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Abstract 
Accident Tolerant Fuels (ATF) require a combination of fuel and cladding which 

have comparable longevity characteristics to UO2 while improving resistance to 

radiological release during and after accidents. U3Si2 has been proposed for use in ATF 

concepts for its high uranium density and high thermal conductivity which provide 

improved fuel performance. However, some of U3Si2’s material properties are not well 

understood. One such property, thermal creep of U3Si2, is an important contributing 

factor to U3Si2’s viability as an ATF. No experimentally derived thermal creep model is 

published for U3Si2, and previous analyses of compressive thermal creep experimental 

data lack statistical means of controlling for variability in the original data. This work 

uses previous compressive creep testing at the University of South Carolina to 

meticulously document the development of a thermal creep model for U3Si2 and 

implement that model in a BISON finite element simulation of a U3Si2 fuel SiC clad 

concept ATF. Rigorous statistical processes are used to ensure data are reproducible and 

reliable for use in the developed thermal creep model. This concept ATF shows 

significant delay to fuel-cladding contact when compared to traditional fuels of equal 

radial geometry and operational history. Sensitivity studies on fuel thermal creep rate, 

cladding thermal conductivity, cladding irradiation creep, cladding gap size, and cladding 

thickness demonstrate that research priorities for this concept ATF should revolve 

around reducing cladding thickness and improving U3Si2 plasticity. 
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Chapter 1 Introduction
 

1.1 Motivation 
High visibility nuclear accidents, such as have occurred at the Chernobyl, Three 

Mile Island and Fukushima Daiichi nuclear plants, have extreme long-term negative 

environmental and financial consequences. Considering the negative associations 

caused by the public upheaval and financial burden of remediating these nuclear 

incidents, it is evident why nuclear power has declined from its place of hotly pursued 

growth in the early 70s to an era of dwindling production and plant closures. Such 

accidents have been a motivating influence on driving governments to increase 

regulation which has in turn caused the international nuclear industry to seek improved 

methods and designs to help mitigate the environmental and public risk of operating 

nuclear power plants.  

Internationally, the nuclear power industry needs to provide assurances that its 

plants can be operated safety. In the immediate aftermath of the 2011 Fukushima 

accident, international governments began a nearly wholesale reduction in use of 

nuclear power. Though current day nuclear usage has nearly returned to pre-Fukushima 

levels, questions regarding the safety of nuclear power have led several countries to 

adopt long term plans to reduce nuclear power in their energy portfolios. Germany, an 

especially evocative example, has reversed its position entirely, and enacted an entirely 
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non-nuclear strategy with a goal to eliminate nuclear power from their energy portfolio 

by 2022.  

In late 2018, the Department of Energy awarded over 111 million USD to 

Westinghouse, General Electric, and Framatome to advance the development of 

Accident Tolerant Fuels (ATF). Each of these nuclear industry partners has 

conceptualized and developed plans for fuels designed to meet elevated fuel 

performance criteria under accident conditions. These fuels are to be compatible with 

existing nuclear plant infrastructure with a goal to create a drop-in replacement that can 

reduce the dangers of Loss Of Coolant Accidents (LOCA). 

U3Si2 is among the fuels under consideration for use as an ATF. Its improved 

uranium density and thermal conductivity, compared to uranium oxide fuels, means it 

can provide improved performance while improving heat transfer under accident 

conditions. When combined with an advanced SiC cladding, with much lower oxidation 

potential at high temperature compared to zircaloy, these fuels exhibit greatly improved 

resistance to production of explosive gasses at elevated temperatures. Provided the SiC 

cladding barrier remains intact, this reduced chemical reactivity with the coolant results 

in less degradation of the fuel to coolant barrier leading to improved retention of fission 

products during accidents. 

Despite these important advantages, the combination of U3Si2 fuel and SiC 

cladding is not a straightforward solution. U3Si2 characterization performed by Metzger 

at the University of South Carolina revealed that at low temperature, U3Si2 is prone to 

brittle chipping under regular handling conditions [1]. Additionally, U3Si2 is highly 
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reactive with oxygen and water which is counterproductive to the goals of ATFs should a 

cladding breach occur. SiC forms reaction products with U3Si2, which can cause the 

formation of brittle phases in the cladding. These reaction products would reduce the 

cladding’s reliability during contact and make it more susceptible to failure. Given the 

drive of fuel manufacturers to use U3Si2, proper selection of a cladding that provides a 

large margin to failure comes of eminent importance. 

To date, there are no in-pile data of a U3Si2 fuel with a SiC cladding. Indeed, 

current experiments are limited and have achieved only low burnups [2]. Further, no 

U3Si2 thermal creep mechanism is in the literature which limits U3Si2 fuel model 

accuracy under contact and high burnup. On the other hand, experimental data for SiC 

are readily available and important physical models have been developed for 

mechanical properties, irradiation response, thermal expansion, thermal conductivity, 

and irradiation swelling. Prior to full core testing of U3Si2 fuels with SiC cladding, a fully-

coupled physical model needs to be developed to investigate the performance 

characteristics of this fuel-cladding combination under steady state and accident 

conditions. 

1.2 Research Objective 
Because of the anticipated advantages of this combination of fuel and cladding, 

but with an expectation of the difficulties that exist surrounding its development, a 

need exists for a predictive comparison between UO2-Zry and U3Si2-SiC fuels. To this 

end, finite element simulation methods are used to see how current day material 

property models regarding this combination of fuel and cladding perform relative to 
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expectations and the status quo. A research pathway can then be developed for fuel 

and cladding parameters that have the largest impact on predicted results. Researchers 

are benefited through identification of key design elements which focus their efforts on 

the most important areas for development of this concept ATF.  

This research provides an analysis of a finite element model of U3Si2 fuel with a 

two-layer SiC cladding concept developed with the latest findings from the open 

literature. First in Chapter 4, a comparison of U3Si2 creep mechanisms is shown from 

models derived using in-house data from compressive creep testing at the University of 

South Carolina. Second, the performance of the proposed fuel/cladding combination is 

compared to a typical UO2 rod for typical dimensions of a Westinghouse 17 x 17 fuel 

assembly. Third, a parameter sensitivity study on U3Si2 thermal creep, SiC thermal 

conductivity, fuel-cladding gap, and composite SiC plastic compliance will show the 

effect of variance of these fuel property parameters on pellet clad mechanical 

interaction between U3Si2 and SiC. These studies under steady-state conditions 

provides an acute view as to the suitability of this fuel as an Accident Tolerant Fuel 

candidate.  

The preceding give rise to the objective of this work which is to: (1) Develop a 

transparent data-driven grain size dependent model for secondary thermal creep of 

U3Si2. The developed model addresses concerns with the method’s employed in earlier 

work. (2) Develop a finite element BISON simulation with best available material models 

to simulate the impact of U3Si2 thermal creep on fuel to clad contact. (3) Test the 

sensitivity of fuel to clad interactions on fuel-cladding gap, SiC thermal conductivity, and 
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the U3Si2 creep parameters developed in (1). Fuel manufacturers and researchers will 

benefit from this work by having clear fuel and cladding design targets that have been 

shown to optimize fuel performance of the U3Si2-SiC concept.  
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Chapter 2 Literature Review
 

2.1 Previous Work 
The University of South Carolina has developed U3Si2 models since 2016 when 

Metzger completed a chemical and mechanical characterization of sintered U3Si2 

pellets fabricated by Idaho National Laboratory (INL) [1]. Since U3Si2 has a significant 

thermal conductivity and uranium density advantage over UO2 fuels, Metzger 

developed a simple BISON finite element simulation of U3Si2 with a single layer of 

monolithic SiC to quantify the extent of these material benefits [3]. Metzger’s work 

showed that U3Si2 with monolithic SiC cladding can deliver higher burnup, longer time 

to PCMI, and lower peak fuel temperatures. Although her research provides a favorable 

outlook on the steady-state performance of U3Si2, it lacked a U3Si2 thermal creep 

model based on experimental data. Considering her observations of the brittle nature of 

U3Si2 and SiC cladding, inclusion of thermal creep is of high importance to more 

accurately predict strains within the fuel and cladding [1]. 

2.1.1 Thermal Creep Model 
Further work was completed by Mercado at the University of South Carolina to 

address the need of a U3Si2 thermal creep model [4]. Mercado conducted compressive 

creep testing of U3Si2 samples provided by INL at expected LWR temperatures and 

stresses for U3Si2 fuel rods for similar geometries as the work completed by Stone [5]. 

Though Mercado had trouble in early testing with his experimental apparatus, his work 
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culminated in the development of an impressive compressive creep test rig and the 

production of reliable compressive creep data in later tests.  

Mercado’s early creep tests were often interrupted by equipment failure and a 

lack of PID temperature control led to sporadic temperature fluctuations. Despite these 

difficulties, every test conducted was used to determine creep parameters regardless of 

data quality. Further, Mercado did not provide any indication of the requirements for 

statistical discrimination among good and bad data or the conditions for which 

secondary creep was calculated. Mercado’s challenges in early testing combined with a 

lack of documented procedure in data handling make it difficult to unquestionably 

accept the secondary thermal creep rate in U3Si2 he calculated especially in cases 

where tests have poor data quality. Despite these difficulties, his work developed an 

experimentally derived model for thermal creep of U3Si2: 

ϵ̇ = Aσ୬eି
్

౎౐     (2.1) 
A=8.78E-16 n= 1.94 Q= 168 kJ/mol 

 
Mercado’s work is invaluable for its collection of raw creep data and early analysis of 

U3Si2 thermal creep parameters. However, his final creep model is calculated using all 

data points taken from his experimental research without regard to error incurred by 

the difficulties he experienced. To resolve these issues, Freeman implemented a reliable 

method of calculating creep rate using Mercado’s data and developed a thermal creep 

model that excludes creep rate data from tests that failed early or were considered too 

short to be representative of secondary creep. Freeman’s work was an important step 

forward in the analysis of Mercado’s compressive creep testing and provides a 
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computational method using python scripting for reducing noise within the data. 

Although Freeman’s updated U3Si2 thermal creep rate results were documented in his 

thesis, the details of his method for reducing noise in Mercado’s data were never 

adequately described in any published report. Freeman describes the thermal creep of 

U3Si2 as: 

ϵ̇ = Aσ୬eି
్

౎౐      (2.2) 

A = 2.5544E-22 n= 2.348 Q = 88.87 kJ/mol 

Creep parameters determined by Freeman use an algebraic method described in 

his thesis and relies upon assumptions that temperatures within 20K and 15 MPa are 

the same [6]. Some tests were excluded for failure to meet a minimum creep time 

specification of 100 hours. While algebraic methods for calculating creep parameters 

are convenient, Freeman’s assumptions indelibly propagate error to his creep model. 

Also, his 100-hour creep requirement excluded important creep tests that will be shown 

to reliably fit within the model developed in this present work. Additionally, Freeman 

used a subset of his thesis creep rate data to develop a separate creep rate model for 

use in his BISON accident tolerant fuel simulation. His reasons for using this U3Si2 creep 

model based on a smaller data set is unexplained, and thus the use case for this thermal 

creep model is unknown. However, since these creep parameters were used in 

Freeman’s BISON simulation, they have been taken by the community and are the 

parameters that are currently in use in the BISON repository: 

𝜖̇ = 𝐴𝜎௡𝑒ି
ೂ

ೃ೅      (2.3) 
A = 2.0386E-4 n= 1.2063 Q = 195.55 kJ/mol 
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The data used in the development of this model excludes all the later tests that 

have smaller total strain. The later tests are those which are of a different grain size and 

in general have more statistically consistent test data due to improvements in 

Mercado’s compressive creep testing. For the purpose of developing a statistically 

relevant general use U3Si2 creep model, it is important to include the maximum amount 

of data possible from within the data that are considered reliable. A completely 

transparent approach to the development of a U3Si2 secondary creep model is 

implemented in this work to allow full understanding of the proper use case of the 

developed thermal creep model. 

2.1.2 U3Si2-SiC Simulation 
Freeman’s BISON accident tolerant fuel simulation is a monolithic-outside 

composite-inside duplex SiC cladding concept as recommended by Stone [5]. The radial 

geometries for Freeman’s simulation generally follow those used by Stone, which due to 

a large assumed cladding thickness, results in a larger exterior diameter of the simulated 

fuel rod and a smaller coolant channel. Modifications to exterior fuel geometries are to 

be avoided since they negatively impact thermo-hydraulic design considerations of the 

entire fuel package and may lead to hot channel violations in LWR designs. For the 

performance of an ATF simulation to be relevant to a comparison of its performance 

relative to existing UO2 fuels, the exterior thermal-hydraulic performance of the ATF 

must be comparable to existing fuel designs. External fuel geometry, therefore, must 

remain the same when comparing candidate ATFs against UO2 performance. 
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SiC and U3Si2 are under investigation and material models for simulating its 

performance continue to be developed. Since Freeman’s work in early 2018 there have 

been developments in some of the material models used in his BISON simulation. Most 

importantly, irradiation creep of SiC was not included in Freeman’s simulation based on 

the statement by Stone that irradiation creep is negligible within SiC [6]. However, 

although recent publications by Katoh and Koyanagi make it clear that irradiation creep 

has a relatively small effect, its influence isn’t trivial and is important to accurately 

describe in-reactor mechanical behavior of SiC. In addition to the development of a 

U3Si2 creep model previously described, this work expands upon the simulation work 

done by Freeman to include this important irradiation creep material property along 

with other material property updates that have been made in the literature.  

Proper finite element modeling of U3Si2 with SiC cladding depends upon correct 

application of the most up-to-date material properties already incorporated within the 

BISON code as well as adding new material properties that are not yet implemented in 

BISON. To inform the proper use of pre-existing BISON material models and the 

identification of models needing development or modification, a literature search of 

material properties of consequence to the finite element model was conducted. The 

intent of this search is not a complete assessment of the materials used within the 

BISON simulation but rather an identification of the neutronic, thermal-hydraulic, and 

mechanical properties of most importance to Finite Element Modeling. 
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2.2 U3Si2 
U3Si2 has been used in aluminum dispersion fuels for many years for its high 

uranium density [7]. Until recently, in reactor performance of U3Si2 was limited to 

extrapolations from these research grade dispersion fuels. Based on dispersion fuel 

testing, U3Si2 is expected to provide low fission gas release and low swelling in 

comparison to UO2 [8]. Although the long-term performance of U3Si2 is still unknown, 

recent low-burnup post irradiation examinations of U3Si2 fuel fabricated and tested at 

INL have validated the expectations set by dispersion fuel analysis [2]. Relative to typical 

UO2 performance, U3Si2 demonstrates improved cracking and relocation behavior as 

well as structure and phase stability under irradiation. U3Si2 also has low migration of 

fission products and resists hardening from swelling strains and irradiation damage. 

Overall, experimental evidence suggest U3Si2 is capable of being used in LWRs under 

steady-state conditions. No testing of U3Si2 under accident conditions has been 

completed. 

