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Abstract

This dissertation mainly explores several challenging topics that arise in diagnostic

tests and panel count data in the Bayesian framework. Binary diagnostic tests, par-

ticularly multiple diagnostic tests with repeated measures and diagnostic procedures

with a large number of raters, are studied. For panel count data, most traditional

methods only handle panel count data for a single type of recurrent event. In this

dissertation, we primarily focus on the case with multiple types of recurrent events.

In Chapter 1, an introduction to the binary diagnostic tests data and panel count

data is presented and related literature works are briefly reviewed. To make the

dissertation more coherent for the later chapters, some preliminary theories and al-

gorithms, for instance the Metropolis Hastings algorithm, are presented. Finally, an

outline of the dissertation organization is put forward.

In Chapter 2, a model for multiple diagnostic tests, applied repeatedly over time

on each subject, is proposed; gold standard data are not required. The model is

identifiable with as few as three tests; and correlation among tests at each time

point in the diseased and non-diseased populations, as well as across time points is

explicitly included. An efficient Markov chain Monte Carlo (MCMC) scheme allows

for straightforward posterior inference. The proposed model is broadly illustrated via

simulations and scaphoid fracture data from a prospective study (Duckworth et al.,

2012) is analyzed. In addition, omnibus tests constructed from individual tests in

parallel and serial are considered.

In Chapter 3, a Bayesian hierarchical conditional independence latent class model

for estimating sensitivities and specificities for a large group of tests or raters is
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proposed, which is applicable to both with-gold-standard and without-gold-standard

situations. Through the hierarchical structure, not only are the sensitivities and

specificities of individual tests estimated, but also the diagnostic performance of the

whole group of tests. For a small group of tests or raters, the proposed model is further

extended by introducing pairwise covariances between tests to improve the fitting

and to allow for more modeling flexibility. Correlation residual analysis is applied to

detect any significant covariance between multiple tests. Just Another Gibbs Sampler

(JAGS) implementation is efficiently adopted for both models. Three real data sets

from literature are analyzed to explicitly illustrate the proposed methods.

In Chapter 4, a Bayesian semiparameteric approach is proposed to analyze panel

count data for multiple types of recurrent events. For each type of event, the pro-

portional mean model is adopted to model the mean count of the event, where its

baseline mean function is approximated by monotone I-splines (Ramsay et al., 1988).

Correlation between multiple events is modeled by common frailty terms and scale

parameters. Unlike many frequentist estimating equation methods, our approach

is based on the observed likelihood and makes no assumption on the relationship

between the recurrent processes and the observation process. Under the Poisson pro-

cess assumption, an efficient Gibbs sampler based on a novel data augmentation is

developed for the MCMC sampling. Simulation studies show good estimation perfor-

mance of the baseline mean functions and the regression coefficients; meanwhile the

importance of including the scale parameter to flexibly accommodate the correlation

between events is also demonstrated. Finally, a skin cancer data example is fully

analyzed to illustrate the proposed methods.

In Chapter 5, a brief summary of the studies we have completed in the previous

chapters is delivered and at the same time we put forward some ideas for future work

in each topic covered.
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Chapter 1

Introduction

1.1 Binary Diagnostic Tests

Diagnostic tests are defined as an instrument or procedure performed to determine

the presence or absence of some condition of interest such as disease. The primary

medical interest is to evaluate the performance of the diagnostic tests and to esti-

mate the disease prevalence of a population. Depending on the measure of the disease

data, diagnostic tests can provide binary (positive/negative) outcomes, ordinal cat-

egorical responses or continuous biomarker levels. This dissertation chiefly focuses

on binary diagnostic tests. The main parameters to be studied include sensitivity,

specificity and disease prevalence. When the disease status is known, the estimation

becomes very straightforward. Pepe (2003) and Broemeling (2007) proposed evalua-

tion approaches for gold standard tests using frequentist and Bayesian perspectives.

However, on most occasions, the available diagnostic tests are imperfect and can-

not discriminate completely between the diseased and non-diseased individuals. As

a result, more attention and efforts have been devoted to the methods for handling

non-gold-standard tests.

The latent class model (LCM), which can naturally link the test responses with

the underlying unknown disease status, is widely accepted and updated (Walter and

Irwig, 1988; Vacek, 1985; Torrance-Rynard and Walter, 1997; Yang and Becker, 1997;

Qu et al., 1996; Dendukuri and Joseph, 2001; van Smeden et al., 2013; Collins and

Albert, 2016; Albert and Dodd, 2004). The fundamental assumption of LCM extends
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from conditional independence to conditional dependence. The covariance structure

has also attracted much attention. Under the LCM scheme, several models have

been proposed. Vacek (1985), Torrance-Rynard and Walter (1997), Yang and Becker

(1997), and Jones et al. (2010), among others, directly incorporated conditional pair-

wise covariances between tests. Qu et al. (1996) adopted latent Gaussian random

effects (GRE) to model the conditional dependence between multiple tests. Albert

et al. (2001) proposed a finite mixture model (FM) to account for the dependence

between tests. Many researchers have realized that when the structure of the de-

pendence is misspecified, the estimation tends to be biased. As a result, Albert and

Dodd (2004) provide some guidance on the utilization of these models.

One core question facing LCM is the identifiability issue. Identifiability cannot

happen when the number of parameters in the model is greater than the degrees of

freedom. Even with sufficient degrees of freedom, identifiability cannot be guaran-

teed. Gustafson et al. (2005) and Gustafson (2009) showed that estimation of param-

eters can proceed based on the natural constraints imposed by the model itself. In

a more general situation, Jones et al. (2010) gave some instructions on determining

whether the model design of the multiple diagnostic tests is identifiable. For Bayesian

approaches, estimation can borrow information from informative priors, so identifia-

bility will not be a problem if researchers can construct some informative priors from

historical data, expert’s experience and other resources.

Data from a longitudinal study can give more information than that from a cross-

sectional study. Evaluating each individual at multiple time points strengthens the

test characteristics, and enables exploration of possible temporal covariance. An

obvious benefit is that it offers more degrees of freedom. Repeated measures for

multiple tests over time can enable consistent estimation of test accuracy and disease

prevalence in the absence of a gold-standard test (Engel et al., 2010; Jones et al.,

2012; Cook et al., 2000; Norris et al., 2009). In Chapter 2, the proposed model deploys
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multiple binary tests with repeated measures. One of the important conclusions is

that our model is identifiable for as few as three tests. Without repeated measures,

this identifiability property cannot hold for three tests or four tests since the number

of parameters exceeds the degrees of freedom.

The diagnostic accuracy of an individual test or rater has a crucial impact on

clinical decision making. The assessment of diagnostic accuracy for multiple tests or

raters also merits more attention. Zhang et al. (2012) proposed a latent class model

with crossed random effects for the subjects and raters to estimate the diagnostic

accuracy of a group of raters. Nelson and Edwards (2008) defined a model based

kappa statistic for measuring the agreement among raters for binary classification.

Lin et al. (2018) described a modeling approach to assess each rater’s diagnostic

skills by linking the rater’s binary decisions with patient true disease status through

patient latent disease severity. Chapter 3 proposes a hierarchical model to estimate

the group rating agreement through a concentration parameter in a beta distribution

with the tests’ sensitivities and specificities estimated as well. Modified conditional

independence models and conditional dependence models are introduced to handle

large- and medium- size groups of tests or raters.

1.2 Panel Count Data

Panel count data come from recurrent events, where no exact occurrence times are

recorded but the counts of event occurrences during adjacent observation times are

observed. Unlike recurrent event data which have complete information of continu-

ously observed event times, panel count data only have several discrete observation

times and occurrence counts between adjacent time points. Panel count data are

very common in fields such as social science, epidemiology, demographic studies and

medical studies. Examples of panel count studies include hospitalizations or tumor
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occurrences in medical studies, disease infection studies and system break downs in

reliability studies.

The primary interest of panel count data includes estimation of the mean/rate

function, treatment comparison and regression analysis (covariate effects). Researchers

also explore topics on variable selection, analysis of mixed recurrent events and anal-

ysis of panel count data arising from multi-state models (Sun and Zhao, 2013). In

panel count data analysis literature, there is a comprehensive system of theory and

approaches from parametric models to nonparametric and semiparametric models.

The motivation for using the parametric approach is, where the mean count is un-

der a Poisson process assumption and the likelihood function can be directly derived,

making the statistical inference immediate (Albert, 1991; Lawless, 1987; Thall, 1988).

However, the appropriate parametric model may not exist or information or data is

unavailable to validate the parametric model assumption. In this circumstance, the

nonparametric model and semiparametric model, which don’t require strong assump-

tions, can provide a more robust analysis. For the nonparametric procedure, the

main goal is to estimate the mean function. There are likelihood-based estimators,

such as nonparametric maximum likelihood estimators (NPMLE) and nonparametric

maximum pseudolikelihood estimators (NPMPLE) (Wellner et al., 2000; Lu et al.,

2007), and regression-based estimators, for instance isotonic regression estimators

(IRE) (Sun and Kalbfleisch, 1995; Hu et al., 2009). Semiparametric models have

recently gained more popularity, where the main focus is on the regression analysis,

i.e. the covariate effects on the mean model. This is also the partial objective of

the project in Chapter 4. For the semiparametric procedures, the baseline function is

mostly modeled by a piecewise function (Lawless and Zhan, 1998) or monotone splines

(Lu et al., 2009); the covariate effects are mainly estimated through the proportional

mean model. Lin et al. (2001) have proposed a semiparametric transformation model

to relax the assumption that two sets of covariate values are proportional over time.
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In the frequentist framework, the estimation procedure largely depends on the es-

timation equation method, and discussion of the relationship between the counting

process and the observation process cannot be avoided. This dissertation provides a

Bayesian approach to estimate the covariate effects and baseline mean function, where

the relationship between the recurrent event process and the observation process does

not require any assumption.

Studies on univariate panel count data are considerably mature, and some re-

search has begun to investigate multivariate panel count data. A notable difference

for the latter is that the correlation among the multiple related recurrent events needs

to be taken into account. Two approaches that can be employed to analyze multi-

variate panel count data are the marginal model approach, where the correlation is

left unspecified, and the joint model approach where the correlation can be modeled

through some latent or random variables. In the literature, most work is devoted

to the marginal model approach. He et al. (2008) and Chen et al. (2005) studied

regression analysis for multivariate panel count data under the assumption that the

recurrent event process and observation process are independent. Li et al. (2011) and

Zhang et al. (2013) also studied regression analysis but assume that there is some

dependence between the recurrent event process and the observation process. All

the above work has employed estimation equation methods in the frequentist frame-

work. It is hard for the estimation equation based approach to derive the theoretical

properties and conduct calculations when directly imposing a correlation structure

to the model (Sun and Zhao, 2013). On the contrary, the joint model approach is

not too complicated when using the Bayesian approach. In fact, the model proposed

in Chapter 4 studies the correlation between any two recurrent events through com-

mon frailty terms and a scale parameter and provides a compact expression for the

correlation.
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1.3 Computing techniques

Performing Bayesian inferences require use of the joint posterior distribution over a

set of parameters. In practice, there is no closed form of the posterior distribution,

and the intractable integrals are hard to derive in most situations. Instead of solving

the analytical equations, Markov chain Monte Carlo (MCMC) provides a solution to

obtain statistical inferences by sampling. The most commonly used sampling tech-

niques are the Metropolis-Hastings (MH) sampling and the Gibbs sampling, where

the later is a special case of the former (Gelman, 1993). The MH algorithm was

first developed by Metropolis et al. (1953) and subsequently generalized by Hastings

(1970). Because of its importance and usefulness, its application (Müller, 1991; Chib

and Greenberg, 1996) is steadily increasing in the literature. To make this algorithm

more intuitive and understandable, Chib and Greenberg (1995) provide a tutorial

exposition of the MH algorithm. Basically, the goal of the MH algorithm is to draw

samples from the desired target distribution π. It starts with a function f(x) = πK

which is proportional to the target distribution and a proposal distribution (or can-

didate kernel) q(x) from which new candidates can be drawn. The sampling process

then proceeds iteratively as follows.

1. Initialize x(0) ∼ q(x)

2. Propose x(cand) ∼ q(x(i)|x(i−1)), for i = 1, 2, ...

3. Accept the proposal x(i) = x(cand) with acceptance rate α, where

α = min{1, π(x(cand))q(x(i−1)|x(cand))
π(x(i−1))q(x(cand)|x(i−1)) }. If the candidate is rejected, x

(cand) ∼ x(n−1).

4. Repeat steps 2-3 until convergence.

If the proposal distribution is symmetric, for instance the random walk algorithm

where the proposal distribution is the normal distribution, the acceptance rate can be

simplified into the form α = min{1, π(x(cand))
π(x(i−1)) }. In this way, the calculation becomes

6



much simpler and faster. The tricky question for a random walk algorithm is to

determine the updating step size, i.e. σ. If the step size is too large, the candidate

may skip the more probable value and the Markov chain tends to stick to some value

for a long time. If the step size is too small, the chain converges slowly. In order to find

the proper step size, pre-runs and manual tuning are necessary. For high dimensional

MCMC, the tuning task is laborious. With the development of the algorithm, some

adaptive approaches appear (Haario et al., 2001; Roberts et al., 2001; Haario et al.,

2005) to automatically select the step size and to elevate the computation speed.

Chapter 2 mainly adopts Haario et al. (2005) ’s componentwise adaptation to MCMC

due to its flexibility in programming. In the adaptive algorithm, the variance of the

proposal distribution depends on the historical values of the chain and hence is not a

Markovian technique. The formula used to calculate the variance is presented below:

vti =


vt0 t ≤ t0,

sV ar(x0
i , x

1
i , . . . , x

t−1
i ) + ε t > t0,

where vt0 is the initial variance whose choice proves not critical (Haario et al., 2005).

t0 is regarded as a burn-in period (the author used t0 = 10), after which the variance

of the proposal is related to the variance of the historical values in the Markov chain.

s is a scale parameter, and the author suggests using s = 2.4 (in this disseratation

s = 0.5 is used which is empirically more efficient). Finally ε is a constant, and it is

used to avoid the situation in which the variance shrinks to 0. Given the proposal

distributions, the multiple dimensional MCMCs are updated componentwise.

Chapter 3 and Chapter 4 particularly use the Gibbs sampler approach for Bayesian

inference. Chapter 3 also introduces the syntax of Just Another Gibbs Sampler

(JAGS) and presents some sample code. The Gibbs sampler is a special form of MH

(Gelman, 1993), and it is mainly used to generate random variables from a (marginal)

distribution to avoid the direct calculation of density. Geman and Geman (1987)

used this method to study image processing. Gelfand and Smith (1990) reviewed and

7



compared several sampling-based density calculation methods. Casella and George

(1992) exploited simple cases to demystify the working mechanism behind the Gibbs

Sampler. Since then, the Gibbs sampler approach has been widely used for posterior

sampling. The basic idea is to sequentially draw samples for each random variable

from the conditional distribution with the remaining variables fixed to the current

values. For X ∈ RK , the algorithm proceeds as follows:

1. Initialize x(0) ∼ q(x), where q() is usually a prior distribution

2. for iteration i = 1, 2, ...

x
(i)
1 ∼ p(X1 = x1|X2 = x

(i−1)
2 , X3 = x

(i−1)
3 , ..., XK = x

(i−1)
K )

x
(i)
2 ∼ p(X2 = x2|X1 = x

(i)
1 , X3 = x

(i−1)
3 , ..., XK = x

(i−1)
K )

...

x
(i)
K ∼ p(XK = xK |X1 = x

(i)
1 , X2 = x

(i)
2 , ..., XK−1 = x

(i)
K−1)

3. end

JAGS provides an easy way to conduct Gibbs sampling without the need to derive

the full conditional distributions. The syntax for JAGS is simple and straightforward,

since only models and priors need to be directly specified. All the derivations of

full conditional distributions and sampling from them are carried out automatically.

Plummer (2017) provides further details.

1.4 Outline

The rest of this dissertation is organized as follows. Chapter 2 and Chapter 3 present

two models to analyze binary diagnostic tests results. Chapter 4 proposes a model

to analyze multivariate panel count data. Chapter 5 is a summary.

In Chapter 2, a model for multiple tests with repeated measures is proposed in

a situation without a gold standard. The primary goal is to estimate the sensitivity,
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specificity, prevalence, test covariance and temporal covariance. An efficient adaptive

MCMC algorithm is developed. Extensive simulation studies empirically prove the

identifiability of the proposed model. Traceplots from the real data analysis section

show that all the Markov chains attain convergence. Lastly, some omnibus tests are

constructed which can provide some instructions for practitioners on how to collec-

tively use the imperfect tests.

In Chapter 3, a Bayesian hierarchical model is proposed to study the tests’ char-

acteristics at both the individual and group levels. Depending on the group size, con-

ditional independence and conditional dependence can be assumed accordingly. For

guiding the addition of covariance terms into the model, correlation residual analysis

is proposed. In addition, four algorithms (with and without multinomial imposition)

are developed. Clear and compact JAGS sample codes are provided. Lastly, the

proposed models and residual analysis are broadly illustrated by simulation studies

and analysis of real data from the literature.

In Chapter 4, a Bayesian approach for studying panel count data of multiple types

of events is proposed, where the primary interest lies in the estimation of covariate

effects and the correlation between multiple events. For modeling the mean count of

each type of event the proportional mean model is adopted where the baseline function

is approximated by monotone I-splines. Furthermore, the correlation between any

two events is modeled by the common frailty term and a scale parameter. Under

the Poisson process assumption, an efficient Gibbs sampler is developed based on

augmented data. Finally, comprehensive simulation studies and a skin cancer data

analysis are conducted to show the performance of the proposed method.

In the last chapter, a brief wrap-up and ideas for future work are presented.
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Chapter 2

Estimation of Sensitivity and Specificity of

Multiple Repeated Binary Tests without a

Gold Standard

2.1 Introduction

Sensitivity and specificity are the primary measures of diagnostic test accuracy. When

true disease status is known via a gold-standard test, estimation of sensitivity and

specificity is straightforward. However, when no gold standard is available, or its use

prohibitive due to cost or ethical concerns, it is still possible to consistently estimate

test accuracy in some sampling situations under certain modeling assumptions. The

pioneering work of Hui and Walter (1980) shed light on estimating error rates for

two tests in two populations with differing prevalence. An important result from

their paper is that when two tests are simultaneously applied to the same individ-

uals across two different populations, the assumption of conditional independence

of tests given disease status renders the model identifiable and maximum likelihood

estimates of sensitivity, specificity, and prevalence are consistent; this result is imme-

diately generalizable to more than two tests and more than two populations. When

only one population is considered, the two test model is clearly not identifiable since

the three degrees of freedom in the resulting 2× 2 table is less than the five unknown

parameters. One remedy for such overparameterized models is to impose additional

constraints (Walter and Irwig, 1988), e.g. treat some of the parameters as known,
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yielding an identifiable model and consistent maximum likelihood estimators. Joseph

et al. (1995) considered this situation but from a Bayesian approach where constraints

are instead replaced with informative priors for a subset of the parameters. Similarly,

Johnson et al. (2001) revisited the approach of Hui and Walter (1980) from a Bayesian

perspective and compared the two tests, two population model with the two tests,

one population model of Joseph et al. (1995). They showed that when the model is

identifiable Bayesian posterior inference would ultimately converge to true parameter

values regardless of the quality of prior distribution; however, if the model is uniden-

tifiable, reliable inference depends heavily on the validity and preciseness of the prior

information. However, in some circumstances, learning on model parameters can

proceed even in the unidentifiable case based on natural constraints imposed by the

model itself (Gustafson, 2009; Gustafson et al., 2005).

