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ABSTRACT

In this research, we address the impact of data integrity on machine learning algorithms.

We study how an adversary could corrupt Bayesian network structure learning algorithms

by inserting contaminated data items. We investigate the resilience of two commonly

used Bayesian network structure learning algorithms, namely the PC and LCD algorithms,

against data poisoning attacks that aim to corrupt the learned Bayesian network model.

Data poisoning attacks are one of the most important emerging security threats against

machine learning systems. These attacks aim to corrupt machine learning models by con-

taminating datasets in the training phase. The lack of resilience of Bayesian network struc-

ture learning algorithms against such attacks leads to inaccuracies of the learned network

structure.

In this dissertation, we propose two subclasses of data poisoning attacks against Bayes-

ian networks structure learning algorithms: (1) Model invalidation attacks when an ad-

versary poisons the training dataset such that the Bayesian model will be invalid, and

(2) Targeted change attacks when an adversary poisons the training dataset to achieve a

specific change in the structure. We also define a novel measure of the strengths of links

between variables in discrete Bayesian networks. We use this measure to find vulnera-

ble sub-structure of the Bayesian network model. We use our link strength measure to

find the easiest links to break and the most believable links to add to the Bayesian net-

work model. In addition to one-step attacks, we define long-duration (multi-step) data

poisoning attacks when a malicious attacker attempts to send contaminated cases over a

period of time. We propose to use the distance measure between Bayesian network models

and the value of data conflict to detect data poisoning attacks. We propose a 2-layered
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framework that detects both traditional one-step and sophisticated long-duration data poi-

soning attacks. Layer 1 enforces “reject on negative impacts” detection; i.e., input that

changes the Bayesian network model is labeled potentially malicious. Layer 2 aims to

detect long-duration attacks; i.e., observations in the incoming data that conflict with the

original Bayesian model.

Our empirical results show that Bayesian networks are not robust against data poisoning

attacks. However, our framework can be used to detect and mitigate such threats.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Machine learning algorithms, including Bayesian Network algorithms, are not secure against

adversarial attacks. A machine learning algorithm is a secure learning algorithm if it func-

tions well in adversarial environments [10]. Recently, several researchers addressed the

problem of attacking machine learning algorithms [10, 16, 63, 50]. Data poisoning at-

tacks are considered one of the most important emerging security threats against machine

learning systems [43]. These attacks aim to corrupt the machine learning model by con-

taminating the data in the training phase.

Data poisoning attacks against Support Vector Machines (SVMs) [16, 66, 67, 47, 42,

19, 32] and Neural Networks (NNs) [69] have been studied extensively. However, we

found no research on evaluating the vulnerabilities of Bayesian network learning algo-

rithms against adversarial attacks.

In this dissertation, we investigate data poisoning attacks against Bayesian network

algorithms. We study two classes of attacks against Bayesian network structure learning

algorithms: model invalidation attacks and targeted change attacks. For model invalidation

attacks, an adversary poisons the training dataset such that the learned Bayesian model will

be invalid. For targeted change attacks, an adversary poisons the training dataset to achieve

a particular goal, such as masking or adding a link in a Bayesian network model [6] [8] [9].

For example, assume that DB1 is a learning dataset, and the model B1 is the learning

outcome when feeding DB1 to a Bayesian network learning algorithm. Figure 1.1 shows

1



Table 1.1: Selected tuples from the original dataset DB1

X B D A S L T E
No Yes No Yes No No Yes No
No No No No No No Yes No
Yes No Yes No No No No No
No No No No No Yes No No
No No No No No No Yes No
No Yes No Yes No No Yes Yes
. . .
. . .
. . .
No No Yes No No Yes No No
No No No Yes No No Yes No

the learning outcome when feeding DB1 to the PC learning algorithm.

Figure 1.1: The Bayesian learning outcome when feeding DB1 to the PC algorithm

Table 1.1 shows a sample of the original DB1. Assume that the attacker has access to

DB1. If the attacker wants to corrupt the learned model, he/she may modify the data in

DB1. Table 1.2 shows the dataset DB
′
1 with changes of three data items.

Using the new corrupted dataset DB
′
1, the learned Bayesian model is as shown in Fig-

ure 1.2. In this model (Figure 1.2), the link from node T to node A is missing. Clearly, the

attacker succeeded in corrupting the structure of the model.

2



Table 1.2: DB
′
1, which is equal to DB1 except for three changes in bold font

X B D A S L T E
No Yes No No No No Yes No
No No No No No No Yes No
Yes No Yes No No No No No
No No No No No Yes No No
No No No No No No Yes No
No Yes No Yes No No No Yes
. . .
. . .
. . .
No No Yes No No Yes No No
No No No Yes No No No No

Figure 1.2: The Bayesian learning outcome when feeding DB1 to the PC algorithm

In this dissertation, we also aim to define machine learning security best practices with

the goal of detecting and preventing these types of attacks. Succeeding in building a good

defensive measure against these attacks will advance the research field of adversarial ma-

chine learning and minimize the risk of data poisoning attacks, which is one of the most

important emerging security threats.

The main contributions of this dissertation are as follows: we propose two subclasses of

data poisoning attacks against Bayesian network structure learning algorithms: (1) Model

invalidation attacks when an adversary poisons the training dataset such that the Bayesian

3



network model will be invalid, and (2) Targeted change attacks when an adversary poisons

the training dataset to achieve a specific change in the learned structure. We define a novel

measure of strengths of links between variables in discrete Bayesian networks. We show

how to use this measure to evaluate the robustness of Bayesian network models. That is,

we use our link strength measure to find the easiest links to break and the most believable

links to add to a given Bayesian network model. In addition to traditional one-step data

poisoning attacks, we define long-duration data poisoning attacks when an attacker may

spread the malicious workload over a period of time. We propose a 2-layered framework to

detect data poisoning attacks against Bayesian network structure learning algorithms. Our

2-layered framework detects both one-step and long-duration data poisoning attacks. We

use the distance between Bayesian network models, B1 and B2, denoted as ds(B1, B2), to

detect malicious data input (Equation 2.3) for one-step attacks. For long-duration attacks,

we use the value of data conflict (Equation 2.5) to detect potentially poisoned data. Our

framework relies on offline analysis to validate the potentially malicious datasets.

We implement our approaches and apply them to the Chest Clinic Network. Our empir-

ical results show that Bayesian network structure learning algorithms are vulnerable to data

poisoning attacks. Moreover, even a small number of adversarial data may be sufficient to

corrupt the model. We show the effectiveness of our framework to detect both one-step and

long-duration attacks. Our results indicate that the distance measure ds(B1, B2) (Equa-

tion 2.3) and the conflict measure Conf(c, B1) (Equation 2.5) are sensitive to poisoned

data.

1.2 RUNNING EXAMPLE AND TEST SETUP

In this dissertation, we demonstrate the robustness of Bayesian network structure learning

algorithms against the proposed data poisoning attacks. We also develop detection methods

against such adversarial attacks. The feasibility of such attacks and detection methods is

investigated through empirical results on the Chest Clinic Network [34].
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To set up the test, we first present a canonical Bayesian network, the Chest Clinic

Network (also called Visit to Asia network). The Chest Clinic Network was created by

Lauritzen and Spielgelhalter in 1988 [34]. As shown in Figure 1.3, Visit to Asia is a simple,

fictitious network that could be used at a clinic to diagnose arriving patients. It consists of

8 nodes and 8 edges. The nodes are as follows:

1) (node A) shows whether the patient lately visited Asia;

2) (node S) shows if the patient is a smoker;

3) (node T) shows if the patient has Tuberculosis;

4) (node L) shows if the patient has lung cancer;

5) (node B) shows if the patient has Bronchitis;

6) (node E) shows if the patient has either Tuberculosis or lung cancer;

7) (node X) shows whether the patient X-ray is abnormal; and

8) (node D) shows if the patient has Dyspnea.

The edges indicate the causal relations between the nodes. A simple example for a causal

relation is: Visiting Asia may cause Tuberculosis and so on. Lauritzen and Spielgelhalter’s

complete description of this simple network is as follows:

Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer, or

bronchitis, or none of them, or more than one of them. A recent visit to Asia

increases the chances of tuberculosis, while smoking is known to be a risk

factor for both lung cancer and bronchitis. The results of a single chest X-ray

do not discriminate between lung cancer and tuberculosis, as neither does the

presence or absence of dyspnoea [34].
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We implemented the Chest Clinic Network using HuginTM Research 8.1. Then we

simulated dataset of 10, 000 cases for our experiments by using HuginTM case genera-

tor [38, 49]. We call this dataset DB1. Using the PC algorithm on dataset DB1 with

0.05 significance setting [38], the resulting structure is given in Figure 1.4. Also, Using

the LCD algorithm on dataset DB1 with 0.05 significance setting [38], the resulting struc-

ture is given in Figure 1.5. While the networks that were learned by the PC and LCD

algorithms belong to different Markov equivalence classes than the original Chest Clinic

Network, we will use these networks of Figure 1.4 and Figure 1.5 as the starting points of

our experiments.

A S

T L B

E

X D

Figure 1.3: The original Chest Clinic Network.

A S

T L B

E

X D

Figure 1.4: B1, the result of feeding DB1 to the PC algorithm with significance level at
0.05
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A S

T L B

E

X D

Figure 1.5: The Bayesian network model B3, the result of feeding DB1 to the LCD algo-
rithm with significance level at 0.05

It is important to point out that proposed attacks require the existence of a triple in

the attacked Bayesian network model and their ease depends on the link strength measure.

Insertion or removal of edges in Bayesian networks is restricted by the topology of the

model. For example, for shielding a collider, it is necessary to insert an edge between

its parents. However, attacks must not violate the requirement that a Bayesian network is

define as a directed acyclic graph. For example, we cannot insert a new edge from E to

S in the model B1 because it would create a cycle. We will use link strength measures

as a security analysis tool for checking the feasibility of the proposed attacks. Another

important note is that proposed data poisoning attacks may influence the decision making

process that uses the poisoned model. For example, an attack on the Chest Clinic Network

that aims to mask the edge from smoking, node S, to lung cancer, node L, may impact

decision making as the decision maker will no longer believe that smoking is a cause of

lung cancer. However, analysis of the impact on high-level (abstract) decision making

needs further evaluation. It is not the purpose of this dissertation.

1.3 RESEARCH TASKS

The goals of this dissertation is to address the following major research tasks:
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1. Adversarial Attacks against Bayesian Networks - the goal of this research task is

to determine if adversarial attacks against Bayesian networks exist. The following

subtasks have been completed:

a) Research publications.

b) Define two subclasses of data poisoning attacks against Bayesian network mod-

els.

c) Develop the threat model.

• Completed: 1a, 1b, 1c

• Remaining: None

• Emad Alsuwat, Marco Valtorta, and Csilla Farkas, Bayesian structure learning

attacks, Tech. report, University of South Carolina, SC, USA, 2018.

2. Link Strength Measure in Discrete Bayesian Networks - the goal of this research

task is to define a new link strength measure between random variables in discrete

Bayesian networks. The following subtasks have been completed:

a) Research and study existing link strength measures.

b) Propose a new link strength measure definition.

c) Test our proposed definition of link strength.

d) Implement our link strength measure and establish the results.

e) Compare our link strength measure with existing measures.

• Completed: 2a, 2b, 2c, 2d, 2e

• Remaining: None

• Emad Alsuwat, Marco Valtorta, and Csilla Farkas, How to generate the network

you want with the pc learning algorithm, Proceedings of the 11th Workshop on

Uncertainty Processing (WUPES’18), 2018, pp. 1 – 12.
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3. Adversarial Attacks against Bayesian Networks - the goal of this research task is to

study model invalidation attacks based on the notion of d-separation. The following

subtasks have been completed:

a) Develop model invalidation attacks based on the notion of d-separation - creating

a new converging connection (v-structure).

b) Develop an algorithm for attacks based on creating a new converging connection

(v-structure).

c) Implement the algorithm and establish the results.

d) Develop model invalidation attacks based on the notion of d-separation - breaking

an existing converging connection (v-structure).

e) Develop an algorithm for attacks based on breaking an existing converging con-

nection (v-structure).

f) Implement the algorithm and establish the results.

• Completed: 3a, 3b, 3c, 3d, 3e, 3f

• Remaining: None

• Emad Alsuwat, Hatim Alsuwat, Marco Valtorta, and Csilla Farkas, Cyber at-

tacks against the pc learning algorithm, 2nd International Workshop on A.I. in

Security, 2018, pp. 19 – 35.

• Emad Alsuwat, Marco Valtorta, and Csilla Farkas, Bayesian structure learning

attacks, Tech. report, University of South Carolina, SC, USA, 2018.

4. Adversarial Attacks against Bayesian Networks - the goal of this research task is to

study model invalidation attacks based on marginal independence tests. The follow-

ing subtasks have been completed:

a) Develop model invalidation attacks based on marginal independence tests - re-

moving the weakest edge.
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b) Develop an algorithm for attacks based on removing the weakest edge.

c) Implement the algorithm and establish the results.

d) Develop model invalidation attacks based on marginal independence tests - break-

ing an existing converging connection (v-structure).

e) Develop an algorithm for attacks based on adding the most believable yet incor-

rect edge.

f) Implement the algorithm and establish the results.

• Completed: 4a, 4b, 4c, 4d, 4e, 4f

• Remaining: None

• Emad Alsuwat, Hatim Alsuwat, Marco Valtorta, and Csilla Farkas, Cyber at-

tacks against the pc learning algorithm, 2nd International Workshop on A.I. in

Security, 2018, pp. 19 – 35.

• Emad Alsuwat, Marco Valtorta, and Csilla Farkas, Bayesian structure learning

attacks, Tech. report, University of South Carolina, SC, USA, 2018.

5. Adversarial Attacks against Bayesian Networks - the goal of this research task is to

study targeted change attacks. The following subtasks have been completed:

a) Develop targeted change attacks.

b) Develop an algorithm for attacks based on a specific goal.

c) Implement the algorithm and establish the results.

• Completed: 5a, 5b, 5c

• Remaining: None

• Emad Alsuwat, Hatim Alsuwat, Marco Valtorta, and Csilla Farkas, Cyber at-

tacks against the pc learning algorithm, 2nd International Workshop on A.I. in

Security, 2018, pp. 19 – 35.
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• Emad Alsuwat, Hatim Alsuwat, Marco Valtorta, and Csilla Farkas, Data poi-

soning attacks against Bayesian network structure learning algorithms, Inter-

national Journal of General Systems, 2019, pp. 1-29.

6. Adversarial attacks against the LCD algorithm- the goal of this research task is to use

our link strength measure to evaluate the robustness of the LCD algorithm against

model invalidation attacks. The following subtasks have been completed:

a) Study the LCD algorithm thoroughly.

b) Contact the author of the LCD algorithm to fix the R package for the LCD algo-

rithm.

c) Use our link strength measure to study the robustness of the LCD algorithm.

d) Implement our experiments and establish the results.

• Completed: 6a, 6b, 6c, 6d

• Remaining: None

7. Adversarial Attacks against Bayesian Networks- the goal of this research task is

to define long-duration data poisoning attacks against Bayesian network structure

learning algorithms The following subtasks have been completed:

a) Develop long-duration data poisoning attacks.

b) Develop an algorithm for the defined attacks.

c) Implement the algorithm and establish the results.

• Completed: 7a, 7b, 7c

• Remaining: None

• Alsuwat, E., Alsuwat, H., Rose, J., Valtorta, M., Farkas, C.: Long duration

data poisoning attacks on Bayesian networks. Tech. rep., University of South

Carolina, SC, USA (2019)

11



8. Development of Detection framework for data poisoning attacks against Bayesian

Networks Adversarial Attacks- the aim of this research task is to build a detec-

tive framework for detecting both one-step and long-duration data poisoning attacks

against Bayesian network structure learning algorithms. The following subtasks have

been completed:

a) Research the existing defensive methods against data poisoning attacks.

b) Identify a detective method.

c) Build framework

d) Develop algorithms for first and second layers of detection.

e) Implement algorithms and establish the results.

• Completed: 8a, 8b, 8c, 8d, 8e

• Remaining: None

• Alsuwat, E., Alsuwat, H., Rose, J., Valtorta, M., Farkas, C.: Long duration

data poisoning attacks on Bayesian networks, The 33rd Annual IFIP WG 11.3

Conference on Data and Applications Security and Privacy, 2019, pp. 3-22.

1.4 DISSERTATION OUTLINE

The rest of this dissertation is structured as follows:

In chapter 2, we present an overview of background information.

In chapter 3, we present an overview of the proposed system

In chapter 4, we propose a novel link strengths measure between random variables in dis-

crete Bayesian network.

In chapter 5, we identify model invalidation attacks against the PC algorithm.

In chapter 6, we identify targeted change attacks against the PC learning algorithm.

In chapter 7, we use our proposed link strength measure to investigate the robustness of the
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LCD algorithm against such attacks.

In chapter 8, we present long-duration data poisoning attacks against Bayesian network

structure learning algorithms.

In chapter 9, we develop detection framework for the identified data poisoning attacks

against Bayesian network structure learning algorithms.

Finally, in chapter 10, we conclude and briefly discuss future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 BAYESIAN NETWORKS

Bayesian Networks (BNs) are probabilistic graphical models in which vertices represent

a set of random variables and arcs represent probabilistic dependencies between vertices.

Formally (according to [45]), we say BN = (G, P ) is a Bayesian network, where G =

(V, E) is a direct acyclic graph ( with V = {x1, x2, ..., xn} being the set of random variables

or nodes, and E being the set of edges or arcs) and P is a joint probability distribution of the

random variables, if it satisfies the following Markov condition: every node is conditionally

independent of its non-descendants given its parents.

The following factorization of the joint probability distribution (also known as global

probability distribution) of V = {x1, x2, ..., xn} into a product of local probability distri-

butions is equivalent to the Markov property for both discrete and continuous variables, as

shown in equation 2.1 and 2.2 respectively [45].

P (V ) =
n∏

i=1
P (xi | parent(xi)) (2.1)

f(V ) =
n∏

i=1
f(xi | parent(xi)) (2.2)

Example 2.1. [Traveling Activity]

Figure 2.1 presents a Bayesian network for a traveling activity. This example shows a

discrete Bayesian network with a domain of five Boolean variables, which include and are

represented as follows:
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A B

C

D E

Figure 2.1: A simple BN for modeling a traveling activity

1) S – the event that it is summer time;

2) M – the event that the person has money;

3) T – the event that the person is going to travel;

4) H – the event that the person is happy; and

5) P – the even that the person is going to meet new people.

