
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

Fall 2019 

Differential Cholinergic Modulation of Prelimbic and Thalamic Differential Cholinergic Modulation of Prelimbic and Thalamic 

Input to the Basolateral Amygdala Input to the Basolateral Amygdala 

Sarah Catherine Tryon 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Exercise Science Commons 

Recommended Citation Recommended Citation 
Tryon, S. C.(2019). Differential Cholinergic Modulation of Prelimbic and Thalamic Input to the Basolateral 
Amygdala. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/5521 

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in 
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please 
contact digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F5521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1091?utm_source=scholarcommons.sc.edu%2Fetd%2F5521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/5521?utm_source=scholarcommons.sc.edu%2Fetd%2F5521&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


DIFFERENTIAL CHOLINERGIC MODULATION OF PRELIMBIC AND THALAMIC 

INPUT TO THE BASOLATERAL AMYGDALA 

 
by 

Sarah Catherine Tryon 

 

Bachelor of Science 

Furman University, 2012 

 

 

 

Submitted in Partial Fulfillment of the Requirements 

 

For the Degree of Doctor of Philosophy in 

 

Exercise Science 

 

The Norman J. Arnold School of Public Health 

 

University of South Carolina 

 

2019 

 

Accepted by: 

 

David D. Mott, Major Professor 

 

Mark Davis, Committee Member 

 

Abbi Lane-Cordova, Committee Member 

 

Alexander J. McDonald, Committee Member 

 

Cheryl L. Addy, Vice Provost and Dean of the Graduate School



ii 

© Copyright by Sarah Catherine Tryon, 2019 

All Rights Reserved.



iii 

DEDICATION

This manuscript is dedicated to my family. To Hudson, thank you for your constant 

brotherly love and encouragement.  While we don’t see each other as often now, I know 

that I can always count on you to listen and provide rational, thoughtful support.  Mom and 

Dad, thank you for three decades of unwavering love and support.  From early days of 

reading Bob Books, spending hours upon hours to flip through math flashcards and 

grammer lessons that never seemed to end, being at the sidelines of school and sports 

competitions, to later years of providing listening ears when I needed them and 

encouraging me to pursue my goals and never give up, you both have shaped who I am 

today.   



iv 

ACKNOWLEDGEMENTS

Dr. Mott, thank you for giving me the opportunity to be in your lab and for the 

immeasurable amount of time you have dedicated towards mentoring and training me.  I 

hope to one day exemplify your example of what it means to be a truly caring, dedicated 

mentor who so selflessly provides instruction, offers guidance, knows when to be critical 

and push students to challenge themselves, and fosters a positive lab environment of 

constant intellectual curiousity.   

 To Dr.  McDonald, thank you for all of the time and attention you have dedicated 

to my training.  All of the detailed and thorough feedback you always provided, whether it 

was going over data in a lab meeting, a larger presentation for my committee, or a simple 

question regarding amygdalar anatomy, was deeply appreciated. 

To Dr. Davis, I have greatly enjoyed each and every one of our discussions about 

the connections between exercise and the brain.  Thank you for your guidance and advice 

over the years as I navigated the intersection of neuroscience and exercise science.  I am 

fortunate to have been able to learn from and receive guidance from someone who shared 

my passion for these two fields of research.  

To Dr. Lane-Cordova, I am so grateful for your generosity to join my committee 

and for the opportunity I had to be challenged to look at my research from different angles.  

Your readiness to dedicate time to further my training as a scientist, provide feedback and 

suggestions, and push me to make connections between concepts related to my work and 

concepts in other areas has been immensely appreciated.    



v 

ABSTRACT

The basolateral amygdala (BL) is critical for emotional memory acquisition and 

expression. It receives afferent projections from both cortical and subcortical regions that 

send glutamatergic transmission to the BL.  This input conveys information necessary for 

survival, including information about one’s behavioral state and environment.  How this 

information is integrated and processed by the BL, however, remains largely unknown.   

Interestingly, the BL receives the densest amount of cholinergic innervation from the basal 

forebrain.  This acetylcholine (ACh) can modulate emotional memories, but how it 

modulates specific afferent inputs to the BL is unexplored.  To answer this question, we 

used brain slice field and whole cell electrophysiology, optogenetics, and pharmacological 

tools to investigate how released endogenous ACh modulates afferent input to the BL. We 

found that endogenous ACh suppresses cortical input to the BL through muscarinic 

receptors. We then further explored this modulation by optogenetically activating 

prelimbic (PL) and thalamic (THAL) input to the BL and pharmacologically activating 

muscarinic ACh receptors to examine pathway-specific regulation of glutamatergic 

transmission from these inputs. Muscarine, by acting on M3 and M4 receptors at PL 

synapses and M3 receptors at THAL synapses, suppressed glutamatergic input from both 

regions. However, muscarinic receptor activation inhibited the prelimbic input to a 

significantly greater extent than the thalamic.  Furthermore, in examining the mechanisms 

underlying this inhibition, it was found that muscarinic inhibition of these two pathways 

occurs through distinct mechanisms.  At PL input muscarinic receptors inhibit 
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glutamatergic transmission through an endocannabinoid independent mechanisms whereas 

they inhibit thalamic input through an endocannabinoid-dependent mechanism. 

Additionally, muscarinic receptors displayed frequency-dependent regulation of glutamate 

transmission.  When the PL and THAL inputs were stimulated at low frequency trains 

(1Hz), muscarinic inhibition was consistent throughout the train.  However, when PL and 

THAL were stimulated at gamma frequency trains (40Hz), muscarinic inhibition remained 

intact throughout the train at THAL inputs, but was relieved at PL inputs.  Taken together, 

these findings suggest differential modulatory mechanisms during enhanced cholinergic 

tone in the BL, such as during exercise or unexpected stimuli.  However, this inhibition is 

frequency dependent.  During behavioral states in which the PL is oscillating at gamma 

frequency, that muscarinic inhibition could be overcome.   Together, these results indicate 

unique modulatory mechanisms conferred upon the PL and THAL input to the BL and 

could serve as rich avenues for pharmaceutical manipulations in future behavioral studies.  
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CHAPTER 1 

GENERAL INTRODUCTION

1.1 SIGNIFICANCE 

Persistent, intrusive and excessive feelings of worry and fear affect the 40 million, 

or 18% of, Americans who suffer from a form of anxiety disorders (Kessler et al., 2005). 

Anxiety and fear disorders, including post-traumatic stress disorder (PTSD), are 

characterized by dysregulation of the neural fear circuitry in the brain. Thus, an 

understanding of how the neural regions within the fear circuit are connected and regulated 

is required in order to develop treatments for anxiety disorders such as PTSD. One of these 

regions, the basolateral amygdala (BL), is heavily implicated in emotional disorders. Fear 

circuit regions that relay afferent glutamatergic projections to the BL include the prelimbic 

cortex (PL), the midline thalamic nuclei (THAL) and the ventral subiculum (vSub). 

Interestingly, the BL receives the densest amount of cholinergic projections from the basal 

forebrain, suggesting a potential to exert modulatory influences by acetylcholine (ACh) on 

afferent inputs to the BL. Behavioral studies have shown that ACh is involved in learning 

and memory, and that disruption in the cholinergic system leads to impairments in fear 

acquisition and fear extinction. Yet despite the importance of ACh in emotional memory 

and the role of the BL in emotional regulation, the mechanisms by which ACh regulates 

neurotransmission to the BL remain unknown. Such an understanding would elucidate 
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targets for pharmacotherapies to pair with behavioral interventions such as exercise in an 

effort to alleviate symptoms of anxiety disorders.  

Our goal is to fill the void in understanding how BL functioning is modulated by 

exploring how ACh receptors regulate afferent input to the BL from regions involved in 

the fear network. Such a comprehensive understanding of the fear circuitry would enable 

more targeted and effective behavioral and pharmacological interventions for emotional 

disorders. This study provides novel insight into how ACh receptor subtypes modulate 

different inputs to the BL and will augment the development of interventions and therapies 

for anxiety disorders.  

 

1.2   ACETYLCHOLINE 

1.2.1 ACETYLCHOLINE: THE FIRST NEUROTRANSMITTER DISCOVERED 

We owe much of what we know about acetylcholine to Englishman Henry Dale 

and German Otto Loewi. While testing sympathomimetic effects of various compounds 

extracted from a rye fungus, Henry Dale noticed that one of his extractions reversed the 

sympathetic effects of adrenaline. Dale performed further experiments to conclude that the 

physiological effects he was seeing were due to actions “on the sympathetic myoneural 

junctions,” building upon Thomas Elliott’s previous proposal that adrenaline could be 

released upon nerve stimulation (Dale 1906).  Around this same time, scientists Hunt and 

Taveau from the United States Public Health Service found certain cholinergic compounds 

reduced blood pressure in a parasympathetic manner more potent than the sympathetic one 

of adrenaline (Hunt and Taveau 1909, Fishman 1972).  Keeping Hunt and Taveau’s 

findings in mind, Dale noticed that application of one of his rye fungus extracts evoked 
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responses similar to those seen by his American counterparts, and commenced detailed 

studies of cholinergic effects on different organs.   By 1914, it seemed that Dale had found 

the parasympathetic “ying” to the sympathetic “yang” in the autonomic nervous system, as 

he concluded that acetylcholine and adrenaline have effects that “are in many directions at 

once complementary and antagonistic” (Dale 1906, Fishman 1972).  However, at that 

point, it was not yet known if acetylcholine existed endogenously in the body.  In 1921, 

Otto Loewi’s elegant experiments conducted in Graz, Austria that confirmed the 

hypothesis that chemicals called “neurotransmitters” were responsible for mediating nerve 

impulses from one nerve to another.  Separating a frog heart in solution with an intact vagus 

nerve from another frog heart with a severed vagus nerve, Loewi stimulated the first heart’s 

intact vagus nerve, collected the surrounding solution, and added it to the fluid surrounding 

the second heart.  When he did this, he found the second heart started beating as if its 

missing vagus nerve were stimulated. Thus, Loewi concluded that an actual, chemical 

messenger he termed Vagusstoff, was released from the vagus nerve and acted on other 

tissue.  This proved to be the seminal finding that Vagusstoff, later found to be 

acetylcholine, was the first discovered neurotransmitter.  

 

1.2.2 ACETYLCHOLINE SYNTHESIS, STORAGE, SECRETION AND 

DEGRADATION  

As the very first neurotransmitter discovered, ACh has been extensively studied in 

both the periphery and in the central nervous system.  ACh is synthesized in the cytoplasm 

of select neurons by the enzyme choline acetyltransferase (ChAT).  ChAT is synthesized 

in the soma but is transported down neuronal axons to the terminals where it synthesizes 
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ACh from choline and acetyl-coenzyme-A by transferring an acetyl group from acetyl 

coenzyme-A to choline.  ChAT is selectively expressed only in cholinergic neurons and 

thus can be used as a biomarker of cholinergic neurons. The choline from which ACh is 

synthesized in the liver, is introduced by diet or is recycled choline from former ACh 

molecules.  As it is not naturally produced in neurons, cells that synthesize ACh must also 

express the high affinity choline uptake transport protein in order to bring in choline from 

the extrasynaptic space to the cell to be synthesized into ACh. Once ACh is synthesized, it 

is loaded into vesicles by vesicular ACh transporter (VAChT) that pumps ACh in while 

pumping hydrogens (H+) out.  Thus, another marker commonly used to determine 

cholinergic activity in neurons in VAChT.  Once an action potential depolarizes a nerve 

terminal and Ca2+ influx results, ACh is released and can bind to its receptors located both 

presynaptically and postsynaptically.  Cholinergic signaling is terminated by the 

degradation of ACh by the enzyme acetylcholinesterase (AChE) (and to a smaller extent, 

by butyrylcholinesterase) into choline and acetate.  The choline that is created is then 

reuptaken into terminals by high affinity uptake transport proteins and ACh synthesis can 

begin anew.  

Peripherally, ACh is largely known for its rapid effects at the neuromuscular 

junction to evoke contraction of muscles. However, ACh is one of the most influential 

neurotransmitters in the autonomic nervous system, and thus also affects many peripheral 

physiological functions associated with parasympathetic stimulation including heart rate, 

bladder control, sexual behavior, perspiration and digestion (Tiwari et al., 2013).  

Centrally, ACh can act as a neuromodulator to regulate many aspects of neuronal 

functioning by altering neuronal excitability, affecting probability of neurotransmitter 



5 

release from presynaptic neurons, modulating postsynaptic physiological characteristics 

that raise or lower the threshold for responsiveness, inducing synaptic plasticity, and more 

recently explored, by affecting cortical plasticity by regulating Ca2+ levels in astrocytes 

(Dannenberg et al., 2017; Picciotto et al., 2012; Araque et al., 2002; Takata et al., 2011).   

 

1.2.3 ACETYLCHOLINE FUNCTION 

An abundance of studies have found neuromodulatory effects of ACh to be 

foundational for ACh’s importance in healthy cognitive functioning.  Normal cholinergic 

modulation is important for memory, learning and attention.  The vital role of ACh in 

memory has been illustrated in pharmacology studies that antagonized cholinergic 

receptors in rodents and saw a resulting impairment on performance in working memory 

task (Levin et al., 2002; Wirsching et al., 1984).  Blocking cholinergic receptors in humans 

with the FDA-approved scopolamine impairs memory, reduces learned verbal associations 

in humans and reduced neural activity in brain regions important for encoding (Ghoneim 

and Mewaldt 1975; Schon et al, 2005; Atri et al., 2004).  Pharmacologically increasing the 

amount of ACh by administering AChE inhibitors has been shown to improve cognitive 

impairments and is a current treatment avenue for patients suffering from Alzheimer’s 

Disease (Hasselmo & Sarter, 2011; Aigner and Mishkin, 1986; Thal et al., 1983; Bartus, 

1979).  Blocking cholinergic receptors in the dorsal hippocampus seems to cause 

impairment in the acquisition of spatial memory (Dannenberg et al., 2017; Blokland et al., 

1992; Riekkinen et al., 1997; Herrera-Morales et al., 2007).    However, elevating 

cholinergic levels in specific subregions of the hippocampus do not affect acquisition of 

spatial information but instead block retrieval of that information, suggesting phase-
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specific effects of varying levels of ACh whereby elevated ACh is involved in encoding 

and decreased ACh involved in retrieval (Giocomo & Hasselmo, 2007; Rogers & Kesner 

2003). Taken together, pharmacological, behavioral and neuroimaging studies in humans 

suggests healthy cholinergic modulation of brain regions and neural circuits is important 

for learning and memory.  

Through receptor-mediated mechanisms to be discussed later, ACh is thought to 

affect attention, learning and memory through presynaptic and postsynaptic effects on 

pyramidal neurons as well through effects on interneurons.  ACh can alter the dynamics of 

information flow to selectively inhibit one pathway while sparing another.  The functional 

consequence of such a dynamic regulation is to increase the signal-to-noise ratio of 

information within one pathway while filtering out extraneous information not necessary 

for a goal or survival (Hasselmo & Giocomo 2006; Thorn et al., 2016).  

 

1.2.4 ACETYLCHOLINE RELEASE IS STATE-DEPENDENT 

ACh levels have been shown to fluctuate in response to behavioral states and 

demands.  Microdialysis experiments have found ACh levels in the cortex, hippocampus 

and thalamus to be elevated during quiet waking (when an animal is not participating in 

exploratory activities), active waking (exploratory behavior) and REM sleep (with the 

greatest amount of ACh increase in the hippocampus than the cortex during REM) 

(Williams et al., 1994; Marrosu et al., 1995; Ruivo et al., 2017).   

While the mnemonics can be argued as to whether it is “attention,” “novelty,” 

“saliency,” or “unexpectedness,” there appears to be a clear increase in ACh during states 

when one needs to predict what will happen in the environment in order to respond to 
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potentially threatening or life-saving stimuli like a predator or food, respectfully (with an 

exception being an increase of ACh during REM sleep).  Such states would include the 

early stages of learning when one doesn’t know what will follow a stimulus, when an 

organism is shifting from sleep into a high arousal state, when an organism is in a new 

environment, during an attentionally demanding scenario, etc.  Intriguingly, these are the 

types of states in which ACh has been shown to be elevated in both animal models and 

humans.  

The ability to determine if a stimulus in the environment, or the environment itself, 

is novel or familiar is crucial for survival.  Evidence supports novelty or “unexpectedness” 

as being a key stimulus for ACh release. Interestingly, the confrontation with a novel 

stimulus seems to elevate ACh in the cortex and other brain regions regardless of the 

stimulus modality.  Novel objects, environments, auditory stimuli, painful stimuli, even 

gustatory stimuli have been shown to elicit the highest ACh release when presented initially 

and elicit decreasing amounts of ACh when presented again. Giovannini et al. (1998) 

showed that if an animal is placed in a new environment, their ACh levels increase almost 

two-fold in the hippocampus (200%) and by 64% in the cortex, whereas placing them in 

the new environment again results in only 37% increase in the cortex and only 51% 

increase in the hippocampus.  In a study by Acquas et al. (1996) to determine ACh release 

in response to stages of fear learning, ACh release appeared largest when a novel object is 

the most unexpected, as cholinergic tones in the prefrontal cortex and in the hippocampus 

were the greatest after a paired auditory stimulus and light, but decreased over the course 

of repetitive presentations (Acquas et al., 1996; Pepeu and Giovannini 2004).  In this study, 

rats were divided into three groups: one that received a prior training session of auditory 
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tones played with light, a second group that received the auditory tone and light followed 

by a footshock, and a third group that received neither auditory tones nor light. On a 

following day, all three groups were subjected to the tone and light.  In agreement with the 

role of ACh in novelty, the group that was “habituation to,” or received prior exposures of 

auditory tones and light, showed no increase in ACh in response to the second round of 

presentations to these tones, whereas the other two groups showed increased in ACh in 

their frontal cortices and hippocampi (Acquas et al., 1996).  Survival doesn’t just rely on 

detecting a novel stimulus that predicts a noxious or harmful stimulus, but also one that 

predicts an appetitive stimulus, as retrieving food, mates, etc. are equally necessary for 

survival.  Ruivo et al. (2017) used electrochemical biosensors with a resolution less than a 

second to measure ACh release and found ACh is released in a tonic manner when 

changing states of attention and arousal and in a phasic manner when performing a task 

that demands working memory.  The ability to distinguish a novel and a familiar taste is 

also vital to survival. Thus, not surprisingly, ACh has been found to play a role in novel 

versus familiar tastes.  In the insular cortex, the primary gustatory center, ACh levels 

increase in response to a novel taste (in their study, saccharine) but decreased over repeated 

presentations of the novel taste (Miranda et al. 2000).  ACh in this gustatory context 

appears to be directly involved in novelty detection, as a separate study blocked muscarinic 

ACh receptors in the insular cortex and found when a taste was administered a second time 

(ie it was no longer “novel”), muscarinic blockade seemed to reduce the memory that the 

reintroduced taste had been tasted before (Noar & Dudai 1996).    
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1.2.5 EXERCISE AND ACETYLCHOLINE 

It should come as no surprise that evolutionarily conserved behaviors like walking 

and running have been shown to influence many aspects of the cholinergic system across 

the lifespan, given the important of ACh for cognitive behaviors that support survival.  

Both short, acute bouts of physical activity and longer, chronic exercise regimes have been 

shown to affect cholinergic tone in the brain.  In both young adult (3-4 months) and aged 

rats (26-29 months), walking at a moderate speed for 30 seconds to 5 minutes produced a 

significant increase in hippocampal and cortical ACh that peaked during exercise and 

returned to baseline after exercise cessation (Kurosawa et al., 1993; Uchida et al., 2006).  

Acute running at a moderately intense speed of 60ft/min also elevates ACh in the 

hippocampus compared to when the animal was sedentary, but levels declined to baseline 

after exercise cessation (Dudar et al., 1979).   Another mechanism by which acute physical 

activity can influence the cholinergic system is by resulting in inhibition of 

acetylcholinesterase (AChE), thereby increasing synaptic levels of ACh.  Taskaris et al. 

(2006) subjected rats to either a 2-hour swimming session or a 5-hour swimming session 

and found that whole-brain levels of AChE was inhibited by 30% and 45%, respectively.  

However, it has been shown that stress can reduce the activity of AChE in the 

hippocampus, thereby indirectly increasing cholinergic tone (Rao & Raju, 2000), so the 

findings that forced swim reduced AChE activity may be confounded by the stress of the 

prolonged swimming session.    Effects of acute exercise bouts on the cholinergic system 

seem to be short-term responses to exercise as opposed to lingering adaptations, as 

increased ACh levels observed in the previously summarized studies all declined once 

exercise terminated and AChE levels were not measured further out than 24 hours post-
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exercise.  Overall, there seems to be a short term response to acute bouts of physical activity 

on the cholinergic system throughout various brain regions.  

In addition to short bouts of physical activity, regular training has also been shown 

to affect the central cholinergic system as well.  Middle-aged rats (18 months of age) that 

underwent a chronic swimming regime of 2hrs/day, 5days/week for 24 weeks displayed a 

significant reduction in AChE activity in both the medial prefrontal cortex and 

hippocampus.  The same exercise protocol induced an upregulation of the muscarinic ACh 

receptor m1 protein expression and mRNA levels in the mPFC and hippocampus. These 

findings taken together suggest that in older individuals, a chronic exercise regime holds 

the potential to increase cholinergic function in various brain regions, as chronic exercise 

increased synaptic ACh and the expression of M1 receptors upon which that ACh can act 

(Abhijit et al., 2017).   Chronic exercise affects the uptake of ACh as well.  In a separate 

study, a chronic exercise regime for 14 weeks (1 hr/day at 75% of VO2max, 5 days/week, 

14 weeks) resulted in a decrease in the choline reuptake transporter in the hippocampus, 

whereas acute exercise in the same study resulted in an increase of hippocampal ACh 

reuptake transporter, suggesting that there may be different underlying mechanisms of 

acute versus chronic exercise on cholinergic functioning (Fordyce & Farrar 1991).  Similar 

to the findings by Abhijit et al. (2017) that running upregulates expression of M1 receptors 

in the hippocampus, Fordyce & Farrar found that chronic running, but not an acute bout of 

exercise, significantly upregulated muscarinic receptors in the hippocampus.  Interestingly, 

this may be reflecting of chronic exercise activating mechnisms that elicit long-term 

changes, as chronic exercise training seems to exert adaptations to exercise that can be 

detected only after two weeks post-exercise.  In their 2016 study, Hall and Savage induced 
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a loss of cholinergic basal forebrain neurons in a rat model of thiamine deficiency. Diseased 

and healthy (control) rats were assigned to either a sedentary group or a voluntary exercise 

group provided with a running wheel and allowed ad-libidum access to running for two 

weeks. Rats were then subjected either 24 hours or 2 weeks after the last day of exercise to 

an attentionally-demanding task and ACh levels in the hippocampus were measured with 

dialysis. Interestingly, it was found that ACh efflux in the hippocampus was highest after 

two weeks post-exercise in both the healthy and diseased groups than 24 hours later, 

suggesting that there is exercise-induced adaptations that occurs in the cholinergic system 

in trained vs sedentary rats. Equally as interesting, in the diseased animals with reduced 

basal forebrain cholinergic neurons, exercise seemed to increase the number of cholinergic 

neurons in the basal forebrain, and this effect was also only observed after a 2-week 

adaptation period (Hall & Savage 2016).  Overall, both acute and chronic physical activity 

exert influences on the cholinergic system in the brain in a manner that causes an overall 

increase in ACh release and cholinergic signaling.  Taken together, these studies suggest 

potentially different mechanisms induced by acute bouts of physical activity versus chronic 

training, and highlight the need to understand how ACh is functioning in the brain in order 

to determine the consequences of physical activity’s influences on the cholinergic system.  

 

1.2.6 ACETYLCHOLINE RECEPTORS 

ACh, when released, has a multitude of effects.  The effects of ACh are mediated 

by the specific receptor to which it binds.   ACh binds to two classes of receptors: nicotinic 

ACh receptor (nAChR) and muscarinic ACh receptor (mAChR). Peripherally, nAChRs are 

heavily expressed in muscles and tissues involved in the autonomic nervous system and 
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mAChR are expressed in tissue in many different organs, including cardiac, bladder, etc.  

Centrally, nAChR and mAChR are expressed in nearly every brain region.  

 

1.2.7 NICOTINIC RECEPTORS 

Since its discovery at the end plate of neuromuscular junctions, nAChRs have 

become one of the most-studied ligand-gated ion channels. As their name implies, nicotinic 

ACh receptors selectively bind the agonist nicotine and are ligand-gated ion channels that, 

when bound by ACh, nicotine, or other agonists, open and allow positive cations through.  

nAChRs can be composed of four different subunits, , , , and  (Albuquerque et al., 

2009).  Different compositions of these subunits combine into a pentamer to give rise to 

different nAChRs with different physiological properties; muscular nAChR consist of  1 

subunits and one , , and  and ε subunits (Albuquerque et al., 2009).  In other tissue, 

there appears to be a much more complex combination of subunit possibilities for nAChRs; 

7 different forms of the  subunit (2, 3, 4, 5, 6, 7, 9, and 10) and 3 different 

forms of the  subunit (2-4) exist in neurons in mammals (Albuquerque et al., 2009).  

Importantly, these subunits display distinct expressions in the body; 1 is expressed 

distinctly in muscles whereas 7 is expressed nearly distinctly in neural tissue. The 

composition of the pentamer has important functional consequences like receptor 

sensitivity, affinity and desensitization.  For example, nAChRs composed of the 4 and 2 

subunits (42 nAChRs)  tend to display the highest affinity for nicotine, 34 nAChRs 

have a much lower affinity for the agonist, the presence of 2 is necessary for nAChRs to 

be upregulated, the existence of the 5 subunit can affect receptor functioning without 

directly affecting the ligand binding site, and the 7  subunit-containing neuronal nACh 
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receptors rapidly desensitize, for example (Dani 2015, McCallum et al., 2006; Fenster et 

al., 1997; Albuquerque et al., 2009).  In terms of cation permeability, there are subunit-

specific differences; for example 7 receptors are more permeable to calcium than sodium 

ions (Castro & Albuquerque 1995).   

nAChR in the brain have multiple functions depending on their location and subunit 

composition. For example, in CA1 of the hippocampus, 7 nAchRs are usually located 

postsynaptically on both neurons and interneurons, 42 nAChRs tend to be localized on 

GABAergic terminals synapsing onto cell bodies of pyramidal neurons or dendrites of 

interneurons, and 34 have been located on pyramidal neuron terminals that project to 

interneurons (Albuquerque et al., 2009).  The presence of nAChRs on pyramidal neurons 

or interneurons would cause different effects in a circuit or region; nAChR activation on 

pyramidal neurons would elicit excitation whereas nAChR activation on interneurons 

would depolarize interneurons that would then elicit inhibitory effects. Regardless of the 

type of neuron on which they are located, nAChRs located on presynaptic terminals possess 

the ability to enhance neurotransmitter release upon activation, and the type of 

neurotransmitter would determine if the resulting synaptic transmission was excitatory or 

inhibitory.   

 

1.2.8 MUSCARINIC RECEPTORS 

mACHRs are G protein-coupled (GPCR) metabotropic receptors and thus 

compared to the faster ionotropic nAChRs, elicit slower responses to synaptic transmission. 

Similar to other GPCRs, mAChRs are composed of seven transmembrane-spanning 

domains with an associated heterotrimeric G protein complex (composed of three protein 
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subunits ,  and ) (Huang & Thathiah 2015; Rosenbaum et al. 2009).  Ligand, or ACh, 

binding induces conformational change in the receptor that then induces the substitution of 

a guanosine triphosphate (GTP) in the place of a released guanosine diphosphate (GDP) 

on the  subunit (Oldham & Hamm 2008). The association of GTP with the  subunit 

destabilizes the heterotrimer, and the  subunits dissociate from the GTP- subunit. Each 

newly dissociated complex can then interact with their respective downstream proteins;  

tends to remain near the membrane and thus interacts predominantly with membrane-

bound effectors whereas the GTP- subunit tends to affect cytosolic effector proteins 

(Thiel 2013).  Heterotrimeric proteins are grouped into a family based on the specific type 

of  subunit it has.  Three of the main types are Gs, GI, and Gq (Oldham & Hamm 

2008). The signaling is aborted when the GTP gets hydrolyzed to GDP.  

The three different types of G proteins, Gs, Gi, and Gq, interact with specific 

downstream effector targets whereby G activates adenylyl cyclase, Gi inhibits adenylyl 

cyclase, and Gq activates phospholipase C (PLC).  The  also activates downstream 

targets, including certain types of inward rectifying channels and GPCR-associates with 

potassium, sodium and calcium channels, including presynaptic calcium channels (Hamm 

1998).  

Five different mAChRs exist in the body and are classified according to which G 

protein they couple to.  M1, M3, and M5 are considered “M1 type” and preferentially 

couple to the Gq protein.  These “odd” mAChRs, through their coupling with Gq, activates 

PLC which hydrolyzes phosphoinositol-1,4,5-biphosphate (PIP2) into inositol triphosphate 

(IP3) and diaglycerol (DAG).  IP3 then causes an overall excitatory effect in the cell by 

elevating intracellular levels of calcium via release from the endoplasmic reticulum and 
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activating calcium-calmodulin, whereas DAG enables downstream phosphorylation by 

activating protein kinase C (PKC) (Thiel 2013; Felder 1995).  The remaining mAChRs, 

M2 and M4, are called “M2 type” and preferentially couple to Gi proteins.  As such, the 

“even” mAChRs, upon activation, couple to Gi and inhibit adenylyl cyclase which 

ultimately reduces cyclic AMP (Caulfield & Birdsall 1998; Thiele 2013; Brown 2010). An 

occasional exception is the ability of M2 and M4 receptors to stimulate PLC through their 

 subunit , but with significantly less potency than M1-M5 receptors (Felder 1995). The 

eventual downstream result of reduced cyclic AMP is a decrease in phosphorylation by 

protein kinase A and overall inhibitory effect on the cell.  However, Gi coupled mAChRs 

M2 and M4 also elicit responses that are the result of membrane-association interactions 

with other channels through interactions with their  subunit, including activation of 

inward rectifying potassium channels (GIRKS), and voltage-gated calcium channels (Thiel 

2013).  Taken together, the differing downstream signaling cascades catalyzed by differing 

effector targets separates muscarinic receptors into generally excitatory M1, M3 and M5 

receptors and generally inhibitory M2 and M4 receptors.  

