HI) and 

severity (Sr).  The historic index is a trend analysis that approximates the change of slope 

in signal versus time by comparing the signal strength of the prior hit to a value of collective 

hits (ElBatanouny, 2012). Eq (1.1) shows the formula used for historic index 

(ElBatanouny, 2012).  

%& =
(

()*
(

+,-
.
-/012

+,-
.
-/2

) ________________________________________(1.1) 

Where, 

 HI: Historic Index 

    N: Number of hits to time t 

    345=Signal Strength of ith hit 

    K=Empirically derived constant based on material 

The value of K was selected to be a) N/A if N≤50, b) K=N-30 if 51≤N≤200, c) K=0.85N 

if 201≤N≤500, and d) K=N-75 if N≥501. Severity (Sr) is the average signal strength for 
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several events with the largest value of signal strength (Golaski et al., 2002). The formula 

for severity is found in Equation 1.2.  

S7 =
8

9
( 34:)

9
:;8   ________________________________________ (1.2) 

Where, 

Sr: Severity 

J: Empirically derived constant based on material 

Som: Signal strength of mth hit (based upon magnitude of signal 

strength) 

Once these values are calculated they are plotted onto a severity vs historic index chart 

called an intensity plot. The intensity plot is divided into sections depending on the level 

of damage occurred. The intensity values of less significance are plotted near the bottom 

left of the plot while the values of high significance are found in the top right corner 

(Fowler et al., 1989). 

These sections can be adjusted based on structural properties of the specimen. An 

example of an intensity chart from a bridge can be found in Figure 1.4 (Shahiron et al., 

2012). In this figure, section A is insignificant AE. Section B presents minor surface defects 

like pitting. Section C presents defects that require more in-depth evaluation but are not 

overly sever. Section D presents significant defects but are not the most sever. Section E 

holds the most sever defects and immediate shut-down is needed. Note that these section 

ranges and meanings will change based on the specimen used. Research analysis has been 

done using intensity analysis on bridges (Shahiron et al., 2012; Golaski et al., 2002; 

Lovejoy et al., 2008; Anay et al., 2016), but this analysis can be useful in a wide range of 

acoustic emission testing. 
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1.5.2! Cumulative Signal Strength 

Cumulative Signal Strength (CSS) is defined as the integral over time of the 

rectified signal (Mangual et al., 2012). In a plotted CSS vs time graph, it is important to 

note when there is a large spike in the CSS. This means that there is possible damage at 

that time. CSS is reliable because it depends only on the parameters of amplitude and 

duration. CSS is a very helpful form of analysis because it allows the researcher pinpoint 

when damage could have happened and allows them to focus on smaller portions of data 

than assess all points in time that may pertain to damage. CSS is used in the monitoring 

and analysis of a wide variety of materials including concrete (Shahidan et al., 2013) and 

composites (Kumar et al., 2017). CSS also plays a major role in intensity analysis.  

1.5.3! Clustering 

Clustering is a pattern recognition process. This is where regularities or significant 

features in data are recognized and categorized into classes. The three parts in clustering 

are data perception, feature extraction, and classification (Abdelrahman, 2016). The 

features extracted in acoustic emission signals are the waveform parameters (amplitude, 

frequency, rise time, etc.). To classify these features, one can use supervised or 

unsupervised pattern recognition. 

Supervised pattern recognition is where a set of training data with predefined classes is 

used to train a classifier to perform as effectively as possible (Farhidzadeh et al., 2014). 

This type of pattern recognition is helpful when a type of damage is known in advance. 

There is a wide variety of supervised classifier algorithms based on the complexity of a 

project and the speed performance needed for the classifier. For AE data, examples of 
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supervised classifier algorithms would be K-Nearest Neighbor’s method (K-NN) (Cover 

& Hart, 1967), linear classifier, and Neural Networks (Anastasopoulos, 2005).  

Unsupervised pattern recognition is where data is classified into clusters based solely 

on their features and similarities between them. With unsupervised pattern recognition, 

there is no previous knowledge on damage type nor is it required. The user plays a major 

role in classifying these clusters because they must decide what feature to use and how to 

relate those features. It can be helpful for the user to create a correlation matrix and 

correlation hierarchy diagram. This matrix and diagram will allow the user to view the 

highest and lowest correlated features. The lowest correlated features should be chosen to 

determine the clusters so that the clusters differentiate greatly (Mitra et al., 2002). Standard 

unsupervised clustering methods are k-means algorithm (Likas et al., 2003) and principal 

component analysis (PCA) (Gutkin et al., 2011). The k-means algorithm creates clusters 

based on similar instances in terms of Euclidean distances between the instances and their 

cluster centroid (Yasami & Mozaffari, 2010). 