Instead of enumerating the probability distributions of the five domain variables used

in figure 2.1 (25 possible combinations), We define the joint probability distribution of this

Bayesian network as indicated:

P (S, M, T, H, P ) = P (S)× P (M)× P (T | S, M)× P (H | T )× P (P | T )

2.2 THE NOTION OF D-SEPARATION

In a Bayesian network, there are three basic connections among variables as follows [48]:

1. Serial connections (also called pipelined influences): in a serial connection (shown in

figure 2.2), changes in the certainty of A will affect the certainty B, which in turn will

affect the uncertainty of C. Therefore this shows information may flow from node A

through B to C, unless there is evidence about B (B is known, or B is instantiated).
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Table 2.1: Conditional probability tables for a simple BN for modeling a traveling activity

M S
True 0.9 True 0.25

T
M False True
S False True False True

True 0.01 0.15 0.3 0.9

H
T False True

True 0.7 0.95

P
T False True

True 0.1 0.8

A

B

C

Figure 2.2: An example of a serial Connection

B

A C

Figure 2.3: An example of a diverging connection

2. Diverging connections: in a diverging connection (shown in figure 2.3), changes in

the certainty of A will affect the certainty B, which in turn will affect the uncertainty

of C. Therefore this shows information may flow from node A through B to C, unless

there is evidence about B.

3. Converging connections (a.k.a. v-structure): in a converging connection (shown in

figure 2.4), changes in the certainty of A cannot affect the certainty C through B, and
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B

A C

Figure 2.4: An example of a converging connection

vice versa. Therefore this shows information cannot flow between A and C through

B, unless there is evidence about B.

The previously discussed three types of connections in a casual network are used in the

definition of d-separation [48]:

Definition 2.2. (d-separation)

Two distinct variables A and B in a causal network are d-separated ("d" for

"directed graph") if for all paths between A and B, there is an intermediate

variable V (distinct from A and B) such that either

• the connection is serial or diverging and V is instantiated, or

• the connection is converging, and neither V nor any of V’s descendants

have received evidence.

2.3 STRUCTURE LEARNING IN BAYESIAN NETWORKS

There are three main approaches to learn the structure of Bayesian networks: constraint-

based, score-based, or hybrid algorithms.

(I) Constraint-based algorithms count on conditional independence tests to determine

the DAG of the learned Bayesian network. The Inductive Causation (IC) algo-

rithm [64] was the first constraint-based algorithm, which introduced a framework

for learning the structure of causal models. IC’s framework consists of three steps as

follows:
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(i) Find the skeleton (all pairs of dependent variables)

(ii) Remove indirect dependencies (by defining colliders)

(iii) Complete orienting the remaining undirected edges if any (avoiding cycles).

All constraint-based algorithms, such as the PC algorithm [60, 61] and NPC algo-

rithm [62], follow the theoretical framework introduced by the IC algorithm.

(II) Score-based algorithms, such as AIC [1], BDe [56], K2 [21], and BIC algorithm [27],

assign a score for each Bayesian network structure (this score indicates how well the

Bayesian network structure fits the data) and then perform a (usually greedy) search

algorithm to select the structure with the highest score.

(III) Hybrid algorithms, such as CB [59] and EGS algorithm [22], rely on the idea of using

both constraint-based algorithms and score-based algorithms. The use of constraint-

based algorithms will reduce the search space (i.e., it will reduce the number of

candidate DAGs). Thenceforth, score-based algorithms can be used to select the

optimal DAG.

We will focus on the PC algorithm since it is an integral part of this paper. The PC al-

gorithm (named after the authors, the first letter of their first names, Peter Spirtes and Clark

Glymour) is a constraint-based algorithm for learning the structure of a Bayesian network

from data. The PC algorithm follows the theoretical framework of the IC algorithm to de-

termine the structure of causal models [57, 53]. According to [61], the process performed

by the PC algorithm to learn the structure of Bayesian networks can be summarized as

follows:

(i) For every pair of variables, perform statistical tests for conditional independence.

(ii) Determine the skeleton (undirected graph) of the learned structure by adding a link

between every pair of statistically dependent variables.
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(iii) Identify colliders (v-structures) of the learned structure (A→ B← C).

(iv) Identify derived directions.

(v) Randomly, complete orienting the remaining undirected edges without creating a new

collider or a cycle.

For the implementation of this paper, we used the Hugin PC algorithm (by HuginT M De-

cision Engine [49, 38]), "which is a variant of the original PC algorithm due to [61]" [29].

2.4 PRIOR TO POSTERIOR UPDATING

Bayes’ theorem is a simple mathematical formula that inverts conditional probabilities (i.e.,

given the conditional probability of event B given event A, how to calculate the conditional

probability of event A given event B). The statement of Bayes’ theorem is: For two events

A and B,

P (A | B) = P (B | A)P (A)
P (B)

,

where

(i) P (A | B) is the conditional probability of event A given event B (called the posterior

probability),

(ii) P (B | A) is the conditional probability of event B given event A (called the likeli-

hood),

(iii) P (A) is the marginal probability of event A (called the prior probability), and

(iv) P (B) is the marginal probability of event B (P (B) > 0) [45].

Unlike classical statistics, Bayesian statistics treats parameters as random variables

whereas data is treated as fixed. For Example, let θ be a parameter, and D be a dataset,

then Bayes’ theorem can be expressed mathematically as follows:

P (θ | D) = P (D | θ)P (θ)
P (D)

(2.3)
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In equation 2.3, P (θ | D) is the posterior distribution, which is the ultimate goal for

Bayesian statistics since it measures the uncertainty about the parameters θ after seeing the

dataset D. P (D | θ) is the likelihood, which describes how likely the dataset D is if the

truth is parameter θ. P (θ) is the prior distribution, which is a marginal probability of our

belief before seeing data. P (D) is the marginal probability of D, which is a normalization

constant to ensures that the sum of the posterior distribution sums to 1 over all values of

parameter θ [36]. Thus, since P (D) is constant, we can write Bayes’ theorem in one of the

most useful form in Bayesian update and inference as follows:

P (θ | D) ∝ P (D | θ)× P (θ) (2.4)

Posterior ∝ Likelihood× Prior (2.5)

In Bayesian analysis, the results of the experiment could be used to update the belief

about the parameter θ. In simple cases, we can compute the posterior distribution for the

parameter θ by multiplying the prior distribution and the likelihood function as shown in

equation 2.5. However, it is convenient mathematically for the prior and the likelihood to

be conjugate. A prior distribution is a conjugate prior for the likelihood function if the

posterior distribution belongs to the same distribution as the prior [54]. For example, the

beta distribution is a conjugate prior for the binomial distribution (as a likelihood function)

because the posterior distribution obtained by multiplying the prior and the likelihood be-

longs to the same distribution as the prior (thus, both the prior and the posterior have beta

distributions).

Let’s consider the effect of different priors on the posterior distribution. A completely

uninformative prior is the beta distribution with parameters α = 1 and β = 1. The posterior

distribution in this case is equivalent to the likelihood function since we have a completely

uninformative prior. More informative priors will have a greater influence on the poste-

rior distribution for a given sample size. On the other hand, larger sample sizes will give

the likelihood function more influence on the posterior distribution for a given prior dis-

tribution. In practice, this means that we can obtain a precise estimate of the posterior
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distribution using smaller sample sizes when we use more informative priors. Similarly,

we may need larger sample sizes when we use a weak or uninformative prior.

P (θ | D) ∝ Beta(α, β)×Binomial(n, θ) (2.6)

P (θ | D) ∝ Beta(y + α, n− y + β) (2.7)

Equation 2.7 is the formula that we are going to use in this paper for prior to posterior

update. Starting with a prior distribution Beta(α, β), we add the count of successes,y, and

the count of failures, n − y, from the dataset D (where n is total number of entries in D)

to α and β, respectively. Thus, Beta(y + α, n− y + β) is the posterior distribution. For a

theoretical justification of the use of the beta distribution to model parameter uncertainty,

see [45].

2.5 LINK STRENGTHS IN BAYESIAN NETWORKS

The concept of link strength in Bayesian networks was introduced first by Boerlage in

1992 [18]. In his thesis, Boerlage introduced the concepts of both connection strength

and link strength in a binary Bayesian network model. Connection strength for any two

variables A and B in a Bayesian network model B1 is defined as measuring the strength

between these two variables by testing all possible paths between them in B1, whereas

link strength is defined as measuring the strength these two random variables taking into

account only the direct edge A − B [18]. Methods for link strengths measurements are

not studied sufficiently. Imme Ebert-Uphoff in her 2009 paper [24] presented a tutorial

on how to measure connection strengths and link strengths in discrete Bayesian networks.

Ebert-Uphoff concluded that there is a limited literature on link strengths, and there is more

need to apply and use link strengths measures in structure learning and other purposes [24].

However, to the authors’ best knowledge, there are no more recent publications that address

link strengths measurements in discrete Bayesian networks. In this paper, we define a novel

and not computationally expensive link strengths measure in discrete Bayesian networks.
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2.6 ADVERSARIAL MACHINE LEARNING

Adversarial machine learning is the research field that studies the design of efficient ma-

chine learning algorithms in adversarial environments [28]. Attacks against machine learn-

ing systems have been organized by [11, 10, 28] according to three features: Influence,

Security Violation, and Specificity. First, influence of the attacks on machine learning

models can be either causative or exploratory. Causative attacks aim to corrupt the training

data whereas exploratory attacks aim to corrupt the classifier at test time. Second, security

violation of machine learning models can be a violation of integrity, availability, or privacy.

An integrity violation is an attack that aims to misclassify false positives with the goal of

gaining unauthorized access to the system. An availability violation is an attack that aims

to misclassify both false positives and false negatives and leads to denial of service. A

privacy violation is an attack in which an adversary is able to reap confidential information

from a machine learning model. Third, specificity of the attacks against machine learning

models can be either targeted, or indiscriminate. Targeted attacks aim to corrupt machine

learning models to misclassify a particular class of false positives whereas indiscriminate

attacks have the goal of misclassifying all false positives.

Evasion attacks [63, 13, 26, 33, 31] and Data poisoning attacks [16, 41, 40, 2] are

two of the most common attacks on machine learning systems [28]. Evasion attacks are

exploratory attacks at the testing phase. In an evasion attack, an adversary attempts to

pollute the data for testing the machine learning classifier; thus causing the classifier to

misclassify adversarial examples as legitimate ones. Data poisoning attacks are causative

attacks, in which an adversary attempts to corrupt the machine learning classifier itself by

contaminating the data on training phase.

In this dissertation, we study the resilience of two commonly used Bayesian network al-

gorithms, namely the PC algorithm and the LCD algorithm, against data poisoning attacks.

Since no study has been performed on evaluating the vulnerabilities of these algorithms

against poisoning attacks, we will just explore the line of data poisoning research on dif-
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ferent machine learning fields.

There has been a long line of work on poisoning attacks of support vector machines

(SVMs) [16, 66, 67, 47, 42, 19, 32]. In Neural Networks (NNs), there has been a recent

study of data poisoning attacks in which the authors investigated the process of data gener-

ation poisoning and proposed two poisoning methods, including a direct gradient method

and a generative method [69].

2.7 DEFENSES AND COUNTERMEASURES FOR DATA POISONING ATTACKS

In this section, we will give a brief overview of adversarial machine learning research;

focusing on data poisoning. Recent surveys on adversarial machine learning can be found

in [10, 25, 35].

2.7.1 DATA POISONING ATTACKS

As machine learning algorithms have been widely used in security-critical settings such

as spam filtering and intrusion detection, adversarial machine learning has become an

emerging field of study. Attacks against machine learning systems have been organized

by [11, 10, 28] according to three features: Influence, Security Violation, and Specificity.

Influence of the attacks on machine learning models can be either causative or exploratory.

Causative attacks aim to corrupt the training data whereas exploratory attacks aim to cor-

rupt the classifier at test time. Security violation of machine learning models can be a

violation of integrity, availability, or privacy. Specificity of the attacks can be either tar-

geted or indiscriminate. Targeted attacks aim to corrupt machine learning models to mis-

classify a particular class of false positives whereas indiscriminate attacks have the goal of

misclassifying all false positives.

Evasion attacks and Data poisoning attacks are two of the most common attacks on

machine learning systems [28]. Evasion attacks [26, 33, 31] are exploratory attacks at the

testing phase. In an evasion attack, an adversary attempts to pollute the data for testing the
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machine learning classifier; thus causing the classifier to misclassify adversarial examples

as legitimate ones. Data poisoning attacks [40, 2, 16, 42, 32, 69] are causative attacks, in

which adversaries attempt to corrupt the machine learning classifier itself by contaminating

the data in the training phase.

Data poisoning attacks have been studied extensively during the last decade [43, 6, 16,

42, 32, 15, 14, 17, 12, 69]. However, attacks against Bayesian network algorithm have

not been studied. In our previous work, we were addressed data poisoning attacks against

Bayesian network algorithms [8, 9, 6]. We studied how an adversary could corrupt the

Bayesian network structure learning algorithms by inserting contaminated data into the

training phase. We showed how our novel measure of strengths of links for Bayesian net-

works [9] can be used to do a security analysis of attacks against Bayesian network struc-

ture learning algorithms. However, our approach did not consider long-duration attacks.

2.7.2 DEFENSES AND COUNTERMEASURES

Data sanitization is a best practice for security optimization in the adversarial machine

learning context [20]. It is often impossible to validate every data source. In the event of a

poisoning attack, data sanitization adds a layer of protection for training data by removing

contaminated samples from the targeted training data set prior to training a classifier. Reject

on Negative Impact is one of the widely used method for data sanitization [10, 20, 35].

Reject on Negative Impact defense assesses the impact of new training sample additions,

opting to remover or discard samples that yield significant, negative effects on the observed

learning outcomes or classification accuracy [10, 20]. The base training set is used to

train a classifier, after which, the new training instance is added and a second classifier

is trained [10]. In this approach, classification performance is evaluated by comparing

error rates (accuracy) between the original and the new, retrained classifier resulting from

new sample integration [35]. As such, if new classification errors are substantially higher
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compared to the original or baseline classifier, it is assumed that the newly added samples

are malicious or contaminated and are therefore removed in order to maximize and protect

classification accuracy [10].
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CHAPTER 3

OVERVIEW OF THE PROPOSED SYSTEM

3.1 OVERVIEW OF ADVERSARIAL ATTACKS AGAINST BAYESIAN NETWORK

MODELS

Data integrity is a key requirement for correct machine learning applications, such as

Bayesian network structure learning algorithms. In this research, we study how an ad-

versary could corrupt the PC structure learning algorithm. An attacker may attempt to

corrupt the machine learning model by poisoning the input dataset with the ultimate goal

of influencing the output model. In this research, we propose a threat model to investigate

both attacks that aim to arbitrarily invalidate the learning outcome and attacks that aim

to achieve a specific goal. We use this threat model to study the resilience of Bayesian

network algorithms, namely the PC algorithm, against data poisoning attacks.

Like all security problems, the problem of adversarial attacks against Bayesian net-

works is to design a security prevention and detection model against these attacks. Our

ongoing work is about developing prevention methods against these defined attacks.

3.2 THREAT MODEL FOR DATA POISONING ATTACKS AGAINST THE PC

ALGORITHM

In this section, we present the general framework of how attackers can use exploratory at-

tacks to corrupt the learned Bayesian model by the PC algorithm. The attacker first uses

the PC algorithm to learn the structure of the Bayesian network model. If the learned

structure is what the adversarial opponent wants, then the “poisoned" dataset DB2 is pro-
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duced. Otherwise, the user adds contaminated cases to the learning dataset and relearn the

Bayesian model using the PC algorithm until the desired model is obtained. This process

is illustrated in Figure 3.1.

Figure 3.1: Overview of how data poisoning attacks against Bayesian network structure
learning algorithms work.

In this dissertation, we study the resilience of two of the most commonly used Bayesian

network algorithms, namely the PC algorithm and the LCD algorithm, against data poison-

ing attacks. To the authors’ best knowledge, no study has been performed on evaluating the

vulnerabilities of Bayesian network structure learning algorithms against poisoning attacks.

We present the two subclasses of data poisoning attacks against the Bayesian network al-

gorithms: 1) Model invalidation attacks and 2) Targeted change attacks.
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CHAPTER 4

LINK STRENGTHS FROM DATA IN DISCRETE BAYESIAN

NETWORKS

4.1 INTRODUCTION

We introduce a novel link strengths measure between two random variables in a discrete

Bayesian network model (denoted as L_S). It is essential to not only study the existence

of a link in a causal model but also define a reliable link strengths measure that is useful

in Bayesian reasoning [18, 24]. The new defined link strengths measure assigns a number

to every link in a Bayesian network model. This number represents the lowest confidence

of all possible combinations of assignments of posterior distributions. The defined link

strengths measure will be used to rank edges from the most to the least believable edge,

rank edges from the weakest to the strongest edge, and justify a plausible process in any

causal model.

4.2 DEFINITION OF THE PROPOSED LINK STRENGTHS MEASURE (L_S)

In this section, we present the definition of our new link strength measure (we named it

L_S). Our novel approach is as follows:

Definition 4.1. The link strengths measure (L_S) is defined as

L_S(V ariable1 → V ariable2) = min
y∈Y

(pdf( y + α

α + n + β
); α, β, y, n) (4.1)

where Y = {n11, n12, . . . , n1j, n21, n22, . . . , n2j, . . . , ni1, ni2, . . . , nij}, pdf is the proba-

bility density function, and y+α
α+n+β

is the mean of the posterior distribution.
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4.3 EXPLANATION

Given a discrete dataset DB1 and a Bayesian network structure B1 learned by the PC

algorithm using DB1, for every link V ariable1 → V ariable2 in B1, build a contingency

table [39] for the two discrete variables V ariable1 and V ariable2 with i and j states,

respectively (as shown in table 4.1).

Table 4.1: A contingency table for two discrete variables V ariable1 and V ariable2 with i
and j states, respectively.

Variable2

Variable1 State1 · · · Statej Observed Row Total
State1 [n11], (e11), < ts11 > · · · [n1j], (e1j), < ts1j >

∑j
t=1 n1t

...
... · · · ...