 

1.3 MUSCARINIC MODULATION OF GLUTAMATERGIC 

TRANSMISSION IN CORTICAL STRUCTURES 

1.3.1 MUSCARINIC MODULATION OF GLUTAMATERGIC 

TRANSMISSION IN THE HIPPOCAMPUS  

In the hippocampus, ACh has been shown to affect cholinergic receptors located 

both at synapses and elsewhere (Dannenberg et al., 2017).  If ACh is released in the 

hippocampus in a diffuse manner, then the location of receptors plays a vital role in 
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determining cholinergic modulation of networks, as different amount of ACh release have 

been proposed to exert different modulator effects (McQuiston et al., 2014).  mAChRs are 

differentially expressed in different circuits and cellular regions of the hippocampus, so 

that activation of select receptors would elicit certain modulatory effects of circuit 

functioning in the hippocampus, whereas activation of other receptors would elicit other 

distinct effects.  M1, M2 and M4 have been heavily documented in the hippocampus, and 

have distinct localizations. M1 receptors are predominantly on cell bodies and dendrites of 

pyramidal neurons and granule cells (Thorn et al., 2017; Levey et al., 1995; Yamasaki et 

al., 2010; Dannenberg et al., 2017).  M4 receptors exist presynaptically on glutamatergic 

neurons (Thorn et al., 2017; Sanchez et al., 2009; Shirey et al., 2008). M3 has also been 

identified, to a lesser degree, as existing on presynaptic terminals in the hippocampus as 

well (de Vin et al. 2015; Thorn et al., 2017).  These presynaptic M4 mAChRs function to 

inhibit presynaptic release of glutamate from intrinsic connections in the hippocampus, 

while failing to inhibit glutamate from afferent input to the hippocampus (Thorn et al., 

2017; Hasselmo et al., 2006).  This selective inhibition serves to enhance the signal from 

afferent input while dampening noise from intrinsic connections, thus shifting the influence 

to that of external input (Hasselmo et al. 2006; Dannenberg et al., 2017).  Thus, when ACh 

levels are elevated, presynaptic M4 mAChRs would enhance the influence of afferent input 

while suppressing intrinsic connections; when ACh is low, the suppression of these 

intrinsic circuits would be alleviated (Hasselmo et al., 1999; Dannenberg et al., 2017; 

Thorn et al., 2017).  

Hasselmo and others have extensively studied cholinergic modulation of 

glutamatergic transmission in the hippocampus and found that this cholinergic inhibition 
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of internal connections, but not afferent pathways, holds behavioral and cognitive 

consequences;  ACh shifts pathway dynamics in the hippocampus to enhance the encoding 

of new information (ie, by allowing afferent input to the hippocampus to occur unaffected) 

while suppressing pathways (ie internal recurrent connections) that represent aspects of an 

already-stored memory (Dannenberg et al., 2017; Thorn et al., 2017; Hasselmo & Wyble 

1997; Knierim & Neuneubel 2016; Rolls & Kesner 2006).   

 

1.3.2 MUSCARINIC MODULATION OF POSTSYNAPTIC NEURONS IN 

HIPPOCAMPUS 

Hippocampal mAChRs, in addition to affecting presynaptic glutamatergic release, 

also affect the excitability of both postsynaptic neurons and interneurons via M1 receptors 

(Gulledge and Kawaguchi 2007; Dasari & Gulledge 2011; Thorn et al., 2017). Muscarinic 

agents induce a slow depolarization in pyramidal neurons accompanied by increase spiking 

mediated by mAChR inhibition of leak potassium channels, voltage-dependent potassium 

channels and the M-current (Dannenberg et al., 2017; Brown and Adams 1980; Cole and 

Nicoll 1984). This increase in excitability could serve to make the postsynaptic neurons 

that possess cholinergic receptors more sensitive to certain afferent input.  

On interneurons, effects of cholinergic receptor activation tend to be much more 

varied that neurons in the hippocampus.  mAChR modulation of interneurons in the 

hippocampus have resulted in depolarizing responses, biphasic hyperpolarizing and 

depolarizing responses, and hyperpolarizing responses (Bell et al., 2013; Dannenberg et 

al., 2017).  
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The differential expression of mAChRs on different neuronal compartments is 

important to consider when examining ACh’s varying effects, as focused ACh release 

would only activate mAChRs in the vicinity of release whereas tonic ACh could diffuse to 

activate receptors further from the site of release.  This has been demonstrated in the 

hippocampus in studies comparing local ACh puffs with greater amounts of ACh released 

that could diffuse further distances (Dasari & Gulledge 2011; Gulledge et al., 2007). These 

studies highlight the important consequences that differential mAChR expression and 

differential ACh release have in brain circuits.  

 

1.3.3 MUSCARINIC MODULATION OF GLUTAMATERGIC 

TRANSMISSION IN THE CORTEX 

Similar to the hippocampus, ACh in the cortex is largely thought to enhance the 

signal to noise ratio of incoming stimuli from afferent layers and other brain regions.  

Numerous studies by Hasselmo and colleagues have found that ACh, or cholinergic 

agonists, differentially modulate afferent versus intrinsic synapses in the cortex. In the 

piriform cortex, Hasslemo & Bower found that application of muscarinic agonists and ACh 

inhibited internal recurrent projections within layer Ib via presynaptic mAChRs, but did 

not inhibit projections from afferent layer Ia that terminated in layer Ib (Hasselmo & Bower 

1992).  A similar selective enhancement of afferent information is also observed in the 

auditory cortex, where intrinsic intracortical projections or afferent thalamocortical 

projections were stimulated and responses recorded in the auditory cortex (Hsieh et al., 

2000).  Cholinergic agonists applied in high concentration selectively inhibited 

intracortical transmission but allowed afferent thalamocortical transmission to occur.  
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These effects were blocked by mAChR antagonists, showing differential muscarinic 

modulation of inputs whereby afferent input was spared but intrinsic cortical connections 

arising from the same region were inhibited (Hseih et al. 2000).  

The neuromodulatory effects of mAChRs in cortical regions suggests an overall 

modulatory pattern whereby mAChRs, when activated by high ACh, change the circuit to 

allow afferent input into a region but dampen intrinsic processing of information.  In 

theory, as discussed by Giocomo & Hasselmo, such actions would allow for mAChR 

activation to enhance the processing of novel, incoming information while reducing noise 

associated with older information (Giocomo & Hasselmo 2007).   

 

1.4  ENDOCANNABINOID SYSTEM 

Endocannabinoids (eCBS) are endogenous lipid-based compounds that bind to 

cannabinoid receptors (CBRs) both centrally and peripherally. Two eCBs have been found 

in humans and mammals, N-arachidonoyl-ethanolamine (AEA/anandamide) and 2-

arachidonoylglyceral (2-AG). While both are present in the brain, 2-AG is the more 

common endocannabinoid centrally (Piomelli 2003).   Both eCBs are derived from 

arachidonic acid, though they are synthesized differently. Anandamine (AEA) is produced 

when intracellular calcium levels increase and cAMP-dependent PKA phosphorylates the 

enzyme NAT (N-acyltransferase).  NAT then catalyzes arachidonic acid to be transferred 

to phophatidylethanolamine to form N-arachidonoyl-phosphatidylethanolamine, the 

precursor that is then cleaved into AEA by phospholipase D (Cadas et al. 1996; Piomelli 

2003; de Fonesca et al. 2004).  2-AG, on the other hand, is synthesized from the precursor 

1,2-diacylglycerol (DAG) (Stella et al., 1997).  This process begins when intracellular 
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calcium rises and PLC catalyzes the hydrolysis of PIP2 into IP3 and DAG. DAG can then 

activate PKC and its respective downstream targets. One of these targets is diaglycerol 

kinase (DAG kinase) which exerts negative feedback on DAG, and another target is 

diaglycerol lipase (DAG lipase), which hydrolyses the production of DAG into 2-AG (Zou 

& Kumar 2018; Piomelli 2003).  

Because the synthesis of AEA and 2-AG require rises in intracellular calcium, both 

eCBs can be synthesized when receptors permeable to calcium are activated or in response 

to downstream cascades that ultimately enhance the levels of intracellular calcium release 

(Piomelli 2003).  Examples of such receptors that, when activated, could stimulate the 

release of eCBs are NMDA receptors, nAChRs and mAChRs (Piomelli 2003; Stella & 

Piomelli 2001; Kim et al. 2002).  Whereas NMDA and nAChR activation would increase 

the influx of calcium directly and through voltage-gated calcium channels, mAChR and 

other GPCRs enhance eCB synthesis by coupling to Gq receptors and initiating the 

aforementioned PLC/DAG signaling cascade (Gyombolai et al. 2012; Caulfield 1993). 

Once synthesized, eCBs can diffuse out of the cell and activate CB receptors.  eCBs 

bind to two cannabinoid receptors CB1 and CB2, of which CB1 is most prevalent in the 

brain (Zou and Kumar 2018).  Of the two receptors, CB1R is the most evolutionarily 

conserved between humans and rodents, whereas much more diversity exists between 

species in the genetics of CB2R (Liu et al. 2009; Zou & Kumar 2018).   CB2Rs have been 

found to exist in the brain but only in very low amounts, whereas CB1Rs are quite prevalent 

in the central nervous system, especially in regions pertaining to emotion and homeostasis 

(Gong et al., 2006; Tsou et al. 1998; de Fonseca et al., 2004).   The two identified eCBs, 

AEA and 2-AG, have drastically different affinities for CBRs.  Whereas 2-AG is a full 
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agonist at both CB1R and CB2R, AEA predominantly binds to CB1R (Zou & Kumar 

2018).  

 

1.4.1 MUSCARINIC MODULATION OF CANNABINOID RECEPTORS 

The connection between Gq-coupled mAChRs and the induction of eCB synthesis 

due to calcium rise and Gq receptor coupling by GPCRs has been an emerging area of 

investigation in the brain.  The ablity of mAChR activation to increase cannabinoid 

synthesis and release was first demonstrated in the hippocampus by Alger and colleagues 

(Kim et al. 2002).  Application of carbachol resulted in mAChR enhancement of eCBS, 

which then diffused presynaptically to reduce GABA release, the phenomena of which is 

termed “depolarization-induced suppression of inhibition,” or DSI. Muscarinic-released 

eCBs acted on CB1 receptors, as application of a CB1 receptor antagonist blocked their 

seen effect. Mechanistically, the short-acting DSI was abolished by intracellular 

application of a calcium chelator, demonstrating the calcium-dependent aspect of mAChR-

mediated DSI (Kim et al. 2002). Later studies using pharmacological approaches and 

knockout-mice determined that mAChR subtype M1 is largely responsible for enhancing 

eCB signaling upon activation in the hippocampus and striatum, respectively, whereas M1 

and potentially M3 are responsible for endocannabinoid signaling in the periaqueductal 

gray (Narushima et al., 2007; Ohno-Shosaku et al. 2003; Lau and Vaughan 2008).  

Interestingly, a novel putative mechanism through which mAChRs could mediate 

transmission through CB2Rs has recently been identified (Foster et al., 2016). Activation 

of M4 mAChRs (achieved via activation with an M4 PAM + muscarinic agonist) inhibited 

dopamine release via release of eCBs and was blocked by a CB2 antagonist AM630.  This 
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M4-mediated CB release was not due to an increase in intracellular calcium, as neither 

intracellular calcium manipulations nor inhibition of IP3 prevented the eCB inhibition of 

neurotransmitter release, suggesting that M4 may enhance CB synthesis via DAG.  

Accordingly, Foster and colleagues (2016) reversed M4-mediated inhibition of 

neurotransmitter release by applying a DAG lipase inhibitor, suggesting a novel 

mechanism by which M4 mAChRs can enhance eCB synthesis via a calcium-independent 

mechanism that relies on the synthesis of 2-AG from DAG (Foster et al. 2016).  

Overall, muscarinic-mediated signaling through eCB receptors poses yet another 

complex level of modulation through which mAChRs can regulate glutamatergic signaling.  

 

1.5 BASAL FOREBRAIN 

While ACh exerts a wide range of neuromodulatory effects discussed above, it 

arises from defined regions in the brain.  These cholinergic origins can be localized to four 

main areas: the basal forebrain, the striatum, select neurons in the thalamus and the 

pedunculopontine nuclei in the brainstem (Woolf et al., 1991; Ballinger et al., 2016; 

Mesulam et al., 1983).  Of these groups, the basal forebrain has been heavily implicated in 

cognitive processing, projects the most ACh to the cortex and amygdala compared to other 

cholinergic areas, and displays loss of cholinergic neurons in Alzheimer’s Disease (Rossor 

et al., 1982, Mesulam et al., 1983; Ballinger et al., 2016). However, the basal forebrain is 

a complex cholinergic structure consisting of many different subregions that project to 

various parts of the brain. Prior to the early 1980’s, there was no consistent demarcation in 

the nomenclature for referring to the different basal forebrain subregions.  In 1983, 

Mesulam et al. demarcated different basal forebrain regions depending on their location in 
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the basal forebrain and their projection targets, each with the prefix “Ch” to denote “the 

cholinergic nature of these cell groups since they each contained neurons with high levels 

of both acetylcholinesterase (AChE) and choline acetyltransferase (ChAT)-like 

immunoreactivity” (Mesulam et la., 1983).  Since then, the subregions of the basal 

forebrain have been referred to as Ch1, Ch2, Ch3 and Ch4 to indicate the medial septal 

nucleus, the vertical limb of the diagonal band, the horizontal limb of the diagonal band, 

and the basal nucleus (including the substantia innominata and the nucleus basalis of 

Meynert), respectively (Mesulam et al., 1983; Ballinger et la. 2016; Boskovic et al., 2019).  

10% of neurons in Ch1 were found to be cholinergic, Ch2 contained more cholinergic 

neurons (70%), Ch3 has the lowest amount of cholinergic neurons (only 3%), while a 

striking 90% of neurons in Ch4 are cholinergic (Mesulam et al., 1983; Boskovic et al., 

2019).  There is also general organization of these regions according to their projection 

targets (Zaborszky et al., 2013; Gielow & Zaborszky 2017).  Cholinergic neurons in Ch1 

(medial septum) and Ch2 (vertical limb) predominantly project to the hippocampus, 

olfactory bulb and prefrontal cortex, Ch3 (horizontal limb) contains projections to the 

olfactory bulb as well in addition to the thalamic nuclei, Ch4 (substantia innominata and 

nucleus basalis of Meynert) tends to project mainly to the cortical regions and basolateral 

amygdala (Carlsen et al., 1985; Woolf and Butcher 1982; Boskovic et al., 2019; Zaborsky 

et al., 1986; Woolf et al., 1991; Knox and Keller 2016; Ballinger et al., 2016).  

 

1.5.1 BASAL FOREBRAIN FIRES IN BURSTS 

The manner in which the basal forebrain fires holds tremendous influence over 

activation of muscarinic receptors.  Should the basal forebrain release ACh in large 
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amounts, that ACh would be able to more easily diffuse to synaptic targets and activate 

distal receptors. In vivo studies have shown the basal forebrain fires in theta bursts during 

active waking and paradoxical sleep, behaviors for which microdialysis studies have also 

shown ACh levels to be the most elevated (Lee et al., 2005).  Interestingly, this burst-firing 

is in synchrony with theta oscillations, 4-12 Hz oscillations shown to be important for 

learning, memory and is high during exploratory behavior (Caplan et al. 2003; 

Vinogradova et al., 1995; Colom et al., 2006; Lee et al. 2005).  Basal forebrain neurons 

fire in short, high frequency bursts.  The inter-burst-interval peaks around 16 Hz (during 

paradoxical sleep), is about 8 Hz during active waking, and low (0.84 Hz) during slow 

wave sleep (Lee et al., 2005). The frequency of intra-burst spiking peaks at 107 Hz (during 

paradoxical sleep).  

 

1.5.2  BASAL FOREBRAIN IN EMOTIONAL LEARNING / PAVLOVIAN LEARNING  

Interestingly, most of the regions to which the basal forebrain projects 

(hippocampus, medial prefrontal cortex and basolateral amygdala) are in what is known as 

the fear network and involved in fear learning and fear extinction.  Studies using the classic 

Pavlovian paradigm of fear learning have shown that the basal forebrain and its projections 

are necessary for emotional learning (Power & McGaugh 2002; Passani et al., 2001; Knox 

et al. 2016; Jiang et al. 2016).  In these paradigms, a neutral stimulus like an auditory tone 

(Conditioned Stimulus, or CS), is paired with an aversive stimulus like a shock 

(Unconditioned US).  An unpaired CS elicits no distinct behavior, but after one or more 

pairings with an US, the animal eventually forms a learned association between the two 

stimuli. Associative fear learning is shown and measured by the display of a well-defined 
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fear behavior to the otherwise neutral shock once the animal learned that the CS predicts 

the US (Blanchard & Blanchard 1969). When the association is formed in a specific 

environment and the animal additionally associated an environment with an aversive 

stimulus, the learning is known as contextual fear conditioning. Basal forebrain neurons 

are necessary for forming and displaying fear behaviors in response to a learned US or a 

threatening stimulus, as lesions to the basal forebrain or optogenetic inhibition of basal 

forebrain projections disrupt fear acquisition and consolidation during Pavlovian 

paradigms (Power & McGaugh 2002; Passani et al., 2001; Knox et al. 2016; Jiang et al. 

2016). 

 

1.6   AMYGDALA: AN OVERVIEW  

Interestingly, the largest amount of ACh from the basal forebrain is sent to the 

amygdala, an almond-shaped structure located in the temporal lobe.  The amygdala is 

important for the acquisition and expression of emotional learning, a role that has been 

uncovered through clinical studies, pharmacological ablation and lesions studies in 

animals, and through behavioral paradigms often involving Pavlovian conditioning.   

Much of what we know linking the amygdala with emotion in humans has resulted 

from case studies of individuals with Urbach-Wiethe disease, a rare autosomal recessive 

disease in which the amygdala has been calcified.  These individuals often display normal 

cognition but an impaired emotional processing (Siebert et al., 2003).  Case studies report 

such individuals slightly impaired in the ability to process and differentiate facial 

expressions conveying “disgust” and other negative emotion from positive expressions and 

extremely impaired in episodic memories involving emotional saliency (Siebert et al., 
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2003).  Case studies involving bilateral lesions to the amygdala similarly demonstrate the 

involvement of the amygdala in emotional processing, as such patients are unable to 

completely process fearful facial expressions (Adolphs et al., 1995).   Individuals with 

Alzheimer’s disease often express altered emotional processes that manifest as aggression, 

inappropriate emotional responses, postmortem investigations often reveal plaques and 

neurofibrillary tangles in the amygdala (Unger et al., 1991).  

Studies in animal models have provided more targeted and detailed understandings 

of the role of the amygdala in forming activity-dependent and associative-dependent 

emotional memories.  With the advent of Pavlov’s conditioning studies, scientists have 

been able to use aversive conditioning tasks as well as appetitive conditioning tasks to 

examine the circuitry involved in forming emotional memories and producing appropriate 

behavioral responses to stimuli. LeDoux and colleagues have extensively demonstrated 

that the amygdala receives cortical and thalamic input that conveys information about an 

aversive stimulus and an auditory cue, respectfully, to the amygdala. If evoked responses 

from both the cortex and auditory thalamic projections to the amygdala arrive in close 

temporal proximity, synaptic plasticity will occur at the amygdalar neuron onto which the 

inputs converge, and stimulation of the cortical input will later elicit the learned behavioral 

outcome even in the absence of an auditory cue (Rogan et al. 1997; Quirk et al., 1995; 

Tovote et al., 2015; Kwon et al., 2014).   However, it is important to note that the amygdala 

is not restricted to negative emotional memory but also forms appetitive associations.  

Amygdalar neurons respond to both learned fear and learned positive associations like 

safety and reward (Maren 2016). Single unit recordings in rodents show subpopulations of 

neurons increased their firing rate in response to stimuli representing safety, whereas others 
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responded cues associated with fear (Sangha et al., 2013).    Similar studies in primates 

have agreed with these findings in that separate neurons encode appetitive outcomes and 

other neurons encode negative outcomes (Paton et al., 2006). The amygdala not only 

contains neurons that response differentially to appetitive and aversive stimuli, but it also 

projects to external regions and receives projections from afferent regions that convey 

appetitive and aversive information in projectionally-defined manners (Malvaez et al., 

2019).   

Overall, the amygdala is intimately associated with emotional processing, the 

importance of which is seen in anxiety and fear disorders when amygdalar functioning goes 

awry.   

 

1.6.1 AMYGDALA NUCLEI AND NOMENCLATURE  

In order to study both healthy and diseased amygdalar processing, it is important to 

understand the organization and anatomy of the amygdala and its connected circuits. The 

amygdala is composed of multiple nuclei that can be subdivided according to their 

cytoarchitecture (Sah et al., 2003; McDonald et al., 1998).  Most investigators refer to the 

amygdala as having a group that displays “cortical-like” characteristics and thus refers to 

this nuclei as the cortex-like group, the centromedial group, and the basolateral group 

(McDonald et al., 1998; Alheid et al., 1995; Sah et al., 2003).   These three groups of nuclei 

can be further divided into specific nuclei. The cortex-like group consists of the cortical 

nucleus and the nucleus of the lateral olfactory tract, the centromedial group consists of the 

central nucleus and the medial nucleus, and the basolateral nucleus consists of the lateral 
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nucleus, basal nucleus and the accessory basal nucleus (reviewed in McDonald et al., 

1998).  

As the name implies, cells in the cortical-like nucleus (in other words, cells in the 

bed nucleus of the accessory olfactory tract (BAOT), the cortical nucleus (Co), the nucleus 

of the lateral olfactory tract (NLOT), and the periamygdaloid cortex (PAC)), display an 

organization and morphology most similar to that of cortical regions (Carlsen and Heimer 

1988; reviewed in McDonald 1998; Sah et al., 2003).   

The medial nuclei of the amygdala (comprised of the central nucleus (CeA), the 

medial nucleus (M) and the bed nucleus of stria terminalis (BNST)) is the nucleus closest 

to the optic tract.  The central nucleus appears between the basolateral nucleus laterally and 

the globus pallidus dorsally. Modern nomenclature refers to the central nucleus as having 

four subdivisions, the capsular, lateral, intermediate and medial (Sah et al., 2003).   

The basolateral amygdala, referred to as BLA, is composed of (from dorsal to 

ventral) the lateral nucleus (LA), the basal / basolateral nucleus (BL), and the accessory 

basal nucleus (AB).  Unlike in the cortex-like nuclei, the pyramidal neurons and 

interneurons in the BL are not laminar but rather interspersed in a seemingly unorganized 

fashion. In some literature, the BL is subdivided into a magnocellular and a parvicellular 

division, and in other literature the BL is subdivided into an anterior BLa and a posterior 

BLp.  
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1.6.2 AFFERENT CONNECTIONS TO THE AMYGDALA: GENERAL BEHAVIORAL 

FUNCTIONS AND ANATOMICAL TERMINATION FIELDS IN THE AMYGDALA  

The lateral nucleus, specifically the dorsal subdivision, is the primary “input 

region” of the amygdala, receiving inputs conveying a wide range of sensory modalities: 

auditory, visual, somatosensory, gustatory, and olfaction. Some of these sensory modalities 

also project to other amygdala nuclei (to be discussed below), but the lateral amgydala 

generally is considered to be the primary input region (LeDoux 2007; Sah et al. 2003; 

Pitkaenen et al., 1997).  

The central nucleus is considered the primary output region conveying information 

leaving the amygdala; both the lateral nucleus and the basolateral nucleus project to the 

central nucleus, but the lateral nuclear connections to the central nucleus are much less 

dense than those from the basolateral amgydala to the central nucleus (LeDoux 2007; Sah 

et al. 2003; Pitkaenen et al., 1997).  Because there not many direct projections from the 

lateral nucleus to the central nucleus, it is thought that the pathway that sensory input takes 

to get to the central nucleus (and eventually affect autonomic behaviors mediated by the 

spinal cord and other downstream structures) is from the lateral nucleus to the basolateral 

nucleus then to the central nucleus (LeDoux 2007; Sah et al. 2003; Pitkaenen et al., 1997). 

The central nucleus then projects to downstream structures that elicit behavioral responses 

including autonomic responses like changing respiratory rate (brainstem, hypothalamus) 

(LeDoux 2007).  

Following the organization put forth by Sah et al., afferent input to the amygdala 

can be best understood when divided into afferents arising from regions implicated in 

cognition and afferents arising from regions implicated in autonomic and endocrine 
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responses (Sah et al., 2003). Thus, one can think of amgydalar inputs in terms of those that 

arise from cortical regions and subcortical regions involved in cognition and sensory input 

(such as the cortex, thalamus and hippocampus) and those that arise from regions involved 

in autonomic and endocrine responses (like the hypothalamus and brain stem) (Sah et al., 

2003; McDonald et al., 1998).  

Auditory information does not project from the primary auditory cortex (Te1) to 

the amygdala directly, but rather the flow of auditory information seems to be relayed from 

the medial geniculate nucleus of the thalamus to Te1, from Te1 to cortical auditory 

association areas Te3 (auditory association area), Oc2L (also referred to as Te2D by 

McDonald 1998), and lightly to Te2, with the main amygdalar targets from these secondary 

cortical regions being the dorsolateral LA, magnocellular basal nucleus, and lateral Ce 

(Mascagni et al., 1993; Shi & Cassell 1997;  McDonald et al., 1998).  A similar pattern of 

terminations is seen, as summarized in McDonald 1998, in projections arising from 

additional auditory association areas Te2D and Te3R.  In addition to cortical projections, 

the amygdala, specifically the LA, receives direct projections from auditory thalamic 

nuclei, including projections from the medial geniculate nucleus of the thalamus and the 

posterior intralaminar thalamic nucleus.  Both the auditory cortical projections and the 

auditory thalamic projections converge on dendritic spines on LA neurons, suggesting that 

these inputs may synapse on the same amygdalar neurons (LeDoux et al., 1991).  LeDoux 

and colleagues (1996) tested this hypothesis and found that both thalamic and cortical 

projections can synapse onto the same amygdala neurons. However, a latency period exists 

between cortical and amgydala transmission such that after an auditory tone, the cortical 

auditory inputs take longer and thus arrive at the same time as the inputs that have to pass 
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through the MGN and then go to the amygdala; this latency period may serve as enabling 

plasticity at these converging inputs as LeDoux et al. found that NMDA receptors, a 

receptor governing long term potentiation and learning at the molecular level, affected 

thalamic input but not cortical input to the LA, suggesting the thalamic inputs will 

depotentiate the LA neurons while the cortical input can be potentiated at those synapses 

(LeDoux et al. 1996).    Overall, auditory information seems to take two main pathways to 

the LA, one from the cortical auditory association areas and another from the auditory 

thalamic nuclei. Importantly, these both seem to project predominantly to the LA as well 

as to the Ce but largely spare the BL nucleus.   

Aversive somatosensory information conveyed to the amygdala is thought to arise 

from brainstem regions, medial geniculate nuclei of the thalamus and cortical regions.  

Neurons in the medial geniculate nucleus, a region that projects to the amygdala, have been 

shown to respond to somatosensory stimuli (Bordi & LeDoux 1994).  Both the pontine 

parabrachial nucleus and the periaqueductal grey directly project to the amygdala.  The 

pontine parabrachial nucleus sends the most direct projections to the CeA and fewer to the 

posterior basal nucleus (BLp) and the anterior basomedial nucleus (Bernard et al., 1993).  

Interestingly, Bernard et al. (1993) showed the pontine parabrachial nucleus also sends a 

dense amount of projections to the substantia innominata of the basal forebrain – a region 

that our lab has shown sends fewer cholinergic projections to the BLp. The periaqueductal 

grey is thought to convey somatosensory information about a noxious US.  This pathway 

projects directly to the CeA in the amygdala and indirectly communicates with the BL by 

means of midline thalamic nuclei, including the paraventricular nucleus, the reuniens 

nucleus, and rhomboid nucleus (Rizvi et al., 1991; Krout & Loewy 2000).   
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Hippocampal projections to the amygdala have been shown to be necessary for an 

organism to experience reinstated fear in response to a familiar context (Ji & Maren 2007; 

Xu et al. 2016). Contextual information largely exits the hippocampus through efferent 

projections arising in the ventral subiculum, running through the angular bundle and 

terminating in the posterior basomedial nucleus most densely and the posterior basolateral 

nucleus, cortical nucleus, intercalated nuclei and the NLOT less densely (Canteras & 

Swanson 1992; Pitkaenen et al., 2000).  

Projections from the medial prefrontal cortex (mPFC) to the amygdala are 

important for various processes involved in fear behaviors. The mPFC contains four 

subregions, two of which are the prelimbic cortex (PL) and the infralimbic cortex (IL).  

