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ABSTRACT

For several decades, the study and development of colloidal semiconductor nanocrystals, or 

quantum dots (QD), has become a rich field heralding improved integration into 

applications ranging from photovoltaics and photocatalysis to biomedical imaging and drug 

delivery. CdxSey is the most extensively studied QD system, however numerous 

compositional details still confound the nanocrystal field. Although CdSe QDs with native 

ligand coatings can show high fluorescence quantum yield and may be suitable for some 

applications, often times these original ligand layers are comprised of long aliphatic chains 

that preclude incorporation into biological matrices or severely impede charge transfer – 

depending on the end goal functionality. 

While the innermost core can be highly crystalline, due to the QD size regime a large 

fraction of the constituent atoms is found at the surface; the nature of which strongly 

influences optoelectronic properties. Indeed, the necessary ligand surfactant layer is anything 

but innocuous; dictating synthetic morphology, determining solubility, quenching or 

enhancing photoluminescence, or even modulating the nanocrystal’s band gap. A detailed, 

consistent and unambiguous profile for QD surface composition and thermodynamics 

would be extremely advantageous toward controlling and improving photophysical 

properties. This dissertation highlights several caveats for appropriately compiling a 

thermodynamic profile in situ for the dynamic nature of QD surfaces, and to describe 

approaches to address them. 
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I have focused on developing commonly employed metrics for investigating CdSe 

QD surface chemistries. I begin by thoroughly considering how various purification 

techniques alter the most significant aspects of QD investigations and performance. Among 

these, I illustrate the gel permeation chromatography (GPC) approach that I helped to 

establish as a highly effective technique for nanoparticle purification. Finally, I delineate in 

several fundamental CdSe-based QD systems the capacity of isothermal titration calorimetry 

as a sensitive and precisely quantitative technique to directly probe reaction thermodynamics 

in organic phase. Even in cases where common spectroscopic techniques have been of 

limited use, ITC is employed to elucidate complex binding phenomena. Beginning with the 

highly reproducible GPC purification technique for a consistent QD starting material, this 

dissertation depicts my efforts to provide consistent equilibrium thermodynamic data for 

relevant QD surface chemistry interactions. 
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CHAPTER 1 

INTRODUCTION TO DIRECT INVESTIGATIONS OF QUANTUM DOT SURFACE 

CHEMISTRY AND ISOTHERMAL TITRATION CALORIMETRY  

1.1 Introduction to colloidal semiconductor nanocrystal quantum dots 

Colloidal semiconductor quantum dots (QDs) are roughly spherical, direct bandgap, 

nanometer sized portions of bulk semiconductor crystals suspended in solution. As-

synthesized QDs are most commonly comprised of an inorganic crystalline core capped by 

an organic ligand surfactant layer that dictates the photophysical properties of the QD.1–3 

Characterized by broad absorption cross sections and narrow size-tunable emission spectra, 

QDs also exhibit high molar extinction coefficients and extraordinary photo-stability when 

compared to organic fluorophores.4–6 The size of these particles approaches the length scale 

of their exciton Bohr radius in the nanocrystals with diameters ranging from ~1-10 nm, and 

so quantum confinement effects are apparent, following the “Particle-in-a-Box” model 

wherein the delocalized electron (exciton) represents the “particle” and the QD is the “box.” 

This phenomenon is most clearly depicted as larger QDs emit at longer wavelengths.7–9 Due 

to these unique optoelectronic properties, QDs are intensely investigated and developed 

toward applications that would benefit from the energy and charge transfer that can be 

engineered with these nanomaterials. II-VI semiconductor QDs, such as Cd-based colloidal 

nanoparticles and nanocrystals (NCs) alike persist as the benchmark system by which new 

emerging materials are investigated.10,11 
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1.2 Impact of quantum dot surface chemistry 

Most notably, QDs have a high surface-to-volume ratio with rather labile electronic 

structures situated between the confined bulk-like, inorganic core and the surface-adsorbing 

ligands.1,5,12 The composition and passivation afforded by surface ligand interactions strongly 

influence exciton radiative and nonradiative pathways, which dictate QD application in 

either charge transport or biosensing. At the surface of the inorganic core termination of the 

semiconductor lattice is frequently incompletely passivated, leaving dangling bonds as 

surface defects. This interface between the inorganic core and incomplete ligand surfactant 

layer consequently contains localized states that can act as traps.12 Trap state emission 

generally originates from smaller spacing between energy levels below the QD conduction 

band, is significantly red-shifted, and in some instances more intense than band edge 

emission.13 As QD size is reduced, the energy gap is increased as well as influence of 

(undercoordinated) surface atom properties.14 

A major objective is that excitonic decay pathways be tuned to achieve optimal 

dissociation of charge carriers or radiative recombination, depending on the desired 

optoelectronic application. Therefore, understanding QD surface chemistry is paramount. 

An ensemble of QDs is inherently heterogeneous in particle radii, quantity of surface 

ions/undercoordinated atoms, ratio of surface cation-to-anion enrichment, and amount and 

of bound ligands.1,15 Synthetic techniques for high quality, nearly monodisperse Cd-

chalcogenide – especially CdSe – QDs employ a combination of fatty acids, amines, 

phosphines, and phosphonic acids with long aliphatic chains as their ligand surfactant 

layer.16–18 Table 1.1 displays a few common synthetic conditions, especially those of which I 

have personally researched. 
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Table 1.1 Common CdSe quantum dot synthetic descriptions 

CRYSTAL 
STRUCTURE 

ZINC BLENDE (CUBIC) WURTZITE (HEXAGONAL) 

STANDARD 
PROCEDURE 

Hot Injection Non injection Hot Injection Rapid Injection 

CADMIUM 
PRECURSOR 

Cd(COO–)2 Cd(COO–)2 Cd(TDPA)2 Cd(COO–)2 

SELENIUM 
PRECURSOR 

TOPSe/Se-
suspension (ODE) 

SeO2/Se-
suspension (ODE) 

TOPSe 
Se-Amine/Se-

suspension (ODE)/  
Se-Phosphine 

NUCLEATION 
TEMP 

270°C 230-240°C 350°C Room temp-300°C 

REACTION 
SOLVENT 

ODE ODE TOP:TOPO (1:1) 
ODE/Phosphine/ 

Alkylamine 
FURTHER OLEIC 

ACID DOSE 
No Yes Yes No 

POSSIBLE 
SURFACTANT 

Carboxylate Oleate/ Carboxylate 
mono-Phosphonate/ 

Phosphonate anhydride/ 
Carboxylate 

Unclear 

SIZE VARIATION 
FEASIBLITY 

Aliphatic Chain 
Length, Time; 

DIFFICULT 

Aliphatic Chain 
Length, Time; 

RELATIVE 

Aliphatic Chain  
Length, Time; 

RELATIVE 

Aliphatic Chain 
Length, Temperature; 

MODERATE 
 

The synthetic organic ligands are critical for providing surface passivation and steric 

stability; however, after synthesis these insulating ligands hinder conduction or are not 

soluble in aqueous media. Size and shape variation can render uniquely tunable 

optoelectronic QD properties, but ligand exchange (or some other route for surface 

modification) is almost universally required in order to utilize and better control their 

photophysical properties for any rational application. Areas of concern for QD 

photophysical properties are band-edge emission quenching/oxidation, PL lifetimes, 

non/radiative emission pathways. Photovoltaic applications require long radiative lifetimes 

achieved by enhancing exciton dissociation relative to recombination or multiple exciton 

generation, and strong coupling to conductive substrates; light emitting diode devices require 

shorter radiative lifetimes optimized by increased passivation, decreased interparticle distance 

and weak chemical coupling to their external environment; and bio-labelling applications 
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require distances between donor and acceptor molecules to be optimized depending on 

specific effects of local environment on excited state relaxation pathways.10,19 

A number of surface studies as well as theoretical computations verify that ligands 

tend to bind preferentially to Cd surface atoms, leaving the Se unpassivated and more 

subject to oxidation.20–22 Knowles et al. reported on certain factors that heavily influence 

photoinduced charge separation interpreted through Marcus Theory, while considering 

complexities in electronic coupling, reorganization energy and driving force parameters.23 A 

number of trapping events, elucidate the complications these trapping events can pose to 

carrier transfer dynamics, as well as how trapping of either the electron or hole within an 

orbital uncoupled from its delocalized carrier quenches band edge photoluminescence (PL). 

Photoinduced electron or hole transfer rates can be separated, but ligands may also be 

engineered to selectively sequester holes from the valence band of the QD to their HOMO, 

(for example in phenyldithiocarbamate).24 Buckley et al. published a study on various 

photophysical properties influenced by hole transfer to thiol, selenol and tellurol ligands.25 It 

has been well established that thiols extract holes from CdSe surface by creating midgap hole 

trap states, reducing wavefunction overlap with the complementary electrons, and so induce 

substantial PL quenching. Aromatic chalcogenol ligands are able to both extract and stabilize 

holes and provide greater stability against oxidative processes than the typical thiol ligands. 

While analogous to strongly binding thiol ligands, the selenol and tellurol ligands were found 

to have more substantial influence on the driving force for hole transfer. 

Contrary to the hole sequestering and PL quenching nature of the thiol and aromatic 

ligands, ligands functionalized with an amine group have been shown in numerous cases to 

enhance PL.10 In the case of primary amines, generally the QD valence band lies above the 
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amine HOMO, thus preventing hole transfer.1 A very common, neutral, datively binding 

ligand that has frequently been employed to treat CdSe QDs is pyridine. Typically pyridine 

has been applied as a weakly binding ligand to replace native ligands, and then been 

exchanged for subsequent ligands with a particularly desired functionality.26 Although often 

employed as this intermediate ligand cap for further ligand exchange, pyridine is not able to 

quantitatively displace native CdSe QD ligands, and does not provide adequate stability 

toward aggregation upon multiple treatments.15 Thiocyanate, inorganic ions (i.e. chloride and 

sulfide), and some metal ions (i.e. Ca2+ and Mn2+) as links between anionic inorganic ligands 

bound covalently to surface Cd2+ ions have been studied in ligand exchanges; which enable 

conductivity and carrier mobility enhancement through short interparticle separations, which 

are optimal for field effect transistor, photodetector, magnetization, and electrocatalytic 

applications.27,28 Bernt et al. reported photocatalytic cleavage of both 1,1-dithiooxalate and its 

ester to the production of carbon disulfide (which has some therapeutic benefits) and carbon 

dioxide as mediated by CdSe QDs.29 Polymers, proteins, and some small molecules (i.e. 

zwitterionic thiols and functionalized polyethylene glycols) have been utilized in direct ligand 

exchange or encapsulation with the QD surface in order to provide biocompatibility while 

maintaining passivation.30–32 

1.3 Typical spectroscopic techniques employed to characterize quantum dots 

The most facile and globally employed methods to monitor effects on QD optical properties 

are band edge absorption and emission; narrow, well-resolved, consistent features indicate 

the quality of sample size and monodispersity; time-resolved PL decay as exponential 

components indicate probability of radiative and nonradiative pathways; and PL quantum 

yield (QY) to determine sample brightness and the efficiency of exciton recombination. 
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Because the electronic transitions of QDs are size dependent, the absorption (HWHM) and 

PL emission (FWHM) spectra line widths are routinely employed to indicate size distribution 

in QD samples.9,33 

While this hopefully provides a thorough picture of the desire to optimize 

optoelectronic properties of colloidal semiconductor QDs, this is not an exhaustive 

description of the surface functionalities employed to render these materials effective charge 

Figure 1.1 Waterfall UV-visible absorption  of carboxylate-
ligated CdSe, demonstrating QD size evolution over time. 
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carriers or labelling/targeting devices. The aforementioned examples of ligands interacting 

with the QD surface have some similarities for which a few generalizations can be stated. 

Except in the case of ions ligated to and between the QD surfaces, the polar headgroups 

that bind or coordinate to the QD surface, particularly during NC synthesis contain oxygen, 

nitrogen, phosphorus and/or sulfur. QD surface coordination (in organic environments) 

occurs by three proposed motifs following the Covalent Bond Classification: anionic ligands 

that yield net neutral surfaces by covalently binding to the metal cations; dative binding 

Lewis bases; or neutral Lewis acids – referred to as X-type, L-type and Z-type ligands 

respectively.34–36 

Although current CdSe QD synthetic techniques yield high quality and nearly 

monodisperse samples, QDs may have highly crystalline cores with lattice terminated surface 

defects. QDs inherently have different facets, which are most accurately described as having 

different types of binding sites with various binding affinities. The <10nm diameter regime 

might prove difficult to probe beyond computational methods;22,37 however, investigating 

differences in thermodynamics in Wurtzite versus Zinc Blende QD structures could provide 

fundamental insight to ligand interactions with possibly preferred facets (e.g. it has been 

established that CdSe nanorods may be synthesized as extensions of Wurtzite nanocrystals 

extended from the c axis.38–40 X-ray Diffraction (XRD) is commonly used to verify QD 

crystal structure because the features are easily distinguished, as demonstrated below in 

Figure 1.2. 

Nuclear Magnetic Resonance (NMR) spectroscopy is another technique extensively 

applied to probe NC surface chemistry.41–43 Most nuclei possess both a magnetic moment μ 

and intrinsic angular momentum P which are vector quantities proportional to one another 

for isotopes of each element by the magnetogyric ratio γ. Owing to this fact, an isotope’s 
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Figure 1.2 Powder X-Ray Diffraction patterns of Zinc Blende (top) and Wurtzite 
(bottom) CdSe QDs, each with labeled vertical lines to indicate standard Bragg reflection 
peaks in the respective bulk material. 
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behavior can be manipulated under a magnetic field. Within an NMR experiment, nuclei are 

present at a macroscopic level and their population distribution among different energy 

states is described by Boltzmann statistics at thermal equilibrium. Transitions between 

energy levels are induced when the nuclei are irradiated with a magnetic field of an 

appropriate quantum energy. NMR spectra are shown as chemical shifts of relevant nuclei 

calibrated to peak positions of residual solvent. The chemical shift reflects how a particular 

nucleus is affected by its environment, and the resonance condition necessary to produce an 

NMR transition signal is:44  

ν1  =  γ/2π (1 – σ) B0      (1) 

The aforementioned quantum energy is effectively an electromagnetic wave at a 

certain frequency ν. The resonance frequency ν1 and the magnetic flux density B0 are 

proportional and a shielding factor (1 – σ) that takes into account the electrons/other 

surrounding atoms, which cause chemically non-equivalent nuclei to yield different NMR 

resonance signals. The result of chemical bonds within molecules in the context of NMR is 

that nuclear spins display interactions between nuclei and local electrons in indirect spin-spin 

coupling. This is referred to as scalar or J-coupling and provides information on bond 

distances and angles. Interactions of chemical bonds within molecules determine multiplicity, 

magnitude and the sign of the coupling constant for adjacent nuclei that are magnetically 

nonequivalent in the NMR spectra.  

In two-dimensional NMR spectroscopy intensities on two frequency axes are plotted 

to represent the chemical shifts associated with one of two-time variables. These time 

variables arise from a sequence of applied radio frequency (RF) pulses with specified delay 
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periods that occur as a four-step acquisition process: i) preparation period; ii) evolution 

period; iii) mixing period; and iv) detection period, wherein the free induction delay (FID) 

signal is observed as a function of time and subsequently Fourier transformed.44 Whereas 1D 

NMR involves a preparation and detection sequence; the evolution and mixing periods allow 

nuclear spins to freely precess (or rotate), followed by additional RF pulses that induce the 

transfer of magnetization coherence from the first nuclei to the second. 2D NMR 

techniques (i.e. Correlated Spectroscopy, COSY) that display the results of a magnetization 

transfer between nuclei of the same type, which are correlated through J-coupling, can offer 

detailed descriptions of frequencies for single isotopes. Chemically bonded correlations can 

also be monitored for heteronuclear couplings wherein magnetization is transferred from an 

easily detectible nucleus (usually 1H) to an insensitive nucleus with a small γ value. 2D NMR 

experiments can also be performed when the magnetization is transferred between nuclei 

that do not exhibit scalar coupling.  

Spin-lattice relaxation as pertaining to NC surface chemistry is requisite in order to 

accurately probe ligand dynamics on the QD surfaces via NMR. Aside from expected 

differences in ligand population, the different solvents have different polarities and for 

example, comparison of olefin protons versus terminal methyl protons in different solvents 

for CdSe QDs ligated with oleates should require statistically different T1 relaxation times, 

which determines the rate at which the magnetized component establishes thermodynamic 

equilibrium.41 T1 data appears as an exponentially increasing trajectory that plateaus as nuclei 

recover equilibrium, and resolvable exponential plots delineate structural features of 

adsorbed ligands in addition to providing distinctive relaxation times necessary for accurate 

ligand population analysis.45 T2 relaxation (spin-spin) dynamics have recently been 
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investigated for QD systems, as the impact of solvent has been realized as a substantial 

driver for photophysical performance.43  

Ultimately mechanistic studies of the binding thermodynamics between the incoming 

ligands and natively-capped QD are a crucial part of better understanding surface chemistry 

toward QD applications. The scarcity of reported quantitative descriptions of ligand binding 

strength dramatically hinders our ability to optimize the relationships between QD surface 

passivation, PL quantum yield and other desired photophysical properties. 

1.4 Introduction to isothermal titration calorimetry 

ITC is most often used in biochemistry and designed for well-defined aqueous systems.46,47 

Some investigations of synthetic nanoparticle interactions,48 a very few CdSe core/shell QD 

interactions with representative proteins,49 and even fewer reports on CdSe QDs interacting 

with a coordinating ligand used in synthesis50,51 have utilized ITC to acquire binding 

equilibria. A well-respected professor in the field once cogitated that essentially this could 

not be done with ITC. This technique is a quantitative method of extracting thermodynamic 

data from various chemical reactions; usually as a smaller molecule binding to a larger 

(macro)molecule in solution. The fundamental thermodynamic relationship expressed as  

ΔG° = ΔH° – TΔS° allows ITC to directly quantify temperature dependent changes in 

binding enthalpy (ΔH°) and binding stoichiometry (n) of the interactions between different 

species in the solution.47 From these measurements a binding isotherm is generated, which 

allows simultaneous determination of the system’s binding constant (K); Gibbs free energy 

(ΔG°); entropy (ΔS°) of binding; and heat capacity (ΔCp°) as binding occurs in temperature 

dependent ΔH studies.46 The height of the isotherm determines ΔH, and the width of the 

change in slope of the integrated heat determines the binding constant (K). An example of a 
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standard instrument calibration titration reaction thermogram and isotherm is shown in 

Figure 1.3. Once a raw heat flow and an integrated isotherm are generated from the titration, 

the direction of the peaks and shape of the curve allow qualitative analysis of whether the 

reaction process was enthalpy or entropy driven. Interactive forces contributing to the 

reaction can then be resolved upon characterization of reactants and product species. 

Exotherms are distinguished by negative trends in heat evolution, indicate enthalpy-driven 

reactions, and usually involve hydrogen-bonding, ionic and/or electrostatic interactions.52 

Conversely, endotherms indicate entropy-driven reactions involving possible hydrophobic 

Figure 1.3 Raw heat thermogram (top) and integrated isotherm (bottom). Thermodynamic 
parameter relationships are indicated for this standard Ca2+ into EDTA titration. 
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and/or ionic interactions.53 Perhaps the greatest advantage of ITC is its ability to directly 

determine thermodynamic parameters of reactions. Inasmuch we can extract the apparent 

equilibrium constants K, changes in enthalpy ΔH, numbers of sites N simultaneously. 

There are several challenges specifically associated with ITC and QD-ligand 

interactions. By design titration calorimeters measure the heat associated with every process 

during the reaction,46 especially competing equilibria intrinsic to QD ligand interactions: 

∆qcorrected = qrxn – qdil,QD – qdil,ligand + qsolvent blank   (2) 

Therefore, a common [non-aqueous] solvent for both QDs and new ligands is preferable. 

Some ITC instrumentation is extremely sensitive to external environmental (temperature) 

changes, as well as moisture and air within the reactants. Very “clean” QDs that maintain 

colloidal stability so as not to aggregate during the titration are requisite. Characterization of 

the ligand exchange after the titration can be challenging. A reasonable concentration of the 

QDs loaded in the sample cell is relative to the magnitude of the binding constant, described 

by the so-called Brandt’s or Wiseman “c” parameter.46 

Although implemented to describe previous Cd-chalcogenide core QD-ligand ITC 

experiments,50,51,53 it is highly unlikely that a 1:1 independent site model is sufficient to 

adequately describe all components of the QD-ligand system. QD surfaces present at least 

two distinct binding sites that interact with X-type and L-type ligands.54 The independent site 

model also assumes the same intrinsic affinity for ligands associated with non-interacting 

sites.50 This assumption is also unlikely considering the steric interactions of the native 

ligands, which prevent the QD from being completely passivated upon synthesis. A more 

appropriate analysis of ITC data requires consideration of cooperativity for heterotropic 

interaction between ligands, multiple binding sites, and a model that can accommodate 
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entropic ligand-ligand dynamics to further elucidate possible binding site overlap and 

interactions between neighboring ligands.55 However there is a nontrivial complexity in 

deconvoluting heterogeneous ligands interacting with two binding sites, and an example of 

three types of binding sites on a macromolecule of repeating units.56,57 In fact, there exist 

numerous models that could conceivably describe the thermodynamics for nanocrystal 

surface reaction isotherms, especially polynomial fitting; however without establishing a 

physical/chemical relevance to model parameters, the more advanced fitting has not 

precluded ambiguity. 

1.5 Dissertation overview 

In order to effectively influence trapping states and PL quantum yield, ligand exchange or 

any other conceivable nanocrystal surface modifications that are employed researchers must 

take into account the original environment of the QD surface and how that environment 

will be perturbed. Chapter 2 presents a thorough review of typical purification technologies 

applied to colloidal nanocrystal as well as begin to address the effects purification (i.e. sample 

preparation) can have on resulting nanomaterial properties. Thoroughly understanding the 

initial ligand binding environment on the QD surface allows manipulating the initial sate into 

rationally designed final QD states with appropriate metrics. The necessary reactions and 

“best” photophysical properties to accomplish desired functionalities in the final QD surface 

chemistry must be considered before subjecting the QDs to any surface treatments. Such 

consideration includes the curvature of the QD surface, which will increase as size decreases; 

solvent interactions; surface atom enrichment; and binding affinities of the native ligands 

versus new, incoming ligands. Effects of steric hindrance in the native bulky aliphatic chain 

and overall surface area at which sites are available to bind drive Cd surface enrichment as 
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well as ligand disorder are factors that will dictate surface reaction chemistry.1,58,59 The first 

half of Chapter 3 will closely examine the impact of purification on NC quantum yield.60 A 

number of studies have additionally demonstrated that ligands coordinated to the QD 

surface interact in a dynamic association-dissociation, which is heavily influenced by the 

solvent polarity and apparent equilibrium with ligands free in solution.1,42,61 Products of QD 

surface modification must be either kinetically stable or able to reach equilibrium with their 

solvent/environment in order to fully probe the effects of applied surface treatments. The 

latter half of Chapter 3 will examine a fundamental surface chemistry interaction, utilizing 

ITC to render thermodynamic parameters that have historically been probed with various 

spectroscopic techniques though remain ambiguous. The final chapter of this dissertation 

will utilize both  the gel permeation chromatography (GPC) purification method,62 which I 

helped to establish as a robust purification technique for colloidal semiconductor 

nanocrystals, and ITC to investigate an irreversible reaction that has garnered considerable 

focus in the NC field63,64 with attentions refocusing on elucidating nanoparticle surface 

chemistry. Figure 1.4 demonstrates thermograms extracted via ITC for this reaction and the 

post-quantitative exchange GPC purification that allowed me to unambiguously identify the 

sequential ligand exchange and association reactions for which equilibrium thermodynamic 

parameters were provided. 
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Figure 1.4 Thermograms for a sequential ligand exchange and association reaction between 
an incoming phosphonic acid ligand that displaced the native carboxylate ligand on CdSe 
quantum dots (A-B). The navy and teal shading on the ITC thermograms indicate the 
exchange and association processes respectively. The ITC titratoins and subsequent 
modeling discussed in Chapter 4 attest to the capacity of ITC to accommodate different 
solution concentraions that render typical spectroscopic investigations difficult or 
ambiguous. The photo in panel (C) demostrates the capacity of GPC purification to 
maintain colloidal stability in surface-modified quantum dots in organic solvent. The yellow 
band is a ferrocene 1H NMR internal standard being separated from the orange band of 
ligand-exchanged CdSe quantum dots. 



 
 

17 
 

CHAPTER 2 

A REVIEW OF PURIFICATION TECHNOLOGIES AND THEIR IMPACT 

ON COLLOIDAL SEMICONDUCTOR NANOCRYSTALS 

2.1 Introduction 

Nanocrystals (NCs) in many forms and compositions including metals, semiconductors, and 

metal oxides have been extensively studied in the past several decades. Numerous studies 

have shown that these emerging materials can be used in a wide range of applications from 

imaging and display to catalysis and solar cells.3,65–68 In order to better understand the 

properties of NC samples and to speed the commercial development of these materials with 

confidence, recent studies have focused on precise control of the material structure including 

particle morphology, polydispersity and ligand population.69–71 Synthetic procedures for the 

highest quality NCs frequently use an excess of surface-passivating ligands or surfactants to 

maintain the colloidal stability of the particles during growth and influence the NC 

morphology that is achieved. However, these excess ligands, as well as the byproducts 

generated by decomposition of reagent compounds remain in the crude product solution. 

