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Abstract

This thesis studies some problems in extremal and probabilistic combinatorics, Ricci

curvature of graphs, spectral hypergraph theory and the interplay between these ar-

eas. The first main focus of this thesis is to investigate several Ramsey-type problems

on graphs, hypergraphs and sequences using probabilistic, combinatorial, algorithmic

and spectral techniques:

• The size-Ramsey number R̂(G, r) is defined as the minimum number of edges in

a hypergraph H such that every r-edge-coloring of H contains a monochromatic

copy of G in H. We improved a result of Dudek, La Fleur, Mubayi and Rödl [

J. Graph Theory 2017 ] on the size-Ramsey number of tight paths and extended

it to more colors.

• An edge-colored graph G is called rainbow if every edge of G receives a different

color. The anti-Ramsey number of t edge-disjoint rainbow spanning trees, de-

noted by r(n, t), is defined as the maximum number of colors in an edge-coloring

of Kn containing no t edge-disjoint rainbow spanning trees. Confirming a con-

jecture of Jahanbekam and West [J. Graph Theory 2016], we determine the

anti-Ramsey number of t edge-disjoint rainbow spanning trees for all values of

n and t.

• We study the extremal problems on Berge hypergraphs. Given a graph G =

(V,E), a hypergraph H is called a Berge-G, denoted by BG, if there exists

an injection i ∶ V (G) → V (H) and a bijection f ∶ E(G) → E(H) such that for

every e = uv ∈ E(G), (i(u), i(v)) ⊆ f(e). We investigate the hypergraph Ramsey
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number of Berge cliques, the cover-Ramsey number of Berge hypergraphs, the

cover-Turán desity of Berge hypergraphs as well as Hamiltonian Berge cycles

in 3-uniform hypergraphs.

The second part of the thesis uses the ‘geometry’ of graphs to derive concentration

inequalities in probabilities spaces. We prove an Azuma-Hoeffding-type inequality in

several classical models of random configurations, including the Erdős-Rényi random

graph models G(n, p) and G(n,M), the random d-out(in)-regular directed graphs,

and the space of random permutations. The main idea is using Ollivier’s work on

the Ricci curvature of Markov chairs on metric spaces. We give a cleaner form of

such concentration inequality in graphs. Namely, we show that for any Lipschitz

function f on any graph (equipped with an ergodic random walk and thus an invariant

distribution ν) with Ricci curvature at least κ > 0, we have

ν (∣f −Eνf ∣ ≥ t) ≤ 2 exp(−t
2κ

7 ) .

The third part of this thesis studies a problem in spectral hypergraph theory,

which is the interplay between graph theory and linear algebra. In particular, we

study the maximum spectral radius of outerplanar 3-uniform hypergraphs. Given a

hypergraph H, the shadow of H is a graph G with V (G) = V (H) and E(G) = {uv ∶

uv ∈ h for some h ∈ E(H)}. A 3-uniform hypergraph H is called outerplanar if its

shadow is outerplanar and all faces except the outer face are triangles, and the edge set

of H is the set of triangle faces of its shadow. We show that the outerplanar 3-uniform

hypergraph on n vertices of maximum spectral radius is the unique hypergraph with

shadow K1 + Pn−1.

viii



Table of Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Terminology and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Summary of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Ramsey-type problems . . . . . . . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Size-Ramsey number of tight paths . . . . . . . . . . . . . . . . . . . . . 12

2.3 Anti-Ramsey number of edge-disjoint rainbow spanning trees . . . . . 22

2.4 Ramsey number of Berge hypergraphs . . . . . . . . . . . . . . . . . . . 45

2.5 cover-Ramsey number of Berge hypergraphs . . . . . . . . . . . . . . . 65

2.6 Erdős-Szekerem theorem for cyclic permutations . . . . . . . . . . . . . 76

Chapter 3 Turán-type and Dirac-type problems . . . . . . . . . . . 89

ix



3.1 cover-Turán number of Berge hypergraphs . . . . . . . . . . . . . . . . . 89

3.2 On Hamiltonian Berge cycles in 3-uniform hypergraphs . . . . . . . . . 104

Chapter 4 Ricci curvature of graphs and concentration in-
equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2 Ricci Curvatures of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4 Applications to random models of configurations . . . . . . . . . . . . . 130

Chapter 5 Maximum spectral radius of outerplanar 3-uniform
hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Proof of Theorem 5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

x



List of Figures

Figure 2.1 Extremal examples for k = 4 and ` = 5. . . . . . . . . . . . . . . . . . 80

Figure 2.2 Extremal sequences for k = 4 and ` = 5 with distorted grid
representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 3.1 C5(1, s, s, s, s) and C3(s, s, s;{{1,2}}) . . . . . . . . . . . . . . . . . 92

Figure 3.2 Characterization of 3-degenerate graphs. . . . . . . . . . . . . . . . 92

Figure 3.3 Equivalence of characterizations in Corollary 3.1.1 and 3.1.2. . . 103

Figure 3.4 Using a bridge to extend the cycle. . . . . . . . . . . . . . . . . . . . 111

Figure 3.5 Remaining five cases: (a): n = 10; (b): n = 8; (c): n = 7; (d),(e):
n = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 4.1 Exponents for upper tails in the small subgraphs problem [112] . . 138

Figure 5.1 The graph P1 + Pn−1 (left) and P2 + Pn−1 (right). . . . . . . . . . . . 147

Figure 5.2 Neighborhood of v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Figure 5.3 Neighborhood of edges vivi+1. . . . . . . . . . . . . . . . . . . . . . . 152

Figure 5.4 Average multiplicity of edges in E′/Γ(v0) . . . . . . . . . . . . . . . 153

Figure 5.5 Average multiplicity of edges in E′/Γ(u0) . . . . . . . . . . . . . . . 156

xi



Chapter 1

Introduction

1.1 Overview

This thesis studies the interplay between extremal combinatorics, probabilistic meth-

ods, discrete geometry, and spectral graph theory. Given a combinatorial structure

(e.g. graphs, sequences, poset, etc.), questions in extremal combinatorics are con-

cerned about optimizing some graph parameter subject to a certain constraint. For

example, the classical Turán’s theorem studies the maximum number of edges in an

n-vertex graph without a complete graph Kr+1 as a subgraph. In recent decades,

probabilistic methods, largely initiated by Paul Erdős, have been hugely successful in

tackling challenging problems not only in combinatorics, but also in number theory,

discrete geometry, etc. The basic approach is as follows: in order to show that some

combinatorial structure satisfies certain property, one first defines an appropriate

probability space, and then shows that a randomly chosen element in this probabil-

ity space satisfies the desired property with positive probability. Part of this thesis

(Chapter 2 and 3) will highlight some applications of probabilistic tools and random

constructions in some Ramsey-type and Turán-type problems. Conversely, the ‘ge-

ometry’ of graphs also reveals nice properties of probability measures. In Riemannian

geometry, manifolds with non-negative Ricci curvature enjoy many interesting prop-

erties, some with probabilistic interpretations. Ricci curvature can also be defined on

the Markov chains of metric spaces [143], or more specifically graphs (see e.g., [155,

130, 129]). Given a Lipschitz function f on any graph G equipped with an ergodic
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random walk and thus an invariant distribution, one can obtain asymptotically sharp

concentration results of f using the lower bound of the Ricci curvature of G. These

concentration results can then be used to derive Azuma-Hoeffding-type inequalities

in several classical graph models [132]. See Chapter 4 or [132, 143] for more details.

Besides probability and geometry, linear algebra has also proven to be a very power-

ful tool in solving combinatorial problems. One of the main approaches in this area

(which is called spectral graph theory) is to use the eigenvalues and eigenvectors of

an appropriate matrix associated to a graph to deduce combinatorial properties of

the graph (see e.g., [30]). Recently, spectral tools have been extended and intensively

developed in hypergraphs as well. One of the main directions in this area is to find

the largest spectral radius of a hypermatrix associated to a hypergraph that satisfies

certain constraints and characterize the extremal hypergraphs. Similar to graph case,

results in spectral hypergraph theory could potentially shed new lights on extremal

hypergraph theory, which the mathematics community knows very little in general

at this point. Chapter 5 will determine the maximum spectral radius of an n-vertex

3-uniform outerplanar hypergraph as well as the unique extremal hypergraph.

1.2 Terminology and Notations

We will list some basic definitions and notations that will be used throughout the

thesis.

(1) Interval Notation: For integers n,m with m ≥ n ≥ 1, we use the notation

[n] = {1,2,⋯, n}, and [n,m] = {n,n + 1,⋯,m − 1,m}.

(2) Set Notation: For a discrete finite set A and integer k ≥ 1, define (A
k
) = {S ⊂

A ∶ ∣S∣ = k}. We also use 2A to denote the power set of A.

(3) Asymptotic Notation: Given two functions f, g ∶ Z+ → R, we say f = O(g)

if there exist some constants C and n0 such that for all n ≥ n0, f(n) ≤ Cg(n).

2



We say f = o(g) if lim
n→∞

f(n)
g(n) = 0. We write f = Ω(g) if g = O(f) and f = ω(g)

if g = o(f). Moreover, we say f = Θ(g) if f = O(g) and g = O(f).

(4) Basic Hypergraph Terminology: A hypergraph H = (V,E) is a pair (V,E)

such that V is the vertex set and E is the edge set where each edge h ∈ E

is a subset of V . We use V (H),E(H) to denote the vertex set and edge set

of H respectively. A hypergraph is sometimes considered as a collection of

hyperedge. Thus ∣H∣ is commonly used to denote the number of hyperedges of

H. Sometimes we may also use v(H) and e(H) to denote the number of vertices

and edges of H respectively. The neighborhood of a vertex v in H, denoted by

NH(v) or ΓH(v), is defined by NH(v) = {h ∶ v ∉ h,h ∪ {v} ∈ E(H)}. The degree

of a vertex, denoted by dH(v), is ∣NH(v)∣. We use δ(H) and ∆(H) to denote the

minimum and maximum degree of H respectively. Moreover generally, given an

R-graph H = (V,E) and a set S ∈ (V
s
), we use deg(S) (or simply d(S)) to denote

the number of edges containing S and δs(H) be the minimum s-degree of H,

i.e., the minimum of deg(S) over all s-element sets S ∈ (V
s
). Given a graph H

and S ⊆ V (H), we use H[S] to denote the subgraph of H induced by S, i.e.,

V (H[S]) = S and E(H[S]) = {h ∈ E(H), h ⊆ S}. A hypergraph H is r-uniform

if every edge has cardinality r. More generally, given a set of positive integers

R, a hypergraph H is R-uniform if the cardinality of each edge of H belongs

to R. We use Kr
n to denote the n-vertex r-uniform complete graph (or clique),

i.e., every r-subset of the vertex set is a hyperedge.

(5) Basic Graph Terminology: A graph G = (V,E) is simply a 2-uniform hy-

pergraph. A graph G is simple if there is no loop (i.e., edge of the form (v, v)

for some v ∈ V (G)) and no multiple edges between two vertices. Given a simple

graph G, it is also common in the literature (in the absence of hypergraph) to

use ∣G∣ to denote ∣V (G)∣ and ∥G∥ to denote ∣E(G)∣.

3



(6) Berge hypergraph: Given a graph G, a hypergraph H is called a Berge-G,

denoted by BG, if there exists an injection i ∶ V (G) → V (H) and a bijection

f ∶ E(G) → E(H) such that for every e = uv ∈ E(G), (i(u), i(v)) ⊆ f(e).

(7) Shadow: Given a hypergraph H, the 2-shadow(or shadow) of H, denoted by

∂(H), is a simple 2-uniform graph G = (V,E) such that V (G) = V (H) and

uv ∈ E(G) if and only if {u, v} ⊆ h for some h ∈ E(H).

1.3 Summary of main results

We will briefly describe the main results in this thesis. Each chapter or section (if

necessary) will also have its own introduction containing more definitions, historical

backgrounds and prior results.

Size-Ramsey number of tight paths in hypergraphs

The size-Ramsey number R̂(G, r) is defined as the minimum number of edges in

a graph H such that every r-edge-coloring of H contains a monochromatic copy

of G in H. Size-Ramsey number was first studied by Erdős, Faudree, Rousseau

and Schelp [64] in 1978. Answering a question of Erdős [62], Beck [13] showed by

a probabilistic construction that the size-Ramsey number of a path on n vertices

R̂(Pn,2) = O(n). Dudek, La Fleur, Mubayi and Rödl [54] initiated the systematic

study of the size-Ramsey number of hypergraphs. There are several ways to define a

path in a hypergraph. An `-path, denoted by P(k)
n,` , is a k-uniform hypergraph with

vertex set [n] and edge set containing intervals of length k in [n] and consecutive

edges intersect in exactly l vertices. When ` = k−1, we call P(k)
n,k−1 a tight path. Dudek,

La Fleur, Mubayi and Rödl [54] showed that R̂(P(k)
n,k−1,2) = O(nk−1−α(logn)1+α) where

α = k−2
(
k−1

2 )+1
. In Chapter 2.2, we improved their results and extended it to more colors:

Theorem. R̂(P(k)
n,k−1, r) = O(rk(n logn)k/2) for all k ≥ 3 and r ≥ 2.

4



Anti-Ramsey number of spanning trees

Given an edge-colored G, a subgraph H of G is rainbow if all the edges of H receive

distinct colors. The general anti-Ramsey problem asks for the maximum number of

colors in an edge-coloring of Kn having no rainbow copy of some graph in a class

G. Let r(n, t) be the maximum number of colors in an edge-coloring of Kn not

having t edge-disjoint rainbow spanning trees. Akbari and Alipour [2] showed that

r(n,2) = (n−2
2 ) + 2 for n ≥ 6. Jahanbekam and West [109] showed that

r(n, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(n−2
2 ) + t for n > 2t +

√
6t − 23

4 + 5
2

(n2) − t for n = 2t,

and they conjectured that r(n, t) = (n−2
2 ) + t whenever n ≥ 2t + 2 ≥ 6. In Chapter 2.3

we confirm their conjecture in the positive. In particular we showed that

Theorem. For all positive integers t,

r(n, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−2
2 ) + t for n ≥ 2t + 2

(n−1
2 ) for n = 2t + 1

(n2) − t for n = 2t,

Ramsey number of Berge hypergraphs

The Ramsey number of Berge hypergraphs, denoted as Rr(BG,BG), is defined as

the smallest integer n0 such that for any 2-edge-coloring of a complete r-uniform

hypergraph on n ≥ n0 vertices, there is a monochromatic Berge-G subhypergraph.

In collaboration with Nika Salia, Casey Tompkins and Oscar Zamora, we completely

determined the 2-color Ramsey number of Berge-Kt.
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Theorem.

R3(BKs,BKt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t + s − 1 if s = t = 2, s = t = 3 or {s, t} = {2,3} or {s, t} = {2,4},

t + s − 2 if s = 2, t ≥ 5, or s = 3, t ≥ 4 or s = t = 4,

t + s − 3 if s ≥ 4 and t ≥ 5.

We also showed that R4(BKt,BKt) = t + 1 when t ≥ 6 and Rr(BKt,BKt) = t

when r ≥ 5 and t ≥ t0(r) for some t0(r).

Cover-Ramsey and cover-Turán number of Berge hypergraphs

Following up on the research of the Ramsey number of Berge hypergraphs, We ap-

proach the study of Berge hypergraphs from the perspectives of the shadow graph.

We define a new type of Ramsey number, namely the cover Ramsey number, de-

noted as R̂R(BG1,BG2), as the smallest integer n0 such that for every R-uniform

hypergraph H on n ≥ n0 vertices whose shadow is a complete graph, and every 2-

edge-coloring (blue and red) of H , there is either a blue Berge-G1 or a red Berge-G2

sub-hypergraph. When R = {2}, R̂R(BG1,BG2) is exactly the classical Ramsey num-

ber. This variant of Ramsey number of Berge hypergraphs more closely resembles

the behavior of the classical Ramsey number, as exhibited by the following theorem.

Theorem. For every k ≥ 2, there exists ck > 0 such that for any two finite graphs G1

and G2,

R(G1,G2) ≤ R̂[k](BG1,BG2) ≤ ck ⋅R(G1,G2)3.

Theorem.

1. For every k ≥ 2 and sufficiently large t,

R̂{k}(BKt,BKt) > (1 + o(1))
√

2
e
t2t/2.

6



2. For each positive integer d and k, there exists a constant c = c(d, k) such that

if G is a graph on n vertices with maximum degree at most d, then

R̂[k](BG,BG) ≤ cn.

Similarly, we also define a variant of the Turán number of Berge hypergraphs from

the persepctives of the shadow. In particular, define the R-cover Turán number of

G, denoted as êxR(n,G), as the maximum number of edges in the shadow graph of

a Berge-G-free R-graph on n vertices. We also define the R-cover Turán density,

denoted as π̂R(G), as π̂R(G) = lim sup
n→∞

êxR(n,G)
(n2)

. In Section 3.1, we showed an

analogue of the Erdős-Stone-Simonovits theorem on the cover Turán number of Berge

hypergraphs:

Theorem. For any fixed graph G and any fixed ε > 0, there exists n0 such that for

any n ≥ n0,

êxk(n,G) ≤ (1 − 1
χ(G) − 1 + ε)(n2).

Moreover, if χ(G) ≥ k + 1, then π̂k(G) = 1 − 1
χ(G)−1 .

For 3-uniform hypergraphs, we then completely determine the cover Turán density

of all graphs:

Theorem. Given a simple graph G,

π̂3(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1
χ(G)−1 if χ(G) ≥ 4,

0 if G is a subgraph of one of the graphs in Figure 3.2,

1
2 otherwise.

Hamiltonian Berge cycles in covering hypergraph

Given a graph G, a spanning cycle of G is also called the Hamiltonian cycle of G. One

of the earliest results on Hamiltonian cycle is the Dirac’s Theorem which states that
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every n-vertex graph with minimum degree δ ≥ n/2 contains a Hamiltonian cycle. In

Section 3.2, we study the minimum 2-degree threshold for Berge Hamiltonian cycles

in hypergraphs. We call a hypergraph H covering if its shadow is a complete graph.

The following theorem can be implied from a series of results on rainbow spanning

structures in a k-bounded edge-colored graph [68, 101, 78, 4, 77, 21, 46]:

Theorem. For any fixed r ≥ 2 and any set of integers R ⊆ [r], any sufficiently

large covering R-graph H is Berge-pancyclic, i.e., it contains a Berge cycle Cs for any

3 ≤ s ≤ n.

In fact, [21] allows us to find Berge copies of general spanning graphs with max-

imum degree increasing with n while [46] only requires the shadow of H to have

minimum degree at least n/2. All theorems above require H to have sufficiently large

number of vertices. We show a more precise result when r = 3: every covering [3]-

graph H on n ≥ 6 vertices contains a Berge cycle Cs for any 3 ≤ s ≤ n. Moreover, every

covering [3]-graph H on n ≥ 6 vertices contains a Hamiltonian Berge path. Using

the theorems above, we determined the maximum Lagrangian λ of Berge-Ct-free and

Berge-Pt-free hypergraphs respectively:

Theorem. For fixed k ≥ 2 and sufficiently large t = t(k) and n ≥ t, let H be a

k-uniform hypergraph on n vertices without a Berge-Ct (or Berge-Pt respectively).

Then

λ(H) ≤ λ(Kk
t−1) =

1
(t − 1)k (

t − 1
k

).

Ricci curvature and concentration inequalities

Consider a graph (loops allowed) G = (V,E) equipped with a random work m ∶=

{mv ∶ v ∈ V } where mv ∶N(v) → [0,1] is a distribution for each vertex v, i.e.,

∑
x∈N(v)

mv(x) = 1.

8



Assume that this random walk is ergodic so that an invariant distribution ν exists.

A function f ∶V → R is called c-Lipschitz on G if ∣f(u) − f(v)∣ ≤ c for any uv ∈ E(G).

Given a graph G (equipped with a random walk) with positive Ricci curvature at least

κ > 0 (see Chapter 4 for definition), we can derive the following Azuma–Hoeffding-

type concentration inequalities:

Theorem. Suppose that a graph G = (V,E) equipped with an ergodic random walk

m (and invariant distribution ν) has a positive Ricci curvature at least κ > 0. Then

for any 1-Lipschitz function f and any t ≥ 1, we have

ν (f −Eν[f] > t) ≤ exp(−t
2κ

7 ), (1.1)

ν (f −Eν[f] < −t) ≤ exp(−t
2κ

7 ). (1.2)

In Chapter 4, we will give applications of the above theorem in four classical

models of random configurations, including the Erdős-Rényi random graph model

G(n, p) and G(n,M), the random d-out(in)-regular directed graphs, and the space

of random permutations.

Maximum spectral radius of 3-uniform planar hypergraph

A graph is outerplanar if it can be embedded in the plane such that all vertices lie on

the boundary of its outer face. We say a 3-uniform hypergraph H is outerplanar if

∂(H) is outerplanar, all faces except the outer face are triangles, and the edge set of

H is the set of triangle faces of its shadow. Given an r-uniform hypergraph H on n

vertices, the polynomial form of H is a multi-linear function PH(x) ∶ Rn → R defined

for any vector x = (x1, x2, . . . , xn) ∈ Rn as

PH(x) = r ∑
{i1,i2,...,ir}∈E(G)

xi1xi2⋯xir .

The spectral radius λ of H, introduced by Cooper and Dutle [45], is defined as

λ(H) ∶= max
∣∣x∣∣r=1

PH(x) = max
x∈R

PH(x)
∥x∥rr

,
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where ∣∣x∣∣r ∶= (∣x1∣r + ∣x2∣r + ⋯ + ∣xn∣r)1/r. If x ∈ Rn is a vector with ∣∣x∣∣r = 1 and

PH(x) = λ(H), then x is called an eigenvector corresponding to λ(H).

v0

v1 v2 vn−2 vn−1...

In Chapter 5, we show the hypergraph analogue of a conjecture by Cvetković and

Rowlinson [47]:

Theorem. For large enough n, the outerplanar 3-uniform hypergraph graph H on

n vertices of maximum spectral radius is the unique hypergraph whose shadow is

K1 + Pn−1.
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Chapter 2

Ramsey-type problems

2.1 Introduction

Ramsey theory is among the oldest and most intensely investigated topics in combi-

natorics. The Ramsey number Rk(m,n), is the minimum N such that every red-blue

coloring of the edges of Kk
N contains a monochromatic red copy of Kk

m or a monochro-

matic blue copy of Kk
n. The existence of the Ramsey number Rk(m,n) follows from

the seminal result of Ramsey [146] from 1930. When restricted to (2)-graphs, we

ignore the superscript and denote R2(m,n) as R(m,n).

Determining the Ramsey number is a notoriously hard problem. Even R(5,5) is

unknown despite the advancement of our computing capabilities. The classical results

of Erdős and Szekeres [73] and Erdős [63] gives that Ω(2n/2) = R(n,n) = O(22n). The

best known lower and upper bounds for R(n,n) are

(1 + o(1))
√

2n
e

(
√

2)n ≤ R(n,n) ≤ n−c logn/(log logn)4n,

shown by Spencer [161] and Conlon [43] respectively. For hypergraph diagonal Ram-

sey number, a result of Erdős, Hajnal and Rado [66] established that 2c1n2 < r3(n,n) <

22c2n for some absolute constants c1 and c2. Alternative proof of the lower bound

above was also given by Conlon, Fox and Sudakov [44]. More generally, for k ≥ 4, the

best lower and upper bounds (see [73, 69, 65]) are

twrk−1(c1n
2) ≤ Rk(n,n) ≤ twrk(c2n),

where the tower function twrk(x) is defined by twr1(x) = x and twri+1(x) = 2twri(x).
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For more results on hypergraph Ramsey numbers, see e.g., [140] for an excellent

survey.

Generalizing the spirit of the Ramsey number, Ramsey-type problems embed the

idea that in every partition of a sufficiently large structured object, one of the classes

is guaranteed to contain a large structured sub-object. In this chapter, we discuss

several Ramsey-type results on graphs, hypergraphs, and sequences.

2.2 Size-Ramsey number of tight paths

Given two simple graphs G and H and a positive integer r, say that H → (G)r if every

r-edge-coloring of H results in a monochromatic copy of G in H. In this notation, the

Ramsey number R(G) of G is the minimum n such that Kn → (G)2. The size-Ramsey

number R̂(G, r) of G is defined as the minimum number of edges in a graph H such

that H → (G)r, i.e.,

R̂(G, r) =min{∣E(H)∣ ∶H → (G)r}.

When r = 2, we ignore r and simply use R̂(G).

Size-Ramsey number was first studied by Erdős, Faudree, Rousseau and Schelp

[64] in 1978. By the definition of R(G), we have

R̂(G) ≤ (R(G)
2 ).

Chvátal (see, e.g.[64]) showed that this bound is tight for complete graphs, i.e.

R̂(Kn) = (R(Kn)
2 ). Answering a question of Erdős [62], Beck [13] showed by a proba-

bilistic construction that

R̂(Pn) = O(n).

Alon and Chung [5] gave an explicit construction of a graph G with O(n) edges such

that G → Pn. Recently, Dudek and Prałat [55] provided a simple alternative proof

for this result (See also [127]). The best upper bound R̂(Pn) ≤ 74n is due to Dudek

and Prałat [56] by considering a random 27-regular graph of a proper order.
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Analogously, size-Ramsey number has also been studied in hypergraphs. A k-

uniform hypergraph G on a vertex set V (G) is a family of k-element subsets (called

edges) of V (G). We use E(G) to denote the edge set. Given k-uniform hypergraphs G

and H, we say that H → (G)r if every r-edge-coloring of H results in a monochromatic

copy of G in H. Define the size-Ramsey number R̂(G, r) of a k-uniform hypergraph

G as

R̂(G, r) =min{∣E(H)∣ ∶ H → (G)r}.

When r = 2, we simply use R̂(G) for the ease of reference.

Bielak and Gorgol, in [17], first investigated the size-Ramsey number of k-stars

as well as the asymmetric size-Ramsey number of 3-uniform cliques and small 3-

stars. Dudek, La Fleur, Mubayi, and Rődl [54] initiated the study of (symmetric)

size-Ramsey number of cliques, paths, trees and bounded degree hypergraphs in k-

uniform hypergraphs. In this section, we focus on the size-Ramsey number of paths.

Given integers 1 ≤ l < k and n ≡ l (mod k − l), an l-path P(k)
n,l is a k-uniform

hypergraph with vertex set [n] and edge set {e1,⋯, em}, where ei = {(i − 1)(k − l) +

1, (i−1)(k−l)+2,⋯, (i−1)(k−l)+k} and m = n−l
k−l , i.e. the edges are intervals of length

k in [n] and consecutive edges intersect in exactly l vertices. A P(k)
n,1 is commonly

referred as a loose path and a P(k)
n,k−1 is called a tight path.

Dudek, La Fleur, Mubayi and Rődl [54] showed that when l ≤ k
2 , the size-Ramsey

number of a path P(k)
n,l can be easily reduced to the graph case. In particular, they

showed that if 1 ≤ l ≤ k
2 , then

R̂ (P(k)
n,l ) ≤ R̂(Pn) = O(n).

For tight paths, they showed in the same paper that for fixed k ≥ 3,

R̂ (P(k)
n,k−1) = O(nk−1−α(logn)1+α),

where α = (k − 2)/((k−1
2 ) + 1). Observe that R̂ (P(k)

n,l ) ≤ R̂ (P(k)
n,k−1). Thus any upper
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bound on the size-Ramsey number of tight paths is also an upper bound for other

l-path P(k)
n,l .

Motivated by their approach, we use a different probabilistic construction and

improve the upper bound to O((n logn)k/2). In particular, we show the following

result on the multi-color size-Ramsey number of tight paths in hypergraphs:

Theorem 2.2.1. For any fixed k ≥ 3, any r ≥ 2, and sufficiently large n, we have

R̂ (P(k)
n,k−1, r) = O (rk(n logn) k2 ) .

Remark 2.2.1. For k = 3, our upper bound is the same as the upper bound by Dudek,

La Fleur, Mubayi and Rődl. Very recently, Han, Kohayakawa, Mota and Parczyk [102]

showed that R̂(P(3)
n,2 ,2) = O(n). The case for general k is still open.

2.2.1 Proof of Theorem 2.2.1

The approach of our proof is inspired by Dudek, La Fleur, Mubayi and Rődl’s ap-

proach in their proof of Theorem 2.8 in [54]. In their proof, they constructed their

hypergraph by setting edges to be the k-cliques of an Erdős-Rényi random graph.

Then they use a greedy algorithm to show that the number of edges of each color

is smaller than 1
r fraction of the total number of edges, which gives a contradiction.

Motivated by their approach, we use the same greedy algorithm but a different prob-

abilistic construction of the hypergraph. Instead of using k-cliques of an Erdős-Rényi

random graph as edges, we use k-cycles of a random Ck-colorable graph (which will

be defined later) as edges.

Throughout the section, we will use the following version of Chernoff inequalities

for the binomial random variables X ∼ Bin(n, p) (for details, see, e.g. [28]):

Pr (X ≤ E(X) − λ) ≤ exp(− λ2

2E(X)) , (2.1)
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Pr (X ≥ E(X) + λ) ≤ exp(− λ2

2(E(X) + λ/3)) . (2.2)

We follow a similar notation as [54]. A graph G is Ck-colorable if there is a graph

homomorphism π mapping G to the cycle Ck. That is, V (G) can be partitioned into

k-parts V1 ∪ V2 ∪⋯ ∪ Vk so that E(G) ⊆
k

⋃
i=1
E(Vi, Vi+1) with Vk+1 = V1 and E(Vi, Vi+1)

denoting the set of edges between a vertex in Vi and a vertex in Vi+1. For such a graph

G, we say a k-cycle C in G is proper if it intersects each Vi by exactly one vertex.

For 1 ≤ l ≤ k − 1, we say a path Pl of l vertices in G is proper if it intersects each Vi

by at most one vertex. Let Tk−1(G) denote the set of all proper (k − 1)-paths in G.

Let B ⊆ Tk−1 be a family of pairwise vertex-disjoint proper (k − 1)-paths. Let tB be

the total number of proper k-cycles in G that extend some B ∈ B. For A ⊆ V , define

yA,B as the number of proper k-cycles in G that extend a proper (k − 1)-path B ∈ B

with a vertex v ∈ A ∪⋃B∈B V (B). Given C ⊆ V (G), we use zC to denote the number

of proper k-cycles in G that intersect C. We use tk to denote the total number of

proper k-cycles in G.

We say an event in a probability space holds a.a.s. (aka, asymptotically almost

surely) if the probability that it holds tends to 1 as n goes to infinity. Finally, we use

logn to denote natural logarithms.

Proposition 2.2.1. For every r ≥ 2, k ≥ 3, and sufficiently large n, there exists a

Ck-colorable graph G = (V,E) of order 16k3rn satisfying the following:

(i) For every B consisting of n pairwise vertex-disjoint proper (k − 1)-paths, and

every A ⊆ V ∖⋃B∈B V (B) with ∣A∣ ≤ n, we have

yA,B <
1

2kr tB.

(ii) For every C ⊆ V with ∣C ∣ ≤ (k − 1)n, we have

zC < tk
2r .

15



(iii) The total number of proper k-cycles satisfies

tk = O(rk(n logn)k/2).

Proof. Set c = 16k2r and p =
√

logn
√
n

. Consider the following random Ck-colorable graph

G. Let V (G) = V1 ∪V2 ∪⋯∪Vk be the disjoint union of k sets. Each Vi (for 1 ≤ i ≤ k)

has the same size cn. For any pair of vertices {u, v} in two consecutive parts, i.e.,

there is an i ∈ [k], such that u ∈ Vi and v ∈ Vi+1 (with the convention Vk+1 = V1), add

uv as an edge of G with probability p independently. There is no edge inside each Vi

or between two non-consecutive parts.

We will show that this random Ck-colorable graph G satisfies a.a.s. (i) − (iii).

First we show that G a.a.s. satisfies (i). For a fixed family B of n pairwise vertex-

disjoint proper (k − 1)-paths, we would like to give a lower bound of tB. For each

proper (k − 1)-path B ∈ B, there are cn vertices that can extend B into a proper

k-cycle, each with probability p2 independently. Thus, we have tB ∼ Bin(cn2, p2)

with

E[tB] = cn2p2 = cn logn = 16k2rn logn.

Applying Chernoff inequality, we have

Pr (tB ≤
E[tB])

2 ) ≤ exp(−1
8E[tB])

= exp (−2k2rn logn) .

Now for fixed A ⊆ V ∖⋃B∈B V (B), we estimate the upper bound of yA,B. Without

loss of generality, we can assume that ∣A∣ = n. We have yA,B ≤ Y ∼ Bin(2n2, p2), thus

E[Y ] = 2n2p2 = 2n logn.

Thus if we apply the Chernoff bound (2.2) with λ = (2k − 1)E[Y ], then

Pr (Y ≥ 1
4krE[tB]) = Pr (Y ≥ 2kE[Y ])
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= Pr (Y ≥ E[Y ] + λ)

≤ exp(− λ2

2(E[Y ] + λ/3))

≤ exp(−3(2k − 1)2

2k + 2 n logn) .

Note that since G is a Ck-colorable graph, every proper (k−1)-path in G contains

at most one vertex from each Vi for i ∈ [k]. Thus ∣ (⋃B∈B V (B)) ∩ Vi∣ ≤ n. For

each Vi, there are at most n! ways to assign the vertices in ⋃B∈B V (B) ∩ Vi to the n

paths in B. It follows that the number of possible choices of B is upper bounded by

((cn
n
) ⋅ n!)k. Similarly, the number of possible choices of A and B is upper bounded

by (( cn
n,n,(c−2)n) ⋅ n!)

k
, where ( cn

n,n,(c−2)n) is the multinomial coefficient that counts the

number of ways to choose n vertices (for A) and another n vertices (for B) from each

Vi. Stirling approximation of binomial coefficient gives us that

log ((cn
n
) ⋅ n!)

k

= (1 + o(1)) (kn logn) ,

log(( cn

n,n, (c − 2)n) ⋅ n!)
k

= (1 + o(1)) (kn logn) .

Therefore by the union bound, we have

Pr (⋃
B

{tB ≤
E[tB]

2 }) ≤ ((cn
n
) ⋅ n!)

k

Pr (tB ≤
E[tB]

2 )

≤ exp ((1 + o(1))kn logn − 2k2rn logn)

= o(1).

Similarly, we have

Pr (⋃
A,B

{yA,B ≥
1

4krE[tB]}) ≤ (( cn

n,n, (c − 2)n) ⋅ n!)
k

Pr (Y ≥ 1
4krE[tB])

≤ exp((1 + o(1))kn logn − 3(2k − 1)2

2k + 2 n logn)

= o(1).
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In the last step, we observe 3(2k−1)2

2k+2 > k for all k ≥ 3. Therefore, combining previous

inequalities, it follows that for all A,B satisfying the condition in (i), we have, a.a.s.,

yA,B <
1

4krE[tB] ≤
1

2kr tB.

This finishes the proof of (i).

Now we will prove that G satisfies (ii) and (iii) a.a.s.

We will use the Kim-Vu inequality [119] stated as below:

Let H be a (weighted) hypergraph with V (H) = [n]. Edge edge e has

some weight w(e). Suppose {ti ∶ i ∈ [n]} is a set of Bernoulli independent

random variables with probability p of being 1. Consider the polynomial

YH = ∑
e∈E(H)

w(e)∏
s∈e

ts.

Furthermore, for a subset A of V (H), define

YHA = ∑
e,A⊂e

w(e) ∏
i∈e/A

ti.

If we define

Ei(H) = max
A⊂V (H),∣A∣=i

E(YHA),

E(H) = max
i≥0

Ei(H),

E′(H) = max
i≥1

Ei(H),

then

Pr (∣YH −E0(H)∣ > ak(E(H)E′(H))1/2λk) = O (exp(−λ + (k − 1) logn))

(2.3)

for any positive number λ > 1 and ak = 8k(k!)1/2.

In our context, for a fixed v ∈ V (G), let H be the k-uniform hypergraph con-

structed by the proper k-cycles of G containing v. The edge set of H is the collection
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of all k-tuples {vv1, v1v2,⋯, vk−2vk−1, vk−1v} such that vv1v2⋯vk−1v is a proper k-cycle

in G and all edges have weight 1.

Fix v ∈ V (G). we let Xv denote the number of proper k-cycles in G that contain

v. Then it is not hard to see that

E0(Xv) = E(Xv) = (cn)k−1pk = ck−1n
k−2

2 (logn) k2 .

E′(Xv) = (cn)k−2pk−1 = ck−2n
k−3

2 (logn) k−1
2 .

Applying Kim-Vu inequality with λ = 2(k−1) logn, we get that for each v ∈ V (G),

Pr (∣Xv −E0(Xv)∣ > ak(E(Xv)E′(Xv))1/2λk) = O (exp(−(k − 1) logn)) .

Observe that ak(E(Xv)E′(Xv))1/2λk = o(E0(Xv)). Applying union bound for all

v ∈ V (G), we obtain that a.a.s. that

Xv = (1 ± o(1))(cn)k−1pk = (1 ± o(1))ck−1n
k
2−1(logn) k2 .

Recall that tk denotes the total number of proper k-cycles in G and zC denotes the

number of proper k-cycles in G that intersect C. Suppose ∣C ∣ ≤ (k − 1)n. Then

zC ≤ (1 + o(1))(k − 1)nck−1n
k
2−1(logn) k2 = (1 + o(1))(k − 1)ck−1(n logn) k2 .

Note that tk = 1
k ∑
v∈V (G)

Xv. Thus

tk ≥
1
k
(1 − o(1))kcn ⋅ ck−1n

k
2−1(logn) k2

≥ (1 − o(1))ck(n logn) k2 .

Since c = 16k2r, we have that for n sufficiently large,

zC < tk
2r .

Moreover, similar to the above calculation, we have that a.a.s.,

tk ≤ (1 + o(1))ck(n logn) k2 = O(rk(n logn) k2 ).
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Now we will prove the main result. We use the same greedy algorithm approach

by Dudek, La Fleur, Mubayi and Rődl in [54].

Proof of Theorem 2.2.1: We show that there exists a k-uniform hypergraph H with

∣E(H)∣ = O(rkn k
2 (logn) k2 ) such that any r-coloring of the edges ofH yields a monochro-

matic copy of P(k)
n,k−1.

Let G be the graph constructed from Proposition 2.2.1 for n sufficiently large. Let

H be a k-uniform hypergraph such that V (H) = V (G) and E(H) be the collection of

all proper k-cycles in G.

Take an arbitrary r-coloring of the edges H0 = H and assume that there is no

monochromatic P(k)
n,k−1. Without loss of generality, suppose the color class with the

most number of edges is blue. We will consider the following greedy algorithm:

(1) Let B = ∅ be a trash set of proper (k − 1)-paths in G. Let A be a blue tight

path in H that we will iteratively modify. Throughout the process, let U =

V (H)/ (V (A) ∪ ⋃B∈B V (B)) be the set of unused vertices. If at any point ∣B∣ = n,

terminate.