Generalizations to more than one or two populations and more than two possibly

conditionally dependent tests, allowing for increased flexibility in data collection and

modeling assumptions, have been accomplished through the addition of appropri-

ate parameters (Walter and Irwig, 1988; Vacek, 1985; Dendukuri and Joseph, 2001;

Hanson et al., 2003). Alternatively, conditional dependence among binary diagnostic

tests at one time point can be induced via a subject-specific random effect (Qu et al.,

1996; Qu and Hadgu, 1998; Shih and Albert, 1999; Engel et al., 2010). Other infor-

mation (Branscum et al., 2008; Jones et al., 2012; Luo et al., 2013, 2014) correlated

with disease status can be incorporated to help focus prevalence and accuracy esti-

mation in the absence of a gold-standard. Repeated measures over time (Engel et al.,

2010; Jones et al., 2012; Cook et al., 2000; Norris et al., 2009) also enable consistent

estimation of test accuracy and prevalence in the absence of a gold-standard.

In this chapter, under the assumption that the latent disease status is temporally

static, a repeated measures model for multiple, conditionally dependent binary tests

is developed starting from Jones et al. (2010). An important finding of our work is
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that, under certain assumptions, only three tests are necessary to consistently esti-

mate sensitivity, specificity, and prevalence in only one population. This is in marked

contrast to non-longitudinal data. For simple cross-sectional data, the tenuous as-

sumption of conditional independence is necessary for three diagnostic tests (Walter

and Irwig, 1988). Even with multiple time points, when only one fallible test is con-

sidered, the conditional independence assumption is still unavoidable (Yanagawa and

Gladen, 1984; Espeland et al., 1989); see Hui and Zhou (Hui and Zhou, 1998) for a

review. Furthermore, our model explicitly models pairwise between– and within–test

covariance, which extends covariance from only test level to both test and temporal

level. Such explicit parameterization makes calculation of common loci of inference

such as conditional correlation (between pairs of tests at one time point or between

repeated applications of one test) straightforward, as well as the incorporation of

missing tests, time points, etc.

For the diagnosis of scaphoid fractures, both clinical and radiological assessment

play an important role. The diagnosis of scaphoid fractures is a longitudinal pro-

cess because some occult fractures cannot be identified on the initial assessment.

For initial assessment of the patients with a scaphoid injury, several clinical tests

are commonly used by emergency room doctors or nurse practitioners (Duckworth

et al., 2012). It is recognized that no clinical test can perfectly distinguish people

with a scaphoid fracture from those without; hence there is no gold standard. The

sensitivity of clinical assessment has been historically overestimated and the speci-

ficity underestimated, which leads to over-treatment; false positives are subject to

unnecessary restriction and medical resources are not properly allocated. We con-

sider scaphoid fracture data from a prospective study on adult patients presenting

suspected scaphoid fracture within 72 hours of injury. Among the n = 223 patients

considered, 205 were examined twice (and so have repeated measures) between 10

and 18 days after the initial injury; 18 were only examined initially (i.e. once).
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Conditional on the disease status, the repeated measures model developed here

considers dependence at both test level and temporal level separately. In particular,

the model does not require subject-specific random effects to induce the longitudinal

correlation. Based on several simple but realistic assumptions, we construct for-

mulae for likelihood construction and then use a flexible component-wise adaptive

Metropolis-Hastings algorithm to obtain posterior inference. This chapter is orga-

nized as follows: Section 2 develops the model; Section 3 presents a simulation study;

an analysis on repeated measures scaphoid fracture data is given in Section 4 and a

comparison of parallel and serial multiple tests is given in section 5. The last section

is the discussion and conclusion.

2.2 Model

Consider K binary diagnostic tests administered over J time points on individual

i, yielding vectors of test results Ti1, . . . ,TiJ where Tij = (Tij1, . . . , TijK)′. Denote

Tijk = 1 as testing positive and Tijk = 0 negative. Assume that the operating

characteristics of the tests, namely the sensitivity and specificity, do not change over

time, and each individual’s disease status (D+ is diseased and D− is non-diseased) is

also static. Denote the sensitivity and specificity of test k as Sek = P (Tijk = 1|Di+)

and Spk = P (Tijk = 0|Di−) respectively for j = 1, 2 . . . , J . Let C+
ij and C−ij denote

the pairwise covariance between any two tests conditional on subjects diseased and

non-diseased respectively. Following Vacek (1985) and Dendukuri and Dendukuri and

Joseph (2001), tests 1 and 2 have the following joint probabilities at time j in the

diseased population.

P (Tij1 = 1, Tij2 = 1|Di+) = Se1Se2 + C+
12

P (Tij1 = 1, Tij2 = 0|Di+) = Se1(1− Se2)− C+
12

P (Tij1 = 0, Tij2 = 1|Di+) = Se2(1− Se1)− C+
12
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P (Tij1 = 0, Tij2 = 0|Di+) = (1− Se1)(1− Se2) + C+
12

In the non-diseased population C+
12 is replaced with C−12, Sek replaced with (1 −

Spk) and (1 − Sek) replaced with Spk. Similar expressions follow for all pairs of

tests. Repeated applications of test k over time are assumed to also be dependent

conditional on an individual’s disease status; exchangeable covariance is assumed

and denoted R+
k in the diseased population and R−k in the non-diseased leading to

the following joint probabilities involving the repeated use of test 1 across any two

time points j1 and j2.

P (Tij11 = 1, Tij21 = 1|Di+) = Se2
1 +R+

1

P (Tij11 = 1, Tij21 = 0|Di+) = Se1(1− Se1)−R+
1

P (Tij11 = 0, Tij21 = 1|Di+) = Se1(1− Se1)−R+
1

P (Tij11 = 0, Tij21 = 0|Di+) = (1− Se1)2 +R+
1

As before, the non-diseased versions replace R+
1 with R−1 , Se1 with (1 − Sp1), and

(1− Se1) with Sp1. Similar expressions are obtained for the remaining tests.

The resulting model is of the general type studied by Jones et al. (2010), with

important differences being that test sensitivity and specificity remain constant over

time and a temporal covariance is introduced. Using the methods of Jones et al.

(2010), local identifiability of the resulting model can be shown for as few as K = 3

tests under the reasonable assumption of Sek +Spk > 1. This is remarkable as in the

non-repeated measures case, the typically untenable assumption of conditional inde-

pendence must be assumed to estimate theK = 3 sets of sensitivities and specificities,

as well as the prevalence (Walter and Irwig, 1988).

Subject i’s likelihood contribution is obtained through the law of total probability

P (Ti = ti) = πP (Ti = ti|Di+) + (1− π)P (Ti = ti|Di−),

where π is the disease prevalence and Ti = (Ti1, . . . ,TiJ), etc. Note that Ti has a

distribution over a contingency table with 2KJ elements, a 2K contingency table at
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each of J time points. Under conditional independence across time and among tests,

for individual i, we have

d+
i = P (Ti = ti|Di+) =

K∏
k=1

Seti•kk (1− Sek)J−ti•k ,

d−i = P (Ti = ti|Di−) =
K∏
k=1

SpJ−ti•kk (1− Spk)ti•k .

Here, • indicates summation over that index. For a fixed time point, pairwise co-

variance terms are introduced. Generalizing (5) and (6) in Jones et al. (2010), the

“test covariance positive" summed over all time levels is a simple modification of the

independence case above

tc+
i =

J∑
j=1

∑
u<v

(−1)tiju+tijvC+
uvSe

ti•u−tiju
u (1− Seu)J−1−ti•u+tijuSeti•v−tijvv

(1− Sev)J−1−ti•v+tijv
∏
k 6=u,v

Seti•kk (1− Sek)J−ti•k

=
[
K∏
s=1

SpJ−ti•ss (1− Ses)ti•s
]

J∑
j=1

∑
u<v

C+
uv

[(Seu − 1)/Seu]tiju(Sev − 1)/Sev]tijv
(1− Seu)(1− Sev)

= d+
i

K−1∑
u=1

K∑
v=u+1

C+
uv

J∑
j=1

[(Seu − 1)/Seu]tiju [Sev − 1)/Sev]tijv
(1− Seu)(1− Sev)

= d+
i t̃c

+
i .

Similarly, the “test covariance negative" is

tc−i =
J∑
j=1

∑
u<v

(−1)tiju+tijvC−uv(1− Spu)ti•u−tiju(Spu)J−1−ti•u+tiju(1− Spv)ti•v−tijv

SpJ−1−ti•v+tijv
v

∏
k 6=u,v

(1− Spk)ti•kSpJ−ti•kk

=
[
K∏
s=1

(1− Sps)J−ti•sSeti•ss

]
J∑
j=1

∑
u<v

C−uv
[Spu/(Spu − 1)]tiju [Spv/((Spv − 1))]tijv

SpuSpv

= d−i

K−1∑
u=1

K∑
v=u+1

C−uv

J∑
j=1

[Spu/(Spu − 1)]tiju [Spv/(Spv − 1)]tijv
SpuSpv

= d−i t̃c
−
i .
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Now consider the longitudinal aspect; the “repeated measures covariance positive” is

rc+
i =

K∑
k=1

∑
u<v

(−1)tiuk+tivkR+
k Se

ti•k−tiuk−tivk
k (1− Sek)J−ti•k−2+tiuk+tivk

∏
s 6=k

Seti•ss (1− Ses)J−ti•s

=
[
K∏
s=1

Seti•ss (1− Ses)J−ti•s
]

K∑
k=1

R+
k

∑
u<v

[(Sek − 1)/Sek]tiuk+tivk

(1− Sek)2

= d+
i

K∑
k=1

R+
k

J−1∑
u=1

J∑
v=u+1

[(Sek − 1)/Sek]tiuk+tivk

(1− Sek)2

= d+
i r̃c

+
i

Similarly, the “repeated measures covariance negative" is

rc−i =
K∑
k=1

∑
u<v

(−1)tiuk+tivkR−k Sp
J−ti•k−2+tiuk+tivk
k (1− Spk)ti•k−tiuk−tivk∏

s 6=k
SpJ−ti•ss (1− Ses)ti•s

=
[
K∏
s=1

SpJ−ti•ss (1− Ses)ti•s
]

K∑
k=1

R−k
∑
u<v

[Spk/(Spk − 1)]tiuk+tivk

Sp2
k

= d−i

K∑
k=1

R−k

J−1∑
u=1

J∑
v=u+1

[Spk/(Spk − 1)]tiuk+tivk

Sp2
k

= d−i r̃c
−
i .

Here it is assumed that the temporal covariance for a given test does not change

with each pair of time points, implying exchangeability in the repeated measures. If

differing amounts of correlation are expected between different pairs of time points

the model is immediately generalized to accommodate this, although at the cost of

increased complexity and numbers of parameters. For example, J = 3 time points

requires R+
k,12, R+

k,13, and R+
k,23 in the D+ population for test k and R−k,12, R−k,13,

and R−k,23 in the D− population unless additional assumptions are made. One such

assumption might be the usual tapering of covariance to zero as the length of time

between observations increases, e.g. the covariances between times t1 and t2 are

R+
k,t1t2 = (R+

k )|t1−t2| and R−k,t1t2 = (R−k )|t1−t2| in the D+ and D− populations respec-
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tively for test k. This simplifying assumption allows correlation to increase for more

proximal timepoints without adding additional parameters to the model; choice of

appropriate temporal covariance can be made via DIC or LPML.

Combining all the three terms, the likelihood function can be explicitly expressed

as

L =
n∏
i=1

πd+
i (1 + r̃c+

i + t̃c
+
i ) + (1− π)d−i (1 + r̃c−i + t̃c

−
i ).

For subjects that are only seen one time, the likelihood contribution is simply πd+
i (1+

t̃c
+
i ) + (1−π)d−i (1 + t̃c

−
i ); this was used for 18 subjects in the scaphoid fracture data.

Similarly, those subjects that are known to be infected have likelihood contribution

d+
i (1+ r̃c+

i + t̃c
+
i ), and those known to not be infected have contribution d−i (1+ r̃c−i +

t̃c
−
i ).

An important benefit of the proposed model is that missing data are readily in-

corporated: the likelihood contributions simply reflect those tests that have been

actually observed at a particular time point. For example, if subject i did not

receive test k′ at any time point then d+
i = ∏

k 6=k′ Se
ti•k
k (1 − Sek)J−ti•k and d−i =∏

k 6=k′ Sp
J−ti•k
k (1 − Spk)ti•k ; similarly, the sums in tc+

i and tc−i do not include u or v

indices that equal k′, i.e. C+
uv = C−uv = 0 for u or v equal to k′. If more than one test

is missing, simply remove the parameters related to the missing tests. Similarly, if a

subject is not observed at time point t′, i.e. all tests are missing, then the double sums

in rc+
i and rc−i simply skip terms with u or v equal to t′. These ideas are generalized

further to subjects that are missing a subset of tests at every time point. Thus very

general data collection schemes can be handled and no subjects with missing data

need be “thrown out” or imputed.

A useful aspect of the proposed model is the ready computation of conditional cor-

relation. The covariance between test k1 and test k2 is theD+ population is C+
k1k2 and

C−k1k2 in the D− population. Thus the pairwise conditional correlations are ρ+
k1k2 =

C+
k1k2/

√
Sek1(1− Sek1)Sek2(1− Sek2) and ρ−k1k2 = C−k1k2/

√
Spk1(1− Spk1)Spk2(1− Spk2).
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Similarly the conditional correlation of test k between any two time points isR+
k /[Sek(1−

Sek)] in the D+ population and R−k /[Spk(1− Spk)] in the D− population.

Obtaining posterior inference in Bayesian latent class models commonly employs

the Gibbs sampler (Joseph et al., 1995; Dendukuri and Joseph, 2001; Norris et al.,

2009; Engel et al., 2010). The model developed here has numerous awkward con-

straints on the parameter space, however the fundamental requirement is simply that

the elements of P (Ti = t|Di+) and P (Ti = t|Di−) are between zero and one for

all 2KJ values of t. Posterior inference proceeds via an adaptive componentwise

Metropolis-Hastings algorithm (Haario et al., 2005) that immediately discards any

parameter proposal that does not satisfy the basic requirements on P (Ti = t|Di+)

and P (Ti = t|Di−). Proposals are focused by considering easy-to-compute pairwise

covariance requirements (Dendukuri and Joseph, 2001) (See Appendix A.1). This

improves the mixing in the resulting Markov chain by an order of magnitude, al-

lowing for reasonably small MCMC samples to be used and dramatically decreasing

computation time.

2.3 Simulation

Here, data are simulated according to the model and the estimation procedure is

validated. The case of K = 3 tests and J = 2 time points is considered yielding 19

parameters

Se1, Se2, Se3, Sp1, Sp2, Sp3, R
+
1 , R

+
2 , R

+
3 , R

−
1 , R

−
2 , R

−
3 , C

+
12, C

+
13, C

+
23, C

−
12, C

−
13, C

−
23, π.

Given the true parameter values, each cell probability, for instance P (T11 = 0, T21 =

0, T31 = 0, T12 = 0, T22 = 0, T32 = 0), can be calculated based on the model in section

2.2. Then data is drawn from a multinomial distribution with these cell probabilities.

Three samples of size n = 200, n = 400, and n = 1000 are replicated 200 times;
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each data set is fitted using the adaptive Metropolis-Hastings algorithm run out 5000

iterations with no burn-in. All priors are uniform.

Table 2.1: n = 200; average of posterior means, average of posterior standard de-
viations, standard deviation of posterior means, and actual coverage level of 95%
CIs.

Par. Truth Ave. Post. Mean Ave. Post. SD SD Post. Mean 95%CI
π 0.300 0.336 0.080 0.039 0.985

Se1 0.800 0.733 0.065 0.058 0.920
Se2 0.700 0.655 0.071 0.056 0.980
Se3 0.600 0.566 0.078 0.054 0.980
Sp1 0.600 0.592 0.047 0.041 0.975
Sp2 0.700 0.692 0.043 0.039 0.970
Sp3 0.800 0.792 0.040 0.033 1.000
R+

1 0.020 0.023 0.027 0.018 0.995
R+

2 0.020 0.023 0.030 0.021 0.980
R+

3 0.020 0.013 0.034 0.023 0.995
R−1 0.020 0.021 0.025 0.021 0.985
R−2 0.020 0.018 0.021 0.018 0.965
R−3 0.020 0.021 0.018 0.015 0.975
C+

12 0.010 0.017 0.019 0.014 0.980
C+

13 0.015 0.019 0.020 0.015 0.975
C+

23 0.020 0.019 0.021 0.016 0.990
C−12 0.020 0.021 0.015 0.013 0.975
C−13 0.015 0.014 0.013 0.012 0.960
C−23 0.010 0.011 0.013 0.010 0.990

Table 2.1 presents simulation results from 200 simulated data sets each of size

n = 200; Tables 2.2 and 2.3 are for n = 400 and n = 1000. For each sample size

the sample mean of the 200 posterior means, sample mean of the 200 posterior stan-

dard deviations, sample standard deviation of the posterior means and 95% coverage

rate are calculated. Note that with increasing sample size, the mean of the poste-

rior standard deviation of each parameter becomes narrower, empirically verifying

identifiability. With sample size n = 200, close to the sample size of our scaphoid

fracture data, the posterior estimates show more variability than larger sample sizes.

The simulation also indicates that the mean of posterior standard deviation is ap-
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Table 2.2: n = 400; average of posterior means, average of posterior standard de-
viations, standard deviation of posterior means, and actual coverage level of 95%
CIs.

Par. Truth Ave. Post. Mean Ave. Post. SD SD Post. Mean 95%CI
π 0.300 0.335 0.068 0.041 0.975

Se1 0.800 0.760 0.048 0.038 0.940
Se2 0.700 0.669 0.056 0.047 0.945
Se3 0.600 0.581 0.062 0.049 0.960
Sp1 0.600 0.605 0.036 0.029 0.995
Sp2 0.700 0.704 0.032 0.028 0.995
Sp3 0.800 0.802 0.029 0.022 0.985
R+

1 0.020 0.018 0.021 0.014 1.000
R+

2 0.020 0.023 0.025 0.021 0.985
R+

3 0.020 0.016 0.028 0.022 0.985
R−1 0.020 0.019 0.019 0.018 0.970
R−2 0.020 0.018 0.016 0.014 0.970
R−3 0.020 0.019 0.014 0.012 0.960
C+

12 0.010 0.017 0.015 0.012 0.975
C+

13 0.015 0.019 0.016 0.012 0.985
C+

23 0.020 0.020 0.017 0.013 0.985
C−12 0.020 0.017 0.011 0.009 0.985
C−13 0.015 0.013 0.010 0.009 0.960
C−23 0.010 0.009 0.010 0.007 0.985

proaching the standard deviation of the posterior means with increasing sample size;

thus the posterior standard deviation provides a reasonable estimate of variance of

the posterior mean – as a point estimator – in repeated samples. The 95% coverage

rate also approaches the nominal frequentist 95% level with more data. Note that

estimation of parameters in the non-diseased group are more precise than that for

diseased group, due to the fact that the disease prevalence is set to less than one-half,

i.e. π = 0.3.
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Table 2.3: n = 1000; average of posterior means, average of posterior standard
deviations, standard deviation of posterior means, and actual coverage level of 95%
CIs.