Additionally, the solvent that is selected for synthesis is rarely the same as the medium into 

which the NCs will be placed for physical property measurements or applications. 

Accordingly, effective means for isolating nanomaterials from solution-phase mixtures are 

required. The most common purification procedure for nanoparticles, especially quantum 

dots (QDs) entails precipitation and redissolution (the PR method). In this procedure, 
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addition of a miscible solvent in which the nanoparticles are poorly soluble (an anti-solvent) 

causes flocculation. The resulting flocculated nanoparticles precipitate rapidly (frequently 

accelerated by centrifugation) and can then be redissolved in a fresh solvent. 

A challenge for any colloidal NC purification approach is that surface ligands can be 

subject to dynamic exchange between NC-bound and free-solution forms on experimental 

timescales; as a result, the actual surface may be a function of both the amounts and types of 

potential ligands that are present, and the solvent.3 At the same time, residual impurities can 

affect shell growth and ligand exchange steps that are often required for NC end uses.62,72 An 

effective means of isolating NC samples with well-defined properties is thus an important 

requirement for controlled NC synthesis and surface chemistry. While convenient, 

purification by PR entails several limitations that have been noted in studies of QDs.73,74 As a 

result, there is increasing interest in alternative purification techniques, and some established 

techniques have shown performance that is comparable to or better than the PR method. 

Figure 2.1 Schematic of colloidal nanoparticles in solution initially with various impurities 
(e.g. solvent, unreacted precursors, weakly interacting and excess ligands; left), then
undergoing purification whereupon they are left with only strongly adsrobed ligands adhered 
to their surfaces (right). 
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This chapter presents a review of the current status of NC purification. Previous 

reviews have examined some of the methods described, especially for separating or refining 

samples composed of several types of nanoparticles.75 In a few cases, a unique physical 

response of the material can be used for purification, such as purification of iron oxide 

nanoparticles by differential magnetic catch and release.76 More generally, common 

purification methods can be grouped based on the fundamental physical property by which 

separation is achieved: namely polarity-based techniques, electrophoresis-based techniques, 

and size-based techniques. These techniques are generally applicable to a wide variety of 

nanoparticles including inorganic semiconductors, metals, metal oxides, and carbon dots. 

Recently, increasing attention has been brought to the role of the surface in controlling 

photoluminescence (PL),42,60,77,78 redox potentials,79 and carrier trapping80 in QDs. 

Additionally, current priorities in the field are to establish a quantitative description of ligand 

binding and exchange,81,82 which requires well-defined initial and final states; and to extend 

the success with ‘‘classic’’ materials such as binary chalcogenides to new compositions, 

including those that are immune to the health and environmental sensitivity of Pb and Cd.83–

85 It will be important to consider the surface chemistry of these new compositions as well. 

2.2 Polarity-based purification techniques 

2.2.1 Precipitation and redissolution 

Since the development of QD syntheses in either aqueous solution86 or high-boiling 

anhydrous solvents,87 a precipitation and redissolution (PR) method has been described 

together with the preparation procedure, and therefore it is the first reported purification 

method for QDs. For the frequent case of QDs prepared in non-polar solvents, flocculation 

of QDs is achieved by introducing anti-solvents that increase the polarity of the solvent 
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mixture. The supernatant, which retains impurities and excess ligands, can be decanted away 

and the QD precipitates can be redissolved in clean solvents. This process can be repeated 

several times until a desired purity of the NCs has been achieved. In addition to purification 

from synthetic solvents and byproducts, the PR method has also been used to refine the size 

distribution of the samples.85,88,89 The particles are not fully precipitated (crashed out), but 

rather the anti-solvents are titrated only until the particles just start to flocculate. It is 

frequently observed that the larger particles precipitate more readily than the smaller ones as 

the solvent polarity is increased, and on this basis they can be separated. The PR method is 

convenient and scalable, and moreover has been utilized as the main purification technique 

in the majority of QD investigations. However, a number of studies have shown that there 

are some drawbacks to the PR method.  

One of the main limitations is that the impurities and excess ligands sometimes have 

solubility properties similar to the nanoparticles, which makes them difficult to separate by 

this PR method. Many studies focusing on ligand chemistry describe multiple cycles of PR to 

remove free (unbound) and weakly adsorbed material. In some cases, even with a series of 

washing steps, the excess ligands cannot be removed by the PR method. For example, 

Nozik’s group showed that excess indium precursor cannot be removed from InAs QDs 

after using toluene/methanol to dissolve/precipitate QDs.90 Chaudret and coworkers were 

able to eliminate a synthetic byproduct from InP QDs after identifying an appropriate PR 

system, but even after multiple washes could not isolate the NC product from residual 

octadecene solvent isomers interacting with surface coordinated carboxylate ligands.91,92 

Weiss’ group has shown that impurities such as cadmium phosphonate and amides formed 

as precursor byproducts cannot be separated from CdSe QDs with chloroform/methanol as 
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the solvent/anti-solvent for the purification.93,94 Another severe issue is that the PR method 

may cause irreversible damage to the QD surface. One common observation is that the 

precipitated particles have a propensity to irreversibly aggregate after a number of necessary 

PR cycles, and so cannot be redispersed in solution.95,96 Recently, a series of studies have 

shown that even for samples that maintain their colloidal stability, an improper choice of 

anti-solvent may remove ligands from the NC surface that were strongly bound in the 

original solvent. Owen’s, Hens’, Weiss’ and Meulenberg’s groups have shown that methanol 

can react with the QD surface and displace bound metal carboxylate ligands.34,73,74,97 This 

displacement results in adverse changes to the brightness of the samples (which will be 

discussed in greater detail below). Up to the present, the PR method remains the most 

popular nanoparticle purification technique. However, the strong dependence of NC 

properties on the surface ligand population has also motivated researchers to study 

alternative purification techniques. 

2.2.2 Extraction 

An alternative method to separate NCs from the impurities, while still operating on the basis 

of differences in impurity and NC polarity, is extraction. The most common extraction 

system applied to QDs is liquid–liquid extraction. In general, the as-synthesized QD solution 

is stirred with an extracting solvent that is immiscible with the original solvent. By imposing 

a difference in the relative solubilities (partition coefficient) between the two liquids, the 

impurities and the QDs can be distributed into the different phases. In contrast with the 

popular PR method, the extraction method is intended to be a much gentler process, 

especially because the NCs tend to remain in their original phase during the purification, 

reducing the likelihood of irreversible aggregation or coalescence. However, numerous 
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extraction cycles are commonly required in order to effectively remove a majority of the 

impurities because of the finite partition coefficients that can be achieved. 

The most commonly used extraction system for typical colloidal QD systems is 

comprised of methanol/alkane, as the QDs are prepared in alkanes, and methanol (as the 

immiscible polar antisolvent) is used to remove the impurities. Both Peng’s group and Nie’s 

group have applied this technique in purifying CdS, CdSe and CdTe based materials.98–100 A 

limitation with this and similar systems, as shown in a recent study by Peng’s group, is that 

when the metal precursor for the Cd-based synthesis is cadmium stearate, batchwise single 

stage extraction cannot effectively remove the impurities due to similar polarities between 

the particles and impurities.101 To circumvent this issue, higher temperature and/or addition 

of co-extractants such as amines and phosphines were shown to significantly improve the 

extraction efficiency.101–103 Such nucleophiles are known to coordinate both metal 

carboxylate precursors and NC surfaces, and are commonly used in QD synthesis. However, 

addition of such ligands during the extraction introduces an extra constituent to the 

purification process that could alter the final surface chemistry of the nanoparticles. The 

choice of both original and extracting solvents is important to the final extraction efficiency. 

Peng’s group has shown that when the NC stock solution was extracted with a 

chloroform/methanol mixture, the impurities could be more effectively removed compared 

to the sample extracted with methanol only, each with hexane as the NC solvent.100,101 

Moreover, PR steps sometimes were used together with a sequence of several extraction 

cycles in order to completely segregate the nanoparticles from the impurities. 

The extracting solvent is normally chosen to have a higher solubility for the 

impurities, and negligible solubility for the QDs. Conversely, Jiang’s group described using 
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Triton X-114, a nonionic surfactant, to perform cloud point extraction (CPE), which 

effectively concentrated and separated NCs from their original solution.104 In that work, 

Triton X-114 formed a micelle to encapsulate the NCs and subsequently extract them when 

the temperature was above the cloud point temperature (CPT). The NCs could then be 

redispersed into an aqueous solution once the temperature was lowered beyond that CPT. 

This method provides an alternative way to concentrate the NCs, but it may prove difficult 

for NCs to be ultimately isolated from the added micelle-forming surfactants. Another 

interesting study was done by Pal’s group, where they used copper stearate as a solid 

extracting agent to selectively remove amine ligands from gold organosol.105 Similar to what 

Peng has proposed in the co-extractants study, the coordination effect between the amine 

ligands and metal carboxylate is the likely driving force for this separation. 

2.3 Electrophoresis-based techniques 

As the mobilities of nanoparticles and associated impurities under an electric field are 

generally different, electrophoresis has been applied as another purification technique. In an 

early example, Claridge et al. used gel electrophoresis to separate Au nanoparticles with 

varying numbers of thiolated DNA strands adsorbed to the surface.106 Later, Parak’s group 

demonstrated that this technique could be used to separate polymer-coated CdSe/ZnS or Au 

nanoparticles with different functional groups;107 the resolution was sufficient to distinguish 

particles specifically bearing zero to three desired conjugates. Electrophoresis has also been 

used to separate QDs bearing a single copy of poly-histidine tagged protein from 

unfunctionalized or multifunctionalized QDs. Sonnichsen’s group and Girault’s group 

further showed that gel electrophoresis could be used to separate different shapes and sizes 

of Au and Ag nanoparticles functionalized with charged polymers.108,109 However, as 
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described in the work done by Kotov’s group on CdTe nanoparticles, the gel-based process 

is extremely time-consuming, which is not ideal for applying this technique in continuous 

and large-scale separations.110 Consequently, they described using free-flow electrophoresis 

(FFE), specifically to narrow the size distribution of CdTe nanoparticles. Separation via FFE 

was achieved by applying a high voltage electric field perpendicular to the direction of 

laminar flow and differentiating based on the deflection of the charged particles. Employing 

this method, Kotov and co-authors were able to separate CdTe nanoparticles into more 

monodispersed populations on a preparative scale.  

Electrophoresis generally requires aqueous systems, which would be a limitation for 

NPs synthesized by the typical organometallic route. Recently, however, Dubertret’s group 

has succeeded in implementing electrophoretic deposition (EPD) in nonpolar or slightly 

polar solvents as a means to sort Cd chalcogenide nanomaterials,111 enabled by non-zero zeta 

potentials. In addition to employing electrophoresis as a size- or shape-selective technique, it 

has also been established for purifying nanocrystals of synthetic byproduct and excess 

surfactant impurities. Bass and co-workers described implementing EPD to purify metal 

chalcogenide nanomaterials containing a common surfactant layer of greasy organic ligands 

directly from their post-synthetic solution.112 By using reversible EPD processes, the 

nanoparticles can be effectively separated from the surfactant impurities in the suspension. 

After washing with polar non-solvents, the nanoparticles could be redispersed into clean 

nonpolar solvents. This method exhibited effective purification with no damage to 

nanoparticles, as confirmed by UV-Vis and NMR. The authors further demonstrated that 

this technique was versatile toward materials with different morphologies and capping 

ligands. Similar to the previously described PR method, however, the nanoparticles were 
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removed from the solution phase during the purification and the particles had to be washed 

by the anti-solvents. Nevertheless, this electropurification technique is more solvent-efficient 

and scalable as compared to the PR method, which is an advantage from the perspective of 

industrial purification. 

Jeong’s group has attempted to develop the FFE method to purify CdSe QDs 

continuously on a microfluidic chip.113 In this arrangement, the purified QDs could be 

separated from the unreacted precursors and excess surfactants by exploiting the 

electrophoretic movement of the particles. As one of the first forays into the continuous 

purification of nanocrystals, the yield and purification efficiency are not yet as good as what 

has been achieved in batch processes. Even so, this study exemplifies the progress that may 

be achievable through additional work on purification of nanoparticles in flow, in order to 

achieve continuous production of nanoparticles on a fully automated system. 

2.4 Size-based separation techniques 

2.4.1 Ultracentrifugation 

The significant size difference between the QDs and the impurities makes size-based 

separation an attractive alternative for NC purification. Ultracentrifugation, including density 

gradient centrifugation, is one of the most important size-based separation and 

characterization techniques in biological/colloidal studies. In contrast to the previously 

described PR method, in which the introduction of anti-solvents causes nanoparticles to lose 

their solubility and flocculate into aggregates that can be sedimented with modest centrifugal 

force, separation via ultracentrifugation is achieved by the difference in sedimentation 

velocities among dispersed solutes. If the solute–solute interaction and diffusive effects are 
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neglected, there are three main forces acting on a solute particle; namely centrifugal force, 

buoyant force and frictional force. The condition at steady state, when the above three 

forces are balanced, sets the Svedberg coefficient, defined as the sedimentation velocity 

normalized by the applied angular acceleration, equal to 

𝑆 =  
𝜈௦

𝜔ଶ𝑟
 =  

𝑉(𝜌 −  𝜌)

𝑓
 

where νs is the particle sedimentation velocity, 𝜔 is the angular velocity, r is the distance 

between particle and rotation axis, V is the particle volume, 𝜌 and 𝜌 are the density of the 

particle and solvent respectively, and f is the friction coefficient.114 When the Svedberg 

coefficients of the solutes are different, separation can be achieved with centrifugal 

techniques. 

Since the Svedberg coefficient depends linearly on volume, in principle size 

separation should be effectively achieved with ultracentrifugation. As reported in various 

articles, this technique has been used to characterize and reduce the size distribution of 

nanomaterials including single-walled carbon nanotubes (SWNTs),115 metallic nanoparticles 

(MNPs),116 semiconductor nanoparticles,117 and oxide nanoparticles.118 Moreover, when the 

size of nanoparticle is smaller than 20 nm in diameter, the ligands on the surface contribute 

substantially to the overall particle density, which further allows ultracentrifugation to 

separate nanoparticles with different coatings. Ultracentrifugation can also be used to 

effectively sort nanoparticles with different shapes. Recently, a mathematical model has been 

established by Sun’s group for parameter optimization using ultracentrifugation for 

separation of polydisperse colloidal nanoparticles.119 

As alluded to above, not only is ultracentrifugation convenient for preparing 

monodispersed nanoparticle samples, but it can also be used to isolate nanoparticles from 
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excess functional ligands due to the significant size, density and friction coefficient 

differences between the particles and ligands. This method has frequently been used for the 

purification of QDs after surface modification for water stabilization. For example, Nie’s group 

has used ultracentrifugation to separate excess polymer after NC encapsulation;120 and 

Dubertret’s group and Scholler’ group have used ultracentrifugation to isolate NCs from 

phospholipids in a similar manner.121,122 While most applications of ultracentrifugation have 

employed aqueous density gradients, which presents a general challenge of aggregation and 

instability for NCs synthesized via organo-metallic routes, investigations successfully 

employing this technique were recently reviewed by Medintz’s group.123 Furthermore, Bai et 

al. showed that ultracentrifugation can be used to purify as-synthesized nanomaterials in 

organic solvent from excess ligands such as oleylamine.124 They obtained clear TEM images 

of metallic/semiconductor nanoparticles without any additional purification after size/shape 

separation was achieved. However, to the best of our knowledge, detailed surface 

characterization of the nanomaterials in organic solvents purified by ultracentrifugation has 

not been performed, nor has its efficiency as a purification technique been compared with 

other methods. 

2.4.2 Membrane-based separation 

Separation using a membrane prepared by porous materials is another attractive method to 

narrow the size distribution of the as-synthesized nanomaterials, as well as isolate the 

nanomaterials from the excess ligands. Typically, dialysis and filtration are the two general 

techniques with size-based membrane separation involved. In the process of dialysis, a 

membrane should be selected with an effective molecular weight cut-off (MWCO) that 

permits the excess ligands and other small molecule impurities to diffuse from the high 
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concentration area (sample solution) to the low concentration solution (dialysate solution) 

until equilibrium is reached, but the pores must of course be small enough to prevent 

nanoparticles from transiting. After repeating the dialysis process several times, the 

concentration of the excess ligands in the sample solution will significantly decrease while 

the concentration of the nanoparticles can be maintained. This method has frequently been 

used for the purification of nanoparticles in aqueous solution and is generally done using 

commercially available membranes (dialysis tubing). For example, Stone’s group and Ren’s 

group have used dialysis to purify as-synthesized Au and CdTe nanoparticles in water;125,126 

Snee’s group has recently used dialysis as a gentle technique to purify the water soluble QDs 

after silane coating;127 and dialysis has also been used to isolate bio-labeled nanoparticles 

from excess bio-linkers after undergoing functionalization reactions.128 One drawback of 

dialysis is that this process is time consuming as it normally takes several hours or more to 

allow the equilibrium between concentrations of small molecules at the two sides of the 

membrane to be reached. 

Distinct from dialysis, where the separation is achieved by diffusion of the small 

molecules, filtration is more efficient in time, exploiting an extra driving force in the form of 

a difference in fluid pressure to accelerate the separation. The challenges lie in selecting a 

filter membrane with an appropriate size cutoff and solvent tolerance, and in avoiding 

aggregation of the nanoparticles as they accumulate at the membrane. A wide variety of 

filtration systems has been developed to purify and retain biomolecules such as proteins in 

aqueous solvents, typically using centrifugal force or vacuum to generate sufficient pressure 

difference. Accordingly, centrifugal filtration has in many cases replaced dialysis for 

purification, buffer exchange, and concentration of water-soluble biomolecules and 
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nanoparticles, especially those that will not aggregate during the filtration process. QDs 

stabilized in aqueous solution by ligand exchange or surfactant encapsulation are often 

purified by this method.129 Snee et al. used centrifugal filtration to purify pH sensitive dye-

conjugated CdSe/ZnS QDs to develop a ratiometric pH sensor.130 Though commercial 

membranes were primarily designed to retain proteins and synthetic colloidal particles while 

passing only small molecules, researchers have developed membranes with larger size cutoffs 

that can be used to separate small particles from larger ones to refine the size distribution of 

the sample – a nanoscale form of sieving. Mesoporous silica hybrid membranes have been 

used to perform size separation of metal nanoparticles prepared in either aqueous or organic 

solvents.131,132 Rybtchinski’s group has also described using polymer-based membranes to 

perform size separation on metal nanoparticles and QDs in aqueous solution, as the organic 

solvent may lead to disassembly of the supramolecular structure.133  

Ultrafiltration and diafiltration are two additional membrane-based separation 

technologies for nanoparticle purification. Ultrafiltration is also known as tangential flow 

filtration (TFF) and operates such that the feed solution flows parallel to the membrane 

surface, instead of perpendicular to it as in conventional ‘‘dead-end’’ filtration. A 

concentrated nanoparticle solution is retained. Many commercial centrifugal filtration units 

actually accomplish TFF, but ultrafiltration can also be scaled up for industrial process sizes. 

The set-up and operating principle of diafiltration is very similar to ultrafiltration; the only 

difference being that extra solvent is injected into the sample solution to maintain a constant 

total volume of the feed during the purification process. One major advantage of both 

ultrafiltration and diafiltration is that these two processes can be operated semi-continuously 

for in-line nanoparticle purification. Ulbricht’s group has applied ultrafiltration and 
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diafiltration to purify gold and silica nanoparticles from excess small ligands or 

biomolecules.134 Hutchison’s group has performed a systematic study to compare the 

purification efficiency of diafiltration with other techniques on thiol-PEG coated Au 

nanoparticle samples.135 Employing 1H NMR, it was demonstrated that diafiltration 

effectively separated the thiol-PEG coated Au nanoparticles, whereas these free ligand 

features remained in the samples purified by other methods. Their results demonstrated that 

diafiltration is an efficient purification technique for nanoparticles in aqueous solution. 

Similar to ultracentrifugation, most of the studies utilizing membrane-based separation still 

focus on the nanoparticle samples in aqueous solution. In order to purify nanoparticles 

prepared in organic solvents using membrane separation, advances in membrane technology 

will be necessary. 

2.4.3 Chromatography 

Chromatography is another general strategy by which nanoparticles can be effectively 

purified, and one that my group has pursued for colloidal QDs. Whether preparative or 

analytical in scale, the premise of chromatography involves the elution of mixtures dissolved 

in a mobile phase (MP) through a structured stationary phase (SP), between which the 

sample components are partitioned. In affinity chromatographies, some specific and/or 

enthalpic interaction between the sample components and the stationary phase determines 

this equilibrium. Affinity chromatography has been developed to effectively isolate bio-

conjugated nanoparticles from excess unbound peptides and unfunctionalized peptide-

bearing nanoparticles. Alternatively, purely physical (entropic) interactions can be used to 

separate components on the basis of size. Because of the large variation in size among 

components in colloidal nanoparticle samples, the latter approach holds considerable appeal. 
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High resolution in separations and resulting chromatographs (often times coupled with 

additional detection equipment, e.g. absorption, photoluminescence, and mass 

spectrometers) provides in situ characterization of analytes in terms of size, surfactant 

interaction, states of thermodynamic stability and equilibrium, and purification. 

Among inorganic materials, Au NPs have the most extensive chromatographic 

application history,136–138 and as such have offered an important framework to develop such 

methods applied to characterize and purify QD systems. Tiede et al. developed 

hydrodynamic chromatography (HDC) coupled with ICP-MS for Au NPs as well as a 

number of oxide NPs,139 and Pergantis et al. improved HDC detection limits for the study of 

Au NPs in environmental matrices.140 HDC utilizes a nonporous SP, and the mechanism for 

separation is based on the parabolic flow profile of a Newtonian fluid in an open tube or 

within the interstitial volume of the column, such that smaller particles can migrate towards 

the outer areas while larger particles are deflected towards the center where the MP flow rate 

is fastest. The most popular and versatile chromatographic technique applied to NP 

suspensions, however, is size exclusion chromatography (SEC). 

The general principle by which SEC operates is that analytes fractionate between the 

mobile phase (MP) and a porous stationary phase (SP) to an extent that depends 

monotonically on their hydrodynamic size, with larger particles eluting more rapidly than 

smaller constituents that can traverse the pores of the SP. The stationary phase is typically 

made up of cross-linked polymer gel beads characterized by an effective molecular weight 

cutoff (MWCO) above which analytes are largely excluded from the pores and transit only 

the ‘‘void volume’’ between gel beads. SEC can be accomplished with polar mobile phases 

(including water) using hydrophilic polysaccharide or polyacrylamide gels; this represents one 
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form of gel filtration chromatography (GFC), a term that also encompasses affinity 

chromatography methods using functionalized hydrophilic gels. SEC with anhydrous mobile 

phases is termed gel permeation chromatography (GPC) and is routinely used to characterize 

polymer molecular weight distributions.  

Innovation in high-performance liquid chromatography (HPLC) technology has led 

to sophisticated instrumentation for both GFC and GPC. In its more conventional use, 

application of SEC to nanotechnology has sought to improve NP sample polydispersity 

through higher resolution sensitivity for both size and shape.65,66,141–146 Differences in 

structure (hard spheres versus folded proteins or randomly coiled polymers) require that 

columns be properly calibrated against nanocluster standards143 or polystyrene;147 

nevertheless, most investigations have successfully determined size-exclusion fractionation 

mechanisms.148,149 One of the major challenges in this technique, which distorts elution 

profiles in QDs and other NPs alike, is the possibility of enthalpic interactions that result in 

increased retention or irreversible sorption of the sample onto the stationary phase. This 

makes it imperative to identify appropriate SP media. The most common strategy employed 

to circumvent this critical issue is to include MP additives that may include 

surfactants,75,141,144,150,151 but a number of recent reports62,96,136,137,152,153 have also demonstrated 

that suitable SP properties have been achieved with both polar and nonpolar MP solvents. 