(2) If possible, choose a blue edge v1v2⋯vk−1vk from U and put these vertices into

A and set the pointer to vk. Otherwise, if not possible, terminate.

(3) Suppose the pointer is at vi and vi−k+2,⋯, vi−1, vi are the last k − 1 vertices of

the constructed blue path A. There are two cases:

Case 1: If there exists a vertex u ∈ U such that vi−k+2,⋯, vi−1, vi, u form a blue

edge in H, then we extend P , i.e. add vi+1 = u into A. Set the pointer to

vi+1 and restart Step (3).
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Case 2: Otherwise, remove the last k − 1 vertices from A and set B = B ∪

{{vi−k+2,⋯, vi−1, vi}}. Set the pointer to vi−k+1. Now if ∣A∣ < k, then set

A = ∅ and go to Step (2). Otherwise, restart Step (3).

Note that this procedure will terminate under two circumstances: either ∣B∣ = n

or there is no blue edge in U .

Let us first consider the case when ∣B∣ = n, i.e. there are n pairwise vertex-disjoint

proper (k − 1)-paths in B. Moreover, ∣A∣ ≤ n since there is no blue path of n vertices.

Applying Proposition 2.2.1 with sets A and B, we obtain that

yA,B <
1

2kr tB.

Observe that every edge of H that extends some B ∈ B with a vertex from V (H0)/

(V (A) ∪ ⋃
B∈Bm

B) must be non-blue. Therefore, the number of blue edges of H that

contain some B ∈ B as subgraph is at most yA,B.

Consider A,B as A0,B0 respectively. Now remove all the blue edges from H0 that

contain some B ∈ B0 as subgraph and denote the resulting hypergraph as H1. Perform

the greedy procedure again on H1. This will generate a new A1 and B1. Applying

Proposition 2.2.1 again, we have yA1,B1 ≤ 1
2kr tB1 . Keep repeating the procedure until

it is no longer possible. Observe that for i < j, since we removed from Hi all the blue

edges that contain some B ∈ Bi, any B ∈ Bi does not appear as subset of a blue edge

in Hj. It follows that Bi ∩ Bj = ∅.

When the above procedure can not be repeated anymore, we are in the case that

∣Bm∣ < n for some positive integerm and there are no more blue edges in V (H)/ ⋃
B∈Bm

B.

In this case, Am = ∅ and all the blue edges remaining in Hm have to intersect the set

C = ⋃
B∈Bm

B. By Proposition 2.2.1, it follows that

zC < 1
2r tk.
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Let eb(H) denote the total number of blue edges in H. We have

eb(H) ≤
m−1
∑
i=0

yAi,Bi + zC

<
m−1
∑
i=0

1
2kr tBi +

1
2r tk.

Note that since G is Ck-colorable, every proper k-cycle intersects Vi at exactly one

vertex for each i ∈ [k]. Moreover, we can obtain a proper (k − 1)-path by deleting

any of the k vertices from a proper k-cycle in G. Therefore every proper k-cycle can

extend exactly k proper (k − 1)-paths. We then have
m−1
∑
i=0

tBi ≤ ktk. Thus,

eb(H) < 1
2kr

m−1
∑
i=0

tBi +
1
2r tk

≤ 1
2r tk +

1
2r tk

= 1
r
∣E(H)∣.

The conclusion is that the number of blue edges in H is strictly smaller than 1
r of the

total number of edges in H, which contradicts that blue is the color class with the

most number of edges of H.

2.3 Anti-Ramsey number of edge-disjoint rainbow spanning trees

An edge-colored graph G is called rainbow if every edge of G receives a different

color. The general anti-Ramsey problem asks for the maximum number of colors

AR(n,G) in an edge-coloring of Kn containing no rainbow copy of any graph in a

class G. For some earlier results when G consists of a single graph, see the survey [79].

In particular, Montellano-Baallesteros and Neumann-Lara [138] showed a conjecture

of Erdős, Simonovits and Sós [71] by computing AR(n,Ck). Jiang and West [113]

determined the anti-Ramsey number of the family of trees with m edges.

Anti-Ramsey problems have also been investigated for rainbow spanning sub-

graphs. In particular, Hass and Young [99] showed that the anti-Ramsey number
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for perfect matchings (when n is even) is (n−3
2 ) + 2 for n ≥ 14. For spanning trees,

Bialostocki and Voxman [16] showed that the maximum number of colors in an edge-

coloring of Kn (n ≥ 4) with no rainbow spanning tree is (n−2
2 ) + 1. Jahanbekam and

West [109] extended the investigations to finding the anti-Ramsey number of t edge-

disjoint rainbow spanning subgraphs of certain types including matchings, cycles and

trees. In particular, for rainbow spanning trees, let r(n, t) be the maximum number

of colors in an edge-coloring of Kn not having t edge-disjoint rainbow spanning trees.

Akbari and Alipour [2] showed that r(n,2) = (n−2
2 ) + 2 for n ≥ 6. Jahanbekam and

West [109] showed that

r(n, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(n−2
2 ) + t for n > 2t +

√
6t − 23

4 + 5
2

(n2) − t for n = 2t,

and they made the following conjecture:

Conjecture 2.3.1. [109] r(n, t) = (n−2
2 ) + t whenever n ≥ 2t + 2 ≥ 6.

In this section, we show that the above conjecture holds and we also determine

the value of r(n, t) when n = 2t + 1. Together with previous results ([16],[2],[109]),

this gives the anti-Ramsey number of t edge-disjoint rainbow spanning trees for all

values of n and t.

Theorem 2.3.1. For all positive integers t,

r(n, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−2
2 ) + t for n ≥ 2t + 2

(n−1
2 ) for n = 2t + 1

(n2) − t for n = 2t,

Remark 2.3.1. Note that if n < 2t, then Kn does not have enough edges for t edge-

disjoint spanning trees.
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The main tools we use are two structure theorems that characterize the existence

of t color-disjoint rainbow spanning trees or the existence of a color-disjoint exten-

sion of t edge-disjoint rainbow spanning forests into t edge-disjoint rainbow spanning

trees. When t = 1, Broersma and Li [22] showed that determining the largest rain-

bow spanning forest of a graph can be solved by applying the Matroid Intersection

Theorem. The following characterization was established by Schrijver [157] using

matroid methods, and later given graph theoretical proofs by Suzuki [164] and also

by Carraher and Hartke [24].

Theorem 2.3.2. ([157, 164, 24]) An edge-colored connected graph G has a rainbow

spanning tree if and only if for every 2 ≤ k ≤ n and every partition of G with k parts,

at least k − 1 different colors are represented in edges between partition classes.

The above results can be generalized to t color-disjoint rainbow spanning trees

using similar matroid methods by Schrijver [157]. For the sake of self-completeness,

we reproduce the proof using matroid methods in Section 2.3.1. We also give a new

graph theoretical proof of Theorem 2.3.3.

Theorem 2.3.3. [157] An edge-colored multigraph G has t pairwise color-disjoint

rainbow spanning trees if and only if for every partition P of V (G) into ∣P ∣ parts, at

least t(∣P ∣ − 1) distinct colors are represented in edges between partition classes.

Remark 2.3.2. Recall the famous Nash-Williams-Tutte Theorem ([142, 169]): A

multigraph contains t edge-disjoint spanning trees if and only if for every partition

P of its vertex set, it has at least t(∣P ∣ − 1) cross-edges. Theorem 2.3.3 implies the

Nash-Williams-Tutte Theorem by assigning every edge of the multigraph a distinct

color.

Theorem 2.3.3 can be also generalized to extend edge-disjoint rainbow spanning

forests to edge-disjiont rainbow spanning trees. Let G be an edge-colored multi-
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graph. Let F1, . . . , Ft be t edge-disjoint rainbow spanning forests. We are inter-

ested in whether F1, . . . , Ft can be extended to t edge-disjoint rainbow spanning trees

T1, . . . , Tt in G, i.e., E(Fi) ⊂ E(Ti) for each i. We say the extension is color-disjoint if

all edges in ∪i (E(Ti) ∖E(Fi)) have distinct colors and these colors are different from

the colors appearing in the edges of ∪iE(Fi). Using similar matroid methods or graph

theoretical arguments, we can also obtain a criterion that characterizes the existence

of a color-disjoint extension of rainbow spanning forests into rainbow spanning trees.

Theorem 2.3.4. A family of t edge-disjoint rainbow spanning forests F1, . . . , Ft has

a color-disjoint extension in G if and only if for every partition P of G into ∣P ∣ parts,

∣c(cr(P,G′))∣ +
t

∑
i=1

∣cr(P,Fi)∣ ≥ t(∣P ∣ − 1). (2.4)

Here G′ is the spanning subgraph of G by removing all edges with colors appearing in

some Fi, and c(cr(P,G′)) be the set of colors appearing in the edges of G′ crossing

the partition P .

It would be interesting to find a similar criterion for the existence of t edge-disjoint

rainbow trees in a general graph since applications of Theorem 2.3.3 and Theorem

2.3.4 usually require large number of colors in the host graph.

2.3.1 Proof of Theorem 2.3.3

We first reproduce the proof of Theorem 2.3.3 using matroid methods. A matroid

is defined as M = (E,I) where E is the ground set and I ⊆ 2E is a set containing

subsets of E (called indepedent sets) that satisfy (i) if A ⊆ B ⊆ E, and B ∈ I, then

A ∈ I; (ii) if A ∈ I, B ∈ I and ∣A∣ > ∣B∣, then ∃ a ∈ A/B such that B ∪ {a} ∈ I.

Given a matroid M = (E,I), the rank function rM ∶ 2E → N is defined as rM(S) =

max{∣I ∣ ∶ I ⊆ S, I ∈ I}. Thus rM(E) is the size of the maximum independent set of

M . Two matroids of interests here are the graphic matroid and the partition matroid.

Given an edge-colored graph G, the graphic matroid of G is the matroid M = (E,I)
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where E = E(G) and I is the set of forests in G. The partition matroid of G, is the

matroid M ′ = (E′,I ′) where E′ = E(G) and I is the set of rainbow subgraphs of G.

Given k matroids {Mi = (Ei,Ii)}i∈[k], one can define the union of the k matroids,

M1 ∨⋯ ∨Mk = (E,I), by

E =
k

⋃
i=1
Ei,

and

I = {I1 ∪⋯ ∪ Ik ∶ Ii ∈ Ii for all i ∈ [k]}.

It is well known in matroid theory [57, 141] that M1 ∨⋯∨Mk is a matroid with rank

function

r(S) = min
T⊆S

(∣S/T ∣ +
k

∑
i=1
rMi

(T ∩Ei)) .

Given two matroids M1 = (E,I1) and M2 = (E,I2) on the same ground set with rank

functions r1 and r2 respectively, consider the family of independent sets common to

both matroids, i.e., I1∩I2. The well-known Matroid Intersection Theorem [58] asserts

that

max
I∈I1∩I2

∣I ∣ = min
U⊆E

(r1(U) + r2(E/U)) .

2.3.2 Proof of Theorem 2.3.3 using Matroid methods

Again we remark that the proof essentially follows the same approaches as Schrijver

[157] and we only reproduce it here for the sake of completeness.

Proof of Theorem 2.3.3. The forward direction is clear. Thus it remains to show that

if for every partition P of V (G) into ∣P ∣ parts, at least t(∣P ∣ − 1) distinct colors are

represented in edges between partition classes, then there exist t edge-disjoint rainbow

spanning trees in G.

Given an edge-colored graph G, let M = (E,I) be the graphic matroid of G and

M ′ = (E,I ′) be the partition matroid of G. Moreover, let M t = M ∨M ∨ ⋯ ∨M =
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(E,I t), where we take t copies of M . By the matriod union theorem, we obtain that

rMt(S) = min
T⊆S

(∣S/T ∣ + t ⋅ rM(T )) .

By the Matroid Intersection Theorem,

max
I∈It∩I′

∣I ∣ = min
U⊆E

(rMt(U) + rM ′(E/U))

= min
U⊆E

(min
T⊆U

(∣U/T ∣ + t ⋅ rM(T )) + rM ′(E/U)) .

Let T,U ⊆ E be arbitrarily chosen such that T ⊆ U . Observe that t ⋅ rM(T ) =

t(n − q(T )), where q(T ) is the number of components of G[T ]. Now we claim that

∣U/T ∣ + rM ′(E/U) ≥ rM ′(E/T ) ≥ t(q(T ) − 1).

Indeed, for any color c appearing in some edge e ∈ E/T , if e ∈ E/U , then the color

c is counted in rM ′(E/U); if e ∈ U , then that color is counted in ∣U/T ∣. In partic-

ular, at least t(q(T ) − 1) distinct colors are represented in edges between connected

components of T , thus in E ∖ T . It follows that

∣U/T ∣ + t ⋅ rM(T ) + rM ′(E/U) ≥ t(q(T ) − 1) + t(n − q(T )) ≥ t(n − 1),

which implies that maxI∈It∩I′ ∣I ∣ ≥ t(n−1). By definition, we then have t edge-disjoint

rainbow spanning trees.

2.3.3 Proof of Theorem 2.3.3 using graph theoretical arguments

In this subsection, we give a new graph theoretical proof of Theorem 2.3.3. Given a

graph G, we use V (G),E(G) to denote its vertex set and edge set respectively. We

use ∥G∥ to denote the number of edges in G. Given a set of edges E, we use c(E) to

denote the set of colors that appear in E. For clarity, we abuse the notation to use

c(e) to denote the color of an edge e. We say a color c has multiplicity k in G if the
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number of edges with color c in G is k. The color multiplicity of an edge in G is the

multiplicity of the color of the edge in G.

For any partition P of the vertex set V (G) and a subgraph H of G, let ∣P ∣ denote

the number of parts in the partition P and let cr(P,H) denote the set of crossing

edges in H whose end vertices belong to different parts in the partition P . When

H = G, we also write cr(P,G) as cr(P ). Given two partitions P1∶V = ∪iVi and

P2∶V = ∪jV ′

j , let the intersection P1 ∩P2 denote the partition given by V = ⋃
i,j
Vi ∩ V ′

j .

Given a spanning disconnected subgraphH, there is a natural partition PH associated

to H, which partitions V into its connected components. Without loss of generality,

we abuse our notation cr(H) to denote the crossing edges of G corresponding to

this partition PH . Recall we want to show that an edge-colored multigraph G has t

color-disjoint rainbow spanning trees if and only if for any partition P of V (G) (with

∣P ∣ ≥ 2),

∣c(cr(P ))∣ ≥ t(∣P ∣ − 1). (2.5)

Proof of Theorem 2.3.3. One direction is easy. Suppose that G contains t pairwise

color-disjoint rainbow spanning trees T1, T2, . . . , Tt. Then all edges in these trees have

distinct colors. For any partition P of the vertex set V , each tree contributes at least

∣P ∣ −1 crossing edges, thus t trees contribute at least t(∣P ∣ −1) crossing edges and the

colors of these edges are all distinct.

Now we prove the other direction. Assume that G satisfies inequality (2.5). We

would like to prove G contains t pairwise color-disjoint rainbow spanning trees. We

will prove by contradiction. Assume that G does not contain t pairwise color-disjoint

rainbow spanning trees. Let F be the collection of all families of t color-disjoint

rainbow spanning forests {F1,⋯, Ft}. Consider the following deterministic process:

Initially, set C ′ ∶=
t

⋃
j=1
c(cr(Fj))

while C ′ /= ∅ do
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for each color x in C ′, do

for j from 1 to t, do

if color x appears in Fj, then

delete the edge in color x from Fj

endif

endfor

endfor

set C ′ ∶=
t

⋃
j=1
c(cr(Fj)) −C ′

endwhile

For i ≥ 0, F (i)
j denote the rainbow spanning forest Fj after i iterations of the while

loop. In particular, F (0)
j = Fj for all j ∈ [t] and F (∞)

j is the resulting rainbow spanning

forest of Fj after the process. Similarly, let Ci denote the set C ′ after the i-th iteration

of the while loop. Note that Ci is the set of new colors crossing components of Fjs

after some edges are deleted in the i-th iteration.

Observe that since the procedure is deterministic, {F (i)
j ∶ j ∈ [t], i > 0} is unique

for a fixed family {F1,⋯, Ft}. We define a preorder on F . We say a family {Fj}tj=1 is

less than or equal to another family {F ′

j}tj=1 if there is a positive integer l such that

1. For 1 ≤ i < l,
t

∑
j=1

∥F (i)
j ∥ =

t

∑
j=1

∥F ′(i)
j ∥.

2.
t

∑
j=1

∥F (l)
j ∥ <

t

∑
j=1

∥F ′(l)
j ∥.

Since G is finite, so is F . There exists a maximal element {F1, F2,⋯, Ft} ∈ F . Run

the deterministic process on {F1, F2,⋯, Ft}.

The goal is to construct a common partition P by refining cr(Fj) so that ∣c(cr(P ))∣ <

t(∣P ∣ − 1). In particular, we will show that all forests in {F (∞)

j ∶ j ∈ [t]} admit the

same partition P .
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Claim (a):
t

⋃
j=1
c (cr(F (i)

j )) ⊆ (
t

⋃
j=1
c (cr(F (i−1)

j ))) ∪ (
t

⋃
j=1
c(F (i)

j )).

AFSOC that there is a color x ∈
t

⋃
j=1
c(cr(F (i)

j ))/
t

⋃
j=1
c(cr(F (i−1)

j )) and there is no

edge in color x in all forests F (i)
1 , . . . , F

(i)
t . Let e be the edge such that c(e) = x and

e ∈ cr(F (i)
s ) for some s ∈ [t]. Observe that since c(e) ∉

t

⋃
j=1
c(cr(F (i−1)

j )), it follows

that F (i−1)
s + e contains a rainbow cycle, which passes through e and another edge

e′ ∈ F (i−1)
s joining two distinct components of F (i)

s . Now let us consider a new family

of rainbow spanning forests {F ′

1,⋯, F ′

t} where F ′

j = Fj for j ≠ s and F ′

s = Fs − e′ + e.

The color-disjoint property is maintained since the color of edge e is not in any Fj.

Observe that since c(e) ∉
t

⋃
j=1
c(cr(F (i−1)

j )), F ′(i)
s will have one fewer component than

F
(i)
s . Thus we have

t

∑
j=1

∥F (k)
j ∥ =

t

∑
j=1

∥F ′(k)
j ∥ for k < i.

t

∑
j=1

∥F ′(i)
j ∥ >

t

∑
j=1

∥F (i)
j ∥.

which contradicts our maximality assumption of {Fi ∶ i ∈ [t]}. That finishes the proof

of Claim (a).

Claim (a) implies that for each x ∈ Ci, there is an edge e of color x in exactly one

of the forests in {F (i)
j ∶ j ∈ [t]}. Thus removing that edge in the next iteration will

increase the sum of number of partitions exactly by 1. Thus we have that

t

∑
j=1

∣P
F
(i+1)
j

∣ =
t

∑
j=1

∣P
F
(i)
j

∣ + ∣Ci∣.

It then follows that

t

∑
j=1

∣P
F
(∞)
j

∣ =
t

∑
j=1

∣PFj ∣ +∑
i

∣Ci∣

=
t

∑
j=1

∣PFj ∣ + ∣
t

⋃
j=1
c(cr(F (∞)

j ))∣.

Finally set the partition P =
t

⋂
j=1
P
F
(∞)
j

. We claim P
F
(∞)
j

= P for all j. This is

because all edges in cr(P
F
(∞)
j

) ∩
t

⋃
k=1

E(F (∞)

k ) have been already removed. We then
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have that

t∣P ∣ =
t

∑
j=1

∣P
F
(∞)
j

∣

=
t

∑
j=1

∣PFj ∣ + ∣
t

⋃
j=1
c(cr(F (∞)

j ))∣

=
t

∑
j=1

∣PFj ∣ + ∣c(cr(P ))∣

≥ t + 1 + ∣c(cr(P ))∣.

We obtain

∣c(cr(P ))∣ ≤ t(∣P ∣ − 1) − 1.

Contradiction.

Corollary 2.3.1. The edge-colored complete graph Kn has t color-disjoint rainbow

spanning trees if the number of edges colored with any fixed color is at most n/(2t).

Proof. Suppose Kn does not have t color-disjoint rainbow spanning trees, then there

exists a partition P of V (Kn) into r parts (2 ≤ r ≤ n) such that the number of distinct

colors in the crossing edges of P is at most t(r−1)−1. Let m be the number of edges

crossing the partition P . It follows that

m ≤ (t(r − 1) − 1) ⋅ n2t ≤
n

2 (r − 1) − n

2t .

On the other hand,

m ≥ (n2) − (n − (r − 1)
2 ).

Hence we have

(n2) − (n − (r − 1)
2 ) ≤ n2 (r − 1) − n

2t .

which implies

(n − r)(r − 1) ≤ −n
t
.

which contradicts that 2 ≤ r ≤ n.
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Remark: This result is tight since the total number of colors used in Kn could be

as small as (n2)/(n/(2t)) = t(n − 1), but any t color-disjoint rainbow spanning trees

need t(n − 1) colors. On the contrast, a result by Carraher, Hartke and Horn [25]

implies there are Ω(n/ logn) edge-disjoint rainbow spanning trees.

2.3.4 Proof of Theorem 2.3.4

Recall we want to show that any t edge-disjoint rainbow spanning forests F1, . . . , Ft

have a color-disjoint extension to edge-disjoint rainbow spanning trees in G if and

only if

∣c(cr(P,G′))∣ +
t

∑
j=1

∣cr(P,Fj)∣ ≥ t(∣P ∣ − 1).

where G′ is the spanning subgraph of G by removing all edges with colors appearing

in some Fj.

Proof. Again, the forward direction is trivial. We only need to show that condition

(2.4) implies there exists a color-disjoint extension to edge-disjoint rainbow spanning

trees. The proof is similar to the proof of Theorem 2.3.3. Consider a set of edge-

maximal forests F (0)
1 , . . . , F

(0)
t which is a color-disjoint extension of F1, . . . , Ft. From

{F (0)
j } we delete all edges (in {F (0)

j }) of some color c appearing in ⋃tj=1 c(cr(F
(0)
j ,G′))

to get a new set {F (1)
j }. Repeat this process until we reach a stable set {F (∞)

j }. Since

we only delete edges in G′, we have E(Fj) ⊆ E(F (∞)

j ) for each 1 ≤ j ≤ t. The edges

and colors in ∪tj=1E(Fj) will not affect the process. A similar claim still holds:

t

⋃
j=1
c(cr(F (i)

j ,G′)) ⊆ (
t

⋃
j=1
c(cr(F (i−1)

j ,G′))) ∪ (
t

⋃
j=1
c (E(F (i)

j ) ∩E(G′))) .

In particular, let Ci = (⋃tj=1 c(cr(F
(i)
j ,G′))) / (⋃tj=1 c(cr(F

(i−1)
j ,G′))). Then we

have
t

∑
j=1

∣P
F
(i+1)
j

∣ =
t

∑
j=1

∣P
F
(i)
j

∣ + ∣Ci∣.
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It then follows that

t

∑
j=1

∣P
F
(∞)
j

∣ =
t

∑
j=1

∣P
F
(0)
j

∣ +∑
i

∣Ci∣

=
t

∑
j=1

∣P
F
(0)
j

∣ + ∣
t

⋃
j=1
c(cr(F (∞)

j ,G′))∣.

Finally set the partition P =
t

⋂
j=1
P
F
(∞)
j /E(Fj)

. Clearly all edges in cr(P,G′) are

removed. All possible edges remaining in G that cross the partition P are exactly

the edges in
t

⋃
j=1

cr(P,Fj). We have

t∣P ∣ =
t

∑
j=1

∣P
F
(∞)
j

∣ +
t

∑
j=1

∣cr(P,Fj)∣

=
t

∑
j=1

∣P
F
(0)
j

∣ + ∣
t

⋃
j=1
c(cr(F (∞)

j ,G′))∣ +
t

∑
j=1

∣cr(P,Fj)∣

=
t

∑
j=1

∣P
F
(0)
j

∣ + ∣c(cr(P,G′))∣ +
t

∑
j=1

∣cr(P,Fj)∣

≥ t + 1 + ∣c(cr(P,G′))∣ +
t

∑
j=1

∣cr(P,Fj)∣.

We obtain

∣c(cr(P,G′))∣ +
t

∑
j=1

∣cr(P,Fj)∣ ≤ t(∣P ∣ − 1) − 1.

Contradiction.

2.3.5 Proof of Theorem 2.3.1

Recall that r(n, t) is the maximum number of colors in an edge-coloring of the com-

plete graph Kn not having t edge-disjoint rainbow spanning trees.

Lower Bound: Jahanbekam and West (See Lemma 5.1 in [109]) showed the following

lower bound for r(n, t).

Proposition 2.3.1. [109] For positive integers n and t such that t ≤ 2n − 3, there is

an edge-coloring of Kn using (n−2
2 )+t colors that does not have t edge-disjoint rainbow

33



spanning trees. When n = 2t + 1, the construction improves to (n−1
2 ) colors. When

n = 2t, it improves to (n2) − t.

This matches the upper bounds in Theorem 2.3.1. Hence we will skip the proof of

lower bounds in the subsequent theorems. Moreover, we only consider the case t ≥ 2

since the case t = 1 was already resolved in Bialostocki and Voxman [16]. In Section

2.3.6, we prove a technical lemma that will be used in the proof of Theorem 2.3.1.

In Section 2.3.7, 2.3.8,2.3.9, we show Theorem 2.3.1 when n is in different range of

values with respect to t.

2.3.6 Technical lemma

Lemma 2.3.1. Let G be an edge-colored graph with s colors c1,⋯, cs and ∣V (G)∣ =

n = 2t+ 2 where t ≥ 3. For color ci, let mi be the number of edges of color ci. Suppose
s

∑
i=1

(mi − 1) = 3t and mi ≥ 2 for all i ∈ [s]. Then we can construct t edge-disjoint

rainbow forests F1, . . . , Ft in G such that if we define G0 = G −
t

⋃
i=1
E(Fi), then

∣E(G0)∣ ≤ 2t + 1. (2.6)

and

∆(G0) ≤ t + 1. (2.7)

Proof. We consider two cases:

Case 1: m1 ≥ 2t + 2. Note that
s

∑
i=2

(mi − 1) = 3t − (m1 − 1) ≤ t − 1.

Thus, s ≤ t. Let di(v) be the number of edges in color ci and incident to v in the

current graph G. We construct the edge-disjoint rainbow forests F1, F2, . . . , Ft

in two rounds: In the first round, we greedily extract edges only in color c1. For

i = 1, . . . , t, at step i, pick a vertex v with maximum d1(v) (break tie arbitrarily).

Pick an edge in color c1 incident to v, assign it to Fi, and delete it from G.
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We claim that after the first round d1(v) ≤ t + 1 for any vertex v. Suppose not,

i.e., d1(v) ≥ t + 2. Since n − 1 − (t + 2) < t, it follows that there exists another

vertex u with d1(u) ≥ d1(v) − 1 ≥ t + 1. This implies

m1 ≥ t + d1(v) + d1(u) − 1 ≥ 3t + 2.

However,

m1 − 1 ≤
s

∑
i=1

(mi − 1) = 3t.

which gives us the contradiction.

In the second round, we greedily extract edges not in color c1. For i = 1, . . . , t,

at step i, among all vertices with at least one neighboring edge not in color c1,

pick a vertex v with maximum vertex degree d(v) (pick arbitrarily if tie). Pick

an edge incident to v and not in color c1, assign it to Fi, and delete it from G.

If we succeed with selecting t edges not in color c1 in the second round, we

claim d(v) ≤ t + 1 for any vertex v. Suppose not, if d(v) ≥ t + 2. Then there is

another vertex u with d(u) ≥ d(v) − 1 ≥ t + 1. It implies
s

∑
i=1
mi ≥ 2t + d(u) + d(v) − 1 ≥ 4t + 2.

However, since s ≤ t, we have
s

∑
i=1
mi ≤ 3t + s ≤ 4t.

Contradiction. Therefore it follows that d(v) ≤ t + 1. Moreover, ∣E(G0)∣ ≤

4t − 2t ≤ 2t.

If the process stops at step i = l < t, then all remaining edges in G0 must be in

color 1. Thus, by the previous claim, ∆(G0) ≤ t + 1. Moreover,

∣E(G0)∣ ≤m1 − t ≤ (3t + 1) − t = 2t + 1.

In both cases above, F1,⋯Ft are edge-disjoint rainbow forests that satisfies

inequality (2.6) and (2.7).
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Case 2: m1 ≤ 2t + 1.

Claim: there exists t edge-disjoint rainbow forests F1, F2,⋯, Ft such that ∆(G0) ≤

t + 1.

Proof of Claim. For j = 1,2, . . . , t, we will construct a rainbow forest Fj by

selecting a rainbow set of edges such that after deleting these edges from G,

∆(G0) ≤ 2t + 1 − j. Notice that when j = t, we will have ∆(G0) ≤ t + 1. Our

procedure is as follows:

For step j, without loss of generality, let v1, v2,⋯, vl be the vertices with degree

2t+ 2− j and let c1, c2,⋯, cm be the set of colors of edges incident to v1, v2,⋯, vl

in G. If there is no such vertex, simply pick an edge incident to the max-degree

vertex and assign it to Fj. Otherwise, we will construct an auxiliary bipartite

graph H = A∪B where A = {v1,⋯, vl} and B = {c1, c2, . . . , cm} and vxcy ∈ E(H)

if and only if there is an edge of color cy incident to vx. We claim that there

exists a matching of A in H. Suppose not, then by Hall’s theorem, there exists

a set of vertices A′ = {u1, u2,⋯uk} ⊆ A such that ∣N(A′)∣ < ∣A′∣ = k where k ≥ 2.

Without loss of generality, suppose N(A) = {c′1, c′2,⋯, c′q} where q ≤ k − 1. Let

m′

i be the number of edges of color c′i remaining in G.

Note that k ≠ 2 since otherwise we will have one color with at least 2 ⋅ (2t + 2 −

j) − 1 ≥ 2t + 3 edges, which contradicts our assumption in this case.

Notice that for every i ∈ [k], ui has at least (2t + 2 − j) edges incident to it.

Moreover, at least j − 1 edges are already deleted from G in previous steps.

Therefore, we have

k(2t + 2 − j)
2 ≤

q

∑
i=1
m′

i ≤ (
q

∑
i=1

(m′

i − 1)) + (k − 1) ≤ 3t − (j − 1) + (k − 1).

It follows that

k ≤ 2 + 2t
2t − j ≤ 4.
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Similarly, using another way of counting the edges incident to some ui (i ∈ [k]),

we have

k(2t + 2 − j) − (k2) ≤ 3t − (j − 1) + (k − 1).

which implies that

t(2k − 3) ≤ k(k − 3)
2 + j(k − 1) ≤ k(k − 3)

2 + t(k − 1).

It follows that t ≤ k(k−3)
2(k−2) . Since k ≤ 4 and k > 2, we obtain that t ≤ 1, which

contradicts our assumption that t ≥ 2. Thus by contradiction, there exists a

matching of A in H. This implies that there exists a rainbow set of edges Ej

that cover all vertices with degree 2t + 2 − j in step j. We can then find a

maximally acyclic subset Fj of Ej such that Fj is a rainbow forest and every

vertex of degree 2t + 2 − j is adjacent to some edge in Fj. Delete edges of Fj

from G and we have ∆(G0) ≤ 2t + 1 − j. As a result, after t steps, we obtain

t edge-disjoint rainbow forests F1,⋯, Ft and ∆(G0) ≤ t + 1. This finishes the

proof of the claim.

Now let {F1, F2,⋯, Ft} be an edge-maximal set of t edge-disjoint rainbow forests

that satisfies ∆(G0) ≤ t + 1. We claim that ∣E(G0)∣ ≤ 2t + 1. Suppose not, i.e.,

∣E(G0)∣ ≥ 2t + 2. It follows that
t

∑
i=1

∣E(Fi)∣ ≤ 6t − (2t + 2) < 4t, i.e. there exists a

j ∈ [t] such that Fj has at most 3 edges. Since Fj is edge maximal, none of the

edges in G0 can be added to Fj. We have three cases:

Case 2a: ∣E(Fj)∣ = 1. It then follows that all edges in G0 have the same color

(call it c′1) as the single edge in Fj. Thus we have a color with multiplicity

at least 2t + 3, which contradicts that m1 < 2t + 2.

Case 2b: ∣E(Fj)∣ = 2. Similarly, we have that at least 2t + 1 edges in G0 that

share the same colors (call them c′1, c
′

2) as edges in Fj. It follows that

m1 +m2 ≥ 2t + 3. Similar to Case 1, in this case, we have that s ≤ t + 1
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and ∣E(G)∣ = 3t + s ≤ 4t + 1. Since ∣E(G0)∣ ≥ 2t + 2, that implies that
t

∑
i=1

∣E(Fi)∣ ≤ (4t+1)−(2t+2) = 2t−1. Hence there exists some Fk such that

∣E(Fk)∣ ≤ 1 and we are done by Case 2a.

Case 2c: ∣E(Fj)∣ = 3. Similarly, we have that at least 2t − 1 edges in G0

share the same colors (call them c′1, c
′

2, c
′

3) as edges in Fj. It follows that

m1 +m2 +m3 ≥ 2t + 2. By inequality (2.8), we have that s ≤ t + 4 and

∣E(G)∣ ≤ 4t+4. Since ∣E(G0)∣ ≥ 2t+2, that implies that
t

∑
i=1

∣E(Fi)∣ ≤ 2t+2.

Since t ≥ 3 by our assumption, there exists a k ∈ [t] such that ∣E(Fk)∣ ≤ 2

and we are done by Case 2b and Case 2c.

Therefore, by contradiction, we have that ∣E(G0)∣ ≤ 2t + 1 and we are done.

2.3.7 Proof of Theorem 2.3.1 where n = 2t + 2

Proposition 2.3.2. For any n = 2t + 2 ≥ 6, we have r(n, t) = (n−2
2 ) + t = 2t2.

Proof. Note that the lower bound is shown by Jahanbekam and West in Proposition

2.3.1. For the upper bound, we will assume that t ≥ 3 since the case when t = 2 is

implied by the result of Akbari and Alipour [2]. We will show that any coloring of

K2t+2 with 2t2+1 distinct colors contains t edge-disjoint rainbow spanning trees. Call

this edge-colored graph G. Let mi be the multiplicity of the color ci in G. Without

loss of generality, say the first s colors have multiplicity at least 2, i.e.

m1 ≥m2 ≥ ⋯ ≥ms ≥ 2.

LetG1 be the spanning subgraph ofG consisting of all edges with color multiplicity

greater than 1 in G. Let G2 be the spanning subgraph consisting of the remaining

edges. We have
s

∑
i=1

(mi − 1) = (n2) − (2t2 + 1) = 3t. (2.8)
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In particular, we have

∣E(G1)∣ =
s

∑
i=1
mi = 3t + s ≤ 6t.

By Lemma 2.3.1, it follows that we can construct t edge-disjoint rainbow spanning

forests F1, . . . , Ft in G such that if we define G0 = E(G1) −
t

⋃
i=1
E(Fi), then

∣E(G0)∣ ≤ 2t + 1.

and

∆(G0) ≤ t + 1.

Now we show that F1, . . . , Ft have a color-disjoint extension to t edge-disjoint

rainbow spanning trees. Consider any partition P . We will verify

∣c(cr(P ),G2)∣ +
t

∑
i=1

∣cr(P,Fi)∣ ≥ t(∣P ∣ − 1). (2.9)

We will first verify the case when 3 ≤ ∣P ∣ ≤ n. Note that

∣c(cr(P ),G2)∣ +
t

∑
i=1

∣cr(P,Fi)∣ − t(∣P ∣ − 1) ≥ (n2) − (2t + 1) − (n − ∣P ∣ + 1
2 ) − t(∣P ∣ − 1).

We want to show that the right hand side of the above inequality is nonnegative.

Note that the function on the right hand side is concave downward with respect to

∣P ∣. Thus it is sufficient to verify it at ∣P ∣ = 3 and ∣P ∣ = n.

When ∣P ∣ = 3, we have

(n2) − (2t + 1) − (n − 2
2 ) − 2t = 0.

When ∣P ∣ = n, we have

(n2) − (2t + 1) − t(n − 1) = 0.

It remains to verify the inequality (2.9) for ∣P ∣ = 2. By Theorem 2.3.4, we have

∣E(G0)∣ ≤ 2t + 1. If each part of P contains at least 2 vertices, then we have

∣c(cr(P ),G2)∣ +
t

∑
i=1

∣cr(P,Fi)∣ − t(∣P ∣ − 1)
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≥ (n2) − ∣E(G0)∣ − ((n − 2
2 ) + 1) − t

≥ (n2) − (2t + 1) − ((n − 2
2 ) + 1) − t

= t − 1 ≥ 0.

Otherwise, P is of the form V (G) = {v} ∪B for some v ∈ V (G) and B = V (G)/{v}.

By Lemma 2.3.1, we have dG0 ≤ t + 1. Thus,

∣c(cr(P ),G2)∣ +
t

∑
i=1

∣cr(P,Fi)∣ − t(∣P ∣ − 1) ≥ (n − 1) − dG0(v) − t ≥ 2t + 1 − (t + 1) − t = 0.

Therefore, by Theorem 2.3.4, F1, . . . , Ft have a color-disjoint extension to t edge-

disjoint rainbow spanning trees.

2.3.8 Proof of Theorem 2.3.1 where n ≥ 2t + 3

Proposition 2.3.3. For any n ≥ 2t + 2 ≥ 6, we have r(n, t) = (n−2
2 ) + t.

Proof. Again, the lower bound is due to Proposition 2.3.1. For the upper bound, we

will show that every edge-coloring of Kn with exactly (n−2
2 ) + t + 1 distinct colors has

t edge-disjoint spanning trees. Call this edge-colored graph G.

Given a vertex v, we define D(v) to be the set of colors C such that every edge

with colors in C is incident to v. Given a vertex v and a set of colors C, define

Γ(v,C) as the set of edges incident to v with colors in C. For ease of notation, we

let Γ(v) = Γ(v,D(v)).

For fixed t, we will prove the theorem by induction on n. The base case is when

n = 2t+2, which is proven in Proposition 2.3.2. Let’s now consider the theorem when

n ≥ 2t + 3.

Case 1: there exists a vertex v ∈ V (G) with ∣Γ(v)∣ ≥ t and ∣D(v)∣ ≤ n − 3.