Some properties of U3Si2 are well known and are collected in the Update to the 

U3Si2 Property Handbook by Los Alamos National Laboratory. This document was used 

as a baseline on a more thorough search to ensure the most recent data are used. Many 

computational studies have calculated predicted U3Si2 material properties, however, 

material models based on experimental data are preferable and were chosen for use 

within this paper’s BISON modeling whenever available.  

2.2.1 Density and Thermal Expansion 
U3Si2 has a uranium density 16.4% higher than UO2, 11.3 kg-U/m3 compared to 

9.7 kg-U/m3. Its theoretical density is 12.2 kg/ m3 with powder sintered pellets produced 
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at INL reaching 94.7% theoretical density and arc melted plasma sintered samples 

reaching 96% theoretical density [9]. Thermal expansion of U3Si2 was most recently 

found by Obbard to have a negative deviation with temperature. The linear thermal 

expansion coefficient is:α(T) = 2.1 × 10ିହ − 7.25 × 10ିଽ ∙ T [10]. 

Currently within the BISON codebase, densification of U3Si2 is expected to be 

like UO2 and is handled using the ESCORE model [11]. However, little to no densification 

of U3Si2 due to irradiation effects and high temperature in-pile sintering was found in 

recent testing at INL [2]. Given that UO2 completes its period of densification within 

10GWday/MTU, the 20 GWday/MTU burnup of the INL post-irradiation examination 

would have been sufficient to reveal any densification in U3Si2. To conservatively reveal 

any performance difference between UO2 and U3Si2 densification within U3Si2 is not 

included in this work.  

2.2.2 Melting point, Specific Heat and Thermal Conductivity 
U3Si2 has a melting point of 1938K and has a lower thermal conductivity than 

UO2 at room temperature. Since its thermal conductivity rises with temperature as 

opposed to UO2 which has a progressively lower thermal conductivity as temperature 

rises, U3Si2 has a considerable heat transfer advantage when at power. Ranges of 

values for the coefficient of thermal conductivity differ based on fabrication technique 

and research group, but the empirical relation taken from the U3Si2 handbook is a good 

high and low temperature fit to data from sintered U3Si2 [3] Similarly, the handbook 

provides an updated value for the specific heat capacity. Both these models are 

currently available in the BISON codeset. 
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2.2.3 Swelling and Fission Gas Release 
Low burnup post-irradiation examinations of U3Si2 under LWR conditions have 

allowed the comparison of computationally derived fission gas release models to 

experimental data [12]. At low burnup of 7.3 GWd/MTU, these models calculate total 

fission gas swelling within about 15% of the measured value, an expected amount of 

error for computational theory derived models. As such these models would seem 

appropriate for order of magnitude estimates of fission gas swelling at low burnup. This 

swelling and fission gas release model has already been implemented in the BISON 

codebase and is unmodified for use in this work. 

While this U3Si2 swelling model is reasonably accurate, fission gas release was 

measured to be less than half of the calculated value. A recently completed post-

irradiation examination at INL is expected to allow further refinement of this model and 

shows a similarly lower than expected amount of gas release [2]. For the present work it 

is understood that while the calculated amount of swelling is within acceptable limits of 

a demonstrative example, fission gas release is expected to be much lower than 

calculated.  

2.2.4 Elasticity and Thermal Creep 
Porosity dependent elastic and shear moduli have been determined for arc cast 

samples of U3Si2 by Shimizu and have been deemed approximately accurate by more 

recent studies by Mohamad and Carvajal-Nunez at fixed porosities [3]. A more recent 

study of porosity dependent moduli is needed based on modern fabrication strategies 

but for the present work the approximate elastic and shear moduli are enough to 

provide a general indication of elastic behavior of U3Si2 in simulation. Least square fits 
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to the combined porosity dependent elasticity and shear moduli are already in place in 

the BISON codebase.  

Lacking from the literature is a thermal creep model for U3Si2 under LWR 

conditions. Early theoretical work by Metzger, experimental compressive creep work by 

Mercado and early analysis of these data by Freeman at the University of South Carolina 

provide a baseline thermal creep model for use in finite element modeling of U3Si2 

based ATFs. Lacking from this earlier work is a detailed development of the precise 

standards and statistical requirements used in the production of a final U3Si2 thermal 

creep model. Considering the importance of creep to the performance of nuclear fuels, 

this lack of developed data is a large gap in the understanding of how valid the use of 

U3Si2 as an accident tolerant nuclear fuels is and how they will perform under steady 

state and accident conditions. 

Beginning in 2015, the University of South Carolina developed an initial 

characterization of U3Si2 [1]. In 2018, compressive creep testing of INL fabricated 

pellets allowed the determination of an initial thermal creep model [4, 6]. At the 

conclusion of these works a thermal creep model was presented using a small subset of 

the total available data. The reasons for excluding large amounts of test data and the 

specific methodologies employed in the analysis of the raw creep data were not 

documented. Further, the results of these studies lack a firm determination of the 

suspected thermal creep mechanism.  

A major goal of this work is to thoroughly document the processes used in the 

development of a statistically rigorous empirical model of thermal creep in U3Si2 in the 
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range of conditions covered in the previously accomplished studies. Additionally, 

various mechanisms of creep will be investigated to elucidate whether determination of 

a mechanism-based creep model is possible. 

2.2.5 Fuel Fracture and Relocation 
Very few data are available on the cracking and relocation of U3Si2. Despite an 

abundance of aluminum-based research and test reactor dispersion U3Si2 fuels, to date 

only low burnup irradiation of LWR grade U3Si2 fuel has been accomplished [2]. These 

studies agree that rise to power cracking of U3Si2 tends to be lower than expected for 

UO2. 

Figure 2.1 above shows data from the INL study indicating that at 20 GW-

day/MTU U3Si2 forms about 4.6 fragments on average where UO2 would form about 

18.4 fragments [2]. This relative cracking creates a ratio of about 0.25 U3Si2 fragments 

for every UO2 fragment created during rise to power. To a first approximation, it may be 

expected that this UO2 normalized cracking factor encapsulates the combined 

Figure 2.1: U3Si2 cracking relative to expected  adapted 
from Cappia [2] 
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differences between UO2 and U3Si2 with regard to thermal conductivity, thermal 

expansion, fracture toughness, and elasticity as they relate to the propensity for U3Si2 

to crack. 

Since this factor incorporates many condition dependent material properties, it 

is expected to be acceptable for use only in the range of conditions established during 

rise to power of the INL experiment. The simulated conditions of the present study of 

temperature, pressure, and fuel geometry are similar to those of the INL tests with the 

exception of the power density of the experiment being much lower. However, since the 

operating temperatures are similar, the majority of relative cracking stresses are 

expected to be comparable. Thus, for this research cracking and relocation models 

developed for UO2 can be used in BISON modeling of U3Si2 when offset by this cracking 

factor. 

Relocation of UO2 has been understood for many years and is best modeled 

using the modified ESCORE model developed by Kramman and already in use in the 

BISON codeset. Under the current assumption for U3Si2 cracking, since fuel relocation is 

a function of the extent of fuel cracking, U3Si2 may be expected to relocate 

proportionately less than UO2 by the same factor determined above for cracking. 

2.3 SiC 
Selection of an appropriately non-reactive cladding for use with U3Si2 is a key 

aspect of accident tolerance. Much research has focused on the use of U3Si2 in 

combination with either chromium coated zircaloy or FeCrAl cladding. These claddings 

provide reduced chemical reactivity under accident conditions but at a cost of reduced 
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neutron economy [13]. Development of improved monolithic-composite duplex SiC 

claddings has renewed interest in its use as an ATF cladding. 

Monolithic and Composite SiC material properties have been extensively studied 

and their material properties have been collected in various reports. Since composite 

SiC fabrication technique has such a large impact on its materials properties, this 

literature review aims to ensure that the material properties presented for inclusion in 

the BISON simulation have been gathered for materials that are similar in terms of 

fabrication technique.  

Different arrangements of SiC claddings have been proposed for use in accident 

tolerant fuels. Based on the findings of Stone and others, this work uses the 

combination of an inner layer of CVI composite SiC cladding to reduce the hoop stress of 

the more brittle monolithic CVD outside layer of the cladding which allows for 

hermeticity under load [5] 

It is important to note that while the material properties of monolithic SiC are 

consistent among polycrystalline variants, significant differences exist among the 

various forms of CVI composite SiC [14]. These differences are due to variations in the 

method of fiber winding, fiber winding angle, fiber coating and weave method. Since no 

single document can provide authoritative material properties consistent among the 

many forms of CVI composite SiC, the properties here should be viewed as 

representative of average behavior and not a precise model of a single CVI composite. 

Thus, the BISON simulation that follows must similarly be viewed only as representative 

of typical behavior and not of any existing CVI product. 
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2.3.1 Elasticity and Compliance 
Monolithic SiC is a super high strength material ideal for use in high temperature 

and stress environments. Its highly crystalline structure makes it susceptible to brittle 

failure requiring it to be coupled with a composite layer of SiC for nuclear applications 

where “graceful” failure mechanics are essential. The environmental barrier monolithic 

SiC assumed in this study is polycrystalline with a temperature and porosity dependent 

Young’s modulus given by Snead [14]. This behavior for monolithic SiC is already 

incorporated into the BISON codeset, however, since this material model is limited to 

temperature effects it needs to be modified to account for softening from irradiation 

that can reduce the young’s modulus by as much as 10% [14]. 

Composite CVI SiC is a more compliant material due to the designed 

microcracking of the composite SiC matrix prior to loading of SiC fibers. These features 

allow composite SiC tubes the benefit of plastic like mechanical behavior under load. 

Several laboratories evaluated the axial properties of composite SiC tubes and 

determined tubular composite SiC to have a UTS of 236.5 MPa and a PLS of 92.8MPa 

with a Young’s modulus of 201.9GPa [15]. Stress strain data averaged among the various 

laboratories shows axial strain hardening behavior of composite SiC reminiscent to 

plastic deformation in metals as the composite matrix cracks above the PLS. Unlike 

metals, however, strain hardening quickly saturates and the stress strain relationship 

becomes linear until fiber failure.  

While the above is true for uniaxial continuous stress. Composite Matrix Ceramic 

(CMC) materials have unique characteristics when placed under dynamic loading and 

unloading. Typically when a hard material plastically deforms, upon relaxation its 
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Young’s modulus remains unchanged. Further cycles of elastic loading and unloading 

follow the same slope in the elastic region though offset by the amount of plastic strain 

that has occurred. Composite SiC, a CMC, has been observed to damage the original 

Young’s modulus when thresholds of stress have been exceeded [16]. Since no damaged 

based relaxation model exists within the BISON codebase, this capability is developed in 

Chapter 3. 

Anisotropy in the mechanical material properties was recently investigated by 

Singh et al [17]. Radial elasticity modulus is only a third of the axial value, while hoop 

elasticity is similar to axial. Due to limitations in the coupling of isotropic plasticity 

tensors with anisotropic elasticity tensors in BISON, this work acknowledges the need 

for further development to include anisotropic elasticity in future modelling. However, 

since axial and hoop stresses are of greatest concern in evaluating cladding performance 

and failure probabilities, this work uses axial composite SiC mechanical properties in 

isotropic elasticity tensors for its BISON simulations.  

The SiC-SiC Material Property Handbook indicates that irradiation effects on 

mechanical properties of composite SiC are insignificant [18]. However, more recent 

evidence suggests that the degradation of axial Young’s modulus is about 18.4% [17]. As 

in the case of monolithic SiC, this reduction is expected to follow irradiation swelling and 

saturate prior to 2 dpa.  

2.3.2 Thermal Conductivity 
Katoh found that the thermal conductivity of monolithic and composite SiC are 

highly dependent on the amount of irradiation damage that a fuel has received [19]. 
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This effect was later developed into a model by Stone for monolithic and composite SiC 

that has been used in previous BISON simulations [5]. Stone’s models are convenient for 

use in BISON modeling but are based on SiC plate data, rather than tube geometries. 

Since monolithic SiC material properties are less structure dependent as compared to 

composite SiC, Stone’s plate specimen thermal conductivity models for monolithic SiC 

are adequate and used in this work.  

However, in CMC materials thermal conductivity is highly structure dependent 

and will not be well represented by a single model [18]. Accurate thermal conductivity is 

needed to better approximate the temperature profile through the fuel. Rather than 

rely upon plate specimen thermal conductivity, thermal diffusivity data collected by 

Koyanagi for tubular composite SiC allow for thermal conductivity calculations that are 

more generally representative of tubular composite SiC [18]. The present simulation will 

modify Stone’s irradiation dependent composite SiC thermal conductivity models to 

include tube specimen data as provided by Koyanagi.  

2.3.3 Irradiative Swelling  
A fully descriptive low-burnup study of the irradiation swelling behavior of 

monolithic and composite SiC has been done by Katoh [20]. SiC has a high degree of 

swelling that saturates at approximately 1 dpa. Composite SiC is found to have 

anisotropic swelling with similar axial swelling as monolithic SiC but with measurably 

less radial swelling in composite SiC. This difference in swelling rate is expected to cause 

compressive stresses within the composite layer and tensile stress within the monolithic 

layer of a duplex SiC cladding.  
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2.3.4 Creep Compliance 
SiC undergoes primary thermal creep upon initial loading in cases of extremes in 

loading and temperature but secondary thermal creep is nearly zero for all but the most 

elevated stress conditions [14]. Since the observation of primary creep is limited to 

worst case conditions that are unlikely to be seen by the cladding at LWR conditions, 

this work assumes primary and secondary thermal creep of SiC to be negligible. 

Irradiation Creep in SiC is similar between monolithic and composite variants and 

is less than other cladding materials [21]. This behavior lends to the high stability of SiC 

and suggests that time to contact with the fuel will be extended. Work by Koyanagi 

suggests a swelling coupled region of primary irradiation creep through 1 dpa followed 

by a steady secondary creep thereafter [21]. This work by by Koyanagi, however, was 

done using the Bend Stress Ratio technique on monolithic CVD SiC as well as composite 

SiC fibers which was acknowledged in his later work to be complicated and prone to 

inaccuracy though properly demonstrative of creep mechanism. Generally, tensile 

irradiation creep determined via BSR technique was found to be more than an order of 

magnitude lower than in-reactor tested SiC tubes [22].  

Creep compliance (K) for swelling coupled irradiation creep found by Koyanagi, 

Equation 2.5, is comparable in magnitude to steady-state irradiation creep found by 

Lewinsohn in Equation 2.6 [23], thus the combined irradiation creep is described as the 

sum of transient and steady creep, Equation 2.4.  