Par. Truth Ave. Post. Mean Ave. Post. SD SD Post. Mean 95%CI
π 0.300 0.307 0.054 0.044 0.975

Se1 0.800 0.787 0.039 0.033 0.935
Se2 0.700 0.692 0.042 0.037 0.955
Se3 0.600 0.598 0.048 0.041 0.950
Sp1 0.600 0.600 0.025 0.025 0.945
Sp2 0.700 0.698 0.023 0.021 0.975
Sp3 0.800 0.802 0.021 0.018 0.980
R+

1 0.020 0.021 0.017 0.013 0.980
R+

2 0.020 0.018 0.019 0.016 0.975
R+

3 0.020 0.016 0.022 0.019 0.955
R−1 0.020 0.019 0.013 0.012 0.970
R−2 0.020 0.023 0.011 0.011 0.955
R−3 0.020 0.020 0.010 0.008 0.955
C+

12 0.010 0.015 0.012 0.009 0.975
C+

13 0.015 0.015 0.012 0.011 0.965
C+

23 0.020 0.017 0.014 0.011 0.985
C−12 0.020 0.020 0.008 0.008 0.950
C−13 0.015 0.014 0.007 0.007 0.960
C−23 0.010 0.010 0.007 0.007 0.940

2.4 Data analysis

In Section 1, the scaphoid fracture data was introduced, based on n = 223 patients’

clinical tests, of which 205 were repeated at a second time point. Duckworth et al.

(2012) developed a set of clinical prediction rules by studying several clinical tests and

other demographic factors predictive of scaphoid fracture. Based on their analysis

we consider the K = 3 most predictive clinical tests: (k = 1) pain on thumb-index

finger pinch, (k = 2) scaphoid tubercle tenderness, and (k = 3) anatomical snuff box

(ABS) pain on ulnar deviation. Duckworth et al. (2012) noted that the assumption of

conditional independence among the tests is unrealistic because each examiner knew

the result of each test, so our model is an appealing approach to analyzing these data.
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Table 2.4: Posterior mean, median, standard deviation (SD) and 95% CI of model
parameters.

Mean Median SD 2.5% 97.5%
π 0.352 0.350 0.051 0.258 0.452

Se1 0.706 0.704 0.053 0.599 0.813
Se2 0.894 0.900 0.039 0.803 0.953
Se3 0.907 0.912 0.032 0.835 0.958
Sp1 0.640 0.638 0.032 0.581 0.702
Sp2 0.615 0.616 0.036 0.545 0.683
Sp3 0.589 0.588 0.035 0.523 0.663
R+

1 0.077 0.078 0.026 0.030 0.125
R+

2 0.028 0.023 0.023 0.000 0.088
R+

3 0.007 0.005 0.010 -0.007 0.031
R−1 0.100 0.100 0.019 0.060 0.138
R−2 0.083 0.083 0.020 0.043 0.118
R−3 0.046 0.047 0.017 0.009 0.079
C+

12 0.016 0.014 0.014 -0.006 0.050
C+

13 0.013 0.012 0.008 0.001 0.031
C+

23 0.006 0.005 0.007 -0.003 0.022
C−12 0.088 0.088 0.011 0.065 0.110
C−13 0.122 0.122 0.013 0.094 0.145
C−23 0.032 0.032 0.011 0.010 0.055

The component-wise adaptive Metropolis-Hastings algorithm was implemented for

50,000 iterations including a 2,000 iterate burn-in; this took roughly 1.5 hours using

our R code. The traceplots for each of the 19 parameters are shown in the Appendix

A.2; different runs with differing starting values and random number generator seeds

lead to essentially identical inferences. Model parameter estimates and 95% credible

intervals are in Table 2.4. Duckworth et al. (2012) estimated the prevalence in this

population to be 0.37 using latent class analysis and 0.28 using traditional calculation

method; the posterior mean and median from our model is close at 0.35 and the 95%

CI includes both 0.37 and 0.28. Duckworth et al. (2012) (unrealistically) calculated

the sensitivity and specificity at each time point separately; the model proposed here

assumes that the testing characteristics do not change over time but encourages cor-

22



relation between pairs of tests and over time. Broadly, however, the Duckworth et al.

(2012) results are consistent with ours. Note significant temporal and pairwise cor-

relation among tests in the non-diseased population; significant pairwise correlation

is not evident in the diseased subpopulation.

2.5 Tests in parallel and series

Multiple tests allow the construction of new “omnibus” tests, e.g. in series or parallel

(Hanson et al., 2000). Parallel interpretation (positive on any test is positive, negative

otherwise) increases the sensitivity and serial interpretation (positive on all tests is

positive, negative otherwise) increases the specificity of diagnosis. We use the union

symbol ∪ to denote parallel interpretation between tests and the intersection symbol

∩ to denote serial interpretation. With K = 3 tests, as in our application, there are

eight new tests we can consider if only testing at one time point. Let the test results

for a randomly selected person be T = (T1, T2, T3) at a given time point. Additional

tests are

T1 ∪ T2, T1 ∪ T3, T2 ∪ T3, T1 ∪ T2 ∪ T3, T1 ∩ T2, T1 ∩ T3, T2 ∩ T3, T1 ∩ T2 ∩ T3.

With conditional dependence, it may be that only one or two tests hold all the

information about the disease state; e.g. if T2 ⊥ D|T1 then T2 provides no more

information on D given T1. Thus additional cost can be avoided.

The model provides closed forms for P (T = t|D+) and P (T = t|D−) in terms

of 19 model parameters. Let p+
t1t2t3 = p+

t = P (T = t|D+) and p−t1t2t3 = p−t = P (T =

t|D−). Then the sensitivity of T1 ∪ T2 is p+
10• + p+

01• + p+
11• = 1− p+

00•; the specificity

is p−00•, etc. The sensitivity of T1 ∪ T2 ∪ T3 is 1 − p+
000; the specificity is p−000. The

sensitivity of T1 ∩ T2 is p+
11•; the specificity is 1− p−11•. These sums can be monitored

over the MCMC run and posterior summaries and credible intervals computed in the
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Table 2.5: Posterior mean, median and 95% CI of sensitivity and specificity of parallel
and serial combinations of tests

Test Sensitivity Specificity
Mean Median 2.5% 97.5% Mean Median 2.5% 97.5%

T1 ∪ T2 0.959 0.965 0.894 0.989 0.475 0.475 0.412 0.536
T1 ∪ T3 0.964 0.966 0.922 0.990 0.493 0.493 0.432 0.558
T2 ∪ T3 0.985 0.987 0.961 0.998 0.384 0.385 0.320 0.453

T1 ∪ T2 ∪ T3 0.993 0.995 0.980 0.999 0.370 0.372 0.306 0.440
T1 ∩ T2 0.668 0.661 0.536 0.821 0.771 0.771 0.733 0.815
T1 ∩ T3 0.675 0.666 0.553 0.821 0.728 0.723 0.681 0.785
T2 ∩ T3 0.827 0.822 0.717 0.916 0.801 0.803 0.741 0.852

T1 ∩ T2 ∩ T3 0.624 0.620 0.501 0.758 0.844 0.843 0.807 0.882

usual way. Note that for any t, one simply need compute “likelihood contributions”

d+(1 + t̃c
+) and/or d−(1 + t̃c

−) corresponding to t = (t1, t2, t3) to obtain p+
t and p−t .

Table 2.5 shows the posterior mean, median and 95% CI for the sensitivities and

specificities of the 8 new tests constructed in parallel and series. Evidently, sensitivity

of the parallel tests and specificity of serial tests increase drastically. Furthermore,

it is noted that the T1 ∪ T2 ∪ T3 has the highest sensitivity and T1 ∩ T2 ∩ T3 has

the highest specificity which suggests each test contributes to the parallel sensitivity

and serial specificity to some degree; that is to say, all these three tests bring some

information in diagnosing the scaphoid fracture. Among these newly constructed

tests, T2 ∩ T3 is the only one with sensitivity and specificity greater than 80%, which

provides clinical insight in combining these tests. This test is positive if both scaphoid

tubercle tenderness and ABS pain on ulnar deviation are present, otherwise negative.

Note that T2 and T3 have conditional pairwise covariances (Table 2.4) much smaller

than the other two pairs, i.e. are much more closer to being conditionally independent,

shedding light on why T2 ∩ T3 appears to be the best omnibus test. Note that using

T2 ∩ T3 decreases the proportion of false positives by 20% compared to using either

T2 or T3 by themselves.
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Parallel and serial tests can also be considered over time for individual tests or

groups of tests to improve either sensitivity (parallel) or specificity (serial) as well.

For example, a parallel test for the kth diagnostic administered over two time points

Ti1k ∪ Ti2k (kth test comes up positive at either time) increases sensitivity vs. just

one time point Ti1k.

2.6 Discussion and Conclusions

A model for conditionally dependent binary tests repeated over time is developed

and applied to a data set on clinical symptoms of scaphoid fracture. A notable

feature is the accommodation of pairwise dependence with as few as three tests in one

population. Without repeated measures one must make the untestable assumption of

conditional independence among the three tests to move forward. For the scaphoid

data, there is a clear indication of both correlation among pairs of tests and correlation

over time, especially among those who do not have scaphoid fractures. Unlike previous

approaches, the proposed model does not include subject-specific random effects and

model parameters are immediately interpretable. In addition, correlation parameters

can offer some useful information on how tests interact with each other and behave

over time. Parallel and serial test construction further facilitate evaluation of multiple

tests and provide insight on how to apply groups of tests simultaneously.

Although generalization to higher order (than pairwise) dependence is possible,

Jones et al. (2010) suggest that in practice, pairwise dependence is likely to be more

than enough. The model developed here is immediately generalizable to more than

one population with differing prevalence, or prevalence modeled through binary re-

gression. Populations could also be based on stratification over aspects such as gen-

der, age group, etc. and model-fitting proceeds as usual. In fact, each strata only

need introduce one new prevalence parameter, allowing highly efficient borrowing of

information across sub-populations.
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Chapter 3

Bayesian Hierarchical Latent Class Models for

Estimating Diagnostic Accuracy

3.1 Introduction

In medical practice, multiple diagnostic tests (or raters) are often utilized to diag-

nose the disease status of a patient. Assessing the diagnostic accuracy of individual

tests is important. The diagnostic accuracy based upon results from multiple raters

also merits much attention. For a diagnostic test with a binary outcome, when the

true disease status (with or without disease) is known or a gold standard reference

standard exists, the estimation of sensitivity and specificity of the test is straightfor-

ward. However, on many occasions, the true disease status or the gold standard is

prohibitive to obtain due to the cost or ethical concerns. For this situation, many

latent class models, where the true disease status is unknown and therefore treated

as latent, have been proposed to assess the diagnostic accuracy of tests.

The early development of latent class models lay in conditional independence

models, where diagnostic results for the same patient across multiple tests are inde-

pendent conditional on a patient’s true disease status. Hui and Walter (1980) laid a

solid foundation in studying the false positive and negative error rates of two diagnos-

tic tests in two populations. Joseph et al. (1995) discussed a similar problem from a

Bayesian perspective. However, this conditional independence between multiple tests

does not always hold due to some common factors connecting tests (Dendukuri and

Joseph, 2001). Vacek (1985) and Brenner (1996), among others, demonstrated that
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ignoring the possible dependence between tests can lead to biased estimates of the

prevalence of disease and accuracy of tests.

In the literature of latent class models, there are two general approaches for han-

dling the conditional dependence between multiple tests. Vacek (1985), Torrance-

Rynard and Walter (1997), Yang and Becker (1997), Jones et al. (2010) and Wang

and Hanson (2019), among others, directly incorporated conditional pairwise covari-

ances between tests. Qu et al. (1996) developed latent Gaussian random effects (GRE)

to model the conditional dependence between multiple tests. Albert and Dodd (2004)

provided a cautionary note and guidance in using latent class models with various

dependence structures. In this chapter, we adopt the first type of the conditional

dependence model due to the ease of interpretation. A systematic review of latent

class models can be found in van Smeden et al. (2013) and Collins and Albert (2016).

Dendukuri and Joseph (2001) proposed Bayesian approaches for handling both of

these two conditional dependence structures. However, they only considered positive

correlation between tests and only dealt with two tests without providing a general-

ized method to handle more tests. Their full conditional distributions (for two tests)

for the Gibbs Sampler implementation were complicated. When the number of tests

increases, their likelihood based on the multinomial distribution of the test-result fre-

quency grows exponentially. Our proposed model, an extension of Jones et al. (2010)

, is amenable to accommodating more tests and allows for positive and negative cor-

relations between tests. The multinomial property is just a special case used in our

computational algorithms.

There has been much discussion about model identifiability for latent class models.

For example, see Rothenberg et al. (1971), Dendukuri et al. (2004), and Gustafson

et al. (2005). Jones et al. (2010) investigated the identifiability of the first type of the

conditional dependence model. They concluded that a sufficient number of degrees

of freedom does not guarantee unique estimates of prevalence and test performance.
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They provided some symbolic algebra methodology to determine whether a proposed

study design would lead to an identifiable model. When using Bayesian approaches,

identifiability is not mandatory if good prior information is available (Jones et al.,

2010). For example, Dendukuri and Joseph (2001) adopted informative priors to

avoid the nonidentifiability. In this chapter, we propose to apply correlation residual

analysis to reduce the number of parameters by only including significant covariance

terms into the model to improve the identifiability.

In the literature, most methods can only accommodate a small number of tests

or raters. For a large group of tests or raters, not only is individual diagnostic

accuracy of interest to be estimated, but also the diagnostic performance of the

whole group of tests or raters. Zhang et al. (2012) proposed a latent class model

with crossed random effects for the subjects and raters to estimate the diagnostic

accuracy of a group of raters. Lin et al. (2018) described a modeling approach to

assess each rater’s diagnostic skills by linking rater binary decisions with patient

true disease status through patient latent disease severity. In this chapter, for the

first time, the conditional independence model and the pairwise covariance model are

further developed to analyze a large number of tests under the Bayesian framework.

Unlike the approach of Dendukuri and Joseph (2001) where individual beta priors are

assigned for sensitivities (specificities), our method assumes that all the sensitivities

(specificities) follow a common beta prior with the two hyperparameters reflecting

the group level sensitivity (specificity). Our proposed “Poisson zero trick” JAGS

(Plummer, 2003) are easy to implement to flexibly incorporate a large number of

tests. The algorithms are feasible for analyzing dozens of tests under the conditional

dependence model and even hundreds of tests under the conditional independence

model.

The rest of this chapter is organized as follows. Section 3.2 explicitly describes

the conditional independence model and the pairwise covariance model with their
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hierarchical priors. The correlation residual analysis is also introduced in this sec-

tion. Section 3.3 shows details about the computation strategies with regard to their

implementation in JAGS. Simulation studies to investigate the performance of the

proposed methods are shown in Section 3.4. Section 3.5 illustrates the proposed

methods with three real data examples. Lastly, Section 3.6 summarizes the main

results with some discussions.

3.2 Models

Suppose that K tests (or raters) are used to evaluate n subjects, yielding vectors of

binary test results T1, . . . ,Tn, where Ti = (Ti1, . . . , TiK)′ for the ith subject (i =

1, . . . , n). Denote Tij = 1 if the test result is positive and Tij = 0 if negative. Let

Di denote the latent true disease status for subject i with 1 being positive and 0

negative, respectively. Denote by π the underlying disease prevalence P (Di = 1).

Then, the likelihood function for a latent class model for binary results is:

L =
n∏
i=1

{
πP (Ti = ti |Di = 1) + (1− π)P (Ti = ti |Di = 0)

}
≡

n∏
i=1

Li, (3.1)

where Li = πP (Ti = ti |Di = 1) + (1− π)P (Ti = ti |Di = 0).

3.2.1 Hierarchical conditional independence model (Model M1)

We first consider the conditional independence model, where the diagnostic results of

a subject are independent across all tests conditional on the true disease status. The

sensitivity and specificity of the jth test are denoted as Sej and Spj, respectively.

Then, according to the conditional independence structure,

P (Ti = ti |Di = 1) =
K∏
j=1

P (Tij = tij |Di = 1) =
K∏
j=1

Se
tij
j (1− Sej)1−tij ;

P (Ti = ti |Di = 0) =
K∏
j=1

P (Tij = tij |Di = 0) =
K∏
j=1

(1− Spj)tijSp1−tij
j . (3.2)
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Individual sensitivities and specificities are assumed to be random effects and to

independently follow common beta distributions, respectively:

Sej iid∼ Beta(ω1(κ1 − 2) + 1, (1− ω1)(κ1 − 2) + 1),

Spj
iid∼ Beta(ω2(κ2 − 2) + 1, (1− ω2)(κ2 − 2) + 1),

where ω1 is the mode of the beta distribution of test sensitivities and the concentrate

parameter κ1 reflects the spread of the distribution. The larger the value of κ1,

the more concentrated the distribution of test sensitivities is around the mode. To

ensure the existence of the mode ω1, κ1 needs to be larger than 2. Similarly, ω2 and κ2

describe the mode and spread of the distribution of test specificities. An advantage of

using this parameterization to denote a beta distribution is that it naturally provides

group-level diagnostic accuracy and variation by the mode ω and concentrate term

κ. See page 129 in Kruschke (2014) for more details of this parameterization. To

allow data to inform these group-level parameters, we assign vague priors to them.

We assign uniform(0.5,1) priors to ω1 and ω2, and diffused gamma priors, such as

gamma(0.01,0.01), to κ1−2 and κ2−2. We assign a uniform(0,1) prior to the disease

prevalence π.

Note that assigning uniform(0.5,1) priors to ω1 and ω2 is a natural prior choice as

for most reasonable tests, we would expect their sensitivity and specificity are above

0.5. To avoid the “label-switching” problem in the fitting, we may follow Jones et al.

(2010) to add the restriction of Sej + Spj > 1. We can still assign Sej the same

beta prior, but let Spj follow the truncated beta prior with the support (1− Sej, 1).

Similarly, to avoid the sampling of π stuck in 0 or 1 extremes, we may adjust the

uniform(0,1) prior of the disease prevalence to a uniform( 1
n
, 1− 1

n
).20

3.2.2 Hierarchical conditional dependence model (Model M2)

Following Dendukuri and Joseph (2001), our second model takes into account the

pairwise dependence between multiple tests. Conditional covariances, such as between

30



test j and test k, are denoted as C+
jk and C−jk given the subject being diseased or non-

diseased, respectively. For instance, given subject i is diseased, the joint probabilities

for test j and test k classifying subject i are as follows:

P (Tij = 1, Tik = 1 |Di = 1) = SejSek + C+
jk,

P (Tij = 1, Tik = 0 |Di = 1) = Sej(1− Sek)− C+
jk,

P (Tij = 0, Tik = 1 |Di = 1) = Sek(1− Sej)− C+
jk,

P (Tij = 0, Tik = 0 |Di = 1) = (1− Sej)(1− Sek) + C+
jk.

Similarly, given subject i is non-diseased, the joint probabilities for test j and test

k are

P (Tij = 1, Tik = 1 |Di = 0) = (1− Spj)(1− Spk) + C−jk,

P (Tij = 1, Tik = 0 |Di = 0) = (1− Spj)Spk − C−jk,

P (Tij = 0, Tik = 1 |Di = 0) = Spj(1− Spk)− C−jk,

P (Tij = 0, Tik = 0 |Di = 0) = SpjSpk + C−jk.

It is clear that a positive (negative) value of C+
jk reflects the positive (negative) de-

pendence between test j and test k on diagnosing the same subjects when the true

disease status is positive. A similar interpretation is applied to C−jk when the true

disease status is negative. To be valid covariances, C+
jk and C−jk need to ensure that

the probability of each combination above is between 0 and 1. Therefore, necessary

constraints are

(1− Sej)(Sek − 1) < C+
jk < min(Sej, Sek)− SejSek,

(1− Spj)(Spk − 1) < C−jk < min(Spj, Spk)− SpjSpk. (3.3)

Under this conditional pairwise dependence model, the joint probabilities of all k

test results for subject i conditional on the true disease status can be expressed as

follows using a generalized form in Jones et al. (2010):
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P (Ti = ti |Di = 1) =
K∏
k=1

Setikk (1− Sek)1−tik +

K−1∑
u=1

K∑
v=u+1

(−1)tiu+tivcov+
uv

K∏
k 6=u,v

Setikk (1− Sek)1−tik ,

P (Ti = ti |Di = 0) =
K∏
k=1

Sp1−tik
k (1− Spk)tik +

K−1∑
u=1

K∑
v=u+1

(−1)tiu+tivcov−uv

K∏
k 6=u,v

Sp1−tik
k (1− Spk)tik . (3.4)

For the covariances, we assign uniform priors with the constraints (3.3) to them.