In this case, we set G′ = G − {v}. Note that G′ is an edge-colored complete

graph with at least (n−2
2 ) + t+ 1− (n− 3) = (n−3

2 ) + t+ 1 distinct colors. Moreover
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∣G′∣ ≥ 2t + 2. Hence by induction, there exists t edge-disjoint rainbow spanning

trees in G′. Note that by our definition of D(v), none of the colors in D(v)

appear in E(G′). Moreover, since ∣Γ(v)∣ ≥ t, we can extend the t edge-disjoint

rainbow spanning trees in G′ to G by adding one edge in Γ(v) to each of the

rainbow spanning trees in G′.

Case 2: Suppose we are not in Case 1. We first claim that there exists two vertices

v1, v2 ∈ V (G) such that ∣Γ(v1)∣ ≤ t − 1 and ∣Γ(v2)∣ ≤ t − 1.

Otherwise, there are at least n − 1 vertices u with ∣Γ(u)∣ ≥ t. Since we are not

in Case 1, it follows that all these vertices u also satisfy ∣D(u)∣ ≥ n − 2. Hence

by counting the number of distinct colors in G, we have that

(n − 1)(n − 2)
2 ≤ (n − 2

2 ) + t + 1.

which implies that n ≤ t + 3, giving us the contradiction.

Now suppose ∣Γ(v1)∣ ≤ t − 1 and ∣Γ(v2)∣ ≤ t − 1. Let D = D(v1) ∪D(v2). Add

new colors to D until ∣Γ(v1,D)∣ ≥ t, ∣Γ(v2,D)∣ ≥ t + 1 and ∣D∣ ≥ t + 1. Call the

resulting color set S. Note that

t + 1 ≤ ∣S∣ ≤ 2t + 1 ≤ n − 2.

Now let G′ = G − {v1, v2} and delete all edges of colors in S from G′.

We claim that G′ has t color-disjoint rainbow spanning trees. By Theorem

2.3.3, it is sufficient to verify the condition that for any partition P of V (G′),

∣c(cr(P,G′))∣ ≥ t(∣P ∣ − 1).

Observe

∣c(cr(P,G′))∣ − t(∣P ∣ − 1)

≥ ∣c(E(G′)∣ − (n − 1 − ∣P ∣
2 ) − t(∣P ∣ − 1)
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≥ (n − 2
2 ) + t + 1 − ∣S∣ − (n − 1 − ∣P ∣

2 ) − t(∣P ∣ − 1)

≥ (n − 2
2 ) + t + 1 − (n − 2) − (n − 1 − ∣P ∣

2 ) − t(∣P ∣ − 1).

Note the expression above is concave downward as a function of ∣P ∣. It is

sufficient to check the value at 2 and n − 2. When ∣P ∣ = 2, we have

∣c(cr(P,G′))∣ − t(∣P ∣ − 1) ≥ (n − 2
2 ) + t + 1 − (n − 2) − (n − 3

2 ) − t = 0.

When ∣P ∣ = n − 2, we have

∣c(cr(P,G′))∣ − t(∣P ∣ − 1) ≥ (n − 2
2 ) + t + 1 − (n − 2) − t(n − 3)

= (n − 4)(n − 2t − 3)
2

≥ 0.

Here we use the assumption n ≥ 2t+3 in the last step. Now it remains to extend

the t color-disjoint spanning trees we found to G by using only the colors in S.

Let e1,⋯, ek be the edges in G incident to v1 with colors in S. Let e′1,⋯e′l be

the edges in G/{v1} incident to v2 with colors in S. With our selection of S, it

follows that k, l ≥ t. Now construct an auxiliary bipartite graph H with partite

sets A = {e1,⋯, ek} and B = {e′1,⋯, e′l} such that eie′j ∈ E(H) if and only if ei, e′j
have different colors in G.

We claim that there is a matching of size t in H. Let M be the maximum

matching in H. Without loss of generality, suppose e1e′1,⋯, eme′m ∈ M where

m < t. It follows that {ej ∶ m < j ≤ k} ∪ {e′j ∶ m < j ≤ l} all have the same color

(otherwise we can extend the matching). Without loss of generality, they all

have color x. Now observe that for every matched edge eie′i, exactly one of the

two end vertices must be in color x. Otherwise, we can extend the matching

by pairing ei with e′t and et with e′i. This implies that H has at most t colors,

which contradicts that ∣S∣ ≥ t + 1.

42



Hence there is a matching of size t in H. Since none of the edges in G′ have

colors in S, it follows that we can extend the t color-disjoint rainbow spanning

trees in G′ to t edge-disjoint rainbow spanning trees in G.

Hence in all of the three cases, we obtain that G has t edge-disjoint rainbow

spanning trees.

2.3.9 Theorem 2.3.1 where n = 2t + 1

Proposition 2.3.4. For positive integers t ≥ 1 and n = 2t+1, we have r(n, t) = (n−1
2 ) =

2t2 − t.

Proof. Again, the lower bound is due to Proposition 2.3.1. Now we prove that any

edge-coloring of K2t+1 with 2t2 − t + 1 distinct colors contains t edge-disjoint rainbow

spanning trees. Call this edge-colored graph G. The proof approach is similar to the

case when n = 2t + 2. Let mi be the multiplicity of the color ci in G. Without loss of

generality, say the first s colors have multiplicity greater than or equal to 2:

m1 ≥m2 ≥ ⋯ ≥ms ≥ 2.

Let G1 be the spanning subgraph consisting of all edges whose color multiplicity is

greater than 1 in G. Let G2 be the spanning subgraph consisting of the remaining

edges. We have
s

∑
i=1

(mi − 1) = (n2) − (2t2 − t + 1) = 2t − 1. (2.10)

In particular, we have

∣E(G1)∣ =
s

∑
i=1
mi = 2t − 1 + s ≤ 4t − 2.

Claim: we can construct t edge-disjoint rainbow forests F1, . . . , Ft in G1 such that

if we let G0 = G1/
t

⋃
i=1
E(Fi), then ∣E(G0)∣ ≤ t. Again, for the proof of the claim, we

consider two cases:
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Case 1: m1 ≥ t + 2. By equation (2.10), we have that s ≤ (2t − 1) − (t + 1) + 1 = t − 1.

We construct t edge-disjoint rainbow forests F1,⋯, Ft as follows: First take t

edges of color c1 and add one edge to each of F1,⋯Ft. Next, pick one edge from

each of the remaining s − 1 colors and add each of them to a distinct Fi.

Clearly, we can obtain t edge-disjoint rainbow forests in this way. Furthermore,

∣E(G0)∣ ≤ 2t − 1 + s − (t + s − 1) = t.

which proves the claim.

Case 2: m1 < t + 2. Let F1, . . . , Ft be the edge-maximal family of rainbow spanning

forests in G1. Let G0 = G1/
t

⋃
i=1
E(Fi). Suppose that ∣E(G0)∣ > t. Then

t

∑
i=1

∣E(Fi)∣ ≤ 2t − 1 + s − (t + 1) = t + s − 2.

Since s ≤ 2t − 1, it follows that there exists some j such that ∣E(Fj)∣ ≤ 2.

Case 2a: ∣E(Fj)∣ = 1. Since {F1, . . . , Ft} is edge-maximal and ∣E(G0)∣ ≥ t + 1,

it follows that all edges in G0 share the same color (call it c′1) as the single

edge in Fj. Thus m1 ≥ t+ 2, which contradicts that m1 < t+ 2 since we are

in Case 2.

Case 2b: ∣E(Fj)∣ = 2. Similarly, at least t edges in G0 share the same colors

(call them c′1, c′2) as the two edges in Fj. It follows that m1 +m2 ≥ t + 2.

Hence s ≤ t + 1.

Now since ∣E(G0)∣ ≥ t + 1, it follows that

t

∑
i=1

∣E(Fi)∣ ≤ 2t − 1 + s − (t + 1) = t + s − 2 ≤ 2t − 1,

Hence there exists some forest with only one edge, in which case we are

done by Case 2a.
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Hence by contradiction, we obtain that ∣E(G0)∣ ≤ t, which completes the proof

of the claim.

Now we show that F1, . . . , Ft have a color-disjoint extension to t edge-disjoint

rainbow spanning trees. Consider any partition P . We will verify

∣c(cr(P ),G2)∣ +
t

∑
i=1

∣cr(P,Fi)∣ ≥ t(∣P ∣ − 1).

We have

∣c(cr(P ),G2)∣ +
t

∑
i=1

∣cr(P,Fi)∣ − t(∣P ∣ − 1) ≥ (n2) − t − (n − ∣P ∣ + 1
2 ) − t(∣P ∣ − 1).

Note that the function on right is concave downward on ∣P ∣. It is enough to verify it

at ∣P ∣ = 2 an ∣P ∣ = n. When ∣P ∣ = 2, we have

(n2) − t − (n − 1
2 ) − t = n − 1 − 2t ≥ 0.

When ∣P ∣ = n, we have

(n2) − t − t(n − 1) = 0.

By Theorem 2.3.4, F1, . . . , Ft have a color-disjoint extension to t edge-disjoint rainbow

spanning trees.

2.4 Ramsey number of Berge hypergraphs

LetH1,H2, . . . ,Hc be nonempty collections of r-uniform hypergraphs. The hypergraph

Ramsey number Rr
c(H1,H2, . . . ,Hc) is defined to be the minimum integer N such that

if the hyperedges of Kr
N are colored with c colors, then for some 1 ≤ i ≤ c, there is

a monochromatic copy of a member of Hi. We omit c if it is clear from context. If

some of the collections Hi consist of a single hypergraph G, then we write G in place

of Hi = {G}.
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In the remaining sections and Chapter 3, we mainly study hypergraphs defined

in a natural way from a given graph G. In the case when G is a path or a cycle,

Berge [14] introduced a very general class of hypergraphs defined in terms of G. In

particular, a Berge path of length t is a collection of t hyperedges h1, h2, . . . , ht ∈ E

and t + 1 vertices v1, . . . , vt+1 such that {vi, vi+1} ⊆ hi for each i ∈ [t]. Similarly, a

k-graph H = (V,E) is called a Berge cycle of length t if E consists of t distinct edges

h1, h2, . . . , ht and V contains t distinct vertices v1, v2, . . . , vt such that {vi, vi+1} ⊆ hi

for every i ∈ [t] where vt+1 ≡ v1. Note that there may be other vertices than v1, . . . , vt

in the edges of a Berge cycle or path.

The extremal problems for Berge-paths and cycles have received a lot of attention.

For Ramsey-type results, Gyárfás and Sárközy [93] showed that the 3-color Ramsey

number of a 3-uniform Berge-cycle of length n is asymptotic to 5n
4 (the 2-color case was

settled exactly in [92]). For Turán-type results, let exk(n,G) denote the maximum

number of hyperedges in a k-uniform Berge-G-free hypergraph. Győri, Katona and

Lemons [95] showed that for a k-graph H containing no Berge path of length t, if

t ≥ k + 2 ≥ 5, then e(H) ≤ n
t
(t
k
); if 3 ≤ t ≤ k, then e(H) ≤ n(t−1)

k+1 . Both bounds are

sharp. The remaining case of t = k + 1 was settled by Davoodi, Győri, Methuku and

Tompkins [48]. For cycles of a given length, Győri and Lemons [96, 97] showed that

exk(n,C2t) = Θ(n1+1/t). The same asymptotic upper bound holds for odd cycles of

length 2t+1 as well. The problem of avoiding all Berge cycles of length at least k has

been investigated in a series of papers [123, 80, 81, 74, 98]. The general definition of

a Berge-G for an arbitrary graph G was introduced by Gerbner and Palmer in [86].

For Turán-type results on Berge-G-free hypergraphs for an arbitrary graph G, see for

example [8, 85, 88, 144]. For Turán-type results on Berge cliques, see for example

[94, 135, 91, 85, 82].

In this section, we investigate the analogous Ramsey problems for Berge hyper-

graphs and determine the 2-color Ramsey number of Berge-cliques for all uniformities.
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Let us recall the definition of a Berge hypergraph. In fact, we will give a more gen-

eral definition in which rather than starting with a graph G we may start with any

uniform hypergraph.

Definition 2.4.1. Given a k-uniform hypergraph H = (V,E) and an integer r ≥ k, we

use BrH to denote the set of r-uniform Berge-copies of H, i.e., the set of r-uniform

hypergraphs H′ = (W,F ) such that there exist U ⊆ W and bijections φ ∶ V → U ,

ψ ∶ E → F such that for all h = {v1, v2, . . . , vk} ∈ E, {φ(v1), φ(v2),⋯, φ(vk)} ⊆ ψ(h).

In this case, we call U the core of H′.

For simplicity, we will often (when it cannot lead to confusion) say that a r-

uniform hypergraph is a BH if it is an element of BrH. For example we may, in

an edge-colored hypergraph, say that a certain r-uniform hypergraph is a red BKt,

meaning that it is an element of the set BrKt with all its edges colored red.

In this paper, we show that the 2-color Ramsey number of BKt versus BKs is

linear. In particular, we prove the following theorem:

Theorem 2.4.1.

R3(BKs,BKt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t + s − 1 if {s, t} = {2},{3},{2,3} or {2,4},

t + s − 2 if s = 2, t ≥ 5, or s = 3, t ≥ 4 or s = t = 4,

t + s − 3 if s ≥ 4 and t ≥ 5.

For higher uniformity, we will show the following theorem.

Theorem 2.4.2.

R4(BKt,BKt) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t + 2 if 2 ≤ t ≤ 5,

t + 1 Otherwise.

Moreover, for general uniformity k we prove

Theorem 2.4.3. For k ≥ 5 and t ≥ t0(k) (for k = 5, t0 = 23 suffices),

Rk(BKt,BKt) = t.

47



Remark 2.4.1. We remark that a similar direction (but with mostly non-overlapping

results) has been pursued by two other groups independently [10, 84]. In particu-

lar, Gerbner, Methuku, Omidi and Vizer [84] showed that Rk
c(BKn) = n if k > 2c;

Rk
c(BKn) = n + 1 if k = 2c and obtained bounded on Rk

c(BKn) when k < 2c. They

also determined the exact value of R3
2(BT1,BT2) for every pair of trees. Similar in-

vestigations have also been started independently by Axenovich and Gyárfás [10] who

focus on the Ramsey number of small fixed graphs where the number of colors may go

to infinity.

To avoid tedious case analysis, some of the small cases are verified by computer.

The code is available at https://github.com/wzy3210/berge_Ramsey. We list be-

low the results verified by the computer.

Proposition 2.4.1. We have

(1) R3(BK3,BK4) = 5.

(2) R3(BK4,BK5) = 6.

(3) R4(BKt,BKt) ≤ t + 2 for 2 ≤ t ≤ 5.

(4) R4(BK6,BK6) ≤ 7.

2.4.1 Proof of Theorem 2.4.1

Recall that the number R3(BKs,BKt) is the smallest number N such that any 2-

edge-colored complete 3-uniform hypergraph (with colors blue and red) on n ≥ N

vertices either contains a blue Berge Ks or a red Berge Kt. In this subsection, we

will show that

R3(BKs,BKt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t + s − 1 if {s, t} = {2},{3},{2,3} or {2,4},

t + s − 2 if s = 2, t ≥ s + 3, or s = 3, t ≥ s + 1 or s = t = 4,

t + s − 3 if s ≥ 4 and t ≥ 5.
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Let us first deal with the cases when one of s or t is small. In particular, we prove

them in the following proposition.

Proposition 2.4.2. We have

(1) R3(BK2,BK2) = 3.

(2) R3(BK2,BK3) = 4.

(3) R3(BK3,BK3) = 5.

(4) R3(BK2,BK4) = 5.

(5) R3(BK4,BK4) = 6.

(6) R3(BK2,BKt) = t when t ≥ 5.

(7) R3(BK3,BKt) = t + 1 when t ≥ 4.

Proof. (1) is trivial since any non-trivial edge-colored 3-uniform hypergraph contains

at least 3 vertices and any edge is a BK2. For (2), R3(BK2,BK3) > 3 since a single

red edge is a complete K(3)
3 and is not a red BK3. For the upper bound, suppose we

have an edge-colored K(3)
4 . If it has a blue edge, we get a blue BK2. Otherwise all

of the 4 edges are red, in which case we have a red BK3. Similar reasoning gives (4)

and (6). For (3), R3(BK3,BK3) > 4 since an edge-colored K(3)
4 with two red and two

blue edges does not have a monochromatic BK3. Similar reasoning gives the lower

bound of (5). The upper bounds of (3) and (5) follow from Lemma 2.4.1. For (7),

we first show that R3(BK3,BKt) > t. Let H be an edge-color K(3)
t with two special

vertices v1, v2 such that any hyperedge containing both v1, v2 is blue and all other

hyperedges are colored red. Observe that any blue Berge clique or red Berge clique

cannot contain both v1 and v2. Therefore, there is no blue BK3 or red BKt in H.

For the upper bound, it is checked by computer that R3(BK3,BK4) = 5 and the
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bound R3(BK3,BKt) ≤ t + 1 (t ≥ 5) follows from Lemma 2.4.1, which will be proven

later.

Next we show the lower bound in the following proposition.

Proposition 2.4.3. Suppose s, t ≥ 3. We then have

R3(BKt,BKs) ≥ t + s − 3.

Proof. We will construct a 2-edge-colored complete 3-uniform hypergraphH on t+s−4

vertices without a blue BKt and red BKs. Let V (H) = A ⊔B where ∣A∣ = t − 2 and

∣B∣ = s − 2. For all a, a′ ∈ A, b ∈ B, color the hyperedge {a, a′, b} blue. For all a ∈ A,

b, b′ ∈ B, color the hyperedge {a, b, b′} red. Moreover, color all triples in A blue and

all triples in B red. Observe that any blue Berge clique contains at most one vertex

from B and any red Berge clique contains at most one vertex from A. It follows that

H does not contain a blue BKt or a red BKs. Hence R3(BKt,BKs) ≥ t + s − 3.

Before we present the proof of Theorem 2.4.1, we will prove the following lemma.

Lemma 2.4.1. Suppose t, s ≥ 3. Then

R3(BKt,BKs) ≤ max{R3(BKt−1,BKs),R3(BKt,BKs−1)} + 1.

Proof. Without loss of generality, assume t ≥ s. LetH be a 2-edge-colored complete 3-

uniform hypergraph with N ∶= max{R3(BKt−1,BKs),R3(BKt,BKs−1)} + 1 vertices,

and let V be the set of vertices. We want to show that H contains either a blue BKt

or a red BKs as a sub-hypergraph.

Take v ∈ V and let H′ be the hypergraph induced by the vertices V ′ ∶= V /{v}.

Since ∣V ′∣ ≥ R3(BKt−1,BKs), it follows by definition that H′ contains a blue BKt−1

or a red BKs. If there is a red BKs we are done. Otherwise suppose we have a blue

BKt−1, with the vertex set Y as its core. Now let us consider G, the blue trace of v

in H, i.e., G is a 2-edge-colored complete graph with vertex set V ′ and there exists

an edge {x, y} in G if and only if the hyperedge {x, y, v} in H is colored blue.
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Claim 2.4.1. Either we can extend Y using v to obtain a blue BKt or there exists

a vertex u ∈ Y with dG(u) ≤ 1. Moreover if dG(u) = 1 and {u,w} is the only edge

containing u, then dG(w) < N − 2.

Proof. Consider the incidence graph of G, i.e., the bipartite graph I = Y ∪E(G) such

that for every u ∈ Y , e ∈ E(G), u is incident to e if and only if u ∈ e. Observe that Y

is the core of a blue BKt−1 with none of its hyperedges containing v. Therefore, by

our definition of G (the blue trace of v in H), if there is a matching of Y in I, then

we can obtain a blue BKt with Y ∪ {v} as its core.

Now assume I does not contain a matching of Y . We first claim that there exists

a vertex u ∈ Y with dG(u) ≤ 1. Note that the degree of each e ∈ E(G) is at most 2.

Thus, if dI(u) ≥ 2 for all u ∈ Y , then it follows that for every S ⊆ Y , ∣NI(S)∣ ≥ ∣S∣,

which gives us a matching on Y by Hall’s condition. Thus by contradiction, we have

a vertex in Y of degree at most 1 in G.

Suppose now dG(u) = 1 for some u in Y and e = {u,w} is the unique edge contain-

ing u. We claim that dG(w) < N − 2. Suppose not, i.e., dG(w) ≥ N − 2. This implies

that {v,w, z} is a blue edge for every z ∈ V (H)/{v,w}. Moreover, by our lower bound

in Proposition 2.4.2 (when s, t are small) and Proposition 2.4.3, there exists another

vertex y ∈ V ′/Y . It follows that we can extend Y into the core of a blue BKt with the

following embedding: for each z ∈ Y /{w}, embed {v, z} to the hyperedge {v, z,w}.

Then embed {v,w} to {v,w, y}. Thus if we do not have a blue BKt with Y ∪ v as its

core, then we have dG(w) < N − 2.

This claim says that either there exists u ∈ Y such that {v, u, x} is red for every

x ∈ V ′/{u}, or there exists u,w ∈ V ′ such that {v, u, x} is red for every x /= w and

there exists wx such that {v,w,wx} is red. Note that the second case covers the

first case by taking wx = u. So it suffices to assume the second case. Now since

N−1 ≥ R3(BKt,BKs−1), it follows that H′ either contains a blue BKt or a red BKs−1.
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We are done in the former case. Otherwise, suppose that H′ contains a red BKs−1.

We will show that we can extend this BKs−1 by adding the vertex v into its core. Let

X be the core of the Berge-Ks−1. Now for every x ∈X with x ∉ {u,w}, we know that

the edge {v, u, x} is colored red. Hence we can embed {v, x} into the red hyperedge

{v, u, x}. It follows that we have an embedding of the edges from v to all but at most

two vertices of X, namely u,w. In the case that w ∈X, we can embed {v,w} into the

hyperedge {v,w,wx}, which is red. Now if u ∉ X, we are done. Otherwise, assume

u ∈ X. Note that by the lower bounds in Proposition 2.4.2 (when s, t are small)

and Proposition 2.4.3, ∣V ′∣ = N −1 ≥ max{R3(BKt−1,BKs),R3(BKt,BKs−1)} ≥ s+1.

Hence it follows that there exists another vertex y ∈ V (H′)/(X ∪ {w}). Note that by

our choice of u, {v, u, y} is red. Thus we can embed {v, u} into {v, u, y}. The above

embedding extends X into the core of a red BKs and we are done.

Lemma 2.4.2. R3(BK4,BKt) = t + 1 for t ≥ 5.

Proof. We will proceed by induction on t. The base case that R3(BK4,BK5) = 6 is

verified by computer. Suppose now that Lemma 2.4.2 is true for all 5 ≤ t′ < t. Let

H be a 2-edge-colored complete 3-uniform hypergraph on t + 1 vertices. Note that

by Proposition 2.4.2, we have R3(BK3,BKt) = t + 1. Hence H either contains a blue

BK3 or a red BKt. If the latter happens, we are done. So suppose H contains a

blue BK3, with the vertex set Y as its core. Note that t + 1 ≥ 7 and a Berge-triangle

contains at most 6 vertices. Hence there exists a vertex v that is not used by any

hyperedge in the blue BK3. Similar to Lemma 2.4.1, let G be the blue trace of v in

H. Again by Claim 2.4.1, either we can extend Y using to v to obtain a blue BK4

or there exists a vertex u ∈ Y with dG(u) ≤ 1. Moreover, if dG(u) = 1 and {u,w}

is the only edge containing u, then dG(w) < t − 1. In the former case, we are done.

Otherwise, WLOG, assume that there exists a u ∈ Y and w ∈ V (H)/{v, u} such that

{v, u, x} is red for every x ≠ w and there exists some vertex wx such that {v,w,wx}

is red. By induction, H[V (H)/{v}] contains either a blue BK4 or a red BKt. In the
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former case, we are done. In the latter case, we can extend the red BKt to a red

BKt+1 in the same way as in Lemma 2.4.1.

Now this result together with Lemma 2.4.1 allows us to show the following propo-

sition.

Proposition 2.4.4. R3(BKt,BKs) ≤ t + s − 3, for t, s ≥ 4 and max{s, t} ≥ 5.

Proof. We already know this is true if one of t or s is 4, and so for t, s ≥ 5 the result

follows from induction on t + s, using Lemma 2.4.1.

Theorem 2.4.1 follows from Proposition 2.4.2, 2.4.3 and 2.4.4.

2.4.2 Proof of Theorem 2.4.2

In this section, for ease of reference, sometimes we use the notation h → e to denote

that the hyperedge h ∈ E(H) is mapped to the vertex pair e ∈ E(G) when constructing

the embedding of E(G) in E(H).

Let us first deal with Theorem 2.4.2 for small values of t.

Proposition 2.4.5. For 2 ≤ t ≤ 5, R4(BKt,BKt) = t + 2.

Proof. For the lower bound, we use the fact that if R4(BKt,BKt) = n, for some t,

then (n4) ≥ 2(t2) − 1. For 2 ≤ t ≤ 5, this shows that R4(BKt,BKt) ≥ t + 2. The upper

bound that R4(BKt,BKt) ≤ t + 2 for 2 ≤ t ≤ 5 is verified by computer.

Now we want to show that R4(BKt,BKt) = t+1 for all t ≥ 6. Again we start with

the lower bound by showing the following proposition.

Proposition 2.4.6. R4(BKt,BKt) ≥ t + 1 for all t ≥ 6.

Proof. We want to construct a 2-edge-coloring of a complete 4-uniform hypergraph on

t vertices without a monochromatic BKt. Let H be a K(4)
t with two special vertices

v1, v2. Any hyperedge containing both v1, v2 is colored blue. All other hyperedges are
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colored red. We claim that there is no monochromatic BKt in H. Indeed, there is

no red BKt since only one of v1, v2 can be in any red BKt. For blue BKt, note that

by our coloring there are only (t−2
2 ) blue edges, which are fewer than the (t2) edges

needed for BKt.

Now let us move on to the upper bound.

Lemma 2.4.3. For t ≥ 6, we have that

R4(BKt,BKt) ≤ t + 1.

Proof. We prove the lemma by inducting on t. The base case that R4(BK6,BK6) ≤ 7

is verified by computer. Now assume that t ≥ 7 and the lemma is true for all t′ < t.

Let H be a 2-edge-colored complete 4-uniform hypergraph on a vertex set V of

size t + 1. For ease of reference, given a set of vertices S, let db(S) and dr(S) denote

the number of blue and red hyperedges containing S as subset, respectively.

Claim 2.4.2. Suppose H does not contain a monochromatic BKt. Let v be a fixed

vertex in H. If there is a monochromatic BKt−1 (without loss of generality, assume

it is blue) without using any hyperedge containing v, then there exists another vertex

u such that db({v, u}) ≤ 2, i.e., all hyperedges containing both v, u are red except for

at most two.

Proof. Let Hb be the blue Berge-Kt−1 hypergraph not using any hyperedge containing

v. Let {u1, u2, . . . ut−1} be the core of Hb. Construct a bipartite graph G = A ∪ B

where A = {u1, . . . , ut−1} and B = (V ∖{v}3 ). For ui ∈ A, S ∈ B, ui is adjacent to S in

G if and only if ui ∈ S and {v} ∪ S is a blue edge in H. Note that for every S ∈ B,

dG(S) ≤ 3. Therefore, if dG(ui) ≥ 3 for every ui ∈ A, then there exists a matching of

A in G by Hall’s theorem, which implies that we can extend Hb to a blue BKt by

adding v into the core of Hb. This contradicts our assumption that H does not have

a monochromatic BKt, and the proof of Claim 2.4.2 is complete.
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Now for every v ∈ V , there exists a monochromatic BKt−1 in H[V /{v}] by induc-

tion. Hence by Claim 2.4.2, for every vertex v, there exists another vertex u in V ,

such that dc({v, u}) ≥ (t−1
2 ) − 2, for some c ∈ {blue, red}. We then call the pair {v, u}

a c couple where c ∈ {blue, red}. Moreover, call {a, b} a ‘bad pair’ of {v, u} if the

hyperedge {a, b, v, u} is not in color c.

By Claim 2.4.2, every vertex is contained in a couple. It follows that we have at

least (t+ 1)/2 ≥ 4 couples so at least two of them are of the same color. Without loss

of generality, let {v1, u1} and {v2, u2} be two red couples. Our goal is to obtain a red

embedding of a BKt using mostly edges containing {v1, u1} and {v2, u2}. We assume

that {v1, u1} ∩ {v2, u2} = ∅ and remark that the other case is similar and simpler.

Let {a1, b1},{a2, b2} be the two possible bad pairs of {v1, v2}. Let {c1, d1}, {c2, d2}

be two possible bad pairs of {v2, u2}. If {v1, u1} has exactly two bad pairs, we can

assume that for at least one of them (with loss of generality the pair {a2, b2}) there

is a red edge h containing it. Otherwise {a1, b1} and {a2, b2} are blue couples with no

bad pairs and it is easy to find a blue BKt by only using the blue edges containing

{a1, b1} and {a2, b2}.

If {v1, u1} has exactly one bad pair, let {a1, b1} be that pair and pick {a2, b2} arbi-

trarily. Note that {a2, b2} is contained in some red edge h. If {v1, u1} has no bad pair,

then pick {a1, b1} and {a2, b2} arbitrarily. Moreover, we assume that {v1, u1, v2, u2}

is a red edge and observe that otherwise constructing the embedding is easier.

Suppose {a1, b1} and {a2, b2} have a common vertex u. If u ∉ {v2, u2}, relabel

a1, b1 such that a1 = u, and if u ∈ {v2, u2} relabel u2, v2, a1, b1 such that b1 = u2 =

u. Otherwise just relabel a1, b1 such that a1 /∈ {v2, u2}. Let x1, x2, . . . , xt−4 be an

enumeration of V ′ ∶= V ∖{v1, v2, u1, u2, a1}. If b1 /∈ {v2, u2}, assume x1 = b1. Otherwise

WLOG that b1 = u2. We are going to construct the embedding in three phases:

Phase 1: Embed all vertex pairs in V ′. Consider the following embedding: For

i, j ∈ {1, . . . , t − 4}, embed {xi, xj} in {u1, v1, xi, xj} if i + j is odd otherwise in
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{u2, v2, xi, xj}. We have a red BKt−4 except possibly for at most three missing

edges. Without loss of generality, let {xi1 , xj1}, {xi2 , xj2}, {xi3 , xj3} be the

three possible bad pairs where i1+j1 is odd and both i2+j2 and i3+j3 are even.

If {xi1 , xj1} is indeed a bad pair of {v1, u1}, then it follows that {xi1 , xj1} =

{a2, b2}. Then we can embed {xi2 , xj2} in {v1, u1, xi2 , xj2}, embed {xi3 , xj3} in

{v1, u1, xi3 , xj3} and embed {xi1 , xj1} in h. Otherwise, {xi1 , xj1} does not exist

and the above embedding still works except when one of {xi2 , xj2},{xi3 , xj3} is

the pair {a2, b2}. We can then use h to embed {a2, b2}.

Phase 2: Embed all edges from {v1, u1, v2, u2} to vertices in V ′. Consider the fol-

lowing embedding:

{v1, u1, a1, xi} → {xi, u1} for i ≠ 1.

{v1, u1, v2, xi} → {xi, v1} for i ≠ 1.

{v2, u2, a1, xi} → {xi, u2}.

{v1, v2, u2xi} → {xi, v2}.

Note that x1 can only be contained in one bad pair otherwise we would have

picked x1 to be a1. Hence among the three edges {v1, u1, x1, v2}, {v1, u1, x1, u2},

{v1, u1, a1, x1}, at least two of them are red. Embed {x1, v1}, {x1, u1} into those

two red edges. If all three are red, do not use {v1, u1, u2, x1} in this part of the

embedding.

Now let us analyze the potential bad cases. There are at most 3 of these edges

in Phase 2 that are not red.

If {u1, v1, a1, xi,}, i /= 1 is blue, then use the edge {v1, u1, u2, xi} to embed

{u1, xi}.

If {v1, u1, v2, xi}, i /= 1 is blue, then use the edge {v1, u1, u2, xi} to embed {v1, xi}.
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If there are two different indexes i, j such that h1 ∈ {{v2, u2, a1, xi},{v1, v2, u2, xi}}

and h2 ∈ {{v2, u2, a1, xj},{v1, v2, u2, xj}} are both blue, then we can replace h1

with {u1, v2, u2, xi} and replace h2 with {u1, v2, u2, xj}. The same embedding

works if there is only one bad pair of {v2, u2} in this phase.

If for some i both edges {v1, v2, u2, xi},{v2, u2, a1, xi} are blue, then it follows

that the edge {v2, u2, xi, y} is red for every vertex y, with y ∉ {v1, a1, v2, u2, xi}.

Consider the set of edges Ei = {{v2, u2, xi, y} ∶ y ∉ {v1, v2, u2, a1, xi}}. Note that

∣Ei∣ = t−4. In Phase 1, at most ⌈(t−6)/2⌉ edges in Ei are used except when t is

even and i is odd, in which case ⌊(t−6)/2⌋ edges in Ei are used. If t is even and

i is odd, we have at least t−4−⌊(t−6)/2⌋ ≥ 3 edges in Ei still available. In other

cases, we have at least t − 4 − ⌈(t − 6)/2⌉ ≥ 2 edges in Ei still available. Either

there exist two edges in Ei that can be used to embed {v2, xi} and {u2, xi}, or in

Phase 1 there exists some j such that {v1, u1, xi, xj} is blue and {v2, u2, xi, xj} is

used to embed {xi, xj}. In this case, there exists some k ∈ {1, . . . t− 4}/{i} such

that i + k is even and {v1, u1, xi, xk} is red. Embed {xi, xk} into {v1, u1, xi, xk}.

It follows that we again have two available red edges containing xi, v2, u2 to

embed {v2, xi}, {u2, xi}.

Phase 3: Embed the edges in ({u1, v1, u2, v2}
2 ). If the edge {u1, v1, v2, a1} is red, then

use it to embed {v1, v2}. Otherwise we know that {v2, a1} and {u2, a1} are the

two bad pairs of {v1, u1}. It follows that the edge {v1, u1, u2, x1} is still available

and the edge {v1, u1, v2, x1} was used to embed x1 with one of v1 or u1 (without

loss of generality, assume v1). In this case, embed {v1, x1} in {v1, u1, u2, x1}

instead and use the edge {v1, u1, v2, x1} to embed {v1, v2}. Now we will embed

{v1, u2} and {u1, u2}. Let Eu2 = {{v1, u1, u2, y} ∶ y ∉ {v1, u1, v2, u2}}. Note that

∣Eu2 ∣ = t−3 and at most 2 edges in Eu2 are blue. Hence at least (t−3)−2 ≥ 2 of

the edges in Eu2 are red. For each red edge in Eu2 , if it was used, it was because

there exists some bad pair of {v1, u1} which did not use u2. That in turn implies
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that there are still at least 2 edges in Eu2 that are red and available. Hence we

can embed {v1, u2} and {u1, u2} into these two edges. Similarly we can find an

edge of the form {v2, u1, u2, y} to embed {u1, v2}.

Finally, by counting the edges used, it is easy to check that there are still red

edges of the form {v1, u1, x, y} and {v2, u2, x, y} available to embed both {v1, u1}

and {v2, u2}, since each pair is in at least (t−1
2 ) − 2 red edges.

In the case of cliques of different sizes we have the following bounds which are

trivial from Theorem 2.4.2.

Proposition 2.4.7. Suppose t ≥ s ≥ 2 and t ≥ 6, then

t ≤ R4(BKt,BKs) ≤ t + 1.

Proof. The construction is trivial, we just take a clique on t − 1 vertices. The upper

bound follows since s ≤ t implies R4(BKt,BKs) ≤ R4(BKt,BKt).

For s = t − 1 we obtain the same bound as the case s = t.

Proposition 2.4.8. R4(BKt,BKt−1) = t + 1 for t ≥ 6.

Proof. The same construction works as the R4(BKt,BKt) case, and the upper bound

follows from R4(BKt,BKt−1) ≤ R4(BKt,BKt).

Theorem 2.4.4. Assume 2 ≤ s ≤ t − 2, and t ≥ 34, then R4(BKt,BKs) = t.

Proof. In a red-blue coloring of a hypergraph H, given a pair of vertices {v, u}, we

define its blue degree to be dB({v, u}) = ∣h ∈ E(H) ∶ {v, u} ⊆ h and h is blue}∣. The

red degree dR({v, u}) is defined analogously. Let

δ2
B = min

{v,u}∈(V (H)2 )

dB({v, u}),

and define δ2
R similarly.
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Call {v, u} a c couple, c ∈ {blue, red}, if all but at most 5 of the hyperedges

{v, u, x, y} are c colored, and also call a pair {x, y} a bad pair of the c couple {v, u}

if the hyperedge {v, u, x, y} is not colored c.

Note that if δ2
B = 0 then we can find a pair {v, u} such that {v, u, x, y} is red for

all x, y, and therefore there is a red BKt−2. So we can assume δ2
B ≥ 1.

Claim 2.4.3. Suppose there are two blue couples, then either we can find a blue BKt

or we can find two red couples such that each have at most 4 bad pairs.

Proof. Assume we have two disjoint blue couples {u1, v1} and {u2, v2}, the case where

these pairs are not disjoint is similar and simpler, and enumerate the other t − 4

vertices as x1, x2, . . . , xt−4. Now let us do a preliminary embedding, for i, j ∈ [t − 4]

use {u1, v1, xi, xj} to embed {xi, xj} when i + j is odd and {u2, v2, xi, xj} otherwise.

If i + j is odd and in this part of the embedding we used a red edge {u1, v1, xi, xj} to

embed {xi, xj}, but the edge {u2, v2, xi, xj} is blue, then use the edge {u2, v2, xi, xj}

instead. If i + j is even and in this part of the embedding we used a red edge

{u2, v2, xi, xj} to embed {xi, xj}, but the edge {u1, v1, xi, xj} is blue, then use the

edge {u1, v1, xi, xj} instead. Let us call such a change to the embedding a swap. If

both edges {u1, v1, xi, xj} and {u2, v2, xi, xj} are red or blue, then we do not change

anything.

Note that at this point we have embedded a BKt−4 such that every edge is blue

except at most five edges, in particular the possible pairs which are simultaneously

bad pairs of {u1, v1} and {u2, v2}.

Let e1, e2, . . . , ek be these common bad pairs, k ≤ 5. We begin with a simple

observation which we will use again later.

Observation 2.4.1. If k ≤ 1 we could complete the embedding in such a way that

each pair is contained in at least 1 blue edge.

59



If k ≥ 2 and all but at most one ei is in at least 5 blue edges, then we can greedily

embed the edges, starting from the one that is in less than 5 blue edges, since each is

in at least one unused blue edge. So we can either find two of the ei which are in at

most 4 blue edges and the claim is proven or we complete the embedding of a blue

BKt−4, and if that is the case we will see we can complete this embedding to a blue

BKt.