An early success in resolution capacity when a properly chosen SP was combined with 

multiple on-line detectors for SEC (utilized as a high pressure liquid chromatograph for 

nanoparticle separation) was comprised of a cross-linked polystyrene SP, with a relatively 

larger pore size than was used when only eluting Au clusters in the same investigation and 

was lastly combined with tetrahydrofuran as the MP.148 
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Early application of HPLC/SEC to QDs proved successful in resolving elution 

fractions that contained narrower size distributions than the starting material. However, 

recent studies indicated that this technique could also be used to purify nanocrystals. The 

potential for SEC to achieve size separation as well as QD purification was apparent even in 

that earlier investigation as 2.0 nm Au nanoclusters and 1.8 nm CdSe NCs were well-

resolved from linear alkanes that could conceivably represent excess ligands or surfactant 

impurities. Early examples to affect a type of purification with HPLC/SEC applied to QDs 

were mainly applied post-surface modification to separate QDs from excess 

polymers.149,151,154 Shortly thereafter, Biesta et al. utilized GPC in a similar manner to separate 

excess dye molecules from nanocrystalline silica in an organic MP.155 In a series of 

investigations toward biocompatible surface modification, water-soluble core/shell QDs 

functionalized with hydrophilic ligands were successfully analyzed with aqueous gel filtration 

chromatography (GFC) on the basis of their resultant sizes; this was used to demonstrate the 

strength of ligand binding and to assess the presence or absence of nonspecific adsorption 

of highly prevalent, endogenous serum proteins in QDs intended for bioimaging 

applications. In a preparative example, McLaurin et al. used GFC to isolate QD-based 

ratiometric oxygen sensors.156 QDs functionalized with oxygen-sensitive, osmium-based 

FRET acceptor phosphors were separated from QD aggregates and unbound phosphors, as 

a step toward QD FRET-based oxygen sensors applicable in biological systems. A very 

recent investigation of Cd-based QD bioprobes purified by HPSEC post-ligand exchange 

confirmed significantly improved agglomerate removal, and consequently negligible 

nonspecific binding, with enhanced performance of the QD bioprobes in 

immunofluorescence imaging and stability for at least one year.157 



 
 

34 
 

Our group has recently established and continues to develop gel permeation 

chromatography (GPC) – an effort that has been a primary focal point of my own research – 

as a preparative, reproducible and robust purification technique for colloidal NCs; especially 

when directly pitted against the common PR purification procedure (Figure 2.2).62,137 This 

novel approach for NC purification utilizes GPC to exert a continuous driving force in situ 

Figure 2.2 GPC purification of oleate-capped CdSe QDs with toluene MP and polystyrene 
SP (A) photograph of QDs (red band) transiting column under gravity pressure. (B and C) 
1H NMR spectra of 2 cycle precipitation/redissolution purified (A) and GPC purified (B) 
CdSe QDs. The insets are the expanded views of the spectra in the range 4.5–6.5 ppm, 
capturing the olefin proton resonances of oleate species (OA) and residual octadecene 
synthesis solvent (ODE). (D) Ligand/impurities-to-QDs ratio (mole/mole) for CdSe QDs 
purified by different methods. Adapted with permission from ref. 62. Copyright 2013 
American Chemical Society. 
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to separate unbound or weakly-bound small molecules. Only those ligands with very large 

association equilibrium constants and/or very slow desorption kinetics can remain adsorbed 

to the NC surface upon their elution from the column. A MP solvent can be selected that is 

the same as, or of similar polarity to, the initial solvent for the NCs and so maintains the 

solvent conditions under which the initial surface coordination environment was 

assembled.62 The nature of the native solvent interactions is often overlooked as if it were a 

trivial matter. The SP consists of cross-linked polystyrene (Bio-Rad’s Bio-Beads SX-1 in 

initial studies). This SP has proven to be compatible with Cd-based core and core/shell QDs 

capped with typical anionic and L-type ligands, polymer-functionalized Cd-based QDs with 

polar organic MP,151,158 carboxylate-capped InP QDs,159 thiol-capped Au NCs,137 Cd-based 

nanorods of varying aspect ratios,158 perovskite NCs,160 and iron oxide NCs.153 Moreover, it 

is also possible to use the GPC column as a multi-functional flow reactor that can 

accomplish in sequence the steps of initial purification, ligand exchange, and subsequent 

cleanup without requiring a change of phase.137 

The dearth of SP media for preparative SEC that swell in organic solvents remains a 

limitation for the use of SEC for NP purification, given the relatively low MWCO and 

operating pressures of polystyrene Bio-Beads.74,151,158 Technological emphasis in resolution 

and operating power has instead focused on small sizes.146 Aside from typical column 

packing material used in GFC or other aqueous phase HPLC/SEC, a few additional SP 

media with organic MP have been identified as suitable for NCs. Namely, a cross-linked 

styrene/divinyl benzene SP, which is both similar to and compatible with polystyrene, was 

effective in eluting Cd-based core/shell QDs.147 It is anticipated that SP media can be 

identified, or specifically engineered, to meet the need of a higher MWCO for larger 
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synthesized NPs and overall scalability. Though it will remain essential to carefully consider 

and test the compatibility of SP media with the NCs and the impurities being removed, to 

prevent or minimize enthalpic interactions or aggregation on the column and achieve high 

resolution separations. 

2.5 Purification and nanocrystal surface chemistry 

2.5.1 General implications of the impact of purification on colloidal quantum dot properties 

Purification steps can alter free ligand concentrations and the solvent, so the need to 

understand how NC surfaces are affected by purification has become more apparent as it is 

typically the first processing step towards applications.1–3 As previously mentioned, the 

putative ligands within the synthetic mixture provide colloidal stability, synthetic control 

over final crystal morphology, ultimate surface composition, and consequently orbitals of 

ligands bound to/interacting with the NC surface couple such that they contribute to the 

energy profile of the system’s electronic states.1,19,60,94,161 Because QDs are quantum confined 

chunks of bulk materials, much can be understood or inferred about the inorganic core’s 

electronic structure; however, the higher density of states and disrupted crystal lattice 

periodicity at their surface is significantly impacted by the surfactant layer both initially present 

and imposed upon during surface modification which includes purification. Thus, the electronic 

structure occurring at the NC-ligand interface, which ultimately imposes photophysical 

properties salient primarily through photo- and electro- luminescence, is much less 

understood.  

In order to preserve and/or improve NC luminescence this interface must be 

thoroughly investigated, at the very least where preventable or reversible processing can 
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cause defects contributing to mid-gap states that introduce thermodynamically accessible 

exciton traps. Oxidation in Cd-chalcogenide samples introduces defect trap states, which 

prompts faster decay dynamics with increased carrier recombination.10 Molecular oxygen 

interacts reversibly with QD surface through so-called physisorption; while more detrimental 

chemisorption encompasses an oxide-formation reaction that etches surface atoms. 

Photooxidation can occur as Cd-chalcogenide QDs inject electrons into metal oxide 

receiving substrates, as intended with QD-based solar cells. Though this degradation process 

receives more attention as it adversely affects device performance; it can also occur in QDs 

stored under ambient atmosphere and light, in typical storage solvents such as toluene, and 

after multiple purification processes removing excess or weakly coordinated ligands. 

Therefore, both the ligands and solvent environment have a major impact on NC 

optoelectronic properties, especially when imparting or resolving surface defects. Some of 

the inherent consequences of purification on NC surface chemistry that have been 

documented as ultimately affecting electronic properties in NC suspensions are discussed 

below.  

2.5.2 Surface coordination of compound semiconductor quantum dots 

Firstly, the curvature and final composition of the QDs presents various facets either 

differing in the types of sites available for surfactant adsorption or possibly 

undercoordinated dangling bonds.12 Due to the critical role of passivating ligands which 

determine the final morphology of the NC system as well as exchanging electron density 

with surface-terminating NC ions, it is crucial to identify and conceptualize ligand binding 

modes. In fact, these ligand binding modes are necessary to understand the substantial role 
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purification can have on modulating QD electronic properties and chemical reactivity in 

subsequent processing steps. 

Primitive notions about post-synthetic capping ligands have been adamantly 

challenged by evidence that nominal solvents and non-labile reagent impurities, rather than 

the assumed reagents themselves, can dominate precursor reactivity and consequently 

become the most tightly bound and most prevalent surface species retained even after 

multiple purification cycles.62,93,162 Motivated by the need to clarify how interactions between 

native ligands and QD surfaces influence further surface modifications, particularly in ligand 

exchange reactions, Owen’s group and Hens’ group have employed the covalent bond 

classification (CBC) to characterize the exchangeable groups, initially based on Cd 

chalcogenide QDs.2,36,163 In this scheme, ligands are recognized as either L-type (2-electron 

donors, dissociating to yield neutral Lewis bases); X-type (formal 1-electron donors, 

dissociating to yield ions); or Z-type neutral Lewis acids (2-electron acceptors, dissociating to 

yield neutral Lewis acids). The original coordinating solvents and neutral carboxylic acids can 

thus be described as L-type, while carboxylates or halides are X-type.  

The binding between L-type ligands and QDs can be labile especially when 

compared to strong-binding X-type ligands. L-type ligands can be subject to dynamic 

exchange between bound and free forms on experimental timescales. As a result, following 

le Chatelier’s principle, this should lead to a predictable loss of such ligands in any of the 

aforementioned purification techniques applied to NCs, whether our GPC technique or 

otherwise. Ligand desorption, even that caused merely by dilution, leaves undercoordinated 

surface atoms when the system equilibrium favors increased free ligand fractions in solution 

and is generally accompanied by diminished NC PL properties.19,42,61,77,78 Dissociation of 
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X-type ligands in non-polar solvents will not occur easily as it requires charge separation, 

radical formation, or reductive elimination. Drift velocity measurements have revealed that 

QDs with X-type ligands in a non-polar solvent carry no more than a few elementary 

charges.164 However, numerous studies have revealed that purification by multiple PR cycles, 

especially with protic anti-solvents such as methanol, caused displacement of lattice-

terminating core cations together with charge-balancing anionic ligands (Z-type 

ligands).34,74,101,165,166 Therefore, in common purification practices, the ligands that have been 

removed are either L-type or Z-type, and the PL changes upon purification are 

predominately a result of changes in L-type or Z-type ligand population.13,167,168 The relative 

strength of L-type ligand binding appears to vary widely: amines are labile at room 

temperature at CdSe and CdS NC surfaces, while primary amines exhibit very strong binding 

to CuInS2 QD surfaces and were found to be labile only on heating.169
  

While the conventional CBC as described above has served as a useful model for 

describing binary chalcogenide QDs coated with carboxylates, phosphonates, and amines, it 

is likely an incomplete picture of ligand binding modes in different NC systems. For 

example, thiols are well known as strong ligands for many metal and metal chalcogenide 

NCs. Within the CBC above, thiols could bind as L-type ligands via their lone pairs, or as X-

type thiolates following deprotonation. However, the MacDonald group has reported 

purification and ligand exchange results indicating a further distinction between “surface-

bound” thiolates that are subject to exchange, and thiol-derived “crystal-bound” sulfur that 

retains a covalent bond to an organic tail group, but exists in a highly coordinated 

environment resembling the anion site of the crystal lattice.170 Crystal-bound thiol ligands on 

Cu2S, CuInS2, and CdSe/ZnS QDs are resistant to loss or displacement in purifications 
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steps. Cd-based QDs represent the vast majority of NC surface chemistry investigations and 

are the primary focus of this dissertation, and so the conventional CBC will be referred to 

when ligand types are mentioned. Nonetheless, recent reports from De Roo et al. presenting 

perhaps a more universal binding classification relevant to various NC compositions 

including metal oxides are noted.36,171 

2.5.3 Photoluminescence responses associated with purification 

It is well known that ligand exchange can affect PL quantum yield (QY); for example, 

introduction of thiols has frequently been seen to quench QY in CdSe QDs and this has 

been attributed to the formation of hole traps at the QD surface. However, changes in QY 

have been observed upon mere purification or dilution as well. In 2006 Bullen and Mulvaney 

published a quantitative investigation on the relative strength of binding for ligands as a 

function of solvent polarity, purity or temperature;61 it was one of several reports around the 

same time that demonstrated how merely diluting QD suspensions displaced strongly 

adsorbed ligands.  Much like our group’s study of regenerated PLQY in Cd-chalcogenide 

QDs,60 Akdas et al. conducted an investigation to elucidate effects of purification on optical 

properties in CuInS2 and CuInS2/ZnS. This investigation revealed PL lifetime amplitude 

trends that were enhanced for both the core and core/shell systems, though more so for the 

core/shell architecture, once an optimal purification system was identified.84 Despite the 

concomitant roles of the thiol as both a NC precursor material and final passivating ligand 

for that system, the QDs better maintained QY and PL lifetime components associated with 

radiative decay depending on electronic isolation provided by the shell and even more so 

with a proper PR anti-solvent/solvent combination for their purification. Another recent 

study developing an aqueous-based gradient ultracentrifugation purification for fluorescent 
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carbon NPs, also reported that maintaining exciton radiative recombination was influenced 

primarily by retained hydrophilic surface groups.172 While it would be inappropriate to 

consider all QD surfaces as completely analogous to Cd-chalcogenide systems, these 

observations suggest that at least some observations can be transferred to more complex 

semiconductor-ligand interfaces. 

2.5.4 Improving structural interpretation and material scope  

Over the last few years a number of groups have published reports on less toxic alternatives 

to the very familiar Cd and Pb chalcogenide NCs, and the emerging systems are usually more 

complex quantum-confined fluorophores.36,65,84,172 Findings from Cossairt’s group after a 

closer investigation of shell precursor material added to InP QDs to improve QY, revealed 

another example of NC surface engineering. When adding what they term ‘‘exogenous Lewis 

acids’’ in the form of specific Cd- and Zn-carboxylates, the QD surface was altered such that 

significant PL enhancement could be achieved,83 as well as a tuning of the InP absorption 

and emission lowest energy electronic transitions. QY enhancement upon the post-synthetic 

treatment with the metal carboxylates might be described as passivation through 

introduction of a Z-type ligand. If so, the ligand association is very strong, as a portion of 

the added metal was retained even after excess metal carboxylates and indium-oxide 

impurities were removed by a combined PR and filtration purification process. Final indium-

to-metal ratios along with the PL responses suggested that the metal carboxylates strongly 

adhered to undercoordinated surface phosphorus sites, and to some degree were also 

integrated in the crystal lattice to displace native indium atoms. Again, while Cd-based NC 

investigations dominate the field and offer an important foundation for other complex 

semiconductor–ligand interfacial studies, the responses to purification in this metal-doped 
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InP system cannot be directly interpreted on the basis of the Cd chalcogenide system; 

especially since the drastic changes in lowest energy electronic transition wavelengths were 

not accompanied by a change in the NC size. The ability to identify reversible or non-

perturbing purification techniques tailored to specific QD materials in specific processing 

environments is imperative. This is especially true if analysis of the final product is difficult; 

for example, if ligand exchange leads to a quenched product, it may be difficult to distinguish 

successful ligand exchange from repercussions of purification.64 

Many descriptions of NC ligand binding modes are purely schematic and do not 

account for the specific structural characteristics of the NC surface. Yet, this is beginning to 

change with more examples of single-crystal X-ray diffraction-based structures for inorganic 

clusters and small NCs,173,174 and with more closely integrated theoretic and experimental 

analysis. The crystal phase, size, and stoichiometric excess of NCs influence the number and 

character of the ligand binding sites that are available at their surfaces. For example, the eight 

symmetrically equivalent {111} faces of the rocksalt crystal structure adopted by PbS NCs 

are formed by alternating layers of cations and anions; terminating them with a complete 

monolayer results in a charged surface requiring a high density of X-type ligands for charge 

balance, while the {100} and {110} facets are charge-neutral. This effect of this requirement 

was demonstrated in a combined theoretical and experimental study by Zherebetskyy et al.175 

of oleic acid-passivated PbS NCs, which showed that water generated as a synthetic 

byproduct results in hydroxide serving as an X-type ligand at the {111} facets. Hydroxide 

was necessary to completely passivate the {111} facets, in addition to oleate, due to steric 

constraints. In contrast, the {100} facets could be passivated by readily exchangeable oleic 

acid. An investigation on ligand interactions at certain CdS facets further supported the 
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increasing need to probe QD surface structure to control processes such as interparticle 

charge transfer or extended crystal growth.82 

Precise purification methods, supported by surface metrics that can gauge their 

effects, should enable the handling of NCs with sub-monolayer surface termination and 

accurate measurement of ligand stoichiometries. Consequently, purification technologies will 

be a useful tool in developing structurally grounded models of surface chemistry and ligand 

exchange at NC surfaces. Purification technologies must also be shown to work for 

emerging classes of nanocrystalline materials, including Cd- and Pb-free compound 

semiconductors such as InP and LiZnP.65,176 These compounds can have more complex 

ligand binding modes and increased sensitivity to oxidation compared to chalcogenides, 

which will increase the need for precision in describing their surface chemistry and 

spectroscopy. 

2.6 Conclusion 

As the value contributed by colloidal NCs becomes increasingly clear, the need for a detailed 

understanding of their surface chemistry and of appropriate means to describe and isolate 

the structures that give rise to their remarkable and useful properties becomes increasingly 

urgent. The works described in this chapter clearly illustrate that the surfaces of 

colloidal NCs are subject to dynamic equilibrium with the surrounding medium and may 

change upon purification or dilution, leading to changes in properties critical to their 

performance. Purification methods are now available that allow a high degree of process 

control and repeatability, and many of them do not require a change in solvent that could 

disrupt ligand binding free energies. Additionally, analytical techniques such as NMR, TGA, 

Mass Spectroscopy and calorimetry can help to profile samples to allow the results of 
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different purification techniques to be compared, and in principle to permit a standard 

description of nanoparticle samples across the field.169 Such standardization will greatly 

benefit interpretation of physical property measurements and accelerate the development of 

more sophisticated, multistep preparative routes to highly efficient absorbers, emitters, and 

multifunctional materials. Increased rigor in reporting of purification methods and analytical 

metrics will be helpful in achieving these goals. Ultimately, matters of scalability and cost will 

be important in selecting the most appropriate purification method for a particular task. 

Engineering studies examining purification of nanocrystals at larger scale and in integrated 

and/or continuous processes could help optimize current technologies and achieve useful 

cost figures. 
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CHAPTER 3 

LANGMUIRESQUE ASSOCIATION OF NEUTRAL LIGANDS TO CDSE 

QUANTUM DOTS AND SUBSEQUENT EFFECT ON PHOTOPHYSICAL 

PROPERTIES 

3.1  Introduction 

3.1.1 Photoluminescent properties of colloidal quantum dot surfaces and general 

implications of purification 

Quantum dots (QDs) are simultaneously extremely promising and perplexing hybrid 

materials, in particular due to the numerous intrinsic and extrinsic influences of their surface 

chemistry on relevant photophysical properties and only perpetuated by their high surface 

area-to-volume ratio. Efficient and size-tunable photoluminescence (PL) is one of the most 

distinctive characteristics of colloidal QDs and has led to their initial commercial 

applications.67,177–185 Indeed, the most facile and globally employed methods to monitor 

changes in QD electronic structure are band edge optical absorption and emission. Narrow, 

well-resolved, and consistent features in continuous-wave absorption spectra can be sensitive 

to changes in QD radius and polydispersity but reveal limited or no information about 

localized states.8,186,187 The PL quantum yield (QY) and lifetime are sensitive to trapping and 

non-radiative decay;188 in some cases, radiative decay from trapped excitons can be observed. 

Time-resolved absorption and PL spectroscopy can additionally reveal reversible trapping, 
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and information about the distribution of non-radiative decay rates that is present among 

QDs in the sample.80  

QD purification results in removal of impurities and ligands alike, which inevitably 

affects exciton binding energies via radiative and nonradiative emissive pathways. 

Consequently, purification methods can modify the QD surface through dissociation or 

exchange of various ligand types with a number of possible binding modes. Therefore, it is 

important to understand how ligand binding affects PL, and whether PL changes observed 

on purification, dilution, or a change of solvent are a direct result of ligand ad/desorption, or 

are associated with aggregation, surface oxidation, or surface reconstruction that may be 

irreversible.14,73,78,85,97,189 The ligands and solvent also directly modulate energy levels through 

classical dielectric confinement effects, though this has been shown to be a small 

contribution in most cases.190,191 Purification methods that do not require a change in solvent 

offer the opportunity to directly characterize ligand dissociation kinetics and thermodynamics. 

For example, by continuously exposing QDs to a low or zero concentration of free ligands, 

only those surface-bound equivalents with off-rate lifetimes greater than the experimental 

timescale will remain.137 As such purification at different speeds could potentially detect off-

rate kinetics for molecules with very small dissociation equilibrium constants. This data 

could help to distinguish associative and dissociative ligand exchange mechanisms. Ligand 

exchange rates could in turn be investigated as a function of solvent polarity or the presence 

of solvent impurities such as moisture, which has already been shown to play a role in NC 

growth kinetics but to our knowledge has not been thoroughly examined in the context of 

ligand exchange. Quantitative kinetic and thermodynamic measurements using purification 



 
 

47 
 

may emerge in the near future, though a concern is the propensity of NCs to aggregate if 

steric and/or electrostatic stability imparted by labile surface groups is lost. 

As the major impact purification tends to have in modulating QD electronic 

properties and dictating chemical reactivity in subsequent processing steps becomes more 

apparent, the need for further discourse on ligand binding modes and dynamics in order to 

understand fundamental effects on exciton behavior is simultaneously established.13,39,168,192–196 

Much of what has been discovered about as-synthesized QD–ligand binding dynamics has 

emerged in the course of surface modification procedures designed to replace native 

ligands.54,197 Early understanding of QD growth hinged on the concept of a coordinating 

solvent: the use of compounds, typically Lewis bases, in high concentration to saturate the 

surfaces of particles and serve as a steric barrier to aggregation even at high growth 

temperatures.87 Unexpected roles of the coordinating solvent and identities of post-synthetic 

capping ligands, such as amines in CdSe core syntheses as well as shell incorporation or 

strongly bound phosphorus-containing impurities populating QD surfaces,40,72,163,198 have 

paved the way for critically needed fundamental revisiting of basic surface chemistry 

reactions and analysis.14,199,200 

3.1.2 Associating PL changes with effects of purification  

Whereas purification of some degree is inherently required either directly after nanocrystal 

synthesis or prior to incorporation into material applications, PL quenching upon 

purification is pervasive in many cases.163,166,191,201,202 Fortunately, it has now been established 

that such luminescence responses are frequently reversible, as demonstrated in both 

absorption and emission spectra.19,162,171,201 Two separate investigations conducted 10 years 

apart, but attaining remarkably similar profiles, have illustrated this phenomenon. 
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Kalyuzhny and Murray observed a slight bathochromic shift of band-edge absorption and 

PL maxima of diluted CdSe QDs at the conclusion of a number of purification steps. 

Additionally, QD sub-bandgap emission attributed to surface defects increased while band 

edge emission decreased by almost 90% of its original intensity with repeated purification 

steps.78 The reverse of this process was depicted in a later study conducted by Krause et al., 

with the addition of an L-type ligand (butylamine) capable of passivating surface cadmium 

sites, suppressing surface electron trap emission and increasing overall PL efficiency.14  A 

fundamental investigation by Bullen and Mulvaney on the effects of solvent on PL dynamics 

given ligand interactions primarily considered to bind datively to Cd-chalcogenide QDs 

revealed that mere dilution could displace native ligands, thereby perturbing QD electronic 

properties.61 The PL response they observed suggested an effective binding constant governs 

fractional occupation especially of L-type ligands at the QD surface. 

3.2 Spectroscopic investigation of reversible quantum yield regeneration in Cd-based 

core/shell quantum dots 

3.2.1 Purification effects on photoluminescence in core/shell quantum dots 

It is apparent with such literature precedent that purification techniques can be an important 

tool in both studying and manipulating NC surface chemistry. Changes in optical 

properties of QDs associated with purification are ubiquitous, and our in-depth investigation 

of PLQY regeneration on core/shell QDs serves as an example of how purification 

influences NC surface chemistry from their electronic properties. A wider bulk band gap 

shell material is typically added to encapsulate core QDs; thereby providing both chemical 

and electronic passivation, specifically toward some level of isolating the exciton 

wavefunction within the core. This is perhaps the most robust and widely employed 
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procedure to engineer QDs with lower nonradiative decay rates, higher ensemble QY and 

more on-time fractions even among single QDs.203–205 As shown in Figure 3.1, even in 

samples with shells only a few monolayers thick in which the excited states are not entirely 

isolated from the surface and therefore surface states, very high QY can be achieved.206 This 

demonstrates that molecular surface termination can indeed be achieved in which almost no 

intergap states or resonant excitations are present, though recently reports of core-only Cd-

based QDs have achieved similar results.39,201 

As-synthesized colloidal QD samples typically or inherently contain large 

concentrations of molecules that could coordinate the surface as well as allow larger 

fractions of molecules to interact with surface states.5 It is essential to understand whether 

[adverse] changes in QY ensuing mere purification are reversible, how ensemble QY and 

Figure 3.1 Quantum yield of thin 1.6 monolayer (A) and 4 monolayer (B) CdZnS alloy shell 
QDs after 1 cycle of precipitation/redissolution (considered “before purification”). The red 
line marks the excitation wavelength. The absorption spectra (navy) and emission spectra 
(fuchsia) of QDs are shown as solid lines, while dashed lines indicate rhodamine 590 in 
ethanol as the reference dye. Adapted with permission from ref. 60. Copyright 2015
American Chemical Society. 
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decay profiles depend on ligand occupation, and the conditions under which surface 

structures that support high QY can be maintained or restored.2 Until this investigation, the 

direct impact of putative ligands present in as-synthesized Cd-based core/shell QDs initially 

displaying high QY had not been exhaustively studied. 

