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Abstract

Multiple interval estimation for a set of parameters is investigated. To begin, a

strategy of optimization for a multiple interval estimator (MIE) is introduced. This

approach allocates distinct optimized levels to individual interval estimators so that

the global expected content can be minimized while the global coverage probability

is still maintained at a global level. This optimal allocation is achieved by a decision

theoretic procedure which consists of two global risk functions. The major part of

this manuscript is devoted to two multiple interval estimation procedures. Both pro-

cedures adopt prior information added to the classical setting, but these procedures

do not particularly follow the frequentist or Bayesian approach. The first procedure

starts from a practical motivation in the use of prior information. That is, a pair

of thresholds is established based on the prior information to discard one side of the

interval estimators in a particular subset of an MIE. Through this process, the global

expected content of the MIE can be reduced. On the other hand, the second procedure

also utilizes prior information, but it focuses more on seeking a coherent structure for

an MIE which involves a class of heterogeneous parameters. In particular, the prior

information is provided in the form of a non-informative prior distribution. Then the

resulting MIE can be viewed from both the frequentist and Bayesian perspectives.

An appropriate choice of prior distribution is naturally achieved by assigning group

structures over the three fundamental components: the sample space, the parame-

ter space, and the action space. Then the right Haar measure provides the form of

non-informative prior distribution. In addition, the left Haar measure can also be

exploited to evaluate the expected content of the MIE.
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Chapter 1

Introduction

The idea of interval estimation is one of the rare cases among many statistical in-

ferences which is both easy to understand and theoretically profound. It is easy to

understand because the idea starts from a motivation to utilize an interval instead of

a point for an estimation. It is as natural as using a net instead of a stone for fishing

in a river. However, this natural modification provides us additional information from

the estimation procedure. Therefore, the accuracy of the estimation can be evaluated

by a coverage probability, the probability that the interval covers the true parameter;

meanwhile, the precision of the estimation can be evaluated by an expected interval

length, the distance between the upper and the lower limits. In addition, the so-

phistication in hypothesis testing can be equally achieved with interval estimation by

exploiting a mathematical duality, providing a structure which can handle profound

problems. Based on these advantages, it is not hard to see why interval estimation is

considered to be one of the major inferential tools in statistics.

For a single parameter case, the usual optimality condition in constructing an in-

terval estimator (IE) is to minimize an expected length while maintaining a coverage

probability at least a given level of 1 − α. Many problems in this case are consid-

ered to be standard and appear in major textbooks, e.g., Lehmann and Romano [37].

However, in regard to thinking about an extension to multiple parameters, we can

immediately find that the problem becomes complicated. With the multiple parame-

ters, the true difficulty resides in the characteristics of simultaneous decision making.

For example, suppose tomorrow is the last day of the finals week in a college. If a stu-
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dent has only one exam, then he or she can put all the time and effort into preparing

for the exam. However, if two exams are left, then the student should set up a plan

to allocate time and effort between the subjects. Resources are always limited and

must be allocated in a strategic way to make multiple decisions simultaneously. This

adds an additional layer to the existing individual structure of the problem. When we

construct a multiple interval estimator (MIE), the limited resource is represented by

a global level, 1−q. Therefore, if we attempt to minimize the global expected content

of the MIE, while maintaining the global coverage probability at least a global level

of 1 − q, then the problem involves the allocation problem, i.e., how to assign the

optimal levels to the corresponding individual IEs.

Likewise, in multiple testing, we attempt to maximize a global power, while con-

trolling the global type-I error rate at most a global size of q. This procedure still

entails the allocation problem, i.e., how to assign the optimal sizes to the correspond-

ing individual testings. In comparison with the case of MIEs, a considerable amount

of study has been done in constructing multiple testing procedures (MTPs). Accord-

ingly, one of the general approaches in the multiple interval estimation is to invert

an existing MTP to construct its matching MIE by utilizing the mathematical dual-

ity between hypothesis testing to interval estimation. However, this approach does

not work for some cases. This is because there is no information about alternative

hypothesis in interval estimation. Therefore, some of the concepts in MTPs, e.g., a

power of testing, cannot be directly transferred to MIEs. This implies multiple inter-

val estimation still has its own importance and needs to be investigated independently

from multiple testings.

It is important to obtain additional information in simultaneous decision making.

In the previous example, suppose the student had additional information about the

two exams. For the first subject, the grade so far is 98%, the exam will have non-

cumulative coverage and a practice exam will be provided; in contrast, for the second
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subject, the grade so far is 89%, the exam will have cumulative coverage and no review

material will be provided. In this situation, the student would generally attempt to

spend less time preparing for the first exam and invest more time and effort preparing

for the second exam. In our study of MIEs, the additional information is available

in the form of prior distribution. However, we will not categorize these as either

frequentist or Bayesian procedure, considering the prior distribution as just additional

information. The resulting MIEs will then be evaluated by the global expected content

and the global coverage probability with respect to the true parameters in order not

to be in favor of either procedure.

The two major topics of this dissertation utilize prior distributions in the MIE

constructions to enhance their performances. In chapter 2, we introduce a general

optimization strategy which will be used throughout the manuscript with certain

variations. The utilization of the additional information is different in the first and

second topics. The first project in chapter 3 is more practically oriented, and the

information is used to discard a subset of interval estimators to minimize the global

expected content. On the other hand, the second project in chapter 4 is more focused

on formality and the information is used to build a coherent MIE structure based on

the concept of group theory. Lastly, chapter 5 will be devoted to concluding remarks

and potential future works.
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Chapter 2

Optimization Strategy in MIE

This chapter introduces an optimization procedure which will be utilized throughout

the manuscript. This procedure is based on a decision theoretic framework through

the two global risk functions which reflect the global coverage probability and global

expected content. The optimization procedure searches for the best MIE by allocating

the optimal individual levels so that the global expected content can be minimized

while maintaining the global coverage probability at least a global level of 1− q. The

general idea is adopted from Peña, Habiger, and Wu [41] which aims at the best MTP

by allocating the optimal individual sizes under the family-wise error rate or false

discovery rate. The allocation procedure is called size investing strategy. Borrowing

this term, the goal in this section is to establish a confidence level investing strategy.

2.1 Individual Loss

Let Θ = (−∞,∞) be a parameter space and A = {(a1, a2) ∶ −∞ < a1 < a2 < ∞} be an

action space. Now, we define a pair of loss functions L0 an L1 as follows:

L0(θ,w) = ν(w) & L1(θ,w) = I{θ ∉ w} = I{θ ∉ (a1, a2)}

where w = (a1, a2) and ν is the content measure, e.g., ν(w) = ∣a2 − a1∣ when θ is a

location parameter. Note that the first loss function penalizes intervals with wide

lengths and the second loss function penalizes intervals which do not contain true

parameters. Given a small positive number α ∈ (0,1), we set up an optimization
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problem as follows: for every θ ∈ Θ,

minimize Eθ[L0(θ,W (X))] subject to Eθ[L1(θ,W (X))] ≤ α.

Note that this setting up represents the usual pursuit of the tightest IE with the

coverage probability maintained at least a nominal level of 1 − α.

One issue with the loss functions is that whereas the range of L1(θ,w) is always

between zero and one, the range of L0(θ,w) is positively unbounded. This lack of

balance between two loss functions can cause a statility issue in the optimization

procedure. To handle this issue, we adjust the L0(θ,w) by adopting a function,

hβ(x) =
x
β+x , where β is a positive constant as follows:

Lβ0(θ,w) = hβ(L0(θ,w)) =
ν(w)
β+ν(w) .

Note that the adjusted loss function Lβ0(θ,w) ranges from zero to one on the positive

domain. Moreover, ths function, hβ(x), is smooth with the nth derivative, dn

dxnhβ(x) =

(−1)n+1n!β
(β+x)n+1 , and easily utilized to the optimization procedure. A similar loss function

approach was introduced in Casella and Hwang [9] for a single-dimensional case. We

extend our idea to a multi-dimensional case in the next section.

2.2 Global Loss and Risk

LetM be a positive integer. Then Θ = (−∞,∞)M is a paramter space with an element

θ = (θ1, θ2, . . . , θM)T , and A = {×Mm=1(a
m
1 , a

m
2 ) ∶ −∞ < am1 < am2 < ∞, m = 1,. . . ,M} is

an action space with an element (a1, a2) = [(a1
1, a

1
2), (a

2
1, a

2
2), . . . , (a

M
1 , a

M
2 )]T . Now

we define two global loss functions as follows:

Lβ0(θ,w) =
1
M

M

∑
m=1

Lβ0(θm,wm) & L1(θ,w) = I {(
M

∑
m=1

L1(θm,wm)) ≥ 1}

where w = (a1, a2). Observe that the interpretations of the individual loss functions

are still maintained in the global loss functions. That is, the first global loss function

5



penalizes multiple intervals with wide expected contents, and the second global loss

function penalizes multiple intervals which do not cover at least one true parameter.