Since for any fixed i, there are at most ⌈ t−4
2 ⌉ indices j such that i + j is odd

and also xi can be in at most 10 bad pairs of {u1, v1} or {u2, v2}, it follows that

for every i ∈ [t − 4] there are at least t − 5 − ⌈ t−4
2 ⌉ − 10 ≥ 4 values of j ∈ [t − 4]

not used in the previous steps of the embedding such that the edge {u1, v1, xi, xj}

is blue. Then again by Hall’s Theorem in the incidence graph with components

X = {{xi, v2} ∶ i ∈ [t − 4]} ∪ {{xi, u2} ∶ i ∈ [t − 4]} and Y the set of blue edges in

{{xi, xj, u2, v2} ∶ 1 ≤ i < j ≤ t − 4}, we can find an embedding of the edges {xi, v2} and

{xi, u2} for i ∈ [t − 4], and similarly we can find an embedding of the edges {xi, v1}

and {xi, u1} for i ∈ [t − 4].

We have not yet used the hyperedges of the form {v1, u1, v2, y}; there are at least

t−8 ≥ 26 of these which are blue, and we can use them to embed {v1, u1},{v1, v2} and

{u1, v2}. Similarly we can embed {v2, u2},{u1, u2} and {u1, u2}. Therefore either we

can complete the matching or we find two pairs e1, e2 which are red couples, with at

most 4 bad pairs. This completes the proof of Claim 2.4.3.

Claim 2.4.4. Suppose there are two red couples such that at least one has at most 4

bad pairs, then either we can find a red BKt−2 or we can find two blue couples such

that each have at most 1 bad pair.

Proof. Again we assume the red couples are disjoint. Let {u1, v1} and {u2, v2} be cou-

ples such that {u1, v1} has at most 4 bad pairs, and let {a1, b1},{a2, b2},{a3, b3},{a4, b4}

be the bad pairs of {u1, v1}. Suppose these pairs are arranged by their red de-
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gree in increasing order. Now let x1, x2, . . . , xt−6 be an enumeration of the set V ′ =

V /{v1, v2, u1, u2, a1, a2}. Let us consider the following embedding which is similar to

the one used in the previous claim: For i, j ∈ [t − 6] use {u1, v1, xi, xj} to embed

{xi, xj} when i + j is odd and {u2, v2, xi, xj} otherwise. Similarly as in Claim 2.4.3,

if we encounter a bad pair of one couple but not the other, then we can change the

embedding to use more red edges, and at the end we have an embedding of a BKt−6

with almost every edge red, the only possible exceptions are the common bad pairs

of {u1, v1} and {u2, v2} in V ′. Hence here we have at most two ({a3, b3} and {a4, b4}).

If the red degree of these edges is at least 2, then we can greedily embed these two

in these pairs to complete a red clique on V ′. Otherwise one of these, and by the

ordering also {a1, b1} and {a2, b2}, will be in at most 1 red pair.

Similarly as in the proof of Claim 2.4.3, we use Hall’s theorem to embed {xi, v2},

{xi, u2}, {xi, v1} and {xi, u1} for i ∈ [t − 6] (here the number t − 5 − ⌈ t−4
2 ⌉ − 10 is

replaced by t − 7 − ⌈ t−6
2 ⌉ − 8, which is at least 5). Since {v1, u1, v2, y} is red for at

least t − 7 ≥ 29, and these hyperedges have not been used yet, it follows that we

have enough hyperedges to embed {v1, u1},{v1, v2} and {u1, v2} and similarly we can

embed {v2, u2},{v1, u2} and {u1, u2}.

Note that if there is at most one blue couple, say {v, u}, we may put V ′ = V /{u}

and for every pair x, y ∈ V ′ the red degree of {x, y} is at least 6. Then by Hall’s

Theorem, we can find a red BKt−1. So we can assume there are at least two blue

couples. Thus, by Claim 2.4.3 either we find a blue BKt or we have two red couples

such that at least one has at most 4 bad pairs, the conditions of Claim 2.4.4. From here

we either find a red BKt−2 or satisfy conditions stronger than those of Claim 2.4.3.

In this case, there is at most one shared bad pair and so we would be able to find a

blue BKt by Observation 2.4.1.
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2.4.3 Proof of Theorem 2.4.3

In this short section, we will show that Rk(BKt,BKt) = t when t is sufficiently large.

Claim 2.4.5. If for all v, u ∈ V , there are at least (k2) red distinct hyperedges con-

taining both v and u, then H contains a red BKt.

Proof. Consider the bipartite graph G with vertex set V (G) = A⊔B, where A = (V (H)

2 )

and B is the set of all hyperedges of H. For a ∈ A, h ∈ B, a is adjacent to h in G if and

only if a ⊂ h and h is colored red in H. Note that for every h ∈ B, dG(h) ≤ (k2). Hence,

if for all {v, u} ∈ A, dG({v, u}) ≥ (k2), then by Hall’s theorem we have a matching of

A in G, which implies the existence of a red BKt in H.

Claim 2.4.6. If (t−4
k−4) ≥ 2(k2) − 1, then Rk(BKt,BKt) ≤ t.

Proof. If the condition in Claim 2.4.5 does not hold, then there exist two vertices

v, u ∈ V (H) such that all but at most (k2) − 1 hyperedges containing both v and u

are blue. We claim that there exists a copy of a blue BKt in H using only blue

hyperedges containing both v and u. Consider again the bipartite graph G with

vertex set V (G) = A ⊔B, where A = (V (H)

2 ) and B is the set of blue hyperedges of H

containing both v and u. Note that for every a ∈ A there are at least (t−4
k−4)−(

k
2)+1 ≥ (k2)

blue hyperedges containing a, and again by Hall’s theorem we have a blue BKt.

Using Claim 2.4.6, we show that Rk(BKt,BKt) = t when k ≥ 5 and t sufficiently

large. We did not make an attempt to find the best possible constant.

Corollary 2.4.1. We have

(1) R5(BKt,BKt) = t when t ≥ 23.

(2) R6(BKt,BKt) = t when t ≥ 13.

(3) R7(BKt,BKt) = t when t ≥ 12.
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(4) Rk(BKt,BKt) = t when k ∈ {8,9,10} and t ≥ k + 4.

(5) Rk(BKt,BKt) = t when k ≥ 11 and t ≥ k + 3.

Remark 2.4.2. Note that for k ≥ 11, this result is sharp since for t = k + 2 we have

that (t
r
) ≤ 2(t2) − 2. Hence Rk(BKt,BKt) ≥ r + 3.

Superlinear lower bounds for sufficiently many colors

In this subsection we show that for all uniformities and for sufficiently many colors,

the Ramsey number for a Berge t-clique is superlinear. We start with the case r = 3.

Claim 2.4.7. For any ε < 1 we have R3
3(BKt,BKt,BKt) ≥ (t− 1)tε for t sufficiently

large.

Proof. Let ε < 1. Take a vertex set consisting of the disjoint union of t − 1 sets of

vertices, V1, V2, . . . , Vt−1, each of size tε. If a hyperedge contains vertices from three

different Vi, then color it green. By the well-known lower bound on the diagonal

Ramsey number R(Kt1−ε ,Kt1−ε) = Ω(2t1−ε/2), we can find a coloring of Kt−1 containing

no clique of size t1−ε when t is sufficiently large. Given such a red-blue coloring on

the complete graph with vertex set {1,2, . . . , t−1} we color the hyperedges consisting

of two vertices from Vi and one from Vj by the color of {i, j} in the graph. We color

every hyperedge completely contained in some Vi red. Observe that the core of any

red or blue BKt may contain vertices in less than t1−ε different classes and so has a

total of less than t vertices.

Remark 2.4.3. This proof can give a slightly better bound on the order of t2

log(t) but

we write the bound in terms of ε for a simpler presentation.

Theorem 2.4.5. For any uniformity r ≥ 4, and sufficiently large c and t, we have

Rr
c(BKt,BKt, . . . ,BKt) > t1+(

r−3
r−2 )

r−3
−(

r−3
r−2 )

r−2
.
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Remark 2.4.4. The lower bound above was subsequently improved in [84] and [83].

The best bound (when c is sufficiently large) is due to Pálvölgyi [145], who established

the first exponential lower bound: Rr
c(BKt) > (1 + 1

r2 )t−1 if c > (r2).

Theorem 2.4.5 will follow from the following claim which we will prove by induction

on r by choosing the optimal ε.

Claim 2.4.8. For any uniformity r ≥ 3, and for any ε where ε < 1, for sufficiently

large c and t, we have

Rr
c(BKt,BKt, . . . ,BKt) > t1+(1−ε)

r−3
−(1−ε)r−2

.

Proof. The base case follows from Claim 2.4.7. Now assume that r ≥ 4. Let ε < 1.

Let cs be the number of colors required for Claim 2.4.8 to hold for an s-uniform

hypergraph for 2 ≤ s ≤ r − 1. Let M be the lower bound we obtain by induction for

the function Rr−1
cr−1(BKt1−ε ,BKt1−ε , . . . ,BKt1−ε). We will show

Rr
cr(BKt,BKt, . . . ,BKt) >M ⋅ tε.

for some constant cr depending on r.

Take the complete r-uniform hypergraph H on N =M ⋅ tε vertices. Partition the

vertex set into sets V1, V2, . . . , VM each consisting of tε vertices. We consider s-uniform

complete hypergraphsHs defined on the vertex set {1,2, . . . ,M} for 2 ≤ s ≤ r−1. Since

the lower bounds in Claim 2.4.8 are decreasing (in r), we have for cs colors a coloring

of Hs with no Berge clique of size t1−ε provided t is sufficiently large. Assume, indeed,

that t is at least the maximum required for any s.

Now, given the colorings of Hi with ci colors, for 2 ≤ i ≤ r − 1, we define a coloring

on H with cr = ∑r−1
s=2 cs + 2 colors and no monochromatic BKt. For 2 ≤ s ≤ r − 1

we color all hyperedges containing elements of the vertex sets Vi1 , Vi2 , . . . , Vis with

the same color as {i1, i2, . . . , is} in the coloring of Hs. Observe that the core of a

monochromatic BKt in H can contain vertices from fewer than t1−ε classes. Since Hs
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has no monochromatic BKt1−ε , and each class has tε vertices, it follows that H has no

monochromatic BKt using hyperedges containing vertices from between 2 and r − 1

classes. Finally, we may color the hyperedges contained in each Vi with any color

used so far and the hyperedges containing vertices from r classes with a new color.

It remains to verify that M ⋅ tε yields the required bound. Indeed,

M ⋅ tε = t(1−ε)(1+(1−ε)r−4
−(1−ε)r−3

) ⋅ tε = t1+(1−ε)r−3
−(1−ε)r−2

.

We now discuss briefly the case of forbidding Berge-cliques of higher uniformity.

First we collect some basic lemmas about the Ramsey number for Berge cliques in

different uniformities.

Lemma 2.4.4. For any r, c, a, b, where a < b and for t sufficiently large, we have

Rr
c(BK

(b)
t ,BK

(b)
t , . . . ,BK

(b)
t ) ≥ Rr

c(BK
(a)
t ,BK

(a)
t , . . . ,BK

(a)
t ).

Proof. It is sufficient to prove that for sufficiently large t, there is an injection from

([t]
a
) to ([t]

b
) mapping sets to one of their supersets. Let S ⊂ ([t]

a
) and φ(S) be the

elements of ([t]b ) which contain some element from S. We have ∣S∣(t−ab−a
) ≤ ∣φ(S)∣(ba) by

double-counting the relations between the two levels. Then ∣φ(S)∣ ≥ ∣S∣ is obvious for

sufficiently large t, and we have the desired injection by Hall’s theorem.

Corollary 2.4.2. For any uniformity r, a < r, and sufficiently large c and t, we have

Rr
c(BK

(a)
t ,BK

(a)
t , . . . ,BK

(a)
t ) ≥ t1+( r−3

r−2 )
r−3

−(
r−3
r−2 )

r−2
.

Proof. The result is immediate from Lemma 2.4.4 and Theorem 2.4.5.

2.5 cover-Ramsey number of Berge hypergraphs

A hypergraph is a pair H = (V,E) where V is a vertex set and E ⊆ 2V is an edge set.

For a fixed set of positive integersR, we sayH is anR-uniform hypergraph, orR-graph

for short, if the cardinality of each edge belongs to R. If R = {k}, then an R-graph
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is simply a k-uniform hypergraph or a k-graph. Given an R-graph H = (V,E) and a

set S ∈ (V
s
), let deg(S) denote the number of edges containing S and δs(H) be the

minimum s-degree of H, i.e., the minimum of deg(S) over all s-element sets S ∈ (V
s
).

When s = 2, δ2(H) is also called the minimum co-degree of H. Given a hypergraph

H, the 2-shadow(or shadow) of H, denoted by ∂(H), is a simple 2-uniform graph

G = (V,E) such that V (G) = V (H) and uv ∈ E(G) if and only if {u, v} ⊆ h for some

h ∈ E(H). Note that δ2(H) ≥ 1 if and only if ∂(H) is a complete graph. In this case,

we say H is covering.

There are several notions of a path or a cycle in hypergraphs. A Berge path of

length t is a collection of t hyperedges h1, h2, . . . , ht ∈ E and t + 1 vertices v1, . . . , vt+1

such that {vi, vi+1} ⊆ hi for each i ∈ [t]. Similarly, a k-graph H = (V,E) is called a

Berge cycle of length t if E consists of t distinct edges h1, h2, . . . , ht and V contains t

distinct vertices v1, v2, . . . , vt such that {vi, vi+1} ⊆ hi for every i ∈ [t] where vt+1 ≡ v1.

Note that there may be other vertices than v1, . . . , vt in the edges of a Berge cycle

or path. Gerbner and Palmer [86] extended the definition of Berge paths and Berge

cycles to general graphs. In particular, given a simple graph G, a hypergraph H

is called Berge-G, denoted by BG, if there is an injection i∶V (G) → V (H) and a

bijection f ∶E(G) → E(H) such that for all e = uv ∈ E(G), we have {i(u), i(v)} ⊆ f(e).

Extremal problems related to Berge hypergraphs have been receiving increasing

attention lately. For Turán-type results, let exk(n,G) denote the maximum number of

hyperedges in a k-uniform Berge-G-free hypergraph. Győri, Katona and Lemons [95]

showed that for a k-graph H containing no Berge path of length t, if t ≥ k+2 ≥ 5, then

e(H) ≤ n
t
(t
k
); if 3 ≤ t ≤ k, then e(H) ≤ n(t−1)

k+1 . Both bounds are sharp. The remaining

case of t = k+1 was settled by Davoodi, Győri, Methuku and Tompkins [48]. For cycles

of a given length, Győri and Lemons [96, 97] showed that exk(n,C2t) = Θ(n1+1/t).

The same asymptotic upper bound holds for odd cycles of length 2t + 1 as well. The

problem of avoiding all Berge cycles of length at least k has been investigated in a
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series of papers [123, 80, 81, 74, 98]. For general results on the maximum size of a

Berge-G-free hypergraph for an arbitrary graph G, see for example [85, 88, 144].

For Ramsey-type results, define Rk
c(BG1, . . . ,BGc) as the smallest integer n such

that for any c-edge-coloring of a complete k-uniform hypergraph on n vertices, there

exists a Berge-Gi subhypergraph with color i for some i. For convenience, we use

Rk
c(BG) to denote Rk

c(BG1, . . . ,BGc) when G1 = ⋯ = Gc = G. The study of Ram-

sey problems for Berge hypergraphs was initiated by three groups of authors in-

dependently [10, 84, 154]. Salia, Tompkins, Wang and Zamora [154] showed that

R3
2(BKs,BKt) = s+ t− 3 for s, t ≥ 4 and max(s, t) ≥ 5; R4

2(BKt,BKt) = t+ 1 for t ≥ 6

and Rk
2(BKt,BKt) = t for k ≥ 5 and t sufficiently large. Independently and more

generally, Gerbner, Methuku, Omidi and Vizer [84] showed that the Ramsey number

of Berge cliques is linear when the number of colors is less than the uniformity (of the

host complete hypergraph). In particular, they showed that Rk
c(BKt) = t if c < k/2;

Rk
c(BKt) = t + 1 if c = k/2 and Rk

c(BKt) ≤ ct when k/2 < c < k. When c ≥ k, a

superlinear lower bound was shown in [154] for c = k = 3 and for every other r for

large enough c. This was improved in [82] to Rk
c(BKt) = Ω(td) for c > (d − 1)(k2) and

Rk
k(BKt) = Ω(t1+1/(k−2)/ log t). Pálvölgyi [145] further improved it and gave the first

exponential lower bound by showing Rk
c(BKt) > (1 + 1

k2 )t−1 when c > (k2). Similar

investigations have also been started independently by Axenovich and Gyárfás [10]

who focus on the Ramsey number of small fixed graphs where the number of colors

may go to infinity.

Although it is pleasant to see that the Ramsey number of Berge cliques is linear

when the number of colors is less than the uniformity of the host hypergraph, the

result is also not surprising partially because Kk
t has much more edges than BKt

(for large k and t). This motivates us to define a new type of Ramsey number

such that the host hypergraph has relatively small number of edges. In particular,

given a collection of families of R-uniform hypergraphs, H1,H2,⋯,Hc, we define the
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cover Ramsey number, denoted as R̂R(H1,⋯,Hc), as the smallest integer n0 such

that for every covering R-uniform hypergraph H on n ≥ n0 vertices and every c-edge-

coloring of H with colors in [c], H contains a monochromatic copy of some member

of Hi in color i. For convenience, when H1 = ⋯ = Hc, we simply use R̂R
c (H1) to

denote R̂R(H1,⋯,Hc). Moreover, we use R̂k(H1,⋯,Hc) to denote R̂{k}(H1,⋯,Hc).

It is easy to see that R̂k(H1,⋯,Hc) ≤ R̂[k](H1,⋯,Hc). Note that when R = {2},

R̂R(BG1,BG2) is exactly the classical Ramsey number. Let Rc(G1, . . . ,Gc) denote

the classical multi-color Ramsey number, i.e., the smallest integer n such that any

c-edge-coloring of Kn contains a monochromatic Gi in the i-th color for some i ∈ [c].

When c = 2, we simply write R2(G1,G2) as R(G1,G2). We first show the following

theorem.

Theorem 2.5.1. For every k ≥ 2, there exists some constant ck such that for any

two finite graphs G1 and G2,

R(G1,G2) ≤ R̂[k](BG1,BG2) ≤ ck ⋅R(G1,G2)3.

Theorem 2.5.1 implies R̂R(BG1,BG2) is always finite, thus well-defined. In fact,

let k be the greatest integer in R. We have R ⊆ [k] and

R̂R(BG1,BG2) ≤ R̂[k](BG1,BG2) ≤ ck ⋅R(G1,G2)3.

Note that Theorem 2.5.1 does not give a lower bound for R̂k(BG1,BG2). For

complete graphsKt, we show that the cover Ramsey number of Berge cliques is at least

exponential in t. Note that this is very different from the 2-color hypergraph Ramsey

number of Berge cliques (see [154] and [84]), which is linear when the uniformity is

at least 3.

Theorem 2.5.2. For every k ≥ 2 and sufficiently large t, we have that

R̂k(BKt,BKt) > (1 + o(1))
√

2
e
t2t/2.
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Remark 2.5.1. For a fixed t and R ⊆ [k], let N(t) be the set of integers n such that

for every covering R-uniform hypergraph H on n vertices and every 2-edge-coloring

of H, there is a monochromatic Berge-Kt. We remark that N(t) may not be a single

interval. However, by Theorem 2.5.1, there exists some n0 such that [n0,∞) ⊆ N(t).

For a graph G with bounded maximum degree, Chvátal, Rödl, Szemerédi and

Trotter showed in [42] that for each positive integer d, there exists a constant C = C(d)

such that if G is a graph on n vertices with ∆(G) ≤ d, then R(G,G) ≤ Cn. In this

note, we show that the cover Ramsey number of Berge bounded-degree graphs is also

linear. The proof uses a modification of the proof of Chvátal, Rödl, Szemerédi and

Trotter in [42] that allows for more than two colors.

Theorem 2.5.3. For each positive integer c, d and k, there exists a constant C =

C(c, d, k) such that if G is a graph on n vertices with maximum degree at most d,

then

R̂
[k]
c (BG) ≤ Cn.

Theorem 2.5.3 implies that for fixed positive integers c, d and k, there is a constant

C ′ ∶= C ′(c, d, k) such that R̂[k]
c (BG) ≤ C ′ ⋅R(G,G) holds for any graph G with maxi-

mum degree at most d. It is an interesting question whether lim
t→∞

R̂[k](BKt,BKt)
R(Kt,Kt)

= ∞

for all k ≥ 3.

2.5.1 Proof of Theorem 2.5.1

Proof of Theorem 2.5.1. The lower bound that R̂[k](BG1,BG2) ≥ R(G1,G2) is clear

from the definition since R(G1,G2) = R̂{2}(BG1,BG2) ≤ R̂[k](BG1,BG2).

For the upper bound, given k ≥ 2, set ck = k3/12. Let H = (V,E) be a 2-edge-

colored R-graph on n = ckR(G1,G2)3 vertices. Assume further thatH is edge-minimal

with respect to the covering property. Suppose E = {h1, h2, . . . , hm} where m = ∣E∣.

Since H is edge-minimal and covering, it follows that (n2)/(
k
2) ≤m ≤ (n2).
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Now let S ⊆ V be a uniformly and randomly chosen subset of V of size s =

R(G1,G2). For each i ∈ [m], let Bi be the event that ∣hi ∩ S∣ ≥ 3. It is not hard to

see that

Pr (Bi) ≤ (k3)
(n−3
s−3)
(n
s
)
.

Taking a union bound over all Bi, we have that

Pr (B1 ∨ . . . ∨Bm) ≤ (n2)(
k

3)
(n−3
s−3)
(n
s
)

= 3
(k3)(

s
3)

n − 2
< 1.

The last step is due to the following inequality:

n = k
3

12s
3 ≥ 3((k3) + 1)((s3) + 1) > 3 + 3(k3)(

s

3)

for any k ≥ 2 and s ≥ 2. Hence with positive probability, a uniformly and randomly

chosen S ⊆ V of size R(G1,G2) intersects every hyperedge in at most 2 points. Hence

there exists such an S. Now consider the trace of H on S, denoted by G = HS, i.e.,

E(HS) = {h ∩ S ∶ h ∈ E(H)}. By the covering property and the choice of S, G is a

complete graph (ignoring edges of cardinality 1). Moreover, for each edge e ∈ G, there

exists some h = φ(e) ∈ E(H) such that e = h ∩ S. Note that for e1 ≠ e2, φ(e1) ≠ φ(e2)

due to the choice of S. Now for each edge e ∈ E(G), color the edge e with the same

color of φ(e) in H. Since ∣S∣ = R(G1,G2), it follows that there exists either a blue G1

or a red G2 in G, which corresponds to a blue Berge G1 or a red Berge G2 in H. This

shows that R̂[k](BG1,BG2) ≤ k3/12 ⋅R(G1,G2)3.

In fact, the proof of Theorem 2.5.1 implies a stronger statement than Theorem

2.5.1. Given a simple graph G, a hypergraph H is called a trace-G, denoted by T G,

if there is an injection i∶V (G) → V (H) and a bijection f ∶E(G) → E(H) such that

for all e = uv ∈ E(G), f(e)∩ i(V (G)) = {i(u), i(v)}. Note that T G is a subset of BG.
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The Ramsey number of T G was investigated in [154]. The proof of Theorem 2.5.1 in

fact implies that

R̂[k](BG1,BG2) ≤ R̂[k](T G1,T G2) ≤ ck ⋅R(G1,G2)3.

2.5.2 Proof of Theorem 2.5.2

The construction comes from a random 2-edge-coloring of a covering k-uniform hy-

pergraph that is obtained from a combinatorial design.

A resolvable BIBD (balanced incomplete block design), denoted as BIBD(n, k, λ),

is a collection P1, . . . , Pm of partitions of an underlying n-element set into k-element

subsets such that every 2-element subset of the n-element set is contained by exactly

λ of the mn
k k-element sets listed in the partitions. We restrict ourselves to λ = 1,

that is, each 2-element subset of the n-element set is contained in one and only one

of the k-element sets listed in the partitions.

Note that the existence of such a design implies that ∣Pi∣ = n
k and mn

k
(k2) = (n2), i.e.

m = n−1
k−1 , which gives the well known necessary condition that n ≡ k (mod k(k − 1))

for the existence of such a resolvable BIBD. For the k = 3 case (which is commonly

called a Kirkman triple system to honor Kirkman [120] who posed the problem), it

is also a sufficient condition [147], and for k = 4 the corresponding n ≡ 4 (mod 12)

is also a sufficient condition [104]. For every k, the congruence is also a sufficient

condition for all n > n0(k) [148]. Also, for every even k ≥ 4, the congruence implies

existence for n > exp{exp{k18k2}} [26].

Proof of Theorem 2.5.2. For a fixed k ≥ 2, let t0 be sufficiently large such that for all

n ≥ (1 + o(1)) t0
√

2
e 2t0/2 and n ≡ k (mod k(k − 1)), a resolvable BIBD (n, k,1) exists.

Let t ≥ t0. Choose an integer n such that a resolvable BIBD (n, k,1) exists and

n = (1 + o(1)) t
√

2
e 2t/2. Let H = (V,E) be a k-uniform hypergraph such that V is

the underlying n-element set of the resolvable BIBD (n, k,1) and E is the collection
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of k-element sets listed in the partitions P1, . . . , Pm. Note that by the definition of

(n, k,1), H is a covering k-graph with (n2)/(
k
2) edges and every vertex pair of H is

contained in exactly one hyperedge. Our goal is to construct a coloring of H with no

monochromatic BKt as subhypergraph. Color each hyperedge of H in blue and red

uniformly and randomly with probability 1/2. For any set S of t vertices, let AS be

the bad event that S induces a monochromatic BKt. We will apply the Lovász Local

Lemma [67, 160] to show that we can avoid all bad events {AS ∶S ⊆ V and ∣S∣ = t}.

Note that by the definition of (n, k,1), for each vertex pair of S, there exists a

unique hyperedge containing that vertex pair. Hence there is at most one Berge-Kt

with S as the underlying vertex set. Furthermore, if there is a Berge-Kt with S as

the underlying vertex set, then the hyperedges containing the vertex pairs of S are

all distinct. Hence

Pr (AS) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

21−(t2) if there is no h ∈ E(H) such that ∣h ∩ S∣ ≥ 3,

0 otherwise.

Two bad events AS and AT are independent if there is no edge f intersecting both S

and T on exactly two vertices. For a fixed event AS, the number d of bad events AT

dependent on AS satisfies

d ≤ (t2)(
k

2)(
n − 2
t − 2) − 1.

Applying the symmetric version of the Lovász Local Lemma [67, 160], if e(d +

1)Pr (AS) < 1 for all S, then Pr (⋀S AS) > 0.

It suffices to have

e ⋅ (t2)(
k

2)(
n − 2
t − 2)21−(t2) < 1,

which is satisfied if we choose n = (1 + o(1))
√

2
e t2t/2. Hence there exists a coloring of

H with no monochromatic Berge Kt as subhypergraph. It follows by definition that

R̂k(BKt,BKt) > (1 + o(1))
√

2
e t2t/2.
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2.5.3 Proof of Theorem 2.5.3

The proof of Theorem 2.5.3 uses a modification of the proof Chvátal, Rödl, Sze-

merédi and Trotter in [42] to allow for more than two colors. For the reason of

self-completeness, we state and give the details in this section. Let Rc(G) denote the

multicolor Ramsey number Rc(G,G, . . . ,G).

Theorem 2.5.4. [42] For each positive integer c and d, there exists a constant C =

C(c, d) such that if G is a graph on n vertices with maximum degree at most d, then

Rc(G) ≤ Cn.

We first show how Theorem 2.5.4 implies Theorem 2.5.3.

Proof of Theorem 2.5.3. For fixed positive integers c, d and k, let C = C(c(k2), d) be

the constant obtained from Theorem 2.5.4. We will show that if G is a graph on n

vertices with maximum degree at most d, then R̂[k]
c (BG) ≤ Cn.

Let H = (V,E) be a c-edge-colored covering [k]-graph on N = Cn vertices with

colors in [c]. Suppose E = {h1, . . . , hm}. For each hi, give each vertex pair uv ⊆ hi

a unique label φhi(uv) in [(k2)]. Now consider a c(k2)-edge coloring of KN : for each

uv ∈ E(KN), pick an arbitrary hyperedge h ∈ E(H) such that {u, v} ⊆ h. Such

h exists since H is covering. If h is colored with the i-th color in H, then color

uv ∈ E(KN) with a color represented by the ordered pair (i, φh(uv)). Note that KN

is indeed a c(k2)-edge-colored graph. Since N = Cn, by the definition of multi-color

Ramsey number, it follows that if G is a graph on n vertices with maximum degree

at most d, then KN contains a monochromatic G as subgraph. WLOG, suppose G

is colored (1, r) where 1 ≤ r ≤ (k2). Now by our construction, for each e ∈ E(G), there

exists hyperedge h = h(e) such that h is colored 1 in H. Moreover we claim that for

e1 ≠ e2 ∈ E(G), h(e1) ≠ h(e2). Suppose not, i.e., h contains both e1 and e2. Then

φh(e1) ≠ φh(e2), which contradicts that e1, e2 receives the same color in KN . Hence,

it follows that we can find a monochromatic Berge copy of G in H.
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In the remaining of this section, we will give a proof of Theorem 2.5.4. We remark

again that the proof follows along the same line of [42] and we are only giving the

details here for the sake of self-completeness.

As suggested by [42], the proof requires a generalization of the regularity lemma,

which is an easy modification of the original proof in [165]. Given a graph G, let

V (G) = A1 ∪A2 ∪ ⋯ ∪Ak be a partition of V (G) into disjoint subsets. We call such

partition equipartite if ∣∣Vi∣ − ∣Vj ∣∣ ≤ 1 for all i, j ∈ [k]. Moreover, given two disjoint

sets X,Y ⊆ V (G), the edge density of (X,Y ), denoted as d(X,Y ), is defined as

d(X,Y ) = ∣e(X,Y )∣/∣X ∣∣Y ∣ where e(X,Y ) = {xy ∈ E(G) ∶ x ∈X,y ∈ Y }.

Lemma 2.5.1. [122] For every ε > 0 and integers c,m, there exists an M and N0

such that if the edges of a graph G on n ≥ N0 vertices are c-colored, then there exists

an equipartite partition V (G) = A1 ∪ A2 ∪ . . . ∪ Ak for some m ≤ k ≤ M , such that

all but at most εk2 pairs (Ai,Aj) are ε-regular: for every X ⊆ Ai and Y ⊆ Aj with

∣X ∣ ≥ ε∣Ai∣, ∣Y ∣ ≥ ε∣Aj ∣, we have

∣ds(X,Y ) − ds(X,Y )∣ < ε

for each s ∈ [c] where ds is the edge-density in the s-th color.

Proof of Theorem 2.5.4. Let d be any positive integer. Let N be large enough so that

if we define ε = 1/N , then 1
c log(2c) log ( 1

2ε) ≥ d + 1. Observe that with this choice of N ,

we also have 1/(2c)d > 2d2ε. Let M,N0 be the constants given by Lemma 2.5.1 when

c is the number of colors and m = 1/ε. Set C = C(c, d) = max{N0,M/d2ε}.

Now let G be a graph on n vertices x1, . . . , xn with maximum degree at most

d. Consider an arbitrary c-coloring of KCn. Let H1, . . . ,Hc denote the subgraphs

of G induced by each of the c colors respectively. By Lemma 2.5.1, there exists an

equipartite partition V (KCn) = A1∪A2∪. . .∪Ak that satisfies the regularity condition

for each color class, i.e., for each i ∈ [c], V (Hi) = A1∪A2∪ . . .∪Ak gives an equipartite

ε-regular partition.
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Let H∗ denote the graph whose vertex set is {Ai ∶ i ∈ [k]} and AiAj is an edge

if and only (Ai,Aj) is ε-regular in H. By Lemma 2.5.1, ∣E(H)∣ ≥ (1 − ε)(k2). Hence

by Turán’s theorem, there exists a complete subgraph H∗∗ of H∗ of size at least

1/2ε. WLOG (with relabeling), assume that V (H∗∗) = {Ai ∶ 1 ≤ i ≤ 1/2ε}. Now for

each Ai,Aj ∈ V (H∗∗), color the edge AiAj with color s if ds(Ai,Aj) is the largest

among all colors in [c] (break arbitrarily if the same). Recall that Rc(Kt) ≤ cct by

an easy extension of the Erdős-Szekeres argument and 1
c log(2c) log ( 1

2ε) ≥ d + 1 by our

assumption. Hence we have that 1/2ε ≥ Rc(Kd+1). Then it follows from Ramsey’s

theorem that there is a monochromatic complete subgraph H∗∗∗ with d + 1 vertices.

WLOG, H∗∗∗ is in color 1. Then we can relabel the sets in the partition so that

(i) (Ai,Aj) is ε-regular, and

(ii) d1(Ai,Aj) ≥ 1
c

for all i, j with 1 ≤ i < j ≤ d+1. We then claim that H1 contains a copy of G. Suppose

that V (G) = {xi ∶ i ∈ [n]}. We will choose y1, y2, . . . , yn ∈ V (H1) inductively so that

the map φ ∶ xi → yi is an embedding of G in H1. In particular, the points are chosen

so that for each i ∈ [n], the followings are satisfied:

(a) yt ∈ Aj for some j ∈ [d + 1] for each t ∈ [i].

(b) For t1, t2 ∈ [i], if xt1xt2 ∈ E(G), then yt1 , yt2 are adjacent in H1 and are in

different partition.

(c) For i < t ≤ n, define V (t, i) = {yj ∶ j ∈ [i], xjxt ∈ E(G)}. For each r ∈ [d+ 1] such

that Ar ∩ V (t, i) = ∅, Ar contains a subset A′

r having at least ∣A′

r∣/(2c)∣V (t,i)∣

vertices so that every point in A′

r is adjacent to every point in V (t, i).

Suppose that for some i ∈ [n], the points {yt ∶ t ≤ [i]} are already chosen so that

the conditions (a)-(c) above are satisfied. We will then pick yi+1 so that conditions

(a)-(c) remain true.
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First pick some r0 ∈ [d + 1] so that Ar0 ∩ V (i + 1, i) = ∅. This is possible since

the degree of xi+1 is at most d. By condition (c), there exists A′

r0 ⊆ Ar0 such that

∣A′

r0 ∣ ≥ ∣Ar0 ∣/(2c)` where ` = ∣V (i + 1, i)∣. Moreover, each vertex of A′

r0 is adjacent

to every vertex of V (i + 1, i). It’s easy to see that with any choice of yi+1 from A′

r0 ,

condition (a) and (b) are clearly satisfied. For condition (c), observe we only need to

handle the values of i + 1 < t ≤ n such that xtxi+1 ∈ E(G). There are at most d such

values since d(xi+1) ≤ d. Pick one such t arbitrarily. Now pick an arbitrary r ≠ r0

such that Ar ∩ V (t, i) = ∅. Observe `′ = ∣V (t, i + 1)∣ = ∣V (t, i)∣ + 1. By condition (c),

we already know that there exists some A′

r ⊆ Ar such that ∣A′

r∣ ≥ ∣Ar∣/(2c)`′−1 ≥ ε∣Ar∣

and every vertex of A′

r is adjacent to every vertex of V (t, i). Now since (Ar,Ar0)

is ε-regular and d1(Ar,Ar0) ≥ 1
c , it follows that at most ε∣Ar0 ∣ of the points in A′

r0

are adjacent to less than 1
2c of the points in A′

r. Fixing t and proceeding through all

values of r, we would eliminate at most dε∣Ar0 ∣ candidates for yi+1 in A′

r0 . Ranging

over all of the d possible values of t, we then eliminate at most d2ε∣Ar0 ∣ candidates of

yi+1 in A′

r0 . Moreover, there are at most n points in A′

r0 that may have been selected

previously already. Since the number of partitions k ≤ M and C ≥ M/d2ε, we have

that ∣Ar0 ∣ ≥ Cn/M , which implies that n ≤ d2ε∣Ar0 ∣.

In order to be able to pick yi+1, it suffices to show that ∣A′

r0 ∣ > 2d2ε∣Ar0 ∣. This holds

because ∣A′

r0 ∣/∣Ar0 ∣ > 1/(2c)d > 2d2ε. This completes the proof of the theorem.

2.6 Erdős-Szekerem theorem for cyclic permutations

The study of the longest monotone subsequence of a finite sequence of numbers has

inspired a body of research in mathematics, bioinformatics, and computer science. In

1935, Erdős and Szekeres [73] showed in their namesake theorem that any permutation

of {1,2, ..., k` + 1} has an increasing subsequence of length k + 1 or a decreasing

subsequence of length `+1. As a sequence (a1, . . . , an) can be represented by a set of

n points of the form (i, ai) in the plane, the Erdős-Szekeres theorem can be interpreted
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geometrically in the following way: for any set of k` + 1 points in the plane, no two

of which are on the same horizontal or vertical line, there exists a polygonal path of

either k positive-slope edges or ` negative-slope edges. It follows immediately from the

Erdős-Szekeres theorem that the expected length of a longest increasing subsequence

(LIS) in a random permutation of length n is at least 1
2
√
n. Moreover, computing

LIS is also used in MUMmer systems for aligning whole genomes [49]. A natural

extension of the well-known Erdős-Szekeres theorem is to consider its analogue to

cyclic sub-permutations.

Definition 2.6.1. A cyclic sub-permutation τ of a cyclic permutation σ is the re-

striction of σ on τ , i.e. remove all elements not in τ from σ.

For example, (135) is a cyclic sub-permutation of the cyclic permutation (12345).

Definition 2.6.2. A cyclic permutation is increasing if it can be written in the form

(j1, j2, . . . , jn) with j1 < j2 < . . . < jn. Similarly, a cyclic permutation is decreasing if

it can be written in the form (j1, j2, . . . , jn) with j1 > j2 > . . . > jn.

For example, (6,1,4,2,7,3,5) is a cyclic permutation for which the longest in-

creasing cyclic sub-permutation is (1,2,3,5,6) and the longest decreasing cyclic sub-

permutations are (7,5,4,2) or (7,6,4,2).

Cyclic permutations can be viewed as circular lists, which arise naturally in the

field of phylogenetics since the genomes of bacteria are considered to be circular. Ge-

ometrically, an increasing/decreasing cyclic subsequence of a circular list corresponds

to a polygonal path of positive/negative-slope edges when the points are drawn on

the side of a cylinder. Albert et al. in [3] give a Monte Carlo algorithm to compute

the longest increasing circular subsequence with worst case run-time O(n3/2 logn)

and also showed that the expected length µ(n) of the longest increasing circular sub-

sequence satisfies lim
n→∞

µ(n)
2
√
n

= 1. We extend the Erdős-Szekeres theorem to cyclic
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permutations and examine the structures of the extremal constructions achieving the

lower bound for our theorem.