Our previously established gel permeation chromatography (GPC) purification was 

demonstrated to effectively remove impurities and weakly associated ligands in the QD 

native organic solvent.62 Owing to the robust yet gentle capacity of the GPC to yield purified 

QDs with low and consistent populations of Cd-carboxylate equivalents, we were able to 

take advantage of this highly reproducible technique to prepare oleate-capped core/shell 

samples for this study. Nuclear magnetic resonance (NMR) was used to evaluate the extent 

of ligand interaction and coverage on the QDs; as adsorbed ligands display broadened line 

Figure 3.2 31P NMR of CdSe/CdZnS before (A) and after (B) GPC purification. A 
ferrocene internal standard is marked with † and the toluene-d8 solvent is marked with ‡ in 
the 1H NMR insets. Absorption profile (C) normalized to the first excitonic peak and band 
edge emission  showing decrease in PL after GPC purification (D). Adapted with permission 
from ref. 60. Copyright 2015 American Chemical Society. 
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shapes, whereas free ligand species will show typical fine splitting with narrow linewidths.41 

Figure 3.2 demonstrates the efficacy of the GPC purification technique on relevant 

CdSe/CdZnS QDs, as the most drastic differences appeared in the NMR spectra and the 

significant decrease in PL emission, concurrent with removal of neutral L-type (and likely Z-

type) ligands. There was no shift in the first excitonic peak in the absorption profile, which 

strongly suggested that the QDs suffered no degradation resulting from the GPC 

purification. The 31P NMR in Figure 3.2A contains four sharp peaks pertaining to free 

trioctylphosphine oxide (TOPO, δ=53.5 ppm), tetradecylphosphonic acid (TDPA, 

δ=42.3 ppm), dialkylpyrophosphonic acid (PPA, δ=28.7 ppm), and trioctylphosphine (TOP, 

δ=–32.3 ppm).56 These free molecules, largely displaced from the core CdSe QDs upon shell 

addition, are completely removed after GPC, Figure 3.2B. Pertinent 1H NMR in the insets 

have the toluene-d8 NMR solvent (†) and ferrocene internal standard (‡) indicated. Also in 

Figure 3.2B the vinyl protons of OA bound to the QDs appear as broadened peaks in the 

chemical shift range δ=4.8–5.8 ppm, from which all impurities and excess unbound oleic 

acid had been removed; the remaining narrow peaks belong only to the NMR solvent and 

internal standard used to quantify the surface ligands.  

3.2.2 Reintroduction of putative ligands to restore quantum yield 

Molecular species present in the shell synthetic mixture and subsequently confirmed by 

NMR to have been removed upon purification included oleate (OA), oleylamine (OlAm), 

octadecene (ODE), TOP, TOPO and TDPA. It is presumable that Cd(OA)2 and 

Cd(TDPA)2 were also removed,34 although such molecules would not be resolved from OA 

and TDPA, respectively. Especially avoiding ligand exchange of the OA for TDPA,63,64 each 

of the neutral ligands were systematically reintroduced to the QDs at two ratios 
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representative of an equivalence to surface sites (300:1) and an excess (3000:1),50,77 in order 

to determine whether the QY could be restored. A possible slow evolution of QY 

restoration was allowed as the putative ligand additions were monitored over a 7-day period. 

It may be noted that the relative QY among QDs with similar absorption and emission 

spectra as well as solvent can be measured with high precision, and therefore this value was 

reported. The bar graph in Figure 3.3 shows 1.6 monolayer CdSe/CdZnS QYs when mixed 

with reintroduced putative ligands and displayed relative to a GPC-purified core/shell 

control sample. Generally decreasing PL trends for the QDs only GPC-purified upon 

prolonged storage in dilute solution were likely due to a slow re-equilibration of surface-

bound and/or free [metal] oleates further desorbing/dissociating from the QD surfaces into 

solution, given that no additional ligand was introduced to these control samples.61  

In total four core/shell QD samples were prepared for this investigation: 

CdSe/CdZnS of 1.6 and 4 monolayer equivalents shell thickness and CdSe/CdS also of 1.6 

Figure 3.3 Relative QY of GPC-purified CdSe/CdZnS 1.6 monolayer (thin shell) core/shell 
QDs after reintroduction of given neutral ligands and binary ligand system, normalized to 
the immediate QY of GPC-purified samples shown by the dashed line. Adapted with 
permission from ref. 60. Copyright 2015 American Chemical Society. 
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and 4 monolayer equivalents shell thickness.60 The absolute QY (Figure 3.1) for the thinner 

alloy shell QDs began at 63.5% and decreased 84% relative to that initial value after GPC, 

and the 4 monolayer QDs decreased 23% relative to its initial 88.0% QY. The decrease in 

QY was ultimately attributed to an increase in nonradiative decay consequent to the removal 

of weakly associated ligands. Whereas ODE, OA and TOPO reintroductions did not 

significantly improve QY relative to the GPC-purified QDs; the remaining neutral ligand 

systems did restore QY at least to some degree for certain samples. Those QDs with 4 

monolayer equivalents thick shells had relatively less QY regeneration overall, which was 

expected since the excitons in these samples should have been better isolated from surface 

trap states. 

Not surprisingly, Cd(OA)2 substantially regenerated QY in all core/shell samples as 

numerous studies have associated Cd-enriched surfaces comprised of such Lewis acidic 

ligands to be nearly solely responsible for mitigating localized surface states.13,34,39,94,167 While 

Cd(OA)2 is typically considered an electrostatically neutral Z-type ligand, the consistent and 

significant restoration in QY ensuing its reintroduction was irreversible – likely due to its 

role as an electrophilic shell precursor material62,72,207 – and this ligand was deemed 

inappropriate for further investigation within the objectives of this study. TOP proved in all 

QDs investigated, the ligand that demonstrated reversible and substantial QY regeneration 

both alone and when combined with Cd(OA)2. Interestingly, OlAm demonstrated the least 

consistent trends of restoring QY among all of the core/shell QDs investigated: OlAm 

significantly restored QY in the thinner CdS shell QDs, comparable to the level of Cd(OA)2 

and TOP; moderately in the thicker CdS shell; moderately, though not maintained within the 

thicker CdZnS alloy shell; while having little to no effect on the thinner CdZnS alloy shell 
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QDs. Although the capacities of TOPO and OlAm to restore QY appear comparable for 

the 1.4 monolayer equivalent CdZnS material shown in Figure 3.3, this was not the case for 

the remaining core/shell QDs investigated. Despite some earlier theoretical calculations 

suggesting that OlAm and TOPO interact similarly,21,208 or that TOPO has a stronger 

binding energy associated with Cd-based QDs,20 generally amines are accepted as stronger 

coordinating ligands than TOPO.61,209,210 An interpretation of the mechanism by which L-

type ligands maintain QY is that ligand orbitals mix with QD interfacial localized states so as 

to move them outside the band gap.3,211,212 CdZnS has a larger bulk band gap than pure CdS 

and therefore band edge quantum- sigma donor) and probable surface trap states would not 

be strong enough to move those states outside the larger shell band gap.1,12,194 TOP, 

contrarily, can contribute π-bonding as L-type and/or Z-type ligands. 

3.2.3 Effect of reversible reintroduction of putative ligands on photoluminescence 

Time-resolved fluorescence spectroscopy was then employed to gain further insight on 

possible mechanisms for PL quenching and QY restoration as functions of reintroduced 

L-type ligand concentrations on the thinner shell QDs. Ultimately the PL decays and QY 

trends were congruent in that the samples that yielded higher QYs also demonstrated longer 

average lifetimes. Our approach comprised an interpretation of rate dispersion being either 

primarily or entirely inhomogeneous in QD samples apparently consequent of 

subpopulations having varying decay rates, which has been supported in both ensemble and 

single QD studies.80,213 Accordingly subpopulations with lower QYs are generally expected to 

display shorter lifetimes due to elevated nonradiative decay rates. With this consideration, it 

ultimately proved possible to constrain models of nonradiative decay by decomposing the 

observed decays into multiple lifetime components.60 In analyzing the rates and amplitudes 
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of said lifetime components, we sought to distinguish whether quenching in GPC-purified 

samples versus samples with reintroduced ligands were associated chiefly with changes in 

lifetime among all lifetime components or with changes in relative population fractions of 

QDs with distinct decay rates. Such was assessed from the amplitudes of the short and long 

lifetime components considered in the fits: we reported amplitude average lifetimes as they 

are nominally proportionally to steady-state fluorescence intensity.214  

Our analysis revealed that the change in QY between samples prior to and after GPC 

purification, as well as between GPC purification and QY regenerated samples, were 

accompanied by a change in the amplitudes of the lifetime components; though with little 

change in the lifetime value. For example: where TOP and OlAm restored QY a reduction, 

but not complete elimination, of the accelerated decay at early times occurred. Whereas 

values of component lifetimes changed no more than 30%, ratios between the shortest and 

longest amplitude-averaged lifetime components increased up to nearly 7-fold. Therefore, 

the reduction we observed in QY upon removal of putative L-type ligands by purification 

appeared to be driven primarily by a large increase in decay rate among a subset of the QDs.  

3.3 Observing kinetic and thermodynamic contributions to resolve influence of 

neutral ligand relative binding strengths on quantum yield 

3.3.1 Steady state absorption and PL emission to indicate putative ligand binding strength 

Two immediate and reasonable assumptions pertaining to the QD surfaces are that each QD 

contained a number of binding sites for L-type ligands and those sites were left 

predominately vacant after GPC purification. Initial reintroductions of the putative ligands 

unambiguously distinguished which of those surfactants could restore QY, for which 

core/shell systems, and to what degree restored QY could be maintained over the week-long 
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period over which samples were measured. The lifetime component analysis was moreover 

applied to excess (3000:1 ligand-to-QD) TOP additions to the thinner shell samples, again 

over a week-long observation period, seeing as though the thinner shell QDs displayed 

relatively higher QY responses to ligand reintroduction and TOP significantly regenerated 

QY in all samples. As for the time evolution in the restored QY, the CdZnS alloy shell 

samples tended to require longer equilibration times compared to the pure CdS shell samples 

but subsequently maintained higher QY. Figure 3.4 conveys this phenomenon as QY was 

not fully regenerated until an hour after reintroduction to the CdZnS system; however, QY 

was nearly entirely restored within 5 minutes for the CdS shell followed by a slight decrease 

that was then maintained after 1 day. The distinct PLQY equilibration times presents a 

noteworthy and somewhat unexpected observation. Not allowing systems to fully 

equilibrate, especially when the result of that equilibration would yield an optimal system, is a 

bit daft and has led to decades of contradictory reports even in similar NC systems.14 

Figure 3.4 Time evolution of QY regeneration upon reintroduction of trioctylphosphine 
(TOP) to thin alloy CdZnS (A) and pure CdS (B) QDs. Adapted with permission from ref. 
60. Copyright 2015 American Chemical Society. 
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 Yet another intriguing observation was between the capacity of TOP to effectively 

restore QYs while TOPO consistently had no appreciable effect. If both ligands behaved 

similarly as merely L-type ligands, then the drastic differences in QY regeneration capacity 

seem counterintuitive. The sterics of these ligands would clearly be synonymous, and 

therefore the primary difference is in the interaction between the O– and P– adsorption to 

[presumably] Cd surface sites. Theoretical investigations have found those bonds to be 

comparable in both strength and effect on non/radiative carrier dynamics.20,37,215 Historically 

TOPO has been a commonly asserted passivating ligand for Cd-based QDs; even a Google 

Image search for “trioctylphosphine oxide” will render cartoon depictions of ligands 

adsorbed to CdSe QD surfaces. However more recent findings claim this surfactant does not 

adsorb to the QD surface even when 99% TOPO is used as the coordinating synthetic 

solvent.94,163,198 Our own steady state absorption and PL emission results clearly 

demonstrated that TOP substantially increased PLQY and TOP did not (Figure 3.5) for each 

Figure 3.5 Steady state absorption normalized to 365 nm (A) and PL emission normalized 
to the absorption at the 365 nm excitation wavelength (B) for initial 1.4 monolayer 
CdSe/CdZnS alloy shells immediately after GPC purification (fuschia), after 3000 equiv. 
TOP addition (teal) and after 3000 equiv. TOPO addition (navy). Optical spectra here are 
analogous to relative QY monitored in Figure 3.3 displayed as a bar chart. Adapted with 
permission from ref. 60. Copyright 2015 American Chemical Society. 
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of the CdS and CdZnS core/shell QD samples monitored.60 

3.3.2 NMR spectroscopy to indicate putative ligand binding strength 

On the basis of our results above as well as previous literature reports, L-type ligands 

(including TOP, TOPO, and OlAm) can reversibly attach to and detach from the QD 

surface.5,50,61 However, as shown in the spectroscopic regeneration and lifetime studies, not 

all of these surfactants contributed directly to the photophysical property changes in QDs. 

Ligand–QD interactions are known to influence the energy levels and occupation of 

interfacial states, affecting electron and hole trapping rates and intraband decay rates.1,3,205 

The effect of a certain total ligand concentration will thus depend on the adsorption 

isotherm and on the effect of such binding on the interfacial states. Inasmuch it is desirable 

to have an independent measurement of the extent of binding so that those factors can be 

distinguished. NMR has been proven to be a powerful technique for the determination of 

the interactions between ligands and the nanocrystal surface. In some cases of rapidly 

exchanging species, however, changes in the general one dimensional NMR line shape 

distinguishing bound versus free ligands are not resolvable.73 Diffusion-ordered NMR 

analysis has been employed specifically to characterize the bound and free ligand population 

on QDs in previous work.41,62,91,216 However, in this study, we could not observe any 

significant difference in diffusion constant measured by DOSY.60 Differences in the effective 

diffusion constant probed by diffusion-ordered spectroscopy can prove difficult to detect 

for low bound-ligand-fractions. Likewise, neither T1 measurements on 31P nor NOE 

response on 1H spectra with selective saturation on the 31P resonance upon introduction of 

TOP or TOPO to GPC-purified QDs solutions were able to conclusively resolve apparent 

differences in these surfactant interactions with the QD surface. Both phosphine surfactants 
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behaved similarly to free ligand controls in each of these NMR experiments. These results 

strongly suggested a fast (relative to the NMR timescale) dynamic  adsorption/desorption 

equilibrium, where the bound ligands are exchanging rapidly with the excess of unbound 

ligands in the solution.73 

3.3.3 Isothermal titration calorimetry to determine putative ligand binding strength 

As NMR techniques were incapable of resolving binding environments of TOP versus 

TOPO, despite the unequivocal differences in their optical spectra, I therefore employed 

isothermal titration calorimetry (ITC) to detect and characterize the binding between the 

neutral ligands and QDs. Although widely used in biochemistry, ITC has only recently begun 

to be applied to nanoparticles to assign parameters for multiple binding problems.50,51,53,217,218 

In this study, we titrated the same amount of TOPO, OlAm, and TOP to the GPC-purified 

1.6 monolayer equivalent CdSe/CdZnS sample to measure the heat response. Any response 

of the system as equilibrium is re-established that has nonzero enthalpy change, such as 

bond formation upon ligand binding, will generate a heat response. The shape of the heat 

response over the course of the titration can be used to characterize the equilibrium constant 

and stoichiometry of reactions, while the sign and magnitude of the signal characterize the 

associated enthalpy change. Due to the intolerance of the machine toward toluene, 

anhydrous tetrahydrofuran (THF) was used as the solvent for this study. 

As shown in Figure 3.6, when TOPO is titrated, the overall heat response is small 

and no trend can be observed in the integrated curve, which indicates that there is no 

significant interaction between TOPO and the QDs, at least at these concentrations. A 

somewhat recent Perspective article by Krause and Kambhampati noted that gaining a 

“proper understanding of what ligand actually binds to the NC surface” and the mechanism 
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by which surface modification could occur is critical for the rational tuning of NCs toward 

applications.194 In the context of TOPO interacting with Cd-based QD surfaces, ITC has 

shown rather unambiguously that TOPO indeed does not bind to this surface. Though it is 

imperative to choose adequate concentrations, reaction/association parameters and basis for 

comparison (e.g. OlAm or other control titrations) in order to confidently assert as much. 

Otherwise a slight trend in the raw thermogram, even as our data depicts until ~200 molar 

ratio, might lead one to analyze such data as though this ligand binds and plays a critical role 

in emissive pathways.50 The ITC trace for introduction of OlAm shows a small exothermic 

response at low ligand concentration that rapidly saturates. This rapid saturation indicates a 

high association equilibrium constant. The thermogram was fit with the simple independent 

identical sites model by varying the number of sites per QD N, equilibrium constant K, and 

Figure 3.6 ITC traces for 1.6 monolayer equivalent CdSe/CdZnS QDs titrated with TOPO 
(A), OlAm (B), and TOP (C) at equal QD and ligand concentrations. Top panels display  
raw heat per injection thermograms, while the bottom panels show the integrated isotherm 
curves scaled to the TOP titration axis. Insets in the bottom panels (A) and (B) reveal 
zoomed-in integrated curves for TOPO and OlAm titrations, respectively. Ligand-to-solvent 
reference titrations have been subtracted from the traces shown; as solvent-to-solvent and
solvent-to-QD runs yielded negligible responses. Adapted with permission from ref. 60. 
Copyright 2015 American Chemical Society. 
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molar enthalpy change ΔH. The best fit was obtained when the number of sites is close to 

N = 10, with K = 2.3 × 104 M–1 and ΔH = –27 kcal/mol. However, since the magnitude of 

the equilibrium constant K is small and the QD concentration is low, the molar enthalpy 

change ΔH and the number of sites N are correlated in the fit. In particular, the shape of 

heat response curves within this model are parametrized by Brandt's c parameter (c = 

[QD]KN, where [QD] is the concentration of the QDs).46 For data that are characterized by 

c values smaller than 1 (indicating a small mole fraction of bound ligands out of the total 

added), the enthalpy change and the number of sites are correlated, but the equilibrium 

constant K is well-constrained. When TOP was introduced, a much greater exothermic 

response than for the reaction with OlAm was observed (an overall exothermic heat 

approximately 14 times more than that of OlAm). The greater heat indicated that TOP has a 

more negative molar enthalpy of binding and/or binds to a greater number of sites per QD 

than does OlAm. As seen in the PL response during QY regeneration (Figure 3.4), slower 

kinetics were also observed in the raw heat thermogram signal, which did not rapidly return 

to baseline between injections when TOP was introduced to the thinner shell CdSe/CdZnS 

QDs. The thermogram for TOP could not be well-fit by a simple independent identical sites 

model. In order to compare the results for TOP and for OlAm, one approach was to 

consider the difference in ΔH and K that would be required if the number of binding sites 

per QD is constrained to the same value. In this case, a fit with N fixed to 10 revealed a ratio 

of ΔHTOP_QD/ΔHOlAm_QD = 37 and K = 4.3 × 103 M–1 for TOP. Despite an apparently larger 

equilibrium constant for OlAm than for TOP, introduction of OlAm led to much less 

change in QY than TOP, particularly in the alloy shell QDs. This could indicate that the ITC 

signal for OlAm corresponds to binding to only a subset of active trapping/quenching sites 

or that binding of OlAm does not sufficiently perturb the energy levels associated with 
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trapping and recombination, as was postulated earlier. However, due to the steric and 

electronic differences between these molecules, it is highly possible that OlAm and TOP 

bind to different sites on the QD and the number of sites is therefore not the same. While 

the possibility of TOP binding to more sites than OlAm is contrary to recent experimental 

results by Anderson et al.,200 the trends we observed in ligand binding strength from ITC are 

consistent with those predicted in Rempel's work for ligands binding to the Se-terminated 

(0001) surface of wurtzite CdSe215 and in our case were very reproducible. The theoretical 

value of the binding energy between TOP to wurtzite CdS S-terminated (0001) surface is 

3.13 eV.219 If we assume the binding behavior of TOP to the CdZnS alloy shell surface is 

similar to that for pure CdS, then the total heat response that we observed of approximately 

–200 eV/QD (obtained by integrating the response shown in Figure 3.6C) corresponded to 

about 60 available sites for TOP per QD. Clearly a more adequate model accounting for 

interactions among similar and dissimilar ligands is needed to describe such ligand 

association, dissociation, and exchange reactions more thoroughly, and that could be an 

important target for future studies. Nevertheless, it seemed reasonable for the study at hand,3 

particularly for ligands behaving as σ donors, to argue that a strongly exothermic bond-

forming step leading to a large energy separation between bonding and antibonding orbitals, 

could assist in displacing electron traps from within the band gap.202 The trend of enthalpy 

change and QY regeneration that we observed supports this argument. 

3.4 Investigation of neutral amine ligand binding interactions with CdSe quantum 

dots via isothermal titration calorimetry 

3.4.1 A confounded history of amines and Cd-based QDs, especially alkylamines 
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Amines present a particular ligand system that has garnered much attention for Cd-based 

QDs, as well as produced extremely contradictory results. One particular conundrum is that 

while alkylamines have been well-established to decompose Cd(OA)2 polymers into smaller 

complexes,220 the common initial QD ligand oleate will neither prevent amines from 

coordinating to Cd2+ nor will OA be displaced in the framework of an L-type for X-type 

ligand exchange.34,54 This behavior has resulted in perplexing results221 originally intended to 

elucidate the impact of amines on NC growth, especially since alkylamines significantly affect 

QDs of groups II-VI and IV-VI.72,102,222–224 In the case of core-only CdSe QDs, the presence 

of amines in the synthetic mixture at varying concentrations can determine expected size 

regime, morphology and concentration of surface defects.40,192,224 Teunis et al. recently 

utilized the apparent temperature and aliphatic chain length dependence on QD precursor 

activation225,226 to provide further insight on their proposed fourth stage concluding the 

widely accepted LaMer and Dinegar model227 of monomer production toward NC 

nucleation and growth.228 Conversely, upon addition of wider band gap shell material, our 

own investigations have explored the role of amines competing with complete conversion of 

shell precursor material toward isotropic particles, 72 as would be reasonably explained by the 

capacity for alkylamines to coordinate Cd(OA)2 complexes.. 

Additionally, amines have had a nontrivial effect on QD optical properties, to some 

degree explored in the previous QY regeneration investigation. At one point amines were 

thought to induce crystal structure reorganization by mere ligand exchange;221 conversely 

however, the narrowing energy gap between the first and second excitonic absorption bands 

upon amine association was unambiguously attributed to ligand-induced modification of 

transition energy and extinction coefficient in the QD’s excitonic band.196 As alkylamines are 
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particularly potent Z-type displacing ligands in Cd-chalcogenide QDs, this displacement can 

be monitored by a typical decrease in PLQY as well as a significant decrease in intensity of 

the 1Se–2S3/2h absorption.34,196 For years amines were reported to both diminish229,230 and 

enhance78,201,231–233 PL in NCs. It is now accepted that when amines associate as L-type 

ligands they will likely enhance PL, but beyond a large excess amine addition will quench PL 

as this addition promotes Z-type ligand displacement.14,34,77,168,234 To reiterate a point made 

earlier in this chapter, the vast majority of what has been discovered about QD surface 

chemistry has ensued surface modification rather than directly probing the as-synthesized 

system. Since Anderson et al. confirmed Z-type displacement in 2013, a number of recent 

investigations have relied on this reactive displacement regime to elucidate QD surface 

chemistry and thermodynamic parameters, especially where incorporating a shell is not 

advantageous to projected applications (e.g. photovoltaics).13,167,168,197 

Prompted by longstanding contradictory investigations, the established propensity of 

Cd(OA)2 or Cd-phosphonate Z-type ligands to associate to QD surface sites having 

analogous impacts on QD photophysical properties as those of amine ligands167 and an 

overall scarcity of consistent equilibrium thermodynamic parameters,61,235,236 I sought to 

conduct a systematic investigation of amine association to CdSe QDs via isothermal titration 

calorimetry. Elegant NMR investigations of amine–QD surface dynamics have been 

published to establish relatively strong binding, however the rapid ad/desorption dynamics 

become difficult to resolve toward equilibrium constant values. ITC allows extremely 

sensitive characterization of such dynamics within the QD–ligand system without relying on 

a spectroscopic signature which could be indistinguishable or suppressed in situ. 