For the other parameters, we adopt the same prior specification as in Subsection

3.2.1.

3.2.3 Correlation residual plot

It is worth pointing out that not every pair of covariances are needed in the conditional

dependence model. Adding unnecessary covariances is not just introducing redundant

parameters but also adding computational burden and uncertainty to the model.

Therefore, we introduce a correlation residual analysis (Qu et al., 1996) to detect

significant dependence between tests. The correlation between each pair of tests,

such as test j and test k, is defined as

rjk = P (Tj = 1, Tk = 1)− P (Tj = 1)P (Tk = 1)√
P (Tj = 1)

(
1− P (Tj = 1)

)
P (Tk = 1)

(
1− P (Tk = 1)

) .
The correlation residual is the difference between observed correlation and model-

based correlation. For the observed correlation, P (Tj = 1), P (Tk = 1), and P (Tj =

1, Tk = 1) are estimated by their sample proportions as 1
n

∑n
i=1 tij, 1

n

∑n
i=1 tik, and

1
n

∑n
i=1 tiktij, respectively. For the model-based correlation, the joint probability is

P (Tj = 1, Tk = 1) = πSejSek + (1− π)(1− Spj)(1− Spk)

for model M1 in Section 2.1 and is

P (Tj = 1, Tk = 1) = π(SejSek + C+
jk) + (1− π)

(
(1− Spj)(1− Spk) + C−jk

)
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for model M2 in Section 2.2. The marginal probabilities for models M1 and M2 have

the same form P (Tj = 1) = πSej + (1− π)(1− Spj). After plugging in the estimates

of the disease prevalence π, sensitivities and specificities, the model-based correlation

is calculated.

For the correlation residual analysis, plotting all pairwise correlation residuals

from the conditional independence model (M1) provides a simple visual way to check

whether M1 sufficiently explains the data. If M1 provides a good fit, then all correla-

tion residuals are expected to be close to zero. Otherwise, the conditional dependence

model (M2) should be applied. The formal way to identify significant correlations

should take into account the uncertainty of the model-based correlation. We can

use the Markov Chain Monte Carlo (Gelman et al., 2013) samples of parameters to

obtain the MCMC chain of the correlation residuals for each pair of tests. Based

upon multiple simulation studies we conducted, the following criterion is proposed to

identify significant covariance terms for M2: when a one-sided 95% credible interval

(CI) of the correlation residual from M1, either (0, 95%) or (5%,100%) CI, includes

only negative values or positive values, we define that correlation pair as significant

and therefore the corresponding covariance terms are added in the pairwise covariance

model (M2). For nonsignificant pairs, we set the corresponding covariance terms to 0

in M2. After fitting M2, we can check correlation residuals again and a good fitting

in M2 model should now have all correlation residuals close to 0. Simulation results

in Section 4 show that the one-sided credible interval criterion works well to identify

significant correlations between tests.

3.3 Computational techniques

To configure the hierarchical structure of models for implementation, we apply MCMC

computation in Just Another Gibbs Sampler (JAGS) (Plummer, 2003). The advan-

tage of using JAGS is that the user does not need to derive the complicated full
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conditional distributions or to write the sampling code by himself. Instead, the user

only needs to prepare the JAGS model declaration syntax and then, in R, to pass data

and model syntax to JAGS, for example, via the function jags() in R2jags library

(Su and Yajima, 2015). There are many built-in distributions in JAGS; however,

none of them is directly proper for our proposed models. Consequently, we utilize

the “Poisson zero trick" method to accommodate the likelihood in equation (3.1).

Specifically, for i = 1, ..., n, zi = 0 is introduced and zi follows a Poisson distribution

with mean parameter as −log(Li). In this way, the likelihood function ingenuously

links the original data with the introduced zi’s, that is, the zi’s contribute the same

likelihood as the original data.

3.3.1 Multinomial property

For K tests, there are in total 2K possible test-result combinations for each patient.

Given the parameters, we can calculate the probability for each test-result combi-

nation according to the models. For instance, in the case of two tests, there are 4

possible test-result combinations, i.e. 00, 01, 10 and 11, where 01 represents a non-

diseased result from the first test and a diseased result from the second test. The

probability of each test-result combination can be calculated by plugging the test-

result combination values as ti into (3.2) or (3.4) (depending on whether the M1 or

M2 model is used) and then evaluating the likelihood formulae Li. For example, the

probability of the test results 00 is

P00 = P (Ti1 = 0, Ti2 = 0) = πP (Ti1 = 0, Ti2 = 0 |Di = 1)+

(1− π)P (Ti1 = 0, Ti2 = 0 |Di = 0).

Denote the frequency of subjects for the four combinations as N00, N01, N10, and

N11, respectively. The vector (N00, N01, N10 N11) follows a multinomial distribu-

tion (n, p) with n (= N00 + N01 + N10 + N11) the total number of subjects and

p = (P00, P01, P10, P11) denoting the probability vector. This multinomial property
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holds for both models M1 and M2. Adopting this multinomial property for the fitting,

especially for model M2, can significantly alleviate the computational burden. In Sec-

tion 3.4, for the second simulation scenario, we have observed that it takes on average

six or seven seconds to fit model M2 when using the multinomial property, while it

takes more than one and a half hours to fit model M2 without using the multinomial

property. However, for the situation when the sample size is relatively small in the

sense that many test-result combinations are observed with zero frequency, imposing

this multinomial distribution will distort the estimation instead. This phenomenon

has been observed in the first simulations scenario in Section 3.4.

The R code of data preparation and JAGS model syntax for models M1 and

M2 with and without using the multinomial property is included in the appendix

B.1. Specifically, Algorithm 1 is for model M1 without the multinomial imposition;

Algorithm 2 is for model M2 without the multinomial imposition; Algorithm 3 is for

model M1 with the multinomial imposition; and Algorithm 4 is for model M2 with

the multinomial imposition.

3.4 Simulation study

In this section, we conduct a simulation study to demonstrate the advantage of using

the conditional dependence model when the dependence between tests does exist, to

compare the performance of the four algorithms, and to investigate the operating char-

acteristics of the correlation residual analysis. We consider two simulation scenarios,

with the first scenario similar to the real data example in Section 5.2 with a relatively

small number of patients and the second scenario similar to the real data example

in Section 5.3 with a large number of patients. Specifically, in the first scenario, 400

(n) patients are rated by 4 (K) tests with test sensitivities (0.96, 0.87, 0.81, 0.86) and

test specificities (0.97, 0.98, 0.99, 0.97). Among the 4 tests, C+
23 = 0.05, C+

34 = 0.05,

C−23 = 0.001, C−34 = 0.001, and all other pairwise covariances set to 0. In the
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second scenario, 4000 (n) patients are rated by 5 (K) tests with test sensitivities

(0.77, 0.65, 0.71, 0.68, 0.71) and test specificities (0.89, 0.93, 0.88, 0.90, 0.86). Among

the 5 tests, C+
23 = 0.05, C+

14 = 0.05, C+
24 = 0.05, C+

25 = 0.05, C+
35 = 0.001, C−23 = 0.001,

C−14 = 0.001, C−24 = 0.001, C−25 = 0.001, C−35 = 0.05, and all other pairwise covariances

set to 0. For both scenarios, the underlying disease prevalence π is 0.45. Given these

true parameter values, data are generated according to the conditional dependence

model. Specifically, the test results for each patient are randomly simulated from a

categorical distribution with 2K possible test-result combinations and the probabil-

ity of each possible test-result combination calculated using the individual likelihood

defined in (3.1) with the two conditional probabilities calculated via equation (3.4).

For each scenario, 200 data sets are simulated.

Table 3.1: Simulation results for scenario 1: K = 4, n = 400, and 200 data replicates.

Truth M1 (Algorithm 1) M1 (Algorithm 3) M2 (Algorithm 2) M2 (Algorithm 4)
Bias (SD) Bias (SD) Bias (SD) Bias (SD)

π 0.450 -0.011 (0.025) -0.002 (0.025) 0.000 (0.026) 0.006 (0.026)
Se1 0.960 -0.009 (0.017) -0.027 (0.019) -0.007 (0.017) -0.021 (0.020)
Se2 0.870 0.019 (0.024) 0.003 (0.025) 0.002 (0.026) -0.009 (0.027)
Se3 0.810 0.031 (0.029) 0.019 (0.029) -0.002 (0.033) -0.001 (0.029)
Se4 0.860 0.016 (0.025) 0.001 (0.026) 0.001 (0.027) -0.009 (0.028)
Sp1 0.970 -0.017 (0.016) -0.020 (0.016) 0.000 (0.013) -0.006 (0.014)
Sp2 0.980 -0.006 (0.011) -0.011 (0.012) -0.004 (0.011) -0.011 (0.012)
Sp3 0.990 -0.003 (0.007) -0.008 (0.009) -0.007 (0.009) -0.017 (0.011)
Sp4 0.970 -0.006 (0.013) -0.011 (0.014) 0.003 (0.012) -0.010 (0.013)
C+

23 0.050 — — -0.001 (0.015) -0.008 (0.013)
C+

34 0.050 — — 0.001 (0.015) -0.006 (0.013)
C−23 0.001 — — 0.004 (0.004) 0.005 (0.005)
C−34 0.001 — — 0.003 (0.004) 0.005 (0.005)

RMSE 0.01567 0.01501 0.00416 0.01195
DIC 1224.128 238.467 1189.774 208.30
Time 18.488 secs 1.237 secs 36.217 secs 1.893 secs

We fit each data set using the four algorithms and summarize the simulation

results in Table 3.1 and Table 3.2 for the two simulation scenarios, respectively. In

the tables, Bias stands for the difference between the average of 200 point estimates
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Table 3.2: Simulation results for scenario 2: K = 5, n = 4000, and 200 data replicates.

Truth M1 (Algorithm 1) M1 (Algorithm 3) M2 (Algorithm 2) M2 (Algorithm 4)
Bias (SD) Bias (SD) Bias (SD) Bias (SD)

π 0.450 -0.020 (0.011) -0.017 (0.011) 0.002 (0.013) 0.004 (0.013)
Se1 0.770 -0.008 (0.013) -0.011 (0.013) -0.004 (0.015) -0.006 (0.015)
Se2 0.650 0.044 (0.015) 0.042 (0.015) 0.001 (0.016) 0.000 (0.016)
Se3 0.710 0.040 (0.012) 0.038 (0.012) 0.003 (0.015) 0.001 (0.014)
Se4 0.680 0.019 (0.014) 0.017 (0.014) -0.002 (0.016) -0.002 (0.016)
Se5 0.710 0.048 (0.012) 0.045 (0.012) 0.002 (0.014) 0.000 (0.014)
Sp1 0.890 -0.029 (0.009) -0.029 (0.009) -0.002 (0.010) -0.002 (0.011)
Sp2 0.930 0.080 (0.006) 0.079 (0.006) 0.069 (0.009) 0.067 (0.009)
Sp3 0.880 0.010 (0.010) 0.010 (0.010) 0.003 (0.011) 0.002 (0.011)
Sp4 0.900 -0.008 (0.008) -0.009 (0.008) -0.003 (0.009) -0.003 (0.010)
Sp5 0.860 -0.016 (0.010) 0.017 (0.010) 0.003 (0.011) 0.002 (0.011)
C+

23 0.050 — — -0.002 (0.006) -0.002 (0.006)
C+

14 0.050 — — 0.001 (0.007) -0.001 (0.007)
C+

24 0.050 — — 0.000 (0.006) 0.000 (0.006)
C+

25 0.050 — — -0.002 (0.006) -0.002 (0.006)
C+

35 0.001 — — -0.002 (0.006) -0.002 (0.006)
C−23 0.001 — — 0.000 (0.004) 0.000 (0.004)
C−14 0.001 — — 0.002 (0.005) 0.001 (0.005)
C−24 0.001 — — -0.001 (0.002) 0.000 (0.002)
C−25 0.001 — — -0.001 (0.004) 0.001 (0.004)
C−35 0.050 — — -0.002 (0.006) -0.002 (0.006)

RMSE 0.01882 0.01914 0.00587 0.00586
DIC 22017.830 937.885 21569.440 495.858
Time 12.592 mins 2.693 secs 98.422 mins 6.261 secs

(posterior means) and the true values; SD stands for the average of 200 posterior

standard deviations; RMSE is the square root of the average of 200 MSEs with each

individual MSE calculated between each estimated diagnostic accuracy parameter

(sensitivities and specificities) and their true parameter values; DIC stands for the

average Deviance Information criterion (Speigelhalter, 2003), that is, the average

of 200 DICs with each DIC produced by the JAGS. For both scenarios, Table 3.1

and Table 3.2 show that after incorporating the pairwise covariances, model M2

provides overall more accurate estimation of the disease prevalence, sensitivities and

specificities than model M1. Specifically, the point estimates for model M2 are much
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less biased with only slightly larger posterior standard deviations than model M1 and

the RMSEs of model M2 are smaller than those of model M1. Furthermore, model

M2 provides unbiased estimates of the covariances, which model M1 is unable to.

In terms of using the multinomial imposition, we can see that the algorithms with

the multinomial imposition take much less time for the fitting. For example, Table

3.2 shows that for the second simulation scenario, it takes on average more than

one and a half hours to fit model M2 without the multinomial imposition while it

takes only 6 seconds to fit model M2 with the multinomial imposition. Table 3.1

shows that model M2 with the multinomial imposition (Algorithm 4) actually leads

to worse estimation results with larger biases than model M2 without the multinomial

imposition (Algorithm 2) for the first scenario, while Table 3.2 shows that M2 with the

multinomial imposition (Algorithm 4) provides almost identical estimation results as

those without the multinomial imposition (Algorithm 2) for the second scenario. This

discovery implies that when the sample size n is large in the sense that the number of

unique observed test result combinations equals to 2K , using the multinomial property

for the fitting can provide the estimation results as good as the original model and

meanwhile it alleviates the computational burden. However, when the sample size is

small, imposing the multinomial property will distort the estimation instead. Finally,

comparing these two tables, we can see that as the sample size n increases, the biases

and posterior standard deviations both clearly decrease for using each algorithm.

Table 3.3 and Table 3.4 summarize the correlation residual analysis for the 200

simulated data sets for each of the two simulation scenarios. Table 3.3 presents the

selection frequency of significant correlation pairs for scenario 1 based on the one-sided

credible interval criterion (described in Section 2.3) after fitting model M1. Table 3.3

shows that the number of correct inclusion of correlation pairs is 149. There are 24

times that only r34 is selected, 20 times only r23 is selected, and very few times that

some other correlations are selected. Additional simulation studies (see Appendix
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Table 3.3: Frequencies of correlation selection for scenario 1: K = 4, n = 400, and
200 data replicates. Note that “1" indicates “being selected"

Frequency r12 r13 r23 r14 r24 r34

149 0 0 1 0 0 1
24 0 0 0 0 0 1
20 0 0 1 0 0 0
2 0 0 1 1 0 0
3 0 0 1 1 0 1
1 0 0 0 0 0 0
1 1 0 1 0 0 1

Table 3.4: Frequencies of correlation selection for scenario 2: K = 5, n = 4000, and
200 data replicates. Note that “1" indicates “being selected"

Frequency r12 r13 r23 r14 r24 r34 r15 r25 r35 r45

124 0 0 1 1 1 1 0 1 1 1
23 0 0 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1
30 1 0 1 1 1 1 0 1 1 1
17 0 1 1 1 1 1 0 1 1 1
4 1 0 1 1 1 1 1 1 1 1

B.2) show that partially missing importance covariances results in a small amount

of estimation bias, but the bias is smaller than using the completely misspecified

conditional independence model (M1). On average, the estimation results for scenario

1 when fitting with M2 with selected significant covariances by the one-sided credible

interval criterion are very close to those when fitting with the true model. Table 3.4

presents the selection frequency of significant correlation pairs for scenario 2 where

the true model has significant covariances C+
23, C+

14, C+
24, C+

25 and C−35. Table 3.4 shows

that besides the true significant pairs r23, r14, r24, r25, and r35 are selected, two extra

pairs r34 and r45 are also always selected. The other three pairs r12, r13, and r15 are

only selected 34, 19, and 29 times, respectively. Based on this observation, we fit the

data with model M2 having these seven pairs of covariances added. The estimation

results (see Appendix B.3) are comparable to those obtained from the true model.
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Particularly, the estimates for the two extra covariance terms are approximately 0.

A further simulation study shows that adding all ten pairs of covariances drastically

worsens the estimation. In summary, when the covariance pattern is simple as in

scenario 1, our correlation residual check method can frequently detect the pattern;

when the covariance pattern is complicated as in scenario 2, a few more covariance

terms may be selected without much influence on the estimation; when all pairwise

covariance terms are included, estimation results can be poor.

3.5 Data analysis

In this section, we illustrate our proposed methods through three examples.

3.5.1 Example 1: Beam’s mammogram data

Beam’s mammogram data (Beam et al., 2003) was collected to study the variability in

the interpretation of mammograms by a national sample of radiologists in the United

States. It contains diagnostic results of 107 radiologists each evaluating 146 women

from a breast cancer screening program. The true disease status of each patient

(breast cancer or no breast cancer) was known from a biopsy examination or a mini-

mum 2-year follow-up study. See more details of this data set in Beam et al. (2003).

Beam’s data was analyzed by Lin et al. (2018) to estimate radiologist diagnostic skills

with a latent variable model, where the diagnostic results were dichotomized. Here

we illustrate our Bayesian hierarchical conditional independence model with this di-

chotomous rating data. Pairwise covariances and the multinomial property are not

convenient to use due to the large number (=107) of raters, and therefore we restrict

our analysis to model M1 and Algorithm 1 in the Appendix B.1 is applied. The

breast cancer disease prevalence π is estimated as 0.44 based upon the sample of 146

women. The mode of rater sensitivities, ω1, is estimated as 0.94 and mode of rater

specificities, ω2, is estimated as 0.86. These modes measure the diagnostic accuracy
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of the whole population of radiologists. The estimated concentrate term κ1 is 16

and the estimated κ2 is 10.4 indicating a wider spread of rater specificities. So, it is

reasonable to conclude that the raters usually reach higher consensus on identifying

the subjects as being diseased when the truth disease status is diseased. Figure 3.1

plots the estimated sensitivities and specificities obtained from model M1 versus the

empirical sensitivities and specificities calculated from the data, demonstrating that

the latent class model works well for the Beam’s data.
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Figure 3.1: Plots of estimated sensitivities and specificities v.s. empirical sensitivities
and specificities for the mammogram data in Example 1.

One advantage of using latent class models is that they do not require informa-

tion of the true disease status. Theoretically, when the disease status is known, the

nonidentifiability issue (if it exists) would be automatically resolved and the estima-

tion is more accurate. Figure 3.2 shows that with and without true disease status,

the estimated sensitivities and specificities are very close for this data set, which

showing that there is no identifiability problem for the Beam’s data and again the

latent class model works well for the Beam’s data. In addition, the estimated beta

distributions for sensitivities and specificities remarkably catch the density curves of

empirical sensitivities and specificities, which is presented in Figure 3.3.
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Figure 3.2: Plots of estimated sensitivities and specificities with true disease status
known v.s. those without true disease status known for the mammogram data in
Example 1.