Definition 2.6.3. Given positive integers k and `, let α(k, `) be the smallest positive

integer n, such that for any cyclic permutation of length n, there exists either an in-

creasing cyclic sub-permutation of length k+1, or a decreasing cyclic sub-permutation

of length ` + 1.

We show in Section 2.6.1 that

Theorem 2.6.1. For k, ` ≥ 1,

α(k, `) = (k − 1)(` − 1) + 2.

Definition 2.6.4. Given positive integers k and `, let Ck,` be the set of cyclic permu-

tations of length (k − 1)(` − 1) + 1 that contain no increasing cyclic sub-permutation

of length k + 1, or decreasing cyclic sub-permutation of length `+ 1; let Sk,` be the set

of linear permutations of length k` that contain no increasing linear sub-permutation

of length k + 1, or decreasing linear sub-permutation of length ` + 1; and let Y`,k be

the set of standard Young tableaux on a `×k rectangular diagram, i.e. the set of `×k

matrices where the set of entries is {1,2, . . . , k`} and each row and column forms an

increasing sequence.

It was noted by Knuth [[121], Exercise 5.1.4.9] (see also [[162], Example 7.23.19(b)])

that the permutations in Sk,` are in bijection with Y`,k × Y`,k via the Robinson-

Schensted correspondence. The hook-length formula [75] expresses the number of

standard Young tableaux and allows us to directly compute ∣Sk,`∣, which increases

rapidly as k, ` increase (see sequence A060854 in the On-Line Encyclopedia of Integer

Sequences). In particular, WLOG, assuming k ≤ l (since ∣Sk,`∣ = ∣S`,k∣), we have that

∣Sk,`∣ = ( (`k)!
1122 . . . kk(k + 1)k . . . `k(` + 1)k−1 . . . (k + ` − 1))

2

.
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Although the Robinson-Schensted correspondence establishes the bijection be-

tween Sk,l and Y`,k × Y`,k, it is an algorithmic procedure which can be difficult to

analyze. Romik, in [152], gave a simple description of the mapping from pairs of

square Young Tableaux to elements of Sk,k. Before we state the theorem, let us

introduce a few definitions.

Definition 2.6.5. The grid-function of an a⃗ = [a1, . . . , ak`] ∈ Sk,` is γa⃗ ∶ [k`] →

[`] × [k], defined by γa⃗(t) = (i, j) where i is the length of the longest decreasing

subsequence of a⃗ ending at at and j is the length of the longest increasing subsequence

of a⃗ ending at at.

Definition 2.6.6. The grid-ranking Ra⃗ = (rij) and grid-valuation Vi⃗,j = (vij) are `×k

matrices defined by rij = γ−1
a⃗ (i, j), and vij = aγ−1(`+1−i,j).

Note that the Erdős-Szekeres theorem implies that for a linear permutation a⃗ ∈

Sk,`, the longest increasing subsequence has length k and the longest decreasing sub-

sequence has length ` (as both k(` − 1) + 1 and (k − 1)` + 1 are at most k`), which

means that γa⃗ indeed defines a function.

Working towards our characterization of Ck,`, Section 2.6.2 reproves the following

result of [152], partially for the sake of self-containment and partially for its use in

thse proof of Theorem 2.6.3.

Theorem 2.6.2. For positive integers k, `, Sk,` is isomorphic to Y`,k ×Y`,k. In par-

ticular, φ ∶ Sk,` → Y`,k ×Y`,k defined by φ(a⃗) = (Ra⃗, Va⃗) is a bijection.

In contrast to the exponential size of Sk,l, Ck,l has at most 2 elements and we can

characterize them precisely. In particular, in Section 2.6.3, we show the following

theorem:
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Theorem 2.6.3. For k, ` ≥ 1, let Ck,` denote the set of cyclic permutations of [(k −

1)(` − 1) + 1] that contain no increasing cyclic sub-permutation of length k + 1, or

decreasing cyclic sub-permutation of length ` + 1. Then we have:

(1) If min(k, `) ≤ 2 then ∣Ck,`∣ = 1 and the single element of Ck,` is the decreasing

cyclic permutation when k ≤ 2 and the increasing cyclic permutation when k ≥ 3.

(2) If min(k, `) ≥ 3 then ∣Ck,`∣ = 2, and (1, a1, . . . , a(k−1)(`−1)) ∈ Ck,` precisely when

the sequence it satisfies one of the following:

(i) For each (i, j) ∈ [` − 1] × [k − 1],

a(j−1)(`−1)+i = (` − 1 − i)(k − 1) + j + 1.

(ii) For each (i, j) ∈ [` − 1] × [k − 1],

a(i−1)(k−1)+j = (j − 1)(` − 1) + (` − i) + 1.

Note that when min(k, `) = 2, the structures described in parts (2) (i) and (ii)

are the same and coincide with the single structure described in part (1). Figure 2.1

illustrates the structures in parts (2) (i) and (ii) for k = 4 and ` = 5. The two extremal

examples are (1,11,8,5,2,12,9,6,3,13,10,7,4) and (1,5,9,13,4,8,12,3,7,11,2,6,10)

respectively.

1 2 3 4

11 12 13

8 9 10

5 6 7

Structure (i)

1 2345 6789 10111213

Structure (ii)

Figure 2.1: Extremal examples for k = 4 and ` = 5.
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2.6.1 Proof of Theorem 2.6.1

Lemma 2.6.1. For k, ` ≥ 1,

α(k, `) ≤ (k − 1)(` − 1) + 2.

Proof. The statement is obviously true when min(k, `) = 1, so assume that min(k, `) ≥

2. Without loss of generality π = (1, a1, a2, ...., a(k−1)(`−1)+1). Consider the sequence

[a1, a2, ..., a(k−1)(`−1)+1]. By the Erdős-Szekeres theorem, it has either an increasing

subsequence of length k or a decreasing subsequence of length `. If there is an in-

creasing subsequence [ai1 , ai2 , ..., aik], then (1, ai1 , ai2 , ..., aik) would form an increas-

ing cyclic sub-permutation of π of length k + 1. Otherwise, if there is a decreasing

subsequence [ai1 , ai2 , ..., ai`], then (ai1 , ai2 , ..., ai` ,1) would form a decreasing cyclic

sub-permutation of π of length ` + 1.

Lemma 2.6.2. For k, ` ≥ 1,

α(k, `) > (k − 1)(` − 1) + 1.

In particular, if min(k, `) ≥ 2, π = (1, a1, . . . , a(k−1)(`−1)) where the sequence ai is given

by one of the formulas in Theorem 2.6.3 part (2) (i) or (ii), then π does not have an

increasing cyclic sub-permutation of length k+1 or a decreasing cyclic sub-permutation

of length ` + 1.

Proof. The lemma is trivial when min(k, `) = 1. Assume min(k, `) ≥ 2 and π =

(1, a1 . . . , a(k−1)(`−1)), where [a1, . . . , a(k−1)(`−1)] is given by Theorem 2.6.3 part (2) (i),

i.e. for each (i, j) ∈ [`−1]× [k−1] a(j−1)(`−1)+i = (`−1− i)(k−1)+ j +1. (The example

given in Figure 2.1 for k = 4 and ` = 5 is π = (1,11,8,5,2,12,9,6,3,13,10,7,4).) The

other case can be handled analogously.

We claim π does not have an increasing cyclic sub-permutation of length k+1 nor does

it have a cyclic sub-permutation of length `+1. Starting from a1, we can partition the

sequence A = [a1, . . . , a(k−1)(`−1)] into (k − 1) decreasing sub-sequences D1, . . . ,Dk−1,
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each consisting of (`−1) consecutive elements of the original sequence. In particular,

Di = [at, at+1, . . . , at+`−2] where t = (i − 1)(` − 1) + 1. In Figure 2.1, this partition

corresponds to [11,8,5,2], [12,9,6,3],[13,10,7,4]. Let L be the longest increasing

cyclic sub-permutation of π. Suppose L = (ai1 , ai2 , . . . , ait) where ai1 < ai2 < . . . < ait .

L and Di has at most 2 common elements for each i, as the elements in Di are

decreasing in A. If ai1 = 1, then L can contain at most one element from each of the

Dis. Since there are at most k − 1 Dis, it follows that L has length at most k. If

ai1 ≠ 1, then ai1 ∈Dj for some j ∈ [k−1]. In this case, 1 ∉ L. Furthermore, L can have

at most 2 elements from Dj, and at most one element from Di for each i ∈ [k−1]/{j}.

Thus L has length at most k.

We can also partition A into (`−1) increasing subsequences C1, . . . ,C`−1 of length

(k − 1). In particular, let Ci = [ci, ci + 1, . . . , ci + k − 2] where ci = 2 + (i − 1)(k − 1).

In the example above, C1,C2,C3,C4 would correspond to [2,3,4], [5,6,7], [8,9,10]

and [11,12,13]. Similar to the analysis above, let L be the longest decreasing cyclic

sub-permutation of π. Suppose L = (ai1 , ai2 , . . . , ait) where ai1 > ai2 > . . . > ait . As

before, L can have at most 2 common elements with each Ci. If ait = 1, then L can

contain at most one element from each of the Cis. Since there are at most ` − 1 Cis,

it follows that L has length at most `. If ait ≠ 1, observe that if for some j L has

2 common elements with Cj, then every other Ci (i ≠ j) can contain at most one

element from L since numbers in Ct are strictly larger than all numbers in Cs for

s < t. Thus L has length at most `.

Theorem 2.6.1 follows from Lemma 2.6.1 and 2.6.2.

2.6.2 The structure of the extremal examples in the linear Erdős-Szekeres

problem

We will first consider the linear problem, i.e. sub-permutations will be linear sub-

permutations. We will emphasize this by using the vector notation a⃗ = [a1, . . . , an]
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when talking about linear permutations. Recall the definition of γa⃗,Ra⃗, Va⃗ in Defini-

tion 2.6.5 and 2.6.6. It is easy to see that γa⃗ is an injective (and therefore bijective)

function, since for t1 < t2 we have at1 ≠ at2 and either every increasing sequence ending

at at1 can be extended to an increasing sequence ending at at2 , or every decreasing

sequence. The following are immediate from the definitions and prior statements in

the lemma:

Lemma 2.6.3. Let a⃗ ∈ Sk,`. The following are true:

(1) Let t1, t2 ∈ [k`] such that t1 < t2, and define i1, i2, j1, j2 by γa⃗(tq) = (iq, jq) for

q ∈ [2]. If at1 < at2 then j1 < j2 and if at1 > at2 then i1 < i2.

(2) Let i2 ≤ i1, j2 ≤ j1 and γa⃗(tq) = (iq, jq) where q ∈ [2]. Then t2 ≤ t1.

(3) Ra⃗ ∈ Y`,k.

(4) For any i ∈ [`], j ∈ [k] the sequence [aγ−1
a⃗ (i,1), . . . , aγ−1

a⃗ (i,k)] is an increasing subse-

quence of a⃗ and the sequence [aγ−1
a⃗ (1,j), . . . , aγ−1

a⃗ (`,j)] is a decreasing subsequence

of a⃗.

(5) Va⃗ ∈ Y`,k.

(6) φ ∶ Sk,` → Y`,k ×Y`,k defined by φ(a⃗) = (Ra⃗, Va⃗) is an injective function

Proof. (1) follows from the fact that if at1 < at2 (at1 > at2) then any increasing (de-

creasing) subsequence of a⃗ ending on at1 can be extended to a longer increasing

(decreasing) subsequence ending at at2 . This in turn implies (2), which gives (3). (2)

implies that for any i ∈ [`], j ∈ [k] the sequences [γ−1(i,1), γ−1(i,2), . . . , γ−1(i, k)] and

[γ−1(1, j), γ−1(2, j), . . . , γ−1(`, j)] are increasing, and this together with (1) gives (4).

(5) follows from (4). (3) and (5) gives that φ is a well-defined function, and it follows

from the definitions that φ must be injective, so (6) is true.
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The proof of Theorem 2.6.2 is finished by showing that

Lemma 2.6.4. Let R = (rij), V = (vij) ∈ Y`,k and define the sequence a⃗ = [a1, . . . , ak`]

by at = vij if and only if t = r`+1−i,j. Then a⃗ ∈ Sk,`, R = Ra⃗ and V = Va⃗. Consequently,

the function φ defined in Lemma 2.6.3 is a bijection.

Proof. From the fact that the entries of V (and also the entries of R) are unique, it

follows that a⃗ is a well-defined permutation of [k`]. To show, a⃗ ∈ Sk,`, it is enough to

show that a⃗ does not have an increasing subsequence of length k + 1 or a decreasing

subsequence of length `+1. Assume to the contrary that [at1 . . . , atk+1] is an increasing

subsequence of length k+1 of a⃗. For each q ∈ [k+1] define (iq, jq) by atq = viqjq . By the

pigeonhole principle there is a q1 < q2 such that jq1 = jq2 . Since V ∈ Y`,k, tq1 < tq2 and

at1 < at2 , this implies iq1 < iq2 , so ` + 1 − iq1 > ` + 1 − iq2 , which together with R ∈ Yk,`

gives tq1 > tq2 , a contradiction. The statement that a⃗ does not have a decreasing

subsequence of length ` + 1 follows similarly, so a⃗ ∈ Sk,`. Fix an i ∈ [`] and define

the sequence t⃗ = [t1, . . . , tk] by tq = ri,q. Since R ∈ Y`,k, t⃗ is an increasing sequence.

Moreover, since atq = v`+1−i,q and V ∈ Y`,k, [at1 , . . . , atk] is an increasing subsequence

of a⃗. Similarly for any j ∈ [k] define w⃗ = [w1, . . . ,w`] by wq = rq,j, then w⃗ is increasing

and [aw1 , . . . , aw`] is a decreasing subsequence of a⃗. This implies that for each i ∈ [`]

and j ∈ [k], γa⃗(ri,j) = (i′, j′) where i′ ≥ i and j′ ≥ j. Since both γa⃗ and γ are bijections

from [k`] to [`]×[k], we get that γa⃗(ri,j) = (i, j) and so rij = γ−1
a⃗ (i, j). Thus we obtain

R = Ra⃗. Since for Va⃗ = (v⋆ij) we have by definition that v⋆ij = aγ−1
a⃗ (`+1−i,j) = ar`+1−i,j = vij,

we obtain V = Va⃗. So φ(a⃗) = (R,V ), therefore φ is surjective, which together with

Lemma 2.6.3 part (6) gives that φ is a bijection.

We remark that similar ideas appear in [9] to find the longest increasing subse-

quence of a sequence. Fix k, ` ≥ 1 and set n = k`. Note that the above results imply

that if we represent the sequence a⃗ = [a1, . . . , an] as the set of n points (t, at) and

connect two points (t1, at1) and (t2, at2) precisely when γa⃗(t1) and γa⃗(t1) agree in one
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of the coordinates and differ by 1 on the other, then we get a (potentially somewhat

distorted) `× k grid where the slope of the line from t1 to t2 is positive exactly when

γa⃗(t2) agrees with γa⃗(t1) on the first coordinate, and negative otherwise. The grid

may be distorted in the sense that it is formed by quadrangles that are not necessarily

rectangles and are not necessarily isomorphic, and the grid “balances on one of its

corners"; in fact it balances on the grid-point indexed (`+1,1) with sequence value 1.

Indeed, any sequence [a1, . . . , an] that is a permutation of [n] is in Sk,` precisely when

such a grid can be fit on its n-point representation in the plane (where the corner

on which the distorted grid balances is the grid-point (` + 1,1) and has height 1).

Figure 2.2 shows two examples of extremal sequences for the linear Erdős-Szekeres

theorem for k = 4 and ` = 5 with distorted grid representation. Note that they have

the same valuation but different ranking.

1 23 456 789 101112

(9,11,12,6,3,8,1,10,5,7,2,4)

1 23 456 789 101112

(9,6,3,1,11,12,8,10,5,7,2,4)

Figure 2.2: Extremal sequences for k = 4 and ` = 5 with distorted grid representation.

2.6.3 The structure of the extremal examples in the circular Erdős-Szekeres

problem

We devote this section to the proof of Theorem 2.6.3. The statement is obvious

when min(k, `) = 1, so we assume that min(k, `) ≥ 2. For this case we have shown

in Lemma 2.6.2 that the structures described in Theorem 2.6.3 are all in Ck,`, the

proof of Theorem 2.6.3 is finished by showing that these structures are the only

elements od Ck,`. Moreover, since any cyclic permutation of length at least 3 that is
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not the increasing (decreasing) permutation contains a decreasing (increasing) sub-

permutation of length at least 3, the statement follows when min(k, `) = 2. So it is

enough to focus on the case when min(k, `) ≥ 3.

We will define C⋆

k,` as the set of those sequences in Sk−1,`−1 that, taken as as

cyclic permutations have no increasing cyclic sub-permutation of length k+1, and no

decreasing cyclic sub-permutations of length ` + 1. For the ease of reference, given a

sequence ρ⃗ ∈ C⋆

k,` we will use ρ to denote the cyclic permutation corresponding to ρ⃗.

As an increasing (decreasing) cyclic sub-permutation of a cyclic permutation either

starts (ends) with 1 or does not contain 1, the following is obvious:

Lemma 2.6.5. Let k, ` ∈ Z with min(k, `) ≥ 2. (1, a1, . . . , a(k−1)(`−1)) ∈ Ck,` if and

only if [a1 − 1, a2 − 1, . . . , a(k−1)(`−1) − 1] ∈ C⋆

k,`.

By the above Lemma, to characterize the extremal examples in the cyclic Erdős-

Szekeres theorem it is enough to determine C⋆

k,`. The proof of Theorem 2.6.3 is

concluded by showing that

Lemma 2.6.6. Let k, ` ∈ Z with min(k, `) ≥ 3 and ρ⃗ = [a1, . . . , a(k−1)(`−1)] ∈ C⋆

k,`. Then

we have one of the following:

(i) For each i ∈ [` − 1] and j ∈ [k − 1] a(j−1)(`−1)+i = (` − 1 − i)(k − 1) + j.

(ii) For i ∈ [` − 1] and j ∈ [k − 1] a(i−1)(k−1)+j = (j − 1)(` − 1) + (` − i).

Proof. Let ρ⃗ = [a1, . . . , a(k−1)(`−1)] ∈ C⋆

k,` ⊆ Sk−1,`−1. For shortness, we will use γ for γρ⃗.

For each i ∈ [` − 1], define the sequences Ci = [ci,1, . . . , ci,k−1] by ci,j = aγ−1(i,j) and for

each j ∈ [k − 1], let Dj = [c1,j, c2,j, . . . , c`−1,j]. Clearly, C1, . . . ,C`−1 and D1, . . . ,Dk−1

partition the elements of ρ⃗. By Lemma 2.6.3 part (4) the Cis are increasing and the

Djs are decreasing subsequences of ρ⃗. As ρ⃗ ∈ C⋆

k,`, the cyclic permutation ρ does

not have an increasing cyclic sub-permutation of length k + 1 or decreasing cyclic

sub-permutation of length ` + 1. We have two possibilities
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Case 1: γ−1(` − 1,1) < γ−1(1, k − 1). As for each j ∈ [k − 1], Dj is an decreasing

subsequence of ρ⃗ we get

aγ−1(1,j) > aγ−1(2,j) > ⋯ > aγ−1(`−1,j)

Using this for j ∈ {1, k − 1} and the condition, for each i ∈ [` − 2] we have

(c1,k−1, c2,k−1, . . . , c`−i,k−1, c`−i−1,1, c`−i,1,⋯, ck−1,1)

is a cyclic sub-permutation of length `+1 of the cyclic permutation ρ. Since this

can not be an decreasing sub-permutation, we must have c`−i,k−1 < c`−i−1,1. Let

i⋆ ∈ [`− i− 1] and j ∈ [k − 1]. As D1 is decreasing and Ci⋆ is increasing, we have

c`−i,k−1 < c`−i−1,1 ≤ ci⋆,1 ≤ ci⋆,j and consequently c`−i,k−1 ≤ (k−1)i. Using that C`−i

is increasing, induction on i gives that c`−i,j = aγ−1(`−i,j) = (i − 1)(k − 1) + j.

Since C1 and C`−1 are both increasing subsequences of ρ⃗ and C`−1 contains the

smallest (k−1) elements of [(k−1)(`−1)], we must have that for each j ∈ [k−2]

that γ−1(1, j + 1) > γ−1(` − 1, j), otherwise

(c`−1,j, c`−1,j+1, . . . , c`−1,k−1, c1,1, c1,2, . . . , c1,j+1)

would form an increasing cyclic sub-permutation of length k+1 of ρ. Using the

fact that Dj is a sub-permutation and induction on j, for each j ∈ [k − 1] we

get γ−1(` − i, j) = (j − 1)(` − 1) + ` − i.

Combining these we must have that for i ∈ [` − 1] and j ∈ [k − 1] a(j−1)(`−1)+i =

(` − 1 − i)(k − 1) + j, giving case (i) of this lemma.

Case 2: γ−1(l − 1,1) > γ−1(1, k − 1).

As before, we get that for each j ∈ [k − 2] the sequence

(cl−1,1, cl−1,2, . . . , cl−1,k−j, c1,k−j−1, c1,k−j, . . . , c1,k−1)
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is a cyclic sub-permutation of length k + 1 of ρ, and as it can not be increasing,

we have cl−1,k−j > c1,k−j−1. Using the same logic as in Case 1 we obtain for each

j ∈ [k − 1] and i ∈ [` − 1] aγ−1(i,j) = (j − 1)(` − 1) + (` − i).

Again, for each i ∈ [` − 1] we have γ−1(i + 1,1) > γ−1(i, k − 1), otherwise

(ci,k−1, ci+1,k−1, . . . , c`−1,k−1, c1,1, c2,1, . . . , ci+1,1)

forms decreasing cyclic sub-permutation of length ` + 1 of ρ. We obtain that

γ−1(i, j) = (i − 1)(k − 1) + j. Combining these we must have that for i ∈ [` − 1]

and j ∈ [k−1] a(i−1)(`−1)+j = (j −1)(`−1)+(`− i), giving case (ii) of this lemma.

For k, ` ≥ 2, set n = (k−1)(`−1). and consider the sequence ρ⃗ = [1, a1, . . . , an]; i.e.

use the sequence representation of the cyclic permutation or ρ that starts with 1. It

is worth noting that ρ ∈ Ck,` precisely when taking the n + 1 points representing ρ⃗ in

the plane and putting in the grid lines corresponding to [a1 − 1, . . . , an − 1] described

in the end of the previous section to the n points of the form (i, ai), they form a

non-distorted grid, i.e. a grid with rectangles (and not just quadrangles) that are of

the same size (in fact, the ratio of the side length of each rectangle is k−1
`−1 ), and the

point (1,1) lies on either the first or the last line with positive slope, as in Figure 2.1.
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Chapter 3

Turán-type and Dirac-type problems

3.1 cover-Turán number of Berge hypergraphs

In Section 2.5, we defined a new type of Ramsey number, namely the cover Ramsey

number, which behaves more like the classical Ramsey number than the Ramsey

number of Berge hypergraphs defined in Section 2.4. Motivated this phenomenon, we

extend the investigations to the analogous cover Turán number for Berge hypergraphs.

In particular, given a fixed graph G and a finite set of positive integers R ⊆ [k],

we define the R-cover Turán number of G, denoted as êxR(n,G), as the maximum

number of edges in the shadow graph of a Berge-G-free R-graph on n vertices. The

R-cover Turán density, denoted as π̂R(G), is defined as

π̂R(G) = lim sup
n→∞

êxR(n,G)
(n2)

.

When R is clear from the context, we ignore R and use cover Turán number and cover

Turán density for short. A graph is called R-degenerate if π̂R(G) = 0. For the ease of

reference, when R = {k}, we simply denote π̂R(G) as π̂k(G) and call G k-degenerate

if π̂{k}(G) = 0. We remark that the Turán number of graphs only differ by a constant

factor when the host hypergraph is uniform compared to non-uniform. In particular,

we show the following proposition.

Proposition 3.1.1. If R is a finite set of positive integers such that min(R) =m ≥ 2

and max(R) =M . Then given a fixed graph G,

max
r∈R

êxr(n,G) ≤ êxR(n,G) ≤
(M2 )
(m2 )

êxm(n,G).
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Indeed, the first inequality is clear from definition. For the second inequality,

suppose we have an R-graph H with more than (M2 )/(
m
2 ) ⋅ êxm(n,G) edges in its

shadow. For each hyperedge h in H, shrink it to a hyperedge of size m by uniformly

and randomly picking m vertices in h. Call the resulting hypergraph H′. It is easy to

see that for any edge e ∈ E(∂(H)), Pr (e ∈ E(∂(H′))) ≥ (m2 )/(
M
2 ). Hence by linearity

of expectation, the expected number of edges in ∂(H′) is more than êxm(n,G). It

follows that there exists a way to shrink H to a m-graph with at least (êxm(n,G)+1)

edges in its shadow. Thus, by definition of the cover Turán number, H′ contains a

Berge copy of G, which corresponds to a Berge-G in H.

Remark 3.1.1. Note that Proposition 3.1.1 implies that if a graph G is k-degenerate

(where k ≥ 2), then it is R-degenerate for any finite set R satisfying min(R) ≥ k. In

particular, a bipartite graph is k-degenerate for all k ≥ 2.

In this paper, we determine the cover Turán density of all graphs when the uni-

formity of the host graph equals to 3. We first establish a general upper bound for

the cover Turán density of graphs.

Theorem 3.1.1. For any fixed graph G and any fixed ε > 0, there exists n0 such that

for any n ≥ n0,

êxk(n,G) ≤ (1 − 1
χ(G) − 1 + ε)(n2).

We remark that Theorem 3.1.1 holds when the host hypergraph is non-uniform as

well, i.e. we can replace k with any fixed finite set of positive integers R. If χ(G) > k,

there is a construction giving the matching lower bound. Partition the vertex set into

t ∶= χ(G)−1 equitable parts V = V1 ∪V2 ∪⋯∪Vt. Let H be the k-uniform hypergraph

on the vertex set V consisting of all k-tuples intersecting each Vi on at most one

vertex. The shadow graph is simply the Turán graph with (1 − 1
χ(G)−1 + o(1))(

n
2)

edges. The shadow graph is Kt+1-free, thus contains no subgraph G. It follows that

H is Berge-G-free. Therefore, we have the following theorem:
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Theorem 3.1.2. For any k ≥ 2, and any fixed graph G with χ(G) ≥ k + 1, we have

π̂k(G) = 1 − 1
χ(G) − 1 .

Given a simple graph G on n vertices v1, . . . , vn and a sequence of n positive

integers s1, . . . , sn, we denote B = G(s1, . . . , sn) the (s1, . . . , sn)-blowup of G obtained

by replacing every vertex vi ∈ G with an independent set Ii of si vertices, and by

replacing every edge (vi, vj) of G with a complete bipartite graph connecting the

independent sets Ii and Ij. If s = s1 = s2 = ⋯ = sn, we simply write G(s1, . . . , sn)

as G(s) where s is called the blowup factor. We also define a generalized blowup

of G, denoted by G(s1, . . . , sn;M) where M ⊆ E(G) ⊆ ([n]2 ), as the graph obtained

by replacing every vertex vi ∈ G with an independent set Ii of si vertices, and by

replacing every edge (vi, vj) of E(G)/M with a complete bipartite graph connecting

Ii and Ij and replacing every edge (vi, vj) ∈M with a maximal matching connecting

Ii and Ij. When M = ∅, we simply write G(s1, . . . , sn;M) as the standard blowup

G(s1, . . . , sn).

We first want to characterize the class of degenerate graphs when the host hy-

pergraph is 3-uniform. Observe that êxk(n,G) ≤ (k2)exk(n,G). This implies that any

graph G satisfying exk(n,G) = o(n2) is k-degenerate. In particular, by results of

[96, 97, 86, 144], any cycles of fixed length at least 4 and K2,t are 3-degenerate. For

triangles, Grósz, Methuku and Tompkins [88] showed that the uniformity threshold

of a triangle is 5, which implies that C3 is 5-degenerate. Moreover, there are con-

structions which show that C3 is not 3-degenerate or 4-degenerate. For Ks,t where

s, t ≥ 3, it is shown [144, 88, 6] that exr(n,Ks,t) = Θ(nr− r(r−1)
2s ). Thus in this case, the

corresponding results on Berge Turán number do not imply the degeneracy of Ks,t in

the cover Turán density.

In this paper, we classify all degenerate graphs when the host hypergraph is 3-

uniform.
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Theorem 3.1.3. Given a simple graph G, π̂3(G) = 0 if and only if G satisfies both

of the following conditions:

(1) G is triangle-free, and there exists an induced bipartite subgraph B ⊆ G such

that V (G) − V (B) is a single vertex.

(2) There exists a bipartite subgraph B ⊆ G such that E(G) −E(B) is a matching

(possibly empty) in one of the partitions of B.

Corollary 3.1.1. Given a simple graph G, π̂3(G) = 0 if and only if G is contained

in both C5(1, s, s, s, s) and C3(s, s, s;{{1,2}}) for some positive integer s.

v1

V2

V3 V4

V5

B C

A

B C

A

Figure 3.1: C5(1, s, s, s, s) and C3(s, s, s;{{1,2}})

Corollary 3.1.2. Given a simple graph G, π̂3(G) = 0 if and only if G is a subgraph

of one of the graphs in Figure 3.2.

Figure 3.2: Characterization of 3-degenerate graphs.
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With Theorem 3.1.1 and Theorem 3.1.3, we can then determine the cover Turán

density of all graphs when k = 3. The results are summarized in the following theorem.

Theorem 3.1.4. Given a simple graph G,

π̂3(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1
χ(G)−1 if χ(G) ≥ 4,

0 if G satisfies the condition in Theorem 3.1.3,

1
2 otherwise.

For 3-cover Turán number, we also show the following proposition:

Proposition 3.1.2. Let G be a connected bipartite graph such that every edge is

contained in a C4 and every two vertices in the same part have a common neighbor.

Then

êx3(n,G) = Θ(ex(n,G)).

Proof. The fact that êx3(n,G) = O(ex(n,G)) is a consequence of Proposition 3.1.1.

For the lower bound, consider an extremal G-free graph H with ex(n,G) edges. It

follows that there is a bipartite subgraph H ′ = A∪B of H which is G-free and contains

at least 1
2ex(n,G) edges. We then construct a 3-graph H as follows. For each a ∈ A,

replace a with two new vertices a1, a2. The vertex set B remains the same. For each

e = {a, b} ∈ E(H ′) with a ∈ A, b ∈ B, we have a hyperedge {a1, a2, b} in H. We claim

that H contains no Berge-G. Indeed, if there is any Berge-G in H, then one of the

following two cases must happen:

Case 1: An edge in G is mapped to {a1, a2} for some a ∈ A. However, note that

there is no C4 containing a1a2 in ∂(H) while every edge of G is contained in a

C4. This gives us a contradiction.

Case 2: Two vertices of G from the same part are mapped to {a1, a2} for some

a ∈ A. In this case, by our assumption, a1, a2 have a common neighbor w in
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G. However, there are no two distinct hyperedges embedding a1w,a2w by our

construction. Contradiction.

Hence it follows that H is Berge-G-free and has Ω(ex(n,G)) hyperedges.

Remark 3.1.2. We give a class of graphs satisfying the conditions in Proposition

3.1.2. Let B = B1∪B2 be an arbitrary connected bipartite graph with minimum degree

2 such that each part has a vertex that is adjacent to all the vertices in the other part.

It’s easy to check that B satisfies the conditions in Proposition 3.1.2.

Using Proposition 3.1.2, we have the following corollary on the asymptotics of the

cover Turán number of Ks,t.

Corollary 3.1.3. For positive integers t ≥ s ≥ 2, we have

êx3(n,Ks,t) = Θ(ex(n,Ks,t)).

The following questions would be interesting for further investigations:

Question 3.1.1. Characterize all k-degenerate graphs or determine the {k}-cover

Turán density of all graphs for k ≥ 4.

Question 3.1.2. Determine the asymptotics of the cover Turán number of the 3-

degenerate graphs in Theorem 3.1.3.

3.1.1 Proof of Theorem 3.1.1

Proof of Theorem 3.1.1. Let k ≥ 2 and G be a fixed graph with χ(G) ≥ 2. Let ε > 0.

Suppose H is an edge-minimal k-uniform hypergraph on sufficiently large n vertices

such that

∣E(∂(H))∣ ≥ (1 − 1
χ(G) − 1 + ε)(n2).

Our goal is to show that H contains a Berge copy of G. For ease of reference, set

H = ∂(H). Let M = k2/ε. Let H ′ be the subgraph of H obtained by deleting all the

edges uv from H with co-degree d({u, v}) ≥M in H.
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Claim 3.1.1. ∣E(H ′)∣ ≥ (1 − 1
χ(G)−1 + ε/2) (n2).

Proof. Let L = E(H)/E(H ′). By double counting, the number of hyperedges con-

taining some edge in L is at least LM/(k2). Since H is assumed to be edge-minimal,

it follows that every hyperedge h contains a vertex pair that is only contained in h.

Hence ∣E(H)∣ ≤ (n2). It follows that

LM/(k2) ≤ ∣E(H)∣ ≤ (n2),

which implies that

L ≤ k2

2M (n2) ≤
ε

2(n2).

This completes the proof of the claim.

Let G′ be the blowup of G by a factor of b =Mv(G)2k, i.e., G′ = G(b). Suppose

V (G) = {v1, . . . , vs} and Vi is the blowed-up independent set in G′ that corresponds to

vi. Recall the celebrated Erdős-Stone-Simonovits theorem [70, 72], which states that

for a fixed simple graph F , ex(n,F ) = (1 − 1
χ(F )−1 + o(1)) (n2). Since χ(G′) = χ(G),

it follows by the Erdős-Stone-Simonovits theorem that for sufficiently large n, H ′

contains G′ as a subgraph.

Our goal is to give an embedding f of G into G′ so that f(vi) ∈ Vi for all 1 ≤ i ≤ s

and every edge of G is embedded in a distinct hyperedge in H. For ease of reference,

set Lj = {v1, . . . , vj}. For 1 ≤ t ≤ s and v ∈ V (G), set Nt(v) = NG(v) ∩ Lt. For

i = 1, just embed v1 to an arbitrary vertex in V1. Suppose that v1, . . . , vt are already

embedded and edges in G[Lt] are already embedded in distinct hyperedges. We now

want to embed vt+1 into an appropriate vertex in Vt+1, i.e., we want to find a vertex

u ∈ Vt+1 such that there are distinct unused hyperedges embedding the edges from u to

f(Nt(vt+1)). Note that each vertex u in Vt+1 is adjacent to all vertices in f(Nt(vt+1))

in G′. Let St(u) = {u}×f(Nt(vt+1)), i.e., St(u) is the set of vertex pairs which contain

u and another vertex in f(Nt(vt+1)).
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Recall that ∣Vt+1∣ =Mv(G)2k. At most e(G)(k − 2) vertices in Vt+1 are contained

in hyperedges that are already used. For any of the remaining vertices u ∈ Vt+1, if

there are no distinct hyperedges embedding all vertex pairs in St(u), that means

some hyperedge contains at least two vertex pairs uw1, uw2 in St(u). Note that

dH′({w1,w2}) ≤M by the definition of H ′. Thus the number of vertices u ∈ Vt+1 such

that there exists some hyperedge containing at least two vertex pairs in St(u) is at

most

(t2)M(k − 2) ≤ Mv(G)2k

2 .

Since ∣Vt+1∣ = Mv(G)2k, it follows that there exists some u ∈ Vt+1 such that u is not

contained in any hyperedge already used and there is no hyperedge containing at

least two vertex pairs in St(u). It follows that there are distinct unused hyperedges

containing all vertex pairs in St(u). Set f(vt+1) to be this u.

By induction, we can then conclude that H contains a Berge copy of G. This

completes the proof of Theorem 3.1.1.

3.1.2 Proof of Theorem 3.1.3

Regularity Lemma

The proof of Theorem 3.1.3 uses the Szemerédi Regularity Lemma. Given a graph

G, and two disjoint vertex sets X,Y ⊆ V (G), let e(X,Y ) denote the number of edges

intersecting both X and Y . Define d(X,Y ) = e(X,Y )/∣X ∣∣Y ∣ as the edge density

between X and Y . (X,Y ) is called ε-regular if for all X ′ ⊆X, Y ′ ⊆ Y with ∣X ′∣ ≥ ε∣X ∣

and ∣Y ′∣ ≥ ε∣Y ∣, we have ∣d(X,Y ) − d(X ′, Y ′)∣ ≤ ε. We say a vertex partition V =

V0 ∪ V1 ∪⋯ ∪ Vk equipartite (with the exceptional set V0) if ∣Vi∣ = ∣Vj ∣ for all i, j ∈ [k].

The vertex partition V = V0 ∪ V1 ∪⋯∪ Vk is said to be ε-regular if all but at most εk2

pairs (Vj, Vj) with 1 ≤ i < j ≤ k are ε-regular and ∣V0∣ ≤ εn. The extremely powerful

Szemerédi’s regularity lemma states the following:
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Theorem 3.1.5. [165] For every ε and m, there exists N0 and M such that every

graph G on n ≥ N0 admits an ε-regular partition V0 ∪ V1 ∪ ⋯ ∪ Vk satisfying that

m ≤ k ≤M .

A ε-regular pair satisfies the following simple lemma.

Lemma 3.1.1. Suppose (X,Y ) is an ε-regular pair of density d. Then for every

Y ′ ⊆ Y of size ∣Y ′∣ ≥ ε∣Y ∣, there exists less than ε∣X ∣ vertices in X that have less than

(d − ε)∣Y ′∣ neighbors in Y ′.

Proof. Let Y ′ ⊆ Y with ∣Y ′∣ ≥ ε∣Y ∣. Let X ′ be the set of vertices of X that have less

than (d−ε)∣Y ′∣ neighbors in Y ′. Note that d(X ′, Y ′) < (d−ε), which can only happen

if ∣X ′∣ < ε∣X ∣.

Using Lemma 3.1.1, we will show the following lemma using the standard embed-

ding technique.

Lemma 3.1.2. Fix a positive integer s. Suppose (X,Y ) is an ε-regular pair of density

d such that ε ≤ 1/4s, (d − ε)s ≥ 4ε and ∣X ∣, ∣Y ∣ ≥ 4s/(d − ε)s. Then there exist disjoint

subsets A,C ⊆X and B,D ⊆ Y such that ∣A∣ = ∣B∣ = s, ∣C ∣ ≥ ε∣X ∣, ∣D∣ ≥ ε∣Y ∣, and there

is a complete bipartite graph connecting A and D, B and C as well as A and B.