...
Statei [ni1], (ei1), < tsi1 > · · · [nij], (eij), < tsij >

∑j
t=1 nit

Observed Column Total
∑i

t=1 nt1 · · · ∑i
t=1 ntj n (Observed Grand Total)

The above contingency table (Table 4.1) is structured as follows:

1. [nij] is the cell’s observed counts obtained from dataset DB1,

2. (eij) is the cell’s expected counts, calculated as follows:

Observed Row Total× Observed Column Total
Observed Grand Total (denoted as n)

3. < tsij > is the cell’s chi-square test statistic, calculated as follows:

(nij − eij)2

eij

To measure the strength of links of a causal model, we perform the following two steps:

(1) We compute the posterior distributions for each link V ariable1 → V ariable2 as fol-

lows:

P (V ariable2 | V ariable1) = Beta(y + α, n− y + β),
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where V ariable2 | V ariable1 is all possible combinations of discrete states of V ariable2

and V ariable1, and then

(2) We use our link strengths measure as presented in equation 4.1.

Note that y+α
α+n+β

in equation 4.1 is obtained by simply substituting α with y +α and β with

n− y + β in α
α+β

.

4.4 INTERPRETATION

For any two random variables in a causal model (V ariable1 with i states and V ariable2

with j states), there are i × j combinations of assignments of posterior distributions. For

every posterior distribution, we have a prior distribution that is a conjugate prior for the

likelihood function. For instance, a posterior distribution in the form Beta(y + α, n− y +

β) has a Beta-distributed prior, Beta(α, β), which is a conjugate prior for the likelihood

function, Binomial(n, θ). Considering all i× j posterior distributions for the two random

V ariable1 and V ariable2, we can measure the uncertainty of that link by measuring how

peaked the posterior distributions (Beta distributions in our experiments) are; thus, we can

identify the link strength based on the uncertainty level. The more peaked the posterior

distribution is, the more certainty we have about the posterior distribution probability. The

peak of a beta distribution, Beta(α′, β′), is reached at its mean, α′

α′+β′ . Thus, the peak of the

posterior distribution is reached at y−α
n−y+β

. In the defined link strengths measure, we define

the link strength for any link between two random variables in a causal model as the value

of the smallest peak. This point is the point at which the model has seen the fewest number

of cases; thus, it is the most critical point through which this link can be manipulated.

4.5 PRACTICAL USAGES

We use this measure to identify weak edges (i.e., low values of L_S). These edges are the

easiest to remove from a given causal model. We also use the L_S value to identify location
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Table 4.2: Posterior distributions for the Chest Clinic Network.

Link Posterior Distributions (Beta Distributions)
P(T | A) Beta(10,99) Beta(106,9789) Beta(99,10) Beta(9789,106)
P(L | S) Beta(481,4510) Beta(47,4966) Beta(4510,481) Beta(4966,47)
P(B | S) Beta(3019,1972) Beta(1514,3899) Beta(1972,3019) Beta(3899,1514)
P(E | T) Beta(115,1) Beta(523,9365) Beta(1,115) Beta(9365,523)
P(E | L) Beta(527,1) Beta(111,9365) Beta(1,527) Beta(9365,111)
P(D | B) Beta(3638,895) Beta(725,4746) Beta(895,3638) Beta(4746,725)
P(D | E) Beta(520,118) Beta(3843,5523) Beta(118,520) Beta(5523,3843)
P(X | E) Beta(624,14) Beta(454,8912) Beta(14,624) Beta(8912,454)

for new edges to be added. We claim that the highest L_S value, the most believable the

new edge is.

4.6 EXPERIMENTAL RESULTS

In this section, we will evaluate the proposed link strength measure (L_S) on the original

Chest Clinic Network. Given the Chest Clinic network model as shown in Figure 1.3 and

the dataset DB1, we followed the two steps presented in section 4.

Table 4.2 contains the posterior distributions (Beta Distributions) calculated in step 1

as follows:

Figure 4.1 shows the final link strength evaluation (L_S) which is calculated in step 2

as follows:

We observe that the edge T → A is the weakest edge in Chest Clinic network with the

score 14.75256. Also, we can see that the edge E → D is the second weakest edge with the

score 25.73502 and so on. The strongest edge in Chest Clinic network is the edge L → E

with the score 129.2983.

4.7 COMPARISON WITH PREVIOUS LINK STRENGTH MEASURES

In this section, we will compare our link strength measure (L_S) with Mutual Information

link strengths measure. Shannon in [58] introduced the concept of Mutual Information
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Figure 4.1: Results of L_S on the Chest Clinic Network.

(MI) in the context of communication theory and Pearl in [52] proposed its expanded use

to measure connection strength in Bayesian Networks; it is defined as:

MI(X, Y ) =
∑
x,y

P (x, y)log2(
P (x, y)

P (x)P (y)
) (4.2)

MI measures the how edge in a causal model are related to each others by (1) detecting any

sort of relationship and (2) employing straightforward interpretation of the amount of data

shared between the datasets (3) while remaining insensitive to dataset size, as characteristic

of p-value testing [55]. This simplified MI calculation reflects and measures connection

strength between X and Y based on the degree or strength of influence the state of X

affects the state of Y through the comparison of U(Y ) and U(Y |X). Put another way,

the MI formula seeks to determine the amount of uncertainty in Y that can be reduced

by knowledge of state of X if nothing else is known [24]. Therefore, the MI between

two datasets (X and Y ) is typically estimated from statistical analysis of the (x, y) pairs

between the two datasets [55].

The following table (Table 4.3) presents the results of using our link strength (L_S) and

MI link strength to compute strengths of links of the Chest Clink Network. Note that, we
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rank the edge in the column rank from the weakest to the strongest edge. For more technical

details about how to use MI link strength measure, we refer the reader to Appendix C.

Table 4.3: Using L_S and MI to compute link strength of the original Chest Clinic Network

Link
Our Link strength Measure

L_S
Mutual Information

MI
Score Rank Score Rank

A→ T 14.75256 1 0.0006 1
S → L 50.30727 4 0.0303485 4
S → B 56.88552 5 0.06665 5
T → E 103.7509 7 0.0296 3
L→ E 129.2983 8 0.2675 7
E → D 25.73502 2 0.02575 2
B → D 49.30178 3 0.3508 8
E → X 70.69412 6 0.2236 6

Both link strengths measures agree on the fact that the edge A → T is the weakest

link in the Chest Clinic Network. However, our link strength measure functions better

since it is able to identify the deterministic edges. That is, deterministic edges T → E

and L → E are hard edges to break. In addition, MI measure computes the link strength

measure using the conditional probability tables whereas our link strength measure uses a

given dataset to compute the strengths of links, which makes our link strength efficient for

security application as it is sensitive to changes in data.
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CHAPTER 5

MODEL INVALIDATION ATTACKS

5.1 OVERVIEW OF MODEL INVALIDATION ATTACKS

A model invalidation attack against the PC algorithm is a malicious active attack in which

adversarial opponents try to corrupt the original model in any way. We demonstrate ad-

versarial attacks to decrease the validation status of the model using the least number of

changes.

In such an event, adversaries create some formal disturbance in the model. For example,

they will try to add imprecise or incorrect data to change the model validation status so that

the model is rendered invalid. We distinguish between two ways to invalidate Bayesian

network models:

1) Attacks based on the notion of d-separation and

2) Attacks based on marginal independence tests.

In what follows, we present an item list and short description for all the algorithms that

are going to be presented in this chapter of the dissertation:

Algorithm Description
Algorithm 1 Creating a New Converging Connection
Algorithm 2 Breaking an Existing Converging Connection
Algorithm 3 Edge Deleting
Algorithm 4 Removing a Weak Edge
Algorithm 5 Edge adding
Algorithm 6 Adding the Most Believable yet Incorrect Edge
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5.2 MODEL INVALIDATION ATTACKS BASED ON THE NOTION OF D-SEPARATION

Based on the definition of d-separation, adversaries may attempt to introduce a new link in

any triple (A−B −C) in the BN model. This newly inserted link (A−C) will introduce

a v-structure in the Bayesian model, thus change the independence relations.

Theorem 5.1. Let B1 and B2 be two Markov equivalent BNs, and let < A, B, C > be

a path in B1. If a new link is added to B1 creating B′
1, then B′

1 and B2 are not Markov

equivalent.

B

A C

(a) Adding the dashed link to the serial connection.

B

A C

(b) Adding one of the dashed links to the diverging connection.

B

A C

(c) Adding one of the dashed links and shielding collider B.

Figure 5.1: Three cases for the proof of Theorem 5.1.

Proof Sketch. Adding a new edge to the path < A, B, C > in Bayesian network model B1

affects the Markov equivalence class of B1 (two Bayesian networks are Markov equivalent

if and only if they have the same skeleton and the same v-structures (unshielded collid-

ers) [3]). Any sound learning algorithm will try to avoid the occurrence of a cycle; thus, in
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the triple (A−B −C), either an existing collider is shielded, and a new link is introduced

(as shown in Figure 5.1c) or a new link is added (as shown in Figures 5.1a and 5.1b). In

either case, the Markov equivalence class of B1 will be violated.

Within model invalidation attacks based on the notion of d-separation, we can further

identify two subclasses:

5.2.1 CREATING A NEW CONVERGING CONNECTION (V-STRUCTURE)

Adversarial attackers can corrupt Bayesian network models by introducing a new converg-

ing connection. Adversaries will attempt to poison the learning dataset with the goal of

introducing a new v-structure by adding a new link to any serial or diverging connection in

Bayesian network models. Adding such an edge will not only introduce a new collider but

also change the equivalence class of the learned Bayesian network model.

Theorem 5.2. Let B1 be a Bayesian network model, and let < A, B, C > be a path in B1

with either a serial connection or diverging connection, then introducing a new edge on

the path < A, B, C > must create a new converging connection in B1.

Proof Sketch. Trivially follows. [See figures 5.1a and 5.1b].

We have developed Algorithm 1 to test the resilience of the PC learning algorithm

against this type of attacks. It checks the feasibility of poisoning a given dataset DB1 with

the ultimate goal of introducing a new converging connection (v-structure) in the learned

Bayesian network model from DB1.

Let n be the number of cases in DB1, and let β be data poisoning rate at which we

are allowed to add new “contaminated" cases to DB1 (we default set β ≤ 0.05); Algo-

rithm 1 presents algorithmic details of data poisoning attacks that aim to introduce a new

v-structure in a Bayesian model as follows:

Algorithm 1 starts by learning the structure of the Bayesian network model B1 from

dataset DB1. The poisoned dataset DB2 is initialized to DB1. Then the algorithm tests
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Algorithm 1: Creating a New Converging Connection Procedure
Input : Dataset DB1 ◃ Original dataset with n cases
Output: Contaminated dataset DB2 or a failure message

1 Procedure New Converging Connection(DB1)
2 Use the PC algorithm for learning the structure of Bayesian network model B1

from dataset DB1 (using the default significance level at 0.05 [38]);
3 Let DB2 = DB1;
4 for Every serial or diverging connection triple (A−B − C) in B1 where A

and C are d-connected by B do
5 Construct the i× j the contingency table for variables A and C;
6 for K = 1, 2, ..., β × n ◃ where β × n is the maximum number of

contaminated tuples to be added to DB1 do
7 In the contingency table for the link A− C, determine the cell that has

the highest test statistics value (cellij);
8 DB2 for adding the link A− C = DB2 + d ◃ where d is an instance in

which A = state i, C = state j, and all other variables in d are No;
9 Run the PC algorithm on DB2 to learn the structure of the Bayesian

network;
10 if There is a new edge between vertex A and C then
11 Return BD2 ;
12 Let DB2 = DB1;
13 Continue to test the next triple;
14 end
15 if K = β × n then
16 Return msg "Failed to introduce the link A− C within a feasible

number of cases" ;
17 Let DB2 = DB1;
18 Continue to test the next triple;
19 end
20 end
21 end
22 end
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every serial and diverging triple (A−B−C) in B1 for the feasibility of adding a new link

to that triple (this is accomplished by adding case-by-case to the attack dataset DB2, and

then applying the PC algorithm every time a new case is added to DB2).

Algorithm 1 tests the feasibility of adding new links to every serial and diverging con-

nections in B1. For each serial and diverging triple in B1, the algorithm terminates if it

succeeds in adding a new link or just prints a failure message if the number of added cases

is more than β × n. Our empirical results are given in section 5.4.

5.2.2 BREAKING AN EXISTING CONVERGING CONNECTION (V-STRUCTURE)

Adversaries can exploit Bayesian network models by breaking an existing converging con-

nection. The PC algorithm starts by identifying unshielded colliders (v-structure with un-

married parents) when learning the Bayesian network structure from data [61]; therefore,

attacking v-structures will make a significant corruption to the learned BN structures since

the learned model will have a different equivalence class than the expected one. Such an

adversarial attack can be done by marrying the parents of an unshielded collider. Note that,

if vertex B is an unshielded collider on the path < A, B, C >, then A and C are inde-

pendent unconditionally, but are dependent conditionally on B in most cases (faithfulness

assumption [61]).

Theorem 5.3. Let B1 be a Bayesian network model, and let B be an unshielded collider

on the path < A, B, C >, then introducing a new edge on the path < A, B, C > must

break the existing converging unshielded connection at vertex B.

Proof Sketch. Trivially follows. [See figure 5.1c].

We have developed Algorithm 2 to check the robustness of the PC algorithm against

the feasibility of shielding an existing converging connection. Given a dataset DB1, Algo-

rithm 2 tests the feasibility of shielding an existing converging connection.
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Let n be the number of cases in DB1, and let β be data poisoning rate at which we

are allowed to add new “poisoned" cases to DB1 (we default set β ≤ 0.05); Algorithm 2

presents the following algorithmic details of data poisoning attacks that aim to check the

feasibility of breaking an existing unshielded collider:

Algorithm 2: Breaking an Existing Converging Connection Procedure
Input : Dataset DB1 ◃ Original dataset with n cases
Output: Contaminated dataset DB2 or a failure message

1 Procedure Breaking a Converging Connection(DB1)
2 Use the PC algorithm for learning the structure of Bayesian network model B1

from dataset DB1 (using the default significance level at 0.05 [38]);
3 Let DB2 = DB1;
4 for Every converging connection triple (A−B − C) in B1 where A and C are

d-separated by B do
5 Construct the i× j the contingency table for variables A and C;
6 for K = 1, 2, ..., β × n ◃ where β × n is the maximum number of

contaminated tuples to be added to DB1 do
7 In the contingency table for the link A− C, determine the cell that has

the highest test statistics value (cellij);
8 DB2 for adding the link A− C = DB2 + d ◃ where d is an instance in

which A = state i, C = state j, and all other variables in d are No;
9 Run the PC algorithm on DB2 to learn the structure of the Bayesian

network;
10 if There is a new edge between vertex A and C then
11 Return BD2 ;
12 Let DB2 = DB1;
13 Continue to test the next triple;
14 end
15 if K = β × n then
16 Return msg "Failed to introduce the link A− C within a feasible

number of cases" ;
17 Let DB2 = DB1;
18 Continue to test the next triple;
19 end
20 end
21 end
22 end

Algorithm 2 starts by learning the structure of the Bayesian network model B1 from

dataset DB1. The poisoned dataset DB2 is initialized to DB1. Then the algorithm tests
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every converging triple (A−B−C) in B1 for the feasibility of adding a new link to shield

that triple (the poisoning attack is conducted by adding case by case to the attack dataset

DB2, and applying the PC algorithm every time a new case is added to DB2).

Algorithm 2 tests the feasibility of adding a new link to every converging connection in

B1. For each converging triple in B1, the algorithm terminates if it succeeds in shielding

a collider or just prints a failure message when the number of added cases is more than

β × n. Our empirical results are presented in section 5.4.

5.3 MODEL INVALIDATION ATTACKS BASED ON MARGINAL INDEPENDENCE TESTS

When learning the structure of a Bayesian network model from data, the PC algorithm starts

by analyzing the conditional independence statements between variables. It performs χ2

statistical test on the given dataset to establish the set of statistical independence statements

for the learned causal model [48]. Using this information of how the PC algorithm works,

adversarial attackers may contaminate the input dataset with the goal of removing weak

edges or adding the most believable yet incorrect links. Based on the direct impact of

marginal independence tests on the PC algorithm, model invalidation attacks can be divided

into two main types:

1) removing weak edges, and

2) adding the most believable yet incorrect edge.

5.3.1 FEASIBILITY OF DELETING AN EDGE FROM A CAUSAL MODEL

Before we define attacks based on removing weak edges, we need to define a new algorithm

(Algorithm 3) for checking the feasibility for deleting an edge from a given causal model.

Given a dataset, DB1, a Bayesian network model, B1, where B1 is the result of the

learned causal model when given DB1 as an input to the PC learning algorithm, and a

contingency table for two random variables in B1 (variable1 with i states and variable2
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with j states), we introduce Algorithm 3 which checks the feasibility of deleting an existing

edge in a causal model.

Let n be the number of cases in DB1, and let β be data poisoning rate at which we are

allowed to edit or “contaminate" DB1 (we default set β ≤ 0.05); algorithm 3 presents al-

gorithmic details of data poisoning attacks that aim to delete an existing edge in a Bayesian

network model as follows:

Algorithm 3: Edge Deleting Procedure
Input : Dataset DB1 ◃ Original dataset with n cases
Output: Contaminated dataset DB2 or a failure message

1 Procedure Edge Deleting(DB1, B1, A− C)
2 Construct the i× j the contingency table for variable A and variable C from

DB1;
3 Let DB2 = DB1;
4 for K = 1, 2, ..., β × n ◃ where β × n is the maximum number of

contaminated tuples to be added to DB1 do
5 In the contingency table for the link A− C, determine the cell that has the

highest test statistics value (cellij) and the cell that has the smallest test
statistics value(celli′j′);

6 DB2 for deleting the link A− C = DB′
2 ◃ where DB′

2 is the old DB2
expect an instance is transferred from ij state to i′j′ state;

7 Run the PC algorithm on DB2 to learn the structure of the Bayesian
network model;

8 if There is no edge between vertex A and vertex C then
9 Return BD2;

10 end
11 if K = β × n then
12 Return msg "Failed to introduce the link A− C within a feasible

number of cases" ;
13 end
14 Update the i× j the contingency table for variable A and variable C

from DB2;
15 end
16 end

Algorithm 3 starts by constructing the contingency table for variables A and C. The

contingency table in algorithm 3 is needed to accelerate the process of removing an edge

from a Bayesian model. That is, moving cases from the cell with the highest test statistics

41



value to the cell with the lowest test statistics value will significantly accelerate the edge

deletion process. The poisoning attack in this algorithm is performed by modifying case

by case in the poisoned dataset DB2, and then applying the PC algorithm every time a case

is modified in DB2.