𝜖௜̇௥௥ = 𝜖௧̇௥௔௡௦௜௘௡௧ + 𝜖௦̇௧௘௔ௗ௬     2.4 
    𝜖௧̇௥௔௡௦௜௘௡௧ = 𝐾ଵ ∙ 𝜎 ∙ 𝑆̇      2.5 
      𝜖௦̇௧௘௔ௗ௬ = 𝐾ଶ ∙ 𝜎 ∙ 𝜙      2.6 
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Koyanagi’s models are expected to be only an initial description of irradiation 

creep since they were determined using BSR data from small SiC fibers rather than tube 

specimen. Further in-pile creep tests were accomplished in the Halden BWR for 

monolithic CVD SiC tube specimen that show a much higher amount of creep strain  

under similar temperature conditions [22]. This result combined with the structure 

variability of the BSR creep data indicate that irradiation creep of SiC is highly 

dependent on structure and loading scheme. 

2.3.5 Thermal Expansion 
The foregoing has shown that most SiC material properties have some irradiation 

dependence. Research by Snead and Koyanagi et al., however, show that thermal 

expansion in SiC is a property inherent to the material and independent of any outside 

influence [24]. There are few tube specimen SiC thermal expansion data available, but 

due to the inherent characteristics of thermal expansion, existing plate specimen data 

are sufficient for modeling purposes [19].Instantaneous Coefficient of Thermal 

expansion is very similar between monolithic and composite [19]. A best fit model for 

calculating the CTE for monolithic CVD and composite CVI types of SiC was found by 

Katoh that has already been implemented into the BISON codeset. 

The preceding collection of U3Si2 and SiC material properties give a basis for the 

development of a thermal creep model for U3Si2 to be implemented with the material 

models discussed in this chapter in a full physics BISON simulation. Chapter 3 provides 

the thought process and assumptions in the development of this BISON simulation.  
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Chapter 3 Methods
 

U3Si2 is an intermetallic with mechanical properties between those of a metal 

and a ceramic [25]. Computational studies predict the electronic structure to conform 

more similarly to metallic than ceramic structures [26]. As a result, creep behavior of 

U3Si2 is likely somewhere between that of ceramic UO2 and vanadium, a metal with 

similar young’s modulus and melting point to U3Si2. Ashby diagrams are provided in 

Figure 3.1 for these two materials to show general creep regime trends at normalized 

stresses and temperatures for typical LWR conditions [27]: 

 

Previous BISON tests with typical PWR conditions have shown U3Si2 centerline 

temperatures to operate in the range of 940K to 1100K and fuel stresses to be higher 

Figure 3.1: Creep regimes adapted from Ashby [27] 
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than 50 MPa. These conditions are in line with those used during Mercado’s U3Si2 creep 

testing with temperatures between 850 to 1000°C and stress between 25 to 80 MPa. 

Considering the melting temperature of U3Si2 is 1938K [1] and its shear modulus to be 

67.68 GPa [26], if U3Si2 thermal creep behaves as a compromise between Vanadium 

and UO2, we can expect the creep mechanism to follow a power law mechanism. 

T/Tm=0.51 and σ/G= 7E-4 indicated by red box in Figure 3.1.  

The form for power law creep is generally taken as ϵ̇ = Aσ୬eି
్

౎౐ with n>3. U3Si2 

is tetragonal in the P4/mbm space group consistent with the Cu3Au structure with two 

Si atoms in the Au site [26]. Our prediction of power law creep is further enhanced by 

the fact that other intermetallics of the Cu3Au structure are clearly in the power law 

creep regime with n=5 [28]. Intermetallics of the Cu3Au structure typically follow the 

“Cu3Au Rule” where the creep activation energy is closely related to the dominant 

species self-diffusion energy [28]. This rule generally holds true for CumAun where 

m/n>2. Replacement of the metallic single atom Au site with crystalline Si may 

contravene this rule to create unexpected creep modes in U3Si2. In addition to 

verification of the stress exponent, creep activation energy consistent with the uranium 

self-diffusion energy would indicate creep behavior that fits within the expected 

behavior envelop of Cu3Au solids.  

3.1 Development of Thermal Creep model 

The equation for power law creep can be linearized as ln ቀ
஫̇

஢౤
ቁ = −

୕

ୖ

ଵ

୘
+ ln(A).  

When a variety of data for ϵ̇, σ, and temperature are available, the coefficients A and Q 

can be found by iterating over values of n and calculating a least squares linear fit by 
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plotting ln ቀ
஫̇

஢౤
ቁ  against ଵ

୘
. Despite the expected power law creep outcome, an analysis 

is conducted which elucidates the creep behavior of U3Si2 based on existing data. 

Rather than evaluate the creep parameters under an assumed creep mechanism, the 

compressive creep data will be fit using the generalized Mukherjee-Bird-Dorn equation, 

ϵ̇ =
୅ୋୠ

୩୘
ቀ

ୠ

ୢ
ቁ

୫

ቀ
஢

ୋ
ቁ

୬

D଴eି
్

౎౐, which reduces to Equation 3.1 below where Aᇱ =
୅ୠౣశభୈ౥

୩ୋ౤షభ
 

[29]: 

ϵ̇ =
୅ᇱ

୘

஢౤

ୢౣ 
eି

్

౎౐     (3.1) 

This equation is capable of accounting for dislocation and diffusional type secondary 

creep through its incorporation of stress, temperature, and grain size dependent 

factors. When Equation 3.1 is linearized, A′ can be calculated directly from regression. 

Use of Equation 3.1 will provide an indication of which mechanism is the 

dominant U3Si2 creep mode from Mercado’s 2018 experiment which follows based on 

the determined creep coefficients for m, n and Q. Once the mechanism of creep has 

been loosely established using Equation 3.1, the proposed creep mechanism can be 

verified, and a final creep model established.  

Data for determining creep coefficients for U3Si2 come from Mercado’s 

compressive creep testing. His experiment covered a range of temperature, stress, and 

total axial strain applicable to expected LWR conditions. A total of 13 tests were 

conducted among five different U3Si2 pellets. Creep strain, temperature, stress and 

pressure vs time data from Mercado’s experiment are included in Appendix A. The five 

pellets of U3Si2 from Mercado’s experiment come from Batches 3 and 4 received from 
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INL [1]. The difference between Batches 3 and 4 is that during fabrication, Batch 3 

wasn’t pressed within two weeks, which may have led to the formation of additional 

phases within the bulk U3Si2. Phase inconsistency has been identified as a possible 

cause of U3Si2 mechanical property deviations, fracture toughness for example, 

between Metzger and later works[9]. 

3.1.1 Explanation of Original Creep Test Sequencing 
To obtain data that adequately represents creep rate, a variety of testing 

conditions are required. Among the possible creep rate mechanisms, the creep rate is 

generally a function of stress, temperature, and grain size. To adequately capture the 

mechanism of creep, a minimum of three tests must be conducted to satisfy the 

following requirements. 1) Constant temperature with an increase in stress 2) Constant 

stress with an increase in temperature. 3) A comparison of tests between two pellets 

which follow 1 or 2 above and vary in grain size.  

Among the five U3Si2 pellets, multiple creep tests were conducted on each 

pellet for a total of 13 tests in the following scheme. The reader is referred to Appendix 

A for data plots of his original experiment [4]: 

Pellet 1 (Sample 150813a): Test 1 and 2 were held at constant temperature to 

evaluate the effect of varying stress while maintaining a constant temperature. PID 

temperature control was not yet implemented for these tests, however, a python 

scripting method to eliminate statistical deviations is described later to allow this test to 

satisfy requirement 1. Test 3 is not applicable for use in the creep model since a power 

failure caused Test 3 to end prematurely. 
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Pellet 2 (Sample 150813b): Test 4 and 5 were intended to evaluate the effect of 

raising temperature against a constant stress, however, the relatively high creep rate 

found in Test 5 in combination with a slight decrease in applied stress resulted in a large 

amount of reduction in true stress. This large variation in true stress in Test 5 prohibits 

these tests from satisfying requirement 2. However, the smooth variation in stress state 

in Test 5 provides an interesting opportunity to use subsets of data within the Test 5 for 

model determination purposes. 

Pellet 3 (Sample 161214b): Test 6 and 7 improve upon the result of Test 4 and 5 

and hold a relatively constant true stress state in combination with a much larger 

increase in temperature. The tests of Pellet 3 satisfy requirement 2. 

Pellet 4 (Sample 161214a): Tests 8, 9 and 10 hold temperature constant with a 

sequential increase in true stress. The tests of Pellet 4 satisfy requirement 1.  

Pellet 5(Sample 161214c): Tests 11 and 12 hold true stress steady with a large 

increase in temperature which provide another set of data for validation of requirement 

2. Test 13, greatly increases true stress while maintaining temperature the same as Test 

12 which helps in the validation of requirement 1.  

Note that there is no combination of tests that are exactly compatible with 

requirement 3. However, even though the temperature and stress states between the 

tests in Pellet 1 and Pellet 4 are not the same, the type of testing, vis., steady 

temperature with an increase in true stress, allows these two pellets to be used to 

satisfy requirement 3. Importantly, the combination of these tests provide ample data 
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that satisfy the necessary requirements for production of a secondary creep model 

using Equation 3.1. 

3.1.2 Primary Creep 
Insufficient statistically reliable data are available to develop a primary creep 

model that is representative of all creep tests conducted. Lack of PID temperature 

control creates the appearance of primary creep in Tests 1-2 that is caused by significant 

drops in temperature throughout those creep tests. Test 4 does not have any clear 

region of primary creep, and while Test 5 appears to have a region of primary creep, the 

change in creep rate is caused by a drop in applied stress.  

Test 6 and 7 were completed on the first pellet used with PID temperature 

control and show a clear region of primary creep in Test 6 and no primary creep in Test 

7 after an increase in temperature. It is obvious from Test 6 that primary creep is 

completed after about 130 hours of testing and that an increase in temperature 

between Test 6 and Test 7 is insufficient to reintroduce primary creep in Test 7. Test 8 

was complicated by a lengthy seating process that obfuscated any primary creep that 

may have occurred. 

Despite these data quality problems which prevent development of a primary 

creep model, it is possible to obtain information about the total contribution of primary 

creep in certain tests. For the first tests in each pellet, with consistent temperature and 

stress data, the total contribution from primary strain can be determined by finding the 

y-intercept of a least squares fit of the steady state strain equation. Thus, if the total 

creep strain had only been due to secondary creep, the y-intercept of the fit strain 



 

29 

equation would be zero. When the secondary creep rate follows a measurable amount 

of primary creep, then the y-intercept of the secondary creep equation represents the 

amount of primary creep strain prior to onset of secondary creep. 

Overall, the data show a small contribution to overall strain from primary creep. 

Tests in which primary creep may have been visible were Test 1, 4, 6, 8, and 11. Using 

the method described in the previous paragraph, the contribution to total creep was 

determined for Tests 4, 6, and 11. As previously mentioned, problems within the data in 

Test 1 and 8 make these tests unsuitable for use in determining primary creep. 

Contributions from primary creep to total strain were 0.009, 0.005 and 0.003 for Tests 4, 

6 and 11 respectively which represent a less than 5% of the total creep in their 

respective pellets. Thus, the effect of primary creep is considered negligible in this work. 

The reader is referred to Appendix A for a collection of strain data as calculated using 

the python scripting methods described later in this chapter.  

3.1.3 U3Si2 Grain Size 
Determination of post-creep grain size is currently underway at the University of 

South Carolina. Without any report with conclusive evidence of a grain growth model, 

the calculations in this work will be determined based on archival work by Coleman 

Terrapin for pre-creep grain sizes of each creep tested pellet. Notably the U3Si2 pellets 

were discovered to have a radial grain size dependence. Therefore, the archival grain 

sizes used for this work are the average of the center and outer edge grain diameters for 

each pellet which are 15.6um for Tests 1-6 and 26um for Test 7-13. 



 

30 

3.1.4 Pre-strain on Multistage Creep Experiments 
Care must be taken while interpreting the data in Mercado’s creep tests. 

Multiple tests were conducted upon each pellet, therefore, the effect of pre-strain on 

tests that followed the first test in each pellet must be considered. The effect of pre-

strain on secondary creep is highly material dependent. In most cases, such as among 

various grades of steel, pre-strain has the effect of creating hardening dislocations 

which reduce creep rate [30]. Other metals, such as copper, experience strain hardening 

and loss of creep ductility in pure samples but in samples that contain oxygen the loss in 

ductility is offset by the creation of cavitation voids which result in increased creep rate. 

Traditional nuclear fuels such as UO2, a ceramic, are sufficiently brittle that strain 

hardening can be neglected during compressive creep testing. By contrast, the structure 

of U3Si2 gives it metallic properties and so it is expected to strain harden throughout 

testing. Since the intent of this work is to provide a thermal creep model for use in 

simulating the performance of U3Si2 as a LWR nuclear fuel, the nature of this use case 

presupposes the need to understand long-term creep behavior under high burnup 

conditions where the fuel is understood to have undergone some pre-strain. Therefore, 

a creep model that properly describes the long-term creep behavior of U3Si2 must 

necessarily include any expected strain hardening that will occur.  

3.1.5 Python Scripting Method of Calculation of Strain Rate, Temperature, and True 
stress 

The present work relies upon the same raw time-dependent temperature, true 

strain, and true stress data that was collected by Mercado and verified by Freeman. The 

reader will note small differences in the calculated true strain rate, average 
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temperature, and average true stress found in this work when compared to the results 

found by Freeman and Mercado. These differences come from variations in the number 

of raw data points used to determine the strain rate as well as the specific range of time 

over which the strain rate was calculated for each test.  

Mercado’s results were provided with minimal indication of the conditions over 

which secondary creep rate was calculated. Also, while Freeman does indicate some of 

the general conditions over which his results were determined, his results cannot be 

reproduced without use of his python scripting tool with built-in conditions much more 

specific than outlined in his thesis. Rather than substantiate the differences between 

previous and current results, the present work provides a new set of calculated average 

strain rates for secondary creep, average temperature, and average true strain along 

with a detailed explanation of how the raw data were treated for calculation of these 

average values. Generally, these data are calculated using the same tool as developed 

by Freeman with some modification using the analysis parameters explained below. 

Average strain rate is determined for each test through use of python scripting. 

Since each U3Si2 pellet was used to facilitate multiple tests, careful treatment of the 

raw data are needed to allow calculation of secondary creep rate without including data 

during primary creep modes, transitions between tests, and other data anomalies 

present due to difficulty in the original experiment. For every test, three analysis 

parameters are specified to ensure proper and repeatable calculation of average creep 

rate among an inconsistent data set. Python variables for these parameters are 



 

32 

provided in parenthesis and a python 2.3 code template is provided in Appendix B for 

reader reference: 

 Sample Seating Skip Time (sample_seating): The length of time skipped at the 

beginning of a pellet’s first test. This parameter is needed to skip any primary 

creep that may be present in the initial portion of a pellets testing and resolve 

any issues with sample seating. This parameter is generally 130 hours or more 

for each test as determined from the apparent primary creep of Test 6. 

 Transition Skip Time (skip_time): The length of time skipped when transitioning 

between tests. This parameter is at least 20 hours to avoid anomalous data 

during equipment adjustment to new loading conditions. 