Proof. Denote A = {a1, . . . , as} and B = {b1, . . . , bs}. For each i ∈ [s], we will first

embed ai to X one vertex at a time. After embedding the kth-vertex, we will show

that the following condition is satisfied:

∣Y ∩
k

⋂
i=1
N(ai)∣ ≥ (d − ε)k∣Y ∣.

The condition is trivially satisfied when k = 0. Suppose that we already embedded

the vertices a1, . . . , at for some t > 0. Let Y ′

t = Y ∩ ⋂ti=1N(ai). By induction, ∣Y ′

t ∣ ≥

(d − ε)t∣Y ∣ > ε∣Y ∣. Hence by Lemma 3.1.1, at least ((1 − ε)∣X ∣ − s) vertices in X have
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at least (d−ε)∣Y ′

t ∣ neighbors in Y ′

t . Embed at+1 to one of these ((1 − ε)∣X ∣ − s) vertices

and it’s easy to see that

∣Y ∩
t+1
⋂
i=1
N(ai)∣ ≥ (d − ε)∣Y ′

t ∣ ≥ (d − ε)t+1∣Y ∣.

Now we want to embed bi to Y ′

s one vertex at a time. The process is entirely the

same as long as

(d − ε)s(∣X ∣ − s) ≥ ε∣X ∣

and

(d − ε)s∣Y ∣ − ε∣Y ∣ − s ≥ 1,

which are satisfied by our assumption on d, ∣X ∣ and ∣Y ∣.

Constructions for Theorem 3.1.3

Before we prove Theorem 3.1.3, we first give two constructions and show that if G

does not satisfy the conditions (1) and (2) in Theorem 3.1.3, then at least one of the

constructions do not contain a Berge copy of G. In particular, suppose A,B are two

disjoint set of vertices enumerated as A = {a1, . . . , an/2} and B = {b1, . . . , bn/2}. Let

H1 be a 3-uniform hypergraph such that V (H1) = A ∪B and E(H1) = {{ai, bj, bj+1} ∶

j is odd}. Let H2 be a 3-uniform hypergraph such that V (H2) = A∪B and E(H2) =

{{b1, ai, bj} ∶ ai ∈ A, bj ∈ B/{b1}}. Observe that

lim
n→∞

∣E(∂(H1))∣
(n2)

= lim
n→∞

∣E(∂(H2))∣
(n2)

= 1
2 .

Claim 3.1.2. If π̂3(G) = 0, then condition (1) and (2) of Theorem 3.1.3 must hold.

Proof. Suppose that π̂3(G) = 0. We claim that (1) and (2) must hold. First observe

that H1 contains no Berge triangle. Hence G must be triangle-free otherwise H1 is

Berge-G-free. Now note that given a hypergraph H, if ∂(H) is G-free, then H must

be Berge-G-free. Observe that ∂(H1) contains a bipartite subgraph B ⊆ ∂(H1) such
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that E(∂(H1)) −E(B) is a matching (possibly empty) in one of the partition of B.

Hence if there is no such bipartite subgraph in G, then ∂(H1) is G-free, implying

that H1 is Berge-G-free. Since π̂3(G) = 0, it follows that G must satisfy condition

(2). Similarly, observe that ∂(H2) satisfies condition (1). Hence if G doesn’t satisfy

condition (1), then H2 is Berge-G-free, which contradicts that π̂3(G) = 0. Therefore

we can conclude that (1) and (2) must hold for G.

Proof of Theorem 3.1.3

The forward direction is proved in Claim 3.1.2. It remains to show that if G satisfies

the conditions (1) and (2) in Theorem 3.1.3, then π̂3(G) = 0. Suppose not, i.e.,

π̂3(G) ≥ d for some d > 0. Our goal is to show that for every 3-graph H on (sufficiently

large) n vertices and at least d(n2) edges in ∂(H), H contains a Berge copy of G.

Assume first thatH is edge-minimal while maintaining the same shadow. It follows

that in every hyperedge h of H, there exists some e ∈ (h2) such that e is contained

only in h. Moreover, note that since each hyperedge covers at most 3 edges in ∂(H),

we have that

∣E(H)∣ ≥ 1
3 ∣E(∂(H))∣ ≥ d3(n2).

Call an edge e ∈ ∂(H) uniquely embedded if there exists a unique hyperedge h ∈ E(H)

containing e. Now randomly partition V (H) into three sets X,Y,Z of the same size.

Let e(X,Y,Z) denote the number of hyperedges of H intersecting each of the sets

X,Y,Z on at most one vertex. It’s easy to see that E[e(X,Y,Z)] = 2
9 ∣E(H)∣. Hence

there exists a 3-partite subhypergraph H1 = X ∪ Y ∪ Z of H such that ∣E(H1)∣ ≥
2
9 ∣E(H)∣. Note that each hyperedge h of H1 contains some e ∈ (h2) that is uniquely

embedded. Hence there are at least 2
9 ∣E(H)∣ uniquely embedded edges in ∂(H1).

Without loss of generality, assume that there are at least 2
27 ∣E(H)∣ uniquely embedded

edges between the vertex sets X and Y in ∂(H1). Let H′ be the subhypergraph of

H1 with only hyperedges containing a uniquely embedded edge between X and Y .
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For ease of reference, let H ′ = ∂(H′) and let H ′[X ∪Y ] be the subgraph of ∂(H′)

induced by X ∪Y . Note that H ′[X ∪Y ] is bipartite with at least 2
27 ∣E(H)∣ ≥ 2d

81(
n
2) =

d′(n2) edges.

Let ε = ε(s, d′/2) be small enough so that ε satisfies the assumptions in Lemma

3.1.2. Applying the regularity lemma on H ′[X∪Y ], we can find an ε-regular partition

in which there exist two parts X ′ ⊆ X,Y ′ ⊆ Y such that (X ′, Y ′) is an ε-regular

pair with edge density at least d′/2. Moreover, ∣X ′∣, ∣Y ′∣ ≥ n/M for some constant

M > 0. By Lemma 3.1.2, we can find disjoint subsets A,C ⊆ X ′ and B,D ⊆ Y ′ such

that ∣A∣ = ∣B∣ = 2s, ∣C ∣ ≥ ε∣X ′∣, ∣D∣ ≥ ε∣Y ′∣, and there is a complete bipartite graph

connecting A and D, B and C as well as A and B.

Now consider the subhypergraph Ĥ = H′[C ∪D ∪Z] of H′ induced by the vertex

set C ∪D ∪ Z, i.e., all hyperedges in Ĥ contain vertices only in C ∪D ∪ Z. Given a

vertex set S ⊆ V (Ĥ), define d̂S(v) as the number of neighbors of v in S in ∂(Ĥ).

Claim 3.1.3. If there exists some z ∈ Z such that d̂C(v) ≥ 2s and d̂D(v) ≥ 2s, then

H′ contains a Berge-C5(1, s, s, s, s) as subhypergraph.

Proof. Denote the C5(1, s, s, s, s) that we wish to embed as {v1} ∪ V2 ∪ V3 ∪ V4 ∪ V5.

Let v1 = z. Let Cz,Dz be the set of neighbors of z in C and D respectively in

∂(Ĥ). We wish to embed V2 in Cz, V3 in B, V4 in A and V5 in Dz. Note that

∣Cz ∣, ∣Dz ∣ ≥ 2s by our assumption. Pick arbitrary s of them to be V2. For each vertex

pair {z,w} where w ∈ V2, there exists a hyperedge h ⊆ C ∪D ∪ Z containing {z,w}.

Use h to embed {z,w}. Observe that at most s vertices in Dz or B are contained

in hyperedges embedding the edges from z to V2. Since ∣Dz ∣ ≥ 2s, we can set V5 to

be arbitrary s vertices among vertices in Dz that are not contained in any hyperedge

embedding the edges from z to V2. Similarly, since ∣A∣, ∣B∣ ≥ 2s, we can set V3 and

V4 to be arbitrary s vertices among vertices in B and A that are not contained in

any hyperedge embedding the edges from z to V2 and from z to V5 respectively. We

then have distinct hyperedges (in Ĥ only) embedding the edges from z to V2 and
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z to V5, V2 to V3 and V4 to V5 respectively. Moreover, recall that by our choice of

X ′ and Y ′, vertex pairs between V4 and V5 are uniquely embedded (with the third

vertex in Z), i.e., there exist distinct hyperedges embedding them. Hence, we obtain

a Berge-C5(1, s, s, s, s) in H′.

Now observe that ∣C ∣ ≥ ε∣X ′∣, ∣D∣ ≥ ε∣Y ′∣. Hence by the ε-regularity of (X ′, Y ′),

the number of edges e(C,D) in ∂(Ĥ) satisfies that

e(C,D) ≥ (d
′

2 − ε)∣C ∣∣D∣ ≥ (d
′

2 − ε)ε2∣X ′∣∣Y ′∣ ≥ (d
′

2 − ε)ε2 n
2

M2 = cn2

where c is a constant depending on ε and d′.

Claim 3.1.4. If H′ contains no Berge-C5(1, s, s, s, s) as subhypergraph, it must con-

tain a Berge-F where F is any triangle-free subgraph of C3(s, s, s; {{1,2}}).

Proof. By claim 3.1.3, since H′ contains no Berge-C5(1, s, s, s, s) as subhypergraph,

it follows that given any v ∈ Z, one of d̂C(v), d̂D(v) must be smaller than 2s. Let

Z1 be the set of vertices z ∈ Z with d̂C(v) < 2s, and Z2 be the set of vertices z ∈ Z

with d̂D(v) < 2s. Let e(Z1,D) and e(Z2,C) denote the number of edges between Z1

and D, Z2 and C respectively in ∂(Ĥ). Since e(C,D) ≥ cn2 and all hyperedges in Ĥ

contains a vertex in Z, it follows that at least one of e(Z1,D) and e(Z2,C) must be

at least Ω(n2). WLOG, suppose e(Z1,D) ≥ c′n2 for some c′ > 0. Recall the classical

result of Kővári, Sós and Turán [125], who showed that ex(n,Kr,t) = O(n2−1/r) where

r ≤ t. By the Turán number of complete bipartite graphs, we have that for sufficiently

large n, ∂(Ĥ)[D ∪Z1] contains a complete bipartite graph K(2s)s+1,(2s)s+1 . For ease of

reference, call this complete bipartite graph K.

Let F be an arbitrary triangle-free subgraph of C3(s, s, s; {{1,2}}). We now show

that Ĥ contains a Berge-F subhypergraph. Let C1 be the collection of vertices v in C

such that there is some hyperedge containing v and one of the edges in K. Observe

that for each v ∈ C1, d̂Z1∩K(v) ≤ s, otherwise we obtain a Berge-C5(1, s, s, s, s) in H′.
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Moreover, recall that for every v ∈ Z1, d̂C(v) < 2s. It follows that there must be an

edge x1y1 ∈ ∂(Ĥ) with x1 ∈ C1, y1 ∈ Z1 such that at least (2s)s vertices in D ∩K form

a hyperedge containing x1y1. Now consider the subgraph K ′ of K induced by these

(2s)s vertices in D ∩K as well as the non-neighbors of x1 in Z1 ∩K. Observe that

K ′ is also a complete bipartite graph with at least (2s)s vertices in each partition.

Hence by the same logic, we can find another edge x2y2 ∈ ∂(Ĥ) with x2 ∈ C1, y2 ∈ Z1

such that at least (2s)s−1 vertices in D ∩K ′ form hyperedges containing x1y1 and

x2y2 respectively. Continuing this process s steps, it is not hard to see that we can

find a Berge-F subhypergraph in Ĥ.

In summary, if H is 3-graph with at least d(n2) edges in ∂(H) for some d > 0

and n sufficiently large, then H contains either a Berge-C5(1, s, s, s, s) or a Berge-F

where F is any triangle-free subgraph of C3(s, s, s;{{1,2}}). Moreover, observe that

if G satisfies the conditions (1) and (2) in Theorem 3.1.3, then G is a subgraph of

both C5(1, s, s, s, s) and C3(s, s, s;{{1,2}}). Hence it follows that π̂3(G) = 0. This

completes the proof of the theorem.

It is easy to see that Theorem 3.1.3 implies Corollary 3.1.1. In the remaining of

this section, we show that Corollary 3.1.1 and Corollary 3.1.2 are indeed equivalent.

Proof of Corollary 3.1.2. It suffices to show that a graph G is contained in both

C5(1, s, s, s, s) and C3(s, s, s; {{1,2}}) (for some s) if and only if G is a subgraph of

one of the graphs in Figure 3.2. We follow the labelling in Figure 3.1. The backward

direction is easy. For the forward direction, there are two cases:

Case 1: With loss of generality, v1 is in B. Let v2 ∈ C be the vertex matched to v1.

Let B′ = B ∖{v1}, and C ′ = C ∖{v2}. Note that G− v1 is a bipartite graph, i.e.,

V (G) − v1 = U1 ∪ U2. With loss of generality, we can assume B′ ⊆ U1, C ′ ⊆ U2
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v1 v2

A′

1 A′′

1

C ′B′

A′

2 ∪A′′

2 v1

B′ C ′′

A1

C ′B′′

A2

Figure 3.3: Equivalence of characterizations in Corollary 3.1.1 and 3.1.2.

and v2 ∈ U2 by properly swapping two ends of the matching edges between B

and C if needed.

Since G − v1 is bipartite, the vertex set A is partitioned into two parts A1 ⊆

U1,A2 ⊆ U2. Let A′

1,A
′

2 be the neighbors of v in A1,A2 respectively, A′′

1 ,A
′′

2 be

the non-neighbors of v in A1,A2 respectively. Recall that v2 ∈ U2. It follows

that v2 is independent with A′

2 ∪ A′′

2 . Moreover, since G is triangle-free, v2 is

also independent with A′

1.

It then follows that G can be embedded into the first graph of Figure 3.2 in the

same way labelled in Figure 3.3 (note that there are no edges between v1 and

A′′

2 ).

Case 2: v1 is in A. Since G − v1 is bipartite, we can write V (G) − v1 = U1 ∪ U2.

WLOG, assume that B ⊆ U1 and C ⊆ U2 by properly swapping two ends of the

matching edges between B and C if needed. Moreover, write A = A1 ∪A2 ∪ {v}

where A1 ∈ U1 and A2 ∈ U2. Write B = B′ ∪B′′, C = C ′ ∪C ′′ such that B′ and

C ′ are the neighbors of v1 in B and C respectively. Since G is triangle-free, it

follows that v1 is independent with B′′ and C ′′.

It then follows that G can be embedded into the second graph of Figure 3.2 in

the same way labelled in Figure 3.3.
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3.1.3 Proof of Theorem 3.1.4

If χ(G) ≥ 4, we are done by Theorem 3.1.2. If χ(G) ≤ 3 and G is not degenerate, the

two hypergraphs we constructed in Section 3.1.2 provide the lower bound 1/2, which

is also an upper bound by Theorem 3.1.1. Theorem 3.1.3 resolves the case when G

is degenerate.

3.2 On Hamiltonian Berge cycles in 3-uniform hypergraphs

A hypergraph is a pair H = (V,E) where V is a vertex set and every hyperedge h ∈ E

is a subset of V . For a fixed set of positive integers R, we say H is an R-uniform

hypergraph, or R-graph for short, if the cardinality of each hyperedge belongs to R.

If R = {k}, then an R-graph is simply a k-uniform hypergraph or a k-graph. Given

an R-graph H = (V,E) and a set S ∈ (V
s
), let deg(S) denote the number of edges

containing S and δs(H) be the minimum s-degree of H, i.e., the minimum of deg(S)

over all s-element sets S ∈ (V
s
). Given a hypergraph H, the 2-shadow of H, denoted by

∂(H), is a simple 2-uniform graph G = (V,E) such that V (G) = V (H) and uv ∈ E(G)

if and only if {u, v} ⊆ h for some h ∈ E(H). In this paper, since we are dealing with

3-uniform hypergraphs, for convenience we will simply use the term shadow instead

of 2-shadow. we say H is covering if the shadow of H is a complete graph. Note that

H is covering if and only if δ2(H) ≥ 1.

There are several notions of a path or a cycle in hypergraphs. A Berge path

of length t is a collection of t distinct hyperedges h1, h2, . . . , ht and t + 1 vertices

v1, . . . , vt+1 such that {vi, vi+1} ⊆ hi for each i ∈ [t]. Similarly, a k-graph H = (V,E)

is called a Berge cycle of length t if E consists of t distinct edges h1, h2, . . . , ht and

V contains t distinct vertices v1, v2, . . . , vt such that {vi, vi+1} ⊆ hi for every i ∈ [t]

where vt+1 ≡ v1. Note that there may be other vertices than v1, . . . , vt in the edges of

a Berge cycle or path. We say an R-graph H on n vertices contains a Hamiltonian

Berge cycle (path) if it contains a Berge cycle (path) of length n (or n − 1).
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For k-uniform hypergraphs, there are more structured notions of Berge cycles as

well. Given 1 ≤ ` < k, a k-graph C is called an `-cycle if its vertices can be ordered

cyclically such that each of its edges consists of k consecutive vertices and every two

consecutive edges (in the natural order of the edges) share exactly ` vertices. In

particular, in a k-graph, a (k − 1)-cycle is often called a tight cycle while a 1-cycle is

often called a loose cycle. A k-graph contains a Hamiltonian `-cycle if it contains an

`-cycle as a spanning subhypergraph.

The problem of finding Hamiltonian cycles has been widely studied. In 1952,

Dirac [52] showed that for n ≥ 3, every n-vertex graph with minimum degree at least

n/2 contains a Hamiltonian cycle. Since then, problems that relate the minimum

degree (or minimum s-degree in hypergraphs) to the structure of the (hyper)graphs

are often referred to as Dirac-type problems. In the setting of hypergraphs, define the

threshold h`s(k,n) as the smallest integer m such that every k-graph H on n vertices

with δs(H) ≥m contains a Hamiltonian `-cycle, provided that k − ` divides n. These

thresholds for different values of s, ` and k have been intensively studied in a series

of papers (e.g., [117, 149, 150, 151, 168, 136, 126, 103], see [171] for a recent survey).

For Berge cycles, Bermond, Germa, Heydemann, and Sotteau [15] showed a Dirac-

type theorem for Berge cycles. Kostochka, Luo and Zirlin [124] showed Dirac-type

conditions for a hypergraph with few edges to be Hamiltonian.

The problem of finding Hamiltonian Berge cycles in a hypergraph is closely related

to the problem of finding rainbow Hamiltonian cycles in an edge-colored complete

graph Kn. An edge-colored graph G is rainbow (or multicolored) if each edge is of a

different color. An edge-colored graph G is k-bounded if no color appears in more than

k edges. Observe that given any covering k-graph H with hyperedges h1,⋯, hm, we

can construct an edge-colored complete graph G (using colors {c1,⋯, cm}) on ∣V (H)∣

vertices by assigning any edge uv ∈ E(G) color ci if uv ∈ hi for some i (pick arbitrarily if

uv is contained in multiple hyperedges). Notice that G is (k2)-bounded. Moreover, any
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rainbow subgraph G′ of G corresponds to a Berge-G′ in H by embedding uv ∈ E(G′)

into the hyperedge hi if uv is colored ci.

There have been intensive investigations on the largest k (compared to n) such

that any k-bounded edge-coloring of Kn contains a rainbow Hamiltonian path or

cycle. In this framework, Hahn [100] conjected that any (n/2)-bounded coloring of

Kn contains a rainbow Hamiltonian path. Hahn’s conture was disproved by Maamoun

and Meyniel [133] who showed that the conjecture is not true for proper colorings of

K2t for integers t ≥ 2. The problem for rainbow Hamilton cycles was first mentioned

in Erdős, Nesdtril and Rödl [68] as an Erdős-Stein problem and show that k can

be any constant. Hahn and Thomassen [101] showed that k could grow as fast as

n1/3 and conjectured that the growth rate of k can be linear. Rödl and Winkler

later in an unpublished work improved it to n1/2. Frieze and Reed [78] improved

it to O(n/ lnn). Albert, Frieze and Reed [4] confirmed the conjecture of Hahn and

Thomassen by showing that if n is sufficiently large and k is at most ⌈cn⌉ where

c < 1
32 , then any k-bounded edge-coloring of Kn contains a rainbow Hamiltonian

cycle. Frieze and Krivelevich [77] showed that there exists absolute constant c > 0

such that if an edge-coloring of Kn is cn-bounded, then there exists rainbow cycles

of all sizes 3 ≤ ` ≤ n. In the context of Berge Hamiltonian cycles, the results above

imply the following theorem:

Theorem 3.2.1. [68, 101, 78, 4] For any fixed set of integers R ⊆ [k] where k ≥ 2,

there is an integer n0 ∶= n0(k) such that every covering R-graph H on at least n0

vertices contains Berge cycles of all sizes 3 ≤ ` ≤ n.

Corollary 3.2.1. For any fixed set of integers R ⊆ [k] where k ≥ 2, there is an inte-

ger n0 ∶= n0(k) such that every covering R-graph H on at least n0 vertices contains a

Berge Hamiltonian path.
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Further results on the rainbow spanning subgraphs lead to results that are even

stronger than Theorem 3.2.1. In particular, Böttcher, Kohayakawa and Procacci [21]

showed that for c ≤ n/(51∆2) every cn-bounded Kn contains a rainbow copy of every

graph with maximum degree ∆. Recently, Coulson and Perarnau [46] showed that

there exists c > 0 such that if G is a Dirac graph (i.e. minimum degree at least n/2)

on n vertices (for sufficiently large n), then any cn-bounded coloring of G contains a

rainbow Hamiltonian cycle.

The results above assume n is sufficiently large. In this note, we prove more precise

results and focus on the Hamiltonian Berge paths and cycle problems in [3]-uniform

hypergraphs (i.e., all hyperedges have cardinality at most 3). In particular, we show

the following theorems:

Theorem 3.2.2. Every covering [3]-graph H on n ≥ 3 vertices with at least n − 1

hyperedges contains a Hamiltonian Berge path.

Note that for n ≥ 6, the fact that H is covering implies that H has at least n − 1

edges.

Theorem 3.2.3. Every covering [3]-graph H on n ≥ 6 vertices contains a Berge cycle

Cs for any 3 ≤ s ≤ n.

Note that every covering [3]-graph on n ≥ 6 vertices has at least n hyperedges.

On the other hand, there exists a covering 3-graph on 5 vertices with 4 edges, thus

without a Hamiltonian Berge cycle. Hence the condition n ≥ 6 is necessary.

In general, in order for a [k]-graph to have a Hamiltonian Berge cycle or path,

we need ⌈(n2)/(
k
2)⌉ to be at least n or n − 1 respectively (to simply have enough

hyperedges). Thus we conjecture the following:

Conjecture 3.2.1. For k ≥ 2, every covering [k]-graph on n ≥ k(k − 1) + 1 vertices

contains a Hamiltonian Berge cycle.
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Conjecture 3.2.2. For k ≥ 2, every covering [k]-graph on n ≥ k(k − 1) vertices

contains a Hamiltonian Berge path.

Remark 3.2.1. Theorem 3.2.1 confirms Conjecture 3.2.2 and 3.2.1 for all k ≥ 2 but

with sufficiently large n. Theorem 3.2.2 and Theorem 3.2.3 confirms Conjecture 3.2.2

and 3.2.1 for k = 3.

As an application, using Theorem 3.2.1, 3.2.2 and 3.2.3, we determine the max-

imum Lagrangian of Berge-Pt-free and Berge-Ct-free k-graphs when t is sufficiently

large. Given a k-uniform hypergraph H on n vertices, the polynomial form PH(x) ∶

Rn → R is defined for any vector x = (x1, . . . , xn) ∈ Rn as

PH(x) = ∑
{i1,i2,⋯,ik}∈E(H)

xi1⋯xik .

For k ≥ 2, the Lagrangian of a k-uniform hypergraph H = (V,E) on n vertices is

defined to be

λ(H) = max
x∈Rn∶∥x∥1=1

PH(x).

where the ∥x∥1 =
n

∑
i=1

∣xi∣ is the 1-norm of x ∈ Rn. Note that PH(x) can always reach

its maximum at some nonnegative vectors.

Lagrangians for graphs (i.e., 2-graphs) were introduced by Motzkin and Straus in

1965 [139]. They showed λ(G) = 1
2(1 − 1

ω(G)
), where ω(G) is the clique number of G.

The Lagrangian of a k-graph H is closely related to the maximum edge density of the

blow-up of H, which is very useful in the Turán theory [167, 118].

Extremal problems on Berge hypergraphs have been intensively investigated. The

Turán number of a Berge-G, denoted by exk(n,G), is the maximum number of hy-

peredges in k-uniform Berge-G-free hypergraph. Turán numbers for Berge paths and

cycles have been studied in a series of papers [95, 48, 96, 97, 123, 80, 81, 74, 98]. For

general results on the Turán number of arbitrary graphs, see for example [85, 88, 144].

Regarding the maximum Lagrangian of Berge-Ct-free and Berge-Pt-free hypergraphs,

we show the following:
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Theorem 3.2.4. For fixed k ≥ 2 and sufficiently large t = t(k) and n ≥ t− 1, let H be

a k-uniform hypergraph on n vertices without a Berge cycle of length t. Then

λ(H) ≤ λ(Kk
t−1) =

1
(t − 1)k (

t − 1
k

).

As a corollary, we obtain the same results for the Berge-Pt-free hypergraphs as

well.

Corollary 3.2.2. For fixed k ≥ 2 and sufficiently large t = t(k) and n ≥ t − 1, let H

be a k-uniform hypergraph on n vertices without a Berge-Pt. Then

λ(H) ≤ λ(Kk
t−1) =

1
(t − 1)k (

t − 1
k

).

Both the bounds in Theorem 3.2.4 and Corollary 3.2.2 are tight. Indeed, let H

be a k-graph obtained from Kk
t−1 by adding (n − t + 1) isolated vertices. Clearly H is

Berge-Ct-free and Berge-Pt-free and λ(H) = (t−1
k
)/(t− 1)k. For k = 3, due to Theorem

3.2.2 and Theorem 3.2.3, we obtain more precise results.

Corollary 3.2.3. Let H be a 3-uniform hypergraph on n vertices without a Berge-Ct

where n ≥ t ≥ 6. Then

λ(H) ≤ λ(K3
t−1) =

1
(t − 1)3(

t − 1
3 ).

Corollary 3.2.4. Let H be a 3-uniform hypergraph on n vertices without a Berge-Pt

where n ≥ t ≥ 6. Then

λ(H) ≤ λ(K3
t−1) =

1
(t − 1)3(

t − 1
3 ).

3.2.1 Proof of Theorem 3.2.2 and Theorem 3.2.3

Proof of Theorem 3.2.2. Let H = (V,E) be a covering [3]-uniform hypergraph on

n ≥ 4 vertices with at least n−1 hyperedges. Let P = v1v2 . . . vt be a maximum-length

Berge path in H. If t = n, we are done. Otherwise assume that t < n and let u
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be a vertex not in P . Observe that by the maximality of P , we have t ≥ 3. Call a

hyperedge h used if h is an edge in the Berge path P , otherwise call it free. Since

H is covering, there exists a hyperedge h1 containing {u, v1}. The edge h1 must be

used in P since otherwise we can extend P by embedding {u, v1} in h1. Since H is

[3]-uniform, the only way that h1 can be used in P is to embed {v1, v2}. Similarly,

there exists a hyperedge ht that contains {u, vt} and is used to embed {vt−1, vt}. Now

consider a hyperedge h′ containing {v1, vt}. Note that h′ is free since both {v1, v2}

and {vt−1, vt} have already been embedded. Now consider the path

P ′ = v2⋯vtv1u

such that {vt, v1} is embedded in h′, {v1, u} is embedded in h1 and other edges in P ′

are embedded in the same hyperedges as in P . Notice that P ′ is a Berge hyperpath

in H that is longer than P . This gives us the contradiction. Hence t = n and P is a

Hamiltonian Berge path in H.

Lemma 3.2.1. Let H = (V,E) be a covering [3]-graph on n ≥ 6 vertices. Then H

contains a Hamiltonian Berge cycle.

Proof of Lemma 3.2.1. Let H = (V,E) be a covering [3]-graph on n ≥ 6 vertices.

Suppose otherwise that H does not contain a Hamiltonian Berge cycle.

We first claim that there exists a Berge cycle on n−1 vertices. By Theorem 3.2.2,

there is a Hamiltonian Berge path P = u1u2 . . . un in H. Since H is covering, if follows

that there exists an edge h ∈ E(H) such that {u1, un} ⊆ h. If h is not an edge in P ,

then we embed u1un in h and obtain a Hamiltonian Berge cycle. Otherwise, h is used

to embed either u1u2 or un−1un. WLOG, h embeds un−1un. Then h = {u1, un−1, un}.

If we embed u1un−1 in h, we then obtain a Berge cycle C = u1u2 . . . un−1 on n − 1

vertices.

Let C = v1v2 . . . vn−1 be a Berge cycle in H on n−1 vertices and call the remaining

vertex w. For ease of reference, consider vn ≡ v1 and v0 ≡ vn−1. For a 2-edge e = vivi+1,
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we use φ(e) to denote the hyperedge in C that embeds e. Consider a two-edge-

coloring on {vivi+1 ∶ i ∈ [n − 1]}: color vivi+1 red if the hyperedge that embeds vivi+1

also contains w; otherwise color it blue. Assume that C is picked among all Berge

cycles on n − 1 vertices such that C has the most number of red edges (when viewed

as a 2-uniform cycle).

Again, from now on, we call a hyperedge h used if h is a hyperedge in C, otherwise

call it free. Moreover, when we say 2-edges of C, we mean the 2-uniform edges of C

when C = v1v2 . . . vn−1 is viewed as a 2-uniform cycle. Otherwise, C is considered a

[3]-graph.

v1

v2
vivi+1

vi+2

vj vj+1

vn−1

v1

v2
vivi+1

vi+2

vj vj+1

vn−1

w

Figure 3.4: Using a bridge to extend the cycle.

Claim 3.2.1. If there exist two disjoint red pairs vivi+1, vjvj+1 such that there is a free

edge h containing either vivj or vi+1vj+1, then we have a Hamiltonian Berge cycle.

Proof. Recall that φ(vkvk+1) denotes the hyperedge in C that embeds vkvk+1. Suppose

there is a free edge h containing vi+1vj+1 (as shown in Figure 3.4). Consider the cycle

C ′ = viwvj . . . vi+1vj+1 . . . vi.

Embed viw in φ(vivi+1); embed wvj in φ(vjvj+1); embed vi+1vj+1 in h. For any other

edge e of C ′, embed e in φ(e). We then obtain a Hamiltonian Berge cycle.

Observe that given two disjoint red pairs vivi+1, vjvj+1, if the hyperedge h contain-

ing vivj is not free, then it must be used to embed either vi−1vi or vjvj−1. Similarly,

if the hyperedge containing vi+1vj+1 is not free, then it must be used to embed either

111



vi+1vi+2 or vj+1vj+2. Given disjoint vertex pairs vivi+1, vjvj+1, call the vertex pair vivj

or vi+1vj+1 a bridge if vivi+1, vjvj+1 are both red. By Claim 3.2.1, if a bridge is free,

then we are done. Otherwise by the above observation, a bridge must be used to

embed a blue 2-edge in C that intersects the bridge. Call a sequence of vertices a

segment if they are consecutive in C. A segment is red (or blue) if the 2-edges in C

(viewed as a 2-uniform cycle) induced by the vertices in the segment are all red (or

blue). By Claim 3.2.1, it is easy to derive the following consequence:

(i) There are no four pairwise disjoint red segments. This is because, for any four

pairwise disjoint red segments, there are at least 2(4
2) = 12 bridges but only

at most 8 blue edges that intersects the four red segments. Hence one of the

bridges must be free. Then we are done by Claim 3.2.1.

(ii) If there are three pairwise disjoint red segments, there must be at least two

blue edges (in both directions) between every two red segments. Moreover,

each of the red segments has length 1. This is because, three pairwise disjoint

red segments have at least six bridges. If there is only one blue edge between

two of the red segments, then there are at most five blue edges intersecting the

red segments. Hence one of the bridges must be free and we are done by Claim

3.2.1.

(iii) There can be only one red segment of length at least 2. Moreover, if there is

any other red segment, then there must be at least two blue edges (in both

directions) between the two red segments. The logic is the same as the above

two cases.

(iv) If there is a red segment of length 3, there is no other red segment.

(v) There is no red segment of length at least 4.
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Claim 3.2.2. If there exist three consecutive blue edges in C, i.e., vi, vi+1, vi+2, vi+3

such that vkvk+1 is blue for k ∈ {i, i+1, i+2}, then we have a Hamiltonian Berge cycle.

Proof. Since H is covering, it follows that there exist free edges h1, h2 such that h1

contains wvi+1 and h2 contains wvi+2. Note that h1 ≠ h2 otherwise we have a free

h = {w, vi+1, vi+2}, which contradicts our assumption that C is picked such that it has

the maximum number of red edges. Now consider the cycle

C ′ = v1 . . . vi+1wvi+2 . . . vn−1.

Embed vi+1w in h1; embed wvi+2 in h2; embed any other edge e the same way it is

embedded in C. We then obtain a Hamiltonian Berge cycle.

v1

v2
v3v4

v5

v6
v7 v8

v9

v1

v2
v3

v4

v5
v6

v7

v1

v2v3

v4

v5 v6

v1

v2
v3

v4
v5

v1

v2
v3

v4
v5

Figure 3.5: Remaining five cases: (a): n = 10; (b): n = 8; (c): n = 7; (d),(e): n = 6.

Combining Claim 3.2.2, the consequences (i)–(v) above and the fact that n ≥ 6,

it is easy to deduce that there are only 5 cases left. Let us analyze them one by one:

Case 1: n = 10. In this case, observe there must be a free hyperedge containing

each of wv3, wv6 and wv9. Moreover, the free hyperedges containing wv3, wv6

and wv9 cannot be the same hyperedge. Hence, WLOG, let h1 be the free edge

containing wv3 and h2 be the free hyperedge containing wv9. Now observe that

v2v8 is bridge. Let h be an hyperedge containing v2v8. If h is free, we are done
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by Claim 3.2.1. Otherwise, WLOG, h is used to embed v2v3, i.e., h = {v2, v3, v8}.

Then consider the cycle

C ′ = v2v8v7 . . . v3wv9v1v2

where v2v8 is embedded in h; v3w is embedded in h1; wv9 is embedded in h2;

and any other 2-edge of C ′ is embedded in the same way as in C.

Case 2: n = 8. Note that v4v1 is a bridge. Hence if the edge h containing v4v1 is

free, then we are done by Claim 3.2.1. Otherwise, WLOG, suppose h is used

to embed v3v4, i.e. h = {v1, v3, v4}. Moreover there is another free edge h′ that

contains wv3. Now consider the cycle

C ′ = v1v4v5v6v7wv3v2v1

such as v1v4 is embedded in h, v7w is embedded in φ(v7v1), wv3 is embedded

in h′, and every other 2-edge of C ′ is embedded in the same way as in C.

Case 3: n = 7. Note that v4v1 is a bridge. Hence if the edge h containing v4v1 is

free, then we are done by Claim 3.2.1. Otherwise, WLOG, suppose h is used to

embed v3v4, i.e., h = {v1, v3, v4}. Moreover there are free edges h1, h2 (may be

the same) such that {w, v3} ⊆ h1 and {w, v6} ⊆ h2. If h1 ≠ h2, then consider the

cycle

v1v4v5v6wv3v2v1

such that v1v4 is embedded in h, v6w is embedded in h2, wv3 is embedded in h1

and all other edges are embedded in the same way as before. We then obtain a

Hamiltonian Berge cycle. On the other hand, suppose h1 = h2, then it follows

that h′ = {v3, v6,w} is a free edge. Now consider the cycle

v1v2v3v6v5v4

such as v3v6 is embedded in h′, v4v1 is embedded in h and all other edges are

embedded in the same way as before. Observe that this cycle, using the same
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coloring scheme as before, has three red edges, which contradicts our assumption

that the cycle in Figure 3.5 has the maximal number of red edges.

Case 4: n = 6. There are two possible coloring for n = 6 (see Figure 3.5(d)(e)). Let

us first look at the case (Figure 3.5(d)) when there are two disjoint red segments

of length 1. Let h0 be the hyperedge embedding wv5. Observe h0 must be free,

since otherwise it must be embedding v1v5 or v4v5, which contradicts that v1v5

and v4v5 are blue (recall that the cycle C is picked to have as many red edges as

possible). Let h1, h2 be the hyperedges embedding v1v3 and v2v4 respectively.

Note since v1v3 and v2v4 are bridges, if either of h1, h2 is free, then we are done

by Claim 3.2.1. Otherwise, there are two subcases:

Case 4(a): h1 = {v1, v3, v5} and h2 = {v2, v4, v5}. In this case, the hyperedge h3

embedding v1v4 must be free. Hence consider the cycle

wv5v1v4v3v2w

such that wv5 is embedded in h0, v1v4 is embedded in h3, wv2 is embedded

in φ(v1v2), and any other 2-edge embedded in the same way as in C.

Case 4(b): WLOG, h1 = {v1, v2, v3} and h2 = {v2, v4, v5}. Then consider the

cycle

wv5v1v3v4v2w

such that wv5 is embedded in h0, v1v3 is embedded in h1, v4v2 is embedded

in h2, wv2 is embedded in φ(v1v2), and any other 2-edge embedded in the

same way as in C.

In both cases, we obtain a Hamiltonian Berge cycle. Hence we are done with

the case in Figure 3.5(d). The case in Figure 3.5(e) is the same as Case 4(a).
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Before we proceed to the proof of Theorem 3.2.3, let us state an easy observation

on trace hypergraph and Berge cycles. Given an [k]-graph H = (V,E) and a subset

S ⊆ V , the trace of H on S is defined to be the [k]-graph HS = (S,E′) with the vertex

set S and the edge set E′ ∶= {F ∩S∶F ∈ E(H)}. Traces of hypergraphs are very useful

in extremal problems involving (non-uniform) hypergraphs. For some examples of

results on trace functions and applications, see [156, 159, 170, 114]. Regarding the

trace of covering hypergraphs, the following observations can be easily verified by

definition.

Proposition 3.2.1. Let H be a [k]-graph and S ⊆ V (H) be any subset of vertices.

Then the following statements hold:

1. If H is covering, so is HS.

2. Every Berge-cycle (or Berge-path) in HS can be lifted to a Berge-cycle (or Berge-

path) in H of the same length.

Proof of Theorem 3.2.3. Let H be a covering [3]-graph on n ≥ 6 vertices. We want

to show that H contains all Berge cycles of length 3 ≤ s ≤ n. Observe that given any

S ⊆ V (H) with ∣S∣ ≥ 6, Lemma 3.2.1 implies that HS contains a Hamiltonian Berge

cycle, which by Proposition 3.2.1, can be lifted to a Berge cycle of length ∣S∣ in H.

Hence H contains Berge cycles of length 6 ≤ s ≤ n.