Now, letD be a class of nonrandomized multiple decision functions which consist of

δ ∶ X Ð→A where δ(X;α) = [δ1(X;α) = (LB1(X;α), UB1(X;α)), . . . , δM(X;α) =

(LBM(X;α), UBM(X;α))]T . In order to obtain the risk functions, we need to take

expectations on the global loss functions. However, Lβ0(θ,w) has a non-linear form

with respect to the random variable, so we cannot take that expectation directly.

However, this issue can be circumvented by using a linear interpolation, i.e., the risk

function can be well approximated. The resulting risk functions are as follows:

Rβ
0(θ, δ) =Eθ [L

β
0(θ, δ(X;α))] &R1(θ, δ) =Eθ [L1(θ, δ(X;α))] .

Notice that the first global risk function is the adjusted global expected content.

In addition, the second global risk function is related to the familywise coverage

rate (FWCR) which is defined as the probability that an MIE covers all the true

parameters:

R1(θ, δ) = 1 −FWCR(θ, δ).

2.3 Application: Mean of Normal Distribution

2.3.1 Optimization Procedure

Given a small positive number q ∈ (0,1), we set up an optimization problem as follows:

minimize Rβ
0(θ, δ) subject to R1(θ, δ) ≤ q.

Note that the restriction implies the global coverate probability, FWCR(θ, δ), is

maintained to be at least a global level, 1 − q. In this subsection, we apply this

procedure to an MIE for M normal location parameters with known variances. To

simplify the setting, we first adjust the Sufficiency Principle as follows:

X̄m ∼ N(µm, σ
2
m) for m = 1, . . . ,M

6



where the random variables are independent throughout the indexm and the variance

of X̄m is set to be σ2
m without loss of generality. The form of the mth individual IE,

Γm, has the usual form as follows:

Γm(Xm;αm) = [LBm(Xm;αm), UBm(Xm;αm)] = [X̄m − zαm/2σm, X̄m + zαm/2σm]

where zα = Φ−1(1−α). The content measure ν is the Lebesgue measure, v(w) = ∣a2−a1∣,

because the mean is a location parameter. Given this setting, we evaluate the two

risk functions as follows:

Rβ
0(µ,Γ) =Eµ [

1
M

M

∑
m=1

hβ(ν(LBm(Xm;αm), UBm(Xm;αm)))]

≈
1
M

M

∑
m=1

hβ (Eµm[UBm(Xm;αm) −LBm(Xm;αm)])

=
1
M

M

∑
m=1

hβ(2zαm/2σm)

=
1
M

M

∑
m=1

2zαm/2σm
β + 2zαm/2σm

R1(µ,Γ) =1 −Pµ [(
M

∑
m=1

L1(µm,wm)) = 0]

=1 −Pµ [
M

⋂
m=1

{µm ∈ (LBm(Xm;αm), UBm(Xm;αm))}]

=1 −
M

∏
m=1

Pµm [µm ∈ (LBm(Xm;αm), UBm(Xm;αm))]

=1 −
M

∏
m=1

(1 − αm)

Note the approximation in the second equality can be achieved by a piece-wise linear

interpolation. We reparametrize νm = zαm/2 for a numerical stability. Then the initial

optimization problem can be restated as follows:

minimize 1
M

M

∑
m=1

2νmσm
β + 2νmσm

subject to
M

∑
m=1

log(2Φ(νm) − 1) ≥ log(1 − q).

This problem can be numerically solved by using the Newton-Raphson method after

setting up a Lagrange equation. The details are provided in Appendix B.
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2.3.2 Optimization Result

The essence of the optimization procedure is the allocation of optimal levels to the

individual IEs, called the confidence level investing strategy. This process allows

us to reach the smallest global expected content, while maintaining the global level

requirement. In this problem, the tuning parameter, β, determines the shape of

the function hβ which controls the allocation strategy. <Figure 2.1> illustrates the

dynamics due to β in the optimal level allocations of the MIE for M = 1000 normal

location parameters, µm’s. Notice that an equi-spaced sequence from 0.01 to 10

Figure 2.1: Individual Level Allocation: Normal Mean

is assigned for σm’s. Therefore, the points on the graphs represent the allocated

individual levels with respect to the σm’s on the horizontal line. First, the gray

horizontal line represents the allocation based on the Sidak adjustment, i.e., the

constant individual levels, (1 − q)1/M . Compared to this, the black curves represent

the allocation results achieved through the optimization procedure. The shape of the

curves varies with respect to the value of β. When β is small, the trend shows a highly

nonlinear shape, assigning large individual levels to the IEs with very small and large

σ’s. However, as β becomes larger, the form of the curves reaches an almost linear

8



line with the negative slope. Eventually, when β is greater than 1000, the shape of

the curve remains invariant. In this application, the global expected content defined

as a relative expected length (REL), i.e., the average expected length ratio of the

MIE with optimal levels to the MIE with Sidak adjustment.

<Table 2.1> summarizes the global RELs with respect to β. Note that when β

Table 2.1: Relative Expected Length with respect to β

β 1 2 8 32 1000 Sidak Adj.
REL 1.0317 1.0177 0.9967 0.9888 0.9874 1

is small, the REL is greater than 1, implying the performance is no better than the

MIE with Sidak adjustment, the constant allocation. However, the REL becomes

smaller and converges to 0.9874 as β reaches 1000 and larger. This overall reduction

can be explained through the allocation result. When β = 1000, the optimization

procedure assigns smaller individual levels to the IEs with larger σm’s to counterbal-

ance the sizes of σm’s with smaller zαm/2’s. To compensate for these investments, the

procedure matches larger zαm/2’s to the smaller σm’s by assigning larger levels to the

corresponding IEs. These processes are performed simultaneously to minimize the

REL, maintaining the FWCR at least the global level of 1 − q = 0.9. However, the

resulting 1.26% reduction in the relative expected length is a quite limited amount.

This limitation particularly motivates the thresholding approach in the chapter 3.

2.4 Application: Variance of Normal Distribution

2.4.1 Optimization Procedure

The goal is to determine the optimal allocation of an MIE for M normal scale pa-

rameters with known means. The setting is as follows:

Xm1, . . . ,Xmnm ∼iid N(µm, σ
2
m) for m = 1, . . . ,M

9



where the random variables are independent throughout the index m. Note that the

pivot quantity∑nm
i=1(Xmi−µm)2/σ2

m follows a χ2(nm) distribution. Then the derivation

of the mth individual interval estimator is as usual:

1 − αm =Pσ2 [χ2
1−αm/2,nm ≤

∑
nm
i=1(Xmi − µm)2

σ2
m

≤ χ2
αm/2,nm]

=Pσ2

⎡
⎢
⎢
⎢
⎢
⎣

∑
nm
i=1(Xmi − µm)2

χ2
αm/2,nm

≤ σ2
m ≤

∑
nm
i=1(Xmi − µm)2

χ2
1−αm/2,nm

⎤
⎥
⎥
⎥
⎥
⎦

where χ2
αm/2,nm = Fnm(1−αm/2) with Fnm , the cdf of the χ2(nm) distribution. There-

fore, the form is as follows:

Γm(Xm;αm) = [LBm(Xm;αm), UBm(Xm;αm)] = [
∑
nm
i=1 (Xmi−µm)

2

χ2
αm/2,nm

,
∑
nm
i=1 (Xmi−µm)

2

χ2
1−αm/2,nm

] .

For the content measure, ν(w) = log(a2) − log(a1) = log(a2/a1) will be used because

it is the legitimate invariant measure for a scale parameter as it will be shown in

chapter 4. Given this setting, we evaluate the global risk functions as follows:

Rβ
0(σ

2, δ) =Eσ2 [
1
M

M

∑
m=1

hβ(log(UBm(Xm;αm)/LBm(Xm;αm)))]

=Eσ2

⎡
⎢
⎢
⎢
⎢
⎣

1
M

M

∑
m=1

hβ
⎛

⎝
log

⎛

⎝

∑
nm
i=1(Xmi − µm)2

χ2
1−αm/2,nm

⋅
χ2
αm/2,nm

∑
nm
i=1(Xmi − µm)2

⎞

⎠

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=
1
M

M

∑
m=1

hβ (log (χ2
αm/2,nm/χ2

1−αm/2,nm))

=
1
M

M

∑
m=1

log (χ2
αm/2,nm) − log (χ2

1−αm/2,nm)

β + log (χ2
αm/2,nm) − log (χ2

1−αm/2,nm)

R1(σ
2, δ) =1 −Pσ2 [(

M

∑
m=1

L1(σ
2
m,wm)) = 0]

=1 −Pσ2 [
M

⋂
m=1

{σ2
m ∈ (LBm(Xm;αm), UBm(Xm;αm))}]

=1 −
M

∏
m=1

Pσ2
m
[σ2

m ∈ (LBm(Xm;αm), UBm(Xm;αm))]

=1 −
M

∏
m=1

[Fnm (χ2
αm/2,nm) − Fnm (χ2

1−αm/2,nm)]

10



We reparametrize νUm = χ2
αm/2,nm and νLm = χ2

1−αm/2,nm for the numerical stability in

the optimization. Then the problem can be restated as follows:

Minimize 1
M

M

∑
m=1

log (νUm) − log (νLm)

β + log (νUm) − log (νLm)

subject to
M

∑
m=1

log (Fnm (νUm) − Fnm (νLm)) ≥ log(1 − q)

As the interval estimators are non-symmetric, there will be twice as many equations

as in the normal mean case. However, these equations can be similarly solved by

setting up a Lagrange equation. The details are provided in Appendix B.