 Required Test Time (time_frame): The total length of time over which the 

average creep rate, average temperature, and average true stress are calculated. 

This parameter is generally in excess of 100 hours for most tests. However, Test 

8 and 10 are special cases where statistical analysis show reliable steady state 

data for a somewhat shorter period of time. For these tests respectively, 65 and 

82 hours of Required Test Time were specified.  

Due to experimental difficulty, the raw data of some tests do not present an 

obvious region of secondary thermal creep. This difficulty in the data is overcome by 

specifying the analysis parameters described above for each test. The script finds the 

highest correlating average true strain rate for each test among the remaining data not 

excluded by Sample Seating Skip Time and Transition Skip Time. It does this by finding 

the average true strain rate over a length of time equal to the Required Test Time that 
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provides the highest correlation coefficient (r). In this way the script can find the best 

average creep rate agreement to the data from within a larger range of available data. 

For each highly correlated average strain rate the same range of data points are 

used to calculate an average temperature and average true stress. Due to a high amount 

of variability in the temperature and stress data of some tests it is necessary to ensure 

that the average temperature and stress determined for the highly correlated strain 

rates is over a range of similarly well correlated temperature and stress data. To 

accomplish this, a limit to the acceptable amount of variation in the data is established.  

The Coefficient of Variation (CV), the ratio of the data’s standard deviation to its 

arithmetic mean, is a common statistical measure of data variation. Average 

temperature and true strain for the calculated values for strain rate were required to 

have CV of less than 3.5% to guarantee strain rates were only calculated for ranges of 

data with consistent values of temperature and stress. This requirement ensures that 

the mean normalized standard deviation of the temperature and stress data over the 

range of calculated strain rate values remain close to the average temperature and 

average stress. This strategy greatly improves creep model development over previous 

work by guaranteeing well clustered temperature and stress data for each calculated 

strain rate. 

In summary, the calculated average strain rates, average temperatures, and 

average true stress were calculated based on the following requirements: 

(1) Fit within a timeframe equal to Required Test Time and outside the time 

excluded by Sample Seating Skip Time and Transition Skip Time. 



 

34 

(2) Average strain rate must have a coefficient of correlation greater than 

0.90. 

(3) Average temperature and true stress must have a CV less than 0.035. 

A collection of average strain rate, average temperature, and average true stress 

graphs overlaid on the raw testing data are provided in Appendix A. A summary of the 

data calculated using the scripting strategy described above is found below in Table 3.1: 

Table 3.1: Summary of calculated strain rate, temperature, and true stress 

Test # Creep Rate (1/s) Average Temperature (K) Average True Stress (MPa) 
1 8.7327E-8 1218.37 44.10 
2 1.1342E-7 1205.18 71.77 
3 N/A N/A N/A 
4 1.7042E-8 1121.22 77.66 

5-A 1.3081E-7 1223.89 65.13 
5-B 6.4806E-8 1210.07 57.71 
6 1.5728E-8 1173.59 46.43 
7 4.6342E-8 1223.59 45.21 
8 1.5486E-8 1223.60 29.51 
9 2.7472E-8 1223.53 49.73 

10 7.1920E-8 1223.64 63.62 
11 1.1171E-8 1223.69 26.91 
12 1.8750E-8 1273.61 26.45 
13 2.9831E-8 1273.61 47.79 

Test 5 was unique due to a large amount of true stress variation over the course of the 

test. This large true stress variation provides an opportunity to extract more than one 

set of data for use within the model. Two ranges of data that meet the requirements 

described above were observed in the range of data not excluded by Transition Skip 

Time and that provide enough Required Test Time. Hence two different average strain 

rates were calculated from Test 5. These have been denoted Test 5a and Test 5b. 
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The creep parameters A, Q, m, and n are determined from the data in Table 3.1 

by linearizing Equation 3.1 and plotting ln ቀ
க̇୘ୢౣ

஢౤
ቁ against ቀଵ

୘
ቁ. Once linearized in this 

form it is possible to directly calculate the values of A and Q for a combination of m and 

n. There is a relatively small number of possible combinations of m and n with m in the 

expected range of 0.00 to 3.00 and n in the expected range of 1.00 to 7.00 which allows 

each combination of m and n to be determined computationally and evaluated using 

standard statistical fitness techniques described below.  

Generally, in linear regression statistics r2 approaching unity indicates the model 

perfectly describes variation in the data. It is a measure of how tightly the data adhere 

to the model. A large r2 indicates a model that accurately describes variation in the data, 

but r2 alone does not provide an indication of model validity since it cannot indicate the 

likelihood of the correlation occurring by chance. To test whether the model is likely to 

have represented the data by random chance, two-sided p-values were determined at 

the 0.01 significance level. In regression statistics this means that an established null-

hypothesis of no correlation between the data and the regressed line (zero slope) can 

be rejected for p-values less than 0.01. For any p-value less than 0.01 we could expect 

the model to give a similarly good agreement due to random chance in only 1% of 

similar experiments. A smaller p-value is generally consistent with a model that is less 

likely to fit the data due to random chance. 

For each combination of m and n, the r2 and p-value is calculated for the linear 

form of the creep data tested against the linearized form of the creep model. Since the 

p-value is a measure that indicates confidence to reject the null-hypothesis, the null 
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hypothesis being that the slope of the linear regression does not correlate to the data, 

for p-value<0.01 we can confidently reject the null hypothesis. Thus, p-values less than 

0.01 indicate that the calculated values for A, Q, m, and n provide a strain rate 

calculated from a statistically significant model. Provided the test for significance is met, 

higher r2 indicates a more accurate model.  

3.2 BISON Material Models 
Finite element analysis methods were used to determine the impact of the 

developed U3Si2 secondary thermal creep model on the performance of the concept 

ATF. BISON is a finite element analysis code that has been thoroughly described by 

others in the development of fuel performance models. Metzger and Freeman used 

BISON to produce U3Si2 fuel SiC clad simulations in varying levels of model complexity 

[6] [1]. The model provided in this work is an improvement with respect to physical 

geometry as well as material models that have been developed or updated by various 

authors. 

Based on the information obtained during the literature search performed in this 

work the following material models and physical properties are deemed most 

appropriate for inclusion in the BISON simulation based on the merits of each described 

in Chapter 2. Based on the author’s search of the relevant literature they are believed to 

be the most up to date material models available at the time of writing. Material models 

that are used as provided by the various authors will not be further described in this 

section. For that purpose, the reader is referred to the various cited works of Chapter 2. 

However, key assumptions for each material model that have been modified are 
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described here to provide the reader with a transparent view of the methods used in 

developing this BISON simulation.  

3.3 U3Si2 material models 

3.3.1 Thermal Creep 
Chapter 4 details the development of a thermal creep model for U3Si2. Different 

creep modes are investigated in Chapter 4 to provide models suitable to conditions 

where creep must be calculated using a mechanistic model outside the range of 

available experimental data. However, since the conditions of the BISON simulation in 

this work stay within the bounds of Mercado’s original experiment, the Mukherjee-Bird-

Dorn empirical relationship is adequate for the simulation in Chapter 4. Equation 3.1 is 

reproduced below for convenience along with its creep parameters provided in Table 3.2 

ϵ̇ =
A′

T

σ୬

d୫ 
eି

୕
ୖ୘ 

 
Table 3.2:Creep parameters for Equation 3.1 

Q A’ n m 
223076.62 J/mol-K 4.841E-19 1.936 1.86 

 
3.3.2 Fracture and Cracking 

Given that U3Si2 has approximately a quarter of the rise to power fracture 

normally evident in UO2, this work utilizes the existing BISON UO2 relocation model 

reduced by a factor of 0.25. In using this approach, it is assumed that relocation is 

proportional to the amount of cracking present in the fuel. Standard UO2 fuel cracking 

and relocation in BISON is handled using the ESCORE relocation model [31] that has 

been linearly modified as described above to: ΔD = 0.2Q ቀ
ୋ౥

ୈ౥
ቁ (0.005Bu଴.ଷ − 0.2D୭ +

0.3)D୭ , where Bu, Do, and Go are the burnup, as-fabricated diameter and fuel-clad gap 
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respectively. Note, this model is a combined cracking and relocation model that adjusts 

the diametral strain of the fuel without any need for a stress state. It is essentially a 

non-physical strain to account for fuel relocation that is added to the total strain from 

all other sources in the simulation. 

The above relocation model does nothing to account for actual stress 

redistribution in the fuel upon cracking. In most materials there exists a direct 

relationship between the stress distribution in a region of a material and the failure 

crack length of the material. For simple geometries this relationship is described by Y =

K୍ୡ/σ୤√πa  where KIc is the material toughness and a is the crack length [32]. The 

geometrical factor Y is approximately unity where specimen size is much larger than 

crack length [32]. 

Metzger reported a U3Si2 fracture toughness of 0.930 MPa√m, however, 

samples of U3Si2 produced using improved arc melting strategies have shown fracture 

toughness in U3Si2 to be as high as 3.25MPa√m [1] [9]. The average fracture crack 

length of 72um and fracture toughness taken from Mohamad results in a cracking stress 

of approximately 216 MPa. 

Cracking of the fuel in the present simulation is based on an isotropic smeared 

exponential softening model already designed into the BISON codebase with a cracking 

stress of 216 MPa. When stress exceeds σୡ = 216 MPa in any principle direction then 

the model cracks the fuel reducing the stress exponentially according to  σ = σୡ(σ୰ୣୱ +
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(1 − σ୰ୣୱ) exp ቆ
஑ஒ

஢ౙ
൫ϵୡ

୫ୟ୶ − ϵୡ
୧୬୧୲൯ቇ where the residual stress σ୰ୣୱ = 0 and the fitting 

parameters αβ are assumed to be the negative of the Young’s modulus for U3Si2 [33]. 

3.4 SiC material Models 

3.4.1 Elasticity 
As was shown in Chapter 2, the elasticity of SiC is affected by irradiation to a 

small degree. This effect is coupled to the irradiative swelling of SiC which saturates at 

low fluence. Since the majority of swelling in SiC is accomplished very early in the life of 

the fuel, the monolithic Young’s modulus will simply be reduced linearly over 

approximately 2 dpa by 10% to 414GPa. This way a great majority of simulated time will 

use the irradiated monolithic SiC young’s modulus while accounting for the early burnup 

transient. Similarly, the axial unirradiated Young’s modulus for composite SiC is reduced 

by 18.4% to 181.71 MPa. 

Though composite SiC is a highly anisotropic material, the material properties 

must be implemented isotropically in BISON due to unavailability of anisotropic 

plasticity tensors in BISON. Anisotropic elasticity tensors are available for composite SiC 

that can be implemented without plasticity models, however, plasticity of SiC is an 

important point in SiC modelling efforts and should not be neglected. Since hoop and 

axial elasticity moduli are in the same range of values the results of the simulation in 

this work are considered adequate, however, the need for further development to 

incorporate anisotropic plasticity tensors into BISON is acknowledged.  

3.4.2 Plasticity 
Compliant composite SiC materials have been developed to allow SiC to behave 

more like a metal under conditions where monolithic SiC would brittlely fail. CMC 
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materials demonstrate unique plastic-like behavior that doesn’t follow the same 

mechanism as most ductile materials. Generally for CMCs, rather than retaining full 

elasticity upon unloading, when thresholds of stress are exceeded the Young’s modulus 

is permanently damaged and the material follows a different stress-strain path upon 

unloading.  

To simulate this behavior a damage-based plasticity model was developed. In 

this model, damaging of the composite SiC Young’s modulus occurs whenever the CMC 

matrix cracks. The stress-strain relationship for multiple loading and unloading cycles is 

shown in Figure 3.2 below: 

Figure 3.2: Axial stress vs strain of composite SiC [16] 
 

As seen in the figure above, J. Braun and others have shown that composite SiC 

follows a cracking based damaged Young’s modulus loading and unloading scheme. 

Since a model for this kind of behavior does not exist in the BISON codeset, it was 

necessary to develop a model that adjusts the Young’s modulus whenever the maximum 
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von mises stress exceeds the previous maximum and recomputes a new modulus from 

the data in Figure 3.3 adapted from Braun below: 

An important assumption in the development of this cracking model is that there were 

no other stresses applied to, or present, in the specimen used in Braun’s experiment. In 

this case, the axial stress data equal the von mises stress state.  

3.4.3 Thermal conductivity 

To account for the wide variety of thermal conductivities possible through 

differences in composite SiC cladding microstructures, average values for unirradiated 

thermal diffusivities reported by Koyanagi are used to calculate the nonirradiated 

thermal conductivity [18]: 

 𝑘௡௢௡௜௥௥ = 𝛼𝜌𝐶௣     (3.2) 

Density and heat capacity are provided from their respective coupled variables within 

the BISON simulation.  

Figure 3.3: Composite SiC damage factor based on attained stress 
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Thermal resistivity, R = kିଵ, is convenient for adding varying conductivities in 

series where R୲୭୲ = R୧୰୰ + R୬୭୬୧୰୰. It is assumed that irradiation will damage all 

composite SiC structures similarly and so the thermal resistivity due to irradiation, R୧୰୰, 

is assumed to follow the swelling coupled relations for composite SiC provided by Stone 

[5]: 

   R୧୰୰ = 15.11 ∙ S     (3.3) 
 
Total thermal conductivity is then computed by 𝐾௧௢௧ = 𝑅௧௢௧

ିଵ . The total thermal 

conductivity for composite SiC is calculated by using the Koyanagi relation for 

unirradiated thermal resistivity and the Stone relation for irradiated thermal resistivity. 

3.4.4 Irradiation swelling 

The Katoh model swelling model identified in Chapter 2 comprises several 

nested temperature dependent functions that cannot be analytically integrated. 

Numerical integration of these relations are highly sensitive to simulation timestep size. 

During BISON simulation, error caused by this non-linearity prior to 1 dpa is minimized 

by use of sub steps within each BISON time step to calculate irradiation swelling. 100 

substeps is the default for the Katoh model in the BISON codebase, however, 300 

substeps are used in this work to ensure that numerical integration errors aren’t 

propagated through the remainder of the solution. 

The Katoh swelling model makes no attempt to distinguish between axial and 

radial swelling. Since irradiation swelling is implemented as an eigenstrain in BISON, it is 

believed that incorporating anisotropic swelling in future work would be possible. 

However, although measurable differences between axial and radial swelling have been 
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reported, these differences are somewhat small and come from plate specimen data 

which may have considerable differences from tube specimen [20]. Until such time that 

tube specimen data are sufficient to produce an anisotropic swelling model for 

composite SiC, considering the small differences involved it is enough to assume 

isotropic irradiation swelling in this simulation. 