1.5.4! Continuous Wavelet Transform (CWT) 

The continuous wavelet transform is used to linearly decompose a signal into wavelets. 

It is constructed from the sum over the signal time multiplied by a mother function. A 

mother function is a scaled and shifted version of the wavelet function (Baccar & Söffker, 

2015). The wavelet transform can be obtained by Eq(1.3) below.  

CWT(a, b) =
8

B
C(#)!(

D)E

B
)F#GGGH ≠ 0______________________________ (1.3) 

Where, 

!(#): Mother function 

   a: Scale index 
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b: Time shifting 

s(t): Signal 

As seen above the wavelet transform is a function of time and frequency. So, CWT 

allows the discovery of how a signal’s frequency content evolves in time. This is quite 

helpful when detecting and classifying damage signals. Events that are localized in time 

and frequency indicate a possible signal due to damage.  

1.5.5! Signal Alarms 

Signal alarms are not a post processing damage recognition technique. Signal 

alarms are used to notify the researcher in the experimental process when a set of features 

have happened in a hit. This is very helpful for researchers needing to physically stop an 

experiment and check the condition of a specimen due to damage. The AEwin software 

can do three different types of alarms: average signal level alarm, cluster alarms, and 

multivariate alarms. The average signal level alarm notifies the user when a hit is out of 

the users predetermined signal range. A cluster alarm allows the user to define a cluster 

grading and be notified when the cluster analysis enters that grading level (Schultz et al., 

2014). 

 Lastly, multivariate alarms are where the user defines a range for as many features 

as desired, once all those features are contained in one hit an alarm will activate. Signal 

alarms are saved within the data file so the alarm can be found and accessed after and 

during an experiment. Signal alarms have been used in the recognition of early stages of 

cracks in rotating gearbox components (Xiang, 2017). Accessible literature indicates that 

acoustic emission monitoring of damage and prognosis of rolling element bearings is 

promising. 
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   Table 1.1 Swansong II Filtering based on “Telltale” Hit (Tinkey, 2002) 
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Figure 1.2 Waveform Properties (Xu, 2008)  

 

 
 

Figure 1.3 Amplitude vs Log Duration (Tinkey et al., 2002)  
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Figure 1.4 Intensity Plot for Typical Bridge (Shahiron et al., 2012) 

 
 
 
 
 
 
 



16!

!

CHAPTER 2 

EXPERIMENTAL SETUP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17!

2.1 Introduction

To simulate a bearing in use on a submarine, a rotating machine test bed was 

designed. This machine was designed to run a bearing to failure while recording diagnostic 

data. The test bed components were inspected regularly to ensure ongoing functionality 

and prevent machine failure during an experiment. The machine ensures that a bearing may 

be rotated at high speeds while enduring a downward force of up to 4000 pounds through 

a hydraulic system. Acoustic emission data was collected during the experiments by a 

Sensor Highway II data acquisition system.  

2.2!Rotating Machine Test Bed 

The rotating machine test bed is composed of an electric motor, variable frequency 

drive, hydraulic press system, support bearings, test bearing, shaft/motor coupler, and an 

acrylic shield. Table 2.1 includes all the instrument specifications. These components are 

shown in Figures 2.1 and 2.2. Figure 2.1 shows the rotating machine test bed without the 

shield while, Figure 2.2 depicts how the shield is placed. It is important that during 

operation all bystanders remain behind the shield. 

2.2.1 Electric Motor 

The Dayton 2 HP General Purpose Motor, 3-Phase, 3450 RPM, Voltage 230/460, 

Frame 56H was used. It was chosen for its reliability, controllability, and reduced noise 

compared to other motors. The system wiring spans from a power source to the motor 

chassis. Between these systems is a power switch and variable frequency drive (VFD).  It 

is important to note that the motor and VFD each hold a ground wire to ensure safety.  

 

 



18!