These two regions are important for fear acquisition and fear extinction, respectively 

(Milad & Quirk 2002).  Tract tracing studies and optogenetic viral expression patterns and 

show that the prelimbic cortex projections to the amygdala densely innervate the basal 

nucleus and the lateral capsule of the central amygala (McDonald et al., 1996; Vertes et al. 

2004; Huebner et al. 2014; Adhikari et al., 2015).  The projections to the basal nucleus are 

restricted to just the anterior basal nucleus (BLa) (McDonald 1996). Interestingly, the 

densest termination field in the basolateral complex for infralimbic projections is in the 

ventromedial LA and the accessory basal nucleus, two regions where the PL does not 

project.  The incredibly sparse IL projections that were seen in the basal nucleus were 

localized mainly in the BLp (referred to as the parvicellular subdivision by McDonald et 

al. 1996) (McDonald et al; 1996).   Both the prelimbic and infralimbic prefrontal cortices, 

however, project to the lateral capsular subdivision of the central nucleus (McDonald and 

Mascagni 1996; Pinard et al. 2012).  The IL also projects to the SI whereas the PL does not 
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(Vertes 2004).  This differential innervation of the SI opens the physiological possibility 

that the IL is capable of feedback control to the cholinergic center of the brain whereas the 

PL is not. Also noteworthy are projections from the IL to the ITCs in the amygdala (Pinard 

et al., 2012). The excitation of these ITC’s may affect downstream structures that give rise 

to extinction behaviors, a concept that is supported by electrophysiology, behavior and 

immunohistochemistry (Quirk et al. 2003; Amano et al. 2010; Pape & Pare 2010; Pinard 

et al. 2012).  

Once thought to only relay sensory information, the midline thalamic nuclei 

(THAL) that project to the amygdala are now known to be involved in more varied 

processes affecting cognition and survival. The midline thalamic nuclei are often grouped 

in the literature into dorsal nuclei that generally target limbic subcortical structures 

(nucleus accumbens and amygdala) and a ventral group that generally targets limbic 

cortical structures (sensory cortical areas) but also send lighter projections subcortically 

(Van der Werf et al. 2002). The dorsal nuclei include the paraventricular nucleus (PVT), 

paratenial nucleus (PT) nucleus and intermediodorsal nucleus. Tract tracing studies have 

shown that of these nuclei, the anterior PVT nucleus sends the densest projections to the 

lateral central amygdala and “moderately dense” projections to the rostral basal nucleus, 

caudal basal nucleus, and basomedial nucleus (Vertes & Hoover 2008).  Posterior PVT 

nucleus terminations in the amygdala showed the same topographical pattern as anterior 

PVT terminations but were much more dense (Vertes & Hoover 2008). PT projections were 

the heaviest in the medial LA and medial BLA and densest in the more caudal amygdala.  

Interestingly, unlike the auditory thalamic input to the amygdala, the midline thalamic 

input largely avoids the LA (with the exception of the PT medial LA terminations) and 
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predominantly terminates in the BL.   This termination pattern raises the possibility that 

THAL are involved in BL-mediated behaviors. Accordingly, behavioral studies have 

suggested THAL is implicated in aspects of fear learning involved error prediction and 

threat detection; blocking the midline thalamic nuclei during Pavlovian conditioning 

blocks predictive fear learning and activating the ventral midline thalamic nuclei reduces 

an organism’s saliency to a potential predator (Sengupta & McNally 2014; Salay et al., 

2018).   

To summarize the above projections, afferent input largely arrives at the amygdala 

in the LA nucleus and the BL (both BLa and BLp) nucleus.  Pathways terminating in the 

LA including the infralimbic cortex conveying information necessary for extinction 

learning and from cortical regions conveying auditory, gustatory, somatosensory, olfactory 

and visual information. The BL is composed of both a BLa (consisting mainly of 

magnocellular cells and thus also referred to as the magnocellular division) and a BLp 

(consisting of parvocellular cells and called the parvocellular division in some literature).  

Pathways terminating in the BLa include the prelimbic cortex conveying higher order 

information necessary for fear acquisition, midline thalamic input conveying error 

prediction and influencing survival behaviors in response to threat, and ventral subiculum 

conveying contextual information.  Pathways terminating in the BLp include midline 

thalamic nuclei, cortex-amygdala transition zone conveying olfactory information, pontine 

parabrachial projections conveying ascending somatosensory information and the anterior 

insular cortex conveying visceral sensations. Thus, there appears to be a topographical 

organization to the different afferent inputs to the amygdala.  
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In terms of a behaviorally relevant context like fear, information conveying the CS 

stimulus (an auditory tone, for example) and the US stimulus (a shock, for example) both 

converge predominantly in the dorsal LA (Bordi & LeDoux 1992). The temporally 

coinciding input will potentiate the synapse onto which the two stimuli arrived.  Thus, if 

the CS arrives alone in the future, that auditory information conveyed will arrive on a 

potentiated synapse and be able to elicit the behavioral response that the US did before 

(Ledoux 2007).   

Putting this topographical organization into a dynamic context, behavioral studies 

and tract tracing studies have developed models of information flow through the amygdala.  

The general flow of information, as reviewed by Pitkaenen et al. (1997) posits information 

generally enters the amygdala in the LA and generally leaves via two main output regions, 

the central nucleus and the amygdalohippocampal area.   

Elegant studies and a review article by Pitkaenen et al. 2006 reveal that information 

flows within the LA nucleus in a one-way manner.  The dorsal LA projects to the ventral 

LA and the medial LA, but the ventral LA and the medial LA do not densely project to 

each other nor do they project back to the dorsal LA (Pitkaenen 2006). Likewise, there are 

very few reciprocal connections within the dorsal, ventral and medial divisions of the LA 

(Pitkaenen 2006).  Unlike the LA, however the BL has many more reciprocal connections 

within both the BLa and the BLp (Savender et al. 1995).  Whereas the LA has a one-

direction flow from the dorsal LA to the ventral LA and medial LA, the BL contains 

bidirectionality between the BLa and BLp.   

So how then, does information flow from external afferents to the LA, between 

nuclei, and finally to the CeA and other structures?  Most internuclear projections arise 
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from the LA, as the LA projects to the BL, the periamygdaloid complex, the medial 

nucleus, the cortical amygdala, the central nucleus, the amygalohippocampal area and, the 

densest, to the AB (Pitkaenen et al. 1995). The AB then projects to the CeA, likely resulting 

in downstream behaviors (Pitkaenen et al. 1995). As mentioned above, the LA also projects 

to the BL.  However, the LA projections to the intermediate and posterial aspect are denser 

than the projections to the BLa, with particularly dense projections from the medial LA to 

the BLp (Pitkaenen et al. 1995; Stefanacci et al. 1992; Pitkaenen and Amaral 1991). Thus, 

once information flows into the LA, it can proceed either directly to the intermediate or 

posterior BL via dense projections, to the BLa via sparse projections, to the AB, CeA, CoA, 

MeA, PAG, or to the medial and ventral LA (Pitkaenen et al. 1995). Since the medial LA 

also receives hippocampal, infralimbic, olfactory as well as other inputs, the information 

relayed here could be further processed before leaving the LA (Pitkaenen et al. 1995). 

After entering the BL, the exiting destination is ultimately determined by the 

subdivision of the BL it arises from.  All three subdivisions of the BL (BLa, BLi, BLp) 

project very sparsely to the AB, PAG and the MeA.  All three BL subregions project 

densely to the NLOT (Savander et al. 1995).  The other output nucleus of the amygdala, 

the CeA, also received projections from the BL, but the density also depended on the 

specific location of origin in the BL; all rostral caudal regions of the BLa projected to the 

CeA, with only the middle being dense. The BLi only sent sparse projections to the CeA.  

On the other hand, the BLp sent very dense projections to the CeA and the capsular division 

of the CeA.    

To summarize, sensory information enters the amygdala largely at the LA, but 

additional afferent inputs such as the PL, MTN, vSUB, enter the amygdala at the level of 
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the BL.  These inputs may serve to update a preexisting association made, or influence the 

value assigned to an emotional given the BL’s role in associative learning.  However, the 

exact mechanisms underlying how the BL modulate these inputs remains unknown.  

Interestingly, the ACh that is sent to the amygdala from the basal forebrain nearly uniquely 

projects to the BL, raising the question of if it can modulate the afferent input (PL, THAL, 

vSUB) that terminates in the BLa.  

 

1.6.3 CHOLINERGIC PROJECTIONS TO THE BL 

Anatomical studies labeling for various markers of cholinergic innervation across 

species have consistently found that the BL has the densest labeling for ChAT and AChE 

compared to the other nuclei in the basolateral complex (Ben-Ari et al. 1977; Girgis 1980; 

Svendsen & Bird 1985; Amaral & Bassett 1989).  More specifically, the magnocellular 

(BLa) division of the BL had the densest amount of immunoreactivity for ChAT labeling 

compared to the other regions (Amaral & Bassett 1989). Tract tracing, 

immunohistochemistry, transgenics, fiber lesioning and immunofluorescence have been 

used in studies spanning the last 4 decades to determine that cholinergic input to the BL 

arises from the basal forebrain, specifically from the substantia innominata and the 

horizontal diagonal band in the nucleus basalis of Meynert (Agostinelli et al., 2019; 

Mesulam et al. 1983; Emson et al., 1979; Woolf & Butcher 1982; Carlsen et al., 1985; 

Zaborsky et al., 1986). 

Electron microscopy and immunocytochemistry techniques later revealed that 89% 

of the postsynaptic BL neurons onto which VAChT+, or cholinergic, terminals synapsed 

were excitatory pyramidal neurons (Muller et al. 2011).  Furthermore, a majority of these 
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symmetrical synapses between cholinergic inputs and glutamatergic neurons were on 

dendritic shafts and spines.  Strikingly, electron microscropy showed that cholinergic 

terminals were located in close proximity to glutamatergic synapses, suggesting that when 

ACh is released it is in an ideal position to modulate neurotransmission (Muller et al. 2011).  

 

1.6.4 CHOLINERGIC RECEPTORS IN THE BL 

While ACh exerts its effects through both nicotinic and muscarinic receptors, 

behavioral and pharmacological data largely supports muscarinic receptors activation 

mediating emotional learning and memory (Wilson & Fadel 2016).  However, recent work 

by the Role lab has implicated nAChR in long-term plasticity of cortico-amygdalar 

synapses in the BL (Jiang et al. 2016).  

Since the 1980’s we have seen a wealth of results from electrophysiology, genetic 

and autoradiography studies identifying mAChRs M1, M2, M3 and M4 in the BL of 

rodents, nonhuman primates and humans (Sugita et al. 1991; Flynn & Mash 1993; Cortes 

et al. 1987; Spencer et al. 1986; Mash & Potter 1986; Bonner et al. 1988; Yajeya et al., 

2000).  

M1 receptors are most dense in the BL, and immunoperoxidase staining localized 

the majority of the M1 receptors to be on neuronal perikarya. Dual labeling experiments in 

the same study further identified the localization of M1 receptors to be on CaMK+ neurons, 

as almost all CaMK+ neurons double labled for M1, suggesting that M1 receptors are 

located postsynaptically on glutamatergic pyramidal neurons in the BL (McDonald & 

Mascagni 2010).  Later studies employing electron microscopy advanced upon these 

findings by studying where exactly on these pyramidal neurons M1 receptors are localized; 
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On the M1-labeled pyramidal neurons, M1 receptors were present on 90% of dendritic 

shafts and 60% of dendritic spines (Muller et al. 2013).  Interestingly, M1 receptors were 

also seen on presynaptic terminals forming asymmetrical (putative glutamatergic) synapses 

and symmetrical synapses.  The majority of terminals containing M1 receptors on putative 

glutamatergic inputs synapsed onto dendritic spines, whereas the other M1+ terminals 

synapsed onto dendritic shafts and cell bodies (Muller et al. 2013). Strikingly, the VAChT+ 

terminals were in close proximity to synapses, indicative of the potential role of ACh in 

regulating glutamatergic transmission via M1 receptors. A separate study identified M2 

receptors on both neuropil and perikarya of SOM+ and NPY+ interneurons (McDonald & 

Mascagni 2011).  In the BL, M2+ neuropil labeling was most robust rostrally, whereas 

caudally it was less robust but only in the BLp. This is suggestive of M2-mediated 

modulation that could be specific to the BLp and not BLa. M2+ perikarya was identified 

in every amgydala nucleus including the ITCs (McDonald & Mascagni 2011).   Successive 

experiments utilizing electron microscopy to more specifically localize M2 receptors found 

the majority of dendrites (95%) expressed M2 receptors and these M2+ dendrites also had 

VAChT+ projections synapsing in close proximity (although some VAChT+ terminals 

synapsed with M2R- dendrites forming both symmetrical and nonsymmetrical synapses) 

(Muller et al., 2016).  Notably, there were postsynaptic M2 receptors that were “located 

just outside of the active zone of the synapse,” suggestive that larger or smaller quantities 

of ACh release could differentially affect these receptors located further away (Muller et 

al., 2016).  M2 receptors were also found presynaptically on terminals that tended to 

synapse asymmetrically and symmetrically with M2+ postsynaptic dendrites, although it 

was found that “twice as many M2R+ terminals made asymmetrical as compared to 
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symmetrical synaptic contacts,” suggestive that M2 receptors are located on excitatory 

synapses and thus in a position to regulate glutamate release (Muller et al., 2016).  

 

1.7 SIGNIFICANCE REVISITED 

The basolateral amygdala is a region implicated in emotional processing and 

assigning emotional value to stimuli.  In addition to receiving projections from other 

regions in the fear network, including the PL and THAL, the BL also receives the densest 

amount of ACh from the basal forebrain.  Cholinergic projections to the amygdala have 

been implicated in learning and emotional processing.  However, how this cholinergic 

innervation affects transmission from the PL and THAL to the BL remains unknown.  The 

goal of this study is to fill the gap in the literature regarding cholinergic modulation of 

afferent input to the BL. The overarching hypothesis of this project is that endogenous ACh 

inhibits afferent transmission to the basolateral amygdala, and that muscarinic ACh 

receptors differentially regulate PL and THAL input to the BL.    
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CHAPTER 2 

GENERAL METHODS 

2.1 NEURONAL SIGNALING: AN OVERVIEW 

In the brain, information is transmitted through and between neurons by electrical 

signals, such as action potentials and synaptic potentials that arise from current flow.  

Current flow in a neuron is due to the movement of positive or negative ions into or out of 

a neuron through ion channels.  For any given neuron, a lipid bilayer membrane separates 

two sides: an intracellular side consisting of the neuron’s cytosol and components, and the 

extracellular side.  Intracellularly, neurons contain many negatively charged proteins 

whereas the extracellular side tends to contain many more positively charged ions. The 

cellular membrane is a lipid bilayer that is impenetrable to the diffusion of ions across it 

unless they are assisted in movement.  Thus, the lipid membrane separates charges – 

usually a positively charged extracellular side from a negatively charged intracellular side 

(Figure 2.1).  Because a separation of charge creates a situation in which particles can 

theoretically move from one side to the other releasing energy in the process, any 

separation of charge is referred to as a “potential” and is designated by the units of voltage.  

When the separation of charge is across a membrane, it is referred to as a “membrane 

potential.”  When neuroscientists quantify the charges across a membrane, they 
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Figure 2.1. Membrane potential separated by a lipid bilayer. The internal environment 

of a neuron (orange) is usually more negative than the outside (blue).  This difference in 

charge creates a negative membrane potential maintained in part due to an impermeable 

membrane and ATP-driven pumps that actively pump more positive ions out than in. 

(Image adapted from Principles of Neural Science 5th Edition,” (p. 127), by J. Koester and 

S.A. Siegelbaum, 2013, New York, New York: The McGraw-Hill Companies, Inc., 

Copyright 2013 by The McGraw-Hill Companies, Inc.).   
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designate the potential outside the cell as zero and assign the potential inside the cell a 

quantity relative to the zero potential outside. Thus, as mentioned earlier, the inside of a 

cell tends to be more negatively charged than outside and therefore the intracellular 

potential is usually between -60mV to -75mV relative to the outside (Figure 2.2).  This 

resting membrane potential is due to the permeability of ions as well as the electric and 

chemical gradients of ions on the intracellular and extracellular sides of the  

membrane; thus, it is closest to the equilibrium potential of the ions to which the neuron is 

most permeable.  In the case of neurons, many K+ channels are open at rest, allowing for 

the flux of K+ ions out of a cell.  However, once enough K+ diffuses out of a cell, the 

more-negative interior will electrically oppose the movement of K+ down their 

concentration gradient.  At the same time, active transport of 2 K+ ions into the cell and 3 

Na+ ions out of the cell occurs to oppose the passive movement of these two ions across 

membranes (Figure 2.2). Together, active and passive movements of ions across a 

membrane can maintain a constant membrane potential.   If this potential remains constant, 

meaning if positive and negative ions are flowing into and out of the neuron at rates that 

keep the potential constant, the neuron is at rest and there is no net flow of ions across the 

membrane.  However, if the flow of ions becomes imbalanced in the sense that more 

positive or more negative ions flow into or out of the neurons, the interior or the neuron 

becomes more positive or more negative compared to the outside; neuroscientists refer to 

this increase or decrease in membrane potential as depolarized or hyperpolarized 

membrane potential, respectively.  Should a neuron be depolarized enough, a threshold will 

be passed and the neuron will fire an action potential. This action potential is a propagating  

wave of changing membrane potential (from negative to positive) down a neuron’s axon.   



44 

 

Figure 2.2.  Resting membrane potential is around -70mV at rest. At rest, neurons have 

a negative membrane potential.  Contributing in part to this potential is the 

sodium/potassium pump.  The membrane of neurons is much more permeable to K+, so 

the membrane potential is closest to K+’s equilibrium potential.  However, after Na+ 

inevitably leaks into the cell, the sodium/potassium pump pumps three Na+ ions out for 

every two K+ in, expending ATP in the process. In whole-cell electrophysiology, 

membrane potentials and ionic flux (current) can be recorded by an electrode patched onto 

or into the cell; it measures electrical events due to ion flow for a single neuron. (Image 

adapted from “Resting Membrane Potential.” Mar 23, 2016, OpenStax, Biology. OpenStax 

CNX. Retrieved November 24, 2019, from https://courses.lumenlearning.com/wm-

biology2/chapter/resting-membrane-potential/ .). 
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When an action potential reaches the end of an axon terminal, it depolarizes the presynaptic 

terminal and voltage-gated calcium channels open in response.  Elevated presynaptic 

calcium then acts as a second messenger to mobilize neurotransmitter-filled vesicles for 

release.  Vesicles containing neurotransmitters are immobilized by proteins called 

synapsins, which serve as anchors to keep the neurotransmitter-containing vesicles in 

reserve pools and prevent their movement to membranes and subsequent neurotransmitter 

release (Purves et al., 2008; Kandel, Schwartz, Jessell, Siegelbaum & Hudspeth, 2013).  In 

the event of calcium increase, this calcium aids in phosphorylating synapsin via the 

calcium/calmodulin-dependent protein kinase I, thus releasing the anchor on vesicles and 

allowing them to move out of the reserve pool and towards the presynaptic membrane.  

There is another calcium-sensitive complex of proteins embedded in vesicle membranes, 

“SNARE proteins” that allow for the vesicle to be brought closer to the membrane (Purves 

et al., 2008; Kandel, Schwartz, Jessell, Siegelbaum & Hudspeth, 2013).  Once the vesicle 

is close to the membrane, additional proteins join the protein complex, including 

synaptotagmin.  Once calcium increases in close proximity to this complex, it binds to 

synaptotagmin and allows for a conformational change in synaptotagmin that facilitates the 

fusion of the vesicle with the membrane and ultimate release of contents outside the neuron. 

Thus, calcium-mediated effects of synaptotagmin are necessary for rapid neurotransmitter 

release (Purves et al., 2008; Kandel, Schwartz, Jessell, Siegelbaum & Hudspeth, 2013).    

Once a presynaptic terminal releases neurotransmitters, those neurotransmitters 

diffuse across a synaptic cleft and bind to their respective receptors located on the 

postsynaptic neuron.  If those receptors are ligand gated ion channels, they will open and 

depolarize or hyperpolarize the postsynaptic terminal.  If the receptors are GPCRs, they 
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will exert effects according to their class of GPCR (see Chapter 1).   The ion flow into a 

postsynaptic neuron generated by neurotransmission at this synaptic cleft generates a 

voltage difference, called a synaptic potential, between the intracellular and extracellular 

sides that can be measured with an electrode.  Neurotransmission is the primary method by 

which one neuron communicates with another by converting a chemical message into an 

electrical one.  The neurotransmission between a presynaptic and postsynaptic neuron can 

be modulated by various neurotransmitters, including ACh (see Chapter 1), to increase or 

decrease the amount of neurotransmitter released into the synaptic cleft, as well as to exert 

a long-term change in the strength of neurotransmission between neurons.  

 

2.2 ELECTROPHYSIOLOGY: AN OVERVIEW 

Electrophysiology is the study of a neuron or population of neurons’ physiological 

activity by recording these electrical events.  Electrophysiology can be both in vivo (in 

living animal), ex vivo (in slices prepared from a brain, or brain slice electrophysiology) or 

in vitro (in cultured cells, for example).  The benefit of slice electrophysiology is, unlike 

cultured cells, connections between neurons and neural circuitry within a brain slice is 

largely intact. Using brain slice electrophysiology, one can understand neuronal 

functioning by examining neurotransmitter release, membrane composition, etc.    

Electrophysiological techniques can be used to study the electrical properties of a single 

neuron or of a population of neurons using patch-clamp electrophysiology or field potential 

electrophysiology, respectively.   

Patch-cell electrophysiology involves studying the electrical events from a single 

cell.  The advent of the voltage clamp technique by Kenneth Cole in the earlier half of the 
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1900’s allowed for scientists to control the membrane potential of neurons and study the 

subsequent current flow across neuronal membrane (Purves et al., 2008).  If the voltage of 

single neuron is held constant and glutamatergic transmission occurs which ultimately 

allows for positive ions to flow into the neuron, then a counter negative current will be 

injected into the cell to maintain the neuron at the experimentally held voltage potential.  

This offset current is what is measured and recorded as an indicator of current flow. This 

technique allowed Hodgkin and Huxley to determine the ionic permeability of membranes 

to Na+ and K+ during action potentials (Hodgkin & Huxley 1952).  Today, the patch-clamp 

technique is widely used to determine receptor regulation, neurotransmission and a variety 

of other neural events.   There are many different types of patch-clamp techniques, one of 

which is whole cell recording.  In this technique, the membrane is broken by suction so 

that the contents of the cell are continuous with the recording electrode and the investigator 

can manipulate the cell voltage, inject current and inject compounds like chelators into the 

neuron (Purves, 2008).  

In contrast to whole-cell, field potential recordings detect activity of a population 

of neurons and thus provides information about a neuronal network. This technique relies 

on the “volume conduction theory” of electrical potentials, or the notion that field potential 

recordings do not directly contact a single cell but rather measure an electrical potential 

field that is conducted through the extracellular space (Rutkove 2007).  In other words, 

field potentials are measured with an electrode that is placed extracellularly (as opposed to 

intracellularly in whole cell) and measures the summed electrical field generated by all 

neuronal currents in the vicinity (Figure 2.3). 
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Figure 2.3 Field electrophysiology records electric events detected outside the cell. In 

field electrophysiology, potentials are measured in the extracellular medium as opposed to 

inside a cell itself.  In this example, the recording electrode is positioned extracellularly.  Its 

reading of “-0.1mV” indicates it has detected a negative membrane potential, due to ionic 

flow into tissue in the vicinity.  The fEPSP, or negative-going waveform, depicts the 

amplitude and kinetics of this potential.  It is important to note that while only one 

postsynaptic neuron is depicted in this schematic, the electrode will detect the summation 

of all electric events from neurons in the vicinity.  (Image adapted from “Chemical and 

Electrical Synapses,” Mar 23, 2016, OpenStax, Biology. OpenStax CNX. Retrieved 

November 24, 2019, from https://courses.lumenlearning.com/wm-

biology2/chapter/chemical-and-electrical-synapses/).  
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2.2.1 FIELD POTENTIAL ELECTROPHYSIOLOGY: AN OVERVIEW 

As mentioned briefly above, field potential electrophysiology is the study of 

electrical fields generated by currents that occur in the proximity of a recording electrode.  

It involves depolarizing a population of neurons, usually by administering a current to the 

tissue.  The evoked depolarization causes neurons to fire and release neurotransmitters, 

which then affect receptors on postsynaptic neurons (either their dendrites or cell bodies).  

The resulting ion flow from activation of the postsynaptic neurons is either inhibitory 

(called an inhibitory postsynaptic potential, IPSP) or excitatory (called an excitatory 

postsynaptic potential, EPSP).  Electrical currents across membranes can be generated in a 

number of ways, as elegantly reviewed by Buzsaki et al. (2012), including but not limited 

to synaptic currents, action potentials, and calcium and ionic spikes, and oscillations.  

However, in order to be detected by the recording electrode, the summed potentials must 

be large enough.   Thus, two main principles determine the magnitude of a field response: 

the size of the individually generated currents and the coinciding time scale of the 

individually generated currents (Buzsaki et al. 2012).  Thus, if a population of neurons is 

stimulated and synchronizes their firing, neurotransmission from those neurons should 

occur relatively close in time; this principal allows for synaptic currents to be one of the 

largest components of a field response measured in a tissue with field electrophysiology 

(Buzsaki et al., 2012).  In the event that synaptic transmission releases glutamate, it will 

generate an EPSP and depolarize the postsynaptic neurons.  This active flow of positive 

ions away from the extracellular space and into the postsynaptic neurons generates a 

negative field potential detected by the recording electrode and called a “sink” (Figure 2.4).   

However, because the extracellular space around the tissue is a conductive medium, it is a 
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complete circuit and thus if positive ions flow into a neuron at the synapse or active zone, 

an opposite flow of current will occur that leaves the tissue.  This opposite flow of current 

from the intracellular space into the extracellular space is called the “source” (Figure 2.4). 

If tissue is laminar, such as in the hippocampus, then the dendrites and cell bodies 

align and different layers are visually discernable through a microscope.  In this instance, 

stimulating and recording electrodes can be placed such that the investigator can determine 

if they are recording the dendritic sink or somatic source based on electrode placement.  In 

other areas of the brain, including the amygdala, there is no clear organization to neuronal 

components.  Rather, it is more likely that one has to rely on pharmacological validation 

of components of the response to determine what they are studying.  

 

2.3 OPTOGENETICS: AN OVERVIEW 

One of the limitations of electric stimulation in electrophysiology is the nonspecific 

stimulation of all neurons in the vicinity of the stimulating electrode. Any neuron that is 

sufficiently depolarized by the electric stimulus will fire.  However, this is not ideal if one 

wants to stimulate neurons that are sporadically scattered within other cell types.  This 

limitation has been overcome with the development of optogenetics to stimulate neurons.  

As the name implies, optogenetics is the use of genetics to insert light-sensitive proteins, 

opsins, into specific populations of neurons (Diesseroth 2011).  

Certain types of algae possess what is called an “eyespot” that detects levels of light 

and aid in initiating movement of flagella that propel the algae to light sources. 

One of these algae, Chlamydomonas reinhardtii was suspected as having genes that 

code for a light-sensitive ion channel (an “opsin”) that, when activated by light, would 
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Figure 2.4 Schematic demonstration of the electric dipole generated when recording 

a field potential with slice electrophysiology. Neurotransmission (often of glutamate) 

from a presynaptic terminal onto a dendrite creates a transmembrane current of positive 

ions flowing into the apical dendrite. This inward current (sink) is picked up as a negative 

potential by extracellular electrodes (upper inset).Because the extracellular medium is a 

closed circuit, an opposite current flows out of the neuron (source) some distance away 

(lower inset) and is picked up by an extracellular electrode as an positive potential.  
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allow ions to pass into the cell.  In 2002, German scientists Hegemann and Nagel confirmed 

the existence of such a gene that coded for a light-sensitive transmembrane protein, 

Channelopsin-1 (Chop1) that was in the membrane.   They found that when Chop1 was hit 

by photons in the blue light spectrum, its conformational shape changed to allow cations 

through (Figure 2.5) (Nagel et al., 2002).  The same researcher later identified another 

genetic sequence coding for another opsin they named Channelrhodopsin-2 (ChR2) that 

also responds to blue light (Figure 2.6) (Nagel et al., 2003).  

Because opsins respond to light by opening channels that allow ions through, and 

because neurons depolarize and fire action potentials when cations enter and sufficiently 

depolarize them, Karl Diesseroth undertook experiments to see if opsins could be virally 

expressed in neurons to depolarize them in response to light.  In 2004, his team from 

Stanford successfully spliced the Chlamydomonas reinhardtii ChR2 gene and a promoter 

gene into a viral vector and virally transfected neurons with the new construct (Boyden et 

al., 2005).  This ability to virally insert opsins into genetically defined neuronal populations 

was the spark that kindled a firestorm of future studies that quickly transformed the 

landscape of neuroscience.  It was now possible to activate neural circuits with a temporal 

and cell-specific resolution that was not possible with electric stimulation alone.  

Since Diesseroth’s fundamental study in 2004, an array of opsin genes has been 

discovered and spliced with various promoters.  Opsins that respond to separate 

wavelengths of light, have different response kinetics and inactivation rates, and are 

permeable to depolarizing versus hyperpolarizing ions further increase the level of control 

scientists can exert when stimulating neurons to fire or be inhibited.   