Furthermore, given the complexity of the colloidal QD system and the convolution of 
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reaction components contributing to overall heat signals in the ITC, a simplified reaction 

coordinate describing amine association to well-defined vacant QD surface sites could be 

conceived that could ultimately mimic the hallmark 1:1/single type of independent site 

model. Results from our QY regeneration and competitive shell growth solvent studies 

could also be used to determine reaction parameters.60,72 

3.4.2 Determining amine association reactions to investigate via ITC 

Whereas the previous investigation sought to resolve the more significant impact of 

electronic behavior or steric hindrance on QD–ligand interactions comprising putative 

neutral ligands that had already been shown to alter QD photophysical properties, this study 

employed an amine L-type association reaction that are directly advantageous toward further 

defining the complex landscape of the NC surface. ITC entails the considerable advantage of 

providing a full thermodynamic profile for an interaction within one experimental trial once 

proper reaction parameters are discovered,46,237 yet reasonable targets for such a deliberately 

“simple” investigation constitute ligand systems that are most relevant to the CdSe QD 

system. Oleylamine (OlAm) possesses a central double bond which creates a kink in the 18-

carbon aliphatic chain and is constantly employed in QD synthetic procedures, especially 

pertaining to shell growth.60,72,207,224 Decylamine (DecAm) is a straight 10-carbon chain 

alkylamine that has been reported to have a temperature-dependent equilibrium constant, 

ranging 1.56 × 104 M–1 – 2.68 × 104 M–1 with moderately decreasing temperature, in one of 

the most heavily cited reports on QD–ligand interactions.61 Trihexylamine (TriHexAm) is a 

tertiary amine with roughly similar molar mass to commonly employed Cd-based NC 

synthetic and surface modification reaction additives.72 Although some studies have claimed 

that amine chain length does not have as significant an impact as steric impact, ligands will 
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undoubtedly contribute entropic effects as fractional occupation on the QD surface 

increases.59,238 Accordingly, QD samples used in this study were kept within a narrow size 

range as determined by their lowest energy extinction peak.33,82  

So as to closely resemble a single independent type of site model system, 

phosphonate (TDPA)-capped CdSe cores were chosen as the starting material. Phosphonate 

X-type ligands have long been established as one of the strongest binding ligand constituents 

for Cd-based QDs in native organic solvents.1,2,37,239 

 

 
 

Figure 3.7 Reaction scheme for neutral L-type ligands association to TDPA-ligated CdSe 
QDs: oleylamine (OlAm), decylamine (DecAm), trihexylamine (TriHexAm) from top. 
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Figure 3.8 Quantitative 31P {1H} NMR of GPC-purified CdSe|TDPA with triphenyl 
phosphate internal standard (A) showing peak fits (navy and fuschia) and fit residual (red) 
using MNOVA software package to analyze NMR spectrum (B). THF GPC purified QDs 
were brought into THF-d8. 
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GPC purification was employed to produce consistent starting material, though in this case 

the mobile phase solvent was anhydrous THF (this solvent is suitable for both the QDs and 

titrant ligands, as well as proven compatible with the SX-1 Bio-Beads and ITC). Figure 3.8 

depicts quantitative 31P{1H} NMR of the purified CdSe|TDPA– QD starting material in 

THF-d8. At least two peaks are resolved in the broad bimodal resonance representing P-

containing ligands adsorbed to the QD surface. Dialkylpyrophosphonate (PPA, δ=22.7 

ppm) has been confirmed as a ligand alongside TDPA (δ=30.4 ppm) both ionically bound to 

the CdSe QDs.137,163,198 The sharp peak belongs to the internal standard triphenyl phosphate 

(TPP, = –17.9 ppm). To a carefully monitored ligand equivalence, incoming amines should 

only associate with vacant QD surface sites but will not be potent enough to replace 

phosphonate X-type ligand species. Furthermore, given the relatively small fraction of amine 

ligands expected to adsorb/interact with the QD surface (≤10% of the entire ligand 

population of approximately 300 ligands per QD, which coincides with previous reports of 

P-containing ligands adhered to CdSe QD surfaces of comparable diameters)63,93 each amine 

ligand might reasonably be supposed to interact with the QD surface independently of one 

another,81 thus validating this interpretation via the simplest isotherm model. The initial 

sections of this chapter outline our previous assertions about the delicate interplay between 

electronic and steric interactions dictating the relative strength of ligand adsorption. 

Moreover, a meticulous investigation of sterically different amine solutions implemented in 

shell growth solvents implicated the substantial impact of either homotropic or heterotropic 

steric interactions dictating the relative strengths of QD–ligand interactions. The results of 

the current investigation concur with those previous results, in that among binding 

headgroups with similar electronic properties, sterically encumbered ligands (e.g. TriHexAm) 
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will not fit onto surface sites at discernable densities (Figure 3.9C). The present results 

furthermore directly and quantitatively confirm that relative amine strength of binding 

interactions vary with amine structure.  

Immediately following THF GPC purification, the amine solutions were diluted to 

the titration concentrations as determined by their lowest energy extinction peak33 and 

loaded into the standard volume NanoITC. Amine solutions were prepared in a N2 

atmosphere glovebox, and the titrant syringe was immediately loaded into the organic 

solvent titrant burette handle. All titrations occurred at equal amine and QD solution 

concentrations and were repeated at least in triplicate. While it is customary to subtract 

control titrations that produce significant heat compared to the “mechanical baseline” 

established by a THF–THF titration, an analysis protocol allowed a constant to be 

subtracted from the entire titration (as outlined in the NanoAnalyze software manual ©TA 

Instruments). This protocol was appropriate in these dilute titrations due to the extensive 

Figure 3.9 ITC traces for OlAm (A), DecAm (B) and TriHexAm (C) titrated into 
CdSe|TDPA solutions in anhdrous THF. The inset in panel (C) depicts a “zoomed-in” 
thermogram for the TriHexAm titration, confirming impact of sterics to prevent binding. 
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and consistent thermogram saturation tails, and consequently determined for each individual 

titration by examining the peak height of the final 5-10 injections. Still, thermograms for the 

reference titrations are shown in Figure 3.10 to confirm that indeed there were no significant 

amine–solvent interactions, especially as compared to the magnitude of the peak heights 

alluding the endpoint saturations for each titration experiment.  

At room temperature the two primary amines (of different aliphatic length and 

saturation) titrated into GPC-purified CdSe|TDPA showed prominent exothermic heat 

responses (Figure 3.9A & B). The two primary amines demonstrated relatively rapid 

equilibration, both between injections and becoming saturated on the QD surfaces titrated at 

400:1 ligand-to-QD mole ratios, consistent with the thermogram shapes we observed in the 

QY regeneration amine titration. This rapid saturation indicates a relatively high association 

equilibrium constant. The thermogram was effectively fit with the simple independent model 

by allowing the number of sites per QD N, equilibrium constant K and molar enthalpy 

change ΔH to vary. In particular, alkylamine–QD titrations were evaluated over a number of 

 

Figure 3.10 Raw heat thermograms for each amine into anhydrous THF as well as the 
solvent–solvent titration (bottom left).  
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concentrations and resulting K values were consistent, further affirming the adequate choice 

of the identical independent sites model.56 However, since the overall magnitude of the 

equilibrium constant K is small and the QD concentration is low, the molar enthalpy change 

ΔH and the number of sites N are correlated in the fit. The shapes of heat response 

thermogram curves within this model are parametrized by Brandt's c parameter 

(c = [QD]KN, where [QD] is the concentration of the QDs)46 even while titrant solution 

concentrations are well above 20× that of the titrand solution.240 The product of N×ΔH, on 

the contrary, is well constrained and therefore both reported and employed to analyze the 

robustness of repeated titration parameters within this investigation. Table 3.1 lists the 

equilibrium thermodynamic parameters for the titrations contributing to the traces depicted 

in Figure 3.9. While Ka was the only well-constrained parameter that can therefore be 

appropriately evaluated against previous reports at this stage, it was in good agreement with 

published values.61,167,228 

 
Table 3.1 Thermodynamic equilibrium parameters for amine association to CdSe|TDPA 
  

ASSOCIATION 
Ka   
×103 M−1  

*N×ΔH  
×103 kJ 

N 
per QD 

ΔH 
kJ mol–1  

ΔG 
kJ mol–1  

ΔS  
J mol−1 K−1 

Oleylamine 5.18 ± 0.39 −2.15 ± 0.22 8.80 ± 0.62 −248 ± 22 −21.0 ± 0.15 −511 ± 0.082  
Decylamine 6.56 ± 0.68 −2.02 ± 0.076 11.7 ± 0.17 −172 ± 7.2 −21.5 ± 0.17  −769 ± 0.19 
 
Standard errors of the means on ITC model parameters: K, N, ΔH; Propagation of errors on 
calculated parameters: ΔG, N×ΔH, ΔS. *Reported as product due to low c parameter value,46 
signifying N and ΔH are not independently constrained. 
 

3.4.3 Verification of L-type association reaction, rather than Z-type reactive displacement 

Firstly, QD stability and consistent initial surface concentrations were firmly established 

despite employing anhydrous THF solvent – in which TDPA and Cd(TDPA)2 can be 

presumed quite labile compared to less polar organic solvents (e.g. toluene and hexanes)241 – 
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throughout the entire purification and titration processes via optical spectroscopy as well as 

31P {1H} NMR characterization. The 1×PR preparation involves deliberately diluting the 

QDs to allow unreacted precursor material to further separate from the QD solution in an 

overnight refrigeration step, followed by additional centrifugation prior to GPC purification. 

To prevent detrimental oxidation or other form of QD surface decomposition; QDs were 

immediately concentrated under N2 flow, loaded onto the GPC column, and immediately 

either loaded into the ITC for titration experiments or worked up into deuterated solvent for 

NMR experiments. The reproducibility of relevant spectra and isotherms confirmed that this 

procedure was effective toward exceptionally consistent sample preparation.  

Upon air-free titrations of neat DecAm or OlAm into CdSe|TDPA in THF-d8, 

quantitative additions at and beyond the mole ratio used in repeated ITC trials did not reveal 

liberation of native TDPA (or PPA) in 31P {1H} NMR200 (data not shown). Rather, 31P {1H} 

NMR spectra demonstrated no change in the broad bimodal peaks of bound phosphonate 

species at ~400:1 molar equivalents (analogous to the ITC endpoint mole ratios), nor were 

sharp peaks indicative of liberated P-containing ligands apparent in the spectra until roughly 

4× that amine equivalent was introduced. We remain confident that even slightly beyond 

that ~1600:1 amine-to-QD mole ratio Z-type reactive displacement was not incurred, as our 

own investigations of Cd-based QDs subjected to amine environments both in the present 

and previous studies revealed substantial differences between dilute amine solution versus 

amine solvent additions. 60,72 At exceedingly high mole fractions of titrated DecAm, up to 

40,000-fold excess,14 whereupon 31P {1H} NMR spectra no longer showed the broad peak 

for P-containing ligands adsorbed to the QD surface we do not rule out the possibility of 

ammonium ions having been formed. Distinguishing the possible formation of an 
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ammonium ion ligated between the QD surface and persistently interacting P-containing 

ligands from a more straightforward reactive displacement of Cd-phosphonate complexed 

with amines in solution could not be achieved unambiguously in the scope of our 1D 31P 

{1H} NMR titrations.196,199 Monitoring reactive displacement reactions via ITC could present 

a critical component to better understanding QD surface interactions, but was outside the 

scope of the aims of this investigation. 

Amine ligand additions at the 400:1 mole ratio were further characterized by 

standard optical measurements during the course of the titration experiments. Steady state 

absorption and emission profiles should be sufficient to indicate structural maintenance of 

the QDs. As mentioned previously, loss in intensity of the 1Se–2S3/2h absorption feature can 

indicate that reactive displacement of Cd-phosphonate ligands has occurred. We did not 

note any significant difference that could be attributed to such ligand interactions. Presented 

 

Figure 3.11 Absorption (left) and PL emission (right) of CdSe|TDPA in anhydrous THF 
normalized to the lowest energy extinction peak: after THF GPC purification (dashed navy 
lines), then after OlAm ITC traces (fuchsia lines). Aliquots of QD solutions at each stage of 
amine association reactions were routinely monitored to verify QD structure viability 
throughout the course of purification and titration experiments. 
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in Figure 3.11, the absorption profiles appeared nearly superimposable. Additionally, PL 

emission profiles of the samples would exhibit a hypsochromic shift in the band edge core 

excitonic peak along with an increase in intensity of broad low energy PL, if in fact reactive 

displacement were affected242 in the ligand addition regime of amine association as outlined 

below. Rather than a degradation of the normalized PL, the band edge core peak became 

slightly narrower with a notable reduction of the broad emission band attributed to a 

mitigation of surface defects by amine passivation.243 At the chosen titration equivalencies, 

the steady state photoluminescence suggests amines were only added to an extent that 

provided surface trap remediation.234  

3.4.4 Sigmoidal ITC thermogram by way of adventitious purification solvent  

Having unequivocally confirmed that my original aim of monitoring a neutral association of 

L-type amine ligands to intrinsically vacant QD surface sites after GPC purification had been 

achieved, I returned to ITC reactions in an attempt to discover reaction conditions that 

would allow for more robust thermodynamic parameters to be extracted from this system. 

As the curvature of the thermograms is a function of titrand concentration and equilibrium 

constant, we hypothesized that the QD concentration could prove a useful knob to extract 

more accurate equilibrium thermodynamic data while obtaining an adequate c parameter 

value, 1 < c < 1000. Essentially, the CdSe|TDPA concentration was systematically increased 

in a manner of chasing a sigmoidal ITC thermogram. Titrations were executed in an Affinity 

low volume ITC (TA Instruments) in order to conserve QD sample, while ascertaining 

appropriate experimental parameters. It should be noted that despite advertising and 

marketing pitches, transferring calorimeters (even manufactured from the same parent 

company) within the span of one investigation is no trivial feat.244 The first objective should 
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be to establish reproducible titration parameters that reflect results obtained with the initial 

calorimeter. In the present study due to differences in cell active volume and injection 

volume, that translated to half the ligand concentration and double the QD concentration. 

Once repeated titrations were accomplished for the DecAm–CdSe|TDPA, the work of 

optimizing conditions toward an S-shaped sigmoidal thermogram could be realized. This 

particular curvature signifies that at early injections significant heat is produced with 

decreasing heat signal through an inflection point also defined over multiple injections and 

finally through saturation characterized by insignificant heats of dilution, as all binding sites 

have been saturated at this point.  DecAm concentration was maintained constant while the 

QD concentration was increased in increments of roughly 75%. Surprisingly, rather than 

ever obtaining data that presented in the sigmoidal curvature, the thermograms appeared to 

become more linear until the heat signal itself saturated at a constant ΔH of interaction. A 

similar isotherm was produced in the QY regeneration titrations with TOP (Figure 3.6, far 

right panel). Lindman et al. depicted a similar thermogram trend in their investigation of 

polymeric nanoparticle size and consequent surface curvature on the capacity for protein 

binding.245 Their study alluded to a size-dependent limit on protein binding properties, at 

which limit binding dynamics would begin to resemble those expected on a flat surface and 

therefore independent of curvature. Whereas the present study maintained QDs of the same 

synthetic batch (and therefore same size) for this aim, it could be suspected that while the 

surface saturation of labile ligands produced some heat a concentration gradient impaired 

ligand interactions with the QDs. Inasmuch, there could be some optimal range of QD 

concentration to which the neutral alkylamines could be titrated to a “complete” surface 

saturation. 
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Despite not achieving a sigmoidal thermogram through direct and immediate 

experimental variation, we were able to generate a system in which significantly more vacant 

sites could be made available to the neutral ligands. The initial 1×PR that is directly followed 

by a dilution and refrigeration ultimately provided an environment for the QDs such that 

ligands were displaced from the surface to expose more electron deficient sites to accept 

amine association. In effect, QDs were diluted in anhydrous THF after an initial PR cycle 

and subsequently left in the refrigerator for several weeks. Presumably the THF solvating 

labile surface ligands over this timeframe while a concomitant process of the excess 

unreacted phosphorus precursors served as a ligand reservoir thus maintaining lipophilic 

stabilization for the QDs. THF had previously been identified as a Lewis base of moderate 

potency to displace Cd-containing Z-type ligands from Cd-chalcogenide surfaces. Figure 

3.12 compares  titrations of the two primary amines, OlAm and DecAm, to the “aged” 

CdSe|TDPA. Aside from the purification aging procedure, all experimental parameters were 

kept the same as for the “fresh” CdSe|TDPA QDs. With these remarkable results, a 

Langmuir association model could be fit to the isotherms to obtain thermodynamic 

parameters on which the initial fresh titration trial fits could be approximated. NanoAnalyze 

(TA Instruments) models for a combined “Constant Blank” and “Independent” model fit 

was applied to the isotherms as shown in Figure 3.12 C,F. The equilibrium thermodynamic 

parameters for the aged CdSe|TDPA QD titrations are presented in Table 3.2.  

Error analysis was also applied from the NanoAnalyze software from the Statistics 

function. Thermodynamic equilibrium parameter uncertainties at a 95% confidence interval 

were calculated by adding perturbations to the optimized fits, and subsequently refitting the 

model over a chosen 100 trials. Each of the perturbations is engineered to follow a Gaussian 
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Table 3.2 Thermodynamic equilibrium parameters for amine association to aged 
CdSe|TDPA  

ASSOCIATION 
Kd   
×10–5 M  

N 
per QD 

ΔH 
kJ mol–1  

*Ka   
×103 M−1  

*ΔG 
kJ mol–1  

*ΔS  
J mol−1 K−1 

Oleylamine 6.97 ± 0.66 175 ± 2.0 −92.4 ± 1.9 14.4 −23.5 −234  
Decylamine 10.4 ± 0.51 198 ± 1.6 −91.6 ± 0.92 9.62 −22.5  −234 
 
NanoAnalyze (TA Instruments) isotherm fit parameters for combined Blank (constant) and 
Independent models with reported errors based on perturbations as 100 trials over a Gaussian 
distribution for a 95% confidence limit applied to the Blank, Kd, N and ΔH parameters. *No error 
analysis was provided from software modeling for these thermodynamic parameters. 
 

Figure 3.12 ITC traces of OlAm–CdSe|TDPA (A-C) and DecAm–CdSe|TDPA (D-F) in 
anhydrous THF solvent. Repeated isotherms of QDs immediately introduced to the ITC 
and alkylamines after GPC purifcation are shown at the top (A,D). The remaining panels 
depict titrations carried out under the same experimental procedures, but for aged 
CdSe|TDPA QDs. 
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distribution toward the established confidence limit. In the case of the aged OlAm–

CdSe|TDPA titrations the Blank value was –224 ± 34μJ (Figure 3.12 C, open marigold 

squares). In the case of the aged DecAm–Cdse|TDPA titrations the Blank value was –

169 ± 44μJ (Figure 3.12 F, open marigold squares). The c parameters were of adequate 

magnitude to deem N, ΔH and K independently constrained. Finally, the aged ΔH was used 

to determine thermodynamic equilibrium parameters for the relevant values not precisely 

determined in the titrations over which heat signals quickly saturated. The results of the 

age-corrected parameters are presented in Table 3.3. 

Table 3.3 Thermodynamic equilibrium parameters for amine association to CdSe|TDPA 
approximated from aged ΔH 

ASSOCIATION 
Ka   
×103 M−1  

ΔG 
kJ mol–1  

aaged c 
parameter 

aaged ΔH 
kJ mol–1  

bN 
per QD 

bΔS  
J mol−1 K−1 

Oleylamine 5.18 ± 0.39 −21.0 ± 0.15 15.1 −92.4 ± 1.9 23.3 ± 0.12 −242 ± 1.2  
Decylamine 6.56 ± 0.68 −21.5 ± 0.17  11.4 −91.6 ± 0.92 22.0 ± 0.053 −237 ± 1.4 
 
With the applied ΔH approximation from the aged-sample titrations K and ΔG were not affected and 
reported as previously determined. aValues were directly used from aged-sample model fits. bValues 
were calculated from aged-sample model fit parameter ΔH. 
 

Utilizing the sigmoidal isotherm model fit results in conjunction with those 

parameters that were well-constrained from the initial Langmuir model fits enabled us to 

ultimately observe that initial vacant sites appear analogous with intrinsic vacant sites, even if 

they are exposed as a result of adventitious solvent interactions. The values printed in Table 

3.2 suggest that there is no significant difference in equilibrium thermodynamic parameters 

between OlAm and DecAm. A recent investigation comparing the relative adsorption 

strength and ligand densities of linear versus branched aliphatic carboxylate ligands by De 

Nolf et al. observed that linear carboxylate ligands introduced to an oleate-capped CdSe QD 

solutions yielded binary ligand populations at approximately equivalent ligand populations.246 

As OlAm is analogous to an oleate ligand, these results are in good agreement. While a 
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number of reports have observed that at room temperature alkylamine chain length does not 

significantly affect binding strength,61 intuitively one might hypothesize that smaller (shorter) 

ligands would better traverse a mono- and bidentate phosphonate ligand-populated QD 

surface, so it is possible that a smaller primary amine ligand than DecAm would yield 

statistically significant differences in binding equilibrium thermodynamic parameters. Lastly, 

although we did not expect the equilibrium constants K and certainly the number of sites N 

to be the same for the aged and fresh CdSe|TDPA titrations, a notable parameter value the 

negative ΔS. In the freshly purified QDs ΔS is negative, though this value should be 

considered approximation at best, since it was calculated from on a parameter that was not 

initially independently constrained, signifying unfavorable entropic interactions. Likewise, the 

aged QD titrations yielded a negative ΔS. One interpretation of this result is that the large 

density of vacant sites on either the aged or fresh CdSe|TDPA merely became accessible to 

the incoming neutral amine ligands, as the result of a relatively smaller fraction of Z-type Cd-

phosphonate ligands having been extruded from the QD. Such a QD surface landscape 

would have retained a significant fraction of the initial ligands as well as the subsequent 

binding of new ligands; both the large amount of amine ligands for the aged sample and tens 

of ligands for the fresh sample, resulting in a substantial grafting density of intrinsic 

phosphonate ligands alongside introduced amine ligands. The association interactions were 

driven by ligand affinity, as the relatively small molar equivalencies also attest. 

3.5 Conclusion 

We have investigated PL dynamics in core/shell Cd-chalcogenide QDs, which displayed a 

characteristic decrease in PLQY, decrease in average lifetime, and increase in rate 

dispersion when purified by GPC in toluene. After each surfactant component from the 
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shell growth reaction was systematically reintroduced to the purified core/shell QDs, it was 

observed that L-type ligands trioctylphosphine (TOP) could most effectively and oleylamine 

(OlAm) could moderately and both reversibly recover PLQY. A binary L- and X-type ligand 

system could universally regenerate QY for the purified QDs, however this was attributed to 

irreversible surface reconstruction as evinced by bathochromic shifts in related optical 

spectra.28,152,153 The change in PL upon GPC purification could thus be attributed to a 

complete loss of L-type ligands, while some population of strongly-bound Z-type ligands 

was retained on the experimental timescale. The QY regeneration was accompanied 

by restoration of the PL lifetime; the lifetime changes were associated with a change in the 

amplitude of the longest lifetime components. Ensemble QY, average decay rate and rate 

dispersion of the QDs was shown unequivocally to change in response to [L-type] ligand 

concentration. Therefore, I employed isothermal titration calorimetry to differentiate the 

extent of L-type ligand binding, specifically for the thinner alloy shell sample. Although more 

qualitatively, ITC revealed an exotherm associated with introduction of TOP to purified 

QDs, confirming an interaction of the ligand with the QD surface; whereas 

trioctylphosphine oxide (TOPO), which failed to restore the QY, did not generate a heat 

response, consistent with a lack of binding  over the same range of concentrations.  

Applying ITC to  specifically and directly probe neutral L-type amine interactions 

with QD cores allowed extraction of well-constrained equilibrium association constants, 

binding energies and ligand populations. Although I have chosen to model the amine ligands 

as binding to distinct independent sites relative to those occupied by the native phosphonate 

ligands, we recognize that the process by which ligands interact with vacant sites may indeed 

be more complex. However, the consistency with which we were able to obtain equilibrium 
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values; as well as the reasonable model of non-interacting, randomly distributed sites 

available specifically for amines (neutral L-type ligands) attests to this model being perfectly 

adequate for this system. 

An immediate experimental advantage of employing ITC to elucidate QD–ligand 

interactions is apparent for unanticipated slower kinetic responses, as may be relevant to the 

TOP–CdSe/CdZnS ITC traces,60,202 or as has evidently misconstrued alkylamine–QD 

dynamics.14 It should be further noted that spectroscopic and thermodynamic profile 

analyses must be performed on samples with well-specified ligand populations and 

concentrations, consistently reproducible given the applied method of 

purification/preparation, if results of such studies are to be compared or eventually applied 

to the general understanding of NC surface chemistry even in new NC systems. The ability 

to identify reversible or non-perturbing purification techniques tailored to specific QD 

materials in specific processing environments is imperative. This is especially true if analysis 

of the final surface-modified product is difficult, as is typically the case for QDs post-surface 

modification. 

3.6 Materials & Methods 

Materials. The following chemicals were used as received. Cadmium oxide (CdO; 

99.999%), Zinc oxide (ZnO; 99.999%), Trioctylphosphine (TOP; 97%) and 

Trioctylphosphine oxide (TOPO; 99%) were purchased from STREM Chemicals. Oleic 

Acid (OA; 99%), 1-Octadecene (ODE; 90% technical grade), and Selenium (Se; 99.999%) 

were purchased from Alfa Aesar. 1-Tetradecylphosphonic Acid (TDPA; >99%) was 

purchased from PCI synthesis. Bio-Beads S-X1 GPC medium was obtained from Bio-Rad 

Laboratories. Toluene-d8 (D, 99.5%) was obtained from Cambridge Isotope Laboratories. 
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Decylamine (95%) and Triphenyl Phosphate (>99%) was purchased from Sigma Aldrich. 

Oleylamine (80-90%) and Bis(trimethylsilyl)sulfide ((TMS)2S; 95%) were purchased from 

Acros Organics. Rhodamine 590 chloride (R590, MW 464.98) was obtained from Exciton. 

Toluene (99.5%) and Tetrahydrofuran (THF, 99%) were purchased from Mallinckrodt 

Chemicals. 200 Proof Ethyl Alcohol (Ethanol) was obtained from Decon Laboratories. 

Acetone (99.9%) was purchased from VWR. Methanol (99.9%) was purchased from Fisher 

Scientific. Toluene was dried with activated 4A molecular sieves. THF was dried using the 

Puresolv system from Innovative Technologies. Synthetic or analytical procedures under 

inert conditions were carried out using Schlenk line techniques, or in a glovebox under N2 

atmosphere. 