3.5.2 Example 2: Alvord’s HIV data

Alvord’s HIV data (Alvord et al., 1988) was used to determine the diagnostic per-

formance of HIV antibody assays. In the study, serum samples from each of the

428 subjects were tested by four conventional bioassays (tests). Alvord et al. (1988)

showed that the traditional independent latent two-class model is inadequate to fit

the data and a three-class model can properly resolve the issue. Qu et al. (1996) used

correlation residual plot to check covariance pattern and applied Gaussian random

effects to model the test dependence, which was shown to greatly improve the fitting

greatly. One drawback of their model is that the parameters introduced are not eas-

ily interpretable and cannot directly explain the covariance. The pairwise covariance

dependence model (M2) proposed in this chapter can naturally solve this problem

and can easily be applied to this study with four bioassays. Because nine test result

combinations have observed frequencies as 0, the multinomial property is not suitable

to use.
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Figure 3.3: Density curves of the estimated and empirical distributions of sensitivities
and specificities for the mammogram data in Example 1.
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Figure 3.4: Pairwise correlation residual plots for models M1 and M2 for the HIV
data in Example 2. The top panel is for model M1; the bottom panel is for model
M2.
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Table 3.5: Observed and expected frequencies for models M1 and M2 without the
multinomial impose for the HIV data in Example 2

Test results Observed frequency Expected frequency
M1 (Algorithm 1) M2 (Algorithm 2)
Mean Median Mean Median

0000 170 169.12 168.72 168.62 168.31
1000 4 5.46 5.20 5.32 4.95
0100 6 6.40 6.18 6.48 6.27
1100 1 0.27 0.25 0.23 0.21
0001 15 13.87 13.58 13.97 13.68
1001 17 9.38 9.25 16.84 16.56
1101 4 11.93 11.70 4.77 4.47
1011 83 88.90 88.97 81.66 81.46
1111 128 118.67 118.24 126.19 125.88

Goodness of fit 0.005749 0.007699 0.9953 0.9979
(Chi-square test p value)

DIC 1284.388 1273.979

Table 3.6: Estimation results (posterior quantities) from models M1 and M2 without
using the multinomial impose for the HIV data in Example 2

M1 (Algorithm 1) M2 (Algorithm 2)
Mean Median SD Mean Median SD

π 0.540 0.540 0.025 0.542 0.542 0.024
Se1 0.995 0.997 0.005 0.995 0.997 0.005
Se2 0.572 0.572 0.032 0.572 0.571 0.032
Se3 0.909 0.910 0.020 0.908 0.908 0.019
Se4 0.995 0.996 0.005 0.995 0.996 0.005
Sp1 0.969 0.971 0.013 0.970 0.972 0.013
Sp2 0.964 0.965 0.013 0.960 0.961 0.013
Sp3 0.993 0.995 0.006 0.993 0.995 0.006
Sp4 0.924 0.926 0.020 0.924 0.925 0.018
C+

23 — — — 0.032 0.032 0.010
C−23 — — — 0.003 0.002 0.004
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The top panel of Figure 3.4 shows the pairwise correlation residuals in order of

(T1,T2), (T1,T3), (T2,T3), (T1,T4), (T2,T4) and (T3,T4) after model M1 is fitted. Clearly,

the correlation between T2 and T3 is not negligible. Based upon this information,

model M2 is applied with C+
23 and C−23 introduced and the other covariance terms

set 0. The correlation residual plot of this model is on the bottom panel of Figure

3.4, showing all of the correlation residuals close to 0 and indicating an improved

goodness of fit. Table 3.5 shows the observed frequencies and expected frequencies

from M1 as well as M2. Clearly, M2 provides a better fit than M1. The chi-square

goodness of fit test between the observed and expected frequencies indicates that M1

does not provide a good fit for the data since the p-values are only 0.0057 for posterior

mean frequencies and 0.0077 for posterior median frequencies. The p-values of the

chi-square test for M2 are above 0.9 for both posterior mean and median frequencies,

suggesting M2 provides a more appropriate fit. Bayesian model comparison criterion

DIC also confirms that M2 fits the data better with a smaller DIC value. Table 3.6

shows the estimated sensitivities and specificities from M1 and M2, which are very

similar to those in Qu et al. (1996). The correlation residual plot shows the correlation

pattern as a whole, while the estimated covariance terms nicely decompose this term

into two parts based on the two latent classes. In this example, C−23 is negligible

compared to C+
23, which tells the dependence between test 2 and test 3 mainly comes

from diagnosing subjects who are diseased.

3.5.3 Example 3: Handelman’s dentistry data

Handelman’s dentistry data (Espeland and Handelman, 1989) focuses upon 5 dentists

each evaluating 3869 dental x-rays according to a binary rating scale with 0 denoting

sound and 1 denoting carious. See more details of this data set in Espeland and Han-

delman (1989). This data set contains a large number of subjects (n = 3869). It has

the complete frequency information for all the possible test-result combinations, that
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is, the number of unique observed test-result combinations of the data equals the total

number 25 (= 32) of possible test-result combinations. Therefore, the multinomial

property is imposed for fitting models M1 and M2.
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Figure 3.5: Pairwise correlation residual plots for models M1 and M2 for the dentistry
data in Example 3. The top panel is for model M1; the bottom panel is for model
M2.

From the top panel of Figure 3.5, we see the correlation pattern is more compli-

cated. Both positive and negative correlations are displayed. The pairwise correlation

from left to right are in the order of (T1,T2), (T1,T3), (T2,T3), (T1,T4), (T2,T4), (T3,T4),

(T1,T5), (T2,T5), (T3,T5) and (T4,T5). Instead of handling each evident covariance

separately, we recommend adding all pairwise covariance terms and letting the data

decide the values of covariances. The correlation residual plot for M2 at the bottom

panel of Figure 3.5 shows all the residuals are close to 0, which indicates M2 provides

an improved and good fit for the data.

Table 3.7 shows the observed and expected frequencies estimated from models M1

and M2. The estimated frequencies from model M2 are much closer to the observed
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Table 3.7: Observed and expected frequencies for models M1 and M2 with the multi-
nomial impose for the dentistry data in Example 3

Test results Observed frequency Expected frequency
M1 (Algorithm 3) M2 (Algorithm 4)

Mean Median Mean Median
00000 1880 1822.27 1821.36 1860.31 1860.33
00001 789 821.36 820.14 780.61 780.52
00010 43 62.67 62.22 43.45 43.08
00011 75 50.72 50.70 76.91 76.55
00100 23 30.05 30.06 23.64 23.39
00101 63 48.65 48.71 63.57 63.21
00110 8 4.91 4.84 10.94 10.53
00111 22 36.26 36.09 22.17 21.80
01000 188 212.74 212.46 187.77 187.77
01001 191 150.99 150.84 194.21 193.36
01010 17 13.41 13.34 20.28 19.88
01011 67 61.42 61.15 64.10 63.70
01100 15 13.01 12.95 17.30 16.97
01101 85 90.50 90.50 83.62 83.35
01110 8 9.78 9.68 6.77 6.56
01111 56 85.87 85.73 59.41 59.11
10000 22 22.81 22.62 22.25 21.96
10001 26 26.60 26.49 27.41 26.97
10010 6 2.59 2.57 8.90 8.48
10011 14 17.10 17.04 13.91 13.67
10100 1 3.19 3.16 3.22 2.85
10101 20 25.77 25.67 19.99 19.82
10110 2 2.79 2.77 2.19 2.06
10111 17 24.69 24.53 19.88 19.64
11000 2 7.08 6.99 4.21 3.85
11001 20 42.79 42.60 20.01 19.79
11010 6 4.62 4.55 4.50 4.34
11011 27 40.20 40.09 30.90 30.66
11100 3 6.96 6.87 3.34 3.14
11101 72 61.40 61.19 75.26 75.17
11110 1 6.66 6.59 5.10 5.10
11111 100 59.15 58.93 92.89 92.63

Goodness of fit
< 2.2e− 16 < 2.2e− 16 0.4736 0.6402

(Chi-square test p value)
DIC 619.1735 540.0874
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frequencies than those from model M1, especially for the frequencies of “00000" and

“11111". The chi-square goodness of fit test also indicates that the M1 does not

provide a good fit for the data with small p-values while M2 is shown to fit the data

well with p-values larger than 0.4. A smaller value of DIC also indicates that M2 is

the more appropriate model.

Table 3.8: Estimation results (Posterior quantities) from models M1 and M2 with
the multinomial impose for the dentistry data in Example 3

M1 (Algorithm 3) M2 (Algorithm 4)
Mean Median SD Mean Median SD

π 0.202 0.202 0.010 0.173 0.171 0.034
Se1 0.407 0.407 0.021 0.442 0.439 0.073
Se2 0.706 0.706 0.021 0.755 0.756 0.083
Se3 0.597 0.596 0.023 0.604 0.601 0.090
Se4 0.493 0.493 0.021 0.498 0.497 0.059
Se5 0.899 0.900 0.014 0.937 0.949 0.038
Sp1 0.989 0.989 0.002 0.979 0.979 0.005
Sp2 0.898 0.898 0.007 0.884 0.881 0.018
Sp3 0.986 0.986 0.003 0.963 0.963 0.009
Sp4 0.968 0.968 0.004 0.951 0.951 0.012
Sp5 0.695 0.695 0.009 0.683 0.680 0.029

Table 3.8 displays the estimated posterior means, medians and standard deviations

for sensitivities and specificities from models M1 and M2. For our method, we observe

that the posterior mean and median of sensitivities from model M2 tend to be larger

than those from model M1 and the posterior mean and median of specificities tend

to be smaller. In addition, the posterior standard deviations from M2 are overall

larger than those from M1. Compared with Qu et al. (1996)’s results, our estimated

sensitivities and specificities from model M1 (algorithm 3) correspond closely to those

from their 2LC model, while the estimated sensitivities and specificities from model

M2 (algorithm 4) are not as closely aligned with those from their 2LCR model. Table
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3.9 displays the estimated pairwise covariances with C+
13 estimated apparently larger

than other covariances.

Table 3.9: Estimated pairwise covariances conditional on the diseased class and the
non-diseased class for the dentistry data in Example 3

T1 T2 T3 T4 T5

C+

T1 — 0.017 0.057 0.028 0.004
T2 — — 0.019 0.010 0.003
T3 — — — -0.007 0.007
T4 — — — — -0.006
T5 — — — — —

C−

T1 — 0.001 0.001 0.004 0.003
T2 — — 0.006 0.005 0.014
T3 — — — 0.005 0.008
T4 — — — — 0.010
T5 — — — — —

3.6 Summary

In this chapter, we propose two Bayesian hierarchical latent class models to allow the

estimation of sensitivity and specificity of multiple diagnostic tests with or without

gold standard data. Our proposed models build upon existing approaches by flexibly

accommodating a large number of diagnostic tests. Further, our proposed pairwise co-

variance dependence model (M2), in contrast to Qu et al (1996)’s approach, provides

easily interpretable estimates of parameters and direct interpretation of covariance

parameters. Through the Bayesian hierarchical structure, individual sensitivities and

specificities are modeled as random effects following two common overarching beta

distributions, respectively. The mode parameters in the overarching beta distribu-

tions therefore reflect the group-level sensitivity and specificity. Further, the concen-

trate parameters implicitly reflect the rating agreement among the group with larger

values indicating more consistency of group diagnostic performance.
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Another contribution of this chapter is to provide easy-to-implement JAGS al-

gorithms to apply these models. A guideline to using these algorithms is provided.

Algorithm 1 for the independence model is always the first attempt to fit the data. If

the correlation residual analysis detects significant dependence between at least two

of the tests, then Algorithm 2 for the conditional dependence model is implemented

to improve the fitting. Algorithm 3 and 4 are analogous to Algorithm 1 and 2 with

the multinomial distribution imposition. When the number n of subjects is large

relative to the number 2K of possible test result combinations, using the multino-

mial distribution property can significantly reduce the computational burden. For

example, for example 3, it takes 1.5 hours to run Algorithm 2 while it takes only 19

seconds to run Algorithm 4.

Although the pairwise covariance model is easy to apply and interpret, one limi-

tation is the ability to handle data from other models, such as the GRE model (Qu

et al., 1996) and the finite mixture (FM) model (Albert and Dodd, 2004). Our sim-

ulation study (see Appendix B.4) shows that for the data generated from these two

models, our correlation residual analysis tends to include all pairs of covariances for

the pairwise covariance model and our method leads to biased estimation results. One

possible reason is that the pairwise covariance model explains covariances between

tests directly while the GRE and FM model introduce the correlation between tests

through common subject random effects. Finally, for real data analysis, we recom-

mend using model selection criterion, such as DIC, to choose the best model among

different models.
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Chapter 4

Bayesian Semiparametric Regression Analysis of

Multivariate Panel Count Data

4.1 Introduction

Panel count data often arise in epidemiological and medical studies, in which the

events of interest have the property of recurrence and study subjects are monitored

periodically. Since the subjects are not under continuous monitoring, the exact time

of each recurrent event is not observed but the count of such events between ad-

jacent observation times is known. For many studies, panel count data of several

types of related recurrent events are collected. For example, the recurrent events

can be different types of infections, tumors, and social behaviors such as drinking

and drug use. The motivating example is a bivariate panel count data set on skin

cancers from the literature (Sun and Zhao, 2013). The data arise from a skin can-

cer chemoprevention trial conducted by the University of Wisconsin Comprehensive

Cancer Center. It is a double-blinded and placebo-controlled randomized III clinical

trial. The main objective of the study is to evaluate the effectiveness of 0.5/m2/day

PO difluoromethylornithine(DFMO) in reducing the recurrence rate of skin cancers

in a population of patients with a history of non-melanoma skin cancers: basal cell

carcinoma and squamous cell carcinoma. Two hundred and ninety one patients were

randomized into either a placebo group or a DFMO group. During the study, the

patients were scheduled to be examined every 6 months to check the development

of both skin cancers. At each visit, the numbers of occurrences of both basal cell
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carcinoma and squamous cell carcinoma since the previous visit were recorded. For

this bivariate panel count data set, it’s possible to analyze these two skin cancers

separately to evaluate the effectiveness of DFMO. However, conducting a joint anal-

ysis is a better practice to investigate the correlation between the two cancers and to

improve estimation efficiency.

Most methods established to analyze panel count data focus on a single type of

recurrent event, for example, Sun and Kalbfleisch (1995), Wellner et al. (2000, 2007),

Lu et al. (2009, 2007), Sun and Zhao (2013), Wang and Lin (2019), among others.

There is only a limited number of papers proposed to analyze multivariate panel

count data. He et al. (2008) considered regression analysis for multivariate panel

count data and first proposed a class of marginal mean models which leave the de-

pendence structures for related recurrent events completely unspecified. Zhang et al.

(2013) then improved their model and provided a robust joint modeling approach for

the regression analysis of multivariate panel count data with an informative observa-

tion process. Li et al. (2011) proposed semiparametric transformation models that

allow for the dependence of the recurrent event processes on the observation process.

Along the same line, Zhao et al. (2013) proposed a semiparametric additive model

to analyze multivariate panel count data with dependent observation processes and

a terminal event. All these models emphasize the dependence of the recurrent event

processes on the observation process and require the model of the observation pro-

cess to be explicitly specified. In this paper, the proposed approach is based on the

observed likelihood, using only the observed counts and observation times, for which

is not required to specify a model for the observation process. Instead of building up

the correlation among multiple events through their dependence on the observation

process, we tackle the correlations between different types of events directly by intro-

ducing common subject-specific gamma frailty terms and additional scale parameters.

The resulted pairwise correlations can be calculated in a closed form and flexibly ac-
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commodate different correlation structures including positive, negative, strong, and

weak correlations. Sinha and Maiti (2004) applied the same strategy to model the

dependence between panel count data and termination time. However, their applica-

tion is only for a single type of recurrent event and requires that each subject have

the same observation times with the termination time being one of those.

Frequentist approaches (He et al., 2008; Zhang et al., 2013; Li et al., 2010; Zhao et

al., 2013) use estimating equation methods to estimate regression coefficients. These

methods do not provide estimates for the baseline mean functions or the correlation

between events. They usually require additional formulas or bootstrap procedures to

estimate the standard errors of the estimated regression coefficients. In this paper, the

Bayesian semiparametric approach can be used to estimate the regression coefficients

and the baseline mean functions simultaneously. Unlike the frequentist methods,

Markov chain Monte Carlo (MCMC) samples can also evaluate the posterior standard

deviations of the regression coefficients directly (Gelman et al., 2013).

The remainder of this chapter is organized as follows. In Section 4.2, primary

models and the correlation derivations and interpretations are introduced. In Sec-

tion 4.3, a detailed description of monotone I-splines, augmented likelihood function

construction, prior specification and posterior computation are presented. Section

4.4 evaluates our proposed methods via comprehensive simulation studies. The skin

cancer example is used to demonstrate the performance of the proposed methods in

Section 4.5. Lastly, Section 4.6 summarizes our findings and discusses some possible

future research.

4.2 Model and Notation

4.2.1 Model Construction

Consider that n subjects participate in a long-term study involving K types of related

recurrent events. Each subject is not under continuous monitoring and instead is
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observed at discrete time points. Specifically, for each subject i, denoted by J
(k)
i

the total number of observation times for event k and the corresponding observation

times are 0 = t
(k)
i0 < t

(k)
i1 < t

(k)
i2 < ... < t

(k)
iJ

(k)
i

. Let N (k)
i (t) denote the cumulative count

of the occurrence of event k prior to time t for subject i. Let X(k)
i = (x(k)

i1 , ..., x
(k)
ip )′

denote the p×1 covariate vector associated with subject i for event k. For simplicity,

in this paper we assume the covariates for subject i are identical for all K events

and denoted by Xi. The whole set of observed panel count data is denoted by

D = {t(k)
ij , N

(k)
i (t(k)

ij ), Xi, for k = 1, ..., K; i = 1, ..., n; j = 1, ..., J (k)
i }. Finally, we

assume there is a latent subject-specific positive frailty term wi which affects the

occurrence rates and connects the multiple events. The frailties {wi} are assumed

to follow a gamma distribution G(η, η) with mean 1 and variance 1/η. The model’s

identifiability is satisfied by setting the mean of the frailties equal to 1 (Sun et al.,

2007; Sinha and Maiti, 2004).

Given the covariatesXi and frailty wi, we assume the counting process {N (k)
i (t), t >

0} for event k has a proportional mean function in the following form:

E
(
N

(k)
i (t)|Xi, wi

)
= wαki U

(k)
0 (t) exp(X ′iβ(k)), (4.1)

where αk is a scale parameter introduced to more flexibly accommodate the corre-

lation between events, U (k)
0 (t) is the baseline mean function for event k, and β(k) is

a p × 1 vector of regression coefficients for event k. By default, the model considers

different covariate effects for different recurrent events, but it is easy to extend to the

situation where the covariate effects are identical across all K events. More details

about αk are discussed in Section 4.2.2.

Let Z(k)
ij denote the number of occurrences of event k in the jth time inter-

val (t(k)
i,j−1, t

(k)
ij ] for subject i, i.e. Z

(k)
ij = N

(k)
i (t(k)

ij ) − N
(k)
i (t(k)

i,j−1), where we assume

N
(k)
i (ti0) = 0 for i = 1, ..., n. Through this transformation, the whole set of data can

be expressed as D = {t(k)
ij , Z

(k)
ij , Xi, for k = 1, ..., K; i = 1, ..., n; j = 1, ..., J (k)

i }. Under

the Poisson process assumption, given the covariates Xi and latent frailty term wi,
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Z
(k)
ij ’s independently follow Poisson distributions, which can be written as:

Z
(k)
ij |Xi, wi ∼ P

(
wαki {U

(k)
0 (t(k)

ij )− U (k)
0 (t(k)

i,j−1)} exp(X ′iβ(k))
)
. (4.2)

This form is particularly useful for constructing the likelihood function in Section

4.3.2. Note that when integrating out the frailty effect wi, Z(k)
ij ’s marginally follow

mixed Poisson distributions (Sun and Zhao, 2013).