 

 



53 

 

 

 

 

Figure 2.5 Schematic demonstrating light-induced opsin activation. Opsins are 

responsive to specific wavelengths of light.  Here, channelrhodopsin is depicted as 

changing its conformational shape in response to photons of blue light (470-490nm).  This 

light-induced physical change allows the channel to now be permeable to sodium ions.  The 

resulting influx of sodium ions depolarizes neurons. If the expression of channelrhodopsins 

is high enough, the neuron will sufficiently depolarize and fire an action potential.  
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Lastly, the ability to splice an opsin gene behind a specific promoter allows 

researchers to control activation or inhibition of a multitude of cell types. For example, 

splicing an inhibitory opsin (one permeable to chloride ions) responsive to yellow light 

behind a tyrosine hydroxylase promoter would enable the transfection of the opsin genes 

and expression of opsins that response to yellow light into dopaminergic neurons; flashing 

blue light would have no effect on these cells but flashing yellow light would inactivate 

them. Alternatively, one could transfect cells with a virus that has a ChR2 (responsive to 

blue light) spliced behind a ChAT promoter to activate cholinergic neurons in response to 

blue light.  

Yet another level of control with optogenetics was the creation of the Cre-loxP 

inducible system. Transgenically engineered mice can be created to express Cre 

recombinase, an enzyme that specifically cuts out LoxP sites in the viral vector and splices 

the remaining sequence together. For example, ChAT-Cre mice can be created that have a 

gene coding for Cre after the promoter for the gene coding for ChAT and thus express Cre 

in every cell that expresses ChAT, or in every cholinergic cell.  A viral vector is then 

created that contains a promotor to drive expression, a gene of interest between the two 

LoxP sites, a fluorescent reporter protein, and occasionally other posttransciptional 

elements like the commonly seen Woodchuck posttranscriptional regulatory element. In 

this system, injecting a viral vector containing a gene of interest embedded between two 

loxP sites into a Cre animal would allow the virus to transfect any cell, but only be 

transcribed into functional proteins in those cells that actively express Cre (Tsien 2016).   
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2.4 FIELD RECORDINGS IN BASOLATERAL AMYGDALA: AN 

OVERVIEW 

To date, very few studies have utilized field potential recordings in the amygdala, 

presumably due to the extreme difficulty in obtaining a sizeable response.  Unlike the 

laminar hippocampus, the amygdalar neuronal dendrites and axons seem to have no clear 

spatial organization. As such, the field potentials recorded are small, and thus success 

depends largely on the ability to cut and maintain healthy brain slices.  

The studies that have examined field responses in the amygdala have either 

electrically stimulated the LA and recorded evoked field potentials in the BL (Pu et al., 

2009), electrically stimulated cortical or thalamic afferents and recorded evoked fields in 

the LA (Johnson et al., 2008; Sigurdsson et al., 2010) or electrically stimulated the external 

capsule and recorded fields in the BL (Braga et al., 2003).   However, none of the studies 

examining cortically evoked fields in the BL validated the components of the evoked 

response, leaving a gap in the interpretation of the results.   

In this study, glutamate from afferent inputs to the BL was released by electrically 

stimulating the external capsule. The evoked field responses were measured in the BL. 

Then, to determine how ACh regulates this glutamate from afferent inputs to the BL, mice 

were injected with an AAV virus containing blue-light sensitive ChR2 in the cholinergic 

neurons that project to the BL.  Light was flashed and ACh was released from these basal 

forebrain projections.  Then, in the presence of released ACh, glutamate was released by 

electrically stimulating the external capsule.   

However, one limitation of electric stimulation is a nonspecific activation of 

neurons. Because the purpose of this study was to determine how ACh modulates 
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glutamatergic transmission from prelimbic, thalamic and ventral subicular input to the BL, 

electric stimulation does not allow for precise control over pathways stimulated.  However, 

using optogenetics to release glutamate from the prelimbic and thalamic inputs would  

allow for precise control of stimulation. Thus, prelimbic, thalamic and ventral subiculum 

were injected with virus that transfected prelimbic, thalamic and ventral subicular neurons 

with channelrhodopsins that expressed in terminals projecting to the BL after a minimum 

of 2-3 weeks. 

 

2.5 VALIDATION OF AMYGDALAR fEPSPs 

Because field electrophysiology has not been widely used in the BL and thus far no 

one has used field electrophysiology to study optogenetically evoked input to the BL, one 

of the purposes of this study was to validate the use of fields for studying optogenetically 

evoked glutamatergic responses in the BL.  Given the unorganized nature of BL neurons, 

a single spiking neuron could easily influence a field response. Thus, one of the frequent 

steps when validating a response was to determine if the fEPSP exhibited an “all or none” 

characteristics or if it gradually increased in amplitude with stimulus intensity.  Should the 

light intensity increase gradually but the response rapidly increase in amplitude without a 

gradual change, it was likely due to an action potential of a single neuron and discarded.  

An appropriate gradual response to increasing intensity of light stimuli is depicted in Figure 

2.6A.  

Because the excitatory and inhibitory components of field responses in the BL are 

not extensively known, it was also important to examine the response in the presence of 

GABA inhibitors. Application of GABA receptor antagonists slightly increased the 
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amplitude of the response but had no effect on the directionality of the waveform (Figure 

2.6B).     

Lastly, to ensure that the recorded responses were indeed glutamatergic, a 

saturating dose of the glutamatergic antagonist, CNQX, was applied at the end of each 

experiment to verify via complete inhibition of the remaining fEPSP (Figure 2.6B).  

 

2.6 ANIMAL CARE AND USE 

All animal care and procedures were approved by the Institutional Animal Care and 

Use Committee at the University of South Carolina and performed in compliance with the 

guidelines approved by the National Institute of Health Guide for the Care and use of 

Laboratory Animals (Department of Health and Human Services).  Experiments were 

performed in male and female transgenic ChAT-Cre (B6;129S6-Chattm2(cre)Lowl/J) mice (The 

Jackson Laboratory).  Mice were housed 1-5 to a cage in a climate controlled facility with 

a 12/12 light/dark cycle and provided with ad libitum access to food and water.  

 

2.7 SURGICAL PROCEDURES FOR VIRAL DELIVERY 

Mice 1.5-3 months old were anesthetized under deep isoflurane anesthesia and 

placed in a stereotaxic surgery device (Stoelting, Wood Dale, IL).  Bilateral injections of 

0.15L of rAAV5-CAMKII-hChR2(H134R)-eYFP-WPRE (UNC Viral Vector Core) were 

delivered to the prelimbic cortex (from Bregma: 1.9mm Anterior/Posterior; -0.3mm 

Media/Lateral; -2.0 mm Dorsal/Ventral), bilateral injections of 0.2L of rAAV5-CAMKII-

hChR2(H134R)-eYFP-WPRE (UNC Viral Vector Core) were delivered to the ventral 
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Figure 2.6 Validation of fEPSP as synaptic event versus action potential and 

validation of excitatory versus inhibitory components.  

A.  Representative traces from an input/output study showing gradual increase in amplitude 

of the fEPSP.  Any recordings that displayed spiking behavior were not included.  

B. Representative traces illustrating no large effects of GABA antagonists. Importantly, 

application of AMPA/Kainate antagonist CNQX at the conclusion of each experiment and 

complete inhibition of responses ensured the contribution of glutamate to the fEPSP.   
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subiculum (from Bregma: -2.5mm Anterior/Posterior; -3.2mm Media/Lateral; -5.3 mm 

Dorsal/Ventral) and single injections of 0.2L of rAAV5-CAMKII-hChR2(H134R)-

eYFP-WPRE (UNC Viral Vector Core) to the midline thalamic nuclei (from Bregma: -

0.3mm Anterior/Posterior; 0.0mm Media/Lateral; -3.9mm Dorsal/Ventral). For 

experiments in which endogenous ACh was optogenetically released, bilateral injections 

of 0.2L of rAAV5-EF1a-DIO-hChR2(H134R)-eYFP (UNC Viral Vector Core) was 

delivered into the basal forebrain targeting the substantia innominata (from Bregma: 

1.2mm Anterior/Posterior; -1.3mm Media/Lateral; -5.3mm Dorsal/Ventral). Following 

surgeries, incisions were covered with a topical tissue adhesive (Gluture, Abbott 

Laboratories, Chicago, IL), placed in a recovery chamber and postoperatively monitored.  

Injection sites were validated and reported in Figure 2.10.   

 

2.8 SLICE PREPARATION  

Animals were deeply anesthetized with isoflurane and rapidly decapitated.  The 

brain was quickly removed and submerged for 1-1.5 minutes in ice-cold (4C) choline 

chloride-based cutting artificial cerebrospinal fluid (cutting ACSF) (in mM: 110 choline 

chloride, 2.5 KCL, 25 NaHCO2, 1.0 NaH2PO4, 20 glucose, 5 MgCl2, 0.5 CaCl2) and 

superfused with 95% O2 and 5% CO2.  To prevent glutamatergic excitotoxicity and 

potential potentiation of slices during the cutting procedure, 5mM kynurenic acid (Sigma, 

St. Louis, MO) was also included in the cutting ACSF. The brain was then transferred to a 

vibratome (VT1000S, Leica, Nussloch, Germany) containing the same choline-based 

ACSF solution and 500m thick horizontal and coronal sections were cut.  Slices were 

incubated at 34-36C in an ACSF solution containing (in mM) 125 NaCl, 2.7 KCl, 25 
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NaHCO2, 1.25 NaH2PO4, 10 glucose, 5 MgCl2, 0.5 CaCl2 (incubating ACSF) and 

superfused with 95% O2 and 5% CO2.  After a minimum of 20 minutes at 34-36C, 

incubation temperature was then brought to room temperature.  For recording, slices were 

transferred to a recording chamber and continuously superfused with 32C ACSF 

containing (in mM) 125 NaCl, 2.7 KCl, 25 NaHCO2, 1.25 NaH2PO4, 10 glucose, 1 MgCl2, 

2 CaCl2 (recording ACSF) at a rate of 4-6mL/min.  

 

2.9 SLICE ELECTROPHYSIOLOGY RECORDINGS 

Slices were submerged in a recording chamber and gently held in place by a 

platinum wire.  Glutamate release from prelimbic and thalamic projections to the 

basolateral amygdala were stimulated with single or dual (50 ms apart) 2-3ms light pulses 

of 490nm blue LED light (ThorLabs Inc, Newton, New Jersey) to activate 

channelrhodopsins.  A borosilicate glass electrodes with resistances between 1-3 M and 

filled with recording ACSF was placed in the basolateral amygdala (visually identified with 

a light microscope) and the resulting evoked field excitatory postsynaptic potentials 

(fEPSP) were recorded.  For frequency experiments, blue light was administered at 1Hz, 

5Hz, 10Hz, 20Hz, 30Hz and 40Hz to release glutamate at various frequencies. To isolate 

glutamatergic neurotransmission, GABAA receptors were blocked with 10M-100M 

picrotoxin or 10M bicuculline, GABAB receptors were blocked with 2M CGP55845 and 

N-methyl-D-aspartate (NMDA) receptors were blocked with 50M L-2-amino-5-

phosphonovaleric acid (D-APV) or 10M MK801.  Glutamatergic components of field 

potentials were confirmed by inhibiting the response with 25M of the potent 
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glutamatergic antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) at the conclusion 

of each experiment.  

For other experiments, endogenous ACh was optogenetically released prior to 

electrically evoking glutamate release from cortical projections that coursed through the 

external capsule to the BL.  Theta-burst pattern stimuli of blue LED light was administered 

250ms before the external capsule was electrically stimulated.  Theta-burst pattern light 

was defined as four 3ms pulses of light at 50Hz given four times with a burst start-to-start 

interval of 200ms.  Responses were recorded with a Multiclamp 700B (Molecular Devices, 

Sunnyvale, Ca) amplifier, filtered at 1kHz and digitized (Digidata 1400) using pClamp 10 

software (Molecular Devices, Sunnyvale, Ca).  

For experiments in which muscarinic subtypes were studied, antagonists specific 

for M1, M2, M3 or M4 were bath applied (see Methods Chapters 3-5). Because electric 

stimulation can create a stimulus artifact due to the electric current injection and not the 

physiological response, this stimulus artifact that occurred in the presence of no 

glutamatergic transmission (ie, in the presence of a saturating concentration of CNQX at 

the conclusion of each experiment) was digitally subtracted from the rest of the experiment.  

 

2.10 SPECIFICITY OF VIRAL VECTOR EXPRESSION IN CHAT+ 

BASAL FOREBRAIN NEURONS  

To validate viral expression of channelrhodopsins in basal forebrain cholinergic 

neurons, transgenic ChAT-Cre mice injected in the basal forebrain with the floxed virus 

were sacrificed and perfused. Coronal brain sections were prepared and choline 

acetyltransferase-positive (ChAT+) neurons were labeled with goat anti-ChAT primary 
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antibody (Millipore, [1:500]) and Alexa Fluor 546 conjugated donkey anti-goat IgG 

secondary antibody (Thermo Fisher, [1:400]). Cell counts were performed to quantify the 

number of neurons singly-labeled by eYFP and doubly-labeled by both YFP and Td-

Tomato in each z-stack image.  

 

2.11 MATERIALS 

Pharmacological compounds used in electrophysiology experiments (see Ch. 3-5) 

were bicuculline, D-AP5, CNQX, CGP55845 hydrochloride, MK 801 maleate, AM251, 

forskolin (Hello Bio, Princeton, NJ), baclofen, muscarine chloride, N-ethylmaleimide, 

phystostigmine (Millipore Sigma, St. Louis, MO), WIN 55, 212-2, oxotremorine M, 

VU10010, PD102807 (Tocris Biosciences, Bristol, UK), 4DAMP, AFDX, VU0255025, 

Atropine, Mecamylamine hydrochloride (Abcam, Cambridge, UK), AM630 (Cayman 

Chemical Company, Ann Arbor, MI), VU0467154 (StressMarq Biosciences, Victoria, 

BC).  

 

2.12 DATA ANALYSIS AND STATISTICS 

Electrophysiological data analysis was performed using pClamp 10 (Molecular 

Devices), OriginPro 2018b (Microcal, Northampton, MA) and Excel 2016 (Microsoft 

Corporation, Redmond, VA) software. The peak amplitude of fEPSPs was measures as the 

average amplitude of the steady-state peak in each condition. Between-group means were 

statistically compared with Student’s t test or one-way ANOVA with a post-hoc Tukey 

test.  
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CHAPTER 3 

INHIBITION OF EXTERNAL INPUT TO THE BL BY 

ENDOGENOUS ACETYLCHOLINE 
 

3.1 INTRODUCTION 

Acetylcholine (ACh) is a neurotransmitter important for learning and memory.  

Originating largely from cholinergic neurons in the basal forebrain, cholinergic 

transmission to various regions throughout the brain functions in selectively filtering 

neurotransmission and ultimately affect the signal-to-noise ratio of incoming stimuli while 

suppressing internal transmission (Hasselmo 2006).  In area CA1 of the hippocampus, 

cholinergic receptors differentially regulate glutamatergic input from the Schaffer 

collaterals and the temporoammonic pathways (Hasselmo & Schnell, 1994; McQuiston 

2019).  Because the Schaffer collaterals project from hippocampal area CA3 to 

hippocampal area CA1, and temporoammonic pathway projections from entorhinal cortex, 

ACh differentially regulates transmission of internal input and external input to the 

hippocampus (Hasselmo & Schnell, 1994; Goswamee & McQuiston 2019). This 

cholinergic regulation of internal versus external inputs has important implications for 

learning as well, as animal work shows that cholinergic modulation of different pathways 

will differentially affect recall of previously learned memories and learning new memories 
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(Hasselmo and Bower 1993).  What this ACh does to different pathways converging in the 

basolateral amygdala (BL), however, remains largely unknown.  

One of the main sources of ACh is from the basal forebrain, an area from which the 

cholinergic projections have been shown to be important for learning and memory (Baxter 

et al., 1995; Muir et al., 1993; reviewed in Baxter & Chiba 1999).  Basal forebrain 

cholinergic projections have also been implicated in emotional learning and memory as 

well, as lesioning the basal forebrain cholinergic neurons impairs acquisition of fear 

extinction and optogenetic stimulation and inhibition of cholinergic projections affects fear 

behaviors (Knox et al., 2016; Jiang et al., 2016).  Given the role of the basal forebrain 

cholinergic projections in learning and memory and the role of the amygdala in emotional 

learning, it is surprising that our understanding of cholinergic modulation in the amygdala 

remains in a very nascent phase.  

Only a few studies have examined how released ACh modulates the excitability of 

amygdalar neurons, but those that have suggest a cholinergic-evoked increase in signal-to-

noise ratio (Unal et al., 2015; Aitta-Aho et al., 2018).  In these studies, released ACh was 

found to produce neuron-dependent effects on excitation versus inhibition.  In some 

neurons at resting potential, ACh largely produced a hyperpolarizing inhibitory 

postsynaptic current (IPSC) whereas in a separate study, released ACh evoked an initial 

hyperpolarizing current followed by a slower depolarizing current in neurons at resting 

potentials (Unal et al., 2015; Aitto-aho 2018). These effects were also dependent on the 

state of the postsynaptic amygdalar neurons; ACh inhibited neurons that were held at a 

slightly depolarized potential and fired at a slow rate whereas when neurons were 
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depolarized and made to fire at a high rate, ACh has no effect during the depolarized 

potential but induced an afterdepolarization (Unal et al., 2015).   

In addition to modulating the postsynaptic excitability, and thus, amygdalar 

receptiveness to incoming stimuli, endogenous released ACh can also modulate the 

presynaptic inputs to effect signal-to-noise of a region and circuit.  However, how this 

occurs in the basolateral amygdala remains largely unknown. In the only study that has 

examined released ACh on cortical inputs to the BL, Jiang et al. (2016) found cholinergic 

input arising from the basal forebrain potentiates cortical transmission to the BL (Jiang et 

al., 2016).  When basal forebrain projections to the BL were optogenetically stimulated, 

basolateral neurons increased their firing frequencies.  Additionally, cholinergic 

stimulation increased glutamatergic transmission from cortical input through presynaptic 

nAChRs (Jiang et al., 2016).  However, this study examined cholinergic evoked changes 

on a long-term scale that examined long term potentiation, leaving a gap in our 

understanding of how to reconcile the largely inhibitory, acute postsynaptic cholinergic 

effects seen by Unal and Aitto-Aho with the long-term excitatory potentiation of 

glutamatergic input and BL firing rates seen by Jiang et al.  What could aid in resolving 

this question is an understanding of how cholinergic inputs to the BL regulate 

glutamatergic input to the BL acutely.  

Anatomical studies have shown presynaptic mAChRs located on glutamatergic 

terminals in the BL.  M1 labeling was found on a subset of presynaptic terminals that also 

expressed VGLUT 1, an indicator of cortical terminals as well as on terminals expressing 

VGLUT2, an indicator of thalamic terminals (McDonald et al., 2019 ).  Muscarinic M2 

receptors were also found on presynaptic putative glutamatergic inputs to the BL that 
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synapsed onto dendritic spines (Muller et al., 2016). In other brain regions as well as a 

seminal study in the amygdala, cholinergic agonists and released ACh have been shown to 

inhibit glutamate release by acting on presynaptically located mAChRs (Yajeya et al., 

2000; Hasselmo et al., 2006; Dannenberg et al., 2017; McQuiston 2019).  However, it 

remains unknown how released ACh modulates cortical glutamatergic transmission to the 

BL in an acute manner. 

To answer this question, the current study used optogenetic and 

electrophysiological techniques to determine how endogenous ACh regulates cortical 

glutamatergic neurotransmission from the external capsule to the BL. It was hypothesized 

that released ACh would inhibit glutamatergic transmission from cortical inputs given the 

role of ACh in enhancing the signal to noise of stimuli, anatomical studies demonstrating 

presynaptic muscarinic receptors, and pharmacological data showing muscarinic inhibition 

of cortical transmission to the BL.  It was found that endogenous ACh inhibits cortical 

glutamatergic input to the BL conveyed by the external capsule, and that this inhibition is 

mediated by muscarinic receptors.  

 

3.2 MATERIALS AND METHODS 

3.3.1 VIRAL DELIVERY AND VALIDATION OF CHR2S TO CHOLINERGIC BASAL 

FOREBRAIN NEURONS 

As described in Chapter 2, transgenic B6;129S6-Chattm2(cre)Lowl/J mice (1.5-3 

months) were anesthetized with isoflurane and injected bilaterally with 0.2 μL of 

rAAV5/EF1a-DIO-hChR2(H134R)-eYFP into the substantia innominata to selectively 

express channelrhodopsin (ChR2) in cholinergic basal forebrain neurons of transgenic 
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ChAT-Cre mice.  To validate viral expression of ChR2s in basal forebrain cholinergic 

neurons, transgenic ChAT-Cre mice injected in the basal forebrain with the floxed virus 

were sacrificed and perfused. Coronal brain sections were prepared and choline 

acetyltransferase-positive (ChAT+) neurons were labeled with goat anti-ChAT primary 

antibody (Millipore, [1:500]) and Alexa Fluor 546 conjugated donkey anti-goat IgG 

secondary antibody (Thermo Fisher, [1:400]). Cell counts were performed to quantify the 

number of neurons singly-labeled by eYFP and doubly-labeled by both YFP and Td-

Tomato in each 50µm thick z-stack image.   

 

3.3.2 WHOLE CELL RECORDINGS 

Coronal brain slices 300μM thick were cut and maintained in an incubation 

chamber using techniques described in Chapter 2. Voltage-clamp recordings from 

pyramidal neurons were conducted at a holding potential of -70mV. The series resistance 

was between 10-25MΩ.   

To stimulate the release of endogenous ACh and record evoked cortical fEPSPs in 

the BLa, blue LED light (ThorLabs Inc, Newton, New Jersey) was flashed to release ACh 

and the external capsule was electrically stimulated.  Blue light was flashed at “weak,” 

“strong,” and “theta burst” intensities, consisting of five pulses, thirty pulses and 16 pulses 

of blue light, respectively.  The theta burst intensity was divided into four bursts of four 

flashes each, with burst intervals of 200 ms start-to-start and interburst frequencies of light 

at 50Hz.  
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Cholinergic currents and evoked glutamatergic currents were recorded using a 

Multiclamp 700B amplifier and pClamp 10 software (Molecular Devices, Sunnyvale, CA) 

and responses were filtered at 1kHz.   

 

3.3.3 FIELD ELECTROPHYSIOLOGY RECORDINGS 

Horizontal and coronal brain slices (500μM thick) containing the amygdala were 

cut and incubated using techniques described in Chapter 2.  To stimulate the release of 

endogenous ACh and record evoked cortical fEPSPs in the BLa, blue LED light (ThorLabs 

Inc, Newton, New Jersey) was flashed to release ACh and the external capsule was 

electrically stimulated.  

All field experiments were performed in which theta burst light stimuli (described 

above) was applied to release ACh.  

 

3.3 RESULTS 

3.4.1 COLOCALIZATION OF EYFP-LABELED CHR2S TO CHOLINERGIC 

NEURONS IN THE BASAL FOREBRAIN TO DETERMINE VIRAL VECTOR 

EXPRESSION.  

In order to study cholinergic release in the BL, the first objective was to determine 

the efficacy of viral vector delivery of ChR2s with fused eYFP to cholinergic neurons in 

the basal forebrain that project to the BL.  At least three weeks after viral injections, mice 

were transcardially perfused, sections made and immunofluorescence performed to label 

cholinergic neurons in the basal forebrain for ChAT with Td-tomato (Figure 3.1A).  Cell  
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Figure 3.1. Localization of eYFP labeled ChR2s to cholinergic neurons in the basal 

forebrain to determine viral vector efficacy.  

A. i.  Injection site showing ChR2-expressing cell bodies in the horizontal limb of the 

diagonal band of Broca in the basal forebrain.  ii. Confocal immunofluorescence 

demonstrating Td-tomato labeled ChAT+ neurons in the basal forebrain.  iii. eyFP-labeled 

ChR2+ neurons in the basal forebrain.  iv.  Colocalization (yellow) of ChAT+ (red) and 

ChR2+ (green) neurons in the basal forebrain.   

B.  Top: Cell counts of basal forebrain neurons per 50µm thick coronal section that were 

labeled with tdTomato (red), eYFP (green) or colabeled with both (yellow). Nearly all basal 

forebrain neurons expressing ChR2 were labeled for ChAT+.  Bottom: Percentage of 

neurons in the basal forebrain that express both ChR2 and ChAT versus number of neurons 

in the basal forebrain that express just ChR2 (n=5 mice). Nearly all (89.82%) neurons 

expressing ChR2 also expressed ChAT.  

C. Cholinergic basal forebrain projections (green) expressing ChR2 terminating in BL.  
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counts taken for 50µm thick z-stack images labeled with ChAT and colabeled with ChAT 

and eYFP confirmed that expression of ChR2 was restricted to cholinergic neurons in the 

basal forebrain (Figure 3.1B).  The viral infection rate was 70.2% (±4.26) for expression 

in cholinergic neurons (n=5 animals).  Of the cells infected with the virus, 90% were 

cholinergic (89.81609 ± 2.44).  Terminals from ChR2+ neurons that projected to the BL 

were visualized for eYFP (Figure 3.1C).  

 

3.4.2 RELEASED ACH FROM THE BASAL FOREBRAIN EVOKES DIFFERENTIAL 

EFFECTS ON BASELINE IN BASOLATERAL AMYGDALA.    

The first objective was to determine the effects of released ACh on baseline field 

potentials in the absence of electrical stimulation of evoked cortical input, as previous 

studies have shown muscarinic receptor activation can elicit postsynaptic changes in 

membrane potential due to cholinergic induced inward and outwards currents (Aitta-Aho 

2019; Unal et al., 2015).  Cholinergic evoked currents were recorded using both field 

electrophysiology and whole-cell electrophysiology.   In response to brief (2ms) flashes of 

blue light, 7 out of 11 slice displayed cholinergic potentials such that light-released ACh 

evoked a downward field potential (Figure 3.2A pink arrow). This change in baseline 

potential was significantly different than in the absence of released ACh (*p<0.01) (Figure 

3.2C). A similar potential was seen in response to released ACh in whole-cell recordings 

(Figure 3.2A).  These findings that released ACh elicits a change in potential of amygdalar 

neurons agrees with findings from Jiang et al. (2016) that released ACh increases excitatory 

activity in BL pyramidal neurons as well as with other studies indicating that cholinergic 

receptor activation in the BL causes a membrane depolarization due to muscarinic 
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Figure 3.2. Effects of released ACh on baseline field potentials in BL neurons.  

A.  Representative traces showing amygdalar responses to optogenetically released ACh 

(blue bar). i.  Field potentials recorded in the BL show a downward postsynaptic potential 

(pink arrow) followed by a slight upward potential (purple arrow) after light-released ACh.  

The upward potential is abolished in the presence of atropine (light grey) and the downward 

potential is largely abolished in the presence of mecamylamine (dark grey). ii.  

Representative traces from a whole-cell experiment recorded before (grey) and after 

(black) ACh release demonstrate no net current in the absence of ACh release but a 

depolarizing current (pink arrow) in response to ACh followed by a hyperpolarizing current 

(purple arrow). iii. Representative trace showing differential response to ACh in a separate 

neuron in which ACh only evoked a depolarizing current with no noticeable 

hyperpolarization.  

B. Bar graph summarizing percent of slices that displayed potential changes in basolateral 

amygdalar neurons following ACh release. 7 out of 11 slices had cholinergic induced 

changes in baseline potential.  

C.  Box plot of amygdalar baseline potentials in response to no ACh (control) and light 

released ACh. Released ACh significantly changed the baseline potential in the BL (n=11; 
**p<0.05). Variation seen in postsynaptic responses to released ACh.   
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inhibition of the M-current and GIRK channels (Washburn & Moises 1992; Womble and 

Moises 1993).  However, the overall consensus for the timescale of ACh’s effects on 

excitation of the BL pyramidal neurons remains controversial in the literature; some 

findings show cholinergic receptor activation in the amygdala by light-released ACh 

induces an inhibitory postsynaptic potential in some cells at rest but more of an excitatory 

effect when cells are made to fire at more depolarized currents (Unal et al., 2015). Other 

reports show bath application of cholinergic agonist induce only a depolarization of 

membrane potential but focal application of cholinergic agonist on the other hand induce a 

biphasic effect consisting of an initial hyperpolarization followed by a slow depolarization 

(Washburn & Moises 1992).  Interestingly, in our study we found one biphasic postsynaptic 

field response to release ACh using whole cell electrophysiology that differed from 

previous findings in the literature (Figure 3.2Aii.).  In this cell, ACh induced an inward 

current followed by a slower hyperpolarizing current.  This effect was also robust in one 

slice in field electrophysiological experiments (Figure 3.2Ai.). In this experiment, the 

upward potential was abolished with bath application of the muscarinic antagonist atropine 

(5µM) while the downward potential was largely abolished with bath application of the 

nicotinic antagonist mecamylamine (20µM). This could be due to activation of nAChRs to 

depolarize interneurons and their resulting hyperpolarization of pyramidal neurons, but 

further experiments would be needed to further investigate this possibility.   

 

3.4.3 ENDOGENOUS ACH INHIBITS CORTICAL TRANSMISSION TO THE BL.  

We next wanted to determine the effect of ACh on evoked glutamatergic 

neurotransmission to the BL in baseline ACSF. To stimulate afferent cortical input to the 
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BL, an electrode was placed in the external capsule.  Prior to evoking glutamate release, 

ACh was released using varying protocols to determine thresholds of cholinergic effects.  