Claim 3.2.3. H contains a Berge cycle of length 5.

Proof. We know that H contains a Berge cycle C of length 6. Let C = {v1, v2,⋯, v6}.

For convenience assume vi ≡ vi mod s. Again call an hyperedge h free if h is not a

hyperedge of the Berge cycle C. Now for each i ∈ [6], if the hyperedge hi embedding

vivi+2 is free or hi = {vi, vi+1, vi+2}, then we are done since we can obtain a Berge cycle

C ′ = v1⋯vivi+2⋯v6v1 of length 5 by embedding vivi+2 in hi and every other 2-edge
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with the same hyperedge in C. Otherwise, for each i ∈ [6], the hyperedge hi must be

either {vi, vi+2, vi+3} or {vi−1vivi+2}.

Case 1: there is some i such that both {vi, vi+2, vi+3} or {vi+1vi+3vi+4} are both

hyperedges of C. WLOG, i = 1, i.e., {v1, v3, v4} and {v2, v4, v5} are both in C,

then consider the cycle

v1v3v2v5v6v1

such as v1v3 is embedded in {v1, v3, v4}, v2v5 is embedded in {v2, v4, v5} and

every other 2-edge is embedded the same way in C. We then obtain a Berge

cycle of length 5. Similarly, if there is some i such that both {vivi+1vi+3} and

{vi−1vivi+2} are hyperedges of C, then we are done too.

Case 2: WLOG, assume that the vertex pair v2v4 is embedded in {v1, v2, v4}. Since

we are not in Case 1, then v3v5 must be embedded in {v3, v5, v6}, v4v6 must be

embedded in {v3, v4, v6}, etc. With this logic, we then obtain a hypergraph on 6

vertices with at least the following hyperedges: h1 = {v1, v2, v4}, h2 = {v3, v5, v6},

h3 = {v3, v4, v6}, h4 = {v1, v2, v5}, h5 = {v2, v5, v6}, h6 = {v1, v3, v4}. Now consider

the cycle

v2v5v6v3v4

by using the hyperedges h4, h5, h2, h3, h1 respectively.

In both cases, we obtain a Berge cycle of length 5.

The fact that H contains a Berge cycle of length 4 follows from similar logic in the

above claim. A Berge triangle can be easily found by greedily embedding the edges

of the triangle. We will leave the details to the readers. This completes the proof of

Theorem 3.2.3.
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3.2.2 Proof of Theorem 3.2.4

Before we show the proof of Theorem 3.2.4, we need a few definitions and lemmas.

For a vector x = (x1, . . . , xn) of real numbers, the support of x is defined as Supp(x) ∶=

{1 ≤ i ≤ n ∶ xi ≠ 0}. Given a family of subsets of [n] and I ⊆ [n], we say F covers

pairs with respect to I if for every i, j ∈ I, there exists some h ∈ F such that {i, j} ⊆ h.

Moreover, we define F[I] = {h ∈ F ∶ h ⊆ I}.

Lemma 3.2.2 ([76]). Let F be a family of k-subsets of [n]. Suppose x = (x1, . . . , xn)

with xi ≥ 0 such that ∑n
i=1 xi = 1. Moreover, suppose that PF(x) = λ(F) and I =

Supp(x) is minimal. Then F[I] covers pairs with respect to I.

Proof of Theorem 3.2.4. LetH be a Berge-Ct-free k-uniform hypergraph on n vertices

that achieves the maximum Lagrangian where t ≥ n0({k}) in Theorem 3.2.1. Suppose

that x = (x1, x2, . . . , xn) ∈ Rn such that xi ≥ 0, ∑n
i=1 xi = 1 and PH(x) = λ(H). Further

assume that I = Supp(x) is minimal. By Lemma 3.2.2, we have that H[I] covers

pairs with respect to I. Since H is Berge-Ct-free, it follows by Theorem 3.2.1 that

∣I ∣ ≤ t − 1. Hence

λ(H) = PH(x)

= ∑
{i1,i2,⋯,ik}∈E(H)

xi1xi2⋯xik

= ∑
{i1,i2,⋯,ik}∈E(H)

i1,i2,⋯,ik∈I

xi1xi2⋯xik

≤ ∑
{i1,i2,⋯,ik}∈(

I
k
)

xi1xi2⋯xik

≤ 1
(t − 1)k (

t − 1
k

)

= λ(Kk
t−1).
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For k = 3, due to Theorem 3.2.3, we obtain, by the same logic, Corollary 3.2.3 and

3.2.4: if H is a 3-uniform hypergraph on n vertices without a Berge-Ct (or Berge-Pt)

where n ≥ t ≥ 6, then

λ(H) ≤ λ(K3
t−1) =

1
(t − 1)3(

t − 1
3 ).
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Chapter 4

Ricci curvature of graphs and concentration

inequalities

4.1 Introduction

One of the main tools in probabilistic analysis and random graph theory is the con-

centration inequalities, which are meant to bound the probability that a random

variable deviates from its expectation. Many of the classical concentration inequali-

ties (such as those for binomial distributions) provide best possible deviation results

with exponentially small probabilistic bounds. Such concentration inequalities usu-

ally require certain independence assumptions (e.g., the random variable is a sum

of independent random variables). For concentration inequalities without the inde-

pendence assumptions, one popular approach is the martingale method. A martin-

gale is a sequence of random variables X0,X1, . . . ,Xn with finite means such that

E[Xi+1∣Xi,Xi−1, . . . ,X0] = Xi for all 0 ≤ i < n. For c = (c1, c2, . . . , cn) with positive

entries, a martingale X is said to be c-Lipschitz if ∣Xi − Xi−1∣ ≤ ci for i ∈ [n]. A

powerful tool for controlling martingales is the Azuma-Hoeffding inequality [11, 105]:

if a martingale is c-Lipschitz, then

Pr (∣X −E[X]∣ ≥ t) ≤ 2 exp(− t2

2∑n
i=1 c

2
i

).

For more general versions of martingale inequalities as well as applications of mar-

tingale inequalities, we refer the readers to [7, 38].

A graph G = (V,E) is a pair of the vertex set V and the edge set E where each

edge is an unordered pair of two vertices. Given a vertex v ∈ V , we use Γ(v) to
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denote the set of open neighbors of v in G, i.e., Γ(v) = {u ∈ V ∶ vu ∈ E}. Moreover,

let N(v) = Γ(v) ∪ {v} be the closed neighbors of v. A graph parameter/function

X is called vertex-Lipschitz if ∣X(G1) − X(G2)∣ ≤ 1 whenever G1 and G2 can be

made isomorphic by deleting one vertex from each. A graph parameter X is called

edge-Lipschitz if ∣X(G1) −X(G2)∣ ≤ 1 whenver G1 and G2 differs by an edge. Many

graph parameters are vertex(edge)-Lipschitz, e.g., the independence number α(G),

the chromatic number χ(G), the clique number ω(G), the domination number γ(G),

the matching number β(G), etc.

Concentration inequalities are among the most important tools in the probabilistic

analysis of random graphs. The classical binomial random graph model, denoted by

G(n, p), is a random graph model in which a graph with n vertices is constructed

by connecting the vertices randomly such that each vertex pair appears as an edge

with probability p independently from every other edge. The Erdős-Rényi random

graph model G(n,M) is the model, in which a graph is chosen uniformly at random

from the collection of all graphs with n vertices and m edges. A standard application

of the Azuma-Hoeffding inequality gives us that for any vertex-Lipschitz function X

defined on a vertex-exposure martingale (see e.g. [7] for definition), we have

Pr(∣X −E(X)∣ ≥ t) ≤ 2 exp(− t
2

2n) . (4.1)

Similar concentration results can be obtained for edge-exposure martingale as well.

In this chapter, we will take an alternative approach for such an inequality. The

main idea is using Ollivier’s work [143] on the Ricci curvature of Markov chairs on

metric spaces. Although the Ricci curvature of graphs has been introduced since

2009, it has not been widely used by the communities of combinatorists and graph

theorists. In this chapter, we prove a clean concentration result (Theorem 4.1.1) on

graphs with positive Ricci curvature. Then we show that it can be applied to some

classical models of random configurations including the Erdős-Rényi random graph
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model G(n, p) and G(n,M), the random d-out(in)-regular directed graphs, and the

space of random permutations, through a geometrization process.

Consider a graph (loops allowed) G = (V,E) equipped with a random work

m ∶= {mv ∶ v ∈ V }. Here for each vertex v, mv ∶N(v) → [0,1] is a distribution, i.e.,

∑x∈N(v)mv(x) = 1. Assume that this random walk is ergodic so that an invariant

distribution ν exists. In the context of random walks on graphs, in order for the

random walk to be ergodic, it is sufficient that the underlying graph G is connected

and non-bipartite. Note that ν is a probability measure on V . It turns V into a

probability space. A function f ∶V → R is called c-Lipschitz on G if

∣f(u) − f(v)∣ ≤ c for any uv ∈ E(G). (4.2)

We have the following theorem on the concentration result of f . All we need is that

the graph G (equipped with a random walk) has positive Ricci curvature at least

κ > 0. (See the definition of Ricci curvature (in Ollivier’s notion) in next section.)

Theorem 4.1.1. Suppose that a graph G = (V,E) equipped with an ergodic random

walk m (and invariant distribution ν) has a positive Ricci curvature at least κ > 0.

Then for any 1-Lipschitz function f and any t ≥ 1, we have

ν (f −Eν[f] > t) ≤ exp(−t
2κ

7 ), (4.3)

ν (f −Eν[f] < −t) ≤ exp(−t
2κ

7 ). (4.4)

Remark 4.1.1. The constant 7 can be improved to 5 if κ→ 0 as ∣V (G)∣ → ∞. It can

be improved to 1 + o(1) if we further assume tκ→ 0 as ∣V (G)∣ → ∞.

Remark 4.1.2. Ollivier [143] proved a concentration inequality for any random walk

on a metric space with positive Ricci curvature at least κ > 0 and unique invariant

distribution ν. His result is more general but more technical to apply in the context

of graphs. In particular, he defined two quantities related to the local behavior of the

random walk: the diffusion constant σ(x) and the local dimension nx at vertex x.
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Moreover, define D2
x = σ(x)2

nxκ
, D2 = Eν[D2

x], tmax = D2

max(σ∞,2C/3) where C satisfies that

the function x → D2
x is C-Lipschitz. He proved ([143] Theorem 33, on page 834) for

any 1-Lipschitz function f and for any t ≤ tmax, we have

ν (f −Eν[f] > t) ≤ exp( −t
2

6D2). (4.5)

and for t ≥ tmax,

ν (f −Eν[f] > t) ≤ exp( −t2
6D2 −

t − tmax
max(3σ∞,2C)). (4.6)

Remark 4.1.3. Note in Ollivier’s result for graphs, we have D2 = O(κ−1) and σ∞ ≈ 1.

Inequality (4.3) has about the same power as Inequalities (4.5) and (4.6), but cleaner;

thus is easier to apply in the context of graphs.

Besides Ollivier’s definition of Ricci curvature, another notion of Ricci curvature

on discrete spaces, via geodesic convexity of the entropy (in the spirit of Sturm [163],

Lott and Villani [131]), was proposed in [134] and systematically studied in [60] and

[137]. Similar Gaussian-type concentration inequalities (as ones in Theorem 4.1.1) in

this notion of Ricci curvature was proven in [60]. Erbar, Maas, and Tetali [61] recently

calculated the Ricci curvature lower bound of some classical random walks, e.g., the

Bernoulli-Laplace model and the random transposition model of permutations.

In this chapter, we adopt Ollivier’s notion of coarse Ricci curvature as it does not

require the reversibility of the random walk on graphs. The chapter is organized as

follows. In Section 4.2, we will give the history and definitions of Ricci curvature.

The proof of Theorem 4.1.1 will be given in Section 4.3. In last section, we will

give applications of Theorem 4.1.1 in four classical models of random configurations,

including the Erdős-Rényi random graph model G(n, p) and G(n,M), the random

d-out(in)-regular directed graphs, and the space of random permutations.

123



4.2 Ricci Curvatures of graphs

In Riemannian geometry, spaces with positive Ricci curvature enjoy very nice prop-

erties, some of them with probabilistic interpretations. Many interesting properties

are found on manifolds with non-negative Ricci curvature or on manifolds with Ricci

curvature bounded below. The definition of the Ricci curvature on metric spaces

first came from the Bakry and Emery notation [12] who defined the “lower Ricci

curvature bound" through the heat semigroup (Pt)t≥0 on a metric measure space. Ol-

livier [143] defined the coarse Ricci curvature of metric spaces in terms of how much

small balls are closer (in Wasserstein transportation distance) then their centers are.

This notion of coarse Ricci curvature on discrete spaces was also made explicit in the

Ph.D. thesis of Sammer [155]. Under the assumption of positive curvature in a metric

space, Gaussian-like or Poisson-like concentration inequalities can be obtained. Such

concentration inequalities have been investigated in [115] for time-continuous Markov

jump processes and in [143, 116] in metric spaces.

Graphs and manifolds share some similar properties through Laplace operators,

heat kernels and random walks, etc. A series of work in this area were done by Chung,

Yau and their coauthors [32, 34, 35, 36, 33, 31, 40, 29, 39, 37, 41]. The first definition

of Ricci curvature on graphs was introduced by Chung and Yau in [35]. For a more

general definition of Ricci curvature, Lin and Yau [130] gave a generalization of lower

Ricci curvature bound in the framework of graphs. Lin, Lu, and Yau [129] defined a

new kind of Ricci curvature on graphs, which is based on Ollivier’s work [143].

In this chapter, we will use the same notation as in [129]. A probability distribu-

tion (over the vertex set V (G)) is a mapping m ∶ V → [0,1] satisfying ∑x∈V m(x) = 1.

Suppose two probability distributions m1 and m2 have finite support. A coupling

between m1 and m2 is a mapping A ∶ V × V → [0,1] with finite support so that

∑
y∈V

A(x, y) =m1(x) and ∑
x∈V

A(x, y) =m2(y).
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Let d(x, y) be the graph distance between two vertices x and y. The transportation

distance between two probability distributions m1 and m2 is defined as follows:

W (m1,m2) = inf
A
∑
x,y∈V

A(x, y)d(x, y).

where the infimum is taken over all coupling A between m1 and m2. By the duality

theorem of a linear optimization problem, the transportation distance can also be

written as follows:

W (m1,m2) = sup
f
∑
x∈V

f(x) (m1(x) −m2(x))

where the supremum is taken over all 1-Lipschitz functions f .

A random walk m on G = (V,E) is defined as a family of probability measures

{mv(⋅)}v∈V such that mv(u) = 0 for all {v, u} ∉ E. It follows that mv(u) ≥ 0 for all

v, u ∈ V and ∑u∈N(v)mv(u) = 1. The Ricci cuvature κ of G can then be defined as

follows:

Definition 4.2.1. Given G = (V,E), a random walk m = {mv(⋅)}v∈V on G and two

vertices x, y ∈ V ,

κ(x, y) = 1 − W (mx,my)
d(x, y) .

Remark 4.2.1. We say a graph G equipped with a random walk m has Ricci curvature

at least κ0 if κ(x, y) ≥ κ0 for all x, y ∈ V .

For 0 ≤ α < 1, the α-lazy random walk mα
x (for any vertex x), is defined as

mα
x(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α if v = x,

(1 − α)/dx if v ∈ Γ(x),

0 otherwise.

In [129], Lin, Lu and Yao defined the Ricci curvature of graphs based on the α-lazy

random walk as α goes to 1. More precisely, for any x, y ∈ V , they defined the
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α-Ricci-curvature κα(x, y) to be

κα(x, y) = 1 −
W (mα

x ,m
α
y )

d(x, y)

and the Ricci curvaure κLLY of G to be

κLLY(x, y) = lim
α→1

κα(x, y)
(1 − α) .

They showed [129] that κα is concave in α ∈ [0,1] for any two vertices x, y. Moreover,

κα(x, y) ≤ (1 − α) 2
d(x, y) .

for any α ∈ [0,1] and any two vertices x and y.

In the context of graphs, the following lemma shows that it is enough to consider

only κ(x, y) for xy ∈ E(G).

Lemma 4.2.1. [143, 129] If κ(x, y) ≥ κ0 for any edge xy ∈ E(G), then κ(x, y) ≥ κ0

for any pair of vertices (x, y).

4.3 Proof of Theorem 4.1.1

We first define an averaging operator associated to the random walk.

Definition 4.3.1 (Discrete averaging operator). Given a function f ∶X → R, let the

averaging operator M be defined as

Mf(x) ∶= ∑
y∈V

f(y) ⋅mx(y).

The following proposition shows a Lipschitz contraction property in the metric

measure space. We include its proof here for the sake of completeness.

Proposition 4.3.1 (Lipschitz contraction). [143, 53] Let (G,d,m) be a random walk

on a simple graph G. Let κ ∈ R. Then the Ricci curvature of G is at least κ, if and only

if, for every k-Lipschitz function f ∶X → R, the function Mf is k(1 − κ)-Lipschitz.
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Proof. Suppose that the Ricci curvature of G is at least κ. For x, y ∈ V , let A ∶

V × V → [0,1] be the optimal coupling measure of mx and my.

Mf(y) −Mf(x) = ∑
u∈V

f(u)my(u) − ∑
u∈V

f(u)mx(u)

= ∑
u∈V

f(u) ∑
v∈V

A(v, u) − ∑
u∈V

f(u) ∑
v∈V

A(u, v)

= ∑
u,v

(f(v) − f(u))A(u, v)

≤ k∑
u,v

d(u, v)A(u, v)

= kW (mx,my)

= k(1 − κ(x, y))d(x, y)

Conversely, suppose that whenever f is 1-Lipschitz, Mf is (1−κ)-Lipschitz. Then by

the duality theorem for the transportation distance, we have that for all x, y ∈ V (G),

W (mx,my) = sup
f 1-Lipschitz

∑
z∈V

f(z) (mx(z) −my(z))

= sup
f 1-Lipschitz

Mf(x) −Mf(y)

≤ (1 − κ)d(x, y).

It follows that

κ(x, y) = 1 − W (mx,my)
d(x, y) ≥ κ.

Remark 4.3.1. Note that for any constant c,

Var(f) = E[(f − c)2] − (E[f] − c)2
. (4.7)

Thus for any x ∈ V and an α-Lipschitz function f ∶ Supp mx → R,

Varmxf ≤ Emx[(f − f(x))2]

≤ ∑
y∈Supp mx

(f(y) − f(x))2mx(y)

≤ α2.
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Lemma 4.3.1. [129, 143] Let G be a finite graph with Ricci curvature at least κ > 0.

Then

κ ≤ 2
diam(G) .

Moreover, if mx(x) = α for all x ∈ V (G), then κ ≤ (1 − α) 2
diam(G)

.

The following lemma is similar to Lemma 38 in [143].

Lemma 4.3.2. Let φ ∶ V (G) → R be an α-Lipschitz function with α ≤ 1. Then for

x ∈ V (G), we have

(Meλφ) (x) ≤ eλMφ(x)+ 1
2λ

2e2λα2
.

Proof. For any smooth function g and any real-valued random variable Y , a Taylor

expansion with Lagrange remainder gives

Eg(Y ) ≤ g(EY ) + 1
2(sup g′′)VarY.

Applying this with g(Y ) = eλY , we get

(Meλφ)(x) = Emxeλφ ≤ eλMφ(x) + λ
2

2 ( sup
Supp mx

eλφ)Varmxφ.

Note that diam Supp mx ≤ 2 and φ is α-Lipschitz, it follows that

sup
Supp mx

φ ≤ Emxφ + α ⋅ (diam Supp mx) ≤ Emxφ + 2α.

Moreover, by Remark 4.3.1, Varmxφ ≤ α2. Hence we have that

(Meλφ) (x) ≤ eλMφ(x) + λ
2

2 (α2)eλMφ(x)+2λα

≤ eλMφ(x) (1 + λ
2

2 α
2e2λα)

≤ exp(λMφ(x) + 1
2λ

2α2e2λα) .
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Proof of Theorem 4.1.1. Note that since f is 1-Lipschitz, it follows that ∣f(x) − f(y)∣ ≤

diam(G) for any x, y ∈ V (G). Hence if t > 2
κ , then

Pr (∣f −Eν[f]∣ ≥ t) ≤ Pr(∣f −Eν[f]∣ >
2
κ
) ≤ Pr(diam(G) > 2

κ
) = 0,

in which case we are done. So from now on, assume t ≤ 2/κ.

Apply Lemma 4.3.2 iteratively and use Proposition 4.3.1, we obtain that for any

i ≥ 1,

M i(eλf) ≤ eλM if ⋅
i−1
∏
j=0

exp(1
2λ

2(1 − κ)2je2λ)

≤ exp(λM if + 1
2λ

2e2λ
i−1
∑
j=0

(1 − κ)2j) .

Meanwhile, (M ieλf)(x) tends to Eνeλf . Hence

Eνe
λf ≤ lim

i→∞
exp(λM if + 1

2λ
2e2λ

i−1
∑
j=0

(1 − κ)2j)

≤ exp(λEνf +
λ2e2λ

2κ(2 − κ)) .

Let λ0 be the root of the equation x ⋅ e2x = 2(2 − κ) and set λ = tκλ0
2 . Note that

since t ≤ 2
κ , we have λ ≤ λ0. Now, we have

Pr (f −Eνf ≥ t) ≤ Pr (eλf ≥ etλ+λEνf)

≤ Eνeλf ⋅ e−tλ−λEνf

≤ exp(−tλ + λ2e2λ

2κ(2 − κ))

≤ exp(−tλ + λtλ0e2λ

4(2 − κ)) (4.8)

≤ exp(−tλ + λtλ0e2λ0

4(2 − κ) )

= exp(−1
2tλ)

≤ exp(−t
2κλ0

4 )
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where λ0 is the solution to x ⋅ e2x = 2(2 − κ). If G is the complete graph, then

∣f −Eν(f)∣ ≤ 1 holds for all vertices. Inequality 4.3 holds. If G is not the complete

graph, then we must have κ ≤ 1 (otherwise, contradiction to diam(G) ≤ 2
κ). Thus

λ0 ≤ 0.60108..., which is the root of x ⋅ e2x = 2. We have λ0
4 > 1

7 . Hence we obtain that

Pr (f −Eνf ≥ t) ≤ exp(−t
2κ

7 ) .

If κ → 0 as ∣V (G)∣ → ∞ (which is true in all the examples in Section 4.4), then we

have λ0 → 0.80290... which is the root of x ⋅ e2x = 4. We have λ0
4 > 1

5 . We have

Pr (f −Eνf ≥ t) ≤ exp(−t
2κ

5 ) .

Furthermore, if κ → 0 and tκ → 0 as ∣V (G)∣ → ∞, then continuing from inequality

(4.8), we have that e2λ → 1 and (2 − κ) → 2 (as ∣V (G)∣ → ∞). By setting λ0 = 4, we

have

Pr (f −Eνf ≥ t) ≤ exp(−tλ + λtλ0e2λ

4(2 − κ))

≤ exp(−(1
2 + o(1)) tλ)

≤ exp(−(1
4 + o(1)) t

2κλ0)

≤ exp ((1 + o(1))t2κ) .

The lower tail can be obtained from the upper tail by changing f to −f since −f is

also 1-Lipschitz.

4.4 Applications to random models of configurations

In order to apply Theorem 4.1.1 to a finite probability space (Ω, µ), we will construct

a graph H with the vertex set Ω such that µ is the invariant distribution over a proper

random walk m on H. We call the pair (H,m) a geometrization of (Ω, µ). In this

section, we will give geometrization of four popular random model of configuarations.
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4.4.1 Vertex-Lipschitz functions on G(n, p)

Let H be the graph such that V (H) is the set of all labeled graphs with n vertices.

Moreover, two graphs G1,G2 ∈ V (H) are adjacent in H if and only if there exists

some v such that G1 − v = G2 − v. Now define a random walk m on H as follows: Let

G ∈ V (H). Define

mG(G′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
n ∑

v∈V (G)

G−v=G′
−v

pdG′(v)(1 − p)n−1−dG′(v) if G′ ∈ NH(G),

0 otherwise.

Proposition 4.4.1. Let ν be the unique invariant distribution of the random walk

defined above. A random graph G picked according to ν, satisfies that ν(G) = pe(G)(1−

p)(n2)−e(G).

Proof. Observe that H is not bipartite thus the random walk is ergodic. It suffices

to show that the distribution ν′(G) = pe(G)(1 − p)(n2)−e(G) for every G is an invariant

distribution for the random walk. Indeed, for every fixed G ∈ V (H),

∑
G′∈H

ν′(G′)mG′(G)

= ∑
v∈V

∑
G′−v=G−v

ν′(G′) 1
n
pdG(v)(1 − p)n−1−dG(v)

= ∑
v∈V

1
n
pdG(v)(1 − p)n−1−dG(v) ∑

G′−v=G−v

ν′(G′)

= ∑
v∈V

1
n
pdG(v)(1 − p)n−1−dG(v)⋅

(pe(G)−dG(v)(1 − p)(n−1
2 )−(e(G)−dG(v))

n−1
∑
i=0

(n − 1
i

)pi(1 − p)n−1−i)

= 1
n
pe(G)(1 − p)(n2)−e(G) ∑

v∈V

n−1
∑
i=0

(n − 1
i

)pi(1 − p)n−1−i

=pe(G)(1 − p)(n2)−e(G)

=ν′(G).
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Lemma 4.4.1. Let H and the random walk m be defined as above. Then

κ(G1,G2) ≥
1
n

for all G1,G2 ∈ V (H).

Proof. Again, by Lemma 4.2.1, we can assume that G1,G2 are neighbors in H. It

then follows from definition that

κ(G1,G2) = 1 −W (mG1 ,mG2).

Assume that v is the unique vertex such that G1 − v = G2 − v. When G1 and G2

differ by an edge, it is possible that there are two vertices v satisfying G1−v = G2−v.

We remark that the analysis is similar. Consider the support of mG1 . For each

G′

1 ∈ Γ(G1)/{G2}, we will match G′

1 with a distinct graph φ(G′

1) ∈ N(G2). There are

two possible cases:

Case 1: G1 − v = G′

1 − v. Then it follows that G′

1 − v = G2 − v and we let φ(G′

1) = G′

1.

Case 2: G1 − u = G′

1 − u for some u ≠ v. In this case, we claim that for each G′

1 such

that G1 −u = G′

1 −u, there exists a unique G′

2 = φ(G′

1) such that G′

2 −u = G2 −u

and G′

1 − v = G′

2 − v. Indeed, let G′

2 be obtained from G2 by replacing the

neighbors of u in G2 by the neighbors of u in G′

1. It’s not hard to see that

G′

2 − u = G2 − u and G′

1 − v = G′

2 − v.

Let us now define a coupling A (not necessarily optimal) between mG1 and mG2 .

Define A ∶ V (H) × V (H) → R as follows:

A(G′

1,G
′

2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n ∑
u≠v

pdG1(u)(1 − p)n−1−dG1(u) if G′

2 = G2,G′

1 = G1,

mG1(G′

1) if G′

1 ∈ Γ(G1)/{G2} and G′

2 = φ(G′

1),

0 otherwise.
(4.9)
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It follows that

W (mG1 ,mG2) ≤ ∑
G′

1,G
′
2

A(G′

1,G
′

2)d(G′

1,G
′

2)

≤ 1
n
∑
u≠v

∑
G′−u=G1−u

1
n
pdG′(u)(1 − p)n−1−dG′(u)

≤ 1
n
∑
u≠v

n−1
∑
i=0

(n − 1
i

)pi(1 − p)n−1−i

≤ n − 1
n

.

Thus

κ(G1,G2) ≥ 1 −W (mG1 ,mG2) ≥
1
n
.

It follows by Theorem 4.1.1 that for any vertex-Lipschitz function f on graphs,

we have that

Pr (∣f −E[f]∣ ≥ t) ≤ 2 exp(− t
2

5n) ,

which in this context has the same strength as the Azuma67-Hoeffding inequality on

vertex-exposure martingale.

4.4.2 Edge-Lipschitz functions on G(n, M)

Let G ∼ G(n,M) be a random graph with n vertices and M edges. Let H be the

graph such that V (H) is the set of all labeled graphs with n vertices and M edges.

Moreover, two graphs G1,G2 ∈ V (H) are adjacent in H if and only if there exist

two distinct vertex pairs e1, e2 such that e1 ∈ E(G1)/E(G2), e2 ∈ E(G2)/E(G1) and

G1 − e1 = G2 − e2. In other words, G1,G2 are adjacent in H if one can be obtained

from the other by swapping an edge with a non-edge. It is easy to see that H is a

connected regular graph. Moreover, for every G ∈ V (H), dH(G) =M ((n2) −M). The

following proposition is clear from the definition of H.
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Proposition 4.4.2. If G1,G2 are adjacent in H, then there exists a unique pair

of distinct vertex pairs e1, e2 such that e1 ∈ E(G1)/E(G2), e2 ∈ E(G2)/E(G1) and

G1 − e1 = G2 − e2.

Now define a random walk m on H as follows: Let G ∈ V (H). Define

mG(G′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
M((

n
2)−M)+1 if G′ ∈ NH(G),

0 otherwise.

It’s easy to see that for a fixed G, ∑G′mG(G′) = 1.

Proposition 4.4.3. Let ν be the unique invariant distribution of the random walk

defined above. A random graph G picked according to ν, is equally likely to be one of

the ((
n
2)

M
) graphs that have M edges.

Proof. Observe that H is not bipartite thus the random walk is ergodic. It suffices

to show that ν′(G) = ((
n
2)

M
)
−1

for every G is an invariant distribution for the random

walk. Indeed, for every fixed G ∈ V (H),

∑
G′∈H

ν′(G′)mG′(G) = ((
n
2)
M

)
−1

∑
G′∈N(G)

mG′(G)

= ((
n
2)
M

)
−1

∑
G′∈N(G)

mG(G′)

= ((
n
2)
M

)
−1

= ν′(G).

Since ν is the unique invariant distribution, it follows then that ν = ν′.

Lemma 4.4.2. Let H and the random walk m be defined as above. Then

κ(G1,G2) ≥
(n2)

M ((n2) −M) + 1

for all G1,G2 ∈H.
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Proof. By Lemma 4.2.1, we can assume that G1,G2 are neighbors in H. It then

follows from definition that

κ(G1,G2) = 1 −W (mG1 ,mG2).

Suppose e1, e2 are the unique vertex pairs with e1 ∈ E(G1), e2 ∉ E(G1) such that

G2 = G1 − e1 + e2. Consider the support of mG1 , i.e., N(G1). For each G′

1 ∈ N(G1),

we will match G′

1 with a distinct graph φ(G′

1) ∈ N(G2). First, let φ(G1) = G1 and

φ(G2) = G2. For other neighbors G′

1 ∈ N(G1), there are three types:

Type 1: G1 − e1 = G′

1 − e3 for some e3 ≠ e2. Then it follows that G′

1 − e3 = G2 − e2 and

we let φ(G′

1) = G′

1.

Type 2: G1 − e3 = G′

1 − e2 for some e3 ≠ e1. Then it follows that G′

1 − e1 = G2 − e3 and

we let φ(G′

1) = G′

1.

Type 3: G1 − e3 = G′

1 − e4 for some e3, e4 ∉ {e1, e2}. In this case, we claim that

there exists a unique G′

2 = φ(G′

1) ∈ N(G2) such that G′

1 − e1 = G′

2 − e2. Indeed,

G′

2 = G2 − e3 + e4 will satisfy the aforementioned property.

Let us now define a coupling A (not necessarily optimal) between mG1 and mG2 .

Define A ∶ V (H) × V (H) → R as follows:

A(G′

1,G
′

2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
M((

n
2)−M)+1 if G′

1 ∈ N(G1) and G′

2 = φ(G′

1),

0 otherwise.
(4.10)

Let us verify thatA is a coupling ofmG1 andmG2 . Indeed, for each fixedG′

1, ifG′

1 =

G1, then ∑G′
2
A(G′

1,G
′

2) = A(G1,G1) = mG1(G1); if G′

1 ≠ G1, then ∑G′
2
A(G′

1,G
′

2) =

A(G′

1, φ(G′

1)) =mG1(G′

1). Similarly, ∑G′
1
A(G′

1,G
′

2) =mG2(G′

2). Now by definition,

W (mG1 ,mG2) ≤ ∑
G′

1,G
′
2

A(G′

1,G
′

2)d(G′

1,G
′

2)

≤ ∑
G′

1∈N(G1)

A(G′

1, φ(G′

1))d(G′

1, φ(G′

1))
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= ∑
G′

1∈N(G1)
G′

1is Type 3

A(G′

1, φ(G′

1))

≤ ((M − 1) ((n2) −M − 1)) ⋅ 1
M ((n2) −M) + 1

.

It follows that

κ(G1,G2) = 1 −W (mG1 ,mG2)

≥
(n2)

M ((n2) −M) + 1
.

Let G(n,M) be an Erdős-Rényi random graph with M edges. Let F be a fixed

graph and XF be the number of copies of F in the random graph G(n,M). Denote

the number of vertices and edges of F by v(F ) and e(F ) respectively. Let p =M/(n2)

and Aut(F ) denote the set of automorphisms of F . Then

E[XF ] = (1 + o(1)) v(F )!
∣Aut(F )∣(

n

v(F ))p
e(F ) = Θ (nv(F )pe(F )) .

For a series of results on the upper tail of XF using different techniques, we refer

the readers to the survey [112] and the paper [111, 27, 50, 51, 1]. For G(n,M) in

particular, Janson, Oleszkiewicz, Ruciński [111] showed the following theorem:

Theorem 4.4.1. [111] For every graph F and for every t > 1, there exist constants

c(t, F ) > 0 such that for all n ≥ v(F ) and e(F ) ≤M ≤ (n2), with p:= M/(n2),

Pr (XF ≥ tE[XF ]) ≤ exp (−c(t, F )M∗

F (n, p)),

where M∗

F (n, p) ≤ n2p = O(M),M∗

Ck
(n, p) = Θ(n2p2) and M∗

Kk
(n, p) = Θ(n2pk−1).

Let us now apply Theorem 4.1.1 to obtain the concentration results from the

perspective of the Ricci curvature. Recall that H is defined as the graph such that

V (H) is the set of all labeled graphs with n vertices and M edges. Moreover, two
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graphs G1,G2 ∈ V (H) are adjacent in H if and only if there exist two distinct vertex

pairs e1, e2 such that e1 ∈ E(G1)/E(G2), e2 ∈ E(G2)/E(G1) such that G1−e1 = G2−e2.

Again let XF be the random variable denoting the number of copies of F in

G(n,M). For ease of reference, let k = v(F ). Observe that XF is ( n
k−2)-Lipschitz

on H, i.e., if G1,G2 are adjacent in H, then ∣XF (G1) −XF (G2)∣ ≤ ( n
k−2). Thus by

Theorem 4.1.1,

Pr
⎛
⎝
XF

( n
k−2)

> E[XF ]
( n
k−2)

+ t

( n
k−2)

⎞
⎠
≤ exp

⎛
⎝
− t2κ

5( n
k−2)

2
⎞
⎠
.

It follows that

Pr (XF > E[XF ] + t) ≤ exp
⎛
⎝
− t2κ

5( n
k−2)

2
⎞
⎠
.

Let p =M/(n2). We then obtain that

Pr (XF ≥ tE[XF ]) ≤ exp
⎛
⎝
−((t − 1)E[XF ])2

κ

5( n
k−2)

2
⎞
⎠
≤ exp (−Ck(t − 1)2n2p2e(F )−1) .

(4.11)

Note that when p = Θ(1), i.e., M = Θ ((n2)), the concentration inequalities obtained

from Theorem 4.1.1 has the same asymptotic exponent as Theorem 4.4.1. For other

ranges of p with n2p→∞, the asymptotic exponent in (4.11) is worse than the bound

in Theorem 4.4.1. Nonetheless, let us compare the bounds obtained from the Ricci

curvature method with those obtained from other concentration inequalities. Janson

and Ruciński [112] surveyed the existing techniques on estimating the exponents for

upper tails in the small subgraphs problem in G(n, p) (ignoring logarithmic factors).

Please see Figure 4.1 for the summary.

Although we are mainly dealing with G(n,M) in this section, it is well known

that G(n,M) and G(n, p) with p =M/(n2) behaves similarly when n2p →∞. Apply-

ing the inequalities in (4.11) to K3,K4,C4 respectively, we have that the exponents

(ignoring constant) obtained from the Ricci curvature method are n2p5, n2p11 and

n2p7 respectively. In this context, the concentration we obtained from Theorem 4.1.1
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Figure 4.1: Exponents for upper tails in the small subgraphs problem [112]

has the same strength as Talagrand inequality and slightly stronger than Azuma’s

inequality.

4.4.3 Edge-Lipschitz functions on random hypergraphs

Let H ∼ Hk(n,M) be a random k-uniform hypergraph with n vertices and M edges.

Let H be a graph such that V (H) is the set of all labeled k-uniform hypergraphs with

n vertices and M edges. Moreover, two hypergraphs H1,H2 ∈ V (H) are adjacent in

H if and only if there exist two distinct k-sets h1, h2 such that h1 ∈ E(H1)/E(H2),

h2 ∈ E(H2)/E(H1) and H1−h1 = H2−h2. In other words, H1,H2 are adjacent in H if

one can be obtained from the other by swapping a hyperedge with a non-hyperedge.

It is easy to see that H is a connected regular graph. Moreover, for every H ∈ V (H),

dH(H) =M ((n
k
) −M). Now define a random walk m on H as follows: Let H ∈ V (H).

Define

mH(H′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
M((

n
k
)−M)+1 if H′ ∈ Γ(H),

0 otherwise.
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By the same logic in Section 4.4.2, we can obtain a lower bound for the Ricci curvature

of H, i.e., for all H1,H2 ∈ V (H),

κ(H1,H2) ≥
(n
k
)

M ((n
k
) −M) + 1

.

Similar to before, we can also apply Theorem 4.1.1 to obtain concentration results

for the number of copies of fixed sub-hypergraphs in a uniformly random hypergraph

on n vertices and M edges. The idea is similar to Section 4.4.2 and we leave the

details to the readers.

4.4.4 Vertex-Lipschitz functions on random d-out(in)-regular graphs

Given a directed graph G and a vertex v, we use δ+(v) and δ−(v) to denote the

outdegree and indegree, respectively, of a vertex v. A d-out-regular graph G is a

directed graph in which δ+(v) = d for every v ∈ V (G). Similarly, a d-in-regular graph

G is a directed graph in which δ−(v) = d for every v ∈ V (G). Moreover, let Γ+(v) =

{u ∈ V (G) ∶ vu ∈ E(G)}, Γ−(v) = {u ∈ V (G) ∶ uv ∈ E(G)}, N+(v) = Γ+(v) ∪ {v} and

N−(v) = Γ−(v) ∪ {v}.