4.2.2 Correlation expression

An advantage of our proposed model is its straightforwardness in deriving the corre-

lation formula between two events. Among the K events, we predesignate one event

that is of main interest, for instance event j, as a reference event, and let αj = 1.

Then, given the covariates Xi and the unobservable frailty wi, the cumulative counts

of event j and event k (k 6= j) for subject i at any time point t are conditionally

independent and have

N
(j)
i (t)|Xi, wi ∼ P

(
wiU

(j)
0 (t) exp(X ′iβ(j))

)
,

N
(k)
i (t)|Xi, wi ∼ P

(
wαki U

(k)
0 (t) exp(X ′iβ(k))

)
.

Using the law of total variance, we explicitly derive Cov
(
N

(j)
i (t), N (k)

i (t)
)
, V ar

(
N

(j)
i (t)

)
and V ar

(
N

(k)
i (t)

)
, and hence the correlation formula as below:

Corr
(
N

(j)
i (t), N (k)

i (t)
)

=
Cov

(
N

(j)
i (t), N (k)

i (t)
)

√
V ar

(
N

(j)
i (t)

)
V ar

(
N

(k)
i (t)

)
= αk√

η + η2

[U(j)
0 (t) exp(X′iβ

(j)
)]

√
Γ(η+2αk)Γ(η)

(Γ(η+αk))2 − 1 + Γ(η)ηαk

Γ(η+αk)[U(k)
0 (t) exp(X′iβ

(k)
)]

(4.3)

where η > 0 and αk > −η/2. For details on derivation of equation (4.3), see Appendix

C.1. Clearly, αk = 0 implies that event j and event k are independent; αk > 0 implies

that event j and event k are positively related; αk < 0 implies that event j and
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event k are negatively related. When getting rid of the covariate effects, the baseline

correlation between the two events is

Corr0
(
N (j)(t), N (k)(t)

)
= αk√

η + η2

U
(j)
0 (t)

√
Γ(η+2αk)Γ(η)

(Γ(η+αk))2 − 1 + Γ(η)ηαk
Γ(η+αk)U(k)

0 (t)

.

The benefit of this form is that it eliminates study at the individual level and provides

a broader view of the correlation between two events. Let U (j)
0 (t) = U

(k)
0 (t) = 1, we

can explore the pure effect of αk and η on the baseline correlation Corr0(N (j)(t), N (k)(t)).

Note that the correlation between any two events is controlled by the parameters η

and αk. Figure 4.1 shows that with the variance of frailties increasing (η decreasing),

the correlation increases; with the magnitude of αk increasing, the correlation also

increases. When αk > 0, any η > 0 is a legitimate choice; while for αk < 0, the

condition η > −2αk must be satisfied to make Γ(·) valid.
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Figure 4.1: Baseline correlation between N (j) and N (k)

In fact, interpretation of the pairwise correlation is not limited to the pairs of

events involving the predesignated event. Conceptionally, any two powers αp and αq,
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for p 6= q, can be transformed into 1 and αq
αp
. A similar derivation can obtain the

correlation between any two types of events. The general form of correlation between

two events with αp and αq is shown in the Appendix C.2.

4.3 The Proposed Bayesian Semiparametric Approach

4.3.1 Modeling U
(k)
0 (t) with monotone I-splines

To accommodate the nondecreasing nature of the baseline mean functions in the

proposed model, we choose monotone I-splines to model them. I-splines were first

developed by Ramsay et al. (1988) and were then widely applied in many semipara-

metric models. To put it briefly, I-splines, a set of non-negative spline functions, are

integrated M-splines (Ramsay et al., 1988). In our proposed model, each baseline

function of event k is modeled as a linear combination of I-splines:

U
(k)
0 (t) =

L∑
l=1

r
(k)
l Il(t|d), (4.4)

In the formula, Il(·|d) is the I-spline basis function with degree d; L is the number

of I-spline basis functions, which equals the number of interior knots plus the degree

d; {r(k)
l } are the nonnegative spline coefficients. For more detailed information on

the I-splines, refer to Ramsay et al. (1988) and Lin et al. (2015). The degree d and

the placement of knots are two chief components that determine the basis functions.

The former controls the smoothness and the latter controls the shape of the spline

function. In general, 2 or 3 degrees is enough to provide adequate smoothness, and 10

to 30 knots can provide enough flexibility for a regression incorporating thousands of

observations, according to Cai et al. (2011) and Wang and Dunson (2011). Equally

spaced knots and quantile-based knots are two commonly used methods to select

knots. Wang and Lin (2019) showed that the deviance information criterion (DIC)

can be used to facilitate choosing the setup for the I-spline functions. In this paper, we
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uniformly use degree 3 and 20 equally spaced knots (18 interior knots), which proves

to provide sufficient flexibility for modeling the unknown baseline mean functions.

4.3.2 Likelihood augmentation with Poisson latent variables

Consider that n subjects participate in a long-term study involving K types of related

recurrent events. The data structure and model are defined in Section 2.1. Under the

Poisson process assumption, following equation (4.2), the observed likelihood function

can be written in the following form:

Lobs =
K∏
k=1

n∏
i=1

J
(k)
i∏
j=1

exp[−wαki {U
(k)
0 (t(k)

i,j )− U (k)
0 (t(k)

i,j−1)} exp(X ′iβ(k))]

×[wαki {U
(k)
0 (t(k)

ij )− U (k)
0 (t(k)

i,j−1)} exp(X ′iβ(k))]Z
(k)
ij /Z

(k)
ij !

Taking the baseline function U (k)
0 (t) in the form of (4.4), the likelihood can further

be written as

L(θ|D) =
K∏
k=1

n∏
i=1

Ji(k)∏
j=1

exp[−wαki
L∑
l=1

r
(k)
l {Il(t

(k)
i,j )− Il(t(k)

i,j−1)} exp(X ′iβ(k))]

×[wαki
L∑
l=1

r
(k)
l {Il(t

(k)
i,j )− Il(t(k)

i,j−1)} exp(X ′iβ(k))]Z
(k)
ij /Z

(k)
ij !

where θ represents the vector of all unknown parameters including β(k) = (β(k)
1 , ..., β(k)

p )′,

r(k) = (r(k)
1 , ..., r

(k)
L )′ for k = 1, ..., K, and α = (α1, ..., αk)′. Note that for simplicity

of notation, the d is omitted from the I-spline basis functions. With this likelihood

format, the sampling for r(k)
l is especially difficult. To solve this problem, we further

decompose Z(k)
ij as ∑L

l=1 Z
(k)
ijl , where the augmented Poisson latent variables {Z(k)

ijl }

independently follow Poisson distributions as follows:

Z
(k)
ijl |Xi, wi ∼ P

(
wαki {r

(k)
l [Il(t(k)

i,j )− Il(t(k)
i,j−1)]} exp(X ′iβ(k))

)
.

The convolution property of Poisson distribution aids the transformation. Then with

the augmented Poisson latent variables, the likelihood function can be unequivocally
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expressed as

Laug(θ|D) =
K∏
k=1

n∏
i=1

J
(k)
i∏
j=1

L∏
l=1

exp[−wαki r
(k)
l {Il(t

(k)
i,j )− Il(t(k)

i,j−1)} exp(X ′iβ(k))]

×[wαki r
(k)
l {Il(t

(k)
i,j )− Il(t(k)

i,j−1)} exp(X ′iβ(k))]Z
(k)
ijl /Z

(k)
ijl !. (4.5)

Based on this augmented likelihood 4.5, we develop the Bayesian computation algo-

rithm in Section 4.3.3.

4.3.3 Prior specification and posterior computation

For Bayesian computation, we need to first specify prior distributions for unknown

parameters. When we don’t have much prior information about parameters, we

usually assign vague priors for them. For β(k)
m , m = 1, ..., p, k = 1, ..., K, we assign

N (0, σ2) priors, where σ2 takes a large value such as 100. For nonnegative r(k)
l ,

l = 1, ..., L, k = 1, ..., K, we assign exponential priors with rate parameter λk, where

λk itself follows a gamma prior G(aλ, bλ). This prior specification is appealing from

the computational perspective because it leads to conjugate forms for each of the

conditional posterior distributions of {r(k)
l } and {λk}. Theoretically, such a prior

specification is closely related to Bayesian Lasso (Park and Casella, 2008). It is

equivalent to the penalized likelihood approach with an L1 penalty on those spline

coefficients, in which {λk} serve as tuning parameters. Our simulation studies show

that our approach is robust to the choice of hyperparameters, so we simply use aλ = 1

and bλ = 1. The frailty terms {wi} follow a gamma distribution G(η, η) with mean 1

and variance 1/η. The parameter η, which controls the variance of frailties and hence

the correlation of pairwise events, is very sensitive. We let η follow a vague gamma

prior G(aη, bη), where aη and bη are assigned small values, such as aη = bη = 0.01, to

let the data take the dominance in estimating η. At last, we assign vague uniform

priors Unif(−3, 3) to {αk}.
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The Gibbs sampling algorithm is adopted for posterior computation. Basically,

we derive the full conditional distribution of each parameter componentwise from

the joint distribution of the likelihood function in (4.5) and the specified prior dis-

tributions. If the full conditional distribution of a parameter has a closed form, the

sampling is straightforward. When the closed form is intractable, adaptive rejection

sampling (ARS) (Gilks and Wild, 1992) is adopted if the full conditional posterior

distribution preserves log-concavity. Even if log-concavity is not satisfied, we can still

use Adaptive Rejection Metropolis Sampling (ARMS) (Gilks et al., 1995) to draw

samples. The full conditional distributions of the Gibbs sampler are summarized as

below.

1. Sample (Z(k)
ij1 , ..., Z

(k)
ijL) from a multinomial distributionM(Z(k)

ij ,P
(k)
ij ), for i =

1, ..., n, j = 1, ..., J (k)
i , k = 1, ..., K, where P (k)

ij = (p(k)
ij1, ..., p

(k)
ijL) with∑L

l=1 p
(k)
ijl =

1, and

p
(k)
ijL =

r
(k)
l {Il(t

(k)
ij )− Il(t(k)

i,(j−1))}∑L
l=1 r

(k)
l {Il(t

(k)
ij )− Il(t(k)

i,(j−1))}
.

2. Sample r
(k)
l from a Gamma distribution G(A(k)

l , B
(k)
l ), for l = 1, ..., L, k =

1, ..., K, with

A
(k)
l =

n∑
i=1

J
(k)
i∑
j=1

Z
(k)
ijl + 1,

and

B
(k)
l =

n∑
i=1

wαki {Il(t
(k)
iJ

(k)
i

)− Il(t(k)
i0 )} exp(X ′iβ(k)) + λk.

3. Sample λk from a Gamma distribution G(aλ+L, bλ+∑L
l=1 r

(k)
l ), for k = 1, ..., K.

4. Sample β(k)
m by using adaptive rejection sampling (ARS) (Gilks and Wild, 1992)

method, for m = 1, ..., p, k = 1, ..., K. The log full conditional distribution of
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each βm is proportional to

exp[−
n∑
i=1

L∑
l=1

wαki r
(k)
l {Il(t

(k)
iJ

(k)
i

)− Il(t(k)
i0 )} exp(X ′iβ(k))+

n∑
i=1

J
(k)
i∑
j=1

X ′iβ
(k)Z

(k)
ij − (β(k)

m )2/(2σ2)].

5. Sample wi for i = 1, ..., n, by using ARS. The log full conditional distribution

of each wi is proportional to

−
K∑
k=1

wαki r
(k)
l {Il(t

(k)
iJ

(k)
i

)− Il(t(k)
i0 )} exp(X ′iβ(k)) +

K∑
k=1

J
(k)
i∑
j=1

L∑
l=1

Z
(k)
ijl log(wαki )−

ηwi + (η − 1) log(wi).

6. Sample η by using ARMS, the log full conditional distribution of which is pro-

portional to

(η − 1)
n∑
i=1

log(wi)− η(
n∑
i=i

wi + bη) + (nη + aη − 1) log(η)− n log(τ(η)).

7. Sample αk, for k = 1, ..., K, by using ARMS, the log full conditional distribution

of which is proportional to

−wαki r
(k)
l {Il(t

(k)
iJ

(k)
i

)− Il(t(k)
i0 )} exp(X ′iβ(k)) +

Ji∑
j=1

L∑
l=1

Z
(k)
ijl log(wαki ).

4.4 Simulation studies

Simulation studies are conducted to evaluate the proposed methods. We only consider

2 (K) types of events for the purpose of demonstration. It is straightforward to extend

to three or more types of events. By default, α1 = 1. For notational simplicity,

we denote α2 as α. We particularly assess the performance of estimating covariate

coefficients {β(k)} and baseline functions {U (k)
0 } for different η and α values. We also

compare the estimation results between models with and without the scale parameter

α.
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4.4.1 Data generation

Consider 2 types of events and 100 subjects. Data are simulated according to model

(4.1) under the Poisson process assumption. Specifically, we consider four differ-

ent values for α: −0.3, 0, 0.5, and 1, and two different values for η: 1 and 5.

The baseline mean function for the first type of event is U (1)
0 (t) = t + log(1 + t),

which is approximately linear. For the second type of event, the baseline function is

U
(2)
0 (t) = t0.5 + log(1 + t), which is curvilinear. Two covariates are involved for each

subject, where X1 is from a Bernoulli distribution with success probability p = 0.5

and X2 is from a standard normal distribution. Each subject has the same obser-

vation times for the two types of events. The number of observation times for each

subject is generated from a Poisson distribution with mean 7, and the time length

between adjacent observation times follows an exponential distribution with mean

0.5. Given the covariates, the observation times and the generated frailty wi, for each

subject, the counts in each time interval for each type of event are generated from a

Poisson distribution as in equation (4.2). Each set of simulations consists of 500 data

replicates.

4.4.2 Simulation results

The first set of simulations aims at assessing the performance of estimating regression

coefficients {β(k)}. For this set of simulations, data are generated with different true

β values, but α is fixed at 1. Table 4.1 shows the estimation bias (Bias) defined

as the average of the posterior means minus the true value, mean of the posterior

standard deviations (SD), standard deviation of the posterior means (SE), and 95%

coverage probability (CP95) of four combinations of β values. Clearly, the estimation

of regression coefficients is good with small biases, SDs close to SEs, and 95% coverage

probabilities around 95%. When η goes from 1 to 5 (i.e., the variance of the frailty

goes from 1 to 0.2), the Bias, SD and SE uniformly become smaller. It is noted that
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the estimation of {β2} is consistently better than that of {β1} in terms of giving

smaller biases and SDs and SEs. This is because X2 is a normal covariate, which

carries more information than binary covariate X1, and the variance of X2 is four

times larger than that of X1. Our simulation study shows that when we add one

more possible value to X1 such that X1 follows a uniform discrete distribution with

X1 ∈ {0, 1,−1}, the estimation of {β1} is improved and close to that of {β2}.

Table 4.1: Estimation of regression coefficients from our proposed method when true
α = 1. Bias refers to the difference between the average of the 500 posterior means
and the true value; SD refers to the mean of the 500 posterior standard deviations;
SE refers to the standard deviation of the 500 posterior means, and CP95 refers to
the 95% coverage probability

η = 1 η = 5
Parameter Truth Bias SD SE CP95 Bias SD SE CP95

β
(1)
1 0 0.0583 0.2238 0.1988 0.9520 0.0214 0.1287 0.1319 0.9400
β

(1)
2 1 0.0004 0.1215 0.1223 0.9520 0.0015 0.0696 0.0722 0.9300
β

(2)
1 1 0.0561 0.2225 0.1975 0.9700 0.0203 0.1291 0.1236 0.9600
β

(2)
2 1 -0.0002 0.1203 0.1220 0.9480 0.0004 0.0683 0.0689 0.9460
β

(1)
1 0 0.0392 0.2294 0.2179 0.9580 0.0178 0.1303 0.1311 0.9520
β

(1)
2 1 -0.0053 0.1245 0.1228 0.9520 -0.0008 0.0714 0.0709 0.9520
β

(2)
1 -1 0.0647 0.2523 0.2479 0.9560 0.0364 0.1651 0.1607 0.9500
β

(2)
2 1 -0.0109 0.1344 0.1297 0.9620 -0.0001 0.0858 0.0824 0.9620
β

(1)
1 1 0.0490 0.2198 0.2133 0.9500 0.0119 0.1203 0.1191 0.9540
β

(1)
2 1 -0.0078 0.1182 0.1202 0.9280 -0.0017 0.0646 0.0653 0.9380
β

(2)
1 -1 0.0771 0.2497 0.2373 0.9440 0.0400 0.1629 0.1593 0.9500
β

(2)
2 1 -0.0127 0.1323 0.1335 0.9440 -0.0026 0.0840 0.0825 0.9600
β

(1)
1 1 -0.0639 0.2152 0.2173 0.9320 -0.0178 0.1192 0.1194 0.9392
β

(1)
2 -1 0.0025 0.1138 0.1121 0.9500 0.0051 0.0633 0.0678 0.9392
β

(2)
1 1 -0.0663 0.2202 0.2247 0.9300 -0.0219 0.1280 0.1329 0.9196
β

(2)
2 1 0.0031 0.1177 0.1156 0.9440 0.0046 0.0681 0.0786 0.9412

The second set of simulations focuses on assessing the estimation performance of

our proposed methods when data are generated with different α values. The true β

values are fixed as β(1)
1 = 1, β(1)

2 = −1, β(2)
1 = 1, and β(2)

2 = 1. Table 4.2 summarizes

the estimation results. The estimation results for regression coefficients are similar

to those in Table 4.1. Overall, the estimation is good with small biases, SDs close
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Figure 4.2: Baseline mean function for models having β(1)
1 = 1, β(1)

2 = −1, β(2)
1 = 1,

β
(2)
2 = 1, α = −0.3, 0, 0.5, 1 and η = 1, 5
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Table 4.2: Estimation of regression coefficients, α and η from our proposed method
for data generated with different α values and true β(1)

1 = 1, β(1)
2 = −1, β(2)

1 = 1, and
β

(2)
2 = 1

η = 1 η = 5
Parameter Bias SD SE CP95 Bias SD SE CP95

α = −0.3

β
(1)
1 -0.0269 0.2190 0.2266 0.9300 -0.0124 0.1216 0.1252 0.9360
β

(1)
2 -0.0054 0.1168 0.1202 0.9460 0.0006 0.0652 0.0685 0.9460
β

(2)
1 -0.0086 0.1048 0.1049 0.9440 -0.0022 0.0829 0.0812 0.9540
β

(2)
2 0.0021 0.0548 0.0580 0.9400 0.0006 0.0421 0.0421 0.9600
α -0.0083 0.0423 0.0462 0.9200 -0.0033 0.1010 0.1010 0.9400
η 0.0412 0.1699 0.1754 0.9440 0.2494 1.0231 0.8814 0.9740

α = 0

β
(1)
1 -0.0051 0.2229 0.2256 0.9400 -0.0017 0.1208 0.1175 0.9588
β

(1)
2 -0.0043 0.1195 0.1195 0.9460 -0.0004 0.0654 0.0682 0.9294
β

(2)
1 -0.0034 0.0758 0.0767 0.9460 -0.0048 0.0770 0.0749 0.9608
β

(2)
2 -0.0010 0.0370 0.0378 0.9580 0.0007 0.0377 0.0365 0.9627
α 0.0028 0.0344 0.0349 0.9420 0.0017 0.1152 0.1078 0.9784
η 0.0328 0.1790 0.1781 0.9560 0.6264 1.3301 1.3349 0.9588

α = 0.5

β
(1)
1 -0.0190 0.2194 0.2227 0.9360 -0.0076 0.1213 0.1179 0.9588
β

(1)
2 -0.0136 0.1162 0.1190 0.9340 0.0001 0.0647 0.0652 0.9490
β

(2)
1 -0.0263 0.1372 0.1338 0.9400 -0.0143 0.0958 0.0946 0.9549
β

(2)
2 -0.0047 0.0719 0.0697 0.9600 0.0010 0.0497 0.0475 0.9588
α 0.0066 0.0589 0.0578 0.9480 0.0163 0.1213 0.1246 0.9471
η 0.0496 0.1729 0.1841 0.9500 0.4241 1.2655 1.2633 0.9569

α = 1

β
(1)
1 -0.0639 0.2152 0.2173 0.9320 -0.0178 0.1192 0.1194 0.9392
β

(1)
2 0.0025 0.1138 0.1121 0.9500 0.0051 0.0633 0.0678 0.9392
β

(2)
1 -0.0663 0.2202 0.2247 0.9300 -0.0219 0.1280 0.1329 0.9196
β

(2)
2 0.0031 0.1177 0.1156 0.9440 0.0046 0.0681 0.0786 0.9412
α 0.0089 0.0804 0.0745 0.9760 0.0294 0.1529 0.1577 0.9392
η 0.0469 0.1684 0.1734 0.9540 0.3745 1.2136 1.2777 0.9490

to SEs, and CP95s close to 95%. The estimation is more precise for the larger η

value, and the estimation of {β2} is overall better than that of {β1}. A new fact is

observed when the magnitude of α approaches 0—the estimation of the regression

coefficients for the second type of event becomes more precise with smaller biases

and SDs and SEs. This observation is reasonable, as smaller values of α reflect the

occurrence of the second type of events less affected by frailties, and thus more precise
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estimation of the regression coefficients is expected. Furthermore, the estimated α

and η have remarkably captured the truth. As opposed to the estimation of regression

coefficients, a small value of η leads to better estimation of α. A glance at the table

may find the bias of η is a little too high when the true η is 5. We need to point out

that the difference between G(5, 5) and G(6, 6) is trivial, so the estimation can still

accurately capture the shape of the distribution. Figure 4.2 shows the estimation of

the baseline mean functions corresponding to different setups of α and η values. The

solid lines represent the real baseline mean functions and the broken lines represent

the estimated baseline mean functions. The two lines on the top are for the first type

of event U (1)
0 (t) = t + log(1 + t), and the curvilinear lines at the bottom are for the

baseline mean function U
(2)
0 (t) = t0.5 + log(1 + t) of the second type of event. We

can clearly see that all the estimated lines match the true lines well. The plots on

the right side when η = 5 show an even better convergence to the truth than their

counterparts on the left side when η = 1.