It was found that ACh significantly inhibited cortical input to a similar extend regardless 

of the intensity of optogenetic stimulation employed to release ACh (Figure 3.3C).  Weak 

optogenetic stimulation inhibited the evoked glutamatergic postsynaptic current by 23.2% 

(±6.17; n=5) strong optogenetic stimulation inhibited the evoked glutamatergic current by 

25.9% (±8.11; n=4) and theta optogenetic stimulation inhibited the evoked glutamatergic 

current by 30% (±13%; n=4).  No significant differences in the percent inhibition were 

found between these three optogenetic intensities.   This agrees with findings from another 

published study that minimal stimulation to the cholinergic inputs induces robust 

cholinergic effects in the amygdala (Aitto-Aho 2019). Because no difference was observed 

between weak, strong and theta light protocols, theta-burst was used for all following 

experiments to release ACh, as basal forebrain neurons fire at high-frequency bursts at 

theta frequency during active waking, REM sleep, and after reward and punishment (Lee 

et al., 2005; Laszlovsky et al., 2019).  In both field potential recordings and whole-cell 

recordings, ACh released at theta burst frequency significantly inhibited glutamatergic 

input to the BL (Figure 3.3 D).  Furthermore, there was no difference in the extent of 

inhibition of cortical input between whole cell (28.9% ± 13.02; n=4) and field potential 

(24.95% ±7.9 n=7) recordings.  Agreeing with Yajeya (2000) and Washburn & Moises 

(1992), these results indicate that activation of cholinergic receptors in the BL suppresses  

afferent glutamatergic transmission to the BL but contrast those of Jiang et al. (2016) 

finding cholinergic release in the BL increases glutamatergic transmission.  
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Figure 3.3. Endogenous ACh inhibits cortical transmission to the BL irrespective of 

strength of release stimulus.   

A. Schematic illustrating optogenetic probe to evoke blue light pulses, stimulating 

electrode placed in external capsule to electrically evoke glutamate release and recording 

electrode placed in BLa to record evoked glutamatergic transmission.  
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B. Illustrations of weak, strong and theta light protocols.  Weak light stimuli consisted of 

five pulses and strong stimuli consisted of 30 pulses.  Theta stimuli consisted of four bursts 

with start-to-start intervals of 200ms. Each burst consisted of four pulses at 50 Hz for a 

total of 16 pulses.  Following each protocol to release light, the external capsule was 

electrically stimulated to release glutamate.   

C. Summary bar graph illustrating percent inhibition by released ACh when varying 

intensities of stimuli are elicited. Released ACh inhibits glutamatergic neurotransmission 

to a similar extent when weak, strong or theta burst patterns of released are used (n=5, n=4, 

n=4 for weak, strong and theta burst stimuli, respectively).  

D.  ii. Released ACh similarly inhibited cortical glutamate transmission to the BL in field 

recordings compared to whole cell recordings when theta burst stimuli was applied (n=4 

and n=7 for whole cell and fields, respectively).  (i. representative traces from Dii).  

 
 

 

 

3.4.4 COMPONENTS OF CHOLINERGIC INHIBITION OF CORTICAL INPUT TO 

BL. 

In the previous sections, it was shown that optogenetically released ACh induces 

both depolarizing and hyperpolarizing currents (measured with whole cell techniques) that 

affect baseline amygdala potentials as well as suppression of evoked glutamatergic 

transmission to the BL from afferent input.  Additionally, as no differences were found in 

cholinergic effects between whole cell and field recordings, all following experiments were 

performed with field electrophysiology.  The purpose of employing this recording 

technique is to examine the summed potentials evoked by glutamatergic transmission to 

the BL to determine how ACh regulates the overall excitability of the BL.  

As previous studies have illustrated mAChRs to facilitate GABA release from 

interneurons, it was necessary to determine if GABA transmission is playing a role in the 

cholinergic inhibition of cortical input to the BL (Martin & Alger 1999). To determine if 

this is a possibility, afferent input from the external capsule was again evoked in the 
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presence and absence of ACh in control recording ACSF.  Similar to our previous findings, 

ACh inhibited glutamatergic transmission to the BL; in the presence of ACh, the 

glutamatergic EPSP was only 70% of the control (70.17%±7.37, p<0.01, n=6) (Figure 

3.4A).  To determine if GABA was playing a role in this cholinergic inhibition, we repeated 

the same experiment in the presence of bath applied GABAA antagonist picrotoxin (10µM) 

and GABAB antagonist CGP55345 (2µM).  ACh inhibited the fEPSP to the same extent 

regardless of whether GABA receptors were blocked (Figure 3.4B), indicating that released 

ACh does not inhibit evoked fEPSPs in manner that involves GABA receptors.  Lastly, 

because NMDA receptors were also unblocked in our experimental paradigms, to ensure 

ACh was not somehow affecting glutamatergic responses postsynaptically by directing 

acting on NMDA receptor, experiments were again repeated in the presence of NMDA 

receptor antagonist APV (50µM).  Unsurprisingly, no effect on the cholinergic inhibition 

was seen when NDMA receptors were blocked (Figure 3.4C). This result was not suprpsing 

given that we did not evoke or measure an NMDA current, and thus any effect we would 

have seen by ACh would have been due to ACh possibly acting directly on the NMDA 

receptors itself.  Had we isolated the NMDA current by using lower Mg2+ concentrations, 

etc., we may have observed a cholinergic effect.  These results indicate that released ACh 

is suppressing afferent to the BL from the external capsule in a manner independent of 

GABA and NMDA receptors.  
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Figure 3.4. Components of cholinergic inhibition of cortical input to the BL.  

A. Released ACh significantly inhibits cortical input to the BLa (70.17% ± 7.37; n=6; 

**p<0.01). 

B.  Inhibition of cortical input by endogenous ACh is not mediated in a significant manner 

by GABA receptors.  Application of GABAA antagonist picrotoxin (10µM) and GABAB 

antagonist CGP55845 (2µM) had no effect on extent of inhibition (n=4). 

C. Released ACh does not inhibit cortical input by acting directly on NMDA channels.  

Application of NMDA antagonist D-APV (50µM) had no effect on extent of cholinergic 

inhibition (n=6). 

D. Representative traces illustrating light released (blue bar) ACh inhibited evoked (red 

arrow) gluatmatergic transmission in the BLa. Application of GABA antagonists (PIC / 

CGP) and NMDA antagonist (APV) had no effect on inhibition.  
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3.4.5 ENDOGENOUS ACH SUPPRESSES CORTICAL INPUT TO THE BL THROUGH 

MUSCARINIC RECEPTORS.  

As electrophysiological studies have shown conflicting evidence of nicotinic (Jiang 

et al., 2016) and muscarinic (2000; Washburn & Moises 1992) mediated inhibition of 

glutamate release in the BL, and anatomical data indicates presynaptically located 

mAChRs on putative glutamatergic input to the BL (McDonald et al., 2019; Muller et al., 

2011), we wanted to then determine if cholinergic inhibition in our experimental paradigm 

is being mediated by nAChR or mAChR receptors.  Glutamatergic fEPSPs were recorded 

in the absence and presence of bath-applied nicotinic antagonists mecamylamine (20µM).  

Antagonizing nAChRs had no significant effect on the amplitude of the evoked fEPSP 

(Figure 3.5A, B, C, D).  However, a trend was seen whereby the cholinergic inhibition was 

slightly increased after nicotinic receptors were antagonized, indicating nAChRs may be 

present and slightly facilitating glutamate release presynaptically, presumably by 

increasing presynaptic Ca2+ (Girod et al., 2000).  Bath application of the muscarinic 

antagonist atropine (5µM) completely reversed the muscarinic inhibition (-6.91 ± 5.38; 

n=5) (Figure 3.5A, B, C, D).  These findings were also observed in whole cell experiments 

(Figure 3.5 B, C,D).  Interestingly, the amplitude of the glutamatergic response was larger 

in the presence of atropine (Figure 3.5A), suggesting either tonic release of endogenous 

ACh in the BL or potentiation of the response by release ACh.  A tonic ACh release in the 

BL was also supported by a previous study that stimulated the external capsule and found 

application of physostigmine alone inhibited the glutamatergic response, and that this was 

sensitive to atropine (Washburn & Moises 1992).  
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Figure 3.5. Muscarinic ACh receptors mediate cholinergic inhibition of glutamatergic 

input to BL.  

A. Cholinergic inhibition by ACh is not affected by nicotinic receptor antagonist 

mecamylamine (20µM) (22.13% ±10.17; n=3) but is completely reversed by application 

of muscarinic antagonist atropine (5µM) (-6.91 ± 5.38; n=5), indicating muscarinic-

receptors mediate the cholinergic inhibition of the evoked fEPSP (***p<0.001).  

B. EPSCs evoked by stimulation of the external capsule are significantly inhibited by light-

released ACh (blue bar).  Application of mecamylamine (20µM) has no effect on inhibition 

whereas atropine (10µM) completely reverses cholinergic inhibition.  

C. Representative traces illustrating inhibition of fEPSPs and EPSCs and reversal of 

inhibition in the presence of the muscarinic antagonist, atropine.  

D. Representative experiments illustrating % inhibition of EPSCs by ACh in the presence 

of mecamylamine and atropine.   
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3.4.6. THE ACTION OF ACETYLCHOLINESTERASE LIMITS THE INHIBITORY 

CAPACITY OF MACHRS AT AFFERENT INPUT TO THE BL.  

Given the previous findings that released ACh inhibits glutamatergic input to the 

BL by acting on mAChRs, and that other studies have found increasing the amount of ACh 

present by inhibiting acetylcholinesterase, we wanted to know if the 20% inhibition we 

were observing could be maximized by changing the amount of ACh that remains in the 

synapse or extrasynaptic space. To examine this question, we first pursued experiments 

that would inform the time course of the cholinergic inhibition of glutamate transmission.  

The external capsule was electrically stimulated to release glutamate at increasing intervals 

following light-released ACh.  This would elucidate longer or shorter inter-stimulus-

intervals (ISI) would increase or decrease the observed inhibition by ACh.  As expected, 

the time course demonstrated that the inhibition we were observed followed the typical 

time course for metabotropic receptors, whereby the most effective interval between ACh 

release and glutamate stimulation was around 250ms (Figure 3.6A).   

We next wanted to know if released ACh was rapidly degraded by 

acetylcholinesterase and thus limited in efficacy by the presence of this esterase.  To test 

this, we compared the fEPSP in the presence of physostigmine, an inhibitor of 

acetylcholinesterase.  By inhibiting the enzyme that degrades ACh, physostigmine should 

increase ACh in the extrasynaptic space.  In these experiments, external capsule was 

stimulated and ACh was released, resulting in the typical inhibition of glutamate.  

However, application of a low dose of physostigmine (0.25µM) drastically facilitated this 

inhibition (Figure 3.6B top, bottom). Representative traces are illustrating in Figure 3.6B 

demonstrating external capsule-evoked fEPSP in control ACSF (black), slight inhibition  
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3.6. Cholinergic inhibition of cortical input to the BL mediated by action of 

acetylcholinesterase.  

A. Inter-stimulus-interval (ISI) curve demonstrating decreasing suppression of ACh at 

longer intervals.  Intervals of 1000ms and 2000ms significantly decreased inhibition by 

ACh.  

B. Representative traces illustrating inhibition by released ACh (blue bar) is enhanced in 

the presence of acetylcholinesterase inhibitor physostigmine (0.25µM). Summary bar 

graph of inhibition by ACh is enhanced nearly twice as much by physostigmine, indicating 

ACh has the potential to exert larger suppression of cortical input to BL. 
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of fEPSP following light-released ACh (blue), external capsule-evoked fEPSP in control 

ACSF with added physostigmine (navy blue) and a much greater inhibition of fEPSP 

following light released ACh in the presence of physostigmine (red).  Taken together, these 

results suggest that released ACh inhibits afferent input to the BL by acting on mAChRs, 

and that afferent input arising between 50 and 250ms to the BL following basal forebrain 

firing will be maximally inhibited as opposed to shorter and longer intervals.   

 

3.4 DISCUSSION 

In this study we employed optogenetics, field and whole-cell electrophysiological 

recordings to determine whether released ACh regulates afferent glutamatergic 

transmission to the BL.  It was found that ACh, through its actions on mAChRs, suppresses 

glutamatergic fEPSPs evoked by external capsule stimulation. Furthermore, it was found 

that additional ACh released with an increasing number of light pulses had no effect on the 

extent of cholinergic inhibition.  This potential maximum inhibition could presumably be 

due to rapid degradation by acetylcholinesterases that might serve as a limiting factor in 

cholinergic inhibition.  The results of this study provide novel insight into the regulation 

of glutamatergic transmission to the BL from afferent input and build upon previous studies 

that have examined cholinergic regulation of glutamatergic input from the external capsule 

by pharmacologically activating cholinergic receptors (Washburn & Moises 1992; 

Womble & Moises 1993; Yajeya 2000)  or examining longer-term effects of released ACh 

(Jiang et al., 2016).  
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3.4.1 ENDOGENOUS ACH RELEASED AT THETA-BURST PATTERN 

MODULATES GLUTAMATERGIC TRANSMISSION TO THE BL IN A MANNER 

OPPOSITE TO THAT OF CORTEX 

 Results of this study found that when ACh is released from the basal forebrain in a 

manner mimicking basal forebrain firing as demonstrated in in vivo studies, ACh inhibits 

afferent input to the BL. Studies that have used in vivo unit recordings in the basal forebrain  

in sleep and wake states found that during active waking basal forebrain neurons fire in 

bursts at theta frequency, and that the maximal basal forebrain firing correlates with 

“cortical arousal,” or when the cortex is actively firing at higher (gamma) frequencies 

(Maloney et al., 1996;  Lee et al., 2005).  Taken together, this would suggest that when the 

basal forebrain is firing, the consequences on the cortex and BL are opposite;. Previous 

data from the cortex indicates the intrinsic recurrent activity in the cortex is suppressed for 

up to 5s, likely contributing to the suppression of slower oscillatory activity seen after ACh 

application (Dasgupta et al., 2018).  In the cortex, when ACh is applied (either 

endogenously with optogenetic release or in vitro with slice electrophysiology), there is an 

overall decrease in low-frequency oscillations (Dasgupta et al., 2018).  This inhibition of 

slow oscillatory activity in the cortex is considered necessary for the behavioral state shift 

from quiet wakefulness to cognitive (and even motor) arousal and allows for sensory input 

from other brain regions (ie thalamic) to be transmitted to, received by, and dictate activity 

in the cortex  (Favero et al., 2012; Wester & Contreras et al., 2013; Castro-Alamancos & 

Gulati 2014; Dasgupta et al., 2018).  Our data suggests that afferent input to the BL would 

be temporarily suppressed (for only 500ms-1s) but not intrinsic recurrent activity.  
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 The results of this study suggest that when basal forebrain neurons, specifically 

substantia innominata and the horizontal limb of diagonal band, are stimulated at theta 

frequency, the released ACh will inhibit afferent input to the BL in a muscarinic receptor-

mediated manner.  An important consideration, however, with this conclusion is that there 

is heterogeneity in basal forebrain neurons, and our stimulation paradigm may be limiting 

which basal forebrain neurons we stimulate.  For example, Laszlovsky et al., (2019) 

recently found basal forebrain neurons to have distinct firing properties, with some neurons 

able to fire in faster bursts than others (Laszlovsky et al., 2019). Additionally, the firing of 

these distinct populations of basal forebrain neurons were correlated with different 

behaviors during an auditory task involving correct and incorrection responses whereby 

one group was synchronized to cortical regions to predict the correct timing or responses 

and the other group was coupled to cortical regions to predict accuracy of responses 

(Laszlovsky et al., 2019).  Thus, one needs to consider the possibility that when using 

optogenetics to activate basal forebrain neurons, the firing properties of all basal forebrain 

are not homogenous, and treating them as such may be biasing the selective activation of 

only those neurons with properties enabling them to follow the selected light stimulation.  

Future studies that could genetically identify different populations of basal forebrain 

neurons and then selectively express channelrhodopsins into the different populations 

would potentially allow for the ability to parse apart differential regulation of the BL by 

different populations of basal forebrain cholinergic neurons.  
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3.4.1 RELEASED ACH AFFECTS BASELINE POTENTIAL OF AMYGDALAR 

NEURONS 

 Previous studies have found the locally applied cholinergic agonist carbachol to 

induce biphasic changes in the membrane potential of neurons.  Washburn & Moises 

(1992) found carbachol induced an early hyperpolarization then a later depolarization in 

amygdalar neurons.  Data in our study builds upon this by examining endogenous, released 

ACh’s effects on BL resting membrane potential.  Interestingly, in both field and whole 

cell electrophysiology, we observed a biphasic response as well, but in our experimental 

protocol we found an initial depolarization response followed by a slower 

hyperpolarization. This data is interesting from multiple angles. First, the observation that 

released ACh causes different responses in different cells (for example, biphasic responses 

in one cell and monophasic in another as in Figure 3.2A) suggests heterogeneity in BL 

neurons, whereby there may be populations of neurons that respond one way to ACh and 

not another.  A heterogeneous response of amygdala neurons’ resting potential was also 

found by Sugita et al. (1990) when they applied muscarine and saw 20% of neurons 

displayed a hyperpolarizing potential, 42% showed a depolarizing potential, and about a 

third of neurons recorded from showed no change (Sugita et al., 1990).  Future studies 

separating BL neurons based on responses to ACh, and then determining if those 

cholinergic-defined populations are selectively recruited during certain behaviors or 

emotional states could potentially identify behaviorally relevant populations of neurons.  

Indeed, BL neurons can be divided into different populations based on a multitude of 

factors, including genetic markers and projections from afferent regions onto distinct 

populations of BL neurons.; (Jasnow et al., 2013; McGarry & Carter 2017; Kim et al., 
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2018).  Some of these distinct populations demonstrate functional and behavioral 

relevance; for example, Jasnow et al. (2013) found activating a specific subset of BL 

neurons that express the genetic marker Thy1 during extinction training facilitated 

consolidation of the extinction memory (Jasnow et al., 2013).  It would be interesting to 

know if neurons that also express Thy1are among those we found in our study to display a 

depolarization to released ACh, as ACh could be released during extinction training and 

thus depolarization this subset of neurons and play a role in facilitating extinction learning.  

 Our observations with field recordings that light released ACh induces biphasic 

responses that seemed blocked with atropine and mecamylamine suggest different 

temporal involvement of nicotinic and muscarinic receptors. It is important to discuss that 

previous work evoking external capsule glutamatergic fEPSP and releasing ACh with light 

found nicotinic effects on transmission (Jiang et al., 2016).  These studies used different 

protocols to release ACh and electrically stimulate glutamate release.  It is possible that in 

our study, we are not able to capture a nicotinic component due to the protocol employed.  

For example, as illustrated in Figure 3.2A, the downward potential (putatively nicotinic, as 

nicotinic antagonist mecamylamine eliminated it), diminished with each theta-burst of light 

applied, potentially due to the desensitization of nicotinic receptors with each successive 

burst of ACh.  This would agree with extensive literature showing nicotinic receptors are 

incredibly quick to desensitize (Bohler et al., 1992; Quick and Lester 2002; Geniatullin et 

al., 2005).  Thus, by the time we evoke glutamatergic release from external capsule 

stimulation, the nicotinic receptors have been rendered desensitized and unable to exert a 

modulatory effect on glutamatergic transmission.  On the other hand, this decrease in 

amplitude could also be neurotransmitter depletion. Thus, future studies aiming at 
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examining this nicotinic component would be needed to capture the full modulatory 

capacity of released ACh on glutamatergic fEPSPs.  An alternate explanation to the 

putatively nicotinic potential could be that the potential is due to nAChRs on interneurons 

depolarizing interneurons, which then inhibit pyramidal neurons to cause the observed 

potential.  

 

3.4.2 ENDOGENOUS ACH INHIBITS CORTICAL TRANSMISSION TO THE BL: 

FUNCTIONAL IMPLICATIONS  

Results from our experiments provide novel insight into how ACh, when released 

in patterns mimicking those in-vivo, inhibits cortical glutamatergic transmission to the BL. 

These results would suggest that during periods of enhanced cholinergic tone in the BL, 

such as when an animal is exercising, engaging in an attentionally demanding task, or 

during an unexpected stimulus, glutamatergic input to the BL would be temporarily 

inhibited.  Our experiments examining the time course of this inhibition would suggest that 

for a brief period of time (roughly 500ms) after ACh release, afferent cortical inputs to the 

BL would be suppressed to shift the influence of synaptic transmission away from external, 

afferent input and towards intrinsic recurrent processing within the BL. Why this would be 

behaviorally advantageous is still unknown, but a plausible reason can be found in the BL’s 

function in updating preexisting models of its environment.  There is a growing body of 

research that the BL’s role is to update preexisting models of learned associations based on 

constantly updating information and error prediction signals (Wassum and Izquierdo 2015; 

Zhang and Li 2018; Campese et al., 2019).   If a mouse, for example, is out foraging for 

food, it is in a situation where it must make choices that engage motivational conflicts to 
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survive.  For example, it will need to decide if it should make a movement for food or 

remain frozen to avoid a bird of prey. Should that mouse hear or a see a stimulus that was 

previously associated with a threat, it will need to remember that stimulus and behave 

accordingly. However, if a novel stimulus appears in the environment, and that animal’s 

BL is now flooded with ACh, the animal will need to temporarily shut off incoming afferent 

input while the learned model about the environment is processed and updated.     

Intriguingly, this modulation of afferent input in the amygdala is different from 

what is known about cholinergic regulation in the rest of the brain.  In the hippocampus 

and cortex, ACh spares afferent input but inhibits internal connections within a brain region 

(Hasselmo et al., 2006; Dasgupta et al., 2018).  In the cortex, this selective filtering is 

thought to allow for selective attention to encoding of new memories without interruption 

by recall of previously encoded information.  Given that the BL is important for fear 

memory and fear extinction learning, suppression of afferent input would allow for internal 

processing to occur in the BL without impedance from cortical regions.  If the BL is 

important for updated preexisting associations, such a suppression of afferent input by ACh 

would allow this processing of new information to occur in the BL, and after 500ms, this 

suppression would be alleviated to allow for new information to be received by the BL and 

then encoded.  

Taking cholinergic modulation of cortical activity into account, a potential 

influence of basal forebrain firing could be to suppress low-frequency cortical oscillations 

that enhances the receptive capacity of the cortex to incoming sensory stimuli while at the 

same time causing cholinergic suppression of incoming sensory stimuli to the amygdala 

(Favero et al., 2012; Wester & Contreras et al., 2013; Castro-Alamancos & Gulati 2014; 
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Dasgupta et al., 2018).  This would shift the prefrontal-cortical network into a mode where 

the amygdala is quieted to sensory input but the cortex is “listening” to such sensory input.  

Temporal data that shows ACh suppresses recurrent activity for up to 5 seconds (Dasgupta 

et al., 2018) and our data showing ACh suppresses afferent input to the BL for up to 1s 

would suggests a brief, 1s period whereby the BL is silenced to sensory input but the PFC 

is receptive to it.  Once that silenced inhibitory period in the BL is relieved, both the PFC 

and sensory (possibly thalamic) input could entrain the BL and synchronous oscillatory 

activity between the PFC and BL could occur. However, before concluding how the BL 

and prelimbic cortex could be coupled after basal forebrain activity, future studies will be 

necessary to examine specific prefrontal cortical input to the BL to determine how ACh 

regulates this input.  

Potential limitations of electrically stimulating the external capsule must also be 

taken into account when discussing behavioral consequences of muscarinic inhibition of 

external capsule-evoked input. The external capsule is known to contain projections from 

a range of cortical regions.  Thus, electrically stimulating this white matter bundle will 

ambiguously and promiscuously evoke fEPSPs from multiple regions that project to the 

BL.  Thus, it is possible that the ability to evoke fEPSPs from specific projection regions 

may result in different modulatory effects by ACh.  Our observations that released ACh 

conferred about 20% inhibition of afferent input may be misleading if we are stimulating 

projections that contain a mix of inputs differentially regulated. For example, it could be 

that a subset of projections to the BL that course through the external capsule are 

completely inhibited by ACh, while others are only partially inhibited or not inhibited at 

all. Anatomical data suggests that not all axon terminals forming glutamatergic synapses 
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to the BL contain muscarinic receptors; thus only distinct inputs that contain muscarinic 

receptors would be modulated while other input would be spared (Muller et al., 2013; 

Fajardo-Serrano et al., 2017; McDonald et al., 2019).  Thus, if specific brain regions could 

be isolated and stimulated, a more clear understanding of cholinergic action on various 

inputs to the BL could be modeled.  
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CHAPTER 4 

DIFFERENTIAL INHIBITION OF PL AND THAL INPUT TO BL 

BY MUSCARINIC ACETYLCHOLINE RECEPTORS
 

4.1 INTRODUCTION 

An extensive body of literature exists demonstrating the amygdala’s importance for 

emotional processing.  Early observations of amygdala function found that lesions and 

calcifications to the amygdala produce aberrant emotional responses (Siebert et al., 2003).  

More specifically within the amygdala, the basolateral amygdala (BLA) is critical for 

processing emotional learning and memory.  There is an abundance of studies using 

Pavlovian conditioning paradigms that show the BLA is involved in fear memory 

acquisition and expression of learned fear.  Lesioning the BLA, chemically inhibiting the 

BLA, or inactivating NMDA receptors in the BLA before and after fear acquisition training 

impairs both cue- and context- associated fear memories (Campeau & Davis 1995; Gale et 

al., 2004; Fanselow & Kim 1994; Helmstetter & Bellgowan 1994; Maren et al., 1996; 

Anglada-Figeuero & Quirk 2005). Behavior studies combined with electrophysiology find 

amygdalar neurons change responsiveness and firing rates after emotionally charged events 

and noxious stimuli (Pelletier et al., 2005; Wolff et al., 2014; Sengupta et al., 2018). 

Similarly, manipulations that inhibit BLA neurons during phases of Pavlovian conditioning 

affect fear behaviors; for example, optogenetic inhibition of BLA neurons during 

extinction training improves extinction learning (Sengupta et al., 2018). However, how 
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incoming neurotransmission to the BLA is regulated to either increase or decrease BLA 

activity remains largely unknown. 

The basolateral amygdala is optimally positioned to integrate information from the 

environment and produce a resulting behavioral response; the BLA receives information 

about an organism’s environment, including contextual and sensory information, from 

various afferent regions and sends projections to downstream regions that induce 

physiological changes and behavioral responses.  Several regions projecting to the BLA 

have been found to be implicated in fear behaviors, and thus are considered part of the 

neural fear circuit.  Three of these regions, the prelimbic cortex (PL), the midline thalamic 

nuclei (THAL), and the ventral subiculum (vSUB), convey information to the BLA via 

excitatory glutamatergic neurotransmission.  Afferents from the PL synapse onto both 

inhibitory interneurons in the BLA as well as excitatory pyramidal neurons in the BLA 

(Rosenkranz & Grace 2002; Huebner et al., 2014; Brinley-Reed et al., 1995; McGarry & 

Carter 2017). Behaviorally, the PL is generally considered important for the expression of 

fear, as lesioning the PL impairs the expression of acquired fear (Corcoran & Quirk 2007; 

Sierra-Mercado et al., 2011). The THAL, on the other hand, synapses onto mainly 

excitatory pyramidal neurons (Smith et al., 2000).  including the paraventricular nucleus 

(PVT), reuniens, rhomboid and xyphoid, is important for processing internal states and 

regulating behaviors during motivational conflict based on those internal states (Salay et 

el., 2018; Choi et al., 2019). Recent research suggests that the THAL, when activated, shifts 

the internal state of an animal to favor saliency-promoting behaviors; in other words, when 

the THAL is activated, animals are more likely to approach threatening stimuli and less 

likely to hide (Salay et al., 2018).  When the midline thalamic nuclei are chemogenetically 
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activated, rodents will increase tail rattling in response to a threat, and when inactivated, 

freeze more.  Specific connections involved in these behaviors consist of the THAL 

xiphoid nucleus (Xi) projections to the BL, that, when activated, cause an animal to reduce 

is saliency and freeze (Salay et al., 2018).  This study, together with additional recent data 

showing THAL activation to regulate behavior during motivational conflicts, suggests that 

the THAL is tightly involved in regulating internal states to shift an animal towards a state 

of increased arousal (Choi et al., 2019; Salay et al., 2018). The vSUB densely projects to 

the posterior BL and synapses largely onto pyramidal neurons in the BL to exert an overall 

excitatory effect on the PL when active (Canteras & Swanson 1992; Cenquizca & Swanson 

2007; Mueller et al., 2012). The vSUB projections to the BL are also important for fear 

conditioning, as lesions of these projections impair acquisition and extinction during 

Pavlovian paradigms (Maren 1999).   

Interestingly, all of these regions send glutamatergic projections to the BLA, 

specifically the basolateral nucleus (BL) while largely avoiding the lateral nucleus (LA).  

Whereas the LA is widely considered to be the amygdalar region where the primary 

associations form between a conditioned stimulus like a tone and an unconditioned 

stimulus like a shock, the role of the BL is still under speculation.  Given the role of the PL 

in expression of fear (ie freezing in rodents) and the role of the THAL in error prediction, 

a possible role for their convergence in the BL is to update the preexisting association once 

that information arrives in the BL from the LA.   However, in order to begin speculating 

on a behavioral function, it is necessary to first understand how this glutamatergic 

information from the PL, vSUB and THAL is transmitted to the BL.  
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The release of glutamate and the responsiveness of neurons to glutamatergic 

transmission is regulated by neuromodulators in the brain.  In the cortex, the 

neuromodulator acetylcholine (ACh) regulates both presynaptic transmitter release and 

postsynaptic neuronal excitability.  Presynaptic inhibition by cholinergic receptors occurs 

at intrinsic synapses between neurons in cortical layers, but does not occur at afferent 

synapses between incoming afferent projections, indicating that cholinergic tone in the 

cortex serves to enhance incoming information while quieting recurring processing within 

a region (Hasselmo 2006).   This enhancement of externally arriving afferent transmission 

and dampening of internal recurrent processing is also seen in area CA1 of the 

hippocampus, where cholinergic receptors inhibit intra-hippocampal glutamatergic input 

from the Schaffer collaterals while not affecting incoming transmission from external 

regions conveyed via the temporoammonic pathways (Hasselmo & Schnell, 1994; 

McQuiston 2019).  By allowing external information to arrive while suppressing 

transmission within a region, it is thought that cholinergic receptors increase the influence 

of incoming information that conveys new information to be acquired while suppressing 

the processing and recall of previously acquired information.  However, how ACh 

modulates afferent versus internal information in the BL remains to be fully understood.   