2.2.2 Variable Frequency Drive 

To ensure the motor can be controlled externally through a microcontroller, a 

VFD was used. The Teco Westinghouse L510-101-H1-U VFD can trigger a current 

protection of 4.2 amps at around 24 Hz. This VFD can operate in a manual speed setting 

or present speed cycling. The speed cycles used in this experiment were cycles of 10 Hz, 

15 Hz, 20 Hz every minute, and 15 Hz, 20 Hz every two minutes. 

2.2.3! Hydraulic Press System 

The hydraulic piston is connected to a hydraulic pump through a hydraulic line. 

The internal surface of the piston is one square inch therefore, the conversion from psi to 

applied piston force is 1 to 1. The hydraulic pump can apply 10,000 psi to the hydraulic 

system. In this experiment, the hydraulic pump applies a psi of either 625, 1250 or 1875 to 

the bearing housing. A gauge showing the pressure reading is mounted on top of the 

hydraulic pump and a pressure release valve is located next to it. The release valve is turned 

counterclockwise to remove pressure from the system. The hydraulic fluid will leak from 

the pump if the release valve is left opened or significantly loosened.  

2.2.4! Test Bearing 

The machine is configured to handle bearings with an inner diameter of 25 mm and 

outer diameter of 52 mm. The bearings used for this experiment are BL 35JA19 radial ball 

bearings. This ball bearing utilizes double rubber seal and can withstand a dynamic load of 

3,150 pounds and static load of 1,770 pounds. The runners are composed steel. The bearing 

can go at the maximum speed of 15,000 rotations per minute (RPM) when lubricated with 

grease.  
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2.2.5! Shaft/Motor Coupler 

The shaft/motor coupler transfers a rotation force from the motor shaft to the 

machine shaft. The coupler has a dampening system to reduce vibration and provide 

flexibility to compensate for misalignment. To preserve the coupler, alignment should be 

as close as possible. The damping component can become worn which can cause excess 

vibration. At the connection point, the motor shaft has a diameter of 16 mm and the bearing 

shaft has a diameter of 20 mm as seen in Figure 2.1. 

2.2.6! Acrylic Shield 

The acrylic shield is the most necessary part of the mechanism. The shield must always 

be up when the machine is in operation. If bearing or coupler failure occurs during 

operation, the shield protects users form potential shrapnel.  

2.3! Acoustic Emission Data Acquisition System  

To acquire acoustic emission data generated from the rotating machine test bed, an 

acoustic emission data acquisition system (Figure 2.3) was utilized. A 16-channel Sensor 

Highway II (SHII), manufactured by MISTRAS Group, Inc. (Princeton Junction, NJ, 

USA), was utilized as the data acquisition system. The sensor sensitivity was checked by 

applying Hsu-Nielsen sources (Pencil Lead Break) (Boczar & Lorenc, 2004) before and 

after each experiment. If the difference between two sensors is more than ±3dB the system 

should be reevaluated. 

2.3.1! AE Sensors 

Four B1025 broadband sensors from Digital Wave Corporation were used in this 

experiment. The operating frequency range of these sensors is 50-2000 kHz. They were 
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attached around the bearing housing to acquire data from all portions of the box (Figure 

2.4).  

Double bubble epoxy was used as the coupling agents to fix the sensors on the bearing 

housing. It is important to use an adhesive that is not greatly affected by heat. The bearing 

housing will begin to heat up after long run times which can affect the adhesive. After the 

sensors are securely connect to the housing, they are attached to preamplifiers. 

2.3.2! Preamplifiers 

Four AE signal preamplifiers (type 2/4/6, MISTRAS Group) were used in this 

experiment which are switch selectable gain single ended and differential preamplifiers. 

They were supplied with 20/40/60 dB gain (40 dB was used) and plug-in band pass filters 

from 100 to 1200 kHz. This gain increases the signal level to be more visible in the data 

acquisition system. The preamplifiers are connected to the data acquisition system by 

coaxial cords.  

2.3.3 Data Acquisition System 

Sensor Highway II data acquisition system from Physical Acoustics Corporation was 

used. In combination with the AEwin for Sensor Highway Smart Monitor, all the acoustic 

emission data is obtained and displayed in real time. The AEwin software (Physical 

Acoustics Corporation, 2007) allows for a variety of filters, graphs, and signal alarms to be 

set. 

2.4! Operation 

The operational steps for the acoustic emission system can be seen below.  

1.! Open AE software. 