3.4.5 Irradiation creep 

A combination of models is used to model irradiation creep in SiC. Transient 

swelling coupled irradiation strain rate is described by Singh in below: 

      ϵ̇୮୰୧ = K୮୰୧σϵ̇୴୭୪,     (3.4) 
 

K୮୰୧ = 3.5626 ∙ 10ିସTଶ − 4.1704 ∙ 10ିଵT + 156.8507  (3.5) 
 
where 𝜖௩̇௢௟ is the strain rate due to irradiation swelling. Equation 3.5 is shown here as 

reported in the literature [34]. The units for this equation should be 𝑀𝑃𝑎ିଵ based on 

the context of the paper, but as the exact units aren’t reported there is some difficulty 

as the calculated irradiation creep rate is many orders of magnitude too high when the 

equation is used as provided. 

To illustrate, composite cladding temperatures are approximately 800K based on 

the author’s prior simulation experience. Typical mid-life burnup cladding hoop stresses 

are compressive at approximately 40MPa. Assuming a very small swelling rate near 

saturation of 0.0002s-1, then: 

ϵ̇୧୰୰ = 51.2 MPaିଵ ∗ 40MPa ∗ 0.0002sିଵ = 0.41sିଵ 
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Strain rates near 40% per second are unreasonable especially considering this would be 

the strain rate near where the swelling coupled creep should be nearly saturated. 

Clearly, Kpri is many orders of magnitude too high. 

Earlier work by Koyanagi suggests a steady state creep coefficient of about 1 −

2 ∙ 10ି଻(MPa dpa)ିଵ for composite and monolithic SiC at LWR temperatures [21]. 

Lewinsohn’s much earlier work on monolithic SiC tube specimen agrees, 3.16 ∙

10ି଻(MPa dpa)ିଵ, after unit conversion where 1 𝑑𝑝𝑎 of fluence is assumed to be 

10ଶହn/mଶ for consistency with most SiC irradiation creep literature [23]. For steady 

irradiation creep and a typical assumed damage rate, ϕ = 10ି଺dpa/s , then the steady 

state creep rate: 

ϵ̇ୱୱ = Kୱୱσϕ = 2 ∙ 10ି଻(MPa dpa)ିଵ ∙ 40MPa ∙ 10ି଺dpa sିଵ = 8 ∙ 10ିଵ sିଵ 

Even with admittedly rough calculations it is immediately evident that the 

equation for 𝐾௣௥௜ is perhaps 10 orders of magnitude too high. To rectify this problem, 

transient and irradiation creep were combined into a single model to allow comparison 

against data: 

ϵ୲୭୲̇ = ϵୱୱ̇ + ϵ୮୰న̇ = Kୱୱσϕ + K୮୰୧σϵ୴୭୪̇    (3.6) 
 

Equation 3.6 is used to calculate cladding creep rate. When the same calculation 

is done using creep coefficient data as provided by Koyanagi [21], the transient and 

steady irradiation creep rates are comparable when 𝐾௣௥௜ is adjusted by a factor of 10ି଺. 

In Figure 3.4 below, a test calculation is performed to compare the creep of monolithic 

SiC when determined with interpolated Koyanagi data against our units adjusted creep 

coefficient model. 
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As evidenced in Figure 3.4 all major order of magnitude differences have been 

resolved. The remaining differences during the swelling coupled transient region are 

immediately explained by the fact that the empirical model accounts for variations in 

the temperature dependent characteristic fluence, 𝛾௦௖, and swelling rate constant, 𝑘௦, 

that would not have been present in the data as provided by Koyanagi for the conditions 

simulated in this example [21]. Since 𝑘௦ trends upward and 𝛾௦௖ trends lower as 

temperature goes down, and the simulation temperatures are generally lower than 

those in the Koyanagi data, the calculated creep rate is expected to be higher and the 

saturation burnup shifted to the right. The adjustment factor on K୮୰୧ gives a result 

consistent with this expectation and will be used in our combined model for irradiation 

creep.  

More recent in-reactor SiC tube specimen creep data have shown creep rates 

about 3.67 times higher than SiC BSR creep data show [22]. An adjustment to the 

irradiation creep model proposed above in Equation 3.6 is needed to account for this 

Figure 3.4: Calculation of SiC creep rate 
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difference. Since the BSR data have well documented the existence of transient and 

steady irradiation creep regimes, the models developed to describe this behavior are 

considered sound in quality but quantifiably low in their representation of actual tube 

specimen irradiation creep. To account for lower calculated irradiation creep, the 

models presented by Singh are adjusted by the above factor to bring them in line with 

the measured Halden BWR SiC irradiation creep data [22] [34] 

3.4.6 Rod Geometry and Simulation Conditions 
The finite element fuel rod mesh used in this simulation is designed to be a drop-

in fit to PWR 17 x 17 fuel assemblies such as those in use at the Seabrook Station reactor 

[35]. Generally, the radial external design and conditions of the simulated PWR concept 

ATF follows those specified in Appendix K of Todreas’ text. The intent of this simulation 

is to evaluate steady-state performance under worst case nominal core conditions. That 

is, the outside radius of the concept U3Si2/SiC fuel rod is 4.75mm, rod pitch is 12.6mm, 

coolant mass flux is 3675.4 kg mିଶ sିଵ, coolant inlet temperature is 599.95 K and 

coolant pressure is 15.31MPa. To save computation time the assumed peak LHGR =

44.62 KW mିଵ is used over a small rodlet of ten 9.8mm height pellets.  

For the case of this study, the rodlet is imagined to represent the center most 

region of the hot-channel in a PWR design. As such, average calculated temperatures 

and stresses of this rodlet represent what would be expected to be the peak local 

temperatures and stresses at the axial centerline of a Seabrook hot channel. 

3.4.6.1 LHGR Variation 
Though the Seabrook Station peak LHGR is quite high, local reactivity depletion 

reduces the local heat generation over time. A common parameter in core analysis that 
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describes overall core neutron multiplicity is Kinf which accounts for neutron production 

and loss factors related to core materials while neglecting geometry considerations. 

Since the present simulation is designed to mimic the maximum local behavior of a fuel 

rod designed with benchmark material conditions, it stands to reason that variations in 

Kinf for a benchmark reactor would adequately describe changes to the local LHGR in this 

simulation. 

To account for variation in the LHGR over burnup, calculated slope of Kinf based 

on the BEAVRS reactor benchmark shown in Figure 3.5 below is applied to the simulated 

maximum LHGR over simulation time [36]. In this manner, simulated LHGR varies from 

its maximum down to 24.3 kW/m over the simulated timeframe.  

3.4.6.2 Plenum Volume 
The coefficient of thermal expansion of U3Si2 is approximately 1.5 times greater 

than UO2. However, the Seabrook standard plenum height to heated fuel height ratio of 

1.059 does not require adjustment. Since the fuel is loaded at room temperature and 

Figure 3.5: Variation in Kinf [36] 
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UO2 operates at higher peak operating temperatures, the expected plenum size 

increase factor is: 

ΔL1

ΔL2
=

a1

a2
∙

ΔT1

ΔT2
=

15

10
∙

900

1400
= 0.96 

Thus, the rod length to fuel height ratio is similar to the original design and does not 

need adjustment. Total rodlet fuel plenum height is then 10.38cm from a heated fuel 

height of 9.8 cm.  

3.4.6.3 Cladding Thickness 
Cladding thickness has a large impact on the performance of nuclear fuels due to 

its deleterious effect on heat transfer, i.e. thicker claddings cause higher temperatures 

and thermal expansion throughout the fuel which can reduce time to fuel clad contact. 

Although the external radial fuel geometries remain unchanged from the nominal 

Seabrook specifications, use of U3Si2 as fuel with duplex SiC cladding necessitates 

changes to internal design. Weaving of SiC fibers in the production of composite SiC 

prevents the use of nominal Seabrook cladding thicknesses of 0.572mm.  

Current production CVI composite SiC structures are commonly produced with a 

total thickness of about 0.75-1.1 mm [3], however, the composite SiC layer can be made 

as small as 0.35mm [37]. As typical production of composite SiC materials results in 

thicknesses approaching 1mm [3], such a thick cladding thickness necessarily causes a 

reduction in available fuel volume.  

By maintaining a 1mm SiC cladding thickness, a minimum reduction in fuel 

volume of 37.7% would occur if normal fuel enrichments are to be maintained: 
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1 −
V

V୭
= 1 −

πrଶh

πr୭
ଶh୭

= 1 −
rଶ

r୭
ଶ

= 1 −
3.75ଶ

4.75ଶ
= 37.7% 

U3Si2 is more uranium dense than UO2 by 17%, however, despite this volumetric fuel 

density advantage, U3Si2 would likely need enrichment when using a 1mm cladding 

thickness. Nominal Seabrook fuel radius is r୭ = 4.096 mm, if an allowable 17% 

reduction in fuel volume is assumed and all other considerations remain equal, a 

minimum fuel radius of r = ඥ0.83 ∙ r଴
ଶ =  3.732 mm in U3Si2 is needed to maintain 

equal reactivity contribution as compared to UO2. Provided total rod outer radius is 

maintained at 4.75 mm and an assumed fuel-clad gap of 0.08mm, then: 

4.75mm − 1mm − 0.08mm = 3.67mm 

Clearly, there is insufficient thickness available for a 1mm cladding thickness without 

enrichment. 

Reliable tube CMC SiC have been produced with a combined thickness of 

0.75mm [37]. It is assumed that since experimental length specimen can be reliably 

produced at a thickness of 0.75mm that reactor scale duplex CMC tubes of 0.8mm 

combined thickness are certainly possible. Hence, for this work a total cladding 

thickness of 0.8mm is assumed. The minimum assumed monolithic thickness is 0.2mm 

to provide a substantial environmental barrier and seal for the porous composite SiC. 

This configuration allows for enough fuel reactivity by exceeding the minimum fuel 

diameter while also exceeding the minimum industry production thicknesses.
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Chapter 4 Results and Discussion
 

4.1 Thermal creep model 

4.1.1 Mukherjee-Bird-Dorn 
The strategies discussed in chapter 3 to produce the data in Table 3.1 are used in 

the development of a thermal creep model for U3Si2. Here, a fitness comparison of 

power law, coble, and Nabarro-Herring creep is conducted. Equation 3.1, can be used to 

provide an empirical best fit to thermal creep data and provide an indication of the 

creep mechanism. This analysis finds the creep parameters for this form to inform the 

further analysis of creep mechanism candidates that are likely to have been present in 

Mercado’s original experiment.  

Equation is linearized and produces the following creep coefficients when a best 

fit linear equation is calculated against the data from Equation 3.1: 

Figure 4.1: A=4.841e-19, n=1.936, m=1.86, Q=223kJ/mol-K 
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When these parameters are used to plot experimental data against calculated 

model data a high degree of correlation and statistical confidence are found.  

Tests 8 and 10, previously excluded by Freeman, are shown to fit well with other 

Tests demonstrating the importance of statistical control of experimental data. Values 

of n above 1 indicate a possible power law creep mechanism. Also, m above one shows 

a grain size dependence that will be present for diffusional creep modes such as Coble 

and Nabarro-Herring creep. Since Equation 3.1 fits best with n=1.936 and m=1.86, the 

possibility of power law and diffusional creep modes must be considered. Creep 

parameters for all three of these creep models will be determined and compared to 

provide an indication of which creep mode dominates. 

4.1.2 Power law creep 
The most common model for creep is that of power law of the form: 

ϵ̇ = Aσ୬eି
్

౎౐     (4.1) 

Figure 4.2: Equation 3.1 compared to data 

Test 10 

Test 8 
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This equation is linearized and plotted in the same manner as above. A best fit linear 

regression to the linearized form of Equation 4.1 is used to find the values for n, Q and 

A: 

While the preceding is a fair fit to the data in terms of correlation, the power law 

creep models are clearly less statistically confident than the Mukherjee-Bird-Dorn 

Figure 4.4: A=5.385e-23, n=3.156, Q=218582.5 J/mol-K 

Figure 4.3: Equation 4.1 compared to data 
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relationship suggests is possible although still lower than the rejection threshold. With 

n>3 we have some evidence that dislocation creep does contribute to the overall creep 

of U3Si2.  

An improved power law creep form as shown by Dartmouth University [38] with 

inverse temperature is given in Equation 4.2. When linearized and plotted against data 

we have results similar to the more common form of power law creep: 

ϵ̇ =
୅

୘
σ୬eି

్

౎౐      (4.2) 

As seen in Figure 4.6 below, power law seems to offer some evidence of contributing to 

creep due to having a p-value lower than the point of significance. However, the this p-

value is much larger my more than an order of magnitude in comparison to the 

empirical Mukherjee-Bird-Dorn relationship. This disparity implies that power law is 

missing an important part of creep in U3Si2 and the majority of creep contribution must 

be found in another mechanism. 

Figure 4.5: A = 3.388e-19, n = 3.1, Q = 225288.02 J/mol-K 
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4.1.3 “Cu3Au” Rule 
The possibility of U3Si2 following power law creep mechanism similar to other 

intermetallics, i.e the Cu3Au rule, is also investigated with n=5: 

Figure 4.6:Equation 4.2 compared to data 

Figure 4.7: Power Law with n=5 compared to data 
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Figure 4.8 provides an indication that power law creep that follows the Cu3Au 

rule may exist in certain tests. There appears to be a clear trend where some tests agree 

with the Cu3Au rule and others do not. The lower of the two groups contains a mixture 

of U3Si2 pellets, and strain conditions that do not produce a trend. However, the 

highest four points that do not fit the Cu3Au rule are the four highest stress states 

tested (Tests 2,4,5a, and 10. This result, and the indication from Equation 3.1 of the 

presence of both power law and diffusion creep mechanisms, is evidence of multiple 

creep modes evidencing from Mercado’s experiment.  

4.1.4 Coble Creep 
The equation for Coble creep is linearized and plotted in the same manner as 

done above. Equation 4.3 is used to produce Figures 4.9 and 4.10: 

ϵ̇ =
୅஢

୘ୢయ
 eି

్

౎౐      4.3 

Figure 4.8: A = 1.596e-32, Q = 326304.34 J/mol-K 



 

56 

Coble creep provides a better correlation as well as statistical likelihood of 

matching the data as compared to power law. Empirically speaking, the only difference 

between the Dartmouth power law relationship and diffusion models such as Coble and 

Nabarro-Herring is the grain size dependence. From this we can posit that grain size 

Figure 4.9: A = 8.492e-18, Q = 208729.42 J/mol-K 

Figure 4.10: Equation 4.3 compared to data 
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dependence is important to the mechanism of creep in the majority of creep tests, i.e 

diffusion modes of creep are the largest contributors to the creep rate of U3Si2 during 

Mercado’s experiment. 

4.1.5 Nabarro-Herring 
Though the only empirical difference between Coble and Nabarro-Herring creep 

is the order of the grain size exponent, they are physically different in that NH creep 

occurs at higher temperatures and involves the diffusion of atoms through the grains as 

opposed to diffusion around grain boundaries in the case of Coble creep. Because of this 

closely related diffusion behavior, NH and Coble creep are often competing mechanisms 

with NH dominating at higher temperatures [38]. 