Synthesis of CdSe QDs. The CdSe cores were prepared by hot-injection method 

using cadmium tetradecylphosphonate as the Cd precursor, trioctylphosphine selenide as the 

Se precursor and a mixture of TOP and TOPO as the reaction solvent. The two precursors 

were mixed by rapid injection at high temperature (350 to 365°C) and cooled down with an 

air blower immediately after the injection. The lowest energy extinction peak for the CdSe 

core in CdSe/CdZnS samples was at 509nm, while that of the CdSe cores used for the 

CdSe/CdS sample was at 522 nm. Multiple CdSe cores batches were used for the amine 

titration investigations had lowest energy extinction peaks ranging within 521-530 nm. 

CdZnS overcoating. A previously published selective ionic layer adhesion reaction 

(SILAR) method207 was employed for the core/shell QDs investigated in the QY 

regeneration work. Briefly, a portion of as-synthesized CdSe core was flocculated by 

methanol and acetone. After decanting the supernatant, the QDs were redissolved into 

hexane and stored in the freezer (4°C) for more than 12 hours. All the undissolved materials 
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were removed by centrifugation and the sample was precipitated again by an addition of 

methanol and acetone. Afterward, the QDs were brought into a measured volume of 

hexane. The UV-Vis absorption spectrum was recorded at a known dilution of the sample to 

determine the size and quantity of QDs. The solution of QDs in hexane was transferred to a 

solvent of 1:2 oleylamine:ODE (v/v, 9mL total) and degassed at 100°C to remove hexane. 

Before the addition of the reagent via syringe pump, the system was heated to 200°C under 

nitrogen. For the CdZnS alloy shell growth, the metal precursor is prepared by diluting a 

0.2M mixture of Cd(oleate)2 and Zn(oleate)2 (Cd:Zn is 3:7) in ODE with 2 equivalents of 

decylamine and  a volume of TOP to yield a metal concentration of 0.1M. The S precursor 

was always a 0.1M solution of (TMS)2S in TOP. The volume increase associated with 1 

monolayer coverage of CdZnS is calculated based on the radius increase of 3.37 Å, which is 

the half of the wurtzite c-axis unit cell dimensions for CdS (3.37 Å). Alternating injections of 

metal precursor and sulfur precursor were performed, adding the metal precursor solution 

first, with injections starting every 15 minutes for CdS shell and 20 minutes for CdZnS shell. 

The flow rate was adjusted to complete each injection over the course of 3 minutes. The 

volume of each injection was calculated to apply 0.8 monolayers coverage each cycle (a cycle 

is defined as one metal precursor injection and one sulfur precursor injection). For the thin 

shell CdSe/CdZnS sample, two cycles were performed. The growth processes were 

monitored by both UV-Vis absorption and fluorescence spectrometers. After the reaction, 

the mixture was cooled down to the room temperature and the molar extinction coefficient 

was estimated based on the amount of core introduced at the beginning and the total volume 

of the solution after the synthesis. 
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Optical spectroscopy. The optical absorption spectrum was recorded using a 

Thermo Scientific Evolution Array UV-Visible Spectrophotometer with toluene as the 

solvent as well as the blank in a 1cm path quartz cuvette. Emission spectra were recorded by 

an Ocean Optics USB 4000 spectrometer under ~365 nm excitation. 

Absolute quantum yield measurement. The quantum yield (QY) of QD samples 

was measured relative to rhodamine 590 (R590, QY=99% in ethanol). The excitation 

wavelength was chosen based on the optical isosbestic point of the QDs-toluene solution 

and R590 in ethanol. Fluorescence spectra of QD and R590 dye were taken under identical 

spectrometer conditions on Varian fluorescence spectrometer in triplicate and averaged. The 

optical density was kept below 0.1 from excitation wavelength to 800nm to avoid internal 

filtering effects. The QY was calculated based on the integrated intensities of the emission 

spectra, the absorption at the excitation wavelength and the refraction index of the solvent 

using the following equation: 

 QY୕ୈୱ = QYୢ୷ୣ ∗
ୠୱ୭୰ୠୟ୬ୡୣౚ౯

ୠୱ୭୰ୠୟ୬ୡୣ్ీ౩
∗

୫୧ୱୱ୧୭୬ ୧୬୲ୣ୰ୟ୪్ీ౩

୫୧ୱୱ୧୭୬ ୧୬୲ୣ୰ୟ୪ౚ౯
∗

ୖୣ୰ୟୡ୲୧୭୬ ୧୬ୢୣ୶౪ౢ౫
మ

ୖୣ୰ୟୡ୲୧୭୬ ୧୬ୢୣ୶౪ౢ
మ  

The precision of this measurement in our case is limited by the precision of the absorbance 

measurement (~1%) while the accuracy among samples in different solvents will be limited 

by the accuracy of the refractive index correction term. 

1×precipitation/redissolution (1×PR) for CdSe|TDPA core QDs. Prior to 

titration experiments a portion of the as-synthesized QD batch was centrifuged to remove 

any undissolved material. Acetone and methanol were used as the antisolvent to flocculate 

the QDs. After centrifuging for 5 min, the QDs could be adequately separated from the 

mixture and the supernatant discarded. The QDs were redispersed in excess 7.5–10mL 

anhydrous THF and put in the fridge at overnight (~12 hours). Afterward the QDs were 
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immediately centrifuged to remove any excess P-containing impurities, then concentrated 

under a stream of N2(g) before being loaded onto the THF GPC column. 

GPC purification of the QDs. In order to remove most of the synthetic solvent 

and concentrate the QD sample in either toluene or THF, a single PR cycle was carried out 

before the GPC purifications. 1×PR QDs (concentration ranges from 5−150μM with 

0.5−1 mL injection volumes) were then added to the GPC column. 

QY regeneration core/shell GPC. The GPC column was packed by the previously 

described method with toluene as the eluent.62 The as-synthesized core/shell QDs were 

purified by 1× precipitation with acetone only and redispersed in toluene. Then the QD 

solution was added to the column and the sample was collected when the elution volume 

equaled ~1/3 of the total volume of the column (the expected void volume for irregularly 

spaced spherical beads); this volume corresponds to the fraction at which the purified QDs 

eluted. The GPC column was rinsed thoroughly (3x the total volume of the column) before 

using it for subsequent purifications. After each purification, all QD samples were 

immediately transferred into a N2-filled glove box to avoid oxidation on the surface. 

Amine association core-only THF GPC. The GPC column was packed similarly 

to a previously described method62 with anhydrous THF as the eluent. A constant flow of 

N2(g) was maintained over and through the THF GPC to prevent hygroscopic degradation of 

the column. The Bio-Rad SX-1 Bio-Beads were best swollen if introduced to the anhydrous 

solvent, applied to the Schlenk line for near complete removal of the solvent, and reswelling 

the Bio-Beads without allowing contact to air. Again, the purified QD sample was collected 

when the elution volume reached ~1/3 of the total volume of the column. The GPC 

column was rinsed thoroughly (4x the total volume of the column) before subsequent 
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purifications. After each purification, all QD samples were immediately diluted to the 

titration reaction concentration and injected into the ITC. 

Preparation of pure cadmium oleate (Cd(OA)2). The Cd(OA)2 used as a ligand in 

the regeneration study was prepared as follows. CdO and oleic acid (99%) were introduced 

to a three-neck flask (the ratio of CdO: OA is 1:5), where OA was used as both acid and 

solvent. The mixture was degased and then slowly heated up to 270°C under N2 to form a 

colorless and clear solution. Then the sample was cooled down to room temperature and 

transferred into the fridge (4°C). The extra oleic acid was separated by filtration and the 

insoluble Cd(OA)2  has been washed by ethanol for more than 5 times to remove the 

remaining oleic acid. FTIR and 1H NMR were used to confirm the removal of 

uncoordinated oleic acid. 

Quantum yield regeneration and relative quantum yield measurement. After 

GPC purification, the QDs samples are transferred into sealed N2 environment and pumped 

into glove box immediately to avoid any possible oxidation. The ligand solutions are also 

prepared in the glove box. For the regeneration process, the concentration of the QD 

samples are fixed to be 0.5µM and the ligand concentration is controlled to be 1.5mM or 

0.15mM to provide two different ligand-to-QD ratios (1:3000 and 1:300). The total volume 

of the mixing solutions is 1mL and the solutions have been kept stirring for 7 days. The 

relative QY is characterized by diluting a portion of the above solutions into toluene and 

measure the absorption and emission spectra. The optical densities of the sample solutions 

were kept below 0.1 after 365nm to avoid internal filtering effects. The relative QY is 

calculated by comparing the integration the emission spectrum divided by the absorption at 

365nm (the excitation wavelength of the fluorescence spectrometer).  
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NMR analysis of QDs. Routine NMR samples of the QDs were prepared in 

toluene-d8. The QDs’ concentration is set at approximately 20 μM; the exact value in each 

case was measured by UV-Vis using the calculated molar extinction coefficient.  Spectra 

were recorded on Bruker Avance III 400 MHz. The quantitative 1H NMR spectra were 

measured with ferrocene as the internal standard and 30s relaxation delay, allowing the 

system to reach a reliable equilibrium. The 31P {1H} NMR spectra of QD samples were 

measured with 512 scans to improve signal-to-noise on the Bruker Avance III 400 MHz.  

Advanced NMR techniques. T1 is measured by the vendor-supplied inversion 

recovery pulse sequence experiment. Diffusion ordered spectroscopy (DOSY) 

measurements and NOE difference measurements on 1H spectra with selective saturation on 

the 31P resonance were performed Bruker Avance III HD 400 and analyzed by Topspin 

version 3.2 software.  DOSY spectra were collected on 31P of free TOP (δ=–32.3 ppm) vs 

TOPO (δ=53.5 ppm), and TOP vs TOPO as combined with 1.6 monolayer CdSe/CdZnS 

sample at a 300 ligand-to-QD ratio. Neither TOP nor TOPO could be distinguished from 

free ligands after mixing with QDs: the diffusion constant of TOP was 9.3×10−10 m2/sec and 

that of TOPO was 8.6×10−10 m2/sec. The diffusion constant of QD was 1.9×10−10 m2/sec 

based on the 1H DOSY measurement of the olefin protons. The diffusion constant of the 

toluene-d8 solvent was 2.4×10−9 m2/sec. 

Quantitative 31P {1H} NMR for amine association: Spectra were recorded either 

on a Bruker Avance III HD 400 MHz equipped with a nitrogen-based cryogenic probe 

(Prodigy) or a Bruker Avance III HD 500 MHz with NOE suppression routines applied. 

Isothermal titration calorimetry (ITC). To account for and deconvolve heats of 

dilution contributing to the exchange heat of interest, several reference titrations were 
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conducted with each analyte at the specified concentration of its respective QD–ligand 

interaction solution. In addition to serving as the common solvent for both QDs and 

ligands, anhydrous THF was also always in the reference cell. A mechanical heat baseline 

was established by a THF into THF titration. Whether remaining reference titrations were 

deemed substantive depended on the magnitude of their raw thermograms compared to the 

raw THF–THF thermogram. The titrations are expressed titrant (to be injected) into – titrand 

(in the sample cell). 

QY Regeneration Study. ITC titrations were performed on a VP-ITC calorimeter 

(Microcal Inc., Northampton, MA). Ligand solutions were titrated from the 300μL syringe to 

the sample cell overfilled to its 1.8mL capacity, and the heat response to maintain a constant 

temperature between the sample cell and reference was monitored. Each experiment was 

conducted at 22°C and midrange reference power; allowed to equilibrate prior to an initial 

600 sec delay; and in order to allow adequate equilibration between each injection, 8-9 min 

intervals were set between each injection for a total 60 injections in 5μL increments. 

Anhydrous THF was chosen as the solvent for both the ligands and QDs, as well as the 

blank solvent in the reference cell. Reference titrations were conducted to determine any 

significant heat of dilution between the solvent, ligand solution and QD solutions that may 

have accounted for signal in the final ligand-QD titrations. Only ligand-solvent titrations 

were subtracted from ligand-QD titrations, as other reference titrations were determined 

negligible. The QD solutions were 0.5µM (equal to the regeneration concentration) loaded in 

the sample cell and ligand solutions were 1.5mM loaded in the syringe (final ligand-to-QD 

molar ratio was ~500:1 ligand-to-QD). 
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Amine Association Study. ITC titrations were performed primarily on a NanoITC 

standard volume calorimeter (TA Instruments). Ligand solutions were titrated from the 

250μL syringe to the sample cell overfilled to its 1.3mL capacity, and the heat response to 

maintain a constant temperature between the sample cell and reference was monitored. Each 

experiment was conducted at 22°C and midrange reference power; allowed to 

autoequilibrate prior to an initial 600-3600 sec delay; and in order to allow adequate 

equilibration between each injection, 8-9 min intervals were set between each injection for a 

total 55–60 injections in 4.5μL increments; the first 1-2 injections were only 2μL. Anhydrous 

THF was used as the solvent for both the ligands and QDs, as well as the blank solvent in 

the reference cell. Reference titrations were conducted with the same parameters relevant to 

the titration reaction to determine any significant heat of dilution between the solvent, ligand 

solution and QD solutions that may have accounted for signal in the final ligand-QD 

titrations. An AffinityITC low volume calorimeter was used to ascertain parameters for the 

elusive sigmoidal shape thermograms. Ligand solutions were titrated from the 250μL syringe, 

freshly filled to slightly more than 50μL for each titration, to the sample cell overfilled to its 

350μL capacity (active volume 185μL), and the heat response to maintain a constant 

temperature between the sample cell and reference was monitored. Each experiment was 

conducted at 22°C at midrange reference power; allowed to autoequilibrate prior to an initial 

600-3600 sec delay; and in order to allow adequate equilibration between each injection, 8-

9 min intervals were set between each injection for a total 55–60 injections in 1μL 

increments 
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CHAPTER 4 

ISOTHERMAL TITRATION CALORIMETRY RESOLVES SEQUENTIAL LIGAND EXCHANGE 

AND ASSOCIATION REACTIONS IN CDSE QUANTUM DOTS 

4.1 Introduction 

4.1.1 Complexity of colloidal semiconductor nanocrystal (NC) surface chemistry 

Colloidal semiconductor nanocrystals (NC), also referred to as quantum dots (QDs), persist 

as a unique and attractive class of hybrid organic/inorganic nanoparticle (NP) materials of a 

size regime that allows tunable photophysical properties. QDs can also serve as the building 

blocks for higher dimensional NPs. Although their [inorganic] core is often highly 

crystalline, a significant fraction of their constituent atoms resides at their surfaces. These 

high surface-to-volume semiconductors are coordinated by ligands that affect their overall 

colloidal stability, confinement potential and exciton behavior.1,34,40,63,64,168,171,196,197,228,247,248 As 

such QD surface chemistry is a critically important theme in NP research and development, 

primarily in terms of rational surface engineering toward biomedical applications as well as 

optoelectronic device architecture.1,247 The best coordinating ligands for synthetic control 

over QD nucleation kinetics, morphology, stability and relative monodispersity appear to be 

chemisorbed surfactant molecules with long aliphatic chains.17,40,196,228 Though subsequent to 

producing high quality nanomaterials, those ligands preclude QD incorporation into many 

desired applications. To conceive the QD–ligand system as molecules in a dynamic self-
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assembled monolayer of either adatoms or chemisorbed ligands, only begins to address the 

complexity of this interface. Over the past decade, generally desorption studies directed by the 

Covalent Bond Classification have been employed to guide post-synthetic surface 

modification34,168,171,197,228. The fundamental science of further elucidating mechanistic insights 

on NC surface chemistry concepts is not trivial. In fact, providing comprehensive 

descriptions of the thermodynamics that govern QD ligand binding and overall surface 

chemistry persists as a primary objective in the field.1,17,34,40,50,51,60,63,64,168,171,196,197,228,247,248 

Notably, the outermost coordination layer of QDs encompasses surfaces having 

multiple facets with numerous edges and vertices, and so allows for various possible ligand 

binding motifs that are also relevant to other NP systems. QD facet heterogeneity and the 

capacity for ligands to dictate solubility, functionalization and optoelectronic properties even 

from a significantly small number of binding events w.r.t the total initial ligand populations;81 

render mass action-driven descriptions primitive, while prompting investigations of site-

specific ligand affinity where feasible.34,50,51,60,63,64,168,171,197,228,248 Theoretical simulations have 

offered valuable insights for QD surfaces but accounting for realistic QD and ligand sizes 

along with relevant solvent/matrix interactions on such dynamic interfaces with attention to 

unique facets is computationally expensive.1,22,37,168,197,247 Experimental techniques applied to 

QD surface chemistry must sensitively probe concomitant ligand adsorption/desorption, 

which may entail simultaneous equilibria among other caveats whether qualitatively or 

quantitatively. 

4.1.2 Various techniques employed to probe nanocrystal surface chemistry in situ 

Since nearly all QD–ligand interactions significantly influence photophysical properties 

absorption, photoluminescence (PL), FRET and IR are routinely employed to characterize 
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NP systems and ligand populations,40,196,249 and have resolved site-specific thermodynamics 

of ligand binding.1,81,168,197,228,247 Solution NMR spectroscopy has emerged as a standard and 

versatile technique for probing the QD–ligand interface, affording both structural and 

chemical information with bound ligand species as broadened, shifted resonances relative to 

the narrow linewidth resonances of their free analogues.1,17,34,62–64,168,171,197,228,247,248 

Absorption/PL measurements require low sample concentration for appropriate optical 

density versus the high concentrations necessary for adequate NMR signals. Moreover, each 

of these techniques requires spectroscopically distinct signatures that can be unambiguously 

assigned to details of the QD surface. Herein we demonstrate the sensitivity, precision and 

accuracy of isothermal titration calorimetry (ITC) for probing QD–ligand 

interactions.46,47,50,51,60 ITC quantifies physicochemical processes that generate heat, and has 

allowed us to probe and resolve ligand exchange thermodynamics that have remained 

infeasible with typical spectroscopic methods. 

4.1.3 Introduction of isothermal titration calorimetry to probe NC surface equilibria  

While standard in aqueous-based biochemical research, ITC has recently been employed to 

investigate QD–ligand interactions in more native organic solvents.50,51,60 ITC can 

accommodate low concentrations appropriate for optical measurements as well as higher 

loading levels more analogous to NMR investigations.42,60 Although a constraint with which 

thermodynamic parameters obtained by ITC at very low (high) concentrations coupled with 

too low (high) magnitudes of generated heat can suffer, even when the isotherm has the 

appropriate curvature,46,47,50,250 the technique itself is not limited in the ways that 

spectroscopic measurements are to diagnostic signatures. ITC is sensitive to identify multiple 

binding events visible in the apparent binding stoichiometries and relevant to QD surface 



 
 

93 
 

investigations, especially those with distinct ΔH.55,57,237 Perhaps the greatest advantage of ITC 

compared to other techniques is its ability to directly determine thermodynamic parameters: 

equilibrium constants K, changes in enthalpy ΔH, binding site stoichiometries N of reactions 

simultaneously. Previously ITC has also been reported to supply kinetic information in 

addition to thermodynamic profiles;23,29 and although kinetic information evinced in raw heat 

thermograms has been probed,60,252 to our knowledge this is the first investigation to apply a 

timetrace analysis to raw ITC data in order to extract physically relevant microscopic 

multisite thermodynamic parameters. Despite the appreciable sensitivity and comprehensive 

quantitative thermodynamics acquired by ITC, the limitation of this technique is its inability 

to identify specific interactions that contribute to each heat signal. A systematic titration 

investigation is presented alongside several ancillary experiments conducted to elucidate the 

ITC-resolved processes55–57 that occur during our titration reactions. 

4.2 Experimental design for ITC applied to CdSe quantitative ligand exchange 

4.2.1 Choice of CdSe QDs and ligands for investigation 

CdSe QDs are the most extensively investigated nanocrystal system and the benchmark for 

probing NP–ligand surface chemistry. We present an incremental ITC titration of 

carboxylate-capped zincblende CdSe QDs with an alkylphosphonic acid. Driven by proton 

transfer,36,198 this ligand exchange is well understood and documented as a spontaneous, 

irreversible, quantitative replacement reaction extended beyond traditional II-VI QD 

systems.1,63,64,247,248 Since 2004 theoretical results have indicated that ligands phosphorus-

containing headgroups bind stronger to CdSe surfaces than those containing carboxyl 

groups.20,37,215 The specific ligands chosen for this investigation were oleic acid (OA) which 

possesses diagnostic vinyl protons to monitor by NMR; and octadecylphosphonic acid 
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(ODPA) which has a similar aliphatic chain length, eliminating possible entropic 

contributions from ligand size-dependent adsorption rates.228 Lastly, this exact exchange 

reaction was investigated because its in situ thermochemical equilibrium parameters have 

remained infeasible and an apparent reaction quotient for it a forlorn ambition.1,63,64,247,248 

 

The CdSe QDs were synthesized according to a previously reported hot injection 

procedure: CdO decomposed with OA to form Cd(oleate)2, and at the nucleation 

temperature rapidly injected with trioctylphosphine-Se in octadecene non-coordinating 

solvent.62 This rapid precursor hot injection synthesis was chosen to ensure the QDs were 

ligated exclusively with oleate (OA–), and such that no other carboxylate ligands were present 

Figure 4.1 Vertically offset absorption spectra, normalized to the lowest energy excitonic 
peak & through course of titration experiment. 
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and neither octadecene nor OA became reducing agent reactants in the synthetic mixture.17 

It was particularly imperative to obtain a single ligand on the QD surface to limit as much 

ambiguity as possible in our isotherm interpretation. Despite a more recent assertion about 

saturated and unsaturated carboxylate ligands behaving “identically” w.r.t. ligand exchange246 

this assumptions seems suspicious given that previous synthetic results have suggested 

otherwise,18 and this likely confounding variable was ultimately avoided.  

Previously we have emphasized our well-established gel permeation chromatography 

(GPC) as a gentle yet robust method of purifying nanocrystals.60,62,137 The precision of GPC 

purification provided consistent starting material for every aspect of the investigation. Prior 

to each titration, QDs were purified via toluene mobile phase GPC and then brought into 

tetrahydrofuran (THF) solvent. Absorption spectra, like that shown in Figure 4.1, were used 

to determine QD concentration by their lowest energy excitonic peak,62 and consistently 

confirmed that no degradation of the QDs occurred during reaction preparation and even 

subsequent to post-ligand exchange GPC purification  Integrating pertinent 1H NMR 

resonances 1) confirmed the QDs were coordinated exclusively with oleate ligands by the 2:3 

ratio obtained when comparing the peaks for vinyl vs terminal methyl protons; and 2) via 

ferrocene internal standard, quantified the initial ligand population so that precise ODPA 

equivalents could be titrated (Figure 4.2). Appropriate relaxation delay and acquisition times 

were determined with known amounts of added ferrocene internal standard. T1 experiments 

were conducted to ensure adequate relaxation times for accurate quantitative analysis and 

applied such that relaxation delays and acquisition times totaled at least 5×T1.41,62  

Within the ITC system, all titration components indiscriminately contribute to the 

evolved heat, and therefore control of the reaction system is necessary to limit and identify 
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Figure 4.2 Quantitative 1H NMR spectra of CdSe|OA – purified either by toluene GPC (A) 
or anhydrous THF GPC (B) and in those respective deuterated solvents. The integrals 
demonstrate that the QDs are only ligated by oleate ligands with vinylic:methyl integral ratios 
of 2:3. Deuterated solvents are marked with ‡ while the ferrocene internal standard is 
marked by †. 
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 unintentional side reactions and heats of dilution. Firstly, incremental titrations of ODPA 

solution were injected into GPC-purified OA-capped CdSe QDs at an excess mole ratio of 

400:1 ODPA-to-QD, with anhydrous THF as the common solvent for both the ligand and 

Figure 4.3 Thermograms for control titrations that did not produce significant heat to the 
thermogram raw heat signal for ODPA–CdSe|OA–. Note different veritcal axis for THF 
solvent titrated to purified QDs as significantly less heat was generated. 
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QD solutions.  

To account for and deconvolve heats of dilution contributing to the exchange heat 

of interest, several reference titrations were conducted with each analyte at the specified 

concentration of its respective exchange reaction solution. In addition to serving as the 

common QD/ligand solvent, anhydrous THF was also always in the reference cell. 

Additionally, a mechanical heat baseline was established by a THF into THF titration. 

Whether the other reference titrations were deemed substantive depended on the magnitude 

of their raw thermograms compared to the raw THF–THF thermogram. The control 

titrations included ODPA–THF and THF–CdSe|OA–, expressed as titrant (to be injected) 

into – titrand (in the sample cell). Figures 4.3 and 4.4 illustrates each of the reference 

titrations with an additional OA–CdSe|OA– reference titration thermogram. Ultimately only 

ODPA–THF had a nontrivial heat of dilution and was subtracted46,47 from the ODPA–

CdSe|OA– exchange titration. Although the exchange liberates OA from the QD surface at 

ca 1:1 equiv., which would be directly represented as an OA–THF reference titration, the 

endpoint is reasonably matched by the titration of free ODPA into THF. In fact with 

ODPA titrated to excess into QD solutions, final injection signals were found to coincide 

exactly with this ODPA–THF reference titration, as illustrated later in our analysis of the 

thermogram. As discussed below, ITC revealed two equilibria processes that effectively 

occur in sequence.  