2.! Create new layout. 
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a.! Sampling Rate:1 million samples per second  

b.! Timing Parameters (based on investigation to ensure 1 quality 

waveform in each hit):  

i.! Peak Definition Time(PDT): 200 microseconds  

ii.! Hit Definition Time(HDT): 800 microseconds  

iii.! Hit Lockout Time(HLP): 1000 microseconds 

c.! Threshold: 45dB (based on background noise tests)  

3.! Do a PLB test. 

4.! Conduct background noise check. To do this start a test without running the 

mechanism or touching the mechanism in any way. If there are any hits in this 

test, then there is too much background noise.   

5.! Conduct a no force test. This is where you run a test without any pressure on 

the bearing housing from the hydraulic press. Run for 10 minutes to get a 

baseline of how loud the machine test bed is. This will be helpful when 

determining what filtering should be used.  

6.! Set signal alarm at predetermined or inferenced properties to notify when a 

possible crack will happen.  

7.! Finally, you will be able to begin an actual test. It is important that there is 

someone always watching the machine when it is running. When there is a 

signal alarm it is important to stop the test, take out the bearing, and document 

any changes in the bearing. A microscopic camera may be helpful with the 

minute cracks.  
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The operational steps for the rotating machine test bed is described below. It is 

important to follow these steps to ensure safe usage.  

1.! Check the following: 

o! Switch is in the off position. 

o! VFD and motor are correctly grounded. 

o! There are no loose connections or shorts in the electrical system.  

o! Acoustic sensors are on the bearing housing before start-up.  

o! Bearing housing is centered under the hydraulic piston to correctly transfer 

force. 

o! The motor/shaft coupler is secure. 

o! There are no loose objects near the machine. 

o! All parts have been correctly reassembled after disassembly. 

2.! Power the machine on by flipping the power switch. 

3.! Configure the VFD for the experiment.  

4.! Pressurize the hydraulics to the desired force for the given experiment. This should 

be done before starting the machine unless the desired force exceeds the static load 

rating of the bearing.  

5.! Start the machine by pressing the run button on the VFD.  

6.! Begin recording data after the machine starts to avoid undesired start-up noise at 

the beginning of the experiment. The recording program can also be stopped before 

the machine is stopped to avoid recording the shutdown of the machine. 

7.! Stop the machine by pressing the STOP/RESET button on the VFD.  
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8.! Release hydraulic pressure by turning a knob on the side of the hydraulic pump. 

Re-tighten this knob after depressurization to prevent oil from leaking out of the 

hydraulic pump. 

9.! Analyze the bearing.  

10.!Process the data for diagnosis and prognosis of the test bearing.  

Using the above operation steps four bearings were tested. The first bearing was 

tested with a load of 625psi with a rotation cycle of 1 minute at the following rates: 

10Hz, 15Hz, and 20Hz. The first bearing took approximately 26 hours to fail. The next 

two bearings were tested with a load of 1250psi with a rotation cycle of 2 minutes at 

15Hz and then 2 minutes at 20Hz. The last bearing was tested with a load of 1875psi 

with a rotation cycle of 2 minutes at 15Hz and then 2 minutes at 20Hz. This change in 

load and rotation cycle is due to further analysis of shipboard machinery operation at 

various depths. 650 psi hydrostatic pressure is experienced at 1500ft, but at deeper 

depths such as 2000ft and 2900ft the hydrostatic pressure increases to a range of 974psi 

to 1,252psi (Liang, et. al. 1998). To accelerate the degradation process, higher loads 

and heightened rotation cycles were used.  
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Table 2.1 Instrument Specifications 

Instrument Model 

Electric Motor Dayton 2 HP General Purpose Motor, 3-
Phase, 3450 RPM, Voltage 230/460, 
Frame 56H 

Variable Frequency Drive Teco Westinghouse L510-101-H1-U VFD 

Hydraulic Press System Strongway 10 Ton Hydraulic Ram Pump 
and Strongway 2 Ton Hydraulic Mini 
Ram 

Test Bearing BL 35JA19 Radial Ball Bearing, Double 
Shielded Bearing Type, 25mm Bore Dia., 
52m 

Shaft/Motor Coupler 16mmx20mm Shaft Aluminum Alloy 
Motor Flexible Plum Coupling Coupler 

Acoustic Emission Data Acquisition 
System  

16-channel Sensor Highway II (SHII)  
from Physical Acoustics Corporation 

AE Sensor B1025 broadband sensors from Digital 
Wave Corporation 

Preamplifiers Signal preamplifiers (type 2/4/6, 
MISTRAS Group 
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Figure 2.1 Rotating Machine Test Bed without Shield 

Bearing 
Housing 
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Figure 2.2 Rotating Machine Test Bed with Shield 
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Figure 2.3 AE Data Acquisition Setup  
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Figure 2.4 Sensor Formation  
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CHAPTER 3 

ANALYSIS 
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3.1 Introduction  

 Four tests were done in order to classify crack growth of BL 35JA19 ball bearings. 