Let H be a graph such that V (H) is the set of all labeled d-out-regular graphs on

n vertices. Two graphs G1,G2 ∈ V (H) are adjacent in H if and only if there exists

some vertex v ∈ V (G1) = V (G2) such that one can be obtained from the other by

changing Γ+(v). It is not hard to see that H is a connected graph with diam(H) ≤ n.

Moreover, it is also clear that if G1,G2 are adjacent in H, there is a unique vertex v

such that one can be obtained from the other by changing Γ+(v).

Now define a random walk m on H as follows: let G ∈ V (H) and define

mG(G′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
n((n−1

d
)−1)+1 if G′ ∈ N+(G),

0 otherwise.

It’s easy to see that for a fixed G, ∑G′mG(G′) = 1.
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Proposition 4.4.4. Let ν be the unique invariant distribution of the random walk

defined above. A random graph G picked according to ν, is equally likely to be one of

the d-out-regular graphs on n vertices.

Proof. Observe that H is not bipartite thus the random walk is ergodic. There are

(n−1
d
)n many d-out-regular graphs in total. Hence, it suffices to show that ν′(G) =

(n−1
d
)−n for every G is an invariant distribution for the random walk. Indeed, for every

fixed G ∈ V (H),

∑
G′∈H

ν′(G′)mG′(G) = (n − 1
d

)
−n

∑
G′∈H

mG′(G)

= (n − 1
d

)
−n

∑
G′∈H

mG(G′)

= (n − 1
d

)
−n

= ν′(G).

Since ν is the unique invariant distribution, it follows then that ν = ν′.

Lemma 4.4.3. Let H and the random walk m be defined as above. Then

κ(G1,G2) ≥
1
n

for all G1,G2 ∈ V (H).

Proof. Again, by Lemma 4.2.1, we can assume that G1,G2 are neighbors in H. It

then follows from definition that

κ(G1,G2) = 1 −W (mG1 ,mG2).

Suppose v is the unique vertex such that G2 can be obtained from G1 by changing

Γ+(v). Consider the support of mG1 . For each G′

1 ∈ N(G1), we will match G′

1 with

a distinct graph φ(G′

1) ∈ N(G2). Again, let φ(G1) = G1 and φ(G2) = G2. For other

neighbors G′

1 of G1, there are two possible cases:
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Case 1: G1 − v = G′

1 − v. Then it follows that G′

1 − v = G2 − v and we let φ(G′

1) = G′

1.

Case 2: G1 − u = G′

1 − u for some u ≠ v. In this case, we claim that for each G′

1 such

that G1 −u = G′

1 −u, there exists a unique G′

2 = φ(G′

1) such that G′

2 −u = G2 −u

and G′

1 − v = G′

2 − v. Indeed, let G′

2 be obtained from G2 by replacing the out-

neighbors of u in G2 by the out-neighbors of u in G′

1. It’s not hard to see that

G′

2 − u = G2 − u and G′

1 − v = G′

2 − v.

Let us now define a coupling A (not necessarily optimal) between mG1 and mG2 .

Define A ∶ V (H) × V (H) → R as follows:

A(G′

1,G
′

2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
n((n−1

d
)−1)+1 if G′

1 ∈ N(G1) and G′

2 = φ(G′

1),

0 otherwise.
(4.12)

It is not hard to verify that A is a coupling of mG1 and mG2 . Now by definition,

W (mG1 ,mG2) ≤ ∑
G′

1,G
′
2

A(G′

1,G
′

2)d(G′

1,G
′

2)

≤ ∑
u≠v

∑
G′

1∈N(G1)
G′

1−u=G1−u

A(G′

1, φ(G′

1))d(G′

1, φ(G′

1))

≤ (n − 1) ((n − 1
d

) − 1) 1
n ((n−1

d
) − 1) + 1

It follows that

κ(G1,G2) = 1 −W (mG1 ,mG2) ≥
(n−1
d
)

n ((n−1
d
) − 1) + 1

≥ 1
n
.

This completes the proof of the lemma.

Let G be a uniformly random d-out-regular graph. A directed triangle is a cycle

of length 3 with vertices u, v,w such that uv, vw and wu are all directed edges. Let

Xn,d ∶=X(G) be the random variable denoting the number of directed triangle in G.

It is not hard to see that

E[Xn,d] ≈ 2(n3)( d

n − 1)
3
.
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We will now use Theorem 4.1.1 to derive the concentration behavior of Xn,d. Note

that Xn,d is (d2)-Lipschitz. Hence by Theorem 4.1.1, we have that

Pr(∣Xn,d

d2 − E[Xn,d]
d2 ∣ > t

d2) ≤ 2 exp(− t
2κ

5d4).

It follows that

Pr (∣Xn,d −E[Xn,d]∣ > t) ≤ 2 exp(− t
2κ

5d4) ≤ 2 exp(− t2

5nd4).

4.4.5 Lipschitz functions on random linear permutations

We will denote a linear permutation σ by σ = [a1a2 . . . an] such that ai ∈ [n] for all i

and σ(i) = ai. A linear permutation on [n] can be viewed as a sequence of n distinct

numbers from [n]. Thus, WLOG, {a1, a2, . . . , an} = [n]. Given two permutations

σ1, σ2 where σ1 = [a1a2 . . . an], we say σ1 is (i, j)-alike to σ2 if σ2 can be obtained

from σ1 by moving the number i to the position after the number j in σ1; moreover,

σ1 is (i,0)-alike to σ2 if σ2 can be obtained from σ1 by moving the number i to the

first position of σ1. For example, σ1 = [12345] is (2,4)-alike to σ2 = [13425] and is

(4,0)-alike to σ3 = [41235]. Two distinct linear permutations σ1, σ2 are insertion-alike

if one is (i, j)-alike to the other for some i ≠ j.

Let H be the graph such that V (H) is the set of all linear permutations of [n] and

two linear permutation σ1, σ2 are adjacent in H if and only if they are insertion-alike.

Clearly H is a connected graph with diameter at most n. Moreover, every vertex

(which is a linear permutation) in H has (n − 1)2 neighbors in H.

Now define a random walk mα on H as follows: let σ ∈ V (H) and define

mσ(σ′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
(n−1)2+1 if σ = σ′ or σ is insertion-alike to σ′,

0 otherwise.

It’s not hard to see that for a fixed σ, ∑σ′mσ(σ′) = 1. Moreover, mσ(σ′) = mσ′(σ)

for every pair of σ,σ′.
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Proposition 4.4.5. Let ν be the unique invariant distribution of the random walk

defined above. A random permutations σ picked according to ν, is equally likely to be

one of the n! permutations.

Proof. Observe that H is not bipartite thus the random walk is ergodic. There are

n! permutations in total. Hence, it suffices to show that ν′(σ) = (n!)−1 for every σ is

an invariant distribution for the random walk.

∑
σ′∈H

ν′(σ′)mσ′(σ) =
1
n! ∑

σ′∈V (H)

mσ′(σ)

= 1
n! ∑

σ′∈V (H)

mσ(σ′)

= 1
n!

= ν′(σ).

Since ν is the unique invariant distribution, it follows then that ν = ν′.

Lemma 4.4.4. Let H and the random walk m be defined as above. If σ1, σ2 ∈ V (H)

are neighbors in H, then κ(σ1, σ2) ≥ 1
n .

Proof. WLOG, suppose that σ1 is (i, j)-alike to σ2 (with σ2 ≠ σ1). Consider the

support of mσ1 . For each σ′1 ∈ N(σ1), we will match σ′1 with a distinct permutation

φ(σ′1) ∈ N(σ2). First let φ(σ1) = σ1 and φ(σ2) = σ2. For other neighbors σ′1 of σ1,

there are two cases:

Case 1: σ1 is (i, k)-alike to σ′1 where k ≠ j. Then it follows that σ′1 is also (i, j)-alike

to σ2 and we let φ(σ′1) = σ′1.

Case 2: σ1 is (i′, j′)-alike to σ′1 where i′ ≠ i and σ1 is not (i, k)-alike to σ′1 for any

k. In this case, let σ′2 be the permutation such that σ2 is (i′, j′)-alike to σ′2. It

follows easily that σ′1 is also (i, j)-alike to σ′2. We then define φ(σ′1) = σ′2.

143



Let us now define a coupling A (not necessarily optimal) between mσ1 and mσ2 .

Define A ∶ V (H) × V (H) → R as follows:

A(σ′1, σ′2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
(n−1)2+1 if σ′1 ∈ N(σ1) and σ′2 = φ(σ′1),

0 otherwise.
(4.13)

It is not hard to verify that A is a coupling of mσ1 and mσ2 . Now by definition,

W (mσ1 ,mσ2) ≤ ∑
σ′1,σ

′
2

A(σ′1, σ′2)d(σ′1, σ′2)

≤ ∑
σ′∈N(σ1)

A(σ′1, φ(σ′1))d(σ′1, φ(σ′1))

≤ 1 − n

(n − 1)2 + 1 .

It follows that

κ(σ1, σ2) = 1 −W (mσ1 ,mσ2) ≥
n

(n − 1)2 + 1 ≥ 1
n
.

This completes the proof of the lemma.

Now we give an example of concentration results on the space of random linear

permutations. In particular, we discuss the number of occurrences of certain patterns

in random permutations. Denote the set of length n linear permutations by Sn. Given

a permutation pattern τ ∈ Sk, we say that a permutation π = [π1 . . . πn] ∈ Sn contains

the pattern τ if there exists 1 ≤ i1 < i2 < . . . < ik ≤ n such that the πis < πit if and

only if τs < τt for every pair s, t. Each such subsequence in π is called an occurrence

of the pattern τ . Let τ be a random permutation in Sn and let the random variable

Xτ,n ∶= Xτ(π) be the number of copies of τ in π. We consider asymptotics as n →∞

for (one or several) fixed τ .

The (joint) distribution of the Xτ,n has been investigated in a series of paper [19,

18, 110]. In particular, Bona [19] showed that for every τ ∈ Sk, as n→∞,

Xτ,n −E[Xτ,n]
nk−

1
2

→ N(0, Zτ) (4.14)
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for some Zτ > 0. Janson, Nakamura and Zeilberger [110] showed that the above holds

jointly for any finite family of patterns τ .

Note that as a consequence of the convergence in (4.14), we obtain the following

concentration inequality:

Pr (∣Xτ,n −E[Xτ,n]∣ > t) ≤ 2 exp(− t2

2n2k−1Zτ
) (4.15)

which is sharp up to a polynomial factor.

On the other hand, consider the graph H defined at the beginning of this subsec-

tion, where V (H) is the set of all linear permutations of [n]. It is not hard to see

that the function Xτ,n ∶ V (H) → Z is (n−1
k−1)-Lipschitz. It follows by Theorem 4.1.1

that

Pr
⎛
⎝

RRRRRRRRRRR

Xτ,n

(n−1
k−1)

− E[Xτ,n]
(n−1
k−1)

RRRRRRRRRRR
> t

(n−1
k−1)

⎞
⎠
≤ 2 exp

⎛
⎝
− t2κ

5(n−1
k−1)

2
⎞
⎠

≤ 2 exp(− t2

Ckn2k−1)

for some Ck > 0. Hence the concentration result in Theorem 4.1.1 is in fact asymptoti-

cally optimal in the case of counting occurrences of patterns in random permutations.

Remark 4.4.1. Similar Ricci curvature and concentration results can be obtained for

the space of cyclic permutations as well.

Remark 4.4.2. Another possible way to geometrize the space of linear permutations

is the random transposition model (see, e.g., [61]) as follows: let V (H) = Sn and two

permutations σ1, σ2 ∈ V (H) are adjacent in H if σ2 = τ ○σ1 for some transposition τ .

Define a random walk m on H by

mσ(σ′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
n(n−1) if σ and σ′ are adjacent in H,

0 otherwise.

The invariant distribution is the uniform measure on Sn. The Ricci curvature of

this graph is Θ(n−2), as observed by Gozlan et al [87].
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Chapter 5

Maximum spectral radius of outerplanar

3-uniform hypergraphs

5.1 Introduction

A graph G is planar if it can be embedded in the plane, i.e., it can be drawn on

the plane in such a way that edges intersect only at their endpoints. A graph is

outerplanar if it can be embedded in the plane such that all vertices lie on the bound-

ary of its outer face. The study of the spectral radius of (outer)planar graphs has

a long history, dating back to Schwenk and Wilson [158]. Given a graph G, the

spectral radius λ of G is the largest eigenvalue of the adjacency matrix of G. The

spectral radius of planar graphs is useful in geography as a measure of the overall

connectivity of a planar graph [20, 47]. It is therefore of interest to geographers to

find the maximum spectral radius of a planar graph as a theoretical upper bound

for the connectivity of networks. Boots and Royle [20], and independently Cao and

Vince [23] conjectured that the extremal planar graph achieving the maximum spec-

tral radius is P2 + Pn−2. Hong [106] first showed that for an n-vertex plananr graph

G, λ(G) ≤
√

5n − 11. This was subsequently improved in a seiries of papers [23, 107,

89, 108, 59]. Guiduli and Hayes [90] showed in an unpublished preprint that the

Boots-Royle-Cao-Vince conjecture is true for sufficiently large n. For outerplanar

graphs, it is conjectured by Cvetković and Rowlinson [47] that among all outerplanar

graph on n vertices, K1 +Pn−1 attains the maximum spectral radius. Partial progress

has been made by Rowlinson [153], Cao and Vince [23], and Guiduli and Hayes [90].
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Recently, Tait and Tobin [166] proved the Boots-Royle-Cao-Vince conjecture and the

Cvetković-Rowlinson conjecture for large enough n. Lin and Ning [128] showed that

the Cvetković-Rowlinson conjecture holds for all n ≥ 17.

v0

v1 v2 vn−2 vn−1...

x

y

v1 v2 vn−2 vn−1

Figure 5.1: The graph P1 + Pn−1 (left) and P2 + Pn−1 (right).

In this paper, we extend the investigations into the maximum spectral radius of

outerplanar 3-uniform hypergraphs. Given a 3-uniform hypergraph H, the shadow

of H, denoted by ∂(H), is a 2-uniform graph G with V (G) = V (H) and E(G) =

{uv ∶ uv ∈ h for some h ∈ E(H)}. A 3-uniform hypergraph H is called planar if

∂(H) is a triangulation of the sphere. The edge set of such H is the set of faces

of the triangulation. A 3-uniform hypergraph H is called outerplanar if ∂(H) is

outerplanar and all faces except the outer face are triangles. The edge set of H is

the set of triangle faces of its shadow (except the outer face). Note that an n-vertex

planar 3-uniform hypergraph has 2n − 4 hyperedges and 3n − 6 edges in its shadow.

Similarly, an n-vertex outerplanar 3-uniform hypergraph has n − 2 hyperedges and

2n − 3 edges in its shadow.

Now we define the spectral radius of an r-uniform hypergraph. Given an r-uniform

hypergraph H on n vertices, the polynomial form of H is a multi-linear function

PH(x) ∶ Rn → R defined for any vector x = (x1, x2, . . . , xn) ∈ Rn as

PH(x) = r ∑
{i1,i2,...,ir}∈E(G)

xi1xi2⋯xir .

The spectral radius λ of H, introduced by Cooper and Dutle [45], is defined as

λ(H) ∶= max
∣∣x∣∣r=1

PH(x) = max
x∈R

PH(x)
∥x∥rr

, (5.1)
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where ∣∣x∣∣r ∶= (∣x1∣r + ∣x2∣r + ⋯ + ∣xn∣r)1/r. If x ∈ Rn is a vector with ∣∣x∣∣r = 1 and

PH(x) = λ(H), then x is called an eigenvector corresponding to λ(H). Note that

PH(x) can always reach its maximum at some nonnegative vectors. By Lagrange’s

method, we have the eigenequations for λ(H) and an eigenvector x corresponding to

λ(H):

λ(H)xr−1
i = ∑

{i,i2,...,ir}∈E(H)

xi2⋯xir for xi > 0. (5.2)

It was shown by Cooper and Dutle [45] that for any non-empty k-uniform hyper-

graph H, the spectral radius of H is always a positive real number. Moreover, if H is

connected, then a corresponding eigenvector can be chosen to be strictly positive.

Now we can state our main theorems.

Theorem 5.1.1. For large enough n, the n-vertex outerplanar 3-uniform hypergraph

of maximum spectral radius is the unique hypergraph whose shadow is K1 + Pn−1.

The shadow of the extremal hypergraph attaining the maximum spectral radius

among all outerplane 3-uniform hypergraphs is exactly the extremal graph attaining

the maximum spectral radius among all outplanar graphs. This motivates us to make

the following analogous conjecture for planar 3-uniform hypergraphs:

Conjecture 5.1.1. For large enough n, the n-vertex planar 3-uniform hypergraph

graph H of maximum spectral radius is the unique hypergraph whose shadow is P2 +

Pn−1.

5.2 Proof of Theorem 5.1.1

Given a graph G and v ∈ V (G), we use NG(v) to denote the set of neighbors of v, i.e.,

NG(v) = {u ∶ vw ∈ E(G)}. The closed neighborhood of v, denoted by NG[v], is defined

as NG[v] = NG(v) ∪ {v}. Given a 3-uniform hypergraph H and v ∈ V (H), we define

ΓH(v) = {uw ∶ vuw ∈ E(H)}. Moreover, set dG(v) = ∣NG(v)∣ and dH(v) = ∣ΓH(v)∣. In
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all the definitions above, we may ignore the subscript if the underlying (hyper)graph

is clear from the context.

Let H be an n-vertex outerplanar 3-uniform hypergraph of maximum spectral

radius. It’s easy to see that we may assume ∂(H) is connected. Throughout this

section, let G be the shadow of H, i.e., V (G) = V (H) and E(G) = {vu ∶ {v, u} ⊆

h for some h ∈ E(H)}. It follows by definition that G is outerplanar, thus does not

contain a K2,3 minor.

Lemma 5.2.1. λ(H) ≥ 3
√

4(n − 1) (1 − 1
n−1).

Proof. Let G0 be the wheel graph Wn−1 with w being the vertex with degree n − 1,

and {v1,⋯, vn−1} being the vertices of degree 3. Let G′ be the graph obtained from

G0 by deleting the edge v1v2. Let H′ be the 3-uniform hypergraph with E(H′) being

the set of triangle faces of G′. Clearly H′ is outerplanar. Consider the vector x ∈ Rn

with xw = 1/ 3
√

3 and xvi = ( 2
3(n−1))

1/3
. Note that ∥x∥3 = 1. It follows that

λ(H) ≥ λ(H′) ≥ PH′(x) = 3(n − 2) ⋅ 1
3
√

3
⋅ ( 2

3(n − 1))
2/3

= 3
√

4(n − 1) (1 − 1
n − 1) .

Note that since H is connected, there exists an eigenvector corresponding to λ(H)

such that all its entries are strictly positive. In the rest of this section, for convenience

we assume that the eigenvector of the adjacency matrix of H corresponding to λ(H)

is re-normalized so that the maximum eigenvector entry is 1. Let v0 be the vertex

with the maximum eigenvector entry, i.e., xv0 = 1.

Lemma 5.2.2. dG(v0) > n − O(n2/3). Moreover, for any other vertex u ≠ v0, xu =

O(n−1/3).

We first show a weaker version of Lemma 5.2.2. In particular, we show the fol-

lowing claim.
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Claim 5.2.1. dG(v0) > n −O(n5/6).

Proof of Claim 5.2.1. Recall that xv0 = 1 where v0 is the vertex with the maximum

eigenvector entry of the Perron-Frobenius eigenvector of H. Let d = dG(v0). Let

{v1, v2,⋯, vd} be the neighbors of v0 in the clockwise order of some outerplanar draw-

ing of G. Observe that we can relabel them in such a way that {vi, vi+1, v0} ∈ E(H) for

each i ∈ [d− 1]. This is because if for some j ≠ d such that {vj, vj+1, v0} ∉ E(H), then

we can add the hyperedge {vj, vj+1, v0} to H and obtain an outerplanar hypergraph

with larger spectral radius.

Now by the eigenequation on v0, we have

λ = λx2
v0 =

d−1
∑
i=1
xvixvi+1 ≤

d

∑
i=1
x2
vi
,

using the fact ab ≤ a2
+b2

2 . Set z =
d

∑
i=1
x2
vi
. We have λ ≤ z. It again follows from the

eigenequation expansion that

λz ≤
d

∑
i=1
λx2

vi

≤ 2xv0

d

∑
i=1
xvi +

d

∑
i=1

∑
vw∈Γ(vi)
v,w≠v0

xvxw

= 2
d

∑
i=1
xvi +

d

∑
i=1

∑
vw∈Γ(vi)
v,w≠v0

xvxw

≤ 2
√
dz +

d

∑
i=1

∑
vw∈Γ(vi)
v,w≠v0

xvxw, (5.3)

where the last inequality is by the Cauchy-Schwarz inequality.

For ease of reference, set R =
d

∑
i=1

∑
vw∈Γ(vi),v,w≠v0

xvxw. In Figure 5.2, all the edges

vw ∈ E(G) corresponding to the summands xvxw in R are colored red. Dividing both

sides of the inequality above by λ, we then have z − 2
√

dz
λ ≤ R

λ . By completing the
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v0

v1 v2

vi vi+1

vn−2 vn−1

q

...

Figure 5.2: Neighborhood of v0

square and rearranging the terms of the inequality, we obtain that

z ≤
⎛
⎝

√
d

λ
+
√

d

λ2 +
R

λ

⎞
⎠

2

= 4d
λ2 +

2R
λ

−
⎛
⎝

√
d

λ2 +
R

λ
−

√
d

λ

⎞
⎠

2

. (5.4)

It follows that

λ3 ≤ λ2z ≤ 4d + 2λR − (
√
d +Rλ −

√
d)

2
. (5.5)

By Lemma 5.2.1, we obtain that λ3 ≥ 4n− 16 when n is large enough. Let’s now give

a bound on 2λR. Observe that since G is an outerplanar graph, the neighborhood

around an edge vivi+1 will have the same structure as shown in Figure 5.2. The edges

vw for which xvxw appears in the summands of R are colored red. Let Er be the

collection of these red edges. Again using the fact that 2ab ≤ a2 + b2, we replace

all 2xvxw in R by x2
v + x2

w. We then use the eigenequation on xv and xw to expand

λ(x2
v + x2

w).

To make the analysis easier, we partition the vertices into three classes and pay

attention to their multiplicity in the summation. Note that we only need to consider

the vertices that are the endpoints of red edges. The first class of vertices (denoted

by V1) are the ones that are adjacent to v0. It’s easy to see that

∑
h∈Er

∑
u∈V1∪h

x2
u ≤ 2

d

∑
i=1
x2
vi
.

Hence we have

λ ∑
h∈Er

∑
u∈V1∪h

x2
u ≤ 2

d

∑
i=1
λx2

vi
= 2λz.
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The next class of vertices (denoted by V2) consists of the ones that form a hyperedge

with two adjacent neighbors of v0 (labeled as q in Figure 5.2). The set of the remaining

vertices are denoted by V3. Now using eigenequation equalities, we have

λ ∑
h∈Er

∑
u∈V2∪h

x2
u + ∑

h∈Er

∑
u∈V3∪h

x2
u = ∑

h∈Er

∑
u∈h

u∉N(v0)

∑
vw∈Γ(u)

xvxw. (5.6)

Let E′ be the set of edges vw in G for which xvxw appears as summands in the

summation above. Note that none of the edges in E′ contain v0. For edges vw ∈ E′,

we need to count the multiplicity of xvxw in the summation above. For edges vw in

E′ such that vwv0 ∈ E(H), it’s easy to see that xvxw has multiplicity at most 4 since

these terms come from the eigenequation expansion on some vertex of V2, which is

incident to at most 4 red edges. Moreover, by the eigenequation on xv0 , we have

∑
h∈Er

∑
u∈h

∑
vw∈Γ(v0)∩Γ(u)

xvxw ≤ 4λx2
v0 = 4λ.

vi−1 vi

q

(a)

2 264432 6 4 4 3 2

0 0 00 00 000 0

vi−1 vi
(b)

23432 2 3 4 3 2

00 00 000 0

Figure 5.3: Neighborhood of edges vivi+1.

Next we analyze the average number of times that edges in E′/Γ(v0) appear in

the summands of (5.6). We do this by first considering the the structure of the

neighborhood around each vi ∈ NG(v0). Observe that since G is outerplananr, the

neighborhood around each vertex vi ∈ NG(v0) is a subgraph of the structures in Figure

5.3 (depending on whether it intersects with the neighborhood of another vertex vj).

Moreover, the neighborhood of vi cannot intersect with both the neighborhoods of

vi−1 and vi+1 (except at v0). The multiplicities of the edges of E′/Γ(v0) that is either

incident to some vi or forms a hyperedge with some vi are labelled in Figure 5.3. It

is easy to compute that the average multiplicity of such edges is at most 2.
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vi−1 vi

q
b

a

4 0200
44 2

2 2
64432 6 4 4 3 20 0 0

0 00 000 0

Figure 5.4: Average multiplicity of edges in E′/Γ(v0)

For the edges of E′/Γ(v0) that is not incident to some vi or forms some hyperedge

with some vi, we analyze their multiplicities similarly. It is easy to see from Figure 5.4

that in worst case the average multiplicities of the edges incident to or forms an edge

with a vertex q ∈ NG(vi) is at most 2 if we can subtract 2 from the total multiplicities

(due to the hyperedege qab). Moreover, notice there are at most d such vertices q.

To solve this, we count the multiplicities of the edges of qa into the multiplicities of

the edges in qvi and use the fact that xqxvi ≤ xv0xvi ≤ xvi .

Moreover, ∣E′/Γ(v0)∣ ≤ E(G) − (2d − 1) ≤ 2n − 2d − 2 since G is outerplanar. It

follows that in (5.6) that

∑
h∈Er

∑
u∈h

u∉N(v0)

∑
vw∈Γ(u)

xvxw ≤ 4λx2
v0 + 4 ∑

i∈[d]

xvi + 2(E(G) − (2d − 1)) max
xv , v≠v0

x2
v

≤ 4λ + 4
√
dz + (4n − 4d − 4) max

xv , v≠v0
x2
v.

Hence in summary, we have

2λR = 2λ
d

∑
i=1

∑
vw∈Γ(vi)
v,w≠v0

xvxw

≤ λ ∑
h∈Er

∑
u∈V1∩h

x2
u + λ ∑

h∈Er

∑
u∈V2∩h

x2
u + λ ∑

h∈Er

∑
u∈V3∩h

x2
u

≤ 2λz + 4λ + 4
√
dz + (4n − 4d − 4) max

xv , v≠v0
x2
v. (5.7)

Substitute 2λR into (5.5), it follows that when n is large enough,

4n − 16 ≤ λ3 ≤ λ2z ≤ 4d + (2λz + 4λ + 4
√
dz + 4n − 4d − 4) − (

√
d +Rλ −

√
d)

2
. (5.8)

Cancelling terms and rearranging the inequality, we obtain that

(
√
d +Rλ −

√
d)

2
≤ 2λ(z + 2) + 4

√
dz + 12,
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which can be written as

(λR)2

(
√
d + λR +

√
d)2 ≤ 2λ(z + 2) + 4

√
dz + 12. (5.9)

From here, we want to give an upper bound on λR. Note that from (5.8), we also

have

λ2z ≤ 4d + (2λz + 4λ + 4
√
dz + 4n − 4d − 4)

≤ 4n + 2λz + 4λ + 4
√
dz.

Thus by the fact that λ3 ≥ 4n − 16, we obtain that

z ≤ 4n + 4λ
λ2 − 2λ − 4

√
d
≤ (1 + o(1))λ.

Since λ3 ≤ λ2z ≤ 4n + 2λz + 4λ + 4
√
dz, we also have

λ = O(n1/3). (5.10)

Recall that λ ≤ z. Hence we have z = (1 + o(1))λ = Θ(n1/3). Consequently we obtain

from (5.7) that λR = O(n), which implies that (
√
d + λR +

√
d)2 = O(n). Now it

follows from (5.9) that

λR = O(
√
nλz + n

√
dz) = O(

√
nλ2 + n3/2λ1/2) = O(n5/6).

Substitute λR into (5.5) and use the fact that λ3 ≥ 4n − 16, we obtain that

4n − 16 ≤ 4d +O(n5/6),

which implies that d ≥ n −O(n5/6). This completes the proof of Claim 5.2.1.

In order to further improve the lower bound of d (as claimed in Lemma 5.2.2), we

need to give a non-trivial upper bound on maxv≠v0 x
2
v. Let u0 be a vertex attaining

the second largest Perron-Frobenius eigenvector entry of the adjacency matrix of H.

We claim xu0 = O(n−1/3).
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Let d′ = dG(u0) and {u1, u2,⋯, ud′} be the neighbors of u0 in G. Moreover, let

∆′ = max
w≠v0

dG(w). Note that since dG(v0) ≥ n − O(n5/6), it follows that d′ ≤ ∆′ =

O(n5/6). Otherwise by pigeonhole principle G has a K2,3, which contradicts that G

is outerplanar.

Most of the inequalities shown in Claim 5.2.1 hold in similar forms. In particular,

by the eigenequation expansion on xu0 , we have

λx2
u0 =

d′−1
∑
i=1

xuixui+1 ≤ 2xv0xu0 + ∑
u∈NG(u0),u≠v0

x2
u.

Let z′ = ∑
u∈NG(u0),u≠v0

x2
u. Similar to (5.3), if we apply the eigenequations on z′, we

have

λz′ ≤ 2xu0 + 2xu0

√
d′z′ +R′,

where

R′ = ∑
u∈NG(u0)/{v0}

∑
vw∈Γ(u)
v,w≠u0

xvxw ≤ ∑
u∈NG(u0)/{v0}

∑
vw∈Γ(u)
v,w≠u0

x2
v + x2

w

2 .

It follows from the same logic in (5.4) that

z′ ≤
⎛
⎝

√
d′xu0

λ
+
√

d′xu2
0

λ2 + R
′ + 2xu0

λ

⎞
⎠

2

≤
4d′x2

u0

λ2 + 2(R′ + 2xu0)
λ

−
⎛
⎝

√
d′x2

u0

λ2 + R
′ + 2xu0

λ
−

√
d′xu0

λ

⎞
⎠

2

.

Then it follows that

λ2(z′ + 2xu0) ≤4d′x2
u0 + 2λ(R′ + 2xu0) − (

√
d′x2

u0 + λ(R′ + 2xu0) −
√
d′xu0)

2
+ 2λ2xu0

≤4d′x2
u0 + 2λR′ + (2λ2 + 4λ)xu0 .

Hence we have

(4n − 16)x2
u0 ≤ λ3x2

u0 ≤ 4d′x2
u0 + 2λR′ + (2λ2 + 4λ)xu0 . (5.11)
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We will use inequality similar to (5.7) to bound 2λR′. Let E(R′) = {vw ∈ Γ(u) ∶

v,w ≠ u0, u ∈ NG(u0)/{v0}}. Now,

2λR′ ≤ ∑
vw∈E(R′)

λx2
v + λx2

w

≤ 2λ
⎛
⎜⎜
⎝
x2
v0 + ∑

u∈NG(u0)
u≠v0

x2
u

⎞
⎟⎟
⎠
+ 4

d−1
∑
i=1
xuixui+1 + ∑

h∈E(R′)

∑
w∈h

w∉N(u0)

∑
pq∈Γ(w)

pq∉Γ(u0)

xpxq

≤ 2λ(z′ + 1) + 4λx2
u0 + ∑

h∈E(R′)

∑
w∈h

w∉N(u0)

∑
pq∈Γ(w)

pq∉Γ(u0)

xpxq. (5.12)

We bound xpxq by x2
u0 if neither p nor q is equal to v0; else by xu0 . So again it’s

important to bound the multiplicities of the terms xpxq in the summation above. For

convenience, let E′′ be the collection of edges pq ∈ E(G) with xpxq appearing in the

summation above.

v0 ui

q
b

a

2 0200
22 2

0 2
20000 4 4 4 3 20 0 0

0 00 000 0

Figure 5.5: Average multiplicity of edges in E′/Γ(u0)

It’s easy to see from Figure 5.4 that due to outerplanarity of G the multiplicity

of each pq ∈ E′′ is at most 6. Thus by eigenequation on v0, we can bound the sum of

all xpxq (including multiplicities) for which p, q forms a hyperedge together with v0:

∑
h∈E(R′)

∑
w∈h

w∉N(u0)

∑
pq∈Γ(w)∩Γ(v0)

pq∉Γ(u0)

xpxq ≤ 6λv2
0 = 6λ.

Moreover, note that vw ∉ Γ(v0) for all edges vw ∈ E(R′). It easily follows from

the outerplanarity of G that there are at most 2 edges pq ∈ E′′ for which the term

xpxq contains xv0 (otherwise we will see a K2,3 minor). Hence there are at most O(1)

terms xpxq (including multiplicities) containing xv0 in the sums in (5.12). We bound

each such term xpxq by xu0xv0 = xu0 .
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As a result, there are at most (E(G) − (2d(v0) − 1) +O(1)) = O(n5/6) edges in E′′

that is not incident to v0 and not in Γ(v0). For such edges pq, we bound xpxq by x2
u0 .

Analogous to (5.7), we have the following inequality:

2λR′ ≤ 2λ(z′ + 1) + 6λ +O(xu0) +O(n5/6)x2
u0

≤ 2λz′ + 8λ +O(xu0) +O(n5/6)x2
u0 . (5.13)

Substituting (5.13) into (5.11) and use the fact that z′ = ∑
u∈NG(u0),u≠v0

x2
u ≤ d′x2

u0 ,

we have

(4n − 16)x2
u0 ≤ λ2(z′ + 2xu0)

≤ 4d′x2
u0 + (2λz′ + 8λ +O(xu0) +O(n5/6)x2

u0) + (2λ2 + 4λ)xu0

≤ 2λz′ +O(n5/6)x2
u0 + 8λ + (2λ2 + 4λ +O(1))xu0 . (5.14)

Rearranging the inequality in (5.14), we first obtain an upper bound on z′:

z′ ≤
O(n5/6)x2

u0 + (4λ +O(1))xu0 + 8λ
λ2 − 2λ = O (n1/6x2

u0 +
4xu0

λ
+ 1
λ
) .

Now using the upper bound on z′ and (5.14), we have the following inequality:

(4n − 16)x2
u0 ≤ 2λ(z′ + 1) +O(n5/6)x2

u0 + 8λ + (2λ2 + 4λ +O(1))xu0

= O (n5/6x2
u0 + λ2xu0 + λ) .

It follows from the fact that λ = O(n1/3) that

xu0 = O(n−1/3).

Now use the bound xu0 = O(n−1/3) in (5.7), we obtain a better bound of d = dG(v0)

in Claim 5.2.1:

4n − 16 ≤ λ3 ≤ 4d + 2λz + 4λ + 4
√
dz + (4(n − d) ⋅O((n−1/3)2)) , (5.15)
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which gives us

d ≥ n −O(n2/3).

This completes the proof of Lemma 5.2.1.

Lemma 5.2.3. dH(v1) = 1. Moreover, xv2 ≥ xv1.

Proof. Assume for the sake of contradiction that dH(v1) ≥ 2. We claim there must

exist another hyperedge {v1, v2, t} such that t ≠ v0. Suppose not, then there exists

w1,w2,⋯,ws ∉ N(v0) (for some s) such that wiwi+1v1 ∈ E(H) for i ∈ [s − 1] and

wsv1v2 ∉ E(H). However, it’s easy to see that if we add the hyperedge wsv1v2 into

H, the resulting hypergraph is still outerplanar, which contradicts that H attains the

maximum spectral radius and is edge-maximal. Hence there must exist some vertex

t such that {v2, v2, t} is a hyperedge.

Consider now the hypergraph H′ obtained from H by by removing the hyperedge

{v1, v2, t}, adding the hyperedge {v1, v0, t}, and if needed replacing some hyperedges

h = {v2, u,w} to {v0, u,w} to maintain the outerplanarity. Suppose x is the Perron-

Frobenius eigenvector of H. Then it is not hard to see that

∑
{i1,i2,i3}∈E(H′)

xi1xi2xi3 − ∑
{i1,i2,i3}∈E(H)

xi1xi2xi3 ≥ xv1xt(xv0 − xv2) > 0.

This implies that λ(H′) > λ(H), which contradicts that λ(H) is the extremal hyper-

graph of maximum spectral radius.

It remains to show that xv2 ≥ xv1 . If xv2 < xv1 , then let x′ be obtained from x by

setting x′v1 = xv2 , x′v2 = xv1 and every other entry the same. Since dH(v1) = 1, it follows

that PH(x′) > PH(x), which contradicts that x is the Perron-Frobenius eigenvector

of H.

Proof of Theorem 5.1.1. Let H be an outerplanar 3-uniform hypergraph on n ver-

tices with maximum spectral radius. Let G be the shadow of H. Suppose the Per-

ron–Frobenius eigenvector x of the adjacency matrix of H is normalized so that the
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maximum eigenvector entry is 1. Let v0 be the vertex with the maximum eigenvector

entry and {v1, v2,⋯, vd} be the neighbors of v0 in the clockwise order of the planar

drawing of G.

By Lemma 5.2.1, we have that d(v0) ≥ n − O(n2/3) and for every other vertex

u ≠ v0, xu = O(n−1/3). Now we claim that xv1 = Ω(n−1/3). By Lemma 5.2.3, we have

that dH(v1) = 1, i.e., v1v2v0 is the unique hyperedge containing v1. It follows by

Lemma 5.2.3 and the eigenequation on v1 that

λx2
v1 = xv0xv2 = xv2 ≥ xv1 .

Together with (5.10), this implies that

xv1 ≥
1
λ
= Ω(n−1/3).

Now we claim that for every vertex u ∈ V (G)/{v0}, u is a neighbor of v0 in G.

Suppose not, then it follows from the outerplanarity of G that there exists some

vertex w not adjacent to v0 such that w is contained in a unique hyperedge {w, s, t}

(s, t ≠ v0). Now similar to Lemma 5.2.3, consider the hypergraph H′ obtained from

H by by removing the hyperedge {w, s, t} and adding the hyperedge {w, v0, v1}. It

follows that

∑
{i1,i2,i3}∈E(H′)

xi1xi2xi3 − ∑
{i1,i2,i3}∈E(H)

xi1xi2xi3 ≥ xwxv0xv1 − xwxsxt.

Note that xsxt = O(n−2/3) while xv0xv1 = Ω(n−1/3). It follows that xwxv0xv1 > xwxsxt,

which implies that λ(H′) > λ(H), contradicting that H is the extremal hypergraph of

maximum spectral radius. Hence by contradiction, every vertex u ∈ V (G)/{v0} is a

neighbor of v0 in G. Again by the fact that H attains the maximum spectral radius,

it follows that H is the unique 3-uniform hypergraph with K1+Pn−1 as it shadow.
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