Radioligand binding, quantitative autoradiography, electron microscopy, 

immunofluorescence and immunohistochemistry studies reveal the presence of M1-M5 

mAChR subtypes of mAChRs in the BL in both rodent, nonhuman primates and human 

primates  (Cortes et al. 1987, Spencer et al., 1986; Mash & Potter 1986; Mash et al., 1988; 

Buckley et al., 1988; Smith et al., 1990; McDonald & Mascagni, 2010; McDonald & 

Mascagni 2011; Muller et al., 2013; Muller et al., 2016; Fajardo-Serrano et al., 2017). 
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Anatomical studies demonstrate M1 and M2 receptors to be located on a subset of axon 

terminals in the BL, raising the possibility that they differentially modulate distinct inputs 

(Muller et al., 2013; Muller et al., 2016; Fejardo-Serrano et al., 2017).   Postynaptically, 

M1 and M2 receptors have been labeled on BL neurons and interneurons, with M1 most 

prevalent on pyramidal neuronal perikarya and dendrites (both shafts and spines) whereas 

M2 has been found on both pyramidal neurons and interneurons (McDonald & Mascagni 

2010; Muller et al., 2013; Muller et al., 2016).   Roughly half of BL neurons that receive 

input from putatively labeled cortical projections and about half of BL neurons that receive 

input from putatively labeled thalamic projections express M1 receptors on dendrites 

(McDonald et al., 2019).   Lesser known is the presence of M3 and M4 receptors in the BL, 

due in no small part to the lack of specific antibodies and pharmacological tools.  However, 

an earlier autoradiography study has shown putative M3 receptors in the BL, and therefore 

this subtype should not be ruled out of mediating muscarinic inhibition to BL (Zubieta & 

Frey, 1993; However, how these muscarinic receptors regulate glutamatergic transmission 

in the BL remains unknown.  

To answer this question, we used a combination of optogenetics and 

electrophysiology to determine how muscarinic receptor activation regulates 

optogenetically released glutamatergic transmission from the PL and THAL to the BL.    It 

was hypothesized that muscarinic receptors would regulate afferent input to the BL in a 

manner consistent with the cortex, such that THAL inputs, conveying external stimuli 

about an unexpected stimulus, would not be inhibited while PL and vSUB inputs conveying 

cortical information, would be inhibited.  Given the anatomical data demonstrating 

presynaptic mAChRs M1 and M2 on axon terminals and M1 on putative cortical and 
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thalamic projections (Muller et al., 2016; McDonald et al., 2019) it was hypothesized that 

presynaptic mAChR M1 and M3 inhibit glutamatergic transmission from these afferent 

regions.  

 

4.2 MATERIALS AND METHODS 

4.2.1 VIRAL DELIVERY OF CHR2S TO PL, THAL, AND VSUB REGIONS 

As described in Chapter 2.7, 1.2-3 month old transgenic mice ChAT-Cre 

(B6;129S6-Chattm2(cre)Lowl/J) mice)  were anesthetized and injected with 0.15L of rAAV5-

CAMKII-hChR2(H134R)-eYFP-WPRE (UNC Viral Vector Core) in the prelimbic cortex 

(from Bregma: 1.9mm Anterior/Posterior; -0.3mm Media/Lateral; -2.0 mm 

Dorsal/Ventral), with 0.2L of rAAV5-CAMKII-hChR2(H134R)-eYFP-WPRE (UNC 

Viral Vector Core) delivered to the ventral subiculum (from Bregma: -2.5mm 

Anterior/Posterior; -3.2mm Media/Lateral; -5.3 mm Dorsal/Ventral) or with 0.2L of 

rAAV5-CAMKII-hChR2(H134R)-eYFP-WPRE (UNC Viral Vector Core) in the midline 

thalamic nuclei.  As seen in Figure 4.1, injection sites were confirmed in coronal slices 

using a fluorescent microscope and recorded on a schematic based off of the mouse brain 

atlas (Paxinos and Franklin, 2001).  

 

4.2.2 WHOLE CELL RECORDINGS 

Coronal brain slices 300μM thick were prepared and incubated as described in 

Chapter 2. Voltage-clamp recordings from amygdalar pyramidal neurons were conducted 

at a holding potential of -70mV. The series resistance was between 10-25MΩ.   
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To stimulate the release of glutamate from the PL and record the evoked 

glutamatergic EPSCs in the BL, single or paired (50ms ISI) flashes (1-3ms) of blue LED 

light (ThorLabs Inc, Newton, New Jersey) was emitted and the EPSC was measured. The 

glutamatergic response was isolated with application of GABAA and GABAB antagonists 

picrotoxin and CGP55845, respectively and NMDA receptors were antagonized with D-

APV. At the conclusion of each experiment, remaining glutamatergic currents were 

confirmed with bath application of CNQX.  

Glutamatergic currents were recorded using a Multiclamp 700B amplifier and 

pClamp 10 software (Molecular Devices, Sunnyvale, CA) and responses were filtered at 

1kHz. For whole cell experiments examining muscarinic effects at PL input to BL, 

muscarine (10μM) was bath applied.  

 

4.2.3 FIELD ELECTROPHYSIOLOGY RECORDINGS 

Horizontal and coronal brain slices (500μM thick) containing the amygdala were 

prepared and incubated as described in Chapter 2.  To stimulate the release of glutamate 

from the PL, THAL and vSUB, blue LED light (ThorLabs Inc, Newton, New Jersey) was 

flashed (1-3ms) either singly or in pairs (50ms ISI) to release glutamate. To record the 

evoked glutamatergic fEPSP in the BL, glutamatergic fEPSPs were isolated by applying 

GABAA and GABAB antagonists picrotoxin and CGP55845, respectively and NMDA 

receptors were antagonized with D-APV.  At the conclusion of each experiment, remaining 

glutamatergic currents were confirmed with bath application of CNQX.  
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4.3 RESULTS 

4.3.1 MUSCARINIC RECEPTOR ACTIVATION DIFFERENTIALLY REGULATES 

AFFERENT INPUT TO BL IN PATHWAY-SPECIFIC MANNER 

Coronal brain slices containing the amygdala from animals injected into the PL, 

THAL or vSUB display expression of ChR2 in the BL of labeled terminals.  These 

terminals were stimulated with blue light to evoke and record glutamatergic fEPSPs in the 

BL (control).  After acquiring a stable baseline in control condition, muscarine (10μM) in 

the recording ACSF was bath applied. BL field responses in the presence of muscarine to 

optogenetic stimulation of PL, THAL or vSUB afferents were recorded.  Evoked 

glutamatergic responses (fEPSP mean peak amplitude) during activation of mAChR by 

muscarine were compared with responses recorded during control ACSF. Figure 4.2A (top 

inset waveforms) show optogenetically evoked amygdalar responses from PL, THAL and 

vSUB stimulation in control ACSF (black waveforms).  Muscarinic activation significantly 

inhibited the glutamatergic response is PL, THAL and vSUB pathways, but to different 

extents. In the PL and vSUB pathways, muscarine nearly completely inhibited the 

amygdalar glutamatergic response (green and pink waveforms, respectively), whereas in 

the THAL pathway muscarinic activation inhibited by a significantly lesser extent (blue 

waveform).  These experiments are summarized in Figure 4.2A. Overall, when mAChRs 

were activated, glutamatergic transmission at PL input was reduced to roughly one-fifth of 

that in control (17.89 ± 1.85%), vSUB to one-fourth (25.1 ± 4.28%), and THAL to half of 

control (45.7 ± 4.09%).  Application of muscarinic antagonist atropine (5µM) reversed 

inhibition in all three pathways, indicating inhibition by muscarine is mediated by 

mAChRs.  Interestingly, the lesser inhibition of thalamic inputs and stronger inhibition of 
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cortical inputs to a region has been shown in the auditory, visual and barrel cortices, where 

ACh and cholinergic agonists more strongly inhibit glutamatergic transmission from 

intracortical pathways than thalamocortical (Metherate & Ashe 1993; Kimura et al., 1999; 

Hseih et al., 2000; Oldford & Castro-Alamancos 2003). To ensure that the phenomenon 

we were seeing with field electrophysiology was generalizable to different 

electrophysiology techniques, we used whole-cell patch clamping to replicate experiments 

at PL input to BL.  Similar to field electrophysiology experiments, PL transmission was 

nearly completely inhibited (11.26 ± 2.3% of control) in the presence of muscarine (10µM).  

 

4.3.2  MUSCARINE INHIBITS PL AND THAL INPUT TO BL EQUALLY IN MALES 

AND FEMALES. 

An extensive body of literature exists showing marked differences in the incidence 

of emotional disorders that involve the amygdala, with females commonly reporting higher 

prevalence ratios of generalized anxiety disorders, depression and emotional comorbidities 

(Kessler et al., 1993; Vesga-Lopez et al., 2008). Because of this sex difference, we wanted 

to determine if a difference in muscarinic inhibition of PL and THAL input to the BL exists 

in males and females.  FEPSP suppression by muscarine (10µM) was compared between 

males and females.  There was no difference in variance between males and females, and 

muscarine inhibited glutamatergic transmission in both sexes equally at both pathways 

(Figure 4.3A, B).  However, there did appear to be a trending difference in the amount of 

inhibition between males and females at the THAL pathway, whereby mAChR 

activation in males produces an observably less amount of inhibition of glutamatergic 

transmission than females (Figure 4.3C).  However, further experiments will be necessary 
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Figure 4.1. Viral injection sites for expressing ChR2s in afferent inputs to the BL from 

the PL, THAL and vSUB regions.  

 

A. i-iii.  Whole brain (left) and coronal schematics (right) illustrating injections into PL, 

THAL and vSUB with subsequent projections to the BL shown on the far right. 

B.  i-iii.  Confocal images of PL, THAL and vSUB injection site with corresponding 

ChR2+ terminals in the BL (green).  

C.  i-iii.  Injection sites centers (circles) based on the Franklin & Paxinos (2008) mouse 

atlas for PL (i), THAL (ii) and vSUB (iii) injections.  

(Image adapted from The Mouse Brain in Stereotaxic Coordinates: Compact Third Edition, 

by K.B.J. Franklin & G. Paxinos, 2008, New York, NY: Academic Press. Copyright (2008) 

by Elsevier Inc.) 
 

 

to determine if this trend is significant in a larger population.   Thus, for all following 

experiments in this study, we combined males and females.  

 

4.3.3  MUSCARINIC RECEPTOR ACTIVATION AT PL VERSUS THAL PATHWAY 

DISPLAYS DIFFERENT AMOUNTS OF SENSITIVITY AT THE TWO PATHWAYS.  

We next wanted to determine the effects of increasing concentrations of muscarine 

on evoked glutamatergic responses at PL and THAL inputs to BL.   Glutamatergic 

transmission from PL and THAL was again evoked with light, and fEPSPs in control and 

in muscarine were compared.  0.03µM, 0.3µM, 1µM, 10µM and 30µM concentrations of 

muscarine were bath applied and peak amplitude of the response measured.  Figure 4.4 

shows the magnitude of muscarinic inhibition at PL and THAL pathways for the varying 

concentrations of muscarine.  The lowest concentration of muscarine, 0.03µM, had 

no significant difference on glutamatergic transmission at either pathway.  The highest 

concentration used, 300µM, significantly inhibited both PL and THAL inputs 
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Figure 4.2. Muscarinic receptor activation differentially suppresses PL, THAL and 

vSUB glutamatergic transmission to BL.  

A. Muscarine (10µM) strongly inhibits glutamatergic input to BL evoked by optogenetic 

stimulation of PL (17.89 ± 1.85, **p<0.01, n=35) and vSUB (25.1 ± 4.28, **p<0.01, n=5) 

whereas it inhibits glutamatergic input from THAL to a lesser extent (45.7 ± 4.09, 

**p<0.01, n=27). Inset: Representative traces illustrating muscarine nearly completely 

inhibiting glutamatergic fEPSP (green) compared to control (black) in the PL pathway, 

muscarine nearly completely inhibiting glutamatergic fEPSP (pink) compared to control 
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(black) in the vSUB pathway and muscarine partially inhibiting glutamatergic input (blue) 

compared to control (black) in THAL pathway. 

B.  Representative experiments in PL showing muscarinic inhibition of glutamatergic 

transmission and subsequent reversal of muscarinic inhibition by application of muscarinic 

antagonist atropine (5µM). 

C. Muscarine (10µM) similarly inhibits PL input to BL using whole cell 

electrophysiological recordings (11.26 ± 2.3, *p<0.05, n=3). 

 

 

compared to control, but always inhibited PL input more strongly than THAL input.   This 

stronger inhibition of PL input was seen for every concentration of muscarine used above 

0.03 µM.  While future experiments implementing a concentration-response curve will 

allow of detailed pharmacological investigation of the pharmacodynamics of muscarinic 

receptors at both pathways, we can conclude that there does appear to be a difference in 

sensitivity to muscarine between mAChRs at the PL and THAL input to BL.  This 

difference in sensitivity to muscarine could be reflective of different expression of 

muscarinic receptors at each pathway, as different receptors have been shown to posses 

different binding affinities for muscarinic agents (Kellar et al., 1985; Jakubik et al., 2011).   

 

4.3.4  MUSCARINIC RECEPTOR MEDIATED INHIBITION OF GLUTAMATERGIC 

TRANSMISSION TO BL EXHIBITS PRESYNAPTIC LOCUS OF ACTION AT PL 

AND THAL SYNAPSES TO BL.  

To determine effects of muscarinic receptor activation on presynaptic transmitter 

release, paired optogenetic stimuli at an interval of 50ms were given to either the PL or 

THAL input to BL (Figure 4.5A) in the presence of GABAA, GABAB, and NMDA receptor 

antagonists picrotoxin (10µM), CGP55845 (2µM) and APV (50µM) respectively.  Paired 

pulse stimulation of PL and THAL demonstrated facilitation of fEPSPs in control  



 

104 

 

 

Figure 4.3. Muscarinic receptor activation inhibits glutamatergic input equally in 

males and females at PL and THAL pathways.  

A. Muscarine (10µM) inhibits PL input in both males (18.21 ± 2.22, **p<0.01, n=26) and 

females (20.83 ± 4.17, **p<0.01, n=6).  However, no significant difference in muscarinic 

inhibition was found between males and females at this pathway.  

B.  Muscarine (10µM) inhibits THAL input in both males (51.77 ± 6.44, **p<0.01, n=14) 

and females (39.16 ± 4.43, **p<0.01, n=13).  However, no significant difference in 

muscarinic inhibition was found between males and females at this pathway.  

C.  Though not statistically significant, scatterplots of individual data reveal a trend in 

which muscarinic receptor activation suppresses thalamic input to a larger extent in females 

than males.  
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Figure 4.4. Concentration-dependent effects of muscarine at PL and THAL 

projections to BL.  

Concentration – response summaries showing inhibition of fEPSP (as % of control) at 

increasing concentrations of muscarine.  Inhibition for our given concentrations was 

maximum at the PL and THAL pathways at 30 µM muscarine, where inhibition was still 

significantly larger for PL input (7.44 ± 1.38% of control, n=5 and 31.80 ± 6.56% of 

control, n=8, at PL and THAL, respectively, *p<0.05). Differences in inhibition by 

muscarinic doses between the two pathways may reflect underlying differences in 

potencies of muscarine at the two pathways.  
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Figure 4.5. Muscarinic receptor activation exhibits presynaptic locus of action of 

inhibition of glutamatergic inhibition. 

A.  (Top) Representative traces illustrating muscarinic receptor activation (green) 

suppresses the PL-evoked fEPSP compared to control (black) but increases paired pulse 

facilitation, suggesting a presynaptic action.  (Bottom) Similarly, muscarinic activation 

(blue) suppresses the THAL-evoked fEPSP compared to control (black) but increases 

paired pulse facilitation, suggesting a presynaptic action.  

B.  Paired pulse ratios (PPRs) of individual experiments shown for PL input in control 

(gray) and muscarine (green) as well as for THAL input in control (gray) and muscarine 

(blue). 

C.  Muscarinic activation (10µM) significantly increased the PPR at both the PL (green) 

(2.10 ± 0.26, *p<0.05, n=11) and THAL (blue) (1.40 ± 0.08, *p<0.05, n=11) pathways 

compared to controls.  
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conditions (Figure 4.5), and bath application of muscarine (10µM) significantly increased 

this paired-pulse ratio (Figure 4.5B,C).  At PL synapses, muscarine increased paired pulse 

ratio from 1.36 ± 0.09 to 2.10 ± 0.26 (n=11, *p<0.05), indicative of muscarinic activation 

retaining transmitter in the presynaptic terminals at PL inputs to BL.  Similarly, at THAL 

synapses, muscarine increase paired pulse ratio from 1.25 ± 0.05 to 1.40 ± 0.08 (n=11; 

*p<0.05), also indicating a muscarinic mechanism of inhibition of glutamate release 

whereby neurotransmitters are retained in the presynaptic terminal.   

 

4.3.5  M3 MACHRS MEDIATE GLUTAMATERGIC TRANSMISSION FROM PL AND 

THAL PROJECTIONS TO BL 

Given the anatomical data supporting the existence of different subtypes types of 

mAChR in the BL across species, and the presence of M1 receptors at putative cortical and 

thalamic inputs to the BL, we next wanted to know which specific muscarinic subtypes are 

responsible for the inhibition of PL-evoked and THAL-evoked fEPSPs (Cortes & Palacios 

1986; Cortes et al. 1987, Spencer et al., 1986; Mash & Potter 1986; Mash et al., 1988; 

Buckley et al., 1988; Smith et al., 1990; McDonald & Mascagni, 2010; McDonald & 

Mascagni 2011; Muller et al., 2013; Muller et al., 2016; Fajardo-Serrano et al., 2017; 

McDonald et al., 2019). To answer this question, we first looked to see if M1 was 

responsible for the muscarinic-mediated inhibition given the extensive literature showing 

its presence in the BL.  PL and THAL inputs were optogenetically evoked with blue light 

pulses and evoked fEPSPs in control ACSF consisting of GABA antagonists (10µM 

picrotoxin and 2µM CGP55845) and NMDA antagonist (50µM APV) were recorded.   
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Following the acquisition of stable responses in control, muscarine (10µM) was 

added to recording medium.  As expected, muscarinic suppression of fEPSPs was seen at 

both inputs to BL (Figure 4.6A,B).  After stable responses were recorded in muscarine, M1 

antagonists telenzepine (1µM) or VU0255035 (5µM) were added to the recording ACSF.  

Unexpectedly, antagonizing M1 receptors at both pathways failed to significantly reverse 

muscarinic inhibition, suggesting muscarinic mediated inhibition of glutamatergic fEPSPs 

is not through M1 receptors (PL: n=9, p>0.05; THAL: n=7, p>0.05).  However, we did see 

a trend in slight relief of muscarinic inhibition by M1 antagonists at both pathways, but 

this did not reach statistical significance.  These results were surprising given the 

abundance of M1 receptors in the BL, and the expression of M1 receptors seen at both 

putative PL and putative THAL inputs to the BL (McDonald et al., 2019).  Our observed 

reversal of a small portion of muscarinic inhibition (roughly 11% reversal at PL input and 

5% at THAL input) would agree with the anatomical data, but the remainder of muscarinic 

inhibition remains unexplained. Thus, it remains to be determined what the function of the 

presynaptic M1 receptors are if not to completely inhibit glutamate release.   

We next wanted to determine if M2 mAChRs mediate muscarinic suppression of 

PL and THAL-evoked fEPSPS.  Similar experimental procedures as our M1 experiments 

were followed, in which stable responses in control ACSF were acquired followed by 

stable responses in muscarine (10µM).  Following muscarinic inhibition, the M2 antagonist 

AFDX-116 (1µM) was added to the recording ACSF.   While AFDX slightly reversed a 

trace amount of muscarinic inhibition, this reversal was not significant at either pathway 

(Figure 4.7A,B) (PL: n=6, p>0.05; THAL: n=6 P>0.06). This slight reversal would agree 

with anatomical data from Muller et al., 2016 & Fajardo-Serrano et al., 2017, 
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demonstrating the presence of presynaptic M2 receptors.  Given that M2 receptors couple 

to Gi proteins and are largely inhibitory, the slight effects of M2 on fEPSP inhibition would 

corroborate these anatomical findings, but other muscarinic subtypes must explain the 

majority of muscarinic receptor-mediated inhibition not explained by either M1 or M2 

receptors.  

The next set of experiments were aimed at determining if mAChR M3 was 

responsible for muscarinic inhibition of PL and THAL input to BL.  PL and THAL input 

was again optogenetically evoked and stable baseline fEPSPs were recorded, after which 

muscarine (10µM) was added to the recording ACSF.  Following inhibition of fEPSPs by 

muscarine, selective M3 antagonist 4-DAMP (1µM) was added to the ACSF.  4-DAMP 

completely reversed muscarinic inhibition at both pathways to the BL (PL: 104.32 ± 14.67, 

**p<0.01, n=10, THAL: 105.43 ± 7.26, **p<0.01, n=9) (Figure 4.8A,B). This data agrees 

with previous studies in other brain regions that have found M3 receptors to inhibit 

glutamate release by using the M3 antagonist 4DAMP (Hsu et al., 1995; Grillner et al., 

1999).  

 

 4.3.6 M4 MACHRS PRESENT AT PL, BUT NOT THAL, INPUT TO BL.  

While 4-DAMP is commonly used and referred to in the literature as an M3 

antagonist, it does show nonselectivity for the other muscarinic subtypes (Doods et al., 

1987; Michel et al., 1989). Given the more selective M1 and M2 antagonists did not 

completely reverse muscarinic inhibition at PL and THAL pathways, we feel confident M1 

and M2 receptors are not responsible for strong muscarinic inhibition at these pathways. 

 



 

110 

 

Figure 4.6. Muscarinic receptor activation does not inhibit glutamatergic input at PL 

or THAL pathways through presynaptic M1 receptors.  

A.   (Top) Representative traces illustrating glutamatergic inhibition at PL input is inhibited 

by muscarine (MUSC) compared to control (CTRL), and this inhibition is not reversed 

when M1 receptors are antagonized by M1 antagonist telenzepine (TZP) but is completely 

reversed by atropine (ATR). (Bottom)  M1 antagonists TZP (1µM) and VU0255035 (5µM) 

do not significantly reverse muscarinic inhibition (n=9) at PL pathways but this inhibition 

was completely reversed by atropine (5µM) (111.21 ± 16.07, **p<0.01, n=9) suggesting a 

muscarinic receptor other than M1 responsible for inhibition at this pathway. 

B. (Top)Representative traces illustrating glutamatergic inhibition at THAL input is 

inhibited by muscarine (MUSC) compared to control (CTRL), and this inhibition is not 

reversed when M1 receptors are antagonized by M1 antagonist telenzepine (TZP) but is 

completely reversed by atropine (ATR). (Bottom) Similar to the PL pathway, at the THAL 

pathway, M1 antagonist TZP (1µM) did not significantly reverse muscarinic inhibition 

(n=7), although this inhibition was completely reversed by atropine (5µM) (99.28 ± 6.80, 

**p<0.01, n=7) suggesting a muscarinic receptor other than M1 responsible for inhibition 

at this pathway. 
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Figure 4.7. Muscarinic receptor activation does not inhibit glutamatergic input at PL 

or THAL pathways through M2 receptors.  

A.   (Top) Representative traces illustrating muscarine (MUSC) inhibits fEPSPs at PL input 

and this inhibition is not reversed by M2 antagonist AFDX-116 (AFDX). (Bottom) M2 

antagonist AFDX (1µM) does not significantly reverse muscarinic inhibition (n=6) at PL 

pathway but this inhibition was completely reversed by atropine (5µM) (89.13 ± 11.88, 

**p<0.01, n=6) suggesting a muscarinic receptor other than M2 responsible for inhibition 

at this pathway. 

B. (Top) Representative traces illustrating muscarine (MUSC) inhibits fEPSP at THAL 

input and this inhibition is not reversed by M2 antagonist AFDX-116 (AFDX). (Bottom) 

Similar to the PL pathway, at the THAL pathway, M2 antagonist AFDX (1µM) did not 

significantly reverse muscarinic inhibition (n=6), although this inhibition was completely 

reversed by atropine (5µM) (96.52 ± 3.61, **p<0.01, n=6) suggesting a muscarinic 

receptor other than M2 responsible for inhibition at this pathway. 
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Figure 4.8. Muscarinic receptor activation inhibits PL and THAL input via M3 

mediated mechanism.  

A.   (Top) Representative traces illustrating muscarine (MUSC) inhibits fEPSPs at PL input 

and this inhibition is completely reversed by M3 antagonist 4DAMP. (Bottom) M3 

antagonist 4DAMP (1µM) completely reverses muscarinic inhibition (104.32 ± 14.67, 

**p<0.01, n=10) at PL pathway, indicated mAChR M3 receptors regulate muscarinic 

inhibition at this pathway.  

B. (Top) Representative traces illustrating muscarine (MUSC) inhibits fEPSP at THAL 

input and this inhibition is completely reversed by M3 antagonist 4DAMP. (Bottom) 

Similar to the PL pathway, at the THAL pathway, M3 antagonist 4DAMP (1µM) 

completely reversed muscarinic inhibition (105.43 ± 7.26, **p<0.01, n=9), indicating M3 

receptors mediated muscarinic inhibition at the THAL pathway.  
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However, M4 can not be ruled out.  Due to the lack of availability of specific M4 

antagonists and the increasingly common discovery of M4 positive allosteric modulators 

(PAMs), the latter was used to determine if M4 receptors are responsible for inhibition at 

PL and / or THAL input to the BL.   Allosteric modulators are compounds that bind, as the 

name suggests, to an allosteric site on the receptor.  Positive allosteric modulators will 

enhance an agonists’ effects at that receptor.  Here, we used the M4 PAM VU0467154, a 

positive modulator that, when bound to the allosteric site on M4 receptors, should enhance 

the functionality of M4 receptors should the agonist also bind.  Thus, if M4 receptors are 

present at PL or THAL input, a low-dose of muscarine or another muscarinic agonist 

should create a slight effect, and successive application of the M4 PAM would greatly 

enhance the effect.   To test this, a low-dose of oxotremorine (0.3µM) (a muscarinic agonist 

commonly used in M4 PAM studies) was applied followed by the M4 PAM VU0467154 

(3µM). Inhibition by a low dose of oxotremorine at the PL pathway was significantly 

enhanced after application of the M4 PAM (amplitude significantly decreased from 79.73 

± 2.99 to 46.51 ± 6.70, *p<0.05, n=4), suggesting M4 receptors are present and inhibit 

glutamatergic transmission at the PL pathway (Figure 4.9A).  However, as these results 

could be due to an oxotremorine-specific effect by the M4 PAM, experiments at the PL 

and experiments at THAL were repeated with a low dose of muscarine instead of 

oxotremorine.   These experiments using muscarine instead of oxotremorine found PL 

glutamatergic fESPS to be similarly inhibited by a low-dose of muscarine (0.3µM), and 

this inhibition was significantly facilitated by application of M4 PAM VU0467154 (3µM) 

(amplitude significantly decreased from 63.75 ± 5.51 to 38.33 ± 7.81, *p<0.05, n=5) at PL 

pathway, further supporting the presence of M4 receptors at PL pathway (Figure 4.9B).   
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Figure 4.9. M4 mAChRs are present at PL, but not THAL, input to BL.  
A.  Inhibition by low-dose of oxotremorine (0.03µM) was significantly facilitated by 

application of M4 PAM VU0467154 (3µM) (amplitude significantly decreased from 79.73 

± 2.99 to 46.51 ± 6.70, *p<0.05, n=4) at PL pathway suggests the presence of functional 

M4 receptors at PL input.  

B.  PL input was similarly inhibited by a low-dose of muscarine (0.3µM), and this 

inhibition was significantly facilitated by application of M4 PAM VU0467154 (3µM) 

(amplitude significantly decreased from 63.75 ± 5.51 to 38.33 ± 7.81, *p<0.05, n=5) at PL 

pathway, further supporting the presence of M4 receptors at PL pathway.  

C.  Representative traces illustrating M4 PAM facilitating inhibition by muscarinic 

agonists.  

D.   No presence of M4 receptors at THAL input, as determined by absence of effect of 

M4 PAM VU0467154 (3µM).  
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Interestingly, no effect of M4 PAM was seen at the THAL pathways (Figure 4.9D).  Taken 

together, these experiments suggest the presence of M4 receptors at PL input to BL but not 

at THAL input.  

 

4.4 Discussion 

The results from this study provide novel insight into regulation of afferent input to 

the BL.  The regulation of glutamatergic neurotransmission from specific regions to the 

BL, despite the importance of PL and THAL input in fear learning and the extensive 

cholinergic receptor presence in the BL, had not yet been examined. Previous studies using 

electric stimulation to examine regulation of glutamatergic transmission in the BL and LA 

have been performed, but prior to this current study, there existed no study systematically 

examining how mAChR subtypes regulate specific afferent projections to the BL  (Sugita 

et al., 1991; Jiang et al., 2016). Results from this study identify mAChRs M3 and M4 could 

be potential targets for therapeutics aimed at treating and improving symptoms of 

emotional disorders, including PTSD, anxiety, and the emotional dysregulation seen in 

patients with Alzheimer’s disease.  