For each test, a new bearing with no detectable deformities was placed into the rotating 

machine test bed and run at various rotation cycles and loads (Table 3.1). The 

nondestructive monitoring technique used was acoustic emission. The acoustic emission 

data from each test was filtered by front end amplitude filters. These filters were chosen to 

have an amplitude of 60 dB based off the no force test. This filter removes environmental 

noise from being collected. Such data was then analyzed for each test.  

The data was analyzed by cumulative signal strength (CSS), k-means unsupervised 

clustering, continuous wavelet transform (CWT), and intensity analysis. The k-means 

unsupervised clustering was achieved by creating a correlation hierarchy diagram. Through 

the hierarchy diagram, it was determined that the lowest correlated features were rise time, 

energy, amplitude, average frequency, reverberation frequency, initiation frequency, 

absolute energy, frequency centroid, and peak frequency. These features were entered into 

the pre-process features, then the k-means unsupervised method with distance type of 

Euclidean was used to create three different clusters. This clustering method was used for 

all tests. In this chapter, the analyzed data will be presented and discussed for each test. 

The results from each test will then be compared to one another.  

3.2 Test 1 Analysis 

 The ball bearing was run to failure with a rotation cycle of 10 Hz, 15 Hz, and 20 

Hz and a pressure of 625 psi. Each frequency was run for a minute long. It took a total of 

25.8 hours for such bearing to fail. Failure occurred at the inner race as seen in Figure 3.1. 
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The failure was catastrophic, and the inner race was split in half and stuck onto the shaft 

(boxed in red in Figure 3.1).  

The three clusters for Test 1 are shown on the amplitude vs time and signal strength 

vs time graphs in Figures 3.2 and 3.3, respectively. Clusters 0, 1, and 2 are further explained 

in Test 2 Analysis. There are two major spikes in signal strength on the graphs which 

indicates damage. It is evident that there is a small degree of damage on the bearing within 

the first two hours and no damage was incurred until approximately two hours prior to 

failure.  

3.3 Test 2 Analysis 

 After Test 1, the pressure was increased to 1250 psi and rotation cycle to 15 Hz, 

and 20 Hz. Each frequency was run for two minutes long. The change in load and rotation 

cycle was chosen based on further analysis of shipboard machinery operation at various 

depths. At deeper depths, such as 2000 ft and 2900 ft, the hydrostatic pressure increases to 

a range of 974 psi to 1,252 psi. The increase in load and rotation cycle accelerated the 

degradation process and the bearing failed after 16.9 hours. Failure occurred at the inner 

race once again. The failed inner race can be seen in Figure 3.4. The amplitude vs time and 

signal strength vs time graphs for Test 2, which include the 3 different clusters, are shown 

in Figure 3.5 and 3.6 respectively. Figure 3.6 displays five spikes in signal strength which 

is 3 more spikes than Test 1. This is likely due to the increase in rotation cycle and load.  

 To further analyze each cluster, the waveforms and continuous wavelet transform 

for every cluster were investigated. The waveform and CWT for each cluster can be seen 

in Table 3.2. Cluster 0 has noisy waveforms and no localized events in CWT. Cluster 1 

also has a noisy waveform but the CWT of cluster 1 is slightly more localized unlike cluster 
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0. Cluster 2 is related to damage initiation and growth due to the localized event in terms 

of time and frequency of the CWT and a quality waveform. A localized event in CWT 

indicates high energy and a meaningful event. 

3.4 Test 3 Analysis 

 Test 3 has the same rotation cycle and load as Test 2. The test was stopped after 

15.15 hours due to a loud emission of noise. Little damage was seen on the runners but 

after further examination, there were minute defects on the balls of the bearing. The same 

filtering and clustering methods were used on Test 3 as in all other tests. The amplitude vs 

time and signal strength vs time graphs with clusters can be seen in Figure 3.7 and 3.8. 