Finally, we evaluate the effect of the scale parameter α on estimation. Frailty

models are well accepted for univariate panel count due to their flexibility and ro-

bustness. A naive extension to multivariate panel count data is to treat the frailty

exactly the same for all types of events, i.e., each subject shares a common frailty for

all the events. The following simulation shows that this practice leads to incorrect

estimation results when the true α is not 1. Table 4.3 presents the estimation results

for the same simulated data sets as in Table 4.2, but fitted with the naive model;

i.e., the model (4.1) with α omitted. The last block of the table shows that the naive

model does a comparable job in estimating the regression coefficients and η. This is

because the naive model is the true model when the true value of α is 1. However,

for data generated with α not equal to 1, the misspecified naive model provides poor

estimation results, which is especially clear when the true η is 1. Compared with

the results in Table 4.2, all bias’s for the regression coefficients slightly increase. For
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Table 4.3: Estimation of regression coefficients, α and η from the naive method with
α omitted for data generated with different α values and true β(1)

1 = 1, β(1)
2 = −1,

β
(2)
1 = 1, and β(2)

2 = 1

η = 1 η = 5
Parameter Bias SD SE CP95 Bias SD SE CP95

α = −0.3

β
(1)
1 -0.0438 0.1344 0.2443 0.7220 -0.0130 0.1016 0.1288 0.8640
β

(1)
2 0.0061 0.0710 0.1388 0.7080 0.0009 0.0536 0.0722 0.8500
β

(2)
1 -0.0206 0.1353 0.1628 0.8880 -0.0103 0.1085 0.0938 0.9800
β

(2)
2 0.0062 0.0715 0.0967 0.8540 0.0027 0.0574 0.0525 0.9720
η 2.6937 0.6275 0.9058 0.0000 3.9252 0.8115 0.3937 0.0060

α = 0

β
(1)
1 -0.0114 0.1459 0.2308 0.7820 -0.0046 0.1021 0.1205 0.9080
β

(1)
2 -0.0028 0.0770 0.1294 0.7700 0.0010 0.0544 0.0690 0.8760
β

(2)
1 -0.0302 0.1513 0.1166 0.9800 -0.0095 0.1106 0.0843 0.9900
β

(2)
2 0.0080 0.0802 0.0709 0.9820 0.0031 0.0587 0.0474 0.9780
η 1.9095 0.4903 0.6390 0.0000 3.6761 0.9184 0.5119 0.0320

α = 0.5

β
(1)
1 -0.0282 0.1826 0.2277 0.8840 -0.0059 0.1073 0.1185 0.9160
β

(1)
2 -0.0092 0.0962 0.1194 0.8780 -0.0002 0.0568 0.0646 0.9220
β

(2)
1 -0.0536 0.1893 0.1383 0.9760 -0.0193 0.1162 0.0962 0.9780
β

(2)
2 -0.0016 0.0997 0.0777 0.9880 0.0037 0.0617 0.0496 0.9920
η 0.5948 0.2502 0.2712 0.2160 2.3688 1.1662 0.9781 0.4600

α = 1

β
(1)
1 -0.0679 0.2161 0.2179 0.9320 -0.0181 0.1196 0.1194 0.9420
β

(1)
2 0.0029 0.1136 0.1118 0.9500 0.0027 0.0631 0.0614 0.9500
β

(2)
1 -0.0690 0.2202 0.2261 0.9380 -0.0208 0.1276 0.1315 0.9280
β

(2)
2 0.0022 0.1170 0.1155 0.9520 0.0019 0.0673 0.0702 0.9440
η 0.0401 0.1552 0.1614 0.9400 0.1853 0.9692 0.9736 0.9600

the regression coefficients for the first type of event, β(1)
1 and β(1)

2 , the SEs are quite

close to those in Table 4.2, but the SDs are smaller (the farther the true α is from

1, the smaller the SDs become), leading to CP95 much smaller than 95%. For the

regression coefficients for the second type of event, β(2)
1 and β(2)

2 , compared with those

in Table 4.2, both SDs and SEs increase. For data generated with α2 = 0 or 0.5, the

naive method inflates SDs more than SEs, leading to higher coverage probabilities

than 95%. When α2 = −.3, the inflated SEs are actually larger than the inflated SDs,

leading to lower coverage probabilities. The bias, SD and SE of η increase when the

true α moves away from the value 1. The estimation results for η = 5 have a similar
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pattern to those for η = 1, but are much improved. This is reasonable because a

large η value implies a small variance for frailties and thus less correlation between

two types of events. This set of simulations shows that including the scale parameter

of α is important to correctly estimate the regression coefficients.

4.5 Real data analysis

In this section, we apply our proposed methods to analyze the motivating data set,

the skin cancer data, and compare the results with those in the literature. Two

hundred and ninety patients are analyzed with one deleted from the original group

because there is no observation for that patient. The observation times were recorded

in days. The covariate of major interest is denoted as X1, which is equal to 1 if the

patient was assigned to the DFMO group and 0 in the placebo group. The other

three covariates of interest are X2, the number of cancers prior to the trial; X3, the

patient’s age; and X4, gender with male 1 and female 0. Table 4.4 displays the results

of the covariate coefficients of the two types of skin cancers from the proposed model.

Clearly, gender (X4) has no significant effect but the number of cancers prior to trial

(X2) and the patient’s age (X3) are significant for both skin cancers. The positive

value of β2 implies that the number of prior cancers has a positive relationship with

the rate of new cancers. The negative value of β3 suggests that older patients tend to

have a lower rate of new cancers, which makes sense biologically since older people

have a slow metabolism. However, DFMO has different effects on the recurrence rate

of the two skin cancers. For basal cell carcinoma, the recurrence rate is decreased by

a factor of 1.209; but for squamous cell carcinoma, the recurrence rate is increased

by a factor of 1.111. However, neither of these two effects are significant due to the

large posterior standard deviations.
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Table 4.4: Estimation results (posterior mean, posterior standard deviation and 95%
credible interval) of the covariate effects for basal cell carcinoma and squamous cell
carcinoma

β1 β2 β3 β4

basal -0.1902 0.1028 -0.0376 0.0238
0.1500 0.0145 0.0055 0.1506

(-0.4894, 0.0987) (0.0762, 0.1330)* (-0.0487, -0.0273)* (-0.2717, 0.3185)
squamous 0.1055 0.1451 -0.0196 0.3053

0.2174 0.0213 0.0070 0.2142
(-0.3153, 0.5251) (0.1051, 0.0.1894)* ( -0.0333, -0.0060)* (-0.1165, 0.7255)

Table 4.5: Estimation results of the covariate effects when common covariate effects
are assumed for the two types of skin cancers from the proposed method, He et al.
(2008)’s method, and Zhang et al. (2013)’s method

β1 β2 β3 β4

Proposed -0.1509 0.0810 -0.0264 0.0636
0.1381 0.0122 0.0052 0.1409

(-0.4203, 0.1197) (0.0599, 0.1087)* (-0.0367, -0.0169)* (-0.2098, 0.3369)

He et al. -0.0239 0.1440 -0.0116 0.3807
0.1809 0.0212 0.0084 0.1778

(-0.3785, 0.3307) (0.1024, 0.1856)* (-0.0281, 0.0049) (0.0322, 0.7292)*

Zhang et al. -0.2253 0.0784 0.0016 0.2534
0.1831 0.0090 0.0087 0.1942

(-0.5842, 0.1336) (0.0608, 0.0960)* (-0.0155, 0.0187) (-0.1272, 0.06340)

The skin cancer data have also been analyzed by He et al. (2008) and Zhang et al.

(2013), assuming the same covariate effects for both skin cancers. For comparison,

we also modify step 4 in the Gibbs sampler in Section 4.3.3 and reanalyze the data

with the same covariate coefficients for both cancers. The results are presented in

Table 4.5.

Overall, the estimation results of the covariate coefficients for the three meth-

ods are quite similar. However, the Bayesian method we proposed produces smaller

posterior standard deviations than those produced from the other two frequentist

methods. The different effects of DFMO on the two skin cancers are partially hidden
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Figure 4.3: Estimated cumulative baseline mean function of models with and without
the same covariate effects for basal cell carcinoma and squamous cell carcinoma

compared to the method when different covariate effects are assumed. The effect of

the number of cancers prior to trial (X2) is significant for all three methods. Our

Bayesian method shows a significant effect on patient’s age (X3), while the other two

frequentist methods do not. Our method and Zhang et al. (2013)’s method show no

significant effect of gender (X4), but He et al. (2008)’s method does.

In addition, our method can estimate the baseline mean functions simultaneously

with the regression coefficients. Figure 4.3 presents the estimated baseline mean func-

tions for basal cell carcinoma and squamous cell carcinoma, respectively. The solid

line on the top and the broken line at the bottom represent the baseline mean func-
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Figure 4.4: Baseline correlation between basal cell carcinoma and squamous cell
carcinoma across time

tions of basal cell carcinoma and squamous cell carcinoma from the model assuming

different covariate effects. The two broken lines in the middle represent the baseline

mean functions of the two cancers when assuming the covariate effects are the same.

Clearly, under the common covariate effects assumption, the baseline mean functions

are both pulled towards the middle, which blurs the difference in the baseline mean

functions between these two skin cancers.

Finally, Figure 4.4 displays the estimated baseline correlation function when co-
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variate effects are assumed to be different for the two skin cancers. It can be seen that

the correlation between the two recurrent skin cancers is positive and is strengthened

across time.

4.6 Disussion

In this chapter, we have proposed a Bayesian estimation approach for the semipara-

metric regression analysis of multivariate panel count data. For each type of event,

the proportional mean function is used to model the cumulative mean count of the

event, where its baseline mean function is approximated by monotone I-splines. The

correlation between two types of events is modeled by common frailty terms and

a scale parameter. Based on a novel Poisson data augmentation, an efficient and

easy-to-implement Gibbs sampler is developed for MCMC computation. Through

the MCMC samples, the regression coefficients, the baseline mean functions, and the

baseline correlation function between two events can be simultaneously estimated.

Simulation studies have shown that the proposed approach provides accurate es-

timates of the regression coefficients and the baseline mean functions. Simulation

studies have also demonstrated the importance of including the scale parameter in

the model. The scale parameter provides substantive flexibility for modeling the

correlation and meanwhile improves estimation performance.

Our approach can be slightly modified to accommodate common covariate effects

for different types of events. However, real data analysis shows that doing so would

hide significant covariate effects for individual types of events. Therefore, we suggest

assuming different covariate effects for different events first for real data analysis, and

then using the common covariate effects model later if similar effects are observed for

different events.

Unlike the existing frequentist methods, our approach does not require model

assumptions for the observation or censoring processes. Our approach is solely based
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on the observed likelihood and only needs the observed counts and observation times

for the analysis. This makes our proposed approach sufficiently generic to deal with

panel count data arising from different observation schemes including dependent or

independent censoring and/or observation processes. On the other hand, the proposed

approach may lose a certain amount of efficiency due to not incorporating information

on the observation or censoring processes when it is actually available.

Although each subject is assumed to have common covariates for different types

of events and only time-independent covariates are considered in this chapter, our

approach can accommodate different and time-dependent covariates for each subject

by replacing Xi with X(k)
i (t) in model (4.1) and the Gibbs sampler.

Wang and Lin (2019) demonstrated the robustness of their approach to estimat-

ing the regression coefficients and the baseline function when the Poisson process

assumption fails to hold for univariate panel count data. In this chapter, with the

additional gamma frailty terms for the proportional mean models, we expect even

greater robustness for our proposed approach. One way to further improve the per-

formance of our approach is to nonparametrically model the frailties, such as using a

Dirichlet process mixture of gammas to model the distribution of frailties.
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Chapter 5

Conclusion

In this dissertation, two main topics, binary diagnostic tests and multivariate panel

count data, are investigated in the Bayesian framework. Chapter 2 and Chapter 3

present ideas on two aspects of binary diagnostic tests, one for a longitudinal per-

spective with repeated measures and the other for a cross-sectional perspective with a

medium or large group of tests (or raters). Chapter 4 extends the existing univariate

panel count data literature to a multivariate cases. The commonality among the three

chapters is that they all employ Bayesian sampling methods for implementation and

all the algorithms are easy to implement, and work well in the situations involved.

For the binary diagnostic test models we developed in Chapter 2 and Chapter 3,

the highest degree of correlation we considered was two, corresponding to pairwise

correlation. Jones et al. (2010) suggested that in practice pairwise dependence is

likely to be more than enough. The models we developed are easily generalizable to

more than one population though here we only investigate one population. For further

interest, we can study the problem at strata levels based on demographic informa-

tion, such as age and gender, by introducing a prevalence for each subpopulation. In

this dissertation we only consider diagnostic tests with binary results. For future in-

vestigation, ordinal data—data with several categories—also merit more exploration.

Ordinal data convey more information than binary data, so potentially using ordinal

data can further improve estimation results. Finally, when we deploy these developed

latent class models, we need to be careful that the misspecified covariance structure

may lead to biased estimation results (Albert and Dodd, 2004).
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In Chapter 4, we demonstrate an application of the Bayesian method to the panel

count data regime. We particularly explore the multivariate case. For each type of

event, the proportional mean model is employed to model the cumulative mean count,

where monotone I-splines are used to model the baseline mean function. Common

frailties with scale parameters are utilized to accommodate the correlation between

events. Unlike the frequentist estimating equation method, there is no need to specify

the relationship between recurrent event processes and observation processes, making

the model generally more applicable. It can also be applied to a situation with dif-

ferent observation times and different covariates for each event. For future study, we

can incorporate different covariates for each event and/or time-dependent covariates

in the model. In addition, we can model the frailties nonparametrically, for instance,

using a Dirichlet process mixture of gammas to offer more flexibility. Another con-

sideration would be to use the transformation of the proportional mean model when

the proportional assumption does not hold.
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Appendix A

Chapter 2 Appendix and Supplementary

Materials

A.1 Focused Metropolis-Hastings proposals

Conditional on the diseased (C+
ij ), the pairwise correlation between any two tests i,

j satisfy the following conditions:

0 < SeiSej + C+
ij < 1

0 < (1− Sei)(1− Sej) + C+
ij < 1

0 < (1− Sei)Sej − C+
ij < 1

0 < (1− Sej)Sei − C+
ij < 1,

which boils down to

(1− Sei)(Sej − 1) < C+
ij < min(Sei, Sej)− SeiSej.

Similarly, we have

(1− Spi)(Spj − 1) < C−ij < min(Spi, Spj)− SpiSpj.

In the same spirit, conditional on the diseased (C+
ij ), the pairwise correlation between

any two time points for test k should satisfy the following conditions:

0 < Se2
k +R+

k < 1

0 < (1− Sek)2 +R+
k < 1
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0 < (1− Sek)Sek −R+
k < 1,

which boils down to

max(−Se2
k,−(1−Sek)2, (1−Sek)Sek−1) < R+

k < min(1−Se2
k, 1−(1−Sek)2, (1−Sek)Sek)

max(−Sp2
k,−(1−Spk)2, (1−Spk)Spk−1) < R−k < min(1−Sp2

k, 1−(1−Spk)2, (1−Spk)Spk)

Assuming sensitivities and specificities are greater than 0.5 implies the simplification

−(1− Sek)2 < R+
k < (1− Sek)Sek, −(1− Spk)2 < R−k < (1− Spk)Spk.