The results from this study suggest that PL and THAL input to the BL is 

differentially regulated by mAChRs, such that when ACh levels are elevated in the BL, 

mAChR activation, via M3 receptors and potentially M4 at PL input, will shift the dynamic 

to allow more glutamatergic transmission from the THAL than from PL.  Thus, signal-to-

noise is enhanced to allow the BL to be more receptive to THAL input.  These findings are 

summarized in Figure 4.10 demonstrating optogenetic stimulation of PL and THAL input 

releases glutamate, but that activation of M3 mAChRs at both pathways inhibits this 
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glutamatergic transmission.  However, suppression is largest at PL, whereas this 

suppression is only partial at THAL input (fuscia traces represent fEPSPs in muscarine and 

black in control ACSF).  

 

4.4.1 MACHRS PARTIALLY SPARE THALAMIC INPUT TO THE BL WHILE 

NEARLY COMPLETELY SUPPRESSING PL INPUT 

Results of this study demonstrate that ACh would allow greater neurotransmission 

from the THAL pathway to the BL than from the PL pathway.  However, our results must 

be considered according to previously published data in the field as well.  Because it has 

been shown that a long-term effect of ACh on cortical input to the BL is a potentiation of 

responses (Jiang et al., 2016), our data fits into this scheme because we examine acute, 

short term modulatory effects of ACh on cortical input.  It may be possible that acutely, 

ACh largely suppresses PL input to the BL and spares THAL input, the consequence of 

which is to allow for rapid quieting of the BL as new information is processed and updated 

intrinsically, and then, after this transient suppression, plasticity mechanisms dominate to 

allow for the long term effects seen in previous studies.   

Interestingly, in our muscarine experiments at PL and THAL input, we see a 

slightly larger increase in fEPSP amplitude after muscarine has been applied and atropine 

antagonizes muscarinic receptors.  This increase in amplitude did not reach significance, 

but on average, antagonizing muscarine with atropine at both the PL and THAL pathways 

resulted in larger glutamatergic responses.  This potential muscarinic-induced plasticity is 

interesting when we consider that all experiments were done in the presence of NMDA 

antagonist DAPV.  It has been shown in the cortex that muscarine can induce long term 
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depression in an NMDA-independent manner but whether this occurs in the BL remains 

an avenue for exploration (McCoy & McMahon 2007). This effect could also be due to 

tonic ACh being antagonized by atropine and thus it could be interesting to see if there are 

pathway specific differences in tonic ACh release. When sex was considered, we noticed 

that in the PL pathway, this enhancement in amplitude after muscarinic application was 

trending only in males, whereas females showed a mean amplitude in atropine smaller than 

that in control.  While more experiments would be needed in the future to examine this 

potential sex difference, it highlights the need to explore sex differences in mechanisms 

underlying the known differences in emotional disorder prevalences in men and women.  

 

4.4.2 CHOLINERGIC MODULATION OF PL AND THAL INPUTS THROUGH M3 

RECEPTORS AT PL AND THAL AND M4 RECEPTORS AT PL 

 Our data supports literature showing muscarinic receptors can suppress inhibition 

of glutamate presynaptically.  Specifically, our data extends findings from CA1 of the 

lateral amygdala, basal ganglia, nucleus accumbens, hippocampus, neostriatum, and 

mesencephalon that mAChR M3 receptors can presynaptically inhibit glutamate release 

(Grillner et al., 1990; Hsu et al., 1995; Shen & Johnson, 2000; Rinaldo & Hansel 2013; de 

Vin et al., 2015).   Our study and these previous studies used a combination of cholinergic 

antagonists to determine receptor involvement.  Due to the lack of antagonists that are 

particularly selective for subtypes, IC50s need to be taken into consideration when 

discussing antagonist data and determining subtypes involved in muscarinic inhibition.  

 Telenzepine, (TZP) an M1 antagonist, has a selectivity for M1 that is 26-fold more 

selective than M2 and 5-fold more selective than M3 (Doods et al., 1987).  We used TZP 
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at a concentration of 100nm, as its IC50 for M1 receptors in the rodent brain has been 

shown to be 0.19nM (Baumgold et la., 1992). Thus, our dose of TZP, roughly ten-fold the 

IC50, should sufficiently antagonist M1 receptors in the BL. Because we saw a slight 

reversal (although not significant) of M1 receptors, this is most likely due to M1 receptors 

that are indeed present in the BL as illustrated by anatomical studies (McDonald & 

Mascagni 2010; Muller et al., 2013; McDonald et al., 2019). Because of this surprising 

result that M1 receptors were not significantly modulating presynaptic glutamate release 

but are indeed present in the BL, we performed additional studies on PL input to the BL 

using a second, more recently developed M1 antagonist, VU0255035 (5µM).  This 

compound displays Ki for M1 receptors that are 45, 62, 84, 168 times more selective than 

M2, M3, M4 and M5 receptors (Sheffler et al., 2009).  These studies confirmed our studies 

with TZP that antagonizing M1 receptors had no significant effect on muscarinic inhibition. 

AFDX-116, the M2 antagonist used in our studies, was shown using 

autoradiography to have an affinity for M2 receptors that is 25-times more selective for 

M2 than M3 (Doods et al., 1989).  Another study showed AFDX116 exerts an IC50 of 

0.36µM for M2 receptors, 4.3µM for M1 receptors, 3.1µM for M3 receptors and 0.79µM 

for M4 receptors (Buckley et al., 1988).  Thus, when determining the presence of M2 

receptors using AFDX, the more conservative IC50 values should be taken into 

consideration.  Our AFDX-116 concentration of 1µM, nearly three times the IC50 of 

AFDX for M2 receptors, should have been sufficient to substantially antagonize M2 

receptors.  However, because there was no significant effect of AFDX at PL or THAL 

input, we can rule out M2 receptors at these inputs.  Given AFDX116’s IC50 of  0.79µM 

at M4 receptors and our use of AFDX116 at 1µM, there is the potential that we were 
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antagonizing slightly less than half of M4 receptors if they were there.  Our AFDX116 data 

would suggest that we were either not antagonizing M4 receptors, or they were are not 

present at either pathway as AFDX at 1µM had no effect on muscarinic inhibition.   

4DAMP, while extensively used in the literature as an M3 antagonist, is a relatively 

nonspecific antagonist for M3 and thus is often used in combination with other antagonists 

more specific for M1 and M2 (such as TZP and AFDX).  4DAMP displays affinities for 

both M1 and M3 to similar extents as well as some affinity for M4 receptors (Zubieta & 

Frey 1993; Moriya et al., 1999).  Thus, when used as an M3 antagonist, TZP, VU0255035 

or another M1-specific antagonist should be used to first determine M1 effects.  In 

experiments highlighted here, we first used TZP and VU0255 to determine lack of M1 

receptors in mediating glutamatergic inhibition. We can therefore conclude that even if our 

concentration (1µM) of 4DAMP could bind to M1 receptors, they are not present at either 

the PL or THAL input to BL.  However, we could not rule out the potential for 4DAMP 

antagonizing M4 receptors.  Unfortunately, there exists no selective agonist for M4 

receptors.  However, the advent of several positive allosteric modulators has enabled the 

investigation of the presence of M4 receptors.  Thus, we used the M4 PAM VU-467154 

that has been validated across species to potentiate M4 receptors, to determine if M4 

receptors were present at either pathway (Byun et al., 2014).  We can only conclude the 

presence of M4 receptors at PL input, as the facilitation of muscarine’s effect at PL input 

by the M4 PAM indicates this subtype is present, but does not indicate that under 

physiological conditions (ie, not in the presence of a PAM) it would exert an effect.  
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4.4.2 M3 MUSCARINIC RECEPTORS MODULATE CORTICAL AND THALAMIC 

INPUT IN THE BL IN A MANNER OPPOSITE TO THAT OF THE CORTEX  

ACh shifts the influence of cortical regions from intrinsic signaling to afferent 

signaling, which is thought to “enhance input relative to feedback” in the cortex (Hasselmo 

& McGaughy 2004). The value of ACh release in the cortex increasing signal-to-noise 

filtering to favor afferent input would be, as theorized and summarized elegantly by 

Hasselmo & McGaughy, to increase receptiveness and attention to incoming sensory 

stimuli in one’s environment while blocking out recurrent obtrusive synaptic transmission 

(Hasselmo & McGaughy 2004).  For example, cholinergic receptors modulate cortical and 

thalamic inputs to the auditory cortex in a manner consistent with an increase in external 

signal to noise; muscarinic receptor activation more potently suppressed intrinsic cortical 

inputs and spared thalamic inputs (Hseih et al., 2000).  When viewed from the perspective 

of projection-type modulation, our experiments would also suggest that ACh functions to 

spare thalamic input while suppressing cortical input, regardless of whether it is “intrinsic” 

or “afferent.” Similarly, when ACh is elevated in the BL, the signal to noise ratio would 

favor thalamic input over PL, the potential consequence of which is discussed in Chapter 

6.  

 

4.4.2 CHOLINERGIC SUPPRESSION OF PL AND THAL INPUT TO THE BL: 

IMPLICATIONS FOR EXERCISE 

Data demonstrating exercise’s influence on the cholinergic system is extensive, 

with many studies showing that exercise increases ACh release in the brain (Dudar et al., 

1979; Tsakaris et al., 2006; Fordyce & Farrar 1991; Hall & Savage 2016).  In the BL, the 
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ACh that is released would bind to the cholinergic receptors shown to be present in this 

region.  We have demonstrated that M3 receptors are activated and suppress PL input but 

allow THAL input to the BL.  If we consider exercise from a historical perspective, as an 

activity that was evolutionarily necessary for survival (either to flee from a predator, run 

to catch prey, or run to catch food while avoiding predators), it is rationale to presume that 

the ability to be physically active and the ability to pay attention to, and update your model 

of, ones surroundings would similarly evolve in a Darwinian manner.  In other words, the 

value of having developed a neural mechanism whereby ACh is enhanced with physical 

activity when one is out foraging/surviving/chasing, and this enhanced ACh shifts the BL 

attention away from cortical input to the BL and towards sensory stimuli in our 

environment can arguably be rationally understood.  The mouse with the amygdala that, 

when foraging and is confronted with unexpected stimuli, is able to temporarily shut down 

its BL with ACh in order to pay attention to incoming stimuli and update its model of the 

world would be better able to appropriately respond to changes in its environment.  
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Figure 4.10. Schematic summary of findings described in Chapter 4.  

Optogenetic activation of PL and THAL evokes fEPSPS in control (absence of muscarine) 

black waveforms).  Application of muscarine inhibits PL input via M3 and possible M4 

mAChRs, while THAL is inhibited through M3 by only 50% (pink waveforms in 

muscarine). 
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CHAPTER 5 

MECHANISMS OF MUSCARINIC INHIBITION AT PL AND 

THAL INPUT TO BL

 

5.1 INTRODUCTION  

 Fear disorders, including Post Traumatic Stress Disorder (PTSD), general anxiety 

disorder and phobias affect nearly 20% of Americans (Kessler et al., 2005).  One of the 

common neurological regions involved in these disorders is the amygdala, a region in the 

temporal lobe critical for emotional learning and memory.  Our understanding of the 

amygdala as a vital center for emotional associations developed out of both human clinical 

case studies as well as animal models in which the amygdala and its projects were lesioned 

or damaged (Siebert et al., 2003; Adolphs et al., 1995; Quirk et al., 1995; Rogan et al., 

1997; Tovote et al., 2015; Kwon et al., 2014).   

 Pavlovian conditioning studies, in which a neutral harmless stimulus such as tone 

(Conditioned Stimulus, or CS) is paired with an aversive stimulus like a shock 

(Unconditioned Stimulus or US), results in an animal (or even human) forming an 

emotional association between an otherwise harmless stimulus in our environment (ie a 

“tone” in many conditioning paradigms) with a fearful stimulus (ie a “shock” in many 

conditioning paradigms).   Once an emotional memory is formed between two stimuli, 

animals often display fear behaviors allowing scientists to measure their memory of the 
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CS-US association or their ability to extinguish the memory.  By having an observable 

model of emotional memories, scientists were able to then manipulate aspects of the 

hypothesized fear circuit in the brain to determine specific mechanisms for emotional 

memory formation.  

 Through such conditioning studies, neural regions important for fear acquisition 

and extinction have been elucidated.  The lateral amygdala (LA) is important for the initial 

acquisition of a tone-shock pairing, as neurons in the LA electrophysiologically respond to 

both auditory tones and electric shocks, and synapses in the LA undergo plasticity in 

response to associative learning of a tone-shock presentation (Romanski et al., 1993; Blair 

et al., 2003).   

The basolateral amygdala is also critical for the acquisition and expression of 

emotional learning and memory, but the exact role of the BL in emotional processing is 

turning out to be much more complex than previously thought and the exact roles remains 

largely unknown. Recent studies have suggested the BL functions in processing and 

updating previously formed associations through studies that have found the BL to 

discriminate between various noxious stimuli it has encountered and by retaining the 

memory of a recent conditioned stimulus’ saliency (Campese et al., 2019; Sengupta et al., 

2018).  In the latter study that found the BL to play role in aversive memory by forming a 

neural representation of the saliency of a recent stimulus, optogenetically inhibited BL 

neurons during Pavlovian fear conditioning (Sengupta et al., 2018).  They found that by 

inhibiting the BL during the presentative of an aversive stimulus (the US), rats learned and 

expressed less fear to the CS.  Interestingly, they also found that inhibiting BL neurons 

when the US should occur but didn’t during extinction training (in other words, when error 
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prediction was extremely low) enhanced extinction (Sengupta et al., 2018).  In studies 

presented in Chapter 3 and 4, I have shown that ACh briefly inhibits afferent input from 

PL and THAL to the BL, presumably inhibiting activity in the BL briefly. If one were to 

extrapolate my findings to this behavioral study (Sengupta et al., 2018), it would be 

hypothesized that by optogenetically inhibiting the BL briefly, the investigators were in 

essence mimicking what ACh would do to the BL.  Interestingly, ACh is known to be 

important for learning and memory, so the theory that ACh, by inhibiting the BL through 

muscarinic receptors, would be causing rats to learn and later express less fear to a CS is 

difficult to understand.  In order to fully understand how mAChR activation is affecting 

the BL at PL and THAL inputs, and thus better understand potential treatment targets for 

emotional disorders, a more thorough investigation into the mechanisms underlying 

mAChR suppression of PL and THAL input need to be pursued. Thus, the purpose of this 

study was to investigate the mechanisms underlying muscarinic inhibition at PL and THAL 

inputs to the BL.  It was hypothesized that given the different amount of inhibition 

conferred to PL and THAL inputs by mAChRs found in previous studies, that mAChRs at 

the PL and THAL input would suppress glutamatergic fEPSPS through different 

mechanisms.  

 

5.2 MATERIALS AND METHODS 

To determine mechanisms underlying muscarinic inhibition of PL and THAL input 

to the BL, field electrophysiology was used in combination with optogenetics.  Viral 

constructs were delivered to the PL and THAL using surgical techniques and coordinates 

described in Chapter 2.7.  
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Slices were prepared and incubated following previously describes techniques 

(Chapter 2.8).  Slices were submerged in a recording chamber and gently held in place by 

a platinum wire.  For all experiments in this study except frequency experiments, glutamate 

release from PL and THAL projections to the basolateral amygdala were stimulated with 

single or dual light pulses.  For frequency experiments, light stimuli was applied as 10-

pulse train, with the pulses flashed at 1Hz, 5Hz, 10Hz, 20Hz, 30Hz and 40Hz to release 

glutamate at various frequencies.  Control recording ACSF, unless otherwise described, 

contained 10M-100M picrotoxin or 10M bicuculline (to block GABAA receptors), 

2µM CGP55845 (GABAB antagonist) and 50µM L-2-amino-5-phosphonovaleric acid 

(DAPV) or 10M MK801 (NMDA antagonist).   Experiments examining GABAB 

involvement (Chapter 5.3.1) used a control ACSF that consisted of GABAA antagonists 

only. When GABAB receptors were blocked, 2M CGP55845 was added to the recording 

medium.  Experiments examining muscarinic modulation of NMDA currents used a 

control ACSF that included 10M-100M picrotoxin and 2µM CGP55845N-methyl-D-

aspartate (NMDA) to antagonist GABA receptors but did not include D-APV so as not to 

block NMDA receptors.  Glutamatergic components of field potentials were confirmed by 

inhibiting the response with 25M of the potent glutamatergic antagonist 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX) at the conclusion of each experiment.  
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5.3 RESULTS 

5.3.1 mAChRs INHIBIT GLUTAMATERGIC TRANSMISSION AT PL AND THAL 

SYNAPSES THROUGH GABAB INDEPENDENT MECHANISMS 

Because it is known that GABAB receptors in the BL inhibit glutamatergic 

transmission and that activation of mAChRs on postsynaptic interneurons can facilitate the 

release of GABA that then inhibits glutamate, we first wanted to know if muscarinic M3 

receptors inhibit PL or THAL input via a GABAB-dependent mechanism (Pitler & Alger 

1992; 1999; Pan et al., 2009).   Based on the endogenous ACh data from Chapter 3 

demonstrating no effect of GABA receptor action on the cholinergic suppression of 

glutamate from cortical regions, it was hypothesized that we would also see muscarinic 

inhibition at the PL and THAL inputs in a manner independent of GABAB receptor 

activation.   To answer this question, it was first necessary to determine if GABAB receptors 

are present at PL and THAL projections to the BL, and if so, do they suppress glutamatergic 

fEPSPs.  To this end, responses were optogenetically evoked from the respective pathways 

(control fEPSPs shown in black in Figure 5.1A,C top).  GABAB receptors were then 

activated by bath application of agonist baclofen (2-10µM).  Interestingly, both PL and 

THAL evoked fEPSPs were suppressed to significant extents (PL: 10.67 ± 3.38% of 

control, **p<0.01, n=7; THAL: 28.24 ± 15.66% of control, **p<0.01, n=3), demonstrating 

the presence of GABAB receptors, that, when activated, inhibit glutamatergic fEPSPs from 

the PL and THAL input to BL.  However, whether mAChRs present on amygdalar 

interneurons can facilitate the release of GABA to then activate the GABA receptors we 

found inhibit glutamatergic fEPSPs is unknown.  To answer this question, stable evoked 

fEPSPs were acquired from PL and THAL optogenetic stimulation.  CGP55845 (GABAB 
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antagonist) was left out of the control recording ACSF. After stable baseline responses, 

muscarine (10µM) was added to the recording medium and responses suppressed as 

expected.   GABAB receptors were then antagonized to determine if a relief of muscarinic 

inhibition would result.  As hypothesized, antagonizing GABAB receptors had no effect on 

muscarinic inhibition, suggesting that muscarinic suppression of glutamatergic fEPSPs at 

PL (p>0.05, n=7) and THAL (p>0.05, n=5) inputs is due to mechanisms that do not involve 

GABAB receptors (Figure 5.1B,D).   

 

5.3.2 MUSCARINIC INHIBITION AT THAL, BUT NOT PL, PROJECTIONS IS 

MEDIATED BY AN ENDOCANNABINOID-DEPENDENT MECHANISM 

A potential mechanism whereby mAChR activation inhibits glutamate release is 

through the facilitation of endocannabinoid (eCB) release.  These eCBs, if released from 

neurons in the BL after mAChR activates mechanisms elevating intracellular calcium 

influx, could theoretically serve as retrograde messengers and inhibit glutamate from PL 

and THAL terminals in the BL.  This ability for mAChRs to enhance the release of eCBs 

has been shown in area CA1 of the hippocampus, where mAChR activation enhanced eCB  

release that then presynaptically reduces glutamate release by activating CB receptors (Kim 

et al., 2002).  In the lateral amygdala, eCBs inhibit both glutamatergic and GABAergic 

transmitter release through acting on presynaptic CB1 receptors (Azad et al., 2003).  

Furthermore, experiments in the hippocampus and the cerebellum find Gq-coupled 

mAChRs, specifically M1 (in hippocampus) and M3 (in hippocampus and cerebellum) 

mAChRs, to be responsible for inhibition of excitatory glutamatergic transmission, and 
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Figure 5.1.  Muscarinic inhibition at PL and THAL inputs to BL not mediated by 

GABAB receptors.  

A. Bath application of GABAB agonist baclofen (2-10µM) inhibits prelimbic glutamatergic 

transmission, indicating the presence of GABAB receptors at PL input to the BL (amplitude 

reduced from control to 10.67% ± 3.38, **p<0.01, n=7).  Top inset: representative traces 

showing GABAB activation (green) nearly completely inhibits PL transmission compared 

to control (black).  

B.  Bath application of GABAB antagonist CGP55845 (2µM) had no effect on muscarinic 

(10µM) inhibition, indicating muscarinic suppression of PL input not mediated by GABAB 

receptors (n=7).  Top inset: representative races showing muscarine (10µM) (light green) 

inhibits PL input to the BL, is not reversed by antagonizing GABAB receptors with 

CGP55845 (dark green) and is completely reversed by muscarinic antagonist atropine 

(5µM) (neon green).  



 

130 

C.   Similar to the PL input, transmission from the THAL input is inhibited by bath 

application of GABAB agonist baclofen (2-10µM), indicating the presence of GABAB 

receptors at THAL input to the BL (amplitude reduced from control to 28.24% ± 15.66, 

**p<0.01, n=3).  Top inset: representative traces showing GABAB activation (blue) nearly 

completely inhibits THAL transmission compared to control (black).  

D.   Bath application of GABAB antagonist CGP55845 (2µM) had no significant effect on 

muscarinic (10µM) inhibition, indicating muscarinic suppression of THAL input not 

mediated by GABAB receptors (n=5).  Top inset: representative races showing muscarine 

(10µM) (light navy blue) inhibits THAL input to the BL, is not reversed by antagonizing 

GABAB receptors with CGP55845 (dark navy blue) and is completely reversed by 

muscarinic antagonist atropine (5µM) (light blue).  
 

 

 

that this inhibition possesses functional relevance for preventing plasticity at synapses 

engaged in this muscarinic facilitation of eCBs (Ohno-Shosaku et al., 2003; Rinaldo & 

Hansel, 2013).  Given the results of our experiments in Chapter 4 showing mAChR M3 

receptor activation suppresses glutamate release at both the PL THAL pathways, it is 

plausible that the mechanism underlying this M3-mediated inhibition is dependent on eCB 

release.  To examine this question, a series of experiments were performed in which CB1 

receptor antagonist AM251(1µM) was bath applied following muscarinic inhibition of PL 

and THAL input.  Should muscarine be inhibiting fEPSPs by released eCBS that decrease 

glutamate release through CB1 receptors, blocking those CB1 receptors should reinstate 

glutamatergic transmission.  Surprisingly, we found antagonism of CB1 receptors to have 

no effect on muscarinic suppression of fEPSPs at PL input to the BL (p>0.05, n=7), 

revealing that muscarinic suppression of PL input is through an endocannabinoid-

independent mechanism (Figure 5.2A). This was surprising given the presence of 

cannabinoid receptors at these inputs, as application of CB receptor agonist WIN55,212 

(5µM)  reduced PL-evoked fEPSPs in a manner reversible by AM251 (19.67 ± 7.37% of 
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control, **p<0.01, n=6) (Figure 5.2B).  This data suggests that even though CB receptors 

can suppress PL evoked fEPSPs in the BL, muscarinic suppression of PL input does not 

work through such a mechanism.  However, experiments examining THAL projections to 

the BL found that muscarinic mediation suppression was through a different mechanism.  

At these inputs, AM251 completely reversed muscarinic inhibition of THAL-evoked 

fEPSPs (AM251 reversed muscarinic inhibition from 41.50±7.85% of control to 

84.48±11.45% of control in the absence and presence of AM251, respectively, *p<0.05, 

n=7 ) (Figure 5.2C, D).  However, to eliminate the possibility that this effect was simply 

due to a pharmacological enhancement of glutamatergic transmission by AM251, control 

experiments were performed in which AM251 was applied and THAL-evoked fEPSPs 

were measured at the THAL pathway.  No significant enhancement of fEPSPs were seen 

(Figure 5.2E), demonstrating that reversal of muscarinic inhibition was due to a 

muscarinic-mediated release of eCBs which retrogradely inhibited glutamatergic 

transmission at the THAL projections.   

 

5.3.3. MACHRs INHIBIT PL INPUT IN A MECHANISM THAT IS DEPENDENT IN 

PART ON Gi/o-COUPLED PROTEIN 

We next wanted to elucidate the mechanism of muscarinic inhibition of PL input, 

as our prior experiments ruled out GABAB and CB receptors as mediators in the observed 

inhibition at this pathway.   Our results so far have found M3 receptors and M4 receptors 

to be present at PL input to the BL.  However, whether M3 receptors inhibit glutamate by 

directly reducing calcium influx presynaptically or by facilitating the release of a 
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Figure 5.2.  Muscarinic inhibition at THAL, but not PL, mediated by an 

endocannabinoid-dependent mechanism 

A.   Muscarinic inhibition at PL input is not affected after antagonizing CB1 receptors with 

AM251 (1µM) (n=7).  Top inset: Representative traces illustrating muscarine inhibits 

fEPSPs (light green) and this is not reversed by AM251 (dark green) but is completely 

reversed by atropine (neon green).  

B. Even through muscarinic inhibition is not through an endobannabinoid-dependent 

mechanism at the PL input, there are endocannabinoid receptors present at this pathway as 

indicated by near complete inhibition of fEPSPs by CB agonist WIN 55,212 (5µM) 

(amplitude reduced from control to 19.67% ± 7.37, **p<0.01, n=6). 

 C. Application of CB1 antagonist AM251 (1µM) reverses muscarinic inhibition at THAL 

input (amplitude of response increases from 41.50±7.85 to 84.48±11.45 in the absence and 

presence of AM251, respectively, *p<0.05, n=7), indicating muscarinic suppression of 

fEPSPs is through an endocannabinoid-dependent mechanism at this pathway.   Top inset: 

representative traces illustrating muscarine inhibits fEPSPs (light navy blue), AM251 

reverses this inhibition (turquoise) and the remainder of the inhibition is reversed by 

atropine (light blue).  
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D.  Representative experiments demonstrating reversal by AM251 (n=4).  

E.  Reversal of muscarinic inhibition by AM251 not due to facilitation of the glutamatergic 

response due to direct action by AM251.  

 
 

 

retrograde messenger that can inhibit glutamate is still unknown.  Because M3 receptors 

couple to Gq proteins and M4 receptors to Gi/o proteins, pretreating slices with an 

alkylating agent that inhibits Gi/o proteins should block the effects of muscarine at PL 

input if the effect is entirely M4 modulating a Ca2+ channel via Gi/o protein and have no 

effect if M3 is inhibiting transmitter release through a completely Gi-independent 

mechanism (Fryer 1992; Shapiro et al., 1994).   To test if mAChR suppression of PL input 

is through a Gi/o protein-dependent mechanism, baclofen (2µM), an agonist of GABAB, 

was chosen as a positive control as it is dependent on Gi/o coupled mechanism and was 

shown in previous experiments to inhibit PL input.  After baclofen suppressed PL input, it 

was washed out and muscarine (10µM) was bath applied.  After stable, suppressed 

responses in muscarine, muscarine was washed out and  a Gi/o inhibitor, n-ethylmaleimide 

(NEM) (50µM) was bath applied to slices for a minimum of 15 minutes.  Following 

preincubation with NEM, muscarine (10µM) was again applied to slices and amplitude of 

the response after NEM treatment was compared with the amplitude of responses before 

NEM treatment.  Baclofen was also applied following NEM treatment as a positive control 

to determine if NEM was appropriately inhibiting Gi/o receptors. Preincubation of slices 

with NEM was sufficient to inhibit Gi/o proteins, as effects by baclofen were significantly 

inhibited by NEM (Figure 5.3A).  However, NEM only partially blocked muscarinic 

inhibition, suggestive that muscarinic inhibition of PL pathway is partially due to a Gi/o 

protein-dependent mechanism (pre-NEM amplitude in muscarine was 26.12 ± 7.15 % of  
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Figure 5.3.  Muscarinic inhibition of PL input dependent in part on GI coupled 

mechanism.  

A.  Muscarinic inhibition at PL input to BL is partially dependent on a Gi-coupled 

mechanism, as preincubation with Gi inhibitor N-ethylmaleimide (50 µM) partially 

inhibited the response (pre-NEM amplitude compared to control was 26.12% ± 7.15 and 

post-NEM amplitude compared to control was 68.97% ± 15.25, *p<0.05, n=6).  

B.   Representative traces illustrating muscarinic inhibition in the absence of Gi inhibitor 

(light green) largely suppresses the fEPSP but when the Gi is inhibited this suppression is 

partially blocked (dark green).  
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control and post-NEM amplitude was 68.97 ± 15.25% of control, *p<0.05, n=6) (Figure 

5.3A, B).  Representative traces illustrate inhibition by muscarine (light green) and reversal 

of muscarinic inhibition by pretreatment with NEM (dark green).  It remains unknown, 

however, as to what is mediating the remaining 30% of muscarinic inhibition at PL input.  