The creep coefficients for NH creep are expected to provide a similar result as 

Coble but are included here for completeness: 

Figure 4.11:A = 1.201e-14, Q = 173358.92 J/mol-K 
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Two important differences exist between the Coble and NH results. First, one 

may observe visually by comparing Figures 4.10 and 4.12 that while both Coble and NH 

provide a very good fit to the data, the NH plot in Figure 4.12 show the model calculated 

creep rates track nearly in parallel to the experimental data whereas the Coble plot in 

Figure 4.10 do not show such an ideal trend. Second, the calculated activation energy 

between these two modes of diffusion creep are different, 209 kJ/mol and 173 kJ/mol 

for Coble and NH respectively. 

Interestingly, the self-diffusion coefficients for uranium and silicon are 204 

kJ/mol and 171 kJ/mol respectively [39]. Considering the relative amounts of uranium to 

silicon in U3Si2 this provides a weighted average self-diffusion coefficient of 190.8 

kJ/mol which is very comparable to the calculated diffusion activation energies found in 

this work. Given the strong statistical improvement when using diffusional creep models 

Figure 4.12:Coble creep compared to data 
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combined with the calculated activation energies corresponding very well with the self-

diffusion activation energy, the author is of the opinion that Nabarro-Herring creep was 

the predominant creep mechanism found in Mercado’s 2018 experiment. 

4.1.6 Analysis of Creep Results 
The reader is advised that while this work has come to a specific conclusion as to 

the dominant creep mode found in U3Si2 for the conditions of Mercado’s experiment, 

the reality of the observed statistical agreement between all creep modes suggests that 

power law, Coble, and Nabarro-Herring creep each contributed in varying quantities to 

the overall creep rate. It is likely that variations in the experimental conditions between 

creep tests resulted in different primary modes of creep between tests. 

For example, high stresses above 70 MPa were applied to Tests 2 and 4 which 

have smaller initial average grain size than Tests 6-13. Additionally, the average applied 

stress in Tests 6-13 is much lower than Tests 1-5. It is possible the higher average stress 

state during Tests 1-5 in addition to the smaller grain diameter Petch effect resulted in 

the observed considerably higher overall strains in Tests 1-5. The generally much higher 

amount of creep strain observed in earlier tests is some evidence that another creep 

mechanism was in effect for those tests that was not present in later tests. 

Unfortunately, isolating the early tests from the later tests removes all grain size 

differences from the regression and makes differentiation between power law and 

diffusional creep modes impossible. 

The above results were calculated with the archival U3Si2 grain sizes for uncrept 

U3Si2 samples determined by Coleman Terrapin at the University of South Carolina. His 
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ongoing work on post creep U3Si2 samples has shown considerable grain size growth 

over the course of the creep tests despite experimental temperatures laying far below 

the recrystallization temperature of U3Si2. One avenue of explanation is a possible low-

temperature grain growth mechanism due to high stress as described by Sharon and 

Boyce [40].Low-temperature grain growth may also contribute to the grain size disparity 

observed in U3Si2 samples prepared by INL using apparently identical techniques as the 

pre-sintering compacting pressure was not tightly controlled [41]. 

4.1.7 Suggested Continued Study 
Further study on U3Si2 pellets with improved phase purity is recommended. In 

particular, the possibility of low temperature grain growth during apparently diffusion 

dominated thermal creep of U3Si2 is especially compelling. Certainly, the diffusional 

creep model developed in this work can benefit by the inclusion of greater grain size 

resolution along the different stages of the creep tests. Additionally, improvements in 

grain size resolution throughout the creep test data will allow for further differentiation 

between Coble and Nabarro-Herring creep. Inclusion of higher stress testing conditions 

would elaborate on the existence of any transition to power law creep at higher 

stresses.  

4.1.8 BISON Creep Model 
Though Nabarro-Herring creep appears to be the dominant creep mechanism, 

the model used in the BISON simulation results below will use the Mukherjee-Bird-Dorn 

relationship. Since the creep analysis of this work show contributions to overall creep 

from power law and diffusional creep, and in consideration of the strong empirical fit 

provided by Equation 3.1, the Mukherjee-Bird-Dorn model is used in BISON simulation 
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to retain some power law related behavior in addition to the diffusional creep 

characteristics. In this manner the different creep regimes evident in experiment are 

carried over to simulation. 

4.2 BISON Simulation 

4.2.1 UO2 vs U3Si2 
The physical models developed in Chapter 3 are implemented here in simulation 

to provide the reader with a direct comparative view of the steady-state performance 

differences between UO2-Zry and U3Si2-SiC nuclear fuel systems. The parameters used 

for this comparison follow those discussed in Chapter 3 and shown in Table 4.1 below. 

Maximum fuel temperatures and cladding hoop stresses are compared since they are of 

greatest importance in cylindrical geometries.  

Table 4.1: Simulation conditions for U3Si2 vs UO2 comparison 

Linear Heat Rate 26.8 to 14.6 kW/m 

Plenum Pressure 2 MPa 

Coolant Pressure 15.31 MPa 

Coolant Inlet Temperature 599.95 K 

Coolant Flow Rate 3675.4 kg/(m2-sec) 

Rodlet Pitch 12.6 mm 

Rodlet Radius 4.75 mm 

Fuel to Cladding Gap 80 µm 

 

For the comparison against UO2, standard thermal oxide material properties 

from the BISON code set were used. Specifically, the material properties and geometry 

provided in the 2D axisymmetric tensor mechanics examples were used after making 
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the appropriate modifications to have the same initial conditions as developed for the 

U3Si2-SiC. External geometry in the two simulations is identical.  

Two differences between the U3Si2 and UO2 BISON cases that are expected to 

have minimal impact in the context of much more important differences, i.e different 

fuel and cladding materials, are (1) the UO2 model uses 10 discrete pellets for a total 

height of 11.86 cm and (2) UO2 simulation does not include a stress cracking model for 

the fuel. These two differences are expected to add little error considering the more 

global differences of material selection and overall cladding thickness. Lack of stress 

cracking in UO2 is not a source of error so long as the fuel stresses are not directly 

compared.  

Initial attempts to produce solutions of these two simulations revealed difficulty 

in finite element solution convergence in the UO2 simulation due to the very high initial 

power history. The high initial LHGR caused UO2 max temperatures to exceed 1700 K 

which led to excessive thermal expansion and very early contact prior to 8 GW-

day/MTU. Since this power history makes finding a finite elements solution with BISON 

impossible, the power history function was scaled down to 60% of its nominal value to 

allow the solution to converge. The resulting range of LHGR values is 26.8 kW/m at BOL 

to 14.6 kW/m at EOL. This range of LHGR values are only used for the comparison 

between UO2-Zry and U3Si2-SiC fuel concepts. All other parameters as developed in 

Chapter 3 remain the same. 
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4.2.1.1  Fuel Temperature 
Fuel temperature values are gathered by finding the maximum, average, and 

minimum fuel temperature anywhere in the fuel portion of the mesh during each 

timestep and outputting these values to a .csv file upon successful convergence. Figures 

4.13-15 below show the maximum and minimum temperatures in the UO2 and U3Si2 

fuel respectively. 

Figure 4.13: UO2 vs U3Si2, maximum fuel temperature  

Figure 4.14: UO2 vs U3Si2, average fuel temperature 
comparison 
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Interestingly, the thermal conductivity advantage of U3Si2 isn’t as significant as 

expected with only a 100-200K advantage to U3Si2. As evident by Figure 4.15, the 

minimum fuel temperature rapidly increases due to irradiative degradation of the SiC 

thermal conductivity. Since the heatflux from these two fuel concepts is identical we can 

see that the thermal conductivity advantage of U3Si2 is almost completely offset by the 

thermal conductivity disadvantage of SiC. This leads to marginally lower maximum 

temperatures but significantly higher minimum fuel temperatures when compared to 

UO2. For steady state operation this implies a marginal fuel performance advantage to 

U3Si2 since lower maximum temperatures make it capable of being operated at higher 

power densities. Ultimately however, fuel power densities are determined by each 

fuel’s margin to melt and not their absolute operating temperature. 

Figure 4.15: UO2 vs U3Si2, minimum fuel temperature comparison 
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4.2.1.2 Homologous Temperature 
Since the melting points of U3Si2 and UO2 are quite disparate, the operating 

homologous temperature provides an indication of margin to melt in the fuel. Figure 

4.16 below shows the homologous temperature calculated from the maximum fuel 

temperature data above. 

A major concern for use of U3Si2 as a nuclear fuel is its relatively low melting 

point. Due to this, a LOCA or RIA condition would have greater potential to cause the 

fuel to melt. Adding to this concern is U3Si2’s relatively low heat capacity which in the 

event of a reactor casualty could cause rapid escalation of peak U3Si2 fuel 

temperatures. As evident in Figure 4.16 above, the steady state operating homologous 

temperature of U3Si2 is higher than that of UO2 generally by less than 0.1. Apparently, 

steady state margin to melt in U3Si2 is no issue.  

Figure 4.16: Homologous temperature comparison 
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Figure 4.17: Homologous temperature at higher LHGR 

More interesting is the margin to melt under accident conditions. The modeling 

of LOCA and RIA conditions are very different than the present simulation due to the 

physics being in generally different regimes under which the current simulation’s 

models break down. However, the trend in homologous temperature when operating at 

higher power densities can certainly be used to demonstrate each fuel’s performance 

under more extreme conditions. 

Figure 4.17 below shows the homologous temperature when power history is 

increased to 80% of the nominal value established in Chapter 3: 

 

 

 

 

 

 

 

 

 

Although the conditions here are not representative of a true RIA, the above 

illustrates that at higher steady-state conditions the difference in margin to melt 

between UO2 and U3Si2 becomes smaller. This behavior indicates the performance 

advantage of U3Si2 under progressively more extreme conditions. Until more fully 
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developed reactor casualty scenarios are simulated which demonstrate U3Si2 

performance under RIA and LOCA, it seems that there is little reason to use U3Si2 as a 

reactor fuel for its marginal temperature performance improvements at steady state. 

4.2.1.3 Plenum Volume and Pressure 
The amount of available volume in the cladding plenum for thermal expansion of 

the fuel and release of gaseous fission products impacts fuel performance by balancing 

the amount of fuel available in the fuel rod against the need to allow space for 

expansion and safe retention of released gaseous fission products. Generally, more fuel 

in the same amount of available space results in higher possible fuel power densities at 

the cost of much higher pressure due to insufficient volume for gases and thermal 

expansion.  

As previously discussed, due to slight design differences between the U3Si2 and 

UO2 finite element meshes, a small difference in the initial cladding plenum volume 

exists between the two simulated cases. Here in Figure 4.18 above, the UO2 simulation 

is given the advantage of greater plenum volume. Despite the plenum volume 

Figure 4.18: Plenum volume comparison 
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advantage for UO2, its lower thermal conductivity causes significantly more thermal 

expansion than is the case for U3Si2 despite having a lower coefficient of thermal 

expansion. As seen in Figure 4.20, this difference in pressure cannot be accounted for by 

gaseous fission product release which only occurs in UO2 after about 60 GW-day/MTU.  

Though the simulations did not progress far enough to observe significant fission 

gas release in either case, it is notable that for UO2 onset of FGR appears earlier than in 

the U3Si2 case. This appears to be consistent with the INL post-irradiation examination 

Figure 4.20:Fission gas release comparison 

Figure 4.19: Plenum pressure comparison 
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of U3Si2 that also found nearly zero FGR relative to what would be expected for similar 

burnup UO2. 

4.2.1.4 Cladding Hoop Stress 
Hoop stress is an important measure for predicting cladding failure. Since the SiC 

cladding is composed of two layers, these maximum, average, and minimum data were 

generated for both layers combined.  

Figure 4.21: Maximum cladding hoop stress  

Figure 4.22:Average cladding hoop stress  
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A major result from this simulation is the large difference in operating time to 

fuel-cladding contact. In Figure 4.22 it is apparent that while the UO2 simulation 

experiences contact after only about 15 GW-day/MTU, the U3Si2 simulation never 

experiences contact. What is not clear from the above is which portions of the SiC 

cladding are expected to remain in compressive or tensile stress. Although the average 

stress is compressive, the difference between maximum and minimum stresses through 

the SiC cladding is stark. 

Clearly, Zircaloy and SiC cladding are completely different materials and respond 

in drastically different manners. SiC is highly brittle when compared with Zircaloy. Thus, 

the difference between maximum and minimum stresses within SiC is expected to be 

higher than those seen in Zircaloy. Figure 4.24 below elucidates the stress distribution 

Figure 4.23: Minimum cladding hoop stress  
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through the cladding. In this figure, Paraview was used to visualize a small vertical 

section of the cladding near the axial centerline during the middle timestep.  

SiC Zircaloy 

Figure 4.24: Stress distribution between SiC and Zircaloy claddings 

 This perspective allows us to observe that while Zircaloy tends to evenly distribute its 

loading, the duplex SiC cladding has a clear bisection in its loading scheme. Generally, 

the composite SiC carries the tensile loading from the fuel and the monolithic SiC carries 

the compressive load from the pressurized coolant.  

Large gradients of stress through a relatively thin material are concerning. 

However, this behavior is important for successful implementation of CVI SiC claddings. 

Since the inmost porous composite layer will microcrack under stress, integrity of the 

monolithic layer is critical to maintain hermiticity of the cladding. So long as the 

monolithic layer remains intact, high stress loading of the composite SiC is a favorable 

condition. Hoop stress failure for monolithic cladding is modeled using two parameter 

Weibull CDF statistics. The shape factor for this CDF is 3.82 with a characteristic failure 

stress of 172.93MPa [42]. Satisfyingly, no failure of the monolithic cladding is predicted. 
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This result is expected since the monolithic portion of the cladding is maintained under 

compressive stress throughout the simulated timeframe. 

From the above results it is apparent that the U3Si2-SiC fuel concept would be 

an acceptable replacement for UO2-Zry fuels during steady state conditions. It is 

important to recognize that the current understanding of U3Si2-SiC fuel material 

properties continues to be developed, and that very high burnup post-irradiation 

examinations of U3Si2-SiC fuels are necessary to validate the predictions of this study. 

To guide the design of such studies, the present simulations are studied in terms of their 

sensitivity to various parameters to elaborate which of the incorporated models have 

the largest impact on simulated results and how variations in these models inform 

research priorities and engineering design targets. 