These inequalities focus proposals in the Metropolis-Hastings algorithm, allowing

the quick removal of improper proposals without having to check that every joint

probability is between zero and one, thus improving computational efficiency.
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A.2 MCMC traceplots for schaphoid fracture data

A.2.1 MCMC traceplot for π

Figure A.1: Traceplot of π for the scaphoid fracture data. 50,000 iterations with first
2,000 iterates as burnin.
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A.2.2 MCMC traceplots for Se1, Se2, Se3, Sp1, Sp2 and Sp3

Figure A.2: Traceplots for Se1, Se2, Se3 (top) and Sp1, Sp2, Sp3 (bottom).
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A.2.3 MCMC traceplots for R+
1 , R+

2 , R+
3 , R−1 , R−2 and R−3

Figure A.3: Traceplots for R+
1 , R+

2 , R+
3 (top) and R−1 , R−2 , R−3 (bottom).
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A.2.4 MCMC traceplots for C+
12, C+

13, C+
23, C−12, C−13 and C−23

Figure A.4: Traceplots for C+
12, C+

13, C+
23 (top) and C−12, C−13, C−23 (bottom).
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Appendix B

Chapter 3 Appendix and Supplementary

Materials

B.1 R and JAGS code

######################################################################

#Algorithm 1: JAGS code for the Conditional Independent Model (M1)

######################################################################

modelString1 = "

model{

for(i in 1:n){

for (k in 1:K){

s1[i,k]<- se[k]^x[i,k]*((1-se[k])^(1-x[i,k]))

s2[i,k]<- sp[k]^(1-x[i,k])*((1-sp[k])^x[i,k])

}

prob[i]=pi*(prod(s1[i,1:K])) + (1-pi)*(prod(s2[i, 1:K]))

z[i] ~ dpois( - log(prob[i]))

}

for (k in 1:K){

se[k] ~ dbeta( omega1*(kappa1 -2)+1, (1-omega1)*(kappa1-2) +1)

sp[k] ~ dbeta( omega2*(kappa2 -2)+1, (1-omega2)*(kappa2-2) +1)

}

omega1 ~ dbeta(1,1)T(0.5,)
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omega2 ~ dbeta(1,1)T(0.5,)

kappa1 = kappaMinusTwo1 +2

kappaMinusTwo1~ dgamma(0.01,0.01)

kappa2 = kappaMinusTwo2+2

kappaMinusTwo2 ~ dgamma(0.01,0.01)

pi ~ dbeta(1,1)

}"

writeLines( modelString1 , con="TEMPmodel1.bug" )

######################################################################

#Algorithm 2: JAGS code for the Pairwise Covariance Model (M2)

######################################################################

modelString2 = "

model{

for(i in 1:n){

for (k in 1:K){

s1[i,k]<- se[k]^x[i,k]*((1-se[k])^(1-x[i,k]))

s2[i,k]<- sp[k]^(1-x[i,k])*((1-sp[k])^x[i,k])}

for (j in 1:K){

for (h in 1:K){

cop[i,j,h]<- c1[j,h]*(-1)^(x[i,j] + x[i,h])/(s1[i,j]*s1[i,h])

con[i,j,h]<- c2[j,h]*(-1)^(x[i,j] + x[i,h])/(s2[i,j]*s2[i,h])

}}

eta[i] = (prod(s1[i,1:K]) *(1+ sum(cop[i,,])))

theta[i] =(prod(s2[i, 1:K]) *(1+sum(con[i,,])))

prob[i]=pi*eta[i] + (1-pi)*theta[i]

z[i] ~ dpois( - log(prob[i]))
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}

for (k in 1:K){

se[k] ~ dbeta( omega1*(kappa1 -2)+1, (1-omega1)*(kappa1-2) +1)

sp[k] ~ dbeta( omega2*(kappa2 -2)+1, (1-omega2)*(kappa2-2) +1)

}

for (l in 1:(K-1)){

for (h in (l+1):K){

c1[l,h] ~ dunif((se[l]-1)*(1-se[h]), (min(se[l],se[h])-se[l]*se[h]))

c2[l,h] ~ dunif((sp[l]-1)*(1-sp[h]), (min(sp[l],sp[h])-sp[l]*sp[h]))

}}

for (h in 1:K){

for (l in h:K){

c1[l,h] <-0

c2[l,h] <-0

}}

omega1 ~ dbeta(1,1)T(0.5, )

omega2 ~ dbeta(1,1)T(0.5,)

kappa1 = kappaMinusTwo1 +2

kappaMinusTwo1~ dgamma(0.01,0.01)

kappa2 = kappaMinusTwo2+2

kappaMinusTwo2 ~ dgamma(0.01,0.01)

pi ~ dbeta(1,1)

}"

writeLines( modelString2 , con="TEMPmodel2.bug" )
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########################################################################

# prepare data and use function jags() to run Algorithm 1 or Algorithm 2

########################################################################

#n is the sample size,

#K is the number of raters (tests),

#m is the original dataset, an n by K matrix.

x<- structure(m, .Dim=c(n,K))

z<-rep(0,n)

dat=list(K=K,n=n,x=x, z=z) #prepare the data list

library(R2jags)

#run Algorithm 1 through function jags()

par1=c("se","sp","kappa2","kappa1","omega2","omega1", "pi","prob")

out1<- jags(model ="TEMPmodel1.bug", parameters.to.save=par1, data=dat,

n.chains=1, n.iter=10000, n.burnin=1000)

#run Algorithm 2 through function jags()

par2=c("se","sp","kappa2","kappa1","omega2","omega1", "pi", "c1","c2","prob")

out2<- jags(model ="TEMPmodel2.bug", parameters.to.save=par2, data=dat,

n.chains=1, n.iter=10000, n.burnin=1000)

######################################################################

#Algorithm 3: JAGS code for the Conditional Independent Model (M1)

# with the multinomial distribution imposition

######################################################################

modelString3 = "

model{

for(i in 1:N){

for (k in 1:K){
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s1[i,k]<- se[k]^x[i,k]*((1-se[k])^(1-x[i,k]))

s2[i,k]<- sp[k]^(1-x[i,k])*((1-sp[k])^x[i,k])

}

prob[i]=pi*(prod(s1[i,1:K])) + (1-pi)*(prod(s2[i, 1:K]))

z[i] ~ dpois( - log(prob[i]))

}

t[1:N] ~ dmulti(prob[1:N], n)

for (k in 1:K){

se[k] ~ dbeta( omega1*(kappa1 -2)+1, (1-omega1)*(kappa1-2) +1)

sp[k] ~ dbeta( omega2*(kappa2 -2)+1, (1-omega2)*(kappa2-2) +1)

}

omega1 ~ dbeta(1,1)T(0.5,)

omega2 ~ dbeta(1,1)T(0.5,)

kappa1 = kappaMinusTwo1 +2

kappaMinusTwo1~ dgamma(0.01,0.01)

kappa2 = kappaMinusTwo2+2

kappaMinusTwo2 ~ dgamma(0.01,0.01)

pi ~ dbeta(1,1)

}"

writeLines( modelString3 , con="TEMPmodel3.bug" )

######################################################################

#Algorithm 4: JAGS code for the Pairwise Covariance Model (M2)

# with the multinomial distribution imposition

######################################################################

modelStrinmodelString4 = "

model{
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for(i in 1:N){

for (k in 1:K){

s1[i,k]<- se[k]^x[i,k]*((1-se[k])^(1-x[i,k]))

s2[i,k]<- sp[k]^(1-x[i,k])*((1-sp[k])^x[i,k])

}

for (j in 1:K){

for (h in 1:K){

cop[i,j,h]<- c1[j,h]*(-1)^(x[i,j] + x[i,h])/(s1[i,j]*s1[i,h])

con[i,j,h]<- c2[j,h]*(-1)^(x[i,j] + x[i,h])/(s2[i,j]*s2[i,h])

}

}

eta[i] = (prod(s1[i,1:K]) *(1+ sum(cop[i,,])))

theta[i] =(prod(s2[i, 1:K]) *(1+sum(con[i,,])))

prob[i]=pi*eta[i] + (1-pi)*theta[i]

z[i] ~ dpois( - log(prob[i]))

}

t[1:N] ~ dmulti(prob[1:N], n)

for (k in 1:K){

se[k] ~ dbeta( omega1*(kappa1 -2)+1, (1-omega1)*(kappa1-2) +1)

sp[k] ~ dbeta( omega2*(kappa2 -2)+1, (1-omega2)*(kappa2-2) +1)

}

for (l in 1:(K-1)){

for (h in (l+1):K){

c1[l,h] ~ dunif((se[l]-1)*(1-se[h]), (min(se[l],se[h])-se[l]*se[h]))

c2[l,h] ~ dunif((sp[l]-1)*(1-sp[h]), (min(sp[l],sp[h])-sp[l]*sp[h]))

}}

for (h in 1:K){
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for (l in h:K){

c1[l,h] <-0

c2[l,h] <-0

}}

omega1 ~ dbeta(1,1)T(0.5, )

omega2 ~ dbeta(1,1)T(0.5,)

kappa1 = kappaMinusTwo1 +2

kappaMinusTwo1~ dgamma(0.01,0.01)

kappa2 = kappaMinusTwo2+2

kappaMinusTwo2 ~ dgamma(0.01,0.01)

pi ~ dbeta(1,1)

}"

writeLines( modelString4 , con="TEMPmodel4.bug" )

#########################################################################

# prepare data and use function jags() to run Algorithm 3 or Algorithm 4

#########################################################################

#n is the sample size,

#K is the number of raters (tests),

#m is the original dataset, an n by K matrix.

#all 2^K test result combinations

N = 2^K

y = matrix(0, N, K)

for ( i in 1:K){

y[,i] = rep(c(0,1),each = 2^(K-i))}

#freq is the observed frequency vector of test result combinations

freq = numeric(N)
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for ( i in 1:n){

for ( j in 1:N){

if (all (m[i,] == y[j,])){freq[j] = freq[j]+1}}}

t = freq

x<- structure(y, .Dim=c(N,K))

z<-rep(0,n)

dat=list(K=K,n=n, N=N, x=x, z=z, t=t)

#Output

par1=c("se","sp","kappa2","kappa1","omega2","omega1", "pi","prob")

out3<- jags(model ="TEMPmodel3.bug", parameters.to.save=par1, data=dat,

n.chains=1, n.iter=10000, n.burnin=1000)

par2=c("se","sp","kappa2","kappa1","omega2","omega1", "pi", "c1","c2","prob")

out4<- jags(model ="TEMPmodel4.bug", parameters.to.save=par2, data=dat,

n.chains=1, n.iter=10000, n.burnin=1000)

B.2 Estimation results for scenario 1 when fitting with model M2

with different covariance structures

We fit the same 200 simulated data sets of scenario 1 with M2 having one pair

of important covariance parameters omitted intentionally and M2 with the selected

significant covariances by the proposed one-sided credible interval criterion. The

results are summarized in the middle three columns of Table B.1. In the table,

Bias and SD stand for the average bias and average posterior standard deviation of

each parameter for the 200 data sets, respectively. The first column of the table (also

column 1 in Table 3.1 in Chapter 3) shows the estimation results when the completely

misspecified conditional independence model (M1) is fitted. The fifth column of the

table (also column 3 in Table 3.1 in Chapter 3) shows the estimation results when

the true model (M2 with two pairs of covariance parameters) is fitted. It is clear that
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missing a pair of important covariance parameters leads to larger biases than those

using the true model, but smaller biases than those using the completely misspecified

conditional independence model (M1). The estimation results when fitting with M2

with selected covariances by the one-sided credible interval criterion are very close to

those when fitting with the true model. Finally, it’s observed that the SD’s are very

close to each other when fitting with different covariance structures.

Table B.1: Simulation results for scenario one having different covariance structures.

M1 C+
23/C−23 C+

34/C−34 selected true model
no covariance omitted omitted covariances

Truth Bias (SD) Bias (SD) Bias (SD) Bias (SD) Bias (SD)
π 0.450 -0.011 (0.025) -0.008 (0.026) -0.006 (0.026) -0.001 (0.026) 0.000 (0.026)

Se1 0.960 -0.009 (0.017) -0.008 (0.017) -0.007 (0.017) -0.007 (0.018) -0.007 (0.017)
Se2 0.870 0.019 (0.024) 0.018 (0.026) 0.008 (0.025) 0.004 (0.026) 0.002 (0.026)
Se3 0.810 0.031 (0.029) 0.022 (0.030) 0.017 (0.030) 0.002 (0.033) -0.002 (0.033)
Se4 0.860 0.016 (0.025) 0.007 (0.026) 0.012 (0.026) 0.002 (0.027) 0.001 (0.027)
Sp1 0.970 -0.017 (0.016) -0.012 (0.015) -0.009 (0.014) -0.002 (0.013) 0.000 (0.013)
Sp2 0.980 -0.006 (0.011) -0.002 (0.010) -0.009 (0.012) -0.004 (0.011) -0.004 (0.011)
Sp3 0.990 -0.003 (0.007) -0.004 (0.008) -0.005 (0.008) -0.006 (0.009) -0.007 (0.009)
Sp4 0.970 -0.006 (0.013) -0.011 (0.014) -0.001 (0.011) -0.004 (0.012) 0.003 (0.012)
C+

23 0.050 — — -0.009 (0.014) — -0.001 (0.015)
C+

34 0.050 — -0.007 (0.014) — — 0.001 (0.015)
C−23 0.001 — — 0.004 (0.004) — 0.004 (0.004)
C−34 0.001 — 0.003 (0.004) — — 0.003 (0.004)

RMSE 0.01567 0.01243 0.00974 0.00446 0.00416

B.3 Estimation results for scenario 2 when 7 pairs of covariance

terms are added in model M2

For the simulation scenario 2 where the true model has significant covariances C+
23,

C+
14, C+

24, C+
25, and C−35, the correlation residual analysis always identifies 7 pairs

of correlations as significant: r23, r14, r24, r25, r34, r35, and r45. Table B.2 below
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summarizes the estimation results when we fit the simulated 200 data sets with model

M2 with these seven pairs of covariances added.

Table B.2: Simulation results for K=5, n=4000 with 7 pairs of covariance terms added

Truth Bias Post.SD
π 0.450 -0.001 0.014

Se1 0.770 0.002 0.016
Se2 0.650 -0.001 0.016
Se3 0.710 -0.000 0.016
Se4 0.680 0.002 0.019
Se5 0.710 0.001 0.015
Sp1 0.890 0.002 0.011
Sp2 0.930 0.004 0.009
Sp3 0.880 0.001 0.011
Sp4 0.900 0.003 0.012
Sp5 0.860 0.002 0.011
C+

23 0.050 0.001 0.007
C+

14 0.050 0.001 0.008
C+

24 0.050 0.001 0.007
C+

34 0.000 -0.000 0.006
C+

25 0.050 0.000 0.007
C+

35 0.001 -0.000 0.006
C+

45 0.000 -0.000 0.006
C−23 0.001 -0.001 0.004
C−14 0.001 -0.001 0.005
C−24 0.001 -0.001 0.003
C−34 0.000 -0.000 0.003
C−25 0.001 -0.001 0.004
C−35 0.050 0.001 0.006
C−45 0.000 -0.000 0.003

B.4 Robustness study for model M2

We investigate if our pairwise covariance model (M2) can handle the data generated

from the Gaussian random effect (GRE) model and finite mixture (FM) model. Two
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hundred data sets are simulated from the GRE and FM model, respectively, and

then are fitted with our proposed methods. The correlation residual analysis after

fitting M1 suggests that all the pairwise covariance terms should be selected for the

GRE generated data and almost so for the FM generated data. When including

all the covariance terms in model M2, the estimation results of disease prevalence,

sensitivities and specificities, shown in Table B.3, are biased.

Table B.3: Simulation results with Model M2 for the data generated from GRE model
and FM model

Truth GRE FM
π 0.45 0.290 (0.012) 0.226 (0.019)

Se1 0.77 0.708 (0.013) 0.707 (0.049)
Se2 0.65 0.640 (0.013) 0.661 (0.044)
Se3 0.71 0.692 (0.013) 0.717 (0.042)
Se4 0.68 0.667 (0.013) 0.688 (0.043)
Se5 0.71 0.702 (0.013) 0.724 (0.041)
Sp1 0.89 0.712 (0.007) 0.679 (0.017)
Sp2 0.93 0.788 (0.006) 0.763 (0.015)
Sp3 0.88 0.735 (0.007) 0.710 (0.015)
Sp4 0.90 0.758 (0.007) 0.732 (0.015)
Sp5 0.86 0.724 (0.007) 0.698 (0.015)
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Appendix C

Chapter 4 Appendix and Supplementary

Materials

C.1 Derivation of Cov(N (j)
i , N

(k)
i ), V ar(N (j)

i ), and V ar(N (k)
i ) for αj = 1

Cov(N (j)
i , N

(k)
i ) = E(N (j)

i N
(k)
i )− E(N (j)

i )E(N (k)
i )

= E[E(N (j)
i |wi)E(N (k)

i |wi)]− E[E(N (j)
i |wi)]E[E(N (k)

i |wi)]

= U
(j)
0 exp(X ′β(j))U (k)

0 exp(X ′β(k))[E(w1+αk
i )− E(wi)E(wαki )]

= U
(j)
0 exp(X ′β(j))U (k)

0 exp(X ′β(k))× αkη
−(αk+1)Γ(η + αk)

Γ(η)

V ar(N (j)
i ) = V ar(E(N (j)

i |wi)) + E(V ar(N (j)
i |wi))

= V ar(wiU (j)
0 exp(X ′β(j))) + E(wiU (j)

0 exp(X ′β(j)))

= (U (j)
0 exp(X ′β(j)))2

η
+ U

(j)
0 exp(X ′β(j))

V ar(N (k)
i ) = V ar(E(N (k)

i |wi)) + E(V ar(N (k)
i |wi))

= V ar(wαki U
(k)
0 exp(X ′β(k))) + E(wαki U

(k)
0 exp(X ′β(k)))

= (U (k)
0 exp(X ′β(k)))2[Γ(η + 2αk)

Γ(η)η2αk
− (Γ(αk + η)

Γ(η) )2 1
η2αk

] +

U
(k)
0 exp(X ′β(k))Γ(αk + η)

Γ(η)ηαk
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C.2 Derivation of Cov(N (p)
i , N

(q)
i ), V ar(N (p)

i ), V ar(N (q)
i ) and

Corr(N (p)
i , N

(q)
i ) for any αp and αq

Cov(N (p)
i , N

(q)
i ) = E(N (p)

i N
(q)
i )− E(N (p)

i )E(N (q)
i )

= E[E(N (p)
i |wi)E(N (q)

i |wi)]− E[E(N (p)
i |wi)]E[E(N (q)

i |wi)]

= U
(p)
0 exp(X ′β(p))U (q)

0 exp(X ′β(q))[E(wαp+αq
i )− E(wαpi )E(wαqi )]

= U
(p)
0 exp(X ′β(p))U (q)

0 exp(X ′β(q))×
Γ(αp + αq + η)− Γ(αp+η)Γ(αq+η)

Γ(η)

Γ(η)ηαp+αq

V ar(N (p)
i ) = V ar(E(N (p)

i |wi)) + E(V ar(N (p)
i |wi))

= V ar(wαpi U
(p)
0 exp(X ′β(p))) + E(wαpi U

(p)
0 exp(X ′β(p)))

= (U (p)
0 exp(X ′β(p)))2[Γ(η + 2αp)

Γ(η)η2αp
− (Γ(αp + η)

Γ(η) )2 1
η2αp

] +

U
(p)
0 exp(X ′β(p))Γ(αp + η)

Γ(η)ηαp

V ar(N (q)
i ) = V ar(E(N (q)

i |wi)) + E(V ar(N (q)
i |wi))

= V ar(wαqi U
(q)
0 exp(X ′β(q))) + E(wαqi U

(q)
0 exp(X ′β(q)))

= (U (q)
0 exp(X ′β(q)))2[Γ(η + 2αq)

Γ(η)η2αq
− (Γ(αq + η)

Γ(η) )2 1
η2αq

] +

U
(q)
0 exp(X ′β(q))Γ(αq + η)

Γ(η)ηαq

Corr
(
N

(p)
i , N

(q)
i

)
= Γ(η)Γ(αp + αq + η)− Γ(αp + η)Γ(αp + η)

A ·B
,where

A =
√√√√η2αqΓ(η)2[Γ(η)Γ(2αp + η)− Γ(αp + η)2] + Γ(η)3Γ(αp + η)ηαp+2αq

U
(p)
0 (t) exp(X ′iβ(p))

B =
√√√√η2αpΓ(η)2[Γ(η)Γ(2αq + η)− Γ(αq + η)2] + Γ(η)3Γ(αq + η)η2αp+αq

U
(q)
0 (t) exp(X ′iβ(q))
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Corr0
(
N

(p)
i , N

(q)
i

)
= Γ(η)Γ(αp + αq + η)− Γ(αp + η)Γ(αp + η)

C ·D
,where

C =
√√√√η2αqΓ(η)2[Γ(η)Γ(2αp + η)− Γ(αp + η)2] + Γ(η)3Γ(αp + η)ηαp+2αq

U
(p)
0 (t)

D =
√√√√η2αpΓ(η)2[Γ(η)Γ(2αq + η)− Γ(αq + η)2] + Γ(η)3Γ(αq + η)η2αp+αq

U
(q)
0 (t)
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