Algorithm 3 returns a dataset DB2 if deleting the edge A− C is feasible; otherwise, a

failure message will be printed since the number of added cases will be more than β × n.

5.3.2 REMOVING A WEAK EDGE

We show that it is feasible to use link strengths measure to identify and rank the edges on a

causal model from the weakest to the strongest. Thus, adversarial opponents may attempt

to poison the learning dataset with the goal of removing weak edges.

We have developed Algorithm 4 to check the resilience of the PC algorithm against

attacks that target weak edges.

Let DB1 be an input dataset, and let n be the number of cases in DB1, Algorithm 4

provides algorithmic details of data poisoning attacks that aim to delete the weakest edge

in a Bayesian model as follows:

Algorithm 4: Removing a Weak Edge Procedure
Input : Dataset DB1 ◃ Original dataset with n cases
Output: Contaminated dataset DB2 or a failure message

1 Procedure Removing a Weak Edge(DB1)
2 Use the PC algorithm for learning the structure of Bayesian network model B1

from dataset DB1 (using the default significance level at 0.05 [38]);
3 Use L_S to rank the edges of B1 from the weakest to the strongest;
4 Let A− C be the weakest edge to be deleted from B1;
5 Test the feasibility of deleting the edge A− C from B1 using Algorithm 3;
6 if Algorithm 3 returns DB2 then
7 Return DB2;
8 else
9 Return msg “Algorithm 3 failed to delete the link A− C within a feasible

number of cases";
10 end
11 end
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Algorithm 4 starts by learning the structure of the Bayesian network model B1 from

dataset DB1. It then calculates the strength of each link in the model B1 and rank them

from the weakest to the strongest edge. After that, Algorithm 4 checks the robustness

of the PC algorithm against the feasibility of deleting the weakest edge in B1 by calling

Algorithm 3.

Algorithm 4 returns a contaminated dataset DB2 if deleting the weakest edge is feasi-

ble; otherwise, a failure message is printed since the number of added cases is more than

β × n. Our empirical results are presented in section 5.5.

5.3.3 FEASIBILITY OF ADDING AN EDGE TO A CAUSAL MODEL

Before we define attacks based on adding the most believable yet incorrect edge, we need

to define a new algorithm (Algorithm 5) for checking the feasibility for deleting an edge

from a given causal model.

We have presented Algorithms 1 and 2 in sections 5.2.1 and 5.2.2, receptively. Algo-

rithms 1 and 2 check the feasibility of introducing a new link in a given Bayesian network

triple (A−B−C). In this section, given a dataset DB1, a model B1, which is the result of

feeding DB1 to the PC algorithm, we introduce Algorithm 5 which checks the feasibility

of adding a link between two nodes that do not lie in a triple in a Bayesian network model.

Let n be the number of cases in DB1, and let β be data poisoning rate at which we

are allowed to “poison" DB1 (we default set β ≤ 0.05); algorithm 5 presents algorithmic

details of data poisoning attacks that aim to introduce a link between two vertices that do

not lie in a triple in a Bayesian network model as follows:

Algorithm 5 starts by constructing the contingency table for variables A and C. The

use of the contingency table in this algorithm will accelerate the process of adding a new

edge between two nodes that do not lie in a triple in a Bayesian network model. That is,

adding more observed cases to the cell with the highest test statistics value will dramatically

accelerate the process of adding a link to a causal model. The data poisoning attack in this
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Algorithm 5: Edge adding Procedure
Input : 1) Dataset DB1 ◃ Original dataset with n cases.

2) A Bayesian network model B1 ◃ B1 is the of the resulted model when
given DB1 as an input to the PC algorithm

3) The link A− C ◃ The link we intend to add to B1
Output: Contaminated dataset DB2 or a failure message

1 Procedure Edge Adding(DB1, B1, A− C)
2 Construct the i× j the contingency table for variable A and variable C;
3 Let DB2 = DB1;
4 for < K = 1, 2, ..., β × n > ◃ β × n is the maximum number of poisoned

tuples to be added to DB1 do
5 In the contingency table for the link A− C, determine the cell that has the

highest test statistics value (cellij);
6 DB2 for the link AC = DB2 + d ◃ where d is an instance in which

A = state i, C = state j, and all other variables in d are No;
7 Run the PC algorithm on DB2 to learn the structure of the Bayesian

network model;
8 if There is a new edge between vertex A and vertex C then
9 Return BD2.

10 end
11 if K = β × n then
12 Return msg "Failed to introduce the link A− C within a feasible

number of cases"
13 end
14 end
15 end

algorithm is performed by adding case by case to the poisoned dataset DB2, and then

applying the PC algorithm every time a new case is added to DB2.

Algorithm 5 terminates by either returning the poisoned dataset DB2 if deleting the

edge A − C is feasible or by returning a failure message since the number of added cases

will be more than β × n.

5.3.4 ADDING THE MOST BELIEVABLE YET INCORRECT EDGE

We show that it is feasible to use link strengths measure to identify and rank the edges on a

causal model from the most to the least believable edge. Thus, adversaries can cleverly use

data poisoning attacks craft the input dataset to the Bayesian network model so that adding
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those incorrect yet plausible edges is viable.

We have developed Algorithm 6 to check the robustness of the PC algorithm against

this attack.

Let DB1 be an input dataset, and let n be the number of cases in DB1, Algorithm 6

provides algorithmic details of data poisoning attacks that aim to add the most believable

link to a Bayesian model as follows:

Algorithm 6: Adding the Most Believable yet Incorrect Edge Procedure
Input : Dataset DB1 ◃ Original dataset with n cases
Output: Contaminated dataset DB2 or a failure message

1 Procedure Adding the Most Believable yet Incorrect
Edge(DB1)

2 Use the PC algorithm for learning the structure of Bayesian network model B1
from dataset DB1 (using the default significance level at 0.05 [38]);

3 Choose a set of edge Q that could be added to B1;
4 Use L_S to rank the set of edges Q from the most to the least believable edge;
5 Let A− C be the most believable edge to be added to B1;
6 if A− C lies in a a serial or diverging triple A−B − C then
7 Use Algorithm 1 to check the feasibility of adding the link A− C;
8 if Algorithm 1 returns DB2 then
9 Return DB2;

10 else
11 Return msg “Algorithm 1 failed to introduce the link A− C" ;
12 end
13 else if A− C lies in a converging triple A→ B ← C then
14 Use Algorithm 2 to check the feasibility of adding the link A− C;
15 if Algorithm 2 returns DB2 then
16 Return DB2;
17 else
18 Return msg “Algorithm 2 failed to introduce the link A− C"
19 end
20 else
21 Use Algorithm 5 to check the feasibility of adding the link A− C;
22 if Algorithm 5 returns DB2 then
23 Return DB2
24 else
25 Return msg “Algorithm 5 failed to introduce the link A− C"
26 end
27 end
28 end
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Algorithm 6 starts by learning the structure of the Bayesian network model B1 from

dataset DB1. It then asks the user to choose the set of edges that could be added to B1.

Algorithm 6 then uses link strengths measures to rank the set of edges Q from the most to

the least believable edge. Let the most believable edge to be added to B1 be A− C. If the

link A−C introduces a new v-structure in a triple A−B −C, then Algorithm 1 is called.

On the hand, if the link A−C shield a collider B in a triple A−B −C, then Algorithm 2

is called. Otherwise, Algorithm 5 is called to add a link between two vertices that do not

lie in a triple in a Bayesian network model.

In all different scenarios, Algorithm 6 returns a contaminated dataset DB2 if adding the

most believable edge is feasible; otherwise, a failure message is printed since the number

of added cases will be more than β × n. Our empirical results are presented in section 5.5.

5.4 EMPIRICAL RESULTS FOR MODEL INVALIDATION ATTACKS BASED ON THE

NOTION OF D-SEPARATION

In this experiment, we evaluated the effectiveness of model invalidation attacks based on

the notion of d-separation (section 5.2) to poison the Chest Clinic Network dataset DB1.

Our aim is to introduce a new v-structure. That is,

1) add the links D − S, B − L and S − E to the serial connections D → B → S,

B → S → L and S → L→ E, respectively, and

2) add the link A− E to the diverging connection A← T → E.

We also study the robustness of the PC learning algorithm against the attacks aiming to

break an existing v-structure, i.e., to shield the collider T → E ← L.

We present our results in Figures 5.2, 5.3, 5.4, 5.5, and 5.6. We succeeded to invalidate

(change the Markov equivalence class) the model learned by the PC algorithm. We had to

introduce 74 corrupt cases (data items) to introduce the link D − S. To introduce links

B − L, S − E, and A − E required 13, 40, and 3 corrupt cases, respectively. To shield
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Figure 5.2: Introducing a new converging connection in the triple D −B − S.

the collider E, we only needed 8 poisoning data items. In addition, when we increased the

number of corrupted data items, the PC learning algorithm was acting unstably. Our results

after adding 17 poising cases to introduce the malicious link T − L is in Figure 5.7.

We also observed that the choice of corrupt data items affects the efficiency of the

attack. That is, when introducing a malicious link between two random variables, a cell

with a higher test statistics value < tsij > in the contingency table of these two random

variables requires fewer corrupt data items than a cell with a lower test statistics value. For

example, when poisoning dataset DB1 to add the link D − S, we needed more corrupt

data items as the value of test statistics got lower. The results are as follows: the cell with

D = yes and S = yes required 74 cases, the cell with D = yes and S = no required 272

cases, the cell with D = no and S = yes required 1120 cases, and the cell with D = no

and S = no required 1701 cases. Overall, we showed that the PC algorithm is vulnerable

to model invalidation attacks based on the notion of d-separation.

5.5 EMPIRICAL RESULTS FOR MODEL INVALIDATION ATTACKS BASED ON

MARGINAL INDEPENDENCE TESTS

Link strength measure (L_S) is needed for the second experiment. Given B1 model as

shown in Figure 1.4 and the dataset DB1, we followed the two steps presented in section 4.

Table 5.1 contains the posterior distributions calculated in step 1. Figure 5.8 shows the
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Figure 5.3: Introducing a new converging connection in the triple B − S − L.
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Figure 5.4: Introducing a new converging connection in the triple S − L− E.
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Figure 5.5: Introducing a new converging connection in the triple A− T − E.
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Figure 5.6: Breaking an existing converging connection in the triple T − E − L.
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Figure 5.7: The result of using 17 cases to break the v-structure T → E ← L.

Table 5.1: Posterior distributions for the Chest Clinic Network.

Link Posterior Distributions (Beta Distributions)
P(T | A) Beta(10,99) Beta(106,9789) Beta(99,10) Beta(9789,106)
P(L | S) Beta(481,4510) Beta(47,4966) Beta(4510,481) Beta(4966,47)
P(B | S) Beta(3019,1972) Beta(1514,3899) Beta(1972,3019) Beta(3899,1514)
P(E | T) Beta(115,1) Beta(523,9365) Beta(1,115) Beta(9365,523)
P(E | L) Beta(527,1) Beta(111,9365) Beta(1,527) Beta(9365,111)
P(D | B) Beta(3638,895) Beta(725,4746) Beta(895,3638) Beta(4746,725)

final link strength evaluation (L_S), calculated in step 2.

We will use these strength measures in this section and in section 6.2 to illustrate the

ease of removing existing links and adding links to a causal model.

In this experiment, we evaluated the effectiveness of model invalidation attacks based

on marginal independence tests (section 5.3) to poison the Chest Clinic Network dataset
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129.2983103.7509

49.30178

Figure 5.8: Results of L_S on the learned model by the PC algorithm B1.

DB1. In this experiment, we check the resilience of the PC algorithm against the feasibility

of deleting the weakest edge in the Bayesian model B1. To determine the weakest edge in

B1, we do the following:

1) use the defined link strength measure L_S to rank the edges of B1 from the weakest to

the strongest edge, and

2) check the feasibility of poisoning dataset DB1 to remove the weakest edge.

We also study the robustness of the PC algorithm against attacks aiming to add the most

believable yet incorrect edge to B1. To determine the most believable edge to be added to

B1, we do the following:

1) determine the set of edges Q that could be added to the model B1 (in this experiment,

we let Q = {A− S, T − S, D − S, L−B, L− T}),

2) use the defined link strength measure to rank the set of edges Q from the most to the

least believable edge, and

3) check the feasibility of poisoning dataset DB1 to add the most believable edge.

We present our results of deleting the weakest edge from B1 in Table 5.2 and Figure 5.9.

We succeeded to invalidate the model learned by the PC algorithm. We had to modify only

3 cases to break the weakest link A− T . Our results of adding the most believable edge to
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Table 5.2: The result of using L_S to rank B1 edges from the weakest to the strongest.

Link Link Strength L_S Rank
A→ T 14.75256 1
S → L 50.30727 3
S → B 56.88552 4
T → E 103.7509 5
L→ E 129.2983 6
B → D 49.30178 2
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Figure 5.9: The result of removing the weakest link in B1, A→ T
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Figure 5.10: The result of adding the most believable link to B1, B → L.

B1 are presented in Tables 5.3, 5.4, and Figure 5.10. We succeeded to fool the PC algorithm

and invalidate the learned model. We had to introduce only 13 corrupt data items to add

the most believable link B − L.

We observed that when removing an edge from a causal model, the choice of corrupt

data items has an impact on the efficiency of the attack. That is, transferring data items from
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Table 5.3: Posterior distributions for the set of edges Q.

Link Posterior Distributions (Beta Distributions)
P(S | A) Beta(57, 52) Beta(4934, 4961) Beta(57, 52) Beta(4934, 4961)
P(T | S) Beta(49, 4942) Beta(67, 4946) Beta(49, 4942) Beta(67, 4946)
P(D | S) Beta(2728, 2263) Beta(1635, 3378) Beta(2728, 2263) Beta(1635, 3378)
P(L | B) Beta(312, 4221) Beta(216, 5255) Beta(312, 4221) Beta(216, 5255)
P(L | T) Beta(5, 111) Beta(523, 9365) Beta(5, 111) Beta(523, 9365)

Table 5.4: L_S results.

Link {Link strength L_S} Rank
A→ S 8.313748 5
S → T 28.66903 3
S → D 54.90557 2
B → L 91.51039 1
T → L 21.92398 4

the cell with the highest test statistics value to the cell with the lowest test statistics value

in a contingency table of two random variables will accelerate the process of removing

the link between them. Overall, we showed that the PC algorithm is vulnerable to model

invalidation attacks based on marginal independence tests.
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CHAPTER 6

TARGETED CHANGE ATTACKS

6.1 OVERVIEW OF TARGETED CHANGE ATTACKS

A targeted change attack against the PC algorithm is an active malicious attack in which

malicious agents try to move from the state of "what I have" to the state of "what I want"

by poisoning the learning dataset. Adversaries attempt to plan attacks against Bayesian

network models using the least number of changes. That is, they will attempt to move

from the existing model to the desired model using the least and inconspicuous number

of changes. As such, adversaries assess the difficulty of entering or modifying data that

promises to intentionally change the current model into the desired model. By doing so,

the adversary is able to make the changed model behave exactly as they want.

A targeted change attack is more harmful and sophisticated than model invalidation

attack. For this, adversaries attempt to poison the input dataset aiming for a specific re-

sult of the BN model; therefore, it misclassifies a certain class of false positives and false

negatives.

Let DB1 be an input dataset to the PC learning algorithm, and let n be the number of

cases in DB1, Algorithm 7 provides algorithmic details of targeted data poisoning attacks

that aim to implement a complete attacking scenario against a given Bayesian model as

follows:

Algorithm 7 starts by learning the structure of the Bayesian network model B1 from

dataset DB1. It then uses the defined link strengths measure to rank the edges of B1 from

the weakest to the strongest edge. A malicious user can enter the set of edges Q that the
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Algorithm 7: Targeted Change Attacks Procedure
Input : Dataset DB1 ◃ Original dataset with n cases
Output: Contaminated dataset DB2 or a failure message

1 Procedure Targeted Change Attacks(DB1)
2 Use the PC algorithm for learning the structure of Bayesian network model B1

from dataset DB1 (setting the significance of the Hugin PC to the default
level, which is 0.05 [38]);

3 Use L_S to rank the edges of B1 from the weakest to the strongest edge;
4 Choose a set of edge Q that could be added to B1;
5 Use L_S to rank the set of edges Q from the most to the least believable edge;
6 Plan a targeted attack (the set of edges to be added or deleted from B1);
7 repeat
8 if there is a need to introduce a new link in B1 then
9 Use Algorithm 1 to introduce a new v-structure, Algorithm 2 to break

an existing collider, or Algorithm 5 to add a link between two vertices
that do not lie in a triple;

10 end
11 if there is a need to delete an existing link then
12 Use Algorithm 3;
13 end
14 if there is a need to remove the weakest edge then
15 Use Algorithm 4;
16 end
17 if there is a need to add the most believable edge then
18 Use Algorithm 6;
19 end
20 until the targeted attack is achieved;
21 end

user wants add to the model B1. The defined link strength measure is used to rank the set

of edge Q from the most to the least believable edge.

The malicious user then plans a targeted change attack. The adversary in this case

chooses the set of edges that could be added to or deleted from the causal model B1. For

example, an attacker may think it is feasible to achieve his goal by adding a new plausible

link and deleting an existing one.

If the attacker wants to add a new link A − C and this new link introduces a new v-

structure in a triple A−B −C, then Algorithm 1 is called. On the hand, if the link A−C

shield a collider B in a triple A−B−C, then Algorithm 2 is called. Otherwise, Algorithm 5
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is called to add a link between two vertices that do not lie in a triple in a Bayesian network

model.

If the attacker wants to delete an existing edge. There are two algorithms that can

check the feasibility of achieving this goal. Algorithm 3 checks the feasibility of deleting

any edge in a Bayesian network model, and Algorithm 4 checks the feasibility of deleting

the weakest edge in a Bayesian network model.

In all different scenarios, Algorithm 7 returns a contaminated dataset DB2 if achieving

the targeted attack is feasible; otherwise, a failure message will be printed if the number

of added cases will be more than β × n, where β is data poisoning rate at which we are

allowed to add new “poisoned" cases to DB1 (we default set β ≤ 0.05)

6.2 EMPIRICAL RESULTS FOR TARGETED CHANGE ATTACKS

A further goal of this research is to study the influence of targeted change attacks on our

dataset DB1. We validate the effectiveness of targeted change attacks described in Al-

gorithm 7 (section 6) to poison the Chest Clinic network dataset DB1 with the goal of

achieving a particular change to the model. Algorithm 7 checks the robustness of the PC

algorithm against the feasibility of implementing a targeted change attack.