These figures show no heighted amplitude or signal strength at failure for Test 3. This 

failure reaction is different than Tests 1 and 2 because the failure was due to the balls and 

not the runners. Even though the failure area is different, there is still about five spikes in 

signal strength like Test 2.  

3.5 Test 4 Analysis 

 A higher pressure of 1875 psi was introduced and the spikes in data due to damage 

initiation were validated with pictures throughout the time of testing. The photos of the 

bearing were taken with a high-resolution camera and a USB microscope camera was used 

to detect minute surface damages. This test was run for a total of 38.01 hours. 

The same filtering and clustering methods were like the other tests. The amplitude 

vs time and signal strength vs time graphs with classified clusters for Test 4 can be found 

in Figures 3.9 and 3.10, respectively. On Figure 3.9 dashed lines in various colors were 

used to denote when photographs were taken of the bearing. These colors coincide with 

the bordered images outlined in their respective color in Figure 3.11. These images show 
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a major outer runner damage increase. To clearly see the crack growth as related to signal 

strength, Figure 3.12 was created. Figure 3.12 shows that large spikes in signal strength 

correlate with increases in crack growth.  

3.6 Compiled Tests Analysis 

The four different tests show that jumps in signal strength correlate to crack growth, 

therefore all the tests are compared using CSS, and intensity analysis. The CSS of each test 

has been compiled onto Figure 3.13. It is evident that Test 4 experienced remarkably higher 

signal strengths for a longer period then all other tests. 

To get a better understanding of Tests 1-3, it was necessary to view the data within 

the first 15 hours (Figure 3.14). Figure 3.14 supports the finding that Test 4 endured much 

higher signal strength than the other tests, but it shows that Test 1 had the lowest of all 

CSS. Test 1 had the lowest and slowest pressure and rotation cycle, so it has the lowest 

signal strength. Test 2 and Test 3 had the same setup parameters, so their CSS are close to 

one another after 8 hours.  

  Intensity analysis for damage quantification was conducted for each test and 

compared. Each test was separated into either 3 or 4 sections based on signal strength 

spikes. The section separations for Test 1, Test 2, Test 3, and Test 4 can be found in Figures 

3.15, 3.16, 3.17, and 3.18, respectively. Note that S1, S2, S3, S4 are the notations for 

Section 1, Section 2, Section 3, and Section 4, respectively. 

Each of these sections were assigned a severity and historic index based on the 

formulas provided in the literature review (Eq. 1.1 & 1.2). The entire data set for each test 

was also assigned a severity and historic index (seen on Figure 3.19 as “All”). These values 

can be found on the intensity plot in Figure 3.19.  
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The intensity plot was split into three different areas depending on level of damage 

occurred, those being: minimal damage, crack initiation and propagation, and failure. The 

intensity values of less damage are plotted near the bottom left of the plot while the values 

of high damage are found in the top right corner. It is seen that the historic index for 

sections 2 and 3 of all tests is higher than section 4 of the respective test. Sections 2 and 3 

are in the middle of the tests and are where crack propagates. Section 4 is at the end of the 

tests and is where failure of the bearing happens. This points to the conclusion that crack 

initiation and propagation has a greater severity and historic index then at failure of the 

bearing.  

The coefficient of variance was calculated for all parameters pertinent to analysis. 

The coefficient of variance is calculated by dividing the standard deviation by the mean of 

all sensors that had a response to the same hit. The parameters pertinent to analysis are 

historic index, signal strength, amplitude, absolute energy, frequency centroid, and peak 

frequency. The coefficient of variance of all these parameters can be seen in Table 3.3. 
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  Table 3.1 Setup per Test  

 Test 1 Test 2 Test 3 Test 4 
Running Time 25.8 hours 16.9 hours 15.15 hours 38.01 hours 
Pressure 625 psi 1250 psi 1250 psi 1875 psi 
Rotation 
Cycle 

10Hz, 15Hz, 
20Hz every 
minute 

15Hz, 20Hz 
every two 
minutes 

15Hz, 20Hz 
every two 
minutes 

15Hz, 20Hz 
every two 
minutes 

Picture 
Timing 

After Failure After Failure After Failure After major 
spikes in 
data 

!