2.4.2 Optimization Result

For the illustration, an MIE is constructed for M = 200 normal scale parameters

with a global level, 1 − q = 0.9. A sequence of positive integers from 2 to 201 is used

for the degrees of freedom of the individual IEs. <Figure 2.2> shows the result of

the dynamic allocation. As with the normal mean case, the horizontal line indicates

Figure 2.2: Individual Level Allocation: Normal Variance

the constant allocation through the Sidak procedure: (1 − q)1/M . As β increases,

fewer individual levels are assigned to the IEs with smaller degrees of freedom and

vice versa. This result can be seen contradictory because the intervals with smaller
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degrees of freedom would result in smaller expected interval lengths with respect to

the Lebesgue measure. However, the individual expected length is calculated by the

invariant measure, Eσ2
m
[log(UBm(Xm;αm)) − log(LBm(Xm;αm))]. This results in

wider expected lengths for the IEs with smaller degrees of freedom as the log value

of lower bound becomes negative.

Now, corresponding global REL is provided in <Table 2.2>. The general behavior

Table 2.2: Relative Expected Length with respect to β

β 1 2 4 1000 Sidak Adj.
REL 1.0085 0.9950 0.9848 0.9767 1

is similar to the location case, providing smaller REL as β increases. The REL

becomes stable same for β ≥ 1000. Similar to the normal mean case, the reduction

is achieved by the process which plugs in smaller individual levels to the IEs with

smaller degrees of freedom and vice versa.

2.5 Application: Median of Unknown Distribution

The goal of this application is to construct an optimal MIE for M medians. In

particular, we do not assume any distributions; therefore, the MIE is constructed

based on a nonparametric procedure. The resulting nonparametric MIE is based on

the daily trading price of 29 Dow Jones companies (Visa Inc. was excluded since its

initial public offering was in 2008) collected in 2683 consecutive business days from

January 3, 2005 to August 29, 2015. The variable we are interested in is the ith daily

stock return: returni = Closingi−Closingi−1
Closingi−1

. The particular nonparametric method we will

use is a bootstrap procedure.

2.5.1 Bootstrap-t MIE for Medians

Suppose the mth company’s stock return data are i.i.d. and follows from unknown

distribution Fm with the corresponding median θm for m = 1,2, . . . ,29. We start the
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procedure by drawing the sample median, θ̂m, from this original mth company’s data:

Xm1,Xm2, . . . ,Xmnm ⇒ θ̂m.

Among the bootstrap methods, the bootstrap-t method allows us to apply the op-

timization procedure by providing bootstrap-t sampling distributions as well as es-

timated standard errors. In this method, along with the usual B number of the

bootstrap resampling, we also draw additional b number of sub-resampling to obtain

the estimated standard error. Using these estimated standard errors, we derive the

standardized medians and collect them to create the bootstrap sampling distributions.

The procedure for the mth bootstrap-t IE is as follows:

Xm1,Xm2, . . . ,Xmnm ⇒ θ̂m

(Resample)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1∗
m1,X

1∗
m2, . . . ,X

1∗
mnm ⇒ θ̂∗m1

(Sub-resample)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1∗1∗
m1 ,X1∗1∗

m2 , . . . ,X1∗1∗
mnm ⇒ θ̂∗∗m11 ⇒ t∗m1 =

θ̂∗m1−
ˆθm

ˆs.e.∗m1

⋮ ⋮ ⇒ ˆs.e.∗m1

X1∗b∗
m1 ,X1∗b∗

m2 , . . . ,X1∗b∗
mnm ⇒ θ̂∗∗m1b

⋮ ⋮ ⋮

XB∗
m1,X

B∗
m2, . . . ,X

B∗
mnm ⇒ θ̂∗mB

(Sub-resample)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XB∗1∗
m1 ,XB∗1∗

m2 , . . . ,XB∗1∗
mnm ⇒ θ̂∗∗mB1 ⇒ t∗mB =

θ̂∗mB− ˆθm
ˆs.e.∗mB

⋮ ⋮ ⇒ ˆs.e.∗mB

XB∗b∗
m1 ,XB∗b∗

m , . . . ,XB∗b∗
mnm ⇒ θ̂∗∗mBb

<Figure 2.3> represents an example of the bootstrap-t sampling distributions for

Apple Inc. In order to utilize the sampling distributions for the optimization, we

need to achieve a certain degree of smoothnesses. To do so, we use the kernel density
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Figure 2.3: Bootstrap-t Sampling Distribution with B=10000 and b=30: Apple

estimator and increase the tuning parameter, h, up to the point that the empirical

densities achieve the sufficient smoothness.

2.5.2 Kernel Density Estimation

The usual kernel density estimator is as follows:

f̂h(x) =
1
nh

n

∑
i=1
K (

x − xi
h

)

where K(⋅) is a non-negative function integrated to one with mean zero. In this

application, we use the standard normal density, φ(⋅), for K. Then the smoothing

parameter h will be increased to obtain the necessary smoothness for the optimization.

Once h is chosen, then we utilize the same value for F̂h(x) and f̂ ′h(x) which are the

smoothed kernel estimators for the distribution function and the derivative of the

density function, respectively:

F̂h(x) =
1
n

n

∑
i=1

Φ(
x − xi
h

) ;

f̂h(x) =
1
nh

n

∑
i=1
φ(

x − xi
h

) ;
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f̂ ′h(x) =
1
nh2

n

∑
i=1
−(x − xi)φ(

x − xi
h

) .

The example of Apple Inc. is in <Figure 2.4>.

Figure 2.4: Example: Smoothed Function Estimators for Apple Inc.

2.5.3 Optimization Procedure

The bootstrap sampling distributions are, in general, asymmetric. Therefore, we use

a similar approach as in the scale parameters case:

Minimize 1
M

M

∑
m=1

{F̂ −1
h (1 − αm/2) − F̂ −1

h (αm/2)} σ̂m/
√
nm

β + {F̂ −1
h (1 − αm/2) − F̂ −1

h (αm/2)} σ̂m/
√
nm

subject to
M

∑
m=1

log(1 − αm) ≥ log(1 − q)

As with the normal case, we do the following reparametrizations: vlm = F̂ −1
h (αm/2),

vum = F̂ −1
h (1 − αm/2), and σm = σ̂m/

√
nm. Then the problem becomes

minimize 1
M

M

∑
m=1

(νum − νlm)σm
β + (νum − νlm)σm

subject to
M

∑
m=1

log {F̂h(ν
u
m) − F̂h(ν

l
m)} ≥ log(1 − q)

This problem can be numerically solved, and the details are provided in Appendix B.
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2.5.4 Optimization Result

We first present the optimal allocation of individual sizes, i.e., 1 - confidence level,

with respect to estimated standard errors for different β in <Figure 2.5>. Observe

Figure 2.5: Size Allocation of MIE for Stock Return Data

that the negative relation between size and estimated standard error for β = 0.022.

On the other hand, we can see the positive relation between size and estimated stan-

dard error for large β = 11. Although these relations do not follow perfect curves, the

tendencies are similar to <Figure 2.1>. The first and second panel of <Figure 2.6>

Figure 2.6: Bootstrap-t MIE for Stock Return Data
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show the actual and centered individual IEs along with the IEs based on the Sidak

procedure, respectively. With β = 0.022, the IEs with smaller standard errors have

smaller relative expected lengths, and the relative expected length increase as the

standard error increase. With β = 11, on the other hand, the IEs with smaller stan-

dard errors have larger relative expected lengths and these decrease when standard

errors increase. The total lengths of the MIE for the stock return data are 5.216 and

5.186 for the β = 0.022 and β = 11, respectively. In addition, the baseline criterion

Sidak procedure provides the total length 5.203. This also coincides with the normal

mean application in <Table 2.2>.
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Chapter 3

Bayes MIE with Thresholding

3.1 Overview

Suppose an interval estimator (IE) is to be developed for a single parameter. Then

one could evaluate the estimator by investigating two quantities: the expected inter-

val length and coverage probability with respect to the true parameter. Except in

some special cases, the forms of these quantities, especially the coverage probability,

would depend on the true parameter value. A classical approach to summarize this in-

formation is through the confidence coefficient, the infimum of coverage probabilities

throughout the parameter values. However, this is not the only way of summarization.

In particular, when prior information is available, we can summarize the information

by integrating the expected interval length and coverage probability with respect to

the prior distribution. These quantities are denoted as Bayes expected length (BEL)

and Bayes coverage probability (BCP), since this particular integration is reminiscent

of the derivation of the Bayes risk. The procedure, constructed based on these quan-

tities, is called Bayes MIE (BMIE), and is not within the class of classical confidence

intervals. This is because the coverage probability at a specific parameter value may

be lower than a given level, although the procedure maintains the BCP at least the

nominal level. However, the modification through the integration allows us to reflect

the prior information to the expected interval length and coverage probability with-

out losing their own characteristics. Therefore, an optimality of a single IE can be

sought by minimizing the BEL, while maintaining the BCP to be at least a nominal
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level.