4.2.2 Discussion of raw heat ODPA–CdSe|OA– thermogram of interest 

Figure 4.5 shows the representative ITC thermogram for the ODPA–CdSe|OA– ligand 

exchange titration; from which the reference ligand–solvent titration (which includes 

baseline mechanical heat) has been subtracted. Sufficient time is given between each ligand 



 
 

99 
 

return to baseline before subsequent injections. Rather than produce a typical sigmoidal 

thermogram often seen in ITC data analyzed with a 1:1 independent sites (Langmuir) 

model;50,51,60 the raw thermogram suggests at least two independent sequential sites, the first 

of which having a stronger binding affinity with a less exothermic injection to allow the 

system to reach both thermal and chemical equilibrium, as heat signals enthalpy than the 

subsequent lower binding affinity site.46,57 Repeated titrations are nearly superimposable, 

particularly at the point of QD site saturation (Figure 4.6). The heat evolution over the 

course of the titration, simply put is comprised of a rapid initial exotherm followed by a slow 

Figure 4.4 Control titration OA–THF (A) and plotted against THF–THF (marigold) in the 
highlighted region. This titration did significantly contribute to the thermogram raw heat 
signal for ODPA–CdSe|OA– and was substracted as its reference control titration. 
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endotherm, and finally a relatively slow exotherm through the latter half of the titration. It 

appeared that the complexity of this reaction system could be deconvolved into at least 2 or 

3 distinct thermodynamic processes. During the titration experiment the raw thermogram is 

the power supplied in response to heat produced by the system, required to maintain an 

isothermal calorimeter cell over time. Endothermic heats appearing at the beginning of each 

titration were initially assumed to be an overcompensation within the feedback power 

supply, but upon repeated titration reactions and closer investigation a consistent pattern 

was realized. The magnitude of heat in the endothermic signals was significant compared to 

aforementioned control titrations and can be clearly distinguished from overcompensation 

signals relative to the mechanical heats. A complete attenuation of isotherm heat signals is 

expected as binding sites become saturated, but the endothermic heat diminished completely 

Figure 4.5 Raw heat signal thermogram for titration of ODPA – CdSe|OA– with exchange 
vs association in navy & teal respectively. 
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in each titration exactly at the expected molar ratio of a quantitative X-type ligand exchange. 

Hence, the endothermic heats following the rapid initial exothermic heats (navy shading) had 

to be considered as a physically relevant thermodynamic process that ITC resolved during 

the quantitative exchange of ODPA– for OA– ligands. The latter portion of the thermogram, 

Figure 4.6 Repeated raw heat thermograms for ODPA–CdSe|OA– titration without 
baseline correction or reference titration subtraction (A-D) and with baseline correction,
reference titration subtraction as well as injections highlighted in aqua, navy and teal (left to 
right) that were used to construct waveform components for the applied two independent 
types of sites model – the colors of the highlighted regions (E-F) correspond directly to the 
waveform component models and eventual isotherm displays. 



 
 

102 
 

shaded in teal, resembles a rather straight-forward ligand association that could correspond 

to neutral ODPA adsorbing to the QD and perhaps exhibiting self-exchange with bound 

ODPA–. Figure 4.7 shows the proposed X-type ligand exchange preceding a neutral L-type 

association, as has been found in previous studies for QD surface reactions with these 

ligands.63,64 Support for this sequential reaction assignment, quantitative analysis, and the 

influence of preparative conditions on the titration profile are discussed below. 

4.2.3 Ancillary parallel NMR titrations to verify exchange reaction coordinates 

In addition to preparative characterization, especially to confirm that all ligands were oleate 

and bound to a highly reproducible extent from GPC purification, several quantitative 

parallel 1H and 31P NMR experiments were conducted in THF-d8 to monitor and verify an 

anionic ligand exchange followed by the neutral ligand association.54 A broad and shifted 

NMR resonance relative to the fine structure of freely rotating molecules distinguishes the 

slower tumbling of ligands tethered to a NP surface.41,43 We first monitored the ligand 

exchange reaction of interest via 1H NMR as bound OA– becomes wholly dissociated OA 

Figure 4.7 Proposed reaction coordinates for ODPA–CdSe|OA– exchange titration (left) 
and ligands involved in exchange reaction (right). 



 
 

103 
 

over the course of a parallel ODPA titration, most apparent from the vinylic H’s chemical 

shift 5.1–5.6 ppm shown in Figure 4.8. This has become a prevalent method of asserting 

initial ligands have been effectively displaced from NP surfaces.34,41,63,64,137,168,171,197,248,253 As 

expected, the extrusion of OA at ca. 1:1 titrated ODPA by X-type ligand exchange is 

demonstrated in this titration; however, the 1H NMR was insufficient to clarify the proposed 

L-type phosphonic acid association.  

Figure 4.8 Quantitative 1H NMR for vinylic proton region of oleate ligands during parallel 
ODPA–CdSe|OA– titration in THF-d8. Panel (E) indicates approximately 1:1 molar 
equivalents of ODPA:OA ligands. 
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Figure 4.9 shows another ancillary NMR titration to verify our hypothesis about the 

termination of endothermic heats in the raw isotherm coinciding with a quantitative ligand 

exchange. Therein we investigated the concomitant dissociation of OA and adsorption of 

Figure 4.9 Quantitative 31P {1H} NMR in THF-d8 for ODPA–CdSe|OA– parallel titration 
after initial GPC purification (A), at 1:1 mole equivalents ODPA:OA (B) and after THF 
GPC purification followed by excess addition of ODPA to a total ~200 mole equivalents. 
Free ODPA in THF-d8 is shown in (D). Insets display zoomed in vinylic OA proton region 
at corresponding points in the titration. 
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ODPA. Whereas the initial 1H NMR spectra of purified QDs display broadened resonances 

of bound OA– species, 31P {1H} NMR after GPC purification showed no phosphorus-

containing species were present (Figure 4.9A). The next point in this titration corresponds to 

the 1:1 equiv. X-type ligand exchange (Figure 4.9B). The 31P {1H } NMR is dominated by a 

single broad peak (δ ≈ 22-47 ppm) indicating a strongly bound titrated phosphonate ligand. 

Conversely the 1H NMR inset at this 1:1 equiv. shows a sharp multiplet for alkenyl protons 

of dissociated OA, with a small yet perceptible shoulder distorting the symmetry and 

attributed to a small fraction of persistently adsorbed OA–. This observation is consistent 

with previous reports that phosphonates immediately exchange with carboxylate ligands as 

opposed to first adsorbing to vacant sites, and that a slight excess ca 1:1 equiv. is required 

for complete OA desorption.63,64,248  

We note that although within the ITC reaction system are native and incoming 

ligands both covalently bound and weakly adsorbed at the QD surface and free in solution, 

we sought to unambiguously differentiate between the thermodynamic processes to which 

our isotherm alluded. The versatility of our GPC purification permitted us to separate 

ligand-exchanged CdSe|ODPA– from liberated OA and any unassociated ODPA to 

subsequently probe only what was occurring at the QD surface rather than with the ligand-

solvent reservoir. QDs traversed a THF mobile phase GPC (to maintain the solvent 

environment) and were easily brought back into THF-d8 (Figure 1.4). Excess ODPA was 

added to ~200 total equiv. ODPA:QD, informed by the first apparent analytical endpoint at 

the greatest total ΔH in the ITC isotherms. At this point 31P NMR showed a new and 

relatively less broadened feature centered about 30.8 ppm (δ ≈ 27-33 ppm) on top of the 

original bound phosphonate resonance (Figure 4.9C). We attribute this new signal to neutral 
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L-type phosphonic acid with a slightly broadened resonance likely due to a fast (on the NMR 

timescale) dynamic adsorption onto vacant QD sites. Such would comprise a ligand species 

only datively adsorbing or weakly interacting with the QD and less incumbered by the 

rotational diffusion of one being tightly bound to the QD surface. This assignment is 

corroborated by the reference 31P NMR spectrum of free ODPA (δ = 30.2 ppm) in Figure 

4.9D. The fractional occupation of ODPA– suggested by the NMR titration coincides 

precisely with the disappearance of the rapid exothermic and endothermic signals, and thus 

the complete X-type exchange. Subsequently adsorbed excess ODPA following the GPC 

purification led to an increase in the overall bound P signal and definitively verified the 

slowest exothermic signal should be attributed to a distinct L-type ODPA dative ligand 

adsorbing event. 

4.3 Timetrace analysis toward separated heats isotherm 

4.3.1 Obtaining thermodynamic parameters from timetrace analysis 

Having established the sequential X-type exchange then L-type association reactions 

underlying the ITC response, we returned to quantitatively analyze the raw heat isotherm to 

extract thermodynamic parameters. Customarily total areas of isotherm curves within the 

span of each injection interval are integrated and the appropriate equilibrium model is 

applied with a nonlinear regression to obtain thermodynamic values.46,47,50,51,55,60 However, the 

nature of this exchange reaction along with the variable ITC isotherm response shape we 

observed herein prompted us to separate contributions from different processes.56,57 Each 

ITC injection peak shape is a convolution of the intrinsic instrument response function 

(IRF) and the binding interaction kinetics.252 For a single process approaching equilibrium, 

the isotherm peak width can expand over the course of the titration and this has been used 
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to retrieve binding parameters.251 The evolution in time response for this investigation is 

Figure 4.10 Representative thermogram for ODPA–CdSe|OA– (red lines) plotted against 
ODPA–THF reference titration (black dashes). Zoomed-in region insets highlight the 
evolution of the kinetic response in the ODPA–CdSe|OA– thermogram as an expansion in 
the exothermic peak widths. Initially the reaction thermograms are characterized by a rapid 
exotherm, but the rapid exotherm quickly expands as the slower endotherm within the same 
injection region eventually diminishes. A complete saturation of the QDs with the ODPA 
ligands is apparent as highlighted by the tail of the ODPA–CdSe|OA– thermogram exactly 
overlaying the reference ODPA–THF thermogram for free ligand introduced into solvent. 
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clearly differentiated from the IRF, which became more apparent when comparing to 

reference titration (Figure 4.10). Ultimately the constancy of the [injection] peak onsets and 

widths in the ODPA–THF control in Figure 4.10 explicitly refutes any presumption that this 

was merely a feature of the instrument (i.e. distinct from the IRF). Furthermore, the time 

response is comprised of distinctly non-exponential responses that cannot be explained by 

the progression of a single exponential kinetic response time.252 An evolution of slower 

reaction kinetics, evinced in the increasing isotherm peak widths, moreover suggested 

different time constants were also associated with the three resolved thermodynamic 

processes.  

Therefore, a more sophisticated approach than merely integrating the raw heat 

became accessible. We approached our analysis of the isotherms considering these dynamic 

equilibrium kinetics as if on independent reaction coordinates, as a timetrace analysis of the 

raw data. The premise of our timetrace analysis was that we could capture the complete 

titration isotherms as a combination of linearly independent components k of appropriate 

basis waveforms intrinsic to the kinetics of each reaction process. To identify these intrinsic 

waveforms, we considered differences between model waveforms with distinct contributions 

to the injection peak shapes. Select basis waves for linear combinations of course is not 

unique; however, by requiring endo- or exothermic signals, waveforms could be identified 

for an optimized fit to the entire ITC response. Inasmuch if each nth injection response, 

considered a given response “decay” yn over the reaction time t, could be adequately 

described as fractions of fundamental wave components wk(t) (Figure 4.11) with assigned 

physically relevant (endo- vs exothermic) amplitudes A; we could contrive such basis 

waveforms that would resemble the intrinsic heat response of the ligand exchange system.  

yn(t) = A1,nw1(t) + A2,nw2(t) + A3,nw3(t)    (1) 
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Waveform models mk(t) were chosen from each titration’s raw isotherm as shown in 

Figure 4.7 E-H, then optimized coefficients rn were applied to subtract contributions of 

those mk(t) waveform models on each time response waveform component wk(t). A final fit 

to the raw data isotherm by the time response decay yn(t) over each k component 

Figure 4.11 Fundamental wave components wk(t) determined as functions of model 
waveforms selected from baseline corrected and reference subtracted thermograms. Wave 
component 1 (A) was selected to represent contributions of the expanding exotherm in the 
exchange regime; wave component 2 (B) was selected to represent contributions from the 
exotherm and ensuing rapid endotherm of the primarily exothermic exchange regime; 
waveform component 3 (C) was selected to represent contributions from the slow exotherm 
characterizing the association regime. A linear combination of the fundamental waveform 
wk(t) components allocated separated heats to 3 physically relevant reaction processes in the 
isotherms. 
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consequently populates the total separated heats, which was distributed based on the 

integrals of those determined waveform components relevant to either endo- or exothermic 

contributions – again, rather than integrating the power signal for each total injection interval. 

Fundamental wave components wk(t) are thus determined 

𝑤(𝑡) =  𝑚(𝑡) − 𝑟,ᇲ𝑚ᇲ(𝑡)  − 𝑟,ᇲᇲ𝑚ᇲᇲ(𝑡)    (2) 

Heat for the extent of reaction in each injection step is obtained based on the 

amplitude of each waveform component in the observed time responses. The separated heat 

for the full titration reaction, analogous to the customary integrated heat isotherms but 

ultimately representing three distinct and physically relevant thermodynamic processes, is 

depicted in Figure 4.12A. The most immediate advantage to separating the heat signals, as 

we have demonstrated, is the clear empirical evidence of at least three mathematically 

resolvable reaction coordinates. 

The final isotherms were obtained by integrating the total heat from the separated 

heats, more appropriately distributed to either the initial quantitative exchange process or the 

dative association process. A representative integrated isotherm is shown in Figure 4.12B, 

with the two types of sites represented as either navy or teal ◊, the total reaction system heat 

as □. Although we sorted the isotherm heat contributions as three physically relevant 

reaction coordinates in the system, we (re)combined the rapid exothermic and endothermic 

signals contributing to the fundamental waveform components w1(t) and w2(t) (navy and aqua 

bars respectively) as one type of QD surface ligand exchange site, independent of the second 

ligand association type of site (teal bars). Whereas we were able to define two waveforms that 

combine to adequately describe the heat contributions of the early rapid exothermic and 

subsequent endothermic processes, their lifetimes are similar and both terminating at an 



 
 

111 
 

equivalence point that matches the X-type exchange suggests that an initial equilibrium 

between these initial processes is somewhat coupled. Additionally, chemical data to 

categorically distinguish them is presently lacking. Therefore, we combined these initial heat 

responses to facilitate more accurate consideration of separated equilibrium processes.57 

Contrarily, the slower exothermic heat is extremely well resolved from the latter two 

processes as treated with our timetrace analysis and its onset is verified by quantitative NMR 

titrations. Again, complete disappearance of endothermic peaks also validates that the two 

equilibria are well separated and alluded to independent equilibrium processes as an 

appropriate interpretation. 

Figure 4.12 Separated heats (A) and integrated isotherms (B) determined from waveform 
components specific to each ITC trace for each trial. The navy and teal coloring corresponds 
to the sequential exchange preceeding the association reactions respectively. The integrated 
isotherms (B) include fits to the two independent types of sites model applied under both 
Characteristic and Limiting regimes. The differences in the two regimes by which 
thermodynamic parameters were obtained are described within the main text, but ultimately 
distinguishing the different regimes of the two types of independent sites allowed us to best 
capture the distribution of binding enthalpies ΔH evinced in the curvature of the raw heat 
data thermograms and subsequent isotherms. 
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4.3.2 Effective two-site binding model for ligand exchange and adsorption 

In the case of a QD with two independent types of adsorption sites for the same ligand L, 

the fractional occupations of these sites θ1 and θ2 are described by their association constants 

K1 and K2 at equilibrium the following equations must be solved simultaneously: 

K1 =  
ఏభ

ଵିఏభ
 × 

ଵ

[]
      (3)  

K2 =  
ఏమ

ଵିఏమ
 × 

ଵ

[]
      (4)  

However these expressions describe association constants, when in fact we propose the first 

reaction to proceed as the exchange reaction according to the chemical equation and 

reaction quotient as follows:  

CdSe|OA– + ODPA → CdSe|ODPA– + OA   (5) 

Kexch = 
[ௗௌ|ைష][ை]

[ௗௌ|ைష][ை]
 =  

ఏೣ

ଵିఏೣ
 × 

[భ]

[మ]
    (6) 

In principle, Eqs. (4) and (6) (with L2 as L in Eq. (4)) can be simultaneously solved to 

describe the conditions at equilibrium. In the present case, given that the exchange reaction 

proceeds readily and largely precedes binding to vacant sites, and given the initial condition 

of a negligibly low concentration of free L1 such that [L1]≈N1[QD] at the conclusion of the 

quantitative ligand exchange; we can make the following approximation:  

Kexch =  
ఏೣ

ଵିఏೣ
 ×  

[భ]

[మ]
 ≅ Keff × N1 × [QD]   (7)   

The state at equilibrium near the conclusion of the ligand exchange (i.e. at the transition 

from exchange to association of L2 to vacant sites) can then be described by simultaneously 

solving the following two equations: 

𝐾eff =  
ఏexch

ଵିఏexch
 ×  

ଵ

[మ]
      (8) 
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𝐾ଶ =  
ఏమ

ଵିఏమ
 ×  

ଵ

[మ]
      (9) 

This approach can in principle be used to obtain best-fit values for Keff, N1, ΔH1, K2, N2, and 

ΔH2 through comparison to experimental results, with Kexch obtained as Keff/(N1[QD]). This 

approximation is valid for Kexch ≫ 1 and K2 ≪ Keff. We note that although there exists the 

“Sequential Sites” model that would appropriately assume a fixed sequence of binding to 

different sites, a specific stoichiometric parameter N is not solved for each site. Rather each 

integer value for the total number of distinct sites is fit with parameters K and ΔH. Such a 

model becomes impractical for a system that accommodates hundreds of ligands and was 

not determined to provide valuable phenomenological information in the present 

investigation. Moreover, the condition KI ≠ KII, met in our system as K1,eff ≫ K2, typically 

renders sequential vs independent sites models equivalent since the system’s 

thermodynamics dictate binding to the site of highest affinity before that of lower affinity. 

4.3.3 Discussion of thermodynamic parameters obtained from effective two sites model 

Our application of an effective two types of nonidentical independent sites model to the ITC 

results is distributed as Site1: X-type exchange and Site2: L-type association. Firstly, note that 

the total heat reveals the greatest ΔH at ~1:1 ODPA:OA– equivalent, which is not expected 

for the case of a Langmuir association or even competitive displacement. The observed 

“build-up” of heat can occur in the case of negative cooperativity or sequential binding to 

sites having distinct ΔH, but it is difficult to adequately constrain uncertainty in the model 

parameters for each enthalpically equivalent site based on total heat alone. As discussed 

below, if the heat from the slowest exotherm (w3) is attributed to Site2, the model effectively 

explains the onset of this exothermic signal, corresponding to filling of Site2 once binding to 

Site1 has been largely completed. This in turn partially explains the peak in the total heat 
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seen at ~1:1 ODPA: OA– equivalency (recall the persistent broadened shoulder in the vinylic 

region of the 1H NMR spectra at ca 1:1 equiv.). However, within this model we expect 

Langmuiresque signal for heat corresponding to Site1 with a relatively constant heat per 

injection until Site1 approaches saturation. Although even after subtracting contributions 

from w3, the remaining heat increases in magnitude over the course of the titrations and does 

not closely conform to a Langmuiresque curve. Nevertheless, in order to facilitate analysis of 

the well-resolved w3 signal, herein we represent the ligand exchange as being governed by 

Eq. (7) with suitable values of Keff, N1 and ΔH1.  

Two approaches to attain these values were considered. First, we could choose a 

value of  ΔH1 that accurately describes the total heat evolved throughout the titration 

reaction. This will be referred to as the “Characteristic” fit (dotted lines in Figure 4.12B) and 

is constrained on Site2 heats (on w3) to optimize Keff, N1, K2, N2 and ΔH2. Afterwards ΔH1 is 

solved as a single-parameter fit for the Site1 heat. The Characteristic fit represents the average 

enthalpy of OA– to ODPA– ligand exchange and is the more macroscopic multisite 

model57,250 applied. We also consider a “Limiting” fit (salmon colored solid lines in Figure 

4.12B) that attempts to more precisely describe the transition from ligand exchange to ligand 

association, as the ligand exchange goes to completion. In this case both Site1 and Site2 heat 

data were used to iteratively solve model parameters, but only over a selected range of 

injections near the titre point of X-type exchange saturation. Finally, as the system within 

ITC is at constant temperature and pressure, the fundamental thermodynamic relationships 

ΔG = –RTlnK and ΔG = ΔH – T ΔS are used to calculate remaining thermodynamic 

parameters for both regimes, shown in Table 4.1. We note that the data led to Site1 values 

that were well-constrained parameters and K2, but that the fit results for N2 and ΔH2 were 
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correlated due to a low value of Brandt’s c parameter,46,250 thus only their product N2×ΔH2 

was well-constrained. 

Table 4.1 Thermodynamic equilibrium parameters for oleate exchange with ODPA  
 

EXCHANGE 
Keff  
×105 M−1 

Kexch  
×102 

N1  
per QD  

ΔH1  
kJ mol–1  

ΔG1 
kJ mol–1  

ΔS1 
J mol−1 K−1  

Characteristic 12.4 ± 2.1 28.2 ± 8.0 182 ± 10 −6.72 ± 0.20 −19.4 ± 0.29 +43.1 ± 0.027 
Limiting 4.04 ± 0.87  9.41 ± 8.0 189 ± 11 −13.8 ± 0.29 −16.7 ± 0.41 +9.66 ± 0.18 

ASSOCIATION 
K2   
×103 M−1  

*N2×ΔH2  
×103 kJ 

*N2 
per QD 

*ΔH2 
kJ mol–1  

ΔG2 
kJ mol–1  

ΔS2  
J mol−1 K−1 

Characteristic 4.99 ± 0.19 −1.23 ± 0.23 56.7 ± 5.2 −21.9 ± 2.0 −20.9 ± 0.065 −3.29 ± 3.7 
Limiting 3.29 ± 0.34 −1.31 ± 0.76  27.8 ± 7.3 −57.6 ± 20 −19.8 ± 0.19 −127 ± 0.92 
 

 
Standard errors of the means on ITC given parameters: K, N, ΔH; Propagation of errors on 
calculated parameters: Kexch, ΔG, ΔS, N2×ΔH2. *Reported as product due to low c parameter value,46 
signifying N2 and ΔH2 are not independently constrained. 
 

4.3.4 Justification for X-type exchange thermodynamic parameters 

The thermodynamic parameters N1 and Kexch are well-constrained and in general agreement 

for both fits to the two independent types of sites model.  Table 4.2 depicts the statistical 

strength of applying this model with these well-constrained parameters, even to a titration in 

which the QD titrand was increased nearly 2× that of the standard reactions.  

Table 4.2 Q test for ‘Gross Outliers,’ on Site1 for ~2x initial CdSe|OA– 
 

PARAMETER Kexch N1,exch ΔH1,exch ΔG1,exch ΔS1,exch Lim ΔH1,exch 
Q - VALUE 0.3271 0.2062 0.5434 0.2397 0.6878 0.2577 

 

A test of outliers compared to Qcrit of 0.821 for 99% CL on 5 observations; in every instance, Q < 
Qcrit and so statistically at the 99% confidence level each thermodynamic parameter could be retained 
within this sample set. These parameters were also subjected to a t statistic test with 3 degrees of 
freedom; with the null hypothesis that the given value was not significantly different from the sample’s 
average & standard deviation (not including the tested value) and was ultimately rejected only if t > 
tcrit. Only the value of ΔSexch was calculated to be statistically significantly different at a 99% t-test 
confidence level, but not at the 99.9% confidence level. 
 

We posit that the ligand exchange ΔH1 is best conceptualized as a distribution of 

site-specific energies over a range that does not exceed the value determined by the Limiting 
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fit. A non-constant ΔH for exchange interactions is quite intuitive given the heterogeneous 

nature of QD surfaces, and even often postulated though not directly accommodated in 

empirical analyses of experimental results. Recently Drijvers et al. investigated ligand 

displacement reactions on CdSe nanocrystals and demonstrated adsorption enthalpies that 

were both binding site specific and dependent. They concluded that each facet of the 

nanocrystal surface comprises a distribution of binding sites that could in turn be well 

described by net thermodynamic parameters for ensemble sites attributed to specific surface 

processes i.e. exchange.168,197 We note that on a numerical basis, Kexch and ΔGexch are smaller 

and less negative than K2 and ΔG2, respectively, which is counterintuitive since the ligand 

exchange reaction irrefutably takes precedence. This is understood by noting Kexch and 

ΔGexch are defined for a standard concentration of free oleic acid [OA] = 1 M. Under the 

actual reaction conditions [OA] ≪ 1 M and ligand exchange becomes more favorable than 

association of ODPA to vacant sites until the exchange reaction approaches saturation (Keff 

≫ K2). Regardless, the ligand exchange reaction is found to proceed in ~1:1 equivalency and 

is both exothermic and entropically favorable, consistent with a proton transfer driven X-type 

desorption-adsorption.  