Given the link strength measure L_S for ranking the edges of the model B1 from the

weakest to the strongest edge (Table 5.2) and given L_S for ranking the set of edges Q that

could be added to the model B1 from the most to the least believable edge (Table 5.4), we

aim to achieve the following targeted attack against the model B1:

Change the model B1 such that it concludes that smoking (S) causes dyspnoea (D) but not

lunge cancer(L).

Our attack had the following two steps (see Figure 6.1):

1) use Algorithm 7 to delete the link S → L, and then

2) use Algorithm 7 again to add the link S → D.
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We present our results in Figures 6.2, and 6.3. We observed that Algorithm 7 succeeded

to delete the link S → L by modifying only 114 data items in our dataset DB1, resulting

in a dataset DB2 (Figure 6.2). Then we fed DB2 to Algorithm 7 succeeded to add the

link D → S. We needed only 74 cases to introduce the link D → S in dataset DB2

(Figure 6.3). Overall, we showed that the PC algorithm is vulnerable to targeted change

attacks.
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1) delete this link

2) add this link

Figure 6.1: A targeted attack against model B1
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Figure 6.2: The model B1 after achieving step 1 (deleting S → L)
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Figure 6.3: The model B1 after achieving the two steps of the targeted attack

57



CHAPTER 7

ADVERSARIAL ATTACKS AGAINST THE LCD ALGORITHM

7.1 INTRODUCTION

Probabilistic Graphical Models (PGMs) have become a powerful framework for not only

representing but reasoning with probabilistic knowledge. Learning the structure of proba-

bilistic graphical models, namely Bayesian networks, can be performed either subjectively

from knowledge of experts or objectively from observed data [30, 44]. The former method

is used when the structure of the probabilistic model is simple. Whereas, the latter method

is used when the structure of the graphical model is intricate for human brains to process.

Learning the structure of Bayesian networks from data is very important in machine

learning and artificial intelligence applications. There are three main approaches to learn

the structure of Bayesian networks from data. The constraint-based approach, such as the

IC algorithm [64], the PC algorithm [60, 61] and the NPC algorithm [62], counts on con-

ditional independence tests to determine the DAG of the learned Bayesian network. The

score-based approach, such as AIC [1], BDe [27, 45], K2 [21], and BIC algorithm [56],

assigns a score for each Bayesian network structure (this score indicates how well the

Bayesian network structure fits the data) and then perform a (usually greedy) search algo-

rithm to select the structure with the highest score. The hybrid approach, such as CB [59]

and EGS algorithm [22], relies on the idea of using both constraint-based algorithms and

score-based algorithms. The use of constraint-based algorithms will reduce the search

space (i.e., it will reduce the number of candidate DAGs). Thenceforth, score-based algo-

rithms can be used to select the optimal DAG.
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Within the constraint-based approach, there are two main methods for learning the

structure of Bayesian networks: 1) The traditional constraint-based method in which the

structure of the whole Bayesian network is constructed over all variables, such as the

IC [64], PC [60, 61], NPC [62] algorithms. 2) The decomposable constraint-based method

in which the structure of the large Bayesian network is decomposed into many small

Bayesian networks, such as LCD (Learn Chain graphs via Decomposition) algorithm [68,

37]. In both methods, Bayesian structure learning algorithms are prone to model inaccura-

cies resulting from corrupt data in the training phase (a.k.a Data Poisoning Attacks [6]).

Data poisoning attacks are one of the most important emerging security threat against

machine learning systems. These attacks aim to corrupt the machine learning model by

contaminating the data in the training phase [6, 9, 43]. The lack of resilience in Bayesian

network algorithms against such attacks leads to model inaccuracies when learning the

structure from data. Therefore, it is crucial to address the robustness of Bayesian network

algorithms against data poisoning attacks especially if these models are going to be used in

machine learning applications to reliably automate jobs.

In this section, we present an empirical analysis of the robustness of the LCD algorithm

against adversarial attacks that aim to invalidate the new to-be-learned Bayesian model as

defined in Chapter 5. We investigate two potential model invalidation attacks against the

LCD algorithm: (1) Model invalidation attacks based on the notion of d-separation, and

(2) Model invalidation attacks based on marginal independence tests.

7.2 EMPIRICAL RESULTS

To conduct the experiments of this section, we used the same dataset that was generated

to evaluate the robustness of the PC learning algorithm (dataset DB1 as shown in Chap-

ter 1). Using the LCD algorithm on dataset DB1 with 0.05 significance setting, the re-

sulting structure is given in Figure 1.5. While the new learned network using the LCD

algorithm (network B3 as shown in Figure 1.5) belongs to a different Markov equivalence
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class than the original Chest Clinic network (Figure 1.3), we will use the network B3 as the

starting point of our experiments.

7.3 EMPIRICAL RESULTS OF MODEL INVALIDATION ATTACKS BASED ON THE

NOTION OF D-SEPARATION

In this experiment, we evaluated the effectiveness of model invalidation attacks based on

the notion of d-separation (as introduced in section 5.2) to poison the Chest Clinic Network

dataset DB1 and thereby impact the new to-be-learned model by the LCD algorithm. We

study the robustness of the LCD structure learning algorithm against the data poisoning

attacks that aim to introduce a new v-structure to the Bayesian model B3. That is,

1) add the links D − S, B − L and S − E to the serial connections D → B → S,

B → S → L and S → L→ E, respectively, and

2) add the link A− E to the diverging connection A← T → E.

We also study the robustness of the LCD structure learning algorithm against the attacks

aiming to break an existing v-structure, i.e., to shield the collider T → E ← L.

We present our results in Figures 7.1, 7.2, 7.3, 7.4, and 7.5. We succeeded to invalidate

the model learned by the LCD algorithm. We had to introduce 90 contaminated cases in

order to introduce the link D−S. To introduce links B−L, S−E, and A−E required 13,

46, and 4 corrupt cases, respectively. To shield the collider E, we only needed 8 poisoning

data items.

7.4 EMPIRICAL RESULTS OF MODEL INVALIDATION ATTACKS BASED ON

MARGINAL INDEPENDENCE TESTS

In this section, we need our link strength measure (L_S) to measure the strengths of links

of the Bayesian network model B3. Our goal is to determine (1) the weakest edge to be

deleted from B3, and (2) the most beleivable edge to be added to B3. The results of our
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Figure 7.1: The result of adding the edge D − S to the Bayesian model B3
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Figure 7.2: The result of adding the edge B − L to the Bayesian model B3
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Figure 7.3: The result of adding the edge S − E to the Bayesian model B3
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Figure 7.4: The result of adding the edge A− E to the Bayesian model B3
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Figure 7.5: The result of adding the edge T − L to the Bayesian model B3

link strength measure to measure the strengths of the Chest Clinic Network are presented

in Figure 5.8. We note that the edge A − T is the weakest edge in the Bayesian network

model B3. Also, the edge D − S is the most believable edge that could be added to the

model B3.

We present our results of deleting the weakest edge from B3 in Figure 7.6. We suc-

ceeded to invalidate the model learned by the LCD algorithm. We had to modify only 3

cases to break the weakest link A− T .

We present our results of adding the most believable yet incorrect edge to the model B3

in Figure 7.7. We succeeded to invalidate the model learned by the LCD algorithm. We

had to modify only 90 cases to add the most believable link D − S.
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Figure 7.6: The result of deleting the weakest edge A− T from the Bayesian model B3
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Figure 7.7: The result of adding the most believable yet incorrect edge D − S to the
Bayesian model B3

Table 7.1: Summary of the required number of corrupt cases to contaminated the dataset
DB1.

Link # of required cases to corrupt
the PC Algorithm

# of required cases to corrupt
the LCD Algorithm

Add A→ E 3 5
Add B → L 13 13
Add D → S 74 90
Add S → E 40 46
Add T → L 8 8

Remove A→ T 3 3

7.5 WHICH ALGORITHM IS MORE ROBUST TO DATA POISONING ATTACKS: THE PC

ALGORITHM OR THE LCD ALGORITHM?

From the previous experiments that were presented in sections 7.3 and 7.4, we can summa-

rize the required number of corrupt cases to contaminate the dataset DB1 as follows:
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We observe that the number of required cases to contaminate the LCD algorithm is al-

ways larger than or equal to the number of required cases to contaminate the PC algorithm.

We observe that the LCD algorithm is more robust to data poisoning attacks than the PC

algorithm. We conjecture that this is due to the fact that the LCD algorithm learns the

structure of the Bayesian network via the decomposition approach.
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CHAPTER 8

LONG-DURATION DATA POISONING ATTACKS

8.1 INTRODUCTION

In our the previous chapters, we studied data poisoning attacks against Bayesian structure

learning algorithms. For a Bayesian structure learning algorithms, given the dataset, DSv,

and the corresponding model, B1 (Equation 9.1), a malicious attacker attempts to craft an

input dataset, DSp, such that this contaminated dataset will have an immediate impact on

DSv and thereby on B1. The defender periodically retrains the machine learning system

to recover the structure of the new model, B2, using DSu, the combination of the origi-

nal dataset DSv and the attacker supplied DSp. We call such an attack a “one-step" data

poisoning attack as malicious attackers send all contaminated cases at once.

In this chapter, we introduce long-duration data poisoning attacks against structure

learning algorithms. Long-duration poisoning attacks are adversarial multi-step attacks

in which a malicious attacker attempts to send contaminated cases over a period of time,

t = {1, 2, . . . , w}. That is, at every time point i, a malicious attacker sends in a new dataset,

DSi
c, which contains Ni cases, λiNi of which are corrupted cases for some 0 < λi < 1 (λi is

the data poisoning rate at which we allowed to add contaminated cases to DSi
c at iteration

i). Even though the defender periodically retrains the model, B
′
2, at time i using the dataset

DSi
l_d, which is equal to DSv ∪ ∪i

t=1 DSt
c, it is not easy to detect the long-duration attack

since such an attack is not instantaneous.

By the end of the long-duration poisoning attack, i.e., at time point w, the attacker

would have injected
∪w

t=1 DSt
c to DSv, resulting in a new dataset, DSw

l_d. We assume that
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attackers cannot add more than βN cases to DSv (i.e., 0 <
∪w

t=1 λtN t < βN ). When the

defender retrains the model, B
′
2, using the dataset DSw

l_d, the attack will dramatically affect

the resulting model. Note that this attack is sophisticated since the attacker may not need

to send contaminated cases with the last contaminated dataset (the wth dataset) in the long-

duration attack, i.e., DSw
c may trigger the attack with no poisoned cases, as our experiments

show.

We propose causative, long-duration model invalidation attacks against Bayesian net-

work structure learning algorithms. Such attacks are defined as malicious active attacks

in which adversarial opponents attempt to arbitrarily corrupt the structure of the original

Bayesian network model in any way. The goal of adversaries in these attacks is to poison

the validated training dataset, DSv, over a period of time t = {1, . . . , w} using the con-

taminated dataset
∪w

i=1DSt
c such that DSv will be no longer valid. We categorize causative

long-duration model invalidation attacks against Bayesian network structure learning algo-

rithms into two types: (1) Model invalidation attacks based on the notion of d-separation

and (2) Model invalidation attacks based on marginal independence tests.

Causative, long-duration model invalidation attacks which are based on the notion of

d-separation are adversarial attacks in which adversaries attempt to introduce a new link

in any triple (A − B − C) in the original Bayesian network model, B1. The goal of the

introduced malicious link, (A−C), is to change the independence relations and the Markov

equivalence class of B1. Within such attacks, we can identify two subtypes: (i) Creating

a New Converging Connection (V-structure), and (ii) Breaking an Existing Converging

Connection (V-structure). See chapter 5 for more algorithmic details.

Causative, long-duration model invalidation attacks which are based on marginal inde-

pendence tests are adversarial attacks in which adversaries attempt to use marginal indepen-

dence tests in order to change the conditional independence statements between variables

in the original model, B1. Such attacks can be divided into two main subtypes: (i) Remov-

ing the Weakest Edge, and (ii) Adding the Most Believable Edge yet incorrect Edge. See
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chapter 5 for more algorithmic details.

Algorithm 8 provides algorithmic details of long duration data poisoning attacks on

machine learning algorithms that aim to achieve a certain attack by sending in contaminated

cases over a period of time t.

Algorithm 8: Long Duration Poisoning Attacks
Input : DSv[x1; . . . ; xT ] ◃ Validated dataset with attributes x1; . . . ; xT .
Output: DSw

l_d[x1; . . . ; xT ], or a failure message if the required number of cases to
poison DSv[x1; . . . ; xT ], ∑w

t=1 λtNt, is greater than βN.

1 Procedure Long Duration Attacks(DSv)
2 τ = βN ◃ we default set β = 0.05;
3 B1 = BN_Algo(DSv[x1; . . . ; xT ]);
4 Choose w ◃ Number of times over which smoothly contaminated datasets will

be sent;
5 for t = 1; t ≤ w; t++ do
6 Generate DSt

Clean;
7 end
8 Plan an attack against the dataset (DSv ∪∑w

t=1 DSt
Clean) ◃ Note that there are

several types of attacks defined in Appendix ??;
9 for t = 1; t ≤ w; t++ do

10 Craft a new dataset, DSt
p ◃ where 0 ≤ λtN t ≤ τ

w
;

11 DSt
s_c = (DSt

Clean ∪ DSt
p);

12 DSt
l_d[x1; . . . ; xT ] = DSv[x1; . . . ; xT ] ∪ DSt

s_c[x1; . . . ; xT ];
13 B

′
2 = BN_Algo(DSt

l_d[x1; . . . ; xT ]);
14 end
15 if

∑w
t=1 λtNt ≤ βN then

16 Return DSt
l_d[x1; . . . ; xT ];

17 else
18 Return msg “Algorithm ?? failed to achieve the long duration attack";
19 end
20 end

8.2 EMPIRICAL RESULTS

8.2.1 ONE-STEP DATA POISONING ATTACKS

To set up the experiment, we implemented the Chest Clinic Network using HuginTM Re-

search 8.1. We then used HuginTM case generator [38, 49] to generate a simulated dataset
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of 20, 000 cases. We call this dataset DSv. Using the PC algorithm on dataset DSv with

0.05 significance setting [38], the resulting validated structure, B1 = PC_Algo(DSv), is

given in Figure 1.4. While the two networks in Figures 1.3 and 1.4 belong to different

Markov equivalence classes, we will use the validated network B1 as the starting point of

our experiment.

We evaluated the effectiveness of one-step data poisoning attacks against the validated

dataset DSv (i.e., against the validated model B1). An attacker aims to use one-step data

poisoning attacks to inject in a contaminated dataset DSp into DSv, resulting in the dataset

DSu. The defender retrains the machine learning model by feeding the new dataset DSu to

the PC learning algorithm (B2 = PC_Algo(DSu)), resulting in the model B2.

We aim to study the attacker’s goals, i.e., study the feasibility of one-step data poisoning

attacks, which might be as follows: (i) introduce new v-structures: that is, (1) add the links

D − S and S − E to the serial connections D → B → S and S → L → E, respectively,

and (2) add the link A−E to the diverging connection A← T → E; (ii) break an existing

v-structure T → E ← L, i.e., shield the collider E; (iii) remove the weakest edge, i.e.,

remove the edge T → A; and (iv) add the most believable edge, i.e., add the edge B → L.

(Note that, for finding the weakest link in a given causal model or the most believable link

to be added to a causal model, we refer the readers to our previous works [9, 6] for technical

details on how to measure link strength of causal models).

In all of the scenarios, the attacker succeeded in corrupting the new model that was

going to be learned by the defender, the model B2. The attacker had to introduce a dataset

DSp with 67 corrupt cases (data items) to introduce the link D − S in the newly learned

model B2. To introduce links S−E and A−E required 21 and 7 corrupt cases, respectively.

To shield the collider E, the attacker only needed 4 poisoning data items. The attacker had

to modify only 3 cases to break the weakest link A − T . To add the most believable link

B − L required to only 7 corrupt data items.
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8.2.2 LONG-DURATION DATA POISONING ATTACKS

To set up the implementation of long-duration attacks, let DSv be a validated training

dataset with attributes x1, . . . , xn and N cases, and β be data poisoning rate at which

attackers are allowed to add new “contaminated" cases to DSv. Let DSi
c be a newly crafted

dataset also with attributes x1, . . . , xn and Ni cases, and λi be data poisoning rate at which

attackers allowed to add new crafted cases to DSi
c (we default set 0 ≤ ∪w

t=1 λiN i ≤ βN ).

We start by calculating τ , which is the maximum number of poisoned cases that could

be added to DSv over a period of time t = {1, . . . , w}. We then learn the structure of the

validated model B1 from DSv using the PC algorithm.

We then iterate w times. In each iteration t, we generate a clean dataset DSt
clean and a

poisoned dataset DSt
p. We let DSt

c = DSt
clean ∪DSt

p (note that, DSt
c has Nt cases, λtNt of

which are poisoned). After that, we create the union of DSt
c and DSv, resulting in DSt

l_d,

which is used to learn the structure of model B
′
2. Note that, in each iteration the number of

cases in DSt
p should be between 0 (i.e., no poisoned cases) and τ

w
, which is the maximum

number of poisoned cases that could be added to DSt
c in the tth iteration.

We terminate after iteration w. If
∪w

t=1 λtNt ≤ βN , we return DSt
l_d; otherwise, we

print a failure message since implementing the long-duration attack on DSv is not feasible.

We assumed that w = 4, which means that the attacker is allowed to send in four

contaminated datasets to achieve the long-duration data poisoning attack. We divided the

20, 000 case dataset that was generated for one-step data poisoning attacks in section 8.2.1

into five datasets as follows: 12, 000 cases are used as DSv; and the rest is divided into four

datasets of 2, 000 cases each. We call these four datasets DS1
Clean, DS2

Clean, DS3
Clean, and

DS4
Clean. Using the PC algorithm on dataset DSv with 0.05 significance setting [38], the

resulting validated structure, B1 = PC_Algo(DSv), is given in Figure 1.4, which is the

starting point of this experiment.