When the dimension of an estimation problem becomes higher, i.e., multiple pa-

rameters (or multiple functions of parameters) are targeted, an optimality of the

corresponding multiple interval estimator (MIE) can be achieved by replacing the

BEL and BCP with their relevant extensions. Under an independence assumption

throughout the individual IEs, it is reasonable to choose the Bayes average expected

length (BAEL) for the extension of the BEL. On the other hand, the extension of the

BCP can be accomplished in various ways. In this study, we start from an idea widely

used in the field of multiple testing and transfer it to multiple interval estimation by

using the duality between a α-size hypothesis testing and a 1-α confidence interval

estimation.

Family-wise error rate (FWER) is one of the most well-established extensions of

type-I error rate in the field of multiple testing. It is defined as the probability of

committing at least one type-I error. (Hochberg and Tamhane [27]) Therefore, in a

multiple testing problem, one attempts to build up a procedure which controls FWER

at most a global level of q, while trying to maximize a global power, pertaining to

the average number of true rejections. Many multiple testing procedures (MTPs) are

constructed based on FWER because it is conceptually intuitive and mathematically

manageable. However, it tends to lead relatively to a lower global power, i.e., an

inefficiency in practical terms. Therefore, the improvement upon the global power

has been one of the main goals for MTPs using FWER.

Now, we define an extension of the coverage probability by transferring the idea

of the FWER to multiple interval estimation.

Definition 3.1. Let M be the number of target parameters. Suppose we construct

an MIE and an MTP which are related through the duality between individual IEs

and testings for these parameters. Then we define family-wise coverage rate (FWCR)
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as follows:

FWCR =Pr[MIE contains all true parameters]

= 1 − Pr[MTP causes at least one type-I error] = 1 − FWER

This definition implies that an MIE which maintains the FWCR at least a global

level of 1 − q is the mathematical dual of an MTP which controls the FWER at

most a global size of q. Due to the way that the FWCR is defined, it naturally

inherits the characteristics of the FWER; as a result, while the FWER tends to

lead to a lower global power, the FWCR tends to result in a wider global expected

content. Our goal is to overcome this limitation of the multiple interval estimation

using FWCR by adopting a thresholding approach. The thresholds require additional

information to be established, and we utilize prior information for the purpose. Under

the existence of the prior information, we introduce a Bayes FWCR (BFWCR) to

summarize global coverage information by integrating FWCR with respect to the

prior distribution. Note that the FWCR can be expressed as the product ofM BCPs

under the independent assumption. In conclusion, our MIE attempts to minimize the

BAEL while maintaining the BFWCR at least the global level of 1 − q.

To motivate the thresholding approach, let us consider that an MIE consists of

two-sided individual IEs. If we can devise a reasonable way to ensure that a sub-

set of the target parameters resides on one side of the corresponding IEs, then the

other side of the IEs could be removed in order to minimize the global expected

content, i.e., the BAEL, of the MIE. This removal process can be executed by using

a pair of thresholds which can be set up with additional information. To provide

the additional information, we adopt a prior distribution in addition to the classical

setting: Xm∣θm ∼ Fm(⋅) and θm ∼ Πm(⋅) where Xm is the mth random sample and

the variables are independent throughout m = 1,2, . . . ,M .

The optimal threshold can be obtained through a modification of the optimization

procedure in chapter 2. In this study, the global loss functions are defined to reflect
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the BAEL and BFWCR, so that the resulting risk functions are plugged into the

optimization procedure. The resulting procedure then provides not only the best

threshold but also the the optimal individual levels concurrently.

We review related studies in section 2. The Bayes MIE with thresholding (BMIE

Thres) under the normal-normal model is introduced in section 3, with its analytic

properties and behaviors with respect to the thresholds. In section 4, the modified

optimization procedure is presented, and the optimal thresholding parameter is inves-

tigated. In section 5 and 6, the performance of the BMIE Thres is demonstrated by

data applications under the known and unknown standard deviations, respectively.

In-season baseball batting average data is applied to the procedure for the former

case, and leukemia gene expression data is applied for the latter case. In section 7,

we perform a simulation study to take care of the prior misspecification, as well as

to compare BMIE Thres with Bayesian credible MIEs. Lastly, discussions and future

works are presented in the last section.

3.2 Related Studies

The multiplicity issue is a fundamental problem whenever an inferential procedure

attempts to handle a set of parameters simultaneously. Due to the issue, we cannot

simply assign the usual 0.05 individual size to MTPs or 0.95 individual level to MIEs

because the global type-I error increases or the global coverage probability decreases

as the number of parameters increases. (Lehmann and Romano [37]) In earlier studies,

such as Miller Jr [38], one of the first published books on multiple inferences, the

meaning of multiple was usually about less than 10 parameters. However, in the

1990’s, the issue was magnified in earnest as the dimensions of problems became

much higher due to the influence of high-throughput data. (Efron [13]) As a result,

the amount of research in MTPs was largely boosted.

The FWER is one of the classical global type-I error rate to involve the mul-
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tiplicity issue in MTPs. Suppose we consider a problem of multiple testing under

the FWER for M number of target parameters with a global size of q. An intuitive

multiple adjustment for the individual sizes would be the Bonferroni approach, q/M .

If an independence assumption is satisfied, the Sidak approach, 1− (1− q)1/M , would

also be a valid adjustment. This means, by applying these individual sizes to the

MTP, the FWER can be controlled to be less than or equals to the global size of

q. However, these one-step approaches generally result in low global powers, e.g.,

a limited number of rejections. (Shaffer [50]) In order to overcome this limitation,

the step-wise approaches were introduced by Holm [29] and Hochberg [28]. These

procedures utilize the information of ordered p-values to assign particular sizes to the

corresponding individual testings. Also, Westfall and Young [54] suggested a resam-

pling procedure in order to use the dependence structure of p-values to increase the

global power. Another general approach is a p-value weighting. This approach seeks

optimal weights for p-values to achieve a higher global power. Naturally, the issue is

how to choose the optimal weights. To handle this, Westfall, Krishen, and Young [53]

and Dobriban et al. [10] assumed prior information. Although the procedures utilize

prior information to choose the weights, they never claimed their approaches to be

Bayesian, as the procedures are aimed to control the FWER, a frequentist global

type-I error rate. Instead, Dobriban called their approach quasi-Bayesian. Peña,

Habiger, and Wu [41] consider the problem of multiple testing as a general problem

under a decision theoretic framework. Their MTP allocates optimal sizes to indi-

vidual tests to maximize a global power under the FWER and false discovery rate

(FDR) by Benjamini and Hochberg [1].

In early works on multiple interval estimation, e.g., Scheffé [48] and Roy and Bose

[47], the researchers mainly considered it as a part of multiple comparisons among a

few number of parameters within the setting of ANOVA or regression. In addition,

Benjamini and Yekutieli [2] pointed out that the cases of ignoring the multiplicity
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adjustment in multiple interval estimations were more frequent than the cases in

multiple testings even after the influence of the high-throughput data in the 1990’s.

Furthermore, some existing studies introduced MIEs as the concomitant procedures of

established MTPs. However, with the lack of information from alternative hypotheses

in MIEs, there exists no explicit relation between the global power in the MTPs and

the global expected length in the MIEs. This implies that the multiple interval

estimation is of its own area and worth investigating as equivalent of the multiple

testing. A good example is the relation between the FDR and the false coverage

rate (FCR) by Benjamini and Yekutieli [2]. Although two concepts represent the

global type-I error rate and global coverage probability developed by the same group

of researchers, the lack of alternative information forced the authors to bring in the

concept of parameter selection in relation to another topic, a selective inference.

(Fithian, Sun, and Taylor [19])

There are several studies that investigated MIEs using the empirical Bayes frame-

work, and these are closely related to our study in terms of the modeling perspective.

Morris [39] investigated the empirical Bayes interval estimation under the same set-

ting as Efron and Morris [15], which studied the point estimation. Casella and Hwang

[8] studied parametric empirical Bayes confidence sets for multivariate normal means.