Figure 4.25:Weibull failure probability of the monolithic SiC layer 
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4.2.2 U3Si2 Thermal Creep Sensitivity 
Using the Mukherjee-Bird-Dorn thermal creep model developed earlier in this 

chapter, average hoop stress and strain in fuel and monolithic cladding are reported 

here for 1x, 5x, and 10x the nominal creep rate. The modified power history used earlier 

in this chapter was returned to its original amount as described in Chapter 3. Table 4.2 

below indicates the conditions used for the various sensitivity studies: 

Table 4.2: Simulation conditions used for U3Si2 sensitivity studies 

Linear Heat Rate 44.62 to 24.3 kW/m 

Plenum Pressure 2 MPa 

Coolant Pressure 15.31 MPa 

Coolant Inlet Temperature 599.95 K 

Coolant Flow Rate 3675.4 kg/(m2-sec) 

Rodlet Pitch 12.6 mm 

Rodlet Radius 4.75 mm 

Fuel to Cladding Gap 80 µm 

Figure 4.26: Fuel hoop strain vs U3Si2 thermal creep rate 
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Figure 4.27: Fuel hoop stress sensitivity to U3Si2 creep rate 

Figure 4.28: Cladding hoop strain sensitivity to creep rate 
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Of immediate interest from Figures 4.26-4.30 is the improvement in monolithic 

hoop stress after contact in the cases of improved U3Si2 compliance. Notably the much 

lower hoop stress is due to the higher secondary creep rate of U3Si2. Also, a large 

improvement to the failure probability is evident. Instead of a nearly instantaneous 

jump from zero failure to guaranteed failure, the progression between the two cases is 

Figure 4.29: Cladding hoop stress sensitivity 

Figure 4.30: Cladding vs U3Si2 thermal creep rate 
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more gradual. The reader is advised that the seemingly unpredictable jumps seen in 

Figure 4.30 are due to the large timesteps necessary in the simulation that can 

sometimes result in very large variations in stress and strain within a single timestep. 

This effect is particularly pronounced when the effect of the composite SiC Young’s 

modulus microcracking damage model is incorporated with large time steps and stress 

states. Real cracking events would be expected to occur in a more progressive manner. 

4.2.3 U3Si2 Densification 
As previously discussed, U3Si2 shows very little change in porosity over 

approximately 20 GW-day/MTU. For this reason, the comparison against UO2 did not 

include any densification of U3Si2, a considerable disadvantage. However, since a U3Si2 

production technique with consistent average grain size and porosity seems to be 

unavailable, future burnup studies in full-scale U3Si2 rods may yet show burnup like 

UO2 as was previously expected. Figures 4.31-4.33 below show how inclusion of 

densification in U3Si2 affects the simulation:  

Figure 4.31: Densification sensitivity on fuel temperature 
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Clearly, lack of densification is responsible for a loss of nearly 8 GW-day/MTU in 

pre-contact operating time. On the other hand, densification causes average fuel 

temperatures to be about 60K higher due to loss of heat transfer capability through a 

Figure 4.32: Densification sensitivity on cladding hoop stress 

Figure 4.33: Densification sensitivity on fuel hoop stress 
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wider cladding gap. These higher temperatures imply only slightly worse performance 

for accident scenarios, while the amount of improved time to contact implies 

significantly improved steady-state fuel performance. Notably, the increase in average 

fuel temperature diminishes early in fuel life. Overall, the benefit to contact time 

appears to outweigh the marginal increase in fuel temperature. Given the rapid failure 

of the cladding upon contact, high burnup studies are needed to quantify the amount of 

densification that occurs in U3Si2. 

4.2.4 SiC Thermal Conductivity Sensitivity 
Obviously, improving the thermal conductivity of the cladding is beneficial for all 

nuclear fuels. However, manufacturers can only increase or decrease the nominal 

thermal conductivity of a material by a certain amount. Figures 4.34-4.35 show U3Si2-

SiC fuel performance when the thermal conductivity is increased and decreased by 15%: 

Figure 4.34: Cladding thermal conductivity sensitivity on fuel 
temperature 
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Figure 4.35 above shows that for a 15% increase in nominal SiC thermal 

conductivity there is an associated 12-15 GW-day/MTU difference in available burnup 

prior to contact. Due to the thickness of the current production duplex SiC tubes, and 

the complex fuel clad interactions at the 0.85 nominal level, manufacturers do not have 

much room to allow thermal conductivities much lower than those provided by 

Koyanagi and used in this work [18]. 

4.2.5 No SiC Irradiation Creep  
The majority of computational SiC studies assume that irradiation creep can be 

neglected in their simulations. To quantify the available difference in the present 

simulation, a case was run with irradiation creep set to zero:  

Figure 4.35: Cladding thermal conductivity sensitivity on cladding 
hoop stress 
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Figure 4.36: Cladding irradiation creep sensitivity on cladding hoop 
stress 

Figure 4.37: Cladding irradiation creep sensitivity on fuel 
temperature  
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The literature’s conclusions are verified in that there is minimal difference to fuel 

thermal-mechanical performance and time to contact. However, it is important to note 

that the inclusion of irradiation creep results in less compressive stress in the cladding. 

Additionally, Figure 4.38 shows that cladding failure profile is more sharp when 

irradiation creep is included. Thus, it is the opinion of the author that in the case of 

cladding failure studies it is important to consider the effect of irradiative creep on the 

monolithic and composite cladding.  

4.2.6 Cladding Thickness Sensitivity 
Composite SiC was shown in Chapter 2 to have a large amount of thickness 

variation based on fabrication technique. It is clear that a thinner cladding will improve 

the heat transfer characteristics of the fuel, a generally desirable characteristic, but 

Figure 4.38: Cladding irradiation creep sensitivity on cladding 
failure probability 
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variations in cladding thickness will have secondary effects from the change in 

temperature profile throughout the rod. Therefore, the sensitivity of composite cladding 

thickness on the temperature, stress, and strain of the concept fuel is investigated. 

Figures 4.39-4.43 below show how the fuel performs under various composite SiC 

thicknesses. Monolithic thickness remains the same at 200 microns to preserve its 

performance as an environmental barrier and maintain rod hermeticity: 

 

Figure 4.40:Composite layer thickness sensitivity 
on fuel temperature 

Figure 4.39: Composite layer thickness 
sensitivity on fuel hoop stress 
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Figure 4.42: Composite layer thickness sensitivity on cladding 
hoop stress 

Figure 4.41: Composite layer thickness sensitivity on fuel 
hoop strain 
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Figure 4.42-4.43 shows post-contact performance seems to be unaffected by 

composite cladding thickness down to 450 microns. Given the very large improvement 

in time to contact and average fuel temperatures, however, cladding manufacturers 

should seek to reduce the thickness of composite CVI SiC claddings. Importantly, these 

results had the same cladding gap of 80 microns. Due to the high amount of thermal 

expansion in U3Si2, significant gains in operating burnup are achievable through 

reducing fuel temperatures with thinner cladding. 

4.2.7 Cladding Gap Sensitivity 
Freeman previously identified 80 microns as the ideal cladding thickness under 

the conditions of his original simulation [6]. However, given the sharp increase in 

cladding failure probability during contact, a larger cladding gap may be justified. To 

evaluate whether updated material properties have had any effect on the ideal cladding 

Figure 4.43: Composite layer thickness sensitivity on cladding 
hoop strain 
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gap, Figures 4.44-4.49 below show a comparison between cladding gaps of 60, 80, 90 

microns: 

 

Figure 4.45: Cladding gap sensitivity on fuel temperature 

Figure 4.44: Cladding gap sensitivity on fuel hoop stress 
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Figure 4.47: Cladding gap sensitivity on cladding hoop strain 

Figure 4.46: Cladding gap sensitivity on fuel hoop strain 



 

87 

Figure 4.47 shows that with a cladding gap of 60 microns there is evidence of 

PCMI very early between 20-25 GW-day/MTU. As such a 60 micron gap is unacceptably 

small. Additionally, in Figure 4.44 the temperature gain by increasing the cladding gap to 

90 microns is undesirable considering the relatively small 6 GW-day/MTU delay to 

Figure 4.49: Cladding gap sensitivity on cladding hoop 
stress 

Figure 4.48: Cladding gap sensitivity on cladding 
failure probability 
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contact shown in Figure 4.47. These results indicate no compelling reason to increase 

cladding gap much beyond 80 microns since other cladding design considerations 

provide a larger delay to contact without compromising fuel temperatures.  



 

89 

Chapter 5 Conclusion
 

5.1 Thermal Creep Model 

5.1.1 Nabarro-Herring 
Original U3Si2 creep experimental data was used in this study to determine the 

thermal creep mechanism and develop an empirical model for use in finite element 

simulations. Evidence from statistical analysis of Mercado’s thermal creep experiment 

strongly suggest a Nabarro-Herring diffusion creep mechanism. The reasons for this 

determination are: 

1) High degree of correlation: N-H creep provides an r2 value of 0.83 when the 

determined model is evaluated against the experimental data. 

2) Very high statistical certainty: NH creep provides a p-value approaching zero. 

This result suggests that the probability of the model reflecting the data by 

random accident is nearly zero. 

3) Calculated activation energy is 173.4 kJ/mol, a value that is similar to the 

weighted average of the self-diffusion energies of uranium and silicon in U3Si2 of 

190.8 kJ/mol. 

5.1.2 Mukherjee-Bird-Dorn 
Though Nabarro-Herring creep is determined to be the predominant method of 

creep in Mercado’s experiment, due to the presence of multiple creep modes, a more 

general empirical model is needed to capture the behavior of these creep mechanisms 
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for use in simulation. Thus, Equation 3.1 (A=4.841e-19, n=1.936, p=1.86, Q=223076 

J/mol-K) is recommended for thermal creep modeling of U3Si2. 

5.2 U3Si2 Design Priority 
The completed BISON simulation shows that U3Si2-SiC fuel concept has marginal 

advantages in terms of steady state fuel operating temperatures and significant delay to 

contact compared to UO2-Zry fuels. The steady state improvement in fuel temperatures 

is of minor benefit. Predicted fission product gas release over expected fuel lifetime is 

significantly lower than UO2 and time to PCMI is vastly improved even under heightened 

power density conditions. These performance advantages are significant when 

combined with U3Si2’s improved uranium densities. 

However, the simulations completed in this study indicate that U3Si2, in 

combination with SiC cladding, are very likely to fail upon fuel-cladding contact. Despite 

the very long time to PCMI, it is unlikely that contact can be entirely avoided in all rods 

in a real core. Therefore, the U3Si2-SiC concept fuel performance advantages over 

traditional nuclear fuel are not enough to justify its use as a replacement for UO2-Zry 

fuels.  

The thermal creep sensitivity study completed in this work demonstrates that 

significant improvements to PCMI can be had when the fuel is behaves more plastically. 

Enhanced plasticity in U3Si2 would significantly reduce the probability of sudden 

monolithic SiC failure during PCMI. Since U3Si2 is an intermetallic, it seems likely that 

researchers could induce improved plasticity in the fuel without serious compromise. To 

the authors knowledge this line of research has yet to be pursued, though its lack of 
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development is understandable considering that consistent production of pure U3Si2 

with highly controlled microstructure is a developing science.  

5.3 Cladding Design Priority 
Vast improvements to composite SiC design have resulted in a CMC that resists 

sudden failure. However, in the duplex SiC scheme with an outside environmental 

barrier of monolithic SiC, cracking of the monolithic SiC is still an eventuality upon 

contact with the fuel. Though efforts to improve composite SiC reduce the likelihood of 

monolithic SiC cladding failure, strategies to prevent contact are necessary in the U3Si2-

SiC fuel concept.  

The major priority to improve available lifetime of the fuel without cladding 

failure is to reduce composite SiC thickness. Improvements to thermal conductivity are 

also advantageous though less impactful as cladding thickness. A larger fuel to cladding 

gap may be used to reduce the probability of contact with the fuel, however, a nominal 

gap size of 80 microns provides adequate U3Si2-SiC fuel lifetime without failure through 

more than 50 GW-day/MTU under hot channel conditions and an initial LHGR of 44.62 

kW/m.  
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Appendix A: U3Si2 Compressive Creep Data From Mercado 2018
Strain and Temperature vs Time 

Sample 150813a (Tests 1-3) 

 
Sample 150813b (Test 4-5) 
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Sample 161214b (Tests 6-7) 

 
Sample 161214a (Tests 8-10) 
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Sample 161214c (Tests 11-13) 

 
Pressure and Stress vs Time 
Sample 150813a (Tests 1-3) 
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Sample 150813b (Test 4-5) 

 
Sample 161214b (Tests 6-7) 
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Sample 161214a (Tests 8-10) 

 
Sample 161214c (Tests 11-13) 
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Appendix B: Example Python 2.3 Code for Data Processing
The following python 2.3 template code is provided to show how the experimental data 
was handled. 

from pylab import * 
from openpyxl import load_workbook 
from scipy import stats 
 
numOfTests = 3 
 
# Load in information from workbook 
wb = load_workbook(filename = 'pellet1.xlsx',data_only=True) 
ws = wb['data'] 
 
numRows = ws.max_row 
 
time = zeros(numRows-1) 
temperature = zeros(numRows-1) 
eng_stress = zeros(numRows-1) 
true_stress = zeros(numRows-1) 
left_vert_eng_strain = zeros(numRows-1) 
right_vert_eng_strain = zeros(numRows-1) 
top_horz_eng_strain = zeros(numRows-1) 
bottom_horz_eng_strain = zeros(numRows-1) 
left_vert_true_strain = zeros(numRows-1) 
right_vert_true_strain = zeros(numRows-1) 
top_horz_true_strain = zeros(numRows-1) 
bottom_horz_true_strain = zeros(numRows-1) 
avg_vert_eng_strain = zeros(numRows-1) 
avg_vert_true_strain = zeros(numRows-1) 
avg_horz_eng_strain = zeros(numRows-1) 
avg_horz_true_strain = zeros(numRows-1) 
 
strain_holder = zeros(numOfTests) 
 
for i in range(2,numRows+1,1): 
    time[i-2] = ws.cell(row=i,column=3).value 
    temperature[i-2] = ws.cell(row=i,column=4).value 
    eng_stress[i-2] = ws.cell(row=i,column=5).value 
    true_stress[i-2] = ws.cell(row=i,column=6).value 
    left_vert_eng_strain[i-2] = ws.cell(row=i,column=19).value 
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    right_vert_eng_strain[i-2] = ws.cell(row=i,column=20).value 
    top_horz_eng_strain[i-2] = ws.cell(row=i,column=21).value 
    bottom_horz_eng_strain[i-2] = ws.cell(row=i,column=22).value 
    left_vert_true_strain[i-2] = ws.cell(row=i,column=23).value 
    right_vert_true_strain[i-2] = ws.cell(row=i,column=24).value 
    top_horz_true_strain[i-2] = ws.cell(row=i,column=25).value 
    bottom_horz_true_strain[i-2] = ws.cell(row=i,column=26).value 
    avg_vert_eng_strain[i-2] = ws.cell(row=i,column=27).value 
    avg_vert_true_strain[i-2] = ws.cell(row=i,column=28).value 
    avg_horz_eng_strain[i-2] = ws.cell(row=i,column=29).value 
    avg_horz_true_strain[i-2] = ws.cell(row=i,column=30).value 
     
testRanges = zeros(2*numOfTests) 
 