We evaluated the effectiveness of long-duration data poisoning attacks against the vali-

dated dataset DSv (i.e., against the validated model B1). At every time point t = {1, . . . , w},
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the attacker injects a contaminated dataset DSt
Crafted into DSt

Clean, resulting in the dataset

DSt
c. This resulting dataset is then sent in as a new source of information. The defender

receives DSt
c and retrains the validated model, B1, by creating the union of DSv and the

new incoming dataset DSt
c and feeding them to the PC algorithm, resulting in the model

B
′
2 (i.e., B

′
2 = PC_Algo(DSv ∪DSt

c)).

The results of our experiments are presented in Table 8.1. In all of the scenarios, the

attacker succeeded in achieving the desired modification. In our experiments, we assumed

that t = {1, . . . , 4}. For every one of the studied long-duration attacks on the dataset DSv

(Tables 8.1a, 8.1b, 8.1c, 8.1d, 8.1e, and 8.1f), the adversary had to send in the attack over

4 datasets. That is, at every time point t (for t = 1, . . . , 4), the attacker had to create the

union of DSt
Clean and DSt

Crafted resulting in DSt
c, which was going to be sent to the targeted

machine learning system as a new source of information. The defender, on the other hand,

retrained the machine learning model every time a new incoming dataset DSt
c arrived.

Note that, in our experiments, long-duration attacks require the same number of con-

taminated cases as the one-step data poisoning attacks. An important observation is that the

malicious attacker does not always have to send poisoned cases in the last dataset that will

trigger the attack. For instance, in our experiments, when introducing the link A→ E (Ta-

ble 8.1a), shielding collider E (Table 8.1b), and removing the weakest edge (Table 8.1f),

the last contaminated dataset, DS4
c, had no contaminated cases, which makes it impossible

for the defender to find what caused a change in the newly learned model.
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Table 8.1: Results of long-duration data poisoning attacks against DSv.

(a) Introducing the link A→ E in the diverging connection A← T → E.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 3 1 3 0
DSt

c = DSt
Clean ∪ DSt

Crafted 2,003 2,004 2,007 2,007
DSt

l_d = DSv ∪ ∪w
t=1DSt

c 14,003 16,004 18,007 20,007
Model Change No No No Yes

(b) Breaking the v-structure T → E ← L.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 2 2 0 0
DSt

c = DSt
Clean ∪ DSt

Crafted 2,002 2,002 2,000 2,000
DSt

l_d = DSv ∪ ∪w
t=1DSt

c 14,002 16,004 18,004 20,004
Model Change No No No Yes

(c) Add the most believable edge, B → L, to the causal model B1.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 2 2 1 2
DSt

c = DSt
Clean ∪ DSt

Crafted 2,002 2,002 2,001 2,002
DSt

l_d = DSv ∪ ∪w
t=1DSt

c 14,002 16,004 18,005 20,007
Model Change No No No Yes

(d) Adding the link D → S to the serial connection D → B → S.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 20 20 23 4
DSt

c = DSt
Clean ∪ DSt

Crafted 2,020 2,020 2,023 2,004
DSt

l_d = DSv ∪ ∪w
t=1DSt

c 14,020 16,040 18,063 20,067
Model Change No No No Yes

(e) Adding the link S → E to the serial connection S → L→ E.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 7 8 5 1
DSt

c = DSt
Clean ∪ DSt

Crafted 2,007 2,008 2,005 2,001
DSt

l_d = DSv ∪ ∪w
t=1DSt

c 14,007 16,015 18,020 20,021
Model Change No No No Yes

(f) Removing the weakest link, T → A, from the causal model B1.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 1 1 1 0
DSt

c = DSt
Clean ∪ DSt

Crafted 2,001 2,001 2,001 2,000
DSt

l_d = DSv ∪ ∪w
t=1DSt

c 14,001 16,002 18,003 20,003
Model Change No No No Yes
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CHAPTER 9

DETECTING ADVERSARIAL ATTACKS IN THE CONTEXT OF

BAYESIAN NETWORKS

9.1 INTRODUCTION

During the last decade, several researchers addressed the problem of cyber attacks against

machine learning systems (see [35] for an overview). Machine learning techniques are

widely used; however, machine learning methods were not designed to function correctly

in adversarial settings [25, 28]. Data poisoning attacks are considered one of the most

important emerging security threats against machine learning systems [51, 65]. Data poi-

soning attacks aim to corrupt the machine learning model by contaminating the data in the

training phase [16]. Data poisoning was studied in different machine learning algorithms,

such as Support Vector Machines (SVMs) [16, 42, 32], Principal Component Analysis

(PCA) [15, 14], Clustering [17, 12], and Neural Networks (NNs) [69]. However, these

efforts are not directly applicable to Bayesian structure learning algorithms.

There are two main methods used in defending against a poisoning attack: (1) robust

learning and (2) data sanitization [20]. Robust learning aims to increase learning algorithm

robustness, thereby reducing the overall influence that contaminated data samples have on

the algorithm. Data sanitization eliminates contaminated data samples from the training

data set prior to training a classifier. While data sanitization shows promise to defend

against data poisoning, it is often impossible to validate every data source [20].

In this chapter, we use the causative model proposed by Barreno et al. [10] to con-

textualize Bayesian network vulnerabilities. We propose a 2-layered framework to detect
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poisoning attacks from untrusted data sources. Layer 1 enforces “reject on negative im-

pacts" detection [46]; i.e., input that changes the model is labeled malicious. Layer 2 aims

to detect long-duration attacks; i.e., it looks for cases in the incoming data that conflict with

the original Bayesian model.

The main contributions of this chapter are the following: We propose a 2-layered frame-

work for detecting data poisoning attacks. Our 2-layered framework detects both one-step

and long-duration data poisoning attacks. We use the distance between Bayesian network

models, B1 and B2, denoted as ds(B1, B2), to detect malicious data input (Equation 9.3)

for one-step attacks. For long-duration attacks, we use the value of data conflict (Equa-

tion 9.4) to detect potentially poisoned data. Our framework relies on offline analysis to

validate the potentially malicious datasets. We present our empirical results, showing the

effectiveness of our framework to detect both one-step and long-duration attacks. Our re-

sults indicate that the distance measure ds(B1, B2) (Equation 9.3) and the conflict measure

Conf(c, B1) (Equation 9.4) are sensitive to poisoned data.

9.2 PROBLEM SETTING

We focus on structure learning algorithms in Bayesian networks. Let DSv = {c1, . . . , cN}

be a validated dataset with N case. Each case c is over attributes x1, . . . , xn and of the form

c =< x1 = v1, . . . , xn = vn >, where vi is the value of attribute xi. A Bayesian network

model B1 is learned by feeding a validated dataset DSv into a Bayesian structure learning

algorithm, BN_Algo, such as the PC algorithm, which is the most widely used algorithm

for structure learning in Bayesian networks [61], as shown in Equation 9.1.

B1 = BN_Algo(DSv) (9.1)

The defender attempts to divide an incoming dataset, DSp, coming from an untrusted

source, into clean and poisoned cases. The attacker aims to inject a contaminated dataset,

DSp with the same attributes as DSv and N1 cases, into the validated training dataset,
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DSv. A learning error occurs if DSu, obtained by the union of DSv and DSp, results in a

Bayesian network learning model B2 (shown in Equation 9.2), such that there is a missing

link, a reversed link, or an additional link in B2 that is not in B1.

B2 = BN_Algo(DSu) (9.2)

To estimate the impact of the poisoned dataset on the validated dataset, we define a dis-

tance function between two Bayesian network models B1 and B2, denoted as ds(B1, B2).

Intuitively, B1 is the validated model and B2 is the potentially corrupted model.

Let B1 = (V, E1) and B2 = (V, E2) be two Bayesian network models where V =

{x1, x2, . . . , xn} and E = {(xu, xv) : xu, xv ∈ V }. Let B1 be the validated model result-

ing from feeding DSv to a Bayesian network structure learning algorithm, and B2 be the

newly learned model resulting from feeding DSu to a Bayesian network structure learn-

ing algorithm. Let e1 = (xu, xv) be a directed edge from vertex xu to vertex xv, and

e2 = (xv, xu) be a directed edge from vertex xv to vertex xu (e2 is the reverse of e1). The

distance function, ds(B1, B2), is a non-negative function that measures the changes in the

newly learned model B2 with respect to the original model B1. The distance function,

ds(B1, B2), is defined as follows:

(Distance measure) Let Bayesian network models B1 = (V, E1) and B2 = (V, E2)

be the results of feeding DSv and DSu, respectively, to a Bayesian network structure

learning algorithm. ds(B1, B2) is defined as the sum of distances over pairs of vertices

(xu, xv) ∈ V × V as follows:

ds(B1, B2) =
∑

(xu,xv)∈V ×V

dsxuxv(B1, B2) (9.3)

where dsxuxv(B1, B2) is the distance between every pair of vertices (xu, xv) ∈ V × V .

We define dsxuxv(B1, B2) as the cost of making a change to B1 that results in the

newly learned model B2. The function dsxuxv(B1, B2) between the two Bayesian network

models B1 and B2 is defined as follows [23]:
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Status 1 (True Negative Edges): if ((e1 ̸∈ E1 && e2 ̸∈ E1) && (e1 ̸∈ E2 && e2 ̸∈ E2)),

then there is no edge (neither e1 nor e2) between vertex xu and vertex xv in either

models B1 and B2. Hence, dsxuxv(B1, B2) = 0.

Status 2 (True Positive Edges): if ((e1 ∈ E1 && e1 ∈ E2) || (e2 ∈ E1 && e2 ∈ E2)),

then the same edge (either e1 or e2) appears from vertex xu to vertex xv in both

models B1 and B2. Hence, dsxuxv(B1, B2) = 0.

Status 3 (False Negative Edges): if ((e1 || e2 ∈ E1) && (e1 && e2 ̸∈ E2)), then there

is an edge (either e1 or e2) from vertex xu to vertex xv in B1 that does not ex-

ist in B2. Without loss of generality, assume that the deleted edge from B1 is e1,

then if the indegree of vertex xv, denoted as indegree(xv), which is the number if

edge incoming to vertex xv, is greater than 1, then dsxuxv(B1, B2) = 8; otherwise,

dsxuxv(B1, B2) = 4.

Status 4 (False Positive Edges): if ((e1 && e2 ̸∈ E1) && (e1 || e2 ∈ E2)), then there is

an edge (either e1 or e2) from vertex xu to vertex xv in B2 but not the in B1. Without

loss of generality, assume that the added edge to B2 is e1, then if the indegree of

vertex xv, is greater than 1, then dsxuxv(B1, B2) = 8; otherwise, dsxuxv(B1, B2) =

4.

Status 5 (False Positive and True Negative Edges): if ((e1 ∈ E1 && e2 ∈ E2) && (e1 ∈

E2 && e2 ∈ E1)), then the edge from vertex xu to vertex xv in B1 is the reverse of

the edge from vertex xu to vertex xv in B2. Without loss of generality, assume that

there is an edge, e1, from xu to xv in B1, then e2 is the reverse of e1 in B2. If

the indegree of vertex xu, is greater than 1, then dsxuxv(B1, B2) = 8; otherwise,

dsxuxv(B1, B2) = 2.

To investigate the coherence of an instance case, c =< x1 = v1, . . . , xn = vn > (or

simply < v1, . . . , vn >), in DSp with the validated model B1, we use conflict measure,
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denoted as Conf(c, B1). Conflict measure, Conf(c, B1), is defined as follows:

(Conflict measure) Let B1 be a Bayesian network model and let DSp be an incoming

dataset, Conf(c, B1) is defined as the process of detecting how well a given case <

v1, . . . , vn > fits the model B1 according to the following equation:

Conf(c, B1) = log2
P (v1) . . . P (vn)

P (v)
(9.4)

where c =< v1, . . . , vn >, and P (v) is the prior probability of the evidence v [48].

If P (v) = 0, then we conclude that there is inconsistency among the observations

< v1, . . . , vn >. If the value of Conf(c, B1) is positive, then we can conclude that <

v1, . . . , vn > are negatively correlated (i.e., unlikely to be correlated as the model requires)

and thus are conflicting with the model B1. The higher the value of Conf(c, B1) is, the

more incompatibility we have between B1 and < v1, . . . , vn >.

In this paper, we adopt the causative model proposed by Barreno et al. [10]. Attacks on

machine learning systems are modeled as a game between malicious attackers and defend-

ers. In our setting, defenders aim to learn a validated Bayesian network model B1 using the

dataset DSv with the fewest number of errors (minimum ds function). Malicious attackers

aim to mislead the defender into learning a contaminated model B2 using the dataset DSu,

obtained by polluting DSv with DSp. We assume that malicious attackers have full knowl-

edge of how Bayesian network structure learning algorithms work. Also, we assume that

attackers have knowledge of the dataset DSv. In addition, we assume that the poisoning

percentage at which attackers are allowed to add new “contaminated" cases to DSv, β, is

less than or equal to 0.05. The game between malicious attackers and defenders can be

modeled as follows:

1. The defender: The defender uses a validated dataset DSv, to produce a validated

Bayesian network model B1.

2. The malicious attacker: The attacker injects a contaminated dataset, DSp, to be
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Table 9.1: Notations

Notation Description
DS[x1, . . . , xn] Schema for datasets with attributes x1, . . . , xn

DSv = {c1, . . . , cN} Validated dataset instance with attributes x1, . . . , xn

DSp = {c1, . . . , cN1} Crafted dataset instance with attributes x1, . . . , xn

β Data poisoning percentage for DSv

B1 The result of feeding DSv to a learning algorithm
B2 The result of feeding DSu to a learning algorithm
DSi

c = {c1, . . . , cNi
} Contaminated dataset instance at time point i

λi Data poisoning rate for DSi
c

ds(B1, B2) Distance function between models B1 and B2
Conf(c, B1) Conflict measure of how well the case c fits B1

unioned with the original dataset, DSv, with the goal of changing the Markov equiv-

alence class of the original validated model, B1.

3. Evaluation by the defender:

- The defender feeds the new dataset DSu (Note that, DSu = DSv ∪ DSp) to a

Bayesian network structure learning algorithm, resulting in B2.

- The defender calculates the distance function ds(B1, B2).

- If ds(B1, B2) = 0, then Bayesian models B1 and B2 are identical. Otherwise, i.e.,

ds(B1, B2) > 0, the newly learned Bayesian model B2 is different from the

original validated model B1.

- For each case c, the defender calculates the value of conflict measure Conf(c, B1).

- If Conf(c, B1) is positive, then the case c conflict with the Bayesian model B1.

Otherwise, the newly incoming case is validated and added to DSv.

Note, that the goal of malicious attackers is to maximize the quantity ds(B1, B2). The

notations used in this chapter are summarized in Table 9.1.
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9.3 FRAMEWORK FOR DETECTING DATA POISONING ATTACKS

In this section, we present our detective framework for data poisoning attacks. Our tech-

niques build on the data sanitization approach that was proposed by Nelson et al. [46].

We extend Nelson et al. approach such that it is applicable to detect both one-step and

long-duration causative attacks.

The main components of our framework are: (1) Structure learning Algorithms: the

PC learning algorithm, (2) FLoD: first layer of detection, and (3) SLoD: second layer of

detection.

First Layer of Detection: In the FLoD, our framework uses “Reject On Negative

Impact" defense [46] to examine the full dataset (DSv ∪ DSp) to detect the impact of DSp

on DSv. The attacker aims to use DSp to change the Markov equivalence class of the

validated model, B1. The first layer of detection detects the impact of adversarial attacks

that aim to corrupt the model B1 using one-step data poisoning attacks.

In the FLoD, we use the distance function ds described in section 9.2 as a method for

detecting the negative impact of DSp on the validated model B1. If ds(B1, B2) is greater

than zero, then the new incoming dataset, DSp, is potentiality malicious. In this case, we

sent DSp to be checked offline. Otherwise, we proceed with the second layer of detection,

SLoD, looking for long-duration data poisoning attacks.

Algorithm 9 provides algorithmic details of FLoD detect one-step data poisoning at-

tacks.

Second Layer of Detection: In the SLoD, our framework uses “Data Conflict Analy-

sis" [48] to examine the newly incoming dataset DSp to detect if DSp has conflicting cases

with the original model B1. The Second layer of detection detects sophisticated adversarial

attacks that aim to corrupt the model B1, such as long-duration data poisoning attacks.

In the SLoD, we use the value of the conflict measure Conf(c, B1) described in sec-

tion 9.2 as a method for detecting whether or not a case, c, in the newly incoming dataset,

DSp, is conflicting with the original model B1. If the P (v) is equal to zero, then the case
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Algorithm 9: First Layer of Detection
Input : DSv = {c1, . . . , cN} and DSp = {c̄1, . . . , c̄N1}
Output: ds(B1, B2)

1 Generate B1 from DSv;
2 Generate B2 from DSv ∪ DSp;
3 Calculate ds(B1, B2) ◃ as described in section 9.2;
4 if ds(B1, B2) > 0 then
5 Return ds(B1, B2);
6 Send DSp to be checked offline;
7 else
8 Go to Algorithm 10;
9 end

c is inconsistent with the validated model B1. If Conf(c, B1) is positive, then the case c

is incompatible with the validated model B1. In these two situations, we add inconsistent

and incompatible cases to DSconf. DSconf is then sent to be checked offline. Thereby, the

model B1 will be retrained according to the following equation: B1 = BN_Algo(DSv)

where DSv = DSv ∪ (DSp\DSconf).

Algorithm 10 provides algorithmic details of the SLoD detect long-duration data poi-

soning attacks.

The process of applying our framework is summarized in Figure 9.1. The workflow

of our framework is described as follows: (1) A validated dataset, DSv, which is a clean

training dataset that is used to recover a validated machine learning model B1. (2) A

new incoming dataset, DSp, which is coming from an untrusted source and a potentially

malicious dataset, is used along with DSv to learn B2. (3) FLoD checks for one-step data

poisoning attacks. If model change occurs (i.e., ds(B1, B2) > 0), send DSp for offline

evaluation. Else, (4) SLoD checks for long-duration data poisoning attacks. If the value

of conflict measure is positive (i.e., Conf(c, B1) > 0), send conflicting data to offline

evaluation. Else, update the validated dataset.
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Algorithm 10: Second Layer of Detection
Input : DSv = {c1, . . . , cN} and DSp = {c̄1, . . . , c̄N1}
Output: DSv, DSconf.