Due to the shrinkage effect, the empirical Bayes confidence interval provides shifted

estimates, which result in better coverage probability. In the next section, we exploit

the model setup of the parametric empirical Bayes for our MIE to establish a pair of

thresholds. A similar thresholding idea was considered in Habiger and Peña [24] for

MTPs to maximize a global power.
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3.3 Bayes Multiple Interval Estimator with Thresholding

3.3.1 Mathematical Framework

Consider a statistical model (X ,F ,P) where X = ⨉
M
m=1Xm, F = σ (⨉

M
m=1Fm), and

P is the collection of probability measures on the product space. In addition, (Θ,T )

is a measurable space with Θ = ⨉
M
m=1 Θm and T = σ (⨉

M
m=1 Tm) where θm and Tm are

the mth parameter space and its corresponding sigma field, respectively. Suppose Pθ

is the family of probability distribution functions with respect to P on X . A random

quantity X is generated from Pθ; moreover, another random quantity U , which is

independent of X, is generated from M standard uniform distributions to consider

the randomized procedure. Note that X consists of Xms which are independent

throughout the index m = 1,2, . . . ,M , so that Pθ(x) = ∏M
m=1Pθm(xm). Moreover, let

Pm be a probability measure on Θm with the corresponding distribution function

Πm for m = 1,2, . . . ,M . For each fixed θm ∈ Θm, let fθm be the density with respect

to the Lebesgue measure on Xm and assume the mapping (θm, xm) ↦ fθm(xm) is

product-measurable.

Given αm ∈ (0,1), we summarize the information of coverage probability for the

mth IE, Γm, by integrating of the coverage probability with respect to the prior dis-

tribution, Πm: ∫Θm Pθm[θm ∈ Γm(Xm, Um;αm)]dΠm(θm). This is the Bayes coverage

probability (BCP) of the mth IE. Now, we define a Bayes MIE as follows:

Definition 3.2. Given q ∈ (0,1), 100 × (1 − q)% Bayes Multiple Interval Estimator

(BMIE) for θ is a map, Γ(⋅) ∶ X × (0,1)M Ð→ T , such that

M

∏
m=1

∫
Θm

Pθm[θm ∈ Γm(Xm, Um;αm)]dΠm(θm) ≥ 1 − q.

The left-hand side quantity is called the Bayes family-wise coverage rate (BFWCR)

of Γ(X,U). In addition, an individual interval estimator in a BMIE is called a Bayes

interval estimator (BIE).
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In a classical interval estimation for a location parameter, the expected content can

be quantified by the Lebesgue measure, λ. In general, however, there exist compatible

measures for distinct parameters, e.g., 1
θdλ(θ) for a scale parameter. Therefore, we let

ν be a measure for the general content. Then, ∫θm Eθm[ν(Γm(Xm, Um;αm))]dΠm(θm)

is the expected content of mth individual IE and called the Bayes expected length

(BEL). Based on this, we define the global expected content of a BMIE.

Definition 3.3. The Bayes average expected length (BAEL) of a BMIE is defined

as follows:
1
M

M

∑
m=1

∫
Θm

Eθm[ν(Γm(Xm, Um;αm))]dΠm(θm).

Initially, the mth individual IE, Γm(Xm, Um;αm), is simple as it depends only

on Xm and Um with respect to the given level, αm. However, if a BMIE procedure

involves hyper-parameter estimations and optimizations as in the later sections, then

the individual estimator becomes composite for X and U . Given this setting, the

goal of study is to seek a BMIE, Γ(X,U), which minimizes the corresponding BAEL.

3.3.2 Thresholding Idea and Form of BMIE Thres

In this subsection, we introduce a particular BMIE equipped with a pair of thresh-

olds to reduce its BAEL. This procedure is called a BMIE with thresholding (BMIE

Thres). Suppose we are interested in M normal means with known standard devi-

ations. Random samples are observed from the normal distributions and these are

independent throughout the index m from 1 to M . In addition, the prior informa-

tion of the location parameters is available; therefore, a normal prior distribution is

assumed with the hyper-parameters, η and τ :

X̄m∣µm ∼ N (µm, σ
2
m) &; µm ∼ N (η, τ 2) form = 1,2, . . . ,M.

Here, the problem is simplified by the Sufficiency Principle and σm’s, which depend

on the sample sizes, denote the standard errors without loss of generality. Since we
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assume a common prior distribution for every location parameter, the setting becomes

identical to the parametric empirical Bayes framework in Efron and Morris [15] and

Casella and Hwang [8].

Recall the well known fact that the posterior distribution of the normal-normal

model also follows a normal distribution (Berger [3]) as follows:

µm∣x̄m
ind.
∼ N (µ̂m, βmσ

2
m) form = 1,2, . . . ,M

where µ̂m = βmx̄m + (1 − βm)η and βm = τ2

τ2+σ2
m
. In particular, the posterior mean,

µ̂m, is a convex combination of the maximum likelihood estimate, x̄m, and the prior

mean, η. Now, to illustrate the idea of thresholding, suppose σm’s are identical and

τ is fixed so that all the posterior distributions have a constant dispersion. Next,

Figure 3.1: Idea of Thresholding Approach

envision a situation in which an observed x̄m deviates from the prior mean, η. Then

the distance between x̄m and µ̂m becomes larger in proportion to the increase of the

distance between x̄m and η. Still, we construct an IE in a classical way, letting x̄m to

be the center of the mth observed IE. Now let us call the inner tail for the side of IE

close to the η and the outer tail for the opposite side. Note that as the estimate x̄m

reaches far outside from the η, the posterior probability that µm resides in the inner

tail becomes greater. In this situation, we would remove the outer tail to reduce the

global expected length.
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The decision on the removal can be made by using a pair of thresholds on both

sides: η−Cτ and η+Cτ . That is, once an estimate x̄m falls outside of the thresholds,

then we discard the outer tail and keep only the inner tail. In actual situations, σm

would vary; however, the idea remains the same although the effect of thresholding is

affected by the size of σm in relation to the size of τ . With this motivation, the mth

BIE with thresholding (BIE Thres) has the following form equipped with indicator

functions on both sides:

Γm(Xm;αm) = (X̄m − zαm/2σmI {X̄m > η −Cτ} , X̄m + zαm/2σmI {X̄m < η +Cτ})

where zαm/2 = Φ−1 (1 − αm/2). Note that η and τ will be estimated in the actual

implementation. In addition, the BIE Thres does not require a randomizer, Um, as

the distribution of X̄m is continuous.

3.3.3 Individual Performance Quantities

In this subsection, we ascertain the forms of the performance quantities of a single

BIE Thres under the normal-normal model. In addition, their properties with respect

to C is investigated in relation to the classical z-based confidence interval estimator

for a normal location parameter (z-based IE). First, the following proposition shows

the form and property of the BEL of the mth BIE Thres:

Proposition 3.4. The Bayes expected length (BEL) of the mth BIE Thres has the

form of

BEL[C,αm;σm, τ] = 2zαm/2σmΦ(Cm)

where Cm = Cτ/
√
σ2
m + τ 2, and the BEL approaches the expected length of the corre-

sponding z-based IE as C goes to infinity.

Notice that the BEL consists of two parts: the first part, 2zαm/2σm, is the same

as the BEL of the z-based IE; and the second part, Φ(Cm), reflects the thresholding
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effect. From the form of Cm, it is evident that the BEL of the BIE Thres approaches

the BEL of the z-based IE as C goes to infinity. Next, we introduce the form and

property of the BCP of the mth BIE Thres in the following proposition:

Proposition 3.5. The Bayes coverage probability (BCP) of the mth BIE Thres has

the form of

BCP [C,αm;σm, τ] = 2∫
Cm

−∞
{Φ(σmτ y +

√

1 + σ2
m

τ2 zαm/2) −Φ (σm
τ y)}dΦ(y)

where Cm = Cτ/
√
σ2
m + τ 2, and the BCP approaches the coverage probability of the

corresponding z-based IE as C goes to infinity.

Although the BCP of the BIE Thres has no closed form, it is at least second

differentiable with respect to αm so that it can be applied to the optimization in the

next section. It is also not difficult to show that the BCP of BIE Thres approaches

1 − αm, the BCP of the z-based IE.

3.3.4 Global Performance Quantities

In the previous subsection, we studied the performance quantities of a single BIE

Thres. Now, we investigate global performance quantities for a BMIE Thres. All

the quantities are derived by assuming M target parameters. First, we introduce a

Bayes threshold ratio (BTR). It is a ratio of the number of the thresholded BIEs to

the total number of the BIEs in a BMIE Thres, i.e., the proportion of the one-sided

BIEs. The form of the BTR is presented in the following proposition:

Proposition 3.6. The Bayes threshold ratio (BTR) has the form of

BTR[C;σ, τ] = 2
M

M

∑
i=1

Φ(−Cm)

where Cm = Cτ/
√
σ2
m + τ 2. As C increases from zero to infinity, the BTR decreases

from 1 to 0.
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In addition to the BTR, we have two more global quantities: a Bayes relative

expected length (BREL) and a Bayes family-wise coverage rate (BFWCR). The BREL

is a ratio of the BAEL of a BMIE Thres to the BAEL of the corresponding z-based

MIE, and it is the global expected content of a BMIE in this study. The BFWCR is

essentially the product of the M individual BCPs, and it reflects the global coverage

probability of a BMIE.