Previously others have reported either endothermic or somewhat ambiguous 

exothermicity for exchange reactions in similar NC reaction systems.64,168,171,197,248 Though we 

conclusively demonstrate overall exothermic character, we also we observe that the exchange 

step of the reaction includes a clearly resolvable endothermic signal. Our timetrace analysis 

further reveals the significant magnitude of this signal, and that while it broadly accompanies 

the ligand exchange reaction it is linearly independent of the dominant exothermic 

contribution to ΔH1 and could be identified through differences between representative 
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injection responses (Figure 4.10). There are several possible explanations for the 

endothermic heat evolution observed in the X-type exchange reaction. It is reasonable that 

in the context of “ligand addition energy” (σ) proposed by Sluydts and coworkers, that the 

fraction of adsorbed ligand density to expected ligand density on the QD surface would 

exceed their expected oxidation-number sum rule stoichiometric value of σ = 1. When this 

expected oxidation-number sum rule stoichiometric value exceeds one, their proposed ligand 

addition energy becomes endothermic for systems within an increasing ligand reservoir;254 a 

concept outlining an interaction between OA/ODPA that has been hypothesized 

previously171 and is relevant to the excess ligand population that would exist in our reaction 

system.  

Another possible explanation endothermic response could have been the occurrence 

of crystal reorganization upon phosphonate ligand binding. Our powder XRD patterns 

confirm that no internal crystal structure reorganization occurs, i.e. zincblende to wurtzite 

phase transition, as a result of the ligand exchange (Figure 4.13), which is in line with 

previous investigations that emphatically argued ligand exchange could not induce crystal 

structure modification even when the QD optical spectra was considerably affected.40,196 

Conversely, surface reconstruction is indeed a possibility; to accommodate vacant sites, 

migrating and rearranging native ligands, and the mixed ligand population. During synthesis 

the incoming phosphonate ligands would enforce the wurtzite crystal structure, but herein 

are adsorbing to zincblende QDs.1,40,196,247,254,255 Additionally, as this initial segment of the 

thermogram corresponds to a mixed ligand population that has resulted from the immediate 

exchange of ODPA– for  OA– on purified QD surfaces, protonated OA could remain on the 

surface temporarily prior to dissociation possibly via migration to initial vacant sites255 (NMR 
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confirms that OA does not remain on the surface at equilibrium, but is extruded essentially 

quantitatively into solution). While different headgroups and conformational space could 

contribute to differences in molecular footprint and consequent surface 

rearrangement,1,40,168,196,247 thoroughly assigning the essential thermodynamic profile of the 

overall reaction has been the primary focus of this investigation. Although the exact 

intermediate process that yields the endothermic signal remains unclear, we hypothesize that 

a rapid proton exchange between ODPA and OA– yielding a slower successive release of 

OA from its original QD surface site, to either another vacant site or into solution, was 

resolved by ITC. Regardless of the mechanism yielding the endothermic signal however, 

both the Characteristic and Limiting ΔHexch are ultimately exothermic. An OA–CdSe|OA– 

Figure 4.13 PXRD patterns of the Zinc Blende CdSe QDs: GPC-purified CdSe|OA– before 
the ITC titration (A) and CdSe|ODPA– after the ITC titration (B), with labeled vertical lines 
to indicate standard Bragg reflection peaks in the respective bulk material. 
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reference titration was also conducted for which an exclusively exothermic thermogram was 

observed, suggesting that the reverse reaction would be endothermic. Previous reports of 

endothermic character in exchange reactions were therefore attributed to limitations of 

indirect measurements50,64 and interpretations.34,168,171,197 

4.3.5 Justification for L-type association thermodynamic parameters 

To address the ODPA L-type association thermodynamic parameters, given in the bottom 

half of Table 4.1, we first note that K2 (hence ΔG2) and the product of N2×ΔH2 are well 

constrained by both fit methods with comparable values. In simple ligand association 

interactions described by the Langmuir isotherm, Brandt’s c parameter (c = KN[M]t) uniquely 

determines the shape of the integrated heat response and for small values of c, the bend in 

the sigmoidal shape disappears and in fits to data. Consequently, N2 and ΔH2 are correlated 

and subject to large uncertainties for c < ~10. Essentially it becomes difficult to distinguish 

strongly exothermic binding to few sites from weakly exothermic binding to few sites. The 

fits here are a result of simultaneous equilibrium at two sets of independent sites; but in the 

limit of Keff ≫ K2, once the first set of sites (exchange) are saturated, the binding of ODPA 

to the second type of QD surface sites resembles a Langmuir isotherm described by K2. At 

this stage of the reaction approximated K2 describes only the binding of ODPA to a second 

type of QD surface sites independent of those pertaining to K1,eff and Kexch. The analytical 

form of this site’s model resembles the quadratic polynomial of a Langmuir 

isotherm.46,47,50,51,60 Accordingly, we can specify a c parameter appropriate to this step as: 

c = K2 × [QD]t × N2      (10)  

The c parameters for Site2 revealed by the effective two site model fits are 

consistently low, indicating that optimized values for N2 and ΔH2 should not be considered 
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independently despite a well-constrained product N2×ΔH2. Nonetheless, our model 

calculations for their separate values in both the Characteristic and Limiting regimes are 

physically realistic, consistent with 1) given an estimate of ~6 atoms nm–2 for the sum of N1 

and N2;1,34,247 and 2) ΔH2 energies exceeding those of ΔH1 to meet the criteria for producing 

an isotherm with the observed curvature in this investigation.46,47,57 In particular regard to N2 

we further note that a significant reduction of initially adsorbed ligands is consistently 

attained via GPC purification,62 and we have previously demonstrated consequent sites 

available for neutral binding is likewise significant.60 To this point, the final endpoint and 

coincident saturation of the QD surface is consistently evident in every raw data 

thermogram as the final injections can be superimposed with ODPA–THF reference 

titrations (Figure 4.10). Nevertheless, these values are grayed as decent estimates at best, 

along with ΔS2 (as this is calculated using ΔH2). Our model’s estimate of ΔS2 very reasonably 

suggests unfavorable energetics; considering the reaction system has ODPA ligands titrated 

to excess with the original OA ligands also in solution. The less favorable energetics yielding 

a (–)ΔS2 could also be deduced from the slower binding kinetics that caused greater injection 

peak widths for heat signals emerging from adsorption at Site2, as we have previously 

demonstrated the capacity of ITC to specify reaction kinetics apparent in QD–ligand 

interfaces, unambiguously corroborated by PL data.60  

4.4 Variation in synthetic preparation for further investigation 

Given the keen precision of ITC to provide equilibrium thermodynamics for this irreversible 

ligand exchange reaction, we sought to further investigate two common subtleties in QD 

preparation. Chiefly, the ubiquitous heterogeneity within QD synthetic batches perpetuated 

by slightly altering the synthetic conditions, can present variation in NC populations even for 
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different investigators in the same lab. As aforementioned QD thermodynamic parameters 

were acquired from a single synthetic batch, they will henceforth be referred to as the 

“Standard (Std)” synthetic preparation. Another batch of QDs was synthesized with the 

same 1:3:2.2 Cd:Se:OA mole ratio and all the same precursor and solvent materials; with the 

At the step preceding the rapid precursor injection, this second QD batch was heated 10°C 

Figure 4.14 Quenching trajectories for CdSe|OA– for the standard (Std) synthetic 
preparation (A) and the rapid (RQ) synthetic preparation (B) to terminate QD growth 
immediately after Se precursor injection. Adapted with permission from ref. 62. Copyright 
2013 American Chemical Society. 



 
 

122 
 

higher, and immediately quenched with a stream of cold air; henceforth referred to as the 

only difference having been the quenching process used to terminate nucleation and growth. 

“Rapid Quench (RQ)” synthesis.62 Whereas the Std QD synthesis was quenched by 

removing the heat source and allowed to cool The synthetic termination quenching 

trajectories are shown in Figure 4.14. The resultant RQ QDs had the same lowest energy 

extinction peak position as the Std QDs as well as indistinguishable TEM images (Figure 

4.15). In an investigation to elucidate the primary contributing mechanism for [white light] 

emissive pathways in small CdSe QDs, Krause et al. demonstrated an vital correlation 

between PL and QD surface thermodynamics.35 In one instance they too directly probed the 

consequences of changing only the synthetic quenching procedure to terminate further NC 

Figure 4.15 Steady state absorption for standard and rapid quench CdSe|OA– samples prior 
to and ensuing either toluene or THF mobile phase GPC purification (A); TEM images of 
the standard (B) and raid (C) QDs; Steady state PL emission for both synthetic preparations. 
Both absorption and emission spectra are normalized to their lowest energy extinction peak. 
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nucleation and growth. Despite their unfortunate characterization of “TOPO-capped” CdSe 

NCs,60,198 there are very valid implications of altering the kinetics of this step of NC synthesis 

that have been shown to cause a significant impact on NC surface ligand densities. It has 

been posited that more efficient and uniform quenching yields less surface trap emission, 

though such dynamics are still not entirely understood.222,228 In the present case the PL 

emission spectra were comparable and neither displayed significant lower energy broadband 

surface trap emission. Altering the nucleation temperature and termination of NC growth 

has primarily been a synthetic knob to achieve different NC sizes and degrees of 

polydispersity.17,40,196,249 Interestingly Teunis et al. recently resolved an additional final stage of 

the LaMer growth model, at which stage ligation was said to occur for the QDs. While the 

synthetic scheme was specifically tuned to decouple otherwise indistinguishable growth and 

ligation stages, they explicitly concluded that changes at the ligation stage only affect PL 

properties and does not alter NC excitonic peak position.228 Again our observations of the 

standard vs rapid quench PL and absorption spectra (Figure 4.15A,B) are directly in line with 

this assertion.  

Thermograms for the Std  versus RQ reaction titrations, both purified by the toluene 

GPC, immediately reveal different molar equivalencies for the exchange reactions (Figure 

4.16). Moreover, given the robustness of the GPC technique and the propensity to transfer 

NCs to different solvents between purification and experiments, we also systematically 

investigated RQ samples either purified by a Toluene GPC and subsequently transferred to 

THF for the ITC reaction (as was the procedure for the Std trials), or RQ samples purified 

by a THF GPC and then directly loaded in the ITC for the ligand exchange titration. 

Solvents can impact NC surface chemistry in several ways due to the local dielectric 
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environment they impart, their ability to penetrate ligand layers or coordinate to NC 

surfaces, and relative ligand solubilities directing degree of labile passivation.1,43,228,247 

Immediately pertaining to this study, ODPA is insoluble in toluene. Undeniably dissimilar 

raw heat thermograms are depicted in Figure 4.16 as well as Figure 4.17, which further 

Figure 4.16 Raw heat thermograms comparing the ODPA–CdSe|OA– titrations for initial 
QDs prepared by either the standard synthetic reaction termination (A) or the rapid 
synthetic reaction termination; purified via toluene GPC, transferred to anhydrous THF 
reaction solvent, then loaded into the ITC. The navy and teal coloring correspond to the 
exchange and association reaction regimes respectively. 
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analyzed the different mobile phase solvents employed in the GPC purification preparation 

for ODPA–CdSe|OA– titrations, otherwise conducted with exactly the same ITC 

experimental parameters.  

Figure 4.17 Raw heat thermograms comparing the ODPA–CdSe|OA– titrations for initial 
QDs prepared by  the rapid synthetic reaction termination; purified via THF GPC then 
directly loaded to the ITC (A), or toluene GPC, transferred to anhydrous THF reaction 
solvent, then loaded into the ITC. The navy and teal coloring correspond to the exchange 
and association reaction regimes respectively. 
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The reproducibility of these RQ QD titrations is emphasized in Figure 4.18. 

Quantitative 1H NMR spectra analyzed between different QDs synthetic termination 

trajectories (Std vs RQ) and between those of the same synthetic procedure but different 

purification solvents showed from only 4% to 20% difference in initial OA ligand 

populations, given the compared treatments. Toluene GPC tended to yield higher ligand 

Figure 4.18 Overlays of repeated raw heat thermograms comparing the ODPA–CdSe|OA–

titrations for initial QDs prepared by  the rapid synthetic reaction termination; purified via 
THF GPC then directly loaded to the ITC (A), or toluene GPC, transferred to anhydrous
THF reaction solvent, then loaded into the ITC. 
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densities, whether investigating different purification solvents or merely solvent transfer, 

typically by ~10%. Appropriate relaxation delay and acquisition times were determined 

relative to each NMR solvent and the ferrocene internal standard as described in Section 4.2.  

THF is a moderate Lewis base that has been reported to promote minimal removal of Cd-

carboxylate ligands from CdSe surfaces,34 and so the lower initial ligand populations for QDs 

purified in with this solvent where expected. Whereas 1H NMR did reveal slight differences 

in ligand populations, commonly employed optical spectroscopies failed to indicate 

significant variances in the different QD surface chemistry. Typically, this would affirm that 

QD batches are analogous and could be used to continue investigations testing several 

variables, parameters and hypotheses. However, the extreme differences in the thermograms 

in Figures 4.16-18, particularly the sequential reaction endpoints should give pause to such 

assumptions. Table 4.3 contains the values obtained as we were able to apply the same 

effective two types of independent sites modeling procedure to solve the thermodynamic 

parameters for the differently purified RQ QDs as was employed for the Std QD batch.  

 
Table 4.3 Characteristic thermodynamic equilibrium parameters for OA exchange with 
ODPA on Rapid Quench QDs comparing Toluene GPC vs THF GPC purification solvent 

EXCHANGE 
Keff  
×105 M−1 

Kexch  
×102 

N1  
per QD  

ΔH1  
kJ mol–1  

ΔG1 
kJ mol–1  

ΔS1 
J mol−1 K−1  

LIM ΔH1  
kJ mol–1  

Tol GPC 9.71 31.0 255 −6.72 −19.7 +44.0 −13.4 
THF GPC 8.69 14.0 126 −6.08 −17.6 +38.9 −14.5 

ASSOCIATION 
K2   
×103 M−1  

*N2×ΔH2  
×103 kJ 

N2 
per QD 

ΔH2 
kJ mol–1  

ΔG2 
kJ mol–1  

ΔS2  
J mol−1 K−1 

— 

Tol GPC 3.74 −1.59 69.7 −22.8 −20.2 −8.90 — 
THF GPC 2.04 −2.30  113 −20.4 −18.7 −6.00 — 
 
Only Limiting regime thermodynamic parameter reported is ΔH1. All values are an average of two raw 
heat thermograms therefore no variances are included. *Reported as product (N2×ΔH2)due to low c 
parameter value,46 signifying N2 and ΔH2 are not independently constrained. 
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The same issue of a low c parameter for the ODPA association Site2 was 

encountered, therefore again  only the product N2×ΔH2 was well-constrained. Table 4.4 lists 

the Brandt’s c parameter for each titration’s thermodynamic profile, as in each case c < 10 

signifying N2 and ΔH2 are not independently constrained. 

 

Table 4.4 Brandt’s c-parameter for Site2 equilibrium thermodynamic parameters describing 
sequential neutral association of ODPA to exchanged CdSe|ODPA– 

SAMPLE I.D. 
Standard 
Tol GPC 

Standard 
~2x initial [QD] 

Rapid Quench 
Tol GPC 

Rapid Quench 
THF GPC 

C – PARAMETER 3.512 2.531 3.261 2.723 
 
 

Thereafter, the statistical significance in the exchange parameters was tested and is 

shown in Figure 4.19. If these specified parameters were found to be significantly different, 

then directly addressing consequent differences in related parameters becomes implicit. 

Two-tailed t-tests (appropriate for smaller sample size comparisons), with a null hypothesis 

that there was no difference between the tested parameters were employed against the 

equilibrium thermodynamic parameters solved for the Std QD sample. Values for N1,exch and 

K1,exch immediately appeared different, though only N1,exch proved to have a statistically 

significant disparity between all three samples at a 95% confidence level. Previous reports 

have concluded similar zincblende CdSe QDs of different sizes or having undergone 

different degrees of purification to maintain comparable ligand densities.42,165 However, given 

the minute changes in ligand density that result in drastically different QD photophysical 

properties and performance,13,34,81,167,168,197 it remains imperative to carefully probe those QD 

ligand populations as precisely as possible.  
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4.5 Conclusion 

The capacity of ITC to provide consistent equilibrium thermodynamic parameters for a 

previously established and continuously investigated quantitative ligand exchange reaction, 

but for which the reaction quotient had until now proven unattainable, has been 

categorically demonstrated. The two effective independent [types of] sites: Site1 occupied by 

chemisorbed X-type exchanged ligands followed by Site2 referring to occupation of 

associated L-type phosphonic acid ligands, proved an adequate model for this system in both 

our characteristic and limiting regimes which attend to the distribution of binding enthalpies 

across inhomogeneous QD facets. While we did not explicitly determine the physical 

phenomenon contributing to the endothermic signal coupled within the X-type exchange 

stage of the reaction, we are able isolate this heat contribution for further analysis. By 

separating heat contributions according to resolved time responses, we clearly showed the 

Figure 4.19 Bar graphs comparing exchange reaction regime equilibrium thermodynamic 
parameters for standard and rapid quench CdSe|OA– samples prior to and ensuing either 
toluene or THF mobile phase GPC purification. The three thermodynamic parameters: 
equilibrium constant K, molar enthalpy H and number of sites N in the sequential exchange 
reaction regime are the primary values retrieved directly from the ITC fits. All other 
parameters are calculated from or subsequent to these, therefore the 2-tailed t-test statistical 
analysis applied to these parameters were sufficient to compare reaction systems. Statistically 
significant differences in parameter magnitudes were determined from the Std Quench 
toluene GPC titration, as indicated by the error bars. Only the Nexchange parameter was 
determined to be significantly different among the samples at a 95% confidence level, as 
marked with asterisks above those bars.  
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transition toward the greater exothermic signal is due to the relatively slower process that 

occurs as the ligand exchange has nearly completed, which enabled us to extract the ligand 

exchange equilibrium constant. Likewise, the consistency in QD surface chemistry provided 

by GPC purification also allowed us to employ ITC to unequivocally differentiate between 

QD samples prepared with only slightly altered synthetic schemes. We hope that the NC 

community will very carefully consider the impact of various sample preparations and 

surface treatments on subsequent investigations, notwithstanding the sole parameter N 

(surface sites) displaying a statistically significant difference. Whereas our results with a 

nearly doubled QD concentration that yielded statistically similar thermodynamic parameters 

can offer some amount of confidence in comparable ligand population dynamics; empirical 

investigations such as this present study are sorely needed to further inform NC surface 

chemistry, and consequently comprehensive NC photophysical dynamics. Ultimately, this 

investigation further mitigates the paucity of consistent thermodynamic information 

obtained for NC surface dynamics in organic solvents. While equilibrium parameters from 

native organic surfactant environments have remained unknown or infeasible, the difficulty 

in obtaining consistent thermodynamic profiles have precluded rational design for NC 

frameworks as reliable and predictable building blocks for envisioned applications. 

Eventually we hope that ITC studies will be implemented to such an extent that investigators 

can have confidence to evaluate reactions that do not require overt spectroscopic signatures. 

As reactions such as the one presented herein (even with apparently complex reaction 

coordinates) are evaluated unambiguously, we further hope the ITC technique will quickly be 

applied to systems beyond the common II–VI and III–V semiconductor families. Inasmuch 

we expect the incorporation of ITC in NC surface chemistry and related reaction chemistries 



 
 

131 
 

to become pervasive in both fundamental studies as well as those with more direct materials 

and industrial implications. 

4.6 Materials & Methods 

Materials. The following chemicals were used as received. Cadmium oxide (CdO; 

99.999%) and Trioctylphosphine (TOP; 97%) were purchased from STREM Chemicals. 

Oleic Acid (OA; 99%), 1-Octadecene (ODE; 90% technical grade), and Selenium (Se; 

99.999%) were purchased from Alfa Aesar. 1-Octadecylphosphonic Acid (ODPA; >99%) 

was purchased from PCI synthesis. Bio-Beads S-X1 GPC medium was obtained from Bio-

Rad Laboratories. Toluene-d8 (D, 99.5%) and THF-d8 (D, 99.5%) were obtained from 

Cambridge Isotope Laboratories. Ferrocene (98%) was purchased from Acros. Toluene 

(99.5%) and Tetrahydrofuran (THF, 99%) were purchased from Mallinckrodt Chemicals. 

Acetone (99.9%) was purchased from VWR. Methanol (99.9%) was purchased from Fisher 

Scientific. Anhydrous THF was dried using the Puresolv system from Innovative 

Technologies. Synthetic and analytical procedures under inert conditions were carried out 

using Schlenk line techniques, or in a glovebox under N2 atmosphere. 

Standard quench CdSe|OA– synthesis. 60 mg CdO and 330 mg OA were 

introduced into a three-neck flask with 6 mL of ODE as the noncoordinating solvent. The 

flask was heated to 100°C, and vacuum was applied to remove air and water from the 

system. The flask was continuously heated to 270°C under N2 environment to produce a 

colorless and clear mixture. Afterward, the reaction mixture was cooled to 130°C and 

vacuum was again applied to remove evolved water. The mixture was reheated to 270°C 

under N2, and 0.64 mL of TOPSe solution (prepared by dissolving Se in TOP in a glovebox, 
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with concentration 2.2 M) was rapidly injected. The reaction flask was allowed to cool down 

in ambient air to room temperature. The ratio of Cd:Se:OA was 1:3:2.5 

Rapid quench CdSe|OA– synthesis. CdO and of OA were used to prepare the Cd 

precursor. CdO was again converted to the Cd(OA)2 according to the same procedure as 

described above. The flask was reheated to 280 °C, 2.2 M TOPSe solution was rapidly 

injected. The reaction flask was immediately cooled down under a stream of air. The ratio of 

Cd:Se:OA was in this case also 1:3:2.5 

GPC purification of the QDs. In order to remove most of the synthetic solvent 

and concentrate the QD sample in either toluene or THF, a single PR cycle with methanol 

and acetone to flocculate QDs was carried out before the GPC purifications. 1×PR QDs 

(concentration ranges from 5−150 μM with 0.5−1 mL injection volumes) were then added 

to the GPC column. After each purification, all QD samples were immediately diluted to the 

titration reaction concentration and injected into the ITC. 

Toluene GPC. The GPC column was packed by the previously described method 

with toluene as the eluent. The as-synthesized QDs were purified by 1× precipitation with 

methanol and acetone and redispersed in toluene or anhydrous THF. Then the QD solution 

was added to the column and the sample was collected when the elution volume reached 

~1/3 of the total volume of the column (the expected void volume for irregularly spaced 

spherical beads); this volume corresponds to the fraction at which the purified QDs eluted. 

The GPC column was rinsed thoroughly (3x the total volume of the column) before 

subsequent purifications. 

Anhydrous THF GPC. The GPC column was packed similarly to a previously 

described method62 with anhydrous THF as the eluent. A constant flow of N2(g) was 
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maintained over and through the THF GPC to prevent hygroscopic degradation of the 

column. The Bio-Rad SX-1 Bio-Beads were best swollen if introduced to the anhydrous 

solvent, applied to the Schlenk line for near complete removal of the solvent, and reswelling 

of the Bio-Beads without allowing contact to air. Again, the purified QD sample was 

collected when the elution volume reached ~1/3 of the total volume of the column. The 

GPC column was rinsed thoroughly (4x the total volume of the column) before subsequent 

purifications. 

NMR analysis of QDs. Routine NMR samples of the QDs were prepared in 

toluene-d8. The QDs’ concentration is set at approximately 20 μM; the exact value in each 

case was measured by UV-Vis using the calculated molar extinction coefficient.  Spectra 

were recorded on Bruker Avance III 400 MHz or Bruker Avance III HD 400 MHz. The 

quantitative 1H NMR spectra were measured with ferrocene as the internal standard and 30s 

relaxation delay, allowing the system to reach a reliable equilibrium. The 31P NMR spectra of 

QD samples were measured with 512 scans to improve signal-to-noise.  

Advanced NMR techniques. T1 was measured by the vendor-supplied inversion 

recovery pulse sequence experiment. 

31P {1H} NMR for quantitative titration. Spectra were recorded on a Bruker 

Avance III HD 400 MHz equipped with a nitrogen-based cryogenic probe (Prodigy) with 

NOE suppression routines applied. 

Isothermal Titration Calorimetry (ITC): ITC titrations were performed on a VP-

ITC calorimeter (Microcal Inc., Northampton, MA). Ligand solutions were titrated from the 

300μL syringe to the sample cell overfilled to its 1.8mL capacity, and the heat response to 

maintain a constant temperature between the sample cell and reference was monitored. Each 

experiment was conducted at 22°C and midrange reference power; allowed to equilibrate 
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prior to an initial 600sec delay; and in order to allow adequate equilibration between each 

injection, 8-9min intervals were set between each injection for a total 60 injections in 5μL 

increments. Anhydrous THF was used as the solvent for both the ligands and QDs, as well 

as the blank solvent in the reference cell. Reference titrations were conducted with the same 

parameters relevant to the titration reaction to determine any significant heat of dilution 

between the solvent, ligand solution and QD solutions that may have accounted for signal in 

the final ligand-QD titrations. Only ligand-solvent titrations were subtracted from ligand-

QD titrations, as other reference titrations were determined negligible. The QD solutions 

were loaded into the sample cell such that the final ligand-to-QD ratio was ~450:1. 
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