1 Generate B1 from DSv;
2 DSconf = ϕ;
3 for every case c in DSp do
4 Calculate P (v) ◃ i.e., the probability of the evidence for c;
5 if P (v) = 0 then
6 DSconf = DSconf ∪ {c} ◃ i.e., c is inconsistent with B1;
7 DSp = DSp \ {c} ◃ remove c from DSp;
8 else
9 Conf(c, B1) = log2

P (v1)...P (vn)
P (v) ◃ calculate conflict measure for the case c;

10 if Conf(c, B1) > 0 then
11 DSconf = DSconf ∪ {c} ◃ i.e., c is incompatible with B1;
12 DSp = DSp \ {c};
13 end
14 end
15 if DSconf ̸= ϕ then
16 Send DSconf to be checked offline;
17 end
18 DSv = DSv ∪ (DSp\DSconf);
19 Return DSv, DSconf;
20 end
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Figure 9.1: Framework for detecting data poisoning attacks.
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9.4 EMPIRICAL RESULTS

We implemented our prototype system using the Chest Clinic Network [34]. We used the

Chest Clinic Network to demonstrate the data poisoning attacks and our detection capabili-

ties. In each experiment, we manually generated poisoned datasets. Given the contingency

table of two random variables A and B in a Bayesian network model with i and j states,

respectively. To introduce a malicious link between A and B, we add corrupt cases to the

cell with the highest test statistic value in the contingency table. To remove the link be-

tween A and B, we transfer cases from the cell with the highest test statistics value to the

one with the lowest value.

9.4.1 DISCUSSION: DETECTING DATA POISONING ATTACKS

The results of using our framework to detect one-step data poisoning attacks are presented

in Table 9.2. Algorithm 9 succeeded to detect the negative impact (i.e., the change in the

Markov equivalence class) of the new incoming dataset DSp on the validated model B1.

Table 9.2: Results of using FLoD to detect one-step data poisoning attacks.

Attack Attack’s class ds(B1, B2) score
Introduce the link A→ E New v-structure 12
Introduce the link D → S New v-structure 24
Introduce the link S → E New v-structure 54
Introduce the link T → L Shield an existing collider 16
Remove the link A→ T Delete the weakest link 4
Introduce the link B → L Add the most believable link 32

The results using our framework to detect long-duration data poisoning attacks are

summarized in Table 9.3. Algorithm 10 succeeded to detect the long-duration impact of

DSc on the validated dataset DSv. Note, that FLoD using traditional reject on negative

impact was not able to detect long-duration attacks. However, when using the SLoD, we

were able to detect the conflicting cases, which are either inconsistent or incompatible with

the original validated model B1 (A detailed experiment is presented in Figure 9.2). Such
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cases might be exploited by a malicious adversary to trigger the long-duration attack at a

later time. Also, in some attacks no poisoned cases are even required to be sent with DSc

to trigger the long-duration attack, which is very hard to detect.

In summary, our 2-layered approach was able to detect both one-step and long-duration

attacks. Moreover, our solution did not lose all the incoming datasets; we only send con-

flicting cases to be checked offline. We have carried out over 200 experiments for long-

duration attacks. A comprehensive description of these experiments is given in [5].

Table 9.3: Results of using SLoD to detect long-duration data poisoning attacks.

Attack Attack’s class Algorithm 10 decision
Introduce A→ E New v-structure Inconsistent observations
Introduce D → S New v-structure Incompatible observations
Introduce S → E New v-structure Inconsistent observations
Introduce T → L Shield an existing collider Inconsistent observations
Remove A→ T Delete weakest link Inconsistent\Incompatible observations
Introduce B → L Add most believable link Inconsistent observations
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(a) DS1
c has 20 incompatible cases. (b) DS2

c has 20 incompatible cases.

(c) DS3
c has 23 incompatible cases. (d) DS4

c has 4 incompatible cases.

Figure 9.2: The result of using SLoD to detect a long-duration attack that aims to introduce
the link D → S in the Chest Clinic dataset, DSv. We present the case number in DSt

c

as the variable on the X-axis and the value of our conflict measure Conf(c, B1) as the
variable on the Y-axis. A case is incompatible (conflicting) with the validated model B1 if
Conf(c, B1) > 0.
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CHAPTER 10

CONCLUSION AND FUTURE WORK

10.1 CONCLUSION

As machine learning techniques become more pervasive, it is important to be aware of

the danger of malicious attackers based on introducing corrupted data items. In this dis-

sertation, we demonstrated the vulnerability of structural learning algorithms for Bayesian

networks to adversarial attacks [7]. We have developed a theoretical framework to classify

data poisoning attacks against the Bayesian network structure learning algorithms [4]. We

proposed a novel measure of link strength that is useful for security analysis in the con-

text of Bayesian networks. We demonstrated the vulnerability of the PC algorithm against

one-step and long-duration data poisoning attacks. We proposed a 2-layered framework for

detecting data poisoning attacks.

We implemented our approaches using the Chest Clinic Network which is a widely

used network in Bayesian networks. Our findings indicate that Bayesian network structure

learning algorithms are highly sensitive to data poisoning attacks. We also demonstrated

that attackers could corrupt the learning outcome in a way that structural learning algo-

rithms will learn the desired structure. Our novel link strength measure plays a crucial role

in identifying vulnerable network structure and the ease of corrupting the Bayesian model.

Our results also indicate that Bayesian network structure learning algorithms are vulnerable

to both one-step and long-duration data poisoning attacks. Our framework is effective in

detecting both one-step and long-duration data poisoning attacks, as it thoroughly validates

and verifies training data before such data is being incorporated into the model.
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10.2 FUTURE WORK

Future work of this dissertation are as follows:

1. We will investigate the robustness of the LCD algorithm against long-duration data

poisoning attacks. We will follow the same schema like the PC algorithm. That

is, we will investigate long-duration model invalidation attacks and targeted change

attack that aim to corrupt the validated Bayesian network model over time.

2. We aim to focus on offline validation of potentially malicious datasets. Currently,

our approach detects datasets that either change the Bayesian network structure (dis-

tance measure) or in conflict with the validated model (conflict measure). We are

investigating methods for (1) distinguishing actual model shift from model enrich-

ment, i.e., our initial model was based on data that was not fully representative of the

“true" distribution, and (2) determining if cases are truly conflicting or again if the

initial model poorly approximates the “true" distribution.

3. We will also investigate the applicability of Wisdom of the Crowd (WoC) [70].

Rather than human experts, we plan to use an ensemble of classifiers, i.e., take the

votes of competing algorithms instead of the votes of humans. In the case of an en-

semble of classifiers, one could investigate the likelihood of unexpected cases and

adjust the sensitivity to anomalies by how much perturbation it causes in the model.

4. We will investigate the possibility of using our link strength measure for defending

against data poisoning attacks. In particular, we aim to monitor change in link-

strength and find pattern of malicious (misuse) activities.
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APPENDIX A

COMPUTATIONS OF POSTERIOR DISTRIBUTIONS

In order to run our experiments, we need to compute the posterior distribution (Beta distri-

bution) for each link in the Bayesian network model. Posterior distribution is proportional

to the prior distribution (Beta distribution) times the likelihood function (Binomial distri-

bution).

In our working example, which is the Chest Clinic network, we will calculate the pos-

terior distribution for each link in the network assuming a completely uninformative prior,

i.e., a uniform distribution, Beta(1, 1), and using the dataset DB1 to calculate the likelihood

function. For each edge, given a statistical table from our data set DB1 and uninformative

prior Beta(1,1), we will calculate the posterior distribution using these equations:

Posterior = Prior × Likelihood

P (θ | y) = P (θ)× P (y | θ)

P (θ | y) = Beta(α, β)×Binomial(n, θ)

P (θ | y) = Beta(y + α, n− y + β)

A.1 EDGES OF THE CHEST CLINIC NETWORK

In this appendix, we compute the posterior probability for each link in the original Chest

Clinic Network as follows:
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Table A.1: The contingency table of the observed counts of P(B | S)

S
B no yes missing
no 3898 1971 0
yes 1513 3018 0
missing 0 0 0

A.1.1 CALCULATING P(B | S)

P (B = yes | S = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(4989, 3018)

= Beta(3018 + 1, 4989− 3018 + 1)

= Beta(3019, 1972)

P (B = yes | S = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(5411, 1513)

= Beta(1513 + 1, 5411− 1513 + 1)

= Beta(1514, 3899)

P (B = no | S = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(4989, 1971)

= Beta(1971 + 1, 4989− 1971 + 1)

= Beta(1972, 3019)
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Figure A.1: Beta Distribution for P(B | S)

P (B = no | S = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(5411, 3898)

= Beta(3898 + 1, 5411− 3898 + 1)

= Beta(3899, 1514)
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Table A.2: The contingency table of the observed counts of P(L | S)

S
L no yes missing
no 4965 4509 0
yes 46 480 0
missing 0 0 0

A.1.2 CALCULATING P(L | S)

P (L = yes | S = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(4989, 480)

= Beta(480 + 1, 4989− 480 + 1)

= Beta(481, 4510)

P (L = yes | S = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(5011, 46)

= Beta(46 + 1, 5011−−46 + 1)

= Beta(47, 4966)

P (L = no | S = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(4989, 4509)

= Beta(4509 + 1, 4989−−4509 + 1)

= Beta(4510, 481)
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Figure A.2: Beta Distribution for P(L | S)

P (L = no | S = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(5011, 4965)

= Beta(4965 + 1, 5011−−4965 + 1)

= Beta(4966, 47)
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Table A.3: The contingency table of the observed counts of P(T | A)

A
T no yes missing
no 9788 98 0
yes 105 9 0
missing 0 0 0

A.1.3 CALCULATING P(T | A)

P (T = yes | A = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(107, 9)

= Beta(9 + 1, 107− 9 + 1)

= Beta(10, 99)

P (T = yes | A = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(9893, 105)

= Beta(105 + 1, 9893− 105 + 1)

= Beta(106, 9789)

P (T = no | A = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(107, 98)

= Beta(98 + 1, 107− 98 + 1)

= Beta(99, 10)
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Figure A.3: Beta Distribution for P(T | A)

P (T = no | A = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(9893, 9788)

= Beta(9788 + 1, 9893− 9788 + 1)

= Beta(9789, 106)
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Table A.4: The contingency table of the observed counts of P(E | T )

T
E no yes missing
no 9364 0 0
yes 522 114 0
missing 0 0 0

A.1.4 CALCULATING P(E | T )

P (E = yes | T = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(114, 114)

= Beta(114 + 1, 114− 114 + 1)

= Beta(115, 1)

P (E = yes | T = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(9866, 522)

= Beta(522 + 1, 9893− 522 + 1)

= Beta(523, 9365)

P (E = no | T = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(114, 0)

= Beta(0 + 1, 114− 0 + 1)

= Beta(1, 115)
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Figure A.4: Beta Distribution for P(E | T )

P (E = no | T = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(9886, 9364)

= Beta(9364 + 1, 9886− 9364 + 1)

= Beta(9365, 523)
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Table A.5: The contingency table of the observed counts of P(E | L)

L
E no yes missing
no 9364 0 0
yes 110 526 0
missing 0 0 0

A.1.5 CALCULATING P(E | L)

P (E = yes | L = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(526, 526)

= Beta(526 + 1, 526− 526 + 1)

= Beta(527, 1)

P (E = yes | L = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(9474, 110)

= Beta(110 + 1, 9474− 110 + 1)

= Beta(111, 9365)

P (E = no | L = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(526, 0)

= Beta(0 + 1, 526− 0 + 1)

= Beta(1, 527)
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Figure A.5: Beta Distribution for P(E | L)

P (E = no | L = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(9474, 9364)

= Beta(9364 + 1, 9474− 9364 + 1)

= Beta(9365, 111)
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Table A.6: The contingency table of the observed counts of P(X | E)

E
X no yes missing
no 8911 13 0
yes 453 623 0
missing 0 0 0

A.1.6 CALCULATING P(X | E)

P (X = yes | E = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(636, 623)

= Beta(623 + 1, 636−−623 + 1)

= Beta(624, 14)

P (X = yes | E = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(9364, 453)

= Beta(453 + 1, 9364− 453 + 1)

= Beta(454, 8912)

P (X = no | E = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(636, 13)

= Beta(13 + 636− 13 + 1)

= Beta(14, 624)
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Figure A.6: Beta Distribution for P(X | E)

P (X = no | E = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(9364, 8911)

= Beta(8911 + 1, 9364− 8911 + 1)

= Beta(8912, 454)
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Table A.7: The contingency table of the observed counts of P(D | E)

E
D no yes missing
no 5522 117 0
yes 3842 519 0
missing 0 0 0

A.1.7 CALCULATING P(D | E)

P (D = yes | E = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(636, 519)

= Beta(519 + 1, 636− 519 + 1)

= Beta(520, 118)

P (D = yes | E = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(9364, 3842)

= Beta(3842 + 1, 9364− 3842 + 1)

= Beta(3843, 5523)

P (D = no | E = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(636, 117)

= Beta(117 + 1, 636− 117 + 1)

= Beta(118, 520)
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Figure A.7: Beta Distribution for P(D | E)

P (D = no | E = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(9364, 5522)

= Beta(5522 + 1, 9364− 5522 + 1)

= Beta(5523, 3843)
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Table A.8: The contingency table of the observed counts of P(D | B)

B
D no yes missing
no 4745 894 0
yes 724 3637 0
missing 0 0 0

A.1.8 CALCULATING P(D | B)

P (D = yes | B = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(4531, 3637)

= Beta(3637 + 1, 4531− 3637 + 1)

= Beta(3638, 895)

P (D = yes | B = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(5469, 724)

= Beta(724 + 1, 5469− 724 + 1)

= Beta(725, 4746)

P (D = no | B = yes) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(4531, 894)

= Beta(894 + 1, 4531− 894 + 1)

= Beta(895, 3638)
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Figure A.8: Beta Distribution for P(D | B)

P (D = no | B = no) = Beta(α, β)×Binomial(n, θ)

= Beta(y + α, n− y + β)

= Beta(1, 1)×Binomial(5469, 4745)

= Beta(4745 + 1, 5469− 4745 + 1)

= Beta(4746, 725)
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APPENDIX B

COMPUTATIONS OF LINK STRENGTH MEASURE (L_S)

B.1 USING L_S ON THE CHEST CLINIC NETWORK

Given the Posterior distributions table for each link of the Chest Clinic Network as follows

(Calculated in Appendix A):

We apply our link strengths measure (L_S) (Equation 4.1, which is presented in Chap-

ter 4)

L_S(V ariable1 → V ariable2) = min
y∈Y

(pdf( y + α

α + n + β
))

to find the strengths of each link as follows:

B.1.1 FINING THE STRENGTHS OF THE EDGE S → L

L_S(S → L) = min(pdf(Beta(481, 4510)), pdf(Beta(47, 4966)),

pdf(Beta(4510, 481)), pdf(Beta(4966, 47)))

= 50.30727

Table B.1: Posterior distributions for the Chest Clinic Network.

Link Posterior Distributions (Beta Distributions)
P(T | A) Beta(10,99) Beta(106,9789) Beta(99,10) Beta(9789,106)
P(L | S) Beta(481,4510) Beta(47,4966) Beta(4510,481) Beta(4966,47)
P(B | S) Beta(3019,1972) Beta(1514,3899) Beta(1972,3019) Beta(3899,1514)
P(E | T) Beta(115,1) Beta(523,9365) Beta(1,115) Beta(9365,523)
P(E | L) Beta(527,1) Beta(111,9365) Beta(1,527) Beta(9365,111)
P(D | B) Beta(3638,895) Beta(725,4746) Beta(895,3638) Beta(4746,725)
P(D | E) Beta(520,118) Beta(3843,5523) Beta(118,520) Beta(5523,3843)
P(X | E) Beta(624,14) Beta(454,8912) Beta(14,624) Beta(8912,454)
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B.1.2 FINING THE STRENGTHS OF THE EDGE S → B

L_S(S → B) = min(pdf(Beta(3019, 1972)), pdf(Beta(1514, 3899)),

pdf(Beta(1972, 3019)), pdf(Beta(3899, 1514)))

= 56.88552

B.1.3 FINING THE STRENGTHS OF THE EDGE B → D

L_S(B → D) = min(pdf(Beta(3638, 895)), pdf(Beta(725, 4746)),

pdf(Beta(895, 3638)), pdf(Beta(4746, 725)))

= 49.30178

B.1.4 FINING THE STRENGTHS OF THE EDGE L→ E

L_S(L→ E) = min(pdf(Beta(527, 1)), pdf(Beta(111, 9365)),

pdf(Beta(1, 527)), pdf(Beta(9365, 111)))

= 129.2983

B.1.5 FINING THE STRENGTHS OF THE EDGE T → E

L_S(T → E) = min(pdf(Beta(115, 1)), pdf(Beta(523, 9365)),

pdf(Beta(1, 115)), pdf(Beta(9365, 523)))

= 103.7509

B.1.6 FINING THE STRENGTHS OF THE EDGE A→ T

L_S(A→ T ) = min(pdf(Beta(10, 99)), pdf(Beta(106, 9789)),

pdf(Beta(99, 10)), pdf(Beta(9789, 106)))

= 14.75256

B.1.7 FINING THE STRENGTHS OF THE EDGE E → X

L_S(E → X) = min(pdf(Beta(624, 14)), pdf(Beta(454, 8912)),

pdf(Beta(14, 624)), pdf(Beta(8912, 454)))
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= 70.69412

B.1.8 FINING THE STRENGTHS OF THE EDGE E → D

L_S(E → D) = min(pdf(Beta(520, 118)), pdf(Beta(3843, 5523)),

pdf(Beta(118, 520)), pdf(Beta(5523, 3843)))

= 25.69412

112



APPENDIX C

COMPUTATION OF MUTUAL INFORMATION LINK

STRENGTH

C.1 EXPERIMENTAL RESULTS

We will use the mutual information link strength measure (MI) to compute the strengths

of links of the original Chest Clinic Network. For each link X → Y in the Chest Clinic

Network, given the probability for variable X and the conditional probability for variable

Y (Chest Clinic Network conditional probabilities are shown in [34]), we will calculate

the joint probability for variables X and Y (P (X, Y )) in order to be able to compute the

strength of every link X → Y using the mutual information equation (Equation 4.2).