for i in range(2,2*numOfTests+2,1): 
    testRanges[i-2] = ws.cell(row=i,column=31).value 
     
 
time_frame = 100.0*3600.0 
sample_seating = 100.0*3600.0 
skip_time = 20.0*3600.0 
 
labels = array(["null","null"]) 
for i in range(1,numOfTests,1): 
    labels = append(labels,"null") 
    labels = append(labels,"null") 
     
color1 = array(['b','g','r']) 
color2 = array(['b--','g--','r--']) 
color3 = array(['c','m','k']) 
 
for i in range(0,numOfTests,1): 
    if i == 0: 
        skip = sample_seating 
    else: 
        skip = skip_time 
         
    lowBounds = int(testRanges[i*2]) 
    highBounds = int(testRanges[i*2+1]) 
    time_temp = time[lowBounds-2:highBounds-1] 
    temperature_temp = temperature[lowBounds-2:highBounds-1] 
    eng_stress_temp = eng_stress[lowBounds-2:highBounds-1] 
    true_stress_temp = true_stress[lowBounds-2:highBounds-1] 
    left_vert_eng_strain_temp = left_vert_eng_strain[lowBounds-2:highBounds-1] 
    right_vert_eng_strain_temp = right_vert_eng_strain[lowBounds-2:highBounds-1] 
    top_horz_eng_strain_temp = top_horz_eng_strain[lowBounds-2:highBounds-1] 
    bottom_horz_eng_strain_temp = bottom_horz_eng_strain[lowBounds-2:highBounds-1] 
    left_vert_true_strain_temp = left_vert_true_strain[lowBounds-2:highBounds-1] 
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    right_vert_true_strain_temp = right_vert_true_strain[lowBounds-2:highBounds-1] 
    top_horz_true_strain_temp = top_horz_true_strain[lowBounds-2:highBounds-1] 
    bottom_horz_true_strain_temp = bottom_horz_true_strain[lowBounds-2:highBounds-1] 
    avg_vert_eng_strain_temp = avg_vert_eng_strain[lowBounds-2:highBounds-1] 
    avg_vert_true_strain_temp = avg_vert_true_strain[lowBounds-2:highBounds-1] 
    avg_horz_eng_strain_temp = avg_horz_eng_strain[lowBounds-2:highBounds-1] 
    avg_horz_true_strain_temp = avg_horz_true_strain[lowBounds-2:highBounds-1] 
     
    print avg_vert_true_strain_temp[-1] 
     
    test1 = "Test" 
    test2 = str(i+1) 
    labels[i*2] = test1 
    labels[i*2 + 1] = test2 
     
    max_r = 0.0 
     
    for j in range(1,size(time_temp),1): 
        time_accum = 0.0 
        count = 0 
        time_array = array([time_temp[j-1]]) 
        strain_array = array([avg_vert_true_strain_temp[j-1]]) 
        temp_array = array([temperature_temp[j-1]]) 
        stress_array = array([true_stress_temp[j-1]]) 
        full_range = True 
        while time_accum < time_frame: 
            if count+j < size(time_temp): 
                time_array = append(time_array,time_temp[count+j]) 
                strain_array = append(strain_array,avg_vert_true_strain_temp[count+j]) 
                temp_array = append(temp_array,temperature_temp[count+j]) 
                stress_array = append(stress_array,true_stress_temp[count+j]) 
                time_accum += time_temp[count+j]-time_temp[count+j-1] 
                 
                count += 1 
            else: 
                full_range = False 
                break 
        slope,intercept,r_value,p_value,std_err = stats.linregress(time_array,strain_array) 
        if r_value > max_r and full_range==True and time_temp[j] > skip+time_temp[0]: 
            max_r = r_value 
            f = polyfit(time_array,strain_array,1) 
            strain_new = f[0]*time_array + f[1] 
            time_new = time_array 
            temp_new = temp_array 
            stress_new = stress_array 
             
         
    temperature_plot = figure("Temperature") 
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    temperature_plot_ax = temperature_plot.add_subplot(1, 1, 1) 
    if time_temp[-1] - time_temp[0] > skip+time_frame: 
        temperature_plot_ax.plot(time_temp,temperature_temp,color1[i],label=labels[i*2] + " " + 
labels[i*2+1] + " (" + '{:.2f}'.format(average(temp_new)) + " $^\circ$C)") 
        temperature_plot_ax.plot([time_new[0],time_new[-
1]],[average(temp_new),average(temp_new)],color2[i]) 
    else: 
        temperature_plot_ax.plot(time_temp,temperature_temp,color1[i],label=labels[i*2] + " " + 
labels[i*2+1] + " (N/A)") 
     
    eng_stress_plot = figure("Engineering Stress") 
    eng_stress_plot_ax = eng_stress_plot.add_subplot(1, 1, 1) 
    eng_stress_plot_ax.plot(time_temp,eng_stress_temp,label=labels[i*2] + " " + labels[i*2+1]) 
     
    true_stress_plot = figure("True Stress") 
    true_stress_plot_ax = true_stress_plot.add_subplot(1, 1, 1) 
    if time_temp[-1] - time_temp[0] > skip+time_frame: 
        true_stress_plot_ax.plot(time_temp,true_stress_temp,color1[i],label=labels[i*2] + " " + 
labels[i*2+1] + " (" + '{:.2f}'.format(average(stress_new)) + " MPa) - True") 
        true_stress_plot_ax.plot([time_new[0],time_new[-
1]],[average(stress_new),average(stress_new)],color2[i]) 
    else: 
        true_stress_plot_ax.plot(time_temp,true_stress_temp,color1[i],label=labels[i*2] + " " + 
labels[i*2+1] + " (N/A) - True") 
    true_stress_plot_ax.plot(time_temp,eng_stress_temp,color3[i],label=labels[i*2] + " " + 
labels[i*2+1] + " - Engineering") 
     
    left_vert_eng_strain_plot = figure("Left/Right Vertical Engineering Strain") 
    left_vert_eng_strain_plot_ax = left_vert_eng_strain_plot.add_subplot(1, 1, 1) 
    
left_vert_eng_strain_plot_ax.plot(time_temp,left_vert_eng_strain_temp,color1[i],label=labels[i
*2] + " " + labels[i*2+1] + " - Left") 
    
left_vert_eng_strain_plot_ax.plot(time_temp,right_vert_eng_strain_temp,color1[i],label=labels
[i*2] + " " + labels[i*2+1] + " - Right") 
     
    top_horz_eng_strain_plot = figure("Top Horizontal Engineering Strain") 
    top_horz_eng_strain_plot_ax = top_horz_eng_strain_plot.add_subplot(1, 1, 1) 
    
top_horz_eng_strain_plot_ax.plot(time_temp,top_horz_eng_strain_temp,color1[i],label=labels[
i*2] + " " + labels[i*2+1] + " - Top") 
    
top_horz_eng_strain_plot_ax.plot(time_temp,bottom_horz_eng_strain_temp,color1[i],label=la
bels[i*2] + " " + labels[i*2+1] + " - Bottom") 
     
    left_vert_true_strain_plot = figure("Left Vertical True Strain") 
    left_vert_true_strain_plot_ax = left_vert_true_strain_plot.add_subplot(1, 1, 1) 
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left_vert_true_strain_plot_ax.plot(time_temp,left_vert_true_strain_temp,color1[i],label=labels[
i*2] + " " + labels[i*2+1] + " - Left") 
    
left_vert_true_strain_plot_ax.plot(time_temp,right_vert_true_strain_temp,color1[i],label=label
s[i*2] + " " + labels[i*2+1] + " - Right") 
     
    top_horz_true_strain_plot = figure("Top Horizontal True Strain") 
    top_horz_true_strain_plot_ax = top_horz_true_strain_plot.add_subplot(1, 1, 1) 
    
top_horz_true_strain_plot_ax.plot(time_temp,top_horz_true_strain_temp,color1[i],label=labels
[i*2] + " " + labels[i*2+1] + " - Top") 
    
top_horz_true_strain_plot_ax.plot(time_temp,bottom_horz_true_strain_temp,color1[i],label=la
bels[i*2] + " " + labels[i*2+1] + " - Bottom") 
     
    avg_vert_eng_strain_plot = figure("Average Vertical Engineering Strain") 
    avg_vert_eng_strain_plot_ax = avg_vert_eng_strain_plot.add_subplot(1, 1, 1) 
    avg_vert_eng_strain_plot_ax.plot(time_temp,avg_vert_eng_strain_temp,label=labels[i*2] + " 
" + labels[i*2+1]) 
     
    avg_vert_true_strain_plot = figure("Average Vertical True Strain") 
    avg_vert_true_strain_plot_ax = avg_vert_true_strain_plot.add_subplot(1, 1, 1) 
    if time_temp[-1] - time_temp[0] > skip+time_frame: 
        
avg_vert_true_strain_plot_ax.plot(time_temp,avg_vert_true_strain_temp,color1[i],label=labels[
i*2] + " " + labels[i*2+1] + " (" + '{:.4E}'.format(f[0]) + " 1/s, r = " + '{:.2f}'.format(max_r) + ")") 
        avg_vert_true_strain_plot_ax.plot(time_new,strain_new,color2[i],linewidth=2) 
        strain_holder[i] = f[0] 
    else: 
        
avg_vert_true_strain_plot_ax.plot(time_temp,avg_vert_true_strain_temp,color1[i],label=labels[
i*2] + " " + labels[i*2+1] + " (N/A)") 
     
    avg_horz_eng_strain_plot = figure("Average Horizontal Engineering Strain") 
    avg_horz_eng_strain_plot_ax = avg_horz_eng_strain_plot.add_subplot(1, 1, 1) 
    avg_horz_eng_strain_plot_ax.plot(time_temp,avg_horz_eng_strain_temp,label=labels[i*2] + " 
" + labels[i*2+1]) 
     
    avg_horz_true_strain_plot = figure("Average Horizontal True Strain") 
    avg_horz_true_strain_plot_ax = avg_horz_true_strain_plot.add_subplot(1, 1, 1) 
    avg_horz_true_strain_plot_ax.plot(time_temp,avg_vert_true_strain_temp,color1[i]+'--
',label=labels[i*2] + " " + labels[i*2+1] + " - Axial") 
    
avg_horz_true_strain_plot_ax.plot(time_temp,avg_horz_true_strain_temp,color1[i],label=labels
[i*2] + " " + labels[i*2+1] + " - Diametral") 
  
temperature_plot_ax.legend(loc=2) 



 

107 

temperature_plot_ax.set_xlabel("Time (s)",fontsize=16) 
temperature_plot_ax.set_ylabel("Temperature ($^\circ$C)",fontsize=16) 
temperature_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
temperature_plot.tight_layout() 
temperature_plot.savefig("temperature.png") 
   
eng_stress_plot_ax.legend(loc=4) 
eng_stress_plot_ax.set_xlabel("Time (s)",fontsize=16) 
eng_stress_plot_ax.set_ylabel("Engineering Stress (MPa)",fontsize=16) 
eng_stress_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
eng_stress_plot.tight_layout() 
eng_stress_plot.savefig("eng_stress.png") 
   
true_stress_plot_ax.legend(loc=3) 
true_stress_plot_ax.set_xlabel("Time (s)",fontsize=16) 
true_stress_plot_ax.set_ylabel("Stress (MPa)",fontsize=16) 
true_stress_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
true_stress_plot.tight_layout() 
true_stress_plot.savefig("true_stress.png") 
   
left_vert_eng_strain_plot_ax.legend(loc=2) 
left_vert_eng_strain_plot_ax.set_xlabel("Time (s)",fontsize=16) 
left_vert_eng_strain_plot_ax.set_ylabel("Engineering Strain",fontsize=16) 
left_vert_eng_strain_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
left_vert_eng_strain_plot.tight_layout() 
left_vert_eng_strain_plot.savefig("left_right_vert_eng_strain.png") 
   
top_horz_eng_strain_plot_ax.legend(loc=2) 
top_horz_eng_strain_plot_ax.set_xlabel("Time (s)",fontsize=16) 
top_horz_eng_strain_plot_ax.set_ylabel("Engineering Strain",fontsize=16) 
top_horz_eng_strain_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
top_horz_eng_strain_plot.tight_layout() 
top_horz_eng_strain_plot.savefig("top_bottom_horz_eng_strain.png") 
   
left_vert_true_strain_plot_ax.legend(loc=2) 
left_vert_true_strain_plot_ax.set_xlabel("Time (s)",fontsize=16) 
left_vert_true_strain_plot_ax.set_ylabel("True Strain",fontsize=16) 
left_vert_true_strain_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
left_vert_true_strain_plot.tight_layout() 
left_vert_true_strain_plot.savefig("left_right_vert_true_strain.png") 
   
top_horz_true_strain_plot_ax.legend(loc=2) 
top_horz_true_strain_plot_ax.set_xlabel("Time (s)",fontsize=16) 
top_horz_true_strain_plot_ax.set_ylabel("True Strain",fontsize=16) 
top_horz_true_strain_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
top_horz_true_strain_plot.tight_layout() 
top_horz_true_strain_plot.savefig("top_bottom_horz_true_strain.png") 
   



 

108 

avg_vert_eng_strain_plot_ax.legend(loc=2) 
avg_vert_eng_strain_plot_ax.set_xlabel("Time (s)",fontsize=16) 
avg_vert_eng_strain_plot_ax.set_ylabel("Engineering Strain",fontsize=16) 
avg_vert_eng_strain_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
avg_vert_eng_strain_plot.tight_layout() 
avg_vert_eng_strain_plot.savefig("avg_vert_eng_strain.png") 
   
avg_vert_true_strain_plot_ax.legend(loc=4) 
avg_vert_true_strain_plot_ax.set_xlabel("Time (s)",fontsize=16) 
avg_vert_true_strain_plot_ax.set_ylabel("True Strain",fontsize=16) 
avg_vert_true_strain_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
avg_vert_true_strain_plot.tight_layout() 
avg_vert_true_strain_plot.savefig("avg_vert_true_strain.png") 
   
avg_horz_eng_strain_plot_ax.legend(loc=4) 
avg_horz_eng_strain_plot_ax.set_xlabel("Time (s)",fontsize=16) 
avg_horz_eng_strain_plot_ax.set_ylabel("Engineering Strain",fontsize=16) 
avg_horz_eng_strain_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
avg_horz_eng_strain_plot.tight_layout() 
avg_horz_eng_strain_plot.savefig("avg_horz_eng_strain.png") 
   
avg_horz_true_strain_plot_ax.legend(loc=2) 
avg_horz_true_strain_plot_ax.set_xlabel("Time (s)",fontsize=16) 
avg_horz_true_strain_plot_ax.set_ylabel("True Strain",fontsize=16) 
avg_horz_true_strain_plot_ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) 
avg_horz_true_strain_plot.tight_layout() 
avg_horz_true_strain_plot.savefig("avg_horz_true_strain.png") 
 
savetxt("results.txt",strain_holder) 
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