 

5.3.4 MACHR AT PL INPUT TO BL FACILITATES NMDA CURRENT  

It is known in the hippocampus, striatum, lateral amygdala and other brain regions 

that mAChRs, specifically M1 receptors, can enhance the NMDA current in postsynaptic 

neurons through activation by muscarinic agonists and endogenous ACh (Markram & 

Segal 1990; Marino et al., 1998; Aramakis et al., 1999; Weisskopf et al., 1999; Buchanan 

et al., 2010; Fernandez de Sevilla & Buno 2010).  Given the BL’s importance in associative 

learning, the density of ACh projected to the BL, and NMDA receptors’ crucial role in 

learning and plasticity, we wanted to know if mAChRs similarly enhance NMDA 

responses in the BL at PL-BL synapses.   To investigate this, slices were prepared from 

animals expressing opsins in the PL.  Control ACSF containing 0µM Mg2+, picrotoxin 

(10µM), CGP55845 (2µM) and CNQX (10µM) was utilized to block GABAA, GABAB, 

AMPA and Kainate receptors, respectively.  As previous experiments in this study (see 

Chapter 4) found M3 receptor activation to inhibit glutamate release, the release of which 

is necessary to obtain and detect NMDA responses, M3 receptors were blocked by also 

adding 4DAMP (1µM) to the recording medium.   Thus, evoked responses measured in 

this ACSF was termed “control” and reflects the isolated excitatory NMDA field potentials 

(fEPSPNMDA) (Figure 5.4A,B).  Once NMDA potentials were measured in control, 

muscarine (10µM) as added to the recording medium.  In agreement with what has been 
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observed in previous studies, muscarinic receptor activation greatly facilitated the NMDA 

responses (Figure 5.4A,B).  Summarized experiments showing muscarinic enhancement of 

the NMDA response is shown in Figure 5.4A.  NMDA responses were confirmed by 

subsequent application of NMDA receptor antagonist D-APV (50µM) at the conclusion of 

the experiment.  Representative traces from PL input is shown in Figure 5.4B.  The isolated 

NMDA components in control are shown in grey.  Application of muscarine at PL (green) 

greatly increased the NMDA responses.  These responses were confirmed to due to NMDA 

receptors as application of APV (black traces) abolished responses in the PL pathway 

(Figure 5.4B).  This data demonstrates that mAChR in the BL, when activated, can enhance 

the NMDA response following PL stimulation.  Future experiments will be necessary to 

determine the functionality of this enhancement of NMDA responses.  

 

5.3.5 MUSCARINIC INHIBITION OF PL, BUT NOT THAL, TRANSMISSION FAILS 

AT GAMMA FREQUENCY 

Because ACh levels fluctuate with different behavioral and internal states, we 

wanted to know how mAChR activation regulates PL and THAL inputs during 

behaviorally relevant oscillatory patterns of these afferent regions.  Higher frequency 

oscillations (20-70Hz), or gamma frequency oscillations, occur during wakefulness, during 

acquisition of emotional associative learning, and slow-wave sleep and allow for long-

range synchrony between brain regions (Singer and Gray 1995; Popescu et al., 2009; 

Headley and Pare 2013).  Given ACh’s importance and the BL’s importance for acquisition 

and expression of fear learning and gamma’s presence during acquisition of associative 

learning, we wanted to know if cholinergic modulation changes or is consistent during 
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Figure 5.4. Muscarinic receptor activation facilitates NMDA current at PL synapses 

in BL.    

A.   Summary bar graph of experiments demonstrating application of muscarine increased 

the NMDA current (pink bar) and this current was completely blocked by application of 

NMDA antagonist APV (black bar).  

B.  Representative traces illustrating muscarinic facilitation of NMDA current at PL. Black 

(control) represents isolated NMDA current prior to muscarine application (green).   
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Figure 5.5.  Muscarinic inhibition of PL, but not THAL, input fails at gamma 

frequency 

A.  Averaged data showing amplitude of the 10th fEPSP at PL pathway in muscarine (green) 

compared to control. In muscarine, the last fEPSP facilitates at 40Hz whereas in control it 

depresses at 40Hz compared to control.  

B.  Averaged data showing amplitude of the 10th fEPSP at THAL pathway in muscarine 

(blue) compared to control At the THAL pathway, responses continued to depresses 

whether muscarine present or not.  
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C.  Amplitude of the 10th fEPSP in muscarine at each pathway as a % of the first in 

mucarine 

D.  Representative traces illustrating consistent muscarinic inhibition in THAL and 

relieved muscarinic inhibition in PL. 

 
 

different frequency bands.  Animals were injected in either the PL or THAL, and slices 

prepared as in previous experiments.  To examine how input from the PL and THAL is 

transmitted to the BL during different frequencies, 1Hz, 10Hz, 20Hz and 40Hz trains 

consisting of 10 pulses were applied to the PL or to the THAL input and the resulting 

fEPSPS in the BL measured (representative gamma frequency traces shown in Figure 5.4D 

top & bottom).  As expected at the lowest frequency (1Hz), each of the ten fEPSPs were 

consistent in amplitude, meaning that when the PL and THAL are firing at slow rates in 

the absence of ACh, successive action potentials will evoke transmitter release that reliably 

is received by the BL (Figure 5.5, A,B).  However, when muscarine (10µM) was applied 

and PL stimulated at 1Hz, each of the pulses was consistently inhibited by roughly 80%, 

and the last pulse was no different than the first pulse (Figure 5.5, AB).  However, as 

frequency increased from 1Hz to 10Hz, 20Hz and 40Hz trains, expected run-down of the 

fEPSP amplitude was seen in control.  However, at the PL input, when muscarine was 

present (green), the amount of muscarinic inhibition across the ten fEPSPs was relieved, 

such that the last pulse of the 10-pulse train resulted in an fEPSP that was larger than the 

first pulse in 10Hz, 20Hz and 30Hz experiments (Figure 5.5A).  Interestingly, muscarinic 

inhibition of THAL input behaved quite differently at increasing frequencies of stimulation 

of the THAL input. At low frequencies in control (1Hz), we saw consistent sized fEPSPs 

across the train. Application of muscarine at 1Hz stimulation of THAL input also resulted 

in consistently inhibited fEPSPs (Figure 5.4B).  However, at higher frequencies, this 
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muscarinic inhibition (blue) was not relieved, and in fact appeared to still run down similar 

to control experiments.  Representative traces from high-frequency experiments (gamma 

frequency of 40Hz) displayed in Figure 5.5D (top and bottom).  In the top figure we can 

see the run-down of glutamatergic transmitter release at 40Hz in control (black waveforms) 

but in the presence of muscarinic inhibition, we see a relief of inhibition across the train 

(green waveforms).  In the bottom figure, we see the THAL pathway also displaying classic 

run down of transmitter release in control (black waveforms) but no relief of inhibition in 

the presence of muscarine (blue waveforms).  

 

5.4 DISCUSSION  

In these studies we have demonstrated a differential cannabinoid-dependent 

regulation of glutamate release by mAChRs whereby mAChRs facilitate the release of CBs 

that then inhibit glutamate from the THAL, but not PL, input to BL.  These different 

mechanisms of muscarinic suppression were reflected in different frequency-dependent 

inhibition of the PL and THAL input by mACHRs.  When the PL and THAL were 

stimulated at low frequency (1 Hz), inhibition by muscarine at both the PL and THAL 

inputs remained consistently strong across each pulse of the ten pulse train.  However, 

when the PL and THAL were stimulated at high gamma frequency (40Hz), muscarinic 

inhibition at the THAL pathway remained strong throughout the ten pulses of the train but 

muscarinic inhibition at the PL input was relieved.  Intriguingly, when we further examined 

potential postsynaptic mechanisms of inhibition at PL input to the BL, we found that 

mAChRs have the capability to regulate NMDA currents.  Taken together, this suggests 



 

141 

that even though the PL input may be inhibited at low frequencies, the glutamatergic 

transmission that is relieved at higher frequencies may be enough to facilitation NMDA 

currents through postsynaptic mAChRs.  Overall, these studies suggest distinct 

mechanisms of muscarinic inhibition that confer different short-term plasticity events at 

PL and THAL inputs, and potential long-term plasticity at PL inputs.  

 

5.4.1 MACHRS INHIBIT THAL, BUT NOT PL, INPUT THROUGH CB1 RECEPTORS.  

 Our results show that in the BL, a similar inhibition of glutamate release by 

endocannabinoids occurs like that shown in the LA (Azad et al., 2003).  However, in our 

experiments, we found that mAChRs mediate this cannabinoid-mediated inhibition of 

glutamate, a mechanism that was not explored in the LA.  Since our study showed 

muscarinic suppression of PL input is partially dependent on Gi/o-coupled mechanisms 

and THAL input is completely dependent on muscarinic mediated cannabinoid actions, 

discovery mechanisms distinct to the PL or THAL that do not involve Gi/o proteins would 

be beneficial to develop drugs targeting one pathway or the other.   Because 

endocannabinoids, through actions on their CB receptors, can affect both voltage 

dependent and voltage independent K+ channels as well as inhibit presynaptic voltage-

dependent calcium channels, future studies would be needed to determine the mechanisms 

of this cannabinoid-dependent muscarinic suppression at the THAL pathway (Deadwyler 

et al., 1995; Mackie et al., 1995; Mcallister et al., 1999; Hoffman & Lupica, 2000; 

Schweizer 2000).   

Additionally, while we examined muscarinic suppression of glutamatergic 

transmission at each pathway in the BL, it would be interesting to see if muscarinic 
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modulation of cannabinoid release at THAL inputs also affects GABA transmission in the 

BL to exert a disinhibition of BL.  In the LA, cannabinoids inhibit both glutamatergic and 

GABAergic transmission but their actions affect glutamatergic transmission more to cause 

an overall decrease of excitation in the LA (Azad et al., 2003).  Whether this is occurring 

in the BL would be most interesting to determine if the BL, specifically after enhanced 

cholinergic tone and THAL input to BL, is largely inhibited or excited after muscarinic 

receptors facilitate cannabinoid release.  Our data, just focusing on THAL input to 

pyramidal neurons and endocannabinoid mediated inhibition of glutamate, would suggest 

that in the event of increased ACh levels, eCB mediated suppression of glutamate would 

cause an overall decrease in BL excitability following THAL stimulation.  Thus, to 

examine the larger picture, interneurons would need to be recorded from to determine if 

muscarinic facilitation of eCBs also disinhibits the BL to offset the inhibitory effects of 

suppressed glutamate.   

The presence of muscarinic-mediated cannabinoid signaling at THAL input raises 

many questions for future investigations.  For example, it has been shown in the dorsal 

cochlear nucleus that when postsynaptic M1 or M3 mAChRs are activated and increase 

eCB signaling at the same time as NMDA receptors, LTD occurs in an eCB-dependent 

manner (Zhao & Tzounopoulos 2011). Given our findings that M3 receptors enhance eCB 

signaling at the THAL pathway, it would be interesting to see if a similar plastic effect 

occurs in the BL and determine if a long-term physiological consequence, if any, arises 

from our observed mechanism of muscarinic mediated eCB release. 

The finding that there are indeed CB receptors at PL input, but mAChRs don’t 

inhibit them is in and of itself extremely interesting from a therapeutic perspective.  Since 



 

143 

M3 receptors are present peripherally and thus drugs that act on M3 receptors are not first  

choices for emotional disorders given their widespread side effects (ie dry mouth, nausea, 

constipation, etc.), other targets that function in their place could be further investigated.  

Since we found application of WIN inhibits PL input to a similar extent as muscarine, this 

could possibly be an avenue of future investigation.  

 

5.4.2. mAChRs INHIBIT PL GLUTAMATERGIC TRANSMISSION IN A 

MECHANISM THAT IS PARTIALLY MEDIATED BY A GI/O COUPLED PROTEIN 

In efforts to determine the mechanism of muscarinic inhibition of PL input to the 

BL, an inhibitor of the Gi protein, n-ethylmaleimide (NEM), was used as this agent inhibits 

pertussis-sensitive G-proteins (Shapiro et al., 1994).  Since NEM is an unstable compound, 

a positive control was chosen to include in experiments to ensure that NEM was actually 

blocking Gi proteins.  We used baclofen, a GABAB agonist, as the control because of 

GABAB’s known intracellular mechanisms that involve coupling to a Gi/o protein and 

regulating adenylyl cyclase activity, GIRK channels and voltage gated calcium channels.  

Thus, if NEM inhibited the effects of baclofen, it would be functioning appropriately. 

Experiments in which NEM failed to inhibit baclofen were excluded.  

A possible explanation for NEM’s inhibition of muscarinic responses could be due 

to NEM inhibiting the Gi/o protein to which M4 receptors are known to couple. If this 

mechanism accounts for NEM’s suppression of muscarinic inhibition, then most of 

muscarinic’s effects at the PL input would be due to presynaptic M4 receptors that, upon 

activation by muscarine, the Gi/oβγ subunit dissociates and can interact with voltage gated 

calcium channels (Brown 2010).  
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However, another potential explanation for a partial NEM-effect would be if the 

M3 mAChRs are located on postsynaptic amygdalar neurons that then release a retrograde 

messenger that also works through a Gi/o coupled mechanism to inhibit transmitter release.  

Such retrograde messengers that can bind to receptors that are able to couple to Gi/o 

proteins include opioids, somatostatin, adenosine, etc. (Heinke et al., 2011; Yudin & 

Rohacs 2018).  It is therefore of interest to examine the potential for mAChRs to act on 

postsynaptic M3 receptors that may facilitate the release of these retrograde messengers.  

 

5.4.3 PL INPUT MAY INDUCE POTENTIATION AT SYNAPSES IN THE BL 

DURING GAMMA FREQEUENCY STIMULATION   

We also demonstrate, for the first time in the BL, that muscarinic activation can 

enhance NMDA currents in postsynaptic neurons following PL stimulation.  These 

findings agree with studies finding a similar muscarinic receptor activated enhancement of 

the NMDA current in other brain regions (Markram & Segal 1990; Segal 1992; Calabresi 

et al., 1998).  In the hippocampus and striatum, M1 receptors mediate this NMDA current 

enhancement (Calabresi et al., 1998; Dennis et al., 2016).  It is therefore reasonable to 

hypothesize that postsynaptic M1 receptors in the BL would also be responsible for this 

enhancement of NMDA currents, as recent anatomical studies found they are present in the 

BL at some putative cortical and thalamic synapses but not all, raising the possibility that 

they distinctly regulate certain projections but not all to the BL (Muller et al. 2013; 

McDonald et al., 2019).   

This data, taken together with our frequency data, raises the possibility of an 

interesting modulatory mechanism whereby PL input, inhibited by mAChRs, would be 
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relieved at gamma frequency.  The glutamatergic transmission that does overcome 

muscarinic inhibition at gamma frequency bind to NMDA receptors, and, if M1 receptors 

are also present the NMDA current would be enhanced, presumable through a SK channel-

dependent mechanism as has been known to occur at Schaffer collaterals in the 

hippocampus (Buchanen et al.,2016).   Experiments to test this hypothesis would involve 

repeating the frequency experiments in the absence of NMDA antagonists APV, and 

determining if PL input is facilitated when the PL is firing at 40Hz in the presence of 

muscarine or released ACh compared to control.    
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CHAPTER 6 

GENERAL DISCUSSION & SIGNIFICANCE

6.1 FINDINGS OF THE STUDY  

1. Endogenous ACh, when released in a theta-burst pattern to mimic the endogenous firing 

rate of basal forebrain cholinergic neurons, inhibits afferent glutamatergic input to the BL. 

This extent of inhibition was similar regardless of the amount of blue light pulses applied, 

possibly due to rapid actions of AChEsterase at synapses but also possibly due to ACh 

rundown.    Pharmacologically inhibiting muscarinic, but not nicotinic, ACh receptors 

reversed this cholinergic inhibition, demonstrating the role of muscarinic receptors in 

mediating this inhibition of afferent input.   Furthermore, this released ACh did not 

suppress afferent input through GABA or NMDA receptors, as blocking GABA and 

NMDA receptors caused no change in cholinergic inhibition. Notably, the cholinergic 

suppression of glutamatergic input was acute and temporary; Maximum inhibition by 

endogenous ACh occurs between 50and 250 ms after release of ACh, with inhibition 

diminishing after 500 ms.  Exploratory experiments in which acetylcholinesterase inhibitor 

physostigmine was applied resulted in a drastic increase in cholinergic suppression, 

possibly due to an increase of extrasynaptic ACh.  

 

2.  Activation of mAChRs confers different amounts of inhibition of PL and THAL input 

to the BL whereby nearly all of PL glutamatergic transmission is suppressed but about half 
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of THAL input breaks through to the BL.  Furthermore, no difference between males and 

females was seen.  This inhibition by muscarinic receptors is ultimately due to mechanisms 

that retain neurotransmitters in the presynaptic terminal and prevent their release.     

 

3.  M3 and M4 mAChRs were responses for muscarinic suppression at PL while M3 

mAChRs were responsible for muscarinic suppression at THAL input. However, the 

reversal of muscarinic inhibition by 4DAMP alone could not determine receptor 

involvement, so a combination of antagonists were used and their selectivities for the 

different subtypes taken into account.    

 

4. M3 mediated inhibition was through a GABA-independent mechanism at both PL and 

THAL input, but dependent on the release of endocannabinoids at THAL, but not PL, input 

as blocking CB1 receptors eliminated the effect of muscarine.  

  

4.  Though not significant due to a smaller sample size, muscarinic receptors facilitated the 

NMDA current at PL input to the BL. This is likely due to postsynaptic mAChRs on BL 

neurons.  Which receptors would mediate this NMDA current, however, remains unknown.  

 

5. mAChRs display frequency-dependent gating of glutamatergic inhibition.  When the PL 

and THAL are firing slowly, more THAL glutamatergic transmission will occur over PL, 

and the BL will be tuned to attend to THAL input.  However, when the PL and THAL are 

firing at higher gamma frequencies, the THAL input will remain suppressed whereas 
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muscarinic inhibition of PL will be removed; in this context, the BL would be tuned to 

attend to PL input.   

Results from this study provide significant contributions to the field of cholinergic 

modulation of neural regions.  Our studies are the first to provide an understanding of how 

mAChRs regulate glutamatergic transmission from specific regions to the BL.  We offer 

novel findings that mAChRs differentially regulate excitatory transmission from the PL 

and THAL, key regions in emotional processing and emotional memory.  The 

pharmacological data showing M3 receptors inhibit PL and THAL input through eCB-

independent and dependent mechanisms, respectively, and the presence of M4 receptors at 

PL input could be investigated as possible pharmaceutical targets to pair with behavioral 

therapies to treat emotional disorders involving the amygdala.  

Emotional disorders that involve the amygdala impact millions of Americans a 

year, oftentimes drastically reducing the quality of life (Kessler et al., 2005).  

Unfortunately, the current drug treatments for emotional disorders often have unpleasant 

side effects that reduce compliance.  There therefore is a need to identify targets and 

behavioral interventions for more effective treatments for emotional disorders including 

PTSD, anxiety, depression, etc.   Our studies utilizing optogenetics to release endogenous 

ACh demonstrate the ability for endogenous ACh to regulate amygdalar function.  These 

findings could serve as motivation for future behavioral and clinical studies to investigate 

treatment interventions that would increase ACh levels in the brain.  Together with the 

pharmacological data, behaviors could enhance cholinergic tone in the BL, and 

pharmacological treatments could manipulate the receptors to which that ACh could bind 
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to achieve a desired clinical outcome that may treat or alleviate symptoms of emotional 

disorders.  

 

6.2 CHOLINERGIC INHIBITION OF PL AND THAL INPUTS: 

IMPLICATION FOR BEHAVIOR.  

Why projections from the PL would be nearly completely inhibited but the 

projections from the THAL would be partially spared is an intriguing behavioral question.  

In attempting to assign functional relevance to the inhibition of PL input, it is necessary to 

ask what neurons PL input contacts in the BL.  It is known that PL inputs contact both 

inhibitory interneurons and excitatory neurons in the BL, but that the excitation of BL 

seems to predominate (Brinley-Reed et al., 1995; Rosenkranz & Grace, 2001; Lihtik et al., 

2005; Hubner et al., 2014).  Taking this into account, cholinergic inhibition of PL input to 

the BL would then cause an overall inhibitory effect in the BL.  This is intriguing because 

there are interconnected loops between the PL and BL in which PL neurons activate BL 

neurons that feedback to inhibit the PL (McGarry & Carter, 2016). In other words, the BL 

sends projections to the PL that shut down PL activity; excitation by the PL, then, to the 

BL, would be a “go trigger” that induces excitation of BL neurons that feedback to inhibit 

the PL. In other words, if the PL induces excitatory fEPSPs in the BL, it likely that it is 

inhibiting itself via feedback inhibition coming from the BL.  If we take this feedback 

inhibitory model into a situation in which ACh is elevated in the amygdala, we now have 

PL activity largely suppressed.  Thus, ACh prevents the PL from exciting the BL, which 

in turn prevents the PL from being inhibited by the BL due to feedback inhibition.  



 

150 

Therefore, during enhanced cholinergic tone in the BL, the BL is suppressed, and the PL 

is active.  

This theoretical model of cholinergic regulation of PL-BL coupling is intriguing 

given imaging studies in human showing lower activity in the prefrontal cortex when 

viewing aversive images in patients with PTSD (Shin et al., 2004).  To take our findings 

into this translational realm, one possible explanation for what is seen in humans with 

PTSD could be a downregulation or disruption in M3 receptors in the BL that fail to 

appropriately inhibit PL input to the BL, and in turn, results in increased amygdalar activity 

and increased feedback inhibition of the PL.  Indeed, if we view PTSD symptoms as 

manifestations of a disruption in shifts between arousal states, keeping in mind the role of 

ACh in inhibiting slow oscillations in the cortex to regulate arousal states, then a potential 

underlying cause for dysregulated fear behaviors could be a disruption ACh’s ability to 

inhibit PL input to the BL that then dysregulates feedback inhibition to the PL. 

Indeed, behavioral data showing synchrony between PFC and BL predicts freezing 

(“fear”) behavior would support this hypothesis (Karalis et al., 2014).    Our data suggests 

that afferent input to the BL would be temporarily suppressed (for only 500ms-1s based on 

our data from Chapter 3) but not intrinsic recurrent activity, while the THAL input would 

be partially spared.  It may be that for this brief, 1s interval, in which PL input would be 

cholinergically inhibited, incoming information will be processed in the BL intrinsically as 

the animal receives sensory input about its environment and information about unexpected 

stimuli and error prediction from the THAL. Then, after the transient period of suppression, 

this inhibition will be relieved so that the BL can, if appropriate given the environment, 

resume inhibition of the PL and display an appropriate fear behavior.  
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 However, the temporal synchrony of PL and basal forebrain firing should also be 

considered when determining consequences of cholinergic tone in the BL.  Given our data 

showing released ACh inhibits PL input to the BL and literature demonstrating the basal 

forebrain to fire at theta-frequency (Lee et al., 2015), it is interesting to speculate on the 

consequences of PL and basal forebrain firing patterns that would synchronously arrive in 

the BL.  If the PL is also firing at theta frequency and doing so in synch with the basal 

forebrain, then it could be possible that PL input to the BL would be completely suppressed 

for the entirety of the synchronous oscillatory events of both regions.  Every time the PL 

input arrives at the BL, it would theoretically be inhibited by ACh released at the same 

time.  Thus, a behavioral state in which there is synchronous oscillation between the two 

regions would ensure inhibition of the PL.  

 

6.3 CHOLINERGIC INHIBITION OF THE BASOLATERAL 

AMYGDALA: IMPLICATIONS FOR EXERCISE AS A POTENTIAL 

TREATMENT FOR EMOTIONAL DISORDERS 

A hyperexcited amygdala is often a clinical observance in individuals with anxiety 

and PTSD (Ressler 2010).   Unfortunately, many of the medications prescribed for anxiety, 

PTSD, depression and other disorders involving the amygdala tend to have unfavorable 

side effects that can result in noncompliance with treatment.  Fortunately, exercise and 

physical activity offers many health benefits, mental health benefits.  In a recent study 

using data from the World Health Survey collected across 47 countries and adjusted by 

sociodemographics, depression and geographic location, individuals who were more active 

had lower odds for anxiety than those who were more sedentary (Stubbs et al., 2017).    
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Interestingly, both acute and chronic exercise influences the cholinergic system in 

many ways, both in manners that would elevate cholinergic functioning.  Acute bouts of 

exercise, including moderate walking and moderately intense running both increase 

acetylcholine levels in the brain (Uchida et al., 2006; Dudar et al., 1979).  Cholinergic tone 

is also increased following exercise as a result of reduced activity of acetylcholinesterase, 

which would keep ACh in the synapses longer; in essence it would mimic our experiments 

using physostigmine in Chapter 5 (Sunanda et al., 2000).  Chronic exercise training not 

only increased cholinergic neurons in a diseased group that experiences a loss of 

cholinergic neurons, but is also increased ACh levels in the brain when both health controls 

and diseased groups performed an attentionally-demanding task (Hall and Savage 2016).  

In other words, the groups that exercised saw increased ACh, the neurotransmitter 

important for attention and learning, during the task in which they most needed it.  

Given the clinical observations of increased amygdala activity in anxiety, these 

studies showing enhanced cholinergic tone in the brain with exercise, and our study 

showing enhanced ACh inhibits the BL, it is then easily comprehended how exercise may 

be an efficacious intervention for anxiety and emotional disorders.   Another disorder for 

which exercise may alleviate symptoms via amygdalar modulation is in Alzheimer’s 

disease.  One of the symptoms often seen in Alzheimer’s disease is emotional 

dysregulation.  The cholinergic hypothesis of Alzheimer’s disease would suggest that these 

emotional symptoms are due to a decline in cholinergic functioning.  Indeed, exercise has 

been shown to reduce depression and improve mood in a randomized control trial 

(Williams & Tappen 2008) and improve cognition in the elderly.  However, future studies 
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are needed to specifically look at the relationship between exercise and emotional 

regulation in this population.  

Taken together, our data showing the modulatory mechanisms of cholinergic 

inhibition of the BL provides novel insight into how amygdalar function is regulation by 

ACh.  Combining these findings with translational studies to examine pharmacological 

manipulation of these receptors in various behaviors states and disorders (anxiety, PTSD, 

Alzheimer’s disease, etc.) would hold tremendous potential to discover therapies 

improving emotional health.  

 

6.4 FUTURE DIRECTIONS 

1. Experiments in this first aim of this study found and examined muscarinic regulation of 

afferent input to the BL.  Our electric stimulation and optogenetic protocol may have 

eliminated the ability to detect any nicotinic regulation of afferent input to the BL because 

of the quickly desensitizing nature of this receptor subtype.  Thus it would be necessary to 

pursue experiments with potentially less light released ACh and/or less inter stimulus 

interval between ACh and recordings in order to detect nicotinic modulatory actions at 

these inputs.  Such studies would contribute to a thorough understanding of cholinergic 

modulation of the BL by both ionotropic and metabotropic receptor types.  

 

2. There are gender differences in human prevalence of emotional disorders, but we did 

not encounter any differences in muscarinic regulation in our experiments.  However, we 

combined both males and females after no difference in muscarinic inhibition was found.  
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It may be there while muscarinic inhibition may be the same between genders, there could 

be different mechanisms underlying this inhibition.  

 

3.  The findings that physostigmine may confer an enhancement of cholinergic functioning 

is most interesting.  Pursuing studies to look at how inhibiting ACHE, by increasing AChE 

in the synapse, could increase the inhibitory effect of ACh could be used in combination 

with drugs targeting specific muscarinic subtypes to maximize pharmacological effects. 

This would be especially important if there are differences in M4 receptors given the 

existence of PAMs for this subtype that could be administered together with physostigmine 

to potentiate muscarinic receptor functioning at specific synapses.  

 

4.  NMDA experiments were, with the exception of one exploratory experiment, carried 

out at PL input to the BL.  Because the PL conveys glutamatergic transmission important 

for fear acquisition and expression and the THAL conveys glutamatergic transmission that 

conveys information thought to represent unexpectedness and information pertinent to an 

individual’s state, the ability for muscarinic receptors to enhance plasticity at one of the 

inputs over the other would be intriguing to know.  Especially given the difference in 

presynaptic muscarinic inhibition, it would be striking if THAL inputs also potentiated 

with muscarinic activation.  In this situation, ACh would be inhibiting PL input the most, 

while allowed about 50% of THAL to come through. If both PL and THAL were slowly 

firing, it wouldn’t matter if the PL input also had the ability to potentiate NMDA receptors 

because nearly all the glutamatergic transmission would be suppressed anyway.  However, 
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at the THAL input 50% transmission may be enough to facilitation NDMA current and 

engage mechanisms of plasticity.  

 

5.  Another interesting avenue would be to piece apart the difference in frequency gating 

of these receptors.  I would hypothesize that this difference in short term plasticity at 40Hz 

between PL and THAL is due to the different mechanisms: endocannabinoids being 

released and retrogradely traveling to inhibit neurotransmitter release versus possible direct 

inhibition of voltage gated calcium channels by mAChR G protein subunits at PL input.   

 

6.  Lastly, an exciting area to explore is taking this circuitry data into a behavioral realm 

and determining if individuals may have differences in their cholinergic systems.  If so, it 

would be important for future human clinical trials to determine what impacts those 

individual differences may have for behavior.  One area of which this study leads itself 

very well is to exercise a set of animals and determine if there are individual differences in 

increased ACh in response to exercise.  If so, could this difference affect the ability for 

acquire or extinguish fear memories?  If there is a difference, is the mechanistic difference 

at the levels of ACh release in response to exercise or as differences in long-term adaptation 

to exercise, or is the difference at the level of receptors? It may be possible that individuals 

will display different cholinergic receptors at baseline, and exercise may differentially 

regulate receptor expression, etc.  Similarly, there may be baseline differences that are 

innate to individuals and will not be changed by exercise.  These differences are also 

important to explore for drug development and the creation of future translational studies.    
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