C.1.1 THE EDGE A→ T

In the Chest Clinic Network, let the probability for variable A be P (A = yes) = 0.01, and

the conditional probability for variable T be as follows:

We will compute the the joint probability of variables A and T and the marginal prob-

ability of each random variable. The joint probability can be computed as follows:

Table C.1: The conditional probability for variable T

A
T yes no
yes 0.05 0.01
no 0.95 0.99
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Table C.2: The joint probability for variables T and A

A
T yes no Marginal Probability
yes 0.0005 0.0099 0.0104
no 0.0095 0.9801 0.9896
Marginal Probability 0.01 0.99 1

P (T = yes, A = yes) = P (T = yes | A = yes)P (A = yes)

= 0.01 ∗ 0.05

= 0.0005

P (T = yes, A = no) = P (T = yes | A = no)P (A = no)

= 0.99 ∗ 0.01

= 0.0099

P (T = no, A = yes) = P (T = no | A = yes)P (A = yes)

= 0.01 ∗ 0.95

= 0.0095

P (T = no, A = no) = P (T = no | A = no)P (A = no)

= 0.99 ∗ 0.99

= 0.9801

At this point, we are able to use the mutual information formula to compute the strength

of the link A→ T as follows:

MI(T, A) =
∑

t∈T,a∈A

P (t, a)log2(
P (t, a)

P (t)P (a)
)

= 0.0005 ∗ log2(
0.0005

0.01 ∗ 0.0104
) + 0.0099 ∗ log2(

0.0099
0.99 ∗ 0.0104

)
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Table C.3: The conditional probability for variable B

S
B yes no
yes 0.6 0.3
no 0.4 0.7

+ 0.0095 ∗ log2(
0.0095

0.01 ∗ 0.9896
) + 0.9801 ∗ log2(

0.9801
0.99 ∗ 0.9896

)

= 0.0005 ∗ log2(4.8077) + 0.0099 ∗ log2(0.9615)

+ 0.0095 ∗ log2(0.96) + 0.9801 ∗ log2(1.0004)

= 0.0006

C.1.2 THE EDGE S → B

In the Chest Clinic Network, let the probability for variable S be P (S = yes) = 0.5, and

the conditional probability for variable B be as follows:

We will compute the the joint probability of variables S and B and the marginal prob-

ability of each random variable. The joint probability can be computed as follows:

P (B = yes, S = yes) = P (B = yes | S = yes)P (S = yes)

= 0.5 ∗ 0.6

= 0.3

P (B = yes, S = no) = P (B = yes | S = no)P (S = no)

= 0.5 ∗ 0.3

= 0.15

P (B = no, S = yes) = P (B = no | S = yes)P (S = yes)
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= 0.5 ∗ 0.4

= 0.2

P (B = no, S = no) = P (B = no | S = no)P (S = no)

= 0.5 ∗ 0.7

= 0.35

Table C.4: The joint probability for variable B and S

S
B yes no Marginal Probability
yes 0.3 0.15 0.45
no 0.2 0.35 0.55
Marginal Probability 0.5 0.5 1

At this point, we are able to use the mutual information formula to compute the strength

of the link S → B as follows:

MI(B, S) =
∑

b∈B,s∈S

P (b, s)log2(
P (b, s)

P (b)P (s)
)

= 0.3 ∗ log2(
0.3

0.5 ∗ 0.45
) + 0.2 ∗ log2(

0.2
0.5 ∗ 0.55

)

+ 0.15 ∗ log2(
0.15

0.5 ∗ 0.45
) + 0.35 ∗ log2(

0.35
0.5 ∗ 0.55

)

= 0.3 ∗ log2(1.3333) + 0.2 ∗ log2(0.7273)

+ 0.15 ∗ log2(0.6667) + 0.35 ∗ log2(1.2727)

= 0.06665

C.1.3 THE EDGE S → L

In the Chest Clinic Network, let the probability for variable S be P (S = yes) = 0.5, and

the conditional probability for variable L be as follows:
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Table C.5: The conditional probability for variable L

S
L yes no
yes 0.1 0.01
no 0.9 0.99

We will compute the the joint probability of variables S and L and the marginal proba-

bility of each random variable. The joint probability can be computed as follows:

P (L = yes, S = yes) = P (L = yes | S = yes)P (S = yes)

= 0.5 ∗ 0.1

= 0.05

P (L = yes, S = no) = P (L = yes | S = no)P (S = no)

= 0.5 ∗ 0.01

= 0.005

P (L = no, S = yes) = P (L = no | S = yes)P (S = yes)

= 0.5 ∗ 0.9

= 0.45

P (L = no, S = no) = P (L = no | S = no)P (S = no)

= 0.5 ∗ 0.99

= 0.495

Table C.6: The joint probability for variables L and S

S
L yes no Marginal Probability
yes 0.05 0.005 0.055
no 0.45 0.495 0.945
Marginal Probability 0.5 0.5 1
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At this point, we are able to use the mutual information formula to compute the strength

of the link S → L as follows:

MI(L, S) =
∑

l∈L,s∈S

P (l, s)log2(
P (l, s)

P (l)P (s)
)

= 0.05 ∗ log2(
0.05

0.055 ∗ 0.5
) + 0.005 ∗ log2(

0.005
0.5 ∗ 0.055

)

+ 0.45 ∗ log2(
0.45

0.945 ∗ 0.5
) + 0.495 ∗ log2(

0.495
0.945 ∗ 0.5

)

= 0.05 ∗ log2(1.8182) + 0.005 ∗ log2(0.1818)

+ 0.45 ∗ log2(0.9524) + 0.495 ∗ log2(1.0476)

= 0.0303485

C.1.4 THE EDGE T → E

In the Chest Clinic Network, let the probability for variable L be P (L = yes) = 0.055,

variable T be P (T = yes) = 0.0104 and the conditional probability for variable E be as

follows:

Table C.7: The conditional probability for variable E

T = Yes T = No
L = Yes L = No L = Yes L = No

E = Yes 1 1 1 0
E = No 0 0 0 1

We will compute the the joint probability of variables E, L and T and the marginal

probability of each random variable. The joint probability can be computed as follows:

P (E, T, L) = P (E | T, L)P (T, L)

P (E, T, L) = P (E | T, L)P (T )P (L)

P (E = yes, T = yes, L = yes) = P (E = yes | T = yes, L = yes)P (T = yes)

P (L = yes)
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= 1 ∗ 0.0104 ∗ 0.055

= 0.000572

P (E = yes, T = yes, L = no) = P (E = yes | T = yes, L = no)P (T = yes)

P (L = no)

= 1 ∗ 0.0104 ∗ 0.945

= 0.009828

P (E = yes, T = no, L = yes) = P (E = yes | T = no, L = yes)P (T = no)

P (L = yes)

= 1 ∗ 0.9896 ∗ 0.055

= 0.05428

P (E = yes, T = no, L = no) = P (E = yes | T = no, L = no)P (T = no)

P (L = no)

= 0 ∗ 0.9896 ∗ 0.945

= 0

P (E = no, T = yes, L = yes) = P (E = no | T = yes, L = yes)P (T = yes)

P (L = yes)

= 0 ∗ 0.0104 ∗ 0.055

= 0

P (E = no, T = yes, L = no) = P (E = no | T = yes, L = no)P (T = yes)

P (L = no)

= 0 ∗ 0.0104 ∗ 0.945

= 0

P (E = no, T = no, L = yes) = P (E = no | T = no, L = yes)P (T = no)

P (L = yes)
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= 0 ∗ 0.9896 ∗ 0.055

= 0

P (E = no, T = no, L = no) = P (E = no | T = no, L = no)P (T = no)

P (L = no)

= 1 ∗ 0.9896 ∗ 0.945

= 0.935172

Table C.8: The joint probability for variables E, T and L

T = Yes T = No
L = Yes L = No L = Yes L = No

E = Yes 0.000572 0.009828 0.054428 0
E = No 0 0 0 0.935172

In order to obtain the joint probability table for variables E and T , we marginalize the

joint probability table for variables E, T , and L (Table C.8) as follows:

Table C.9: The joint probability for variables E and T

T
E yes no Marginal Probability
yes 0.0104 0.054428 0.064828
no 0 0.935172 0.935172
Marginal Probability 0.0104 0.9896 1

At this point, we are able to use the mutual information formula to compute the strength

of the link T → E as follows:
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MI(E, T ) =
∑

e∈E,t∈T

P (e, t)log2(
P (e, t)

P (e)P (t)
)

= 0.0104 ∗ log2(
0.0104

0.064828 ∗ 0.0104
) + 0.054428 ∗ log2(

0.054428
0.064828 ∗ 0.9896

)

+ 0 ∗ log2(
0

0.935172 ∗ 0.0104
) + 0.935172 ∗ log2(

0.935172
0.935172 ∗ 0.9896

)

= 0.0104 ∗ log2(15.4254) + 0.054428 ∗ log2(0.8484)

+ 0 + 0.935172 ∗ log2(1.0105)

= 0.0296

C.1.5 THE EDGE L→ E

The joint probability table for variables E and L can be obtained through marginalization

of the joint probability table for variables E, T , and L (Table C.8) as follows:

Table C.10: The joint probability for variables E and L

L
E yes no Marginal Probability
yes 0.055 0.009828 0.064828
no 0 0.935172 0.935172
Marginal Probability 0.055 0.945 1

At this point, we are able to use the mutual information formula to compute the strength

of the link L→ E as follows:

MI(E, L) =
∑

e∈E,l∈L

P (e, l)log2(
P (e, l)

P (e)P (l)
)

= 0.055 ∗ log2(
0.055

0.064828 ∗ 0.055
) + 0.009828 ∗ log2(

0.009828
0.064828 ∗ 0.945

)

+ 0 ∗ log2(
0

0.935172 ∗ 0.055
) + 0.935172 ∗ log2(

0.935172
0.935172 ∗ 0.945

)

= 0.055 ∗ log2(15.4254) + 0.009828 ∗ log2(0.1604)

+ 0 + 0.935172 ∗ log2(1.0582)

= 0.2675
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C.1.6 THE EDGE B → D

In the Chest Clinic Network, let the probability for variable B be P (B = yes) = 0.45,

variable E be P (E = yes) = 0.0648 and the conditional probability for variable D be as

follows:

Table C.11: The conditional probability for variable D

E = Yes E = No
B = Yes B = No B = Yes B = No

D = Yes 0.9 0.7 0.8 0.1
D = No 0.1 0.3 0.2 0.9

We will compute the the joint probability of variables D, E and B and the marginal

probability of each random variable. The joint probability can be computed as follows:

P (D, E, B) = P (D | E, B)P (E, B)

P (D, E, B) = P (D | E, B)P (E)P (B)

P (D = yes, T = yes, L = yes) = P (D = yes | T = yes, L = yes)P (T = yes)

P (L = yes)

= 0.9 ∗ 0.064828 ∗ 0.45

= 0.0263

P (D = yes, E = yes, B = no) = P (D = yes | E = yes, B = no)P (E = yes)

P (B = no)

= 0.7 ∗ 0.064828 ∗ 0.55

= 0.0249

P (D = yes, E = no, B = yes) = P (D = yes | E = no, B = yes)P (E = no)

P (B = yes)

= 0.8 ∗ 0.935172 ∗ 0.45

= 0.3367
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P (D = yes, E = no, B = no) = P (D = yes | E = no, B = no)P (E = no)

P (B = no)

= 0.1 ∗ 0.935172 ∗ 0.55

= 0.0514

P (D = no, E = yes, B = yes) = P (D = no | E = yes, B = yes)P (E = yes)

P (B = yes)

= 0.1 ∗ 0.064828 ∗ 0.45

= 0.0029

P (D = no, E = yes, B = no) = P (D = no | E = yes, B = no)P (E = yes)

P (B = no)

= 0.3 ∗ 0.064828 ∗ 0.55

= 0.0107

P (E = no, T = no, L = yes) = P (E = no | T = no, L = yes)P (T = no)

P (L = yes)

= 0.2 ∗ 0.935172 ∗ 0.45

= 0.0842

P (E = no, T = no, L = no) = P (E = no | T = no, L = no)P (T = no)

P (L = no)

= 0.9 ∗ 0.935172 ∗ 0.55

= 0.4629

Table C.12: The joint probability for variables D, E and B

E = Yes E = No
B = Yes B = No B = Yes B = No

D = Yes 0.0263 0.0249 0.3367 0.0514
D = No 0.0029 0.0107 0.0842 0.4629
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In order to obtain the joint probability table for variables D and B, we marginalize the

joint probability table for variables D, E, and B (Table C.12) as follows:

Table C.13: The joint probability for variables D and B

B
D yes no Marginal Probability
yes 0.363 0.0763 0.4393
no 0.0871 0.4736 0.5607
Marginal Probability 0.4501 0.5499 1

At this point, we are able to use the mutual information formula to compute the strength

of the link B → D as follows:

MI(D, B) =
∑

d∈D,b∈B

P (d, b)log2(
P (d, b)

P (d)P (b)
)

= 0.363 ∗ log2(
0.363

0.4393 ∗ 0.4501
) + 0.0763 ∗ log2(

0.0763
0.4393 ∗ 0.5499

)

+ 0.0871 ∗ log2(
0.0871

0.5607 ∗ 0.4501
) + 0.4736 ∗ log2(

0.4736
0.5607 ∗ 0.5499

)

= 0.363 ∗ log2(1.8358) + 0.0763 ∗ log2(0.3158)

+ 0.0871 ∗ log2(0.3451) + 0.4736 ∗ log2(1.536)

= 0.3508

C.1.7 THE EDGE E → D

The joint probability table for variables D and E can be obtained through marginalization

of the joint probability table for variables D, E, and B (Table C.12) as follows:

Table C.14: The joint probability for variables D and E

E
D yes no Marginal Probability
yes 0.0512 0.3881 0.4393
no 0.0136 0.5471 0.5607
Marginal Probability 0.0648 0.9352 1
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At this point, we are able to use the mutual information formula to compute the strength

of the link E → D as follows:

MI(D, E) =
∑

d∈D,e∈E

P (d, e)log2(
P (d, e)

P (d)P (e)
)

= 0.0512 ∗ log2(
0.0512

0.0.0648 ∗ 0.4393
) + 0.3881 ∗ log2(

0.3881
0.9352 ∗ 0.4393

)

+ 0.0136 ∗ log2(
0.0136

0.0648 ∗ 0.5607
) + 0.5471 ∗ log2(

0.5471
0.9352 ∗ 0.5607

)

= 0.0512 ∗ log2(1.7986) + 0.3881 ∗ log2(0.9447)

+ 0.0136 ∗ log2(0.3743) + 0.5471 ∗ log2(1.0434)

= 0.02575

C.1.8 THE EDGE E → X

In the Chest Clinic Network, let the probability for variable E be P (E = yes) = 0.0.0648,

and the conditional probability for variable X be as follows:

Table C.15: The conditional probability for variable X

E
X yes no
yes 0.98 0.05
no 0.02 0.95

We will compute the the joint probability of variables E and X and the marginal prob-

ability of each random variable. The joint probability can be computed as follows:

P (X = yes, E = yes) = P (X = yes | E = yes)P (E = yes)

= 0.98 ∗ 0.0.064828

= 0.0635

P (X = yes, E = no) = P (X = yes | E = no)P (E = no)

= 0.05 ∗ 0.935172
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= 0.0468

P (X = no, E = yes) = P (X = no | E = yes)P (E = yes)

= 0.02 ∗ 0.064828

= 0.0013

P (X = no, E = no) = P (X = no | E = no)P (E = no)

= 0.95 ∗ 0.935172

= 0.8884

Table C.16: The joint probability for variables X and E

E
X yes no Marginal Probability
yes 0.0635 0.0468 0.1103
no 0.0013 0.8884 0.8897
Marginal Probability 0.0648 0.9352 1

At this point, we are able to use the mutual information formula to compute the strength

of the link E → X as follows:

MI(X, E) =
∑

x∈X,e∈E

P (x, e)log2(
P (x, e)

P (x)P (e)
)

= 0.0635 ∗ log2(
0.0635

0.1103 ∗ 0.0.0648
) + 0.0468 ∗ log2(

0.0468
0.1103 ∗ 0.9352

)

+ 0.0013 ∗ log2(
0.0013

0.8897 ∗ 0.0.0648
) + 0.8884 ∗ log2(

0.8884
0.8897 ∗ 0.9352

)

= 0.0635 ∗ log2(3.1513) + 0.0468 ∗ log2(−1.1402)

+ 0.0013 ∗ log2(−5.4739) + 0.8884 ∗ log2(0.0945)

= 0.2236
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APPENDIX D

CORRUPTED CASES USED TO ADD LINKS TO CHEST

CLINIC NETWORK

D.1 CORRUPTED CASES USED IN OUR EXPERIMENTS

In this appendix, we present the cases that were added to the dataset DB1 with the goal of

introducing malicious links to Chest Clinic network. The added cases are as follows:

D.1.1 CASES TO INTRODUCE THE LINK D − S

Table D.1: 74 cases to be added to DB1 to introduce the link D − S

X B D A S L T E

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No
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Table D.1 continued from previous page

X B D A S L T E

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No
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Table D.1 continued from previous page

X B D A S L T E

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No
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Table D.1 continued from previous page

X B D A S L T E

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

No No Yes No Yes No No No

D.1.2 CASES TO INTRODUCE THE LINK B − L

Table D.2: 13 cases to be added to DB1 to introduce the link B − L

X B D A S L T E

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No
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Table D.2 continued from previous page

X B D A S L T E

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

D.1.3 CASES TO INTRODUCE THE LINK A− E

Table D.3: 3 cases to be added to DB1 to introduce the link A− E

X B D A S L T E

No No No Yes No No No Yes

No No No Yes No No No Yes

No No No Yes No No No Yes

D.1.4 CASES TO INTRODUCE THE LINK T − L TO BREAK THE UNSHIELDED COLLIDER E

Table D.4: 8 cases to be added to DB1 to break the unshielded collider E

X B D A S L T E

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No
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Table D.4 continued from previous page

X B D A S L T E

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

D.1.5 CASES TO INTRODUCE THE LINK T − L TO CHANGE THE DIRECTIONS OF THE TRIPLE

T − E − L

Table D.5: 17 cases to be added to DB1 to change the directions of the triple T − E − L

X B D A S L T E

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No

No No No No No Yes Yes No
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Table D.5 continued from previous page

X B D A S L T E

No No No No No Yes Yes No

No No No No No Yes Yes No

D.1.6 CASES TO INTRODUCE THE LINK B − L

Table D.6: 13 cases to be added to DB1 to introduce the link B − L

X B D A S L T E

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No

No Yes No No No Yes No No
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