Corollary 3.7. Given M parameters and a global level 1 − q, the Bayes relative ex-

pected length (BREL), Bayes family-wise coverage rate (BFWCR) and Bayes thresh-

olding ratio (BTR) have the following forms:

BREL[C,α;σ, τ] = 1
M

M

∑
m=1

[2zαSσmΦ(Cm)]/
1
M

M

∑
m=1

[2zαSσm] ;

BFWCR[C,α;σ, τ] =
M

∏
m=1

[2∫
Cm

−∞
{Φ(

σm
τ
y +

√

1 + σ2
m

τ2 zαS) −Φ (σm
τ y)}dΦ(y)] ;

BTR[C;σ, τ] = 2
M

M

∑
m=1

Φ(−Cm)

where Cm = Cτ/
√
σ2
m + τ 2, and αS is the Sidak adjustment, 1 − (1 − q)1/M .

From the previous propositions, it is straightforward to show the BREL converges

to 1 and the BFWCR converges to 1 − q as C goes to infinity. In addition, the BTR

converges to 0 as C goes to infinity, implying the BMIE Thres gets closer and closer

to the corresponding z-based MIE.

The global quantities depend on the thresholding parameter C. Thus, we graphi-

cally ascertain their behaviors with respect to C in <Figure 3.2>. It is based on

a BMIE Thres for M = 1000 normal location parameters under the global level

1 − q = 0.9. For the setting, we assign an equi-spaced sequence from 0.01 to 10

for the standard errors, σm’s and three different value 2, 3, and 5 for the prior stan-

dard deviation, τ . Then we plot the global quantities in (Corollary 3.7) for increasing

C from 0 to 6. The solid, dashed, and dotted lines indicate the different τ ’s: 2, 3,

and 5, respectively; and dark red, black, and light red color lines indicate the BREL,
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Figure 3.2: Three Global Quantities of BMIE Thres for different τ ’s

BFWCR, and BTR of the BMIE Thres. First, note that the opposite behaviors of

the BTR and BREL. When C equals zero, every BIE lacks an outer tail, so the BTR

is one and the BREL is one half. As C increases, the number of one sided BIEs

reduces, and this results in the decrease of the BTR and the increase of the BREL.

The rates of decrease and increase depend on the value of τ because the smaller τ

of the true distributions implies stronger information to remove one side of the BIEs

in general. Now, the BFWCR shows an interesting behavior. It remains almost zero

up to a C of around 2. This is because each BCP is quite less than the individual

level; as a result, the BFWCR, i.e., the product of M = 1000 BCPs, becomes almost

zero. However, the BFWCR rapidly recovers the value as C increases from 2 to 3,

and it almost reach the global level 1− q = 0.9 around 3.5 for any τ ’s. It is important

to observe that there exists certain reduction in the BREL when this occurs. This

implies the BMIE Thres performs better than the z-based MIE.

At this point, it is natural to ask about the optimal value for C. The optimal C∗

is the value which provides the shortest BREL of the BMIE Thres, while at the same

time maintaining the BFWCR at a higher-than-global level. However, <Figure 3.2>

shows that not only the BREL but also the BFWCR change as C varies. Therefore,
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in order to choose the optimal thresholding parameter, C∗, we must first arrange

a way to adjust the BFWCR to match the global level so that the BRELs can be

fairly compared throughout the values of C. This process can be achieved using the

optimization method in the next section.

3.4 Optimization

In this subsection, we perform an optimization procedure which determines the best

C∗ for a BMIE Thres. In the previous subsection, the BMIE Thres shows the limited

ability in maintaining the BFWCR at least the global level when C is small. The

optimization approach will provide a way to push the BFWCR up to the global level

so that we can determine the optimal C∗ which provides the minimum BREL, or

equivalently the minimum BAEL. Furthermore, the approach also allows us to assign

optimal levels, α∗m’s, to individual BIEs. Note that this optimization procedure is a

variation of the optimization strategy in chapter 2.

3.4.1 Optimization Procedure

The optimization procedure consists of two global risk functions, Rβ
0 and R1, which

represent the adjusted BREL and 1-BFWCR, respectively. We first set up the fol-

lowing optimization problem:

minimize Rβ
0(θ, δ) subject to R1(θ, δ) ≤ q

where the components are as follows:

Rβ
0(θ, δ) =

1
M

M

∑
m=1

BEL[C,αm;σm, τ]
β +BEL[C,αm;σm, τ]

;

R1(θ, δ) =1 −
M

∏
i=1
BCP [C,αm;σm, τ]
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where Cm = Cτ/
√
σ2
m + τ 2. Due to a numerical stability of the procedure, we

reparametrize αm’s to νm’s. Then the restated optimization problem is as follows:

minimize 1
M

M

∑
m=1

BEL[C,νm;σm, τ]
β +BEL[C,νm;σm, τ]

subject to
M

∑
m=1

log (BCP [C,νm;σm, τ]) ≥ log(1 − q)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BEL[C,νm;σm, τ] = 2νmσmΦ(Cm);

BCP [C,νm;σm, τ] = 2 ∫
Cm
−∞

{Φ(σmτ zm +

√
τ2+σ2

m

τ νm) −Φ (σm
τ zm)}dΦ(zm);

Cm = Cτ√
σ2
m+τ

2 ; νm = zαm/2 = Φ−1 (1 − αm/2) .

This optimization is feasible because BEL[C,νm;σm, τ] and BCP [C,νm;σm, τ] are

at least second differentiable with respect to νm for any fixed C. Thus, we can set up

a Lagrange equation, and solve it numerically by using the Newton-Raphson method.

3.4.2 Optimization Result

The result of the optimization is presented in this subsection. We exploit the setting

for <Figure 3.2> in which we ascertained the behaviors of the global quantities. After

the optimization, the BFWCRs are always equal to the global level, 1−q = 0.9, for any

given τ and C. Therefore, we only present the resulting BRELs for different τ ’s, 2, 3,

and 5, with respect to C in <Figure 3.3>. In the plot, the trajectories show similar

inverted arch shapes on the left hand side. The lowest points represent the smallest

BRELs which determine the optimal C∗’s. For the different τ ’s, 2, 3, and 5, the

minimum BRELs are 84.7%, 92.0%, and 97.4%, with the corresponding optimal C∗’s

are equal to 3.4, 3.5, and 3.8, respectively. From each optimal C∗, the corresponding

BREL increases as C increases or decreases. When C increases, the increase of the

BREL is evident due to the decrease of the BTR, i.e., the ratio of one-sided BIEs.

When C decreases, the increase of the BREL is due to the optimization procedure

which lifts up the BFWCR to the global level 1 − q = 0.9. This is also apparent from
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Figure 3.3: C∗ obtained from Optimization

a single dimensional situation wherein we get a wider expected interval length by

increasing its confidence level.

It is worth mentioning that the BRELs converge to the light red dashed line

instead of 1, the gray dashed line. This is because the reduction between the gray

and light red dashed lines is solely achieved by the optimal allocation of the individual

levels, α∗m’s, as shown in chapter 2. That is, the amount of reduction can also be

Figure 3.4: Behavior of Individual Levels, αm’s, for τ = 3
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obtained from the optimization procedure with the classical z-based MIE. Therefore,

the rest of reductions between the minimum BRELs and the light red dashed line

measures the actual thresholding effect of the BMIE Thres. <Figure 3.4> shows the

optimal individual level allocation result with respect to C for τ = 3. Note that the

optimal C∗ = 3.5 is the position where the behaviors of individual levels αm’s become

inverted. In conclusion, the result suggests that meaningful amounts of the BREL

reduction can be achieved when τ is relatively small, and the reduction is contributed

by two parts: the reduction from the thresholding which can be optimized by C∗ and

the reduction from the optimal individual level allocation, α∗m’s.

3.5 Data Application: Known σm’s

In-season prediction of batting averages has been studied by several researchers for a

couple of reasons, e.g., Efron and Morris [15] and Brown [6]. First, while the small

portion of data at the beginning of season is used for the prediction, the batting av-

erage throughout the rest of the season can be considered as a success probability, p,

which reflects player’s true batting capability for the season. Therefore, one can set

up a binomial model with the p along with another parameter, n, the total number

of at-bats. Second, when the arcsine transformation is utilized to convert the bino-

mial distribution into an approximate normal distribution, the standard deviation is

derived solely from the number of at-bats. Therefore, the individual problem can be

set up with a normal distribution with a known standard deviation, so that we can

utilize the plain version of BMIE Thres procedure to make an inference.

The previous studies on the in-season prediction of batting averages utilized the

parametric empirical Bayes approach to predict the true batting ability by using

the beginning portion of the data. For example, Efron and Morris [15] and Efron

and Morris [16] used the batting average of the first 45 at-bats in the 1970 MLB

season and Brown [6] used the batting average of the first three months’ data in
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the 2005 MLB season for the predictions. These previous studies concentrate on the

point estimations evaluated by the total squared error: ∑(xm − θm)2 where θm is the

batting average of the mth player and xm is the corresponding estimate for θm. In

this study, we focus on constructing a BMIE Thres and evaluating its performance

by ascertaining the BREL and BFWCR. We utilize the 2005 MLB season data which

is also used in Brown [6], as it involves a larger number of players than the data in

Efron and Morris [15].