Table 3.2 Cluster Waveforms and Continuous Wavelet Transform 
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     Table 3.3 Coefficient of Variance 
 

 Coefficient of Variance  
Historic Index 9.11% 
Signal Strength 4.36% 
Amplitude 1.52% 
Absolute Energy 4.51% 
Frequency Centroid 1.11% 
Peak Frequency 1.71% 
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Figure 3.1 Test 1 Bearing Failure 
 
 
 
 
 

 
 
Figure 3.2 Test 1 Amplitude vs Time 
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Figure 3.3 Test 1 Signal Strength vs Time 
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Figure 3.4 Test 2 Bearing Failure 
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Figure 3.5 Test 2 Amplitude vs Time  
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Figure 3.6 Test 2 Signal Strength vs Time 
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Figure 3.7 Test 3 Amplitude vs Time 
 
 
 
 
 
 
 

 
 
Figure 3.8 Test 3 Signal Strength vs Time 
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Figure 3.9 Test 4 Amplitude vs Time 
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Figure 3.10 Test 4 Signal Strength vs Time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11 Intermediate Bearing Images 
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Figure 3.12 Test 4 Number of Cracks and Signal Strength vs Time 
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Figure 3.13 Cumulative Signal Strength for all Tests  
 
 
 
 

 
 
 
Figure 3.14 Cumulative Signal Strength for all Tests Hours 1-15 
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Figure 3.15 Test 1 Signal Strength vs Time in Sections 
 
 
 
 
 
 
 

 
 
Figure 3.16 Test 2 Signal Strength vs Time in Sections 
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Figure 3.17 Test 3 Signal Strength vs Time in Sections 
 
 
 

 
 
Figure 3.18 Test 4 Signal Strength vs Time in Sections 
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  Figure 3.19 Intensity Plot for all Tests 
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CHAPTER 4 

CONCLUSION



!

49!

4.1 Summary 

 Rolling element bearings are pivotal to most all rotating machinery. Quality 

performance of rolling element bearings are necessary to ensure the machine does what it 

is intended for. To prevent degradation to machine performance and unexpected system 

failure, bearing fault diagnosis and prognosis must be used. Acoustic emission monitoring 

is a technique which can assess and evaluate bearing condition. The testing done focused 

on nondestructively monitoring the crack growth in rolling element bearings in a marine 

environment and determining the acoustic emission parameters which embody crack 

initiation and propagation.  

 Four rolling element bearings were tested in a specially made rotating machine test 

bed. The rotating machine test bed ensures that a bearing may be rotated at high speeds in 

various cycles while enduring a downward force of up to 4000 pounds through a hydraulic 

system. Acoustic emission data was collected for each bearing. The first bearing was tested 

with a load of 625psi with a rotation cycle of 1 minute at the following rates: 10Hz, 15Hz, 

and 20Hz. The next two bearings were tested with a load of 1250psi with a rotation cycle 

of 2 minutes at 15Hz and then 2 minutes at 20Hz. The last bearing was tested with a load 

of 185psi with a rotation cycle of 2 minutes at 15Hz and then 2 times at 20Hz. This change 

in load and rotation cycle was done in order to accelerate the degradation process. 

4.2 Conclusions 

 Several Conclusions were drawn from this experiment: 

•! The AE data was separated into three clusters using k-means unsupervised pattern 

recognition method with distance type of Euclidean. Two clusters are categorized 

as relatively indistinct. The other cluster is related to damage initiation and growth 
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due to the localized event in terms of time and frequency of the CWT, and a quality 

wave form. The clustering method used successfully classified crack initiation and 

propagation. 

•! Useful AE parameters for classifying crack propagation are: 

o!  amplitude (above 90 dB), 

o! initiation frequency (below 20000 kHz), 

o! absolute energy (above 1E7 J),  

o! frequency centroid (below 215 kHz), 

o! peak frequency (below 150 kHz), and 

o! signal strength (above 5E7 pVsec). 

•! Signal strength was a useful parameter in understand the progression of damage. 

Three to four sections were defined based on spikes in signal strength. It was 

determined that the severity index and historic index at crack initiation and 

propagation is much higher than at the final section where failure occurred.  

•! AE is suitable for remote monitoring of bearing degradation. With the use of signal 

alarms based upon the clustering method and parameters discussed, one can be 

notified when a crack is propagating and prepare for failure of the bearing.  
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