3.5.1 Problem Setup and Assumptions

Let Hm and Nm be the number of hits and at-bats for the mth player over the

whole 2005 season. As we choose the first j month(s) for the prediction period, Hj
m

and N j
m are set as the number of hits and at-bats of the first j month(s) period for

j = 1, 2, or, 3. Once j has been determined, the notation for j = 4 is reserved for the

number of hits and at-bats over the rest of the season. In this application, we exclude

pitchers as well as batters who have fewer than 11 at-bats either inside or outside of

the prediction period. Therefore, each prediction period contains a different number

of players, Mj. Given any index j for the prediction period, we first set up the

following binomial model:

Hm ∼ Binom(Nm, pm), for m = 1,2, . . . ,M

Then the arcsine transformation is utilized to obtain the following approximated

normal model, and a normal prior distribution is added:

Xm = arcsin

¿
Á
ÁÀHm + 1/4

Nm + 1/2
approx.
∼ N(µm, σ

2
m); µm ∼ N(η, τ 2)

where µm = arcsin√
pm and σ2

m = 1
4Nm . In addition, we assume that µjm = µm for

j = 1, 2, 3, and 4, meaning the true batting average of the mth player does not

change throughout the season. Therefore, we set X4
m to be the target parameter, the

true batting average µm = µ4
m.
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3.5.2 Hyper-parameter Estimation

In order to implement the BMIE Thres, the hyper-parameters, η and τ , must be

estimated. We follow the ML-II approach in Good [23]. This estimation procedure

considers the expression of the marginal density of Xj
m, N(η, (σjm)2 + τ 2), as a like-

lihood function of the hyper-parameters and seeks the values which maximize the

likelihood. The resulting estimators can be obtained by solving the following two

equations:

η̂ =
∑
Mj

m=1X
j
m/(σjm

2
+ τ̂ 2)

∑
Mj

m=1 1/(σjm
2
+ τ̂ 2)

&
Mj

∑
m=1

(Xj
m − η̂)2

(σjm
2
+ τ̂ 2)2

=

Mj

∑
m=1

1
σjm

2
+ τ̂ 2

.

As the estimation is quite sensitive to the initial values of η̂ and τ̂ , we started from

the following initial values:

η̂ini =
1
Mj

Mj

∑
m=1

Xj
m &

Mj

∑
m=1

(Xj
m − η̂ini)2

(σjm
2
+ τ̂ 2

ini)
2
=

Mj

∑
m=1

1
σjm

2
+ τ̂ 2

ini

.

3.5.3 Optimal C∗ and α∗m’s

The optimal C∗ and α∗m’s can be obtained through the optimization procedure in

the previous section. Note that the procedure is performed based on the σm’s and

the estimated hyper-parameters η̂ and τ̂ . In addition, the tuning parameter, β, in

the optimization is fixed to be 1000 as in chapter 2. With the optimized values, the

form of the BIE Thres for the mth player with the jth prediction period becomes as

follows:

Γm(Xj
m;α∗m) = (Xj

m − zα∗m/2σ
j
mI {X

j
m > η̂j −C∗τ̂ j} ,Xj

m + zα∗m/2σ
j
mI {X

j
m < η̂j +C∗τ̂ j}) .

3.5.4 Performance of BMIE Thres on Batting Average Prediction

We implement the procedure for different prediction periods: April, April-May, and

April-June. In each case, the target parameter µm’s are obtained from the rest of

the season, respectively: May-October, June-October, and July-October. The global
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level is set to be 1− q = 0.9. The application results are summarized in <Table 3.1>.

First, the BFWCRs are consistently higher than the global level 1 − q in all the pre-

Table 3.1: Result for Batting Averages Prediction

Prediction Period April (j=1) April∼May (j=2) April∼June (j=3)
η̂ 0.5425 0.5438 0.5468
τ̂ 0.008 0.0123 0.0151
C∗ 2.86 3.04 3.195

BFWCR 92.24% (100%) 95.37% (98.78%) 93.79% (97.70%)
BREL 62.58% 76.46% 82.95%
BTR 73.39% 42.68% 28.05%
Mj 387 410 435

diction periods. Note that the corresponding BFWCRs of the classical z-based MIEs

are in the parentheses. The values are quite larger than the global level, implying

the z-based MIEs are unnecessarily conservative. Now, note that the estimated τ

increases as the prediction periods become wider. This prior information determines

the optimal value C∗. As a result, we have the smallest C∗ when j = 1, so the BTR

becomes high and the corresponding BREL, 62.58%, shows a considerable reduction.

When j = 2, we have a larger C∗, and this results in a higher BREL of 76.45%. Lastly,

we have the highest C∗ when j = 3, so that the highest BREL, 82.95%, is obtained. In

conclusion, the BMIE Thres consistently shows reasonably higher-than-nominal-level

BFWCRs; at the same time, we can achieve the meaningful reductions on the BRELs.

However, the amount of reduction depends on the estimated value of τ which governs

the prior information of the target parameter.

3.6 Data Application: Unknown σm’s

The leukemia data appeared in Efron and Hastie [14] as a type of gene expression

data from high-density oligonucleotide microarrays. It consists of n = 72 patients

with n1 = 45 of ALL (acute lymphoblastic leukemia) group and n2 = 27 of AML

(acute myeloid leukemia) group, which has a worse prognosis. Efron provides small
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and large data sets which contain M1 = 3571 and M2 = 7128 genes, respectively. To

eliminate response disparities among the M microarrays as well as some outliers, the

raw expression levels for the mth gene on the kth patient, Xmk, were transformed to

a normal score value, xmk = Φ−1 (
rank(Xmk)−0.5

M ). Efron’s investigation of the data was

about a multiple testing procedure based on the local-FDR in Efron [13]. However,

our goal here is to construct the BMIE Thres for the mean difference between the

ALL and AML groups and to compare this result with the classical t-based MIE. In

general, interval estimation becomes effective when we equally compare two group

means because zero can be utilized as a criterion to evaluate the coverage of the

interval estimation. That is, zero works as if it is the true parameter of the interval

estimation in evaluating the empirical coverage probability.

3.6.1 Problem Setup

The data has the form of aM×nmatrix whereM is either 3571 or 7128 and n = n1+n2

is 72 = 45 + 27. Next, xmk is the expression level for the mth gene of the kth patient,

wherem = 1,2, . . . ,M , k = 1,2, . . . , n1, for the AML group and k = 46,47, . . . , n, for the

ALL group. This is the case of unknown standard deviations with one of the sample

sizes less than 30, so that we could apply a plug-in procedure with the corresponding

sample standard deviations. Thus, the basic individual procedure follows the two-

sample t-based interval estimation under the equal variances assumption. (Lehmann

and Romano [37])

3.6.2 Hyper-Parameter Estimation and Optimal Threshold

For the hyper-parameter estimation, we follow the same procedures as in the case

of known σm’s in the previous section. However, the optimization becomes difficult

because the largeM causes a problem in the Newton-Raphson method. Therefore, we

instead pursue a graphical search for the optimal C∗ as in <Figure 3.5>. Note that
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Figure 3.5: Graphical Search for C∗ based on BFWCRs

given a global level, 1 − q = 0.9, the BFWCRs of the classical t-based MIE for small

and large leukemia data sets are 0.921 and 0.956, respectively. Since the BFWCRs

should converge to the above values as C increases, we choose the optimal C∗ at the

joining points: C∗ = 0.0198 for the small data and C∗ = 0.0098 for the large data.

These values are the smallest values which have the same BFWCRs as those of the

classical MIEs. Then the form of the mth BIE Thres is as follows:

Γm(Xm;αS) = (X̄1
m − X̄2

m − tαS/2,n1
m−n

2
m−2S

p
m

√
1/n1

m + 1/n2
mI {X̄m > η̂ −C∗τ̂} ,

X̄1
m − X̄2

m + tαS/2,n1
m−n

2
m−2S

p
m

√
1/n1

m + 1/n2
mI {X̄m < η̂ +C∗τ̂})

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tαS/2,n1
m+n

2
m−1 = F

−1
T
n1
m+n2

m−2
(1 − αS/2) ;

Spm =

√

∑
n1
m
k=1(xmk−x̄

1
m)

2+∑
nm

k=n1
m+1
(xmk−x̄2

m)
2

n1
m+n

2
m−2 ;

αS = 1 − (1 − q)1/M , the Sidak adjustment;

FT is the distribution function of t(n1
m + n2

m − 2).

As the formal optimization procedure is not adopted here, we lose the opportunity

to assign the optimal levels into the individual IEs; instead, the constant Sidak ad-

justed level was plugged in. However, this will not cause an issue in this particular

illustration, as we will see in the next subsection.
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3.6.3 Performance of BMIE Thres on Leukemia Data

In this subsection, we construct the BMIE Thres under the global level 1−q = 0.9. The

result is summrized in <Table 3.2>. By design, the BFWCRs of the BMIE Thres are

Table 3.2: Result for Leukemia Data

Leukemia Small Data Large Data
η̂ 0.0108 0.0014
τ̂ 0.5336 0.1598
C∗ 0.0198 0.0098

BFWCR 92.13% 95.57%
BREL 50.65% 50.46%
BTR 98.74% 98.81%
M 3571 7128

the same as those of the classical t-based MIEs. However, the BRELs of the BMIE

Thres are less than 51% for both cases, implying the strong performance to reduce

the global expected content. These seemingly too good results can be justified by the

motivational sketch of the thresholding approach. As mentioned, the thresholding

Figure 3.6: Comparing Two Population Means

procedure removes the outer tails of BIEs. However, with regard to comparing two

group means, the inner tails cover zeros in most cases as in <Figure 3.6>. In some

sense, the thresholding scheme of the BMIE Thres is designed to operate well in this

particular application of comparing two population means by discarding a number of

redundant outer tails. Because of the significant reductions already achieved, we do

not have to exploit the additional reduction from the formal optimization procedure.
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This can also be an advantage when we consider the potential applicability of the

BMIE Thres to high-throughput data set.

3.7 Simulation

We ascertained the performance of the BMIE Thres by investigating its theoretical

global quantities in section 3.4. However, the illustration was based on an ideal situ-

ation in which the suggested model perfectly represents the true underlying structure

as follows:

X̄m∣µm ∼ N (µm, σ
2
m) & µm ∼ F∗(η∗, τ∗) = NΠ (η, τ 2) form = 1,2, . . . ,M

where F∗(η∗, τ∗) is the true underlying distribution which generates the target pa-

rameter µm’s. Although this setting is effective to show the general behavior of the

BMIE Thres, it does not reflect the potential model misspecifications which can fre-

quently occur when a model relies on prior information. This is because no one can

guarantee the prior distribution is identical to the true distribution, i.e., it is possible

NΠ ≠ F∗. Moreover, even though the distributions are identical, the parameters can

still be distinct from one another, i.e., it is also possible (η∗, τ∗) ≠ (η, τ). Therefore,

a simulation study is designed in this section to emulate the situations of prior mis-

specification. That is, we assume the true distribution, F∗, to be normal, uniform,

logistic, or exponential, with a fixed true mean, η∗, and standard deviation, τ∗, in

order to generate µm’s. However, the prior distribution is always the normal distri-

bution with the hyper-parameters, η and τ , and we set these to be different from the

true parameters.

In addition, although the BMIE Thres is considered to be a frequentist proce-

dure, it is true that the procedure depends on the prior distribution to set up the

thresholds. Therefore, it would be reasonable to ascertain the performance in rela-

tion to the Bayesian credible MIE as well as the classical z-based MIE. By involving
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these comparisons in the simulation, we will consider a total of five MIEs: z-based

classical MIE, Γ0(X), BMIE Thres with assumed and estimated hyper-parameters,

Γ1(X) and Γ2(X), and Bayesian credible MIE with assumed and estimated hyper-

parameters, Γ3(X) and Γ4(X). It is important to note the performances of MIEs,

the global coverage probability and global expected content, are measured based on

the true target parameters, µm’s. Therefore, we do not create any bias between the

frequentist and Bayesian procedures. The mth individual IEs of the five MIEs are as

follows:

Γm0 (X) = (X̄m − zαs/2σm, X̄m − zαs/2σm) ;

Γm1 (X) = (X̄m − zαm/2σmI {X̄m > η −C∗τ} , X̄m + zαm/2σmI {X̄m < η +C∗τ}) ;

Γm2 (X) = (X̄m − zαm/2σmI {X̄m > η̂ −C∗τ̂} , X̄m + zαm/2σmI {X̄m < η̂ +C∗τ̂}) ;

Γm3 (X) = (βX̄m + (1 − β)η − zαs/2σm
√
β, βX̄m + (1 − β)η + zαs/2σm

√
β) ;

Γm4 (X) = (β̂X̄m + (1 − β̂)η̂ − zαs/2σm
√

β̂, β̂X̄m + (1 − β̂)η̂ + zαs/2σm
√

β̂)

where β = τ2

σ2+τ2 , β̂ = τ̂2

σ2+τ̂2 , and αs = 1 − (1 − q)1/M , the Sidak adjustment. Note that

the last MIE is also called the empirical Bayes MIE under the normal-normal model.

The goal of the simulation is to perform simultaneous interval estimation on M =

1000 normal location parameters, µm’s, given the global level 1 − q = 0.9. These

µm’s are generated from different true distributions – normal, uniform, logistic, and

exponential – with the fixed true mean (η∗) and standard deviation (τ∗). To construct

Γ1 and Γ3, we directly use the prior mean (η) and standard deviation (τ), and these

values will deviate from the true mean and standard deviation. To construct Γ2 and

Γ4, we use the estimated prior mean (η̂) and standard deviation (τ̂) from the data to

plug these into the procedure. The estimated prior standard deviation is also used to

find out the optimal threshold C∗ and α∗m’s. The simulation scheme is summarized

in (Algorithm 1).

We first consider the case in which the true generating distribution is normal, NΠ =

42



Algorithm 1 Simulation Scheme
## M = 1000 and σm’s are from unif(0.01,10)
for i = 1 in 1:4 do
for j = 1 in 1:3 do
for k = 1 to Nrep = 1000 do
Data← Generator(η∗[i],τ∗[j])
C∗←Optimizer(Data,τ̂[j])
MIE←Constructor(Data,C∗,η[i],τ[j],η̂[i],τ̂[j])
Out[k]←Evaluator(MIE,η∗[i],τ∗[j])

end for
Result[[i]][[j]] ←Summarizer(Out)

end for
end for
Tabulator(Result)

F∗, but the hyper-parameters deviate from the true mean and standard deviation,

(η∗, τ∗) ≠ (η, τ). That is, the true mean and standard deviation are fixed to be 0

and 2, but η and τ take the values (0, 2, 4, 6) and (1, 2, 3), respectively. When we

compare the performances of five MIEs, the global coverage probability is obtained

by the ratio of the IEs which cover the true target parameters in MIEs, and the global

expected content is measure by the relative average expected length of MIEs, i.e., the

average expected lengths of the MIEs in relation to the average expected length of

the corresponding z-based MIE.

<Table 3.3> shows the simulation result under the well specified prior up to its

distributional level. When the prior mean (η) and prior standard deviation (τ) are

equal to the true values, η∗ = 0 and τ∗ = 2, all the MIEs perform well, showing the

satisfactory global coverage probability and the reductions in the global expected

contents. In particular, the global expected contents of the Bayes credible MIEs, Γ3

and Γ4, are significantly smaller than those of the z-based MIE and the BMIE Thres.

However, as η deviates from the true mean, the coverage of Γ3 rapidly decreases; still,

Γ4 performs well with the estimated hyper-parameters except for a slight degradation

in the global coverage rate. When the prior standard deviation is specified to be
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Table 3.3: Prior Misspecification when the True Distribution is Normal

Normal Global Coverage Probability Global Expected Content
1 − q = 0.9 MIEs η∗ = 0 η = 2 η = 4 η = 6 η∗ = 0 η = 2 η = 4 η = 6

τ = 1

Γ0 0.896 0.909 0.911 0.873 1.000 1.000 1.000 1.000
Γ1 0.904 0.902 0.810 0.082 0.898 0.910 0.895 0.861
Γ2 0.904 0.903 0.912 0.882 0.898 0.893 0.902 0.918
Γ3 0.000 0.000 0.000 0.000 0.181 0.181 0.181 0.181
Γ4 0.878 0.879 0.870 0.878 0.328 0.327 0.327 0.327

τ∗ = 2

Γ0 0.909 0.903 0.922 0.883 1.000 1.000 1.000 1.000
Γ1 0.909 0.905 0.922 0.888 0.915 0.927 0.951 0.946
Γ2 0.909 0.905 0.922 0.888 0.914 0.902 0.917 0.906
Γ3 0.894 0.271 0.000 0.000 0.328 0.328 0.328 0.328
Γ4 0.861 0.860 0.867 0.860 0.326 0.326 0.326 0.327

τ = 3

Γ0 0.887 0.897 0.907 0.885 1.000 1.000 1.000 1.000
Γ1 0.887 0.895 0.907 0.885 0.909 0.925 0.941 0.940
Γ2 0.887 0.895 0.907 0.885 0.914 0.879 0.910 0.902
Γ3 0.981 0.983 0.832 0.160 0.446 0.446 0.446 0.446
Γ4 0.866 0.883 0.888 0.865 0.326 0.327 0.327 0.327

less (τ = 1) than the true standard deviation, the global coverage probabilities are

affected by the concentrated prior distribution, resulting in very large degradation.

In this situation, Γ1 is also affected by the concentrated prior, showing a gradual

degradation in the global coverage probability as η deviates from the true mean.

The global expected contents of MIEs are generally narrower than in the previous

case, reflecting the concentrated prior information. Lastly, when the prior standard

deviation is specified to be larger (τ = 3) than the true standard deviation, the

global level requirements are generally well satisfied due to the effect of the diffused

prior, except for Γ3 which shows rapid decrease as η deviates. To compensate, the

global expected contents become larger in general. In terms of the global coverage

probability, the MIEs with the estimated parameters, Γ2 and Γ4, show the robust

result as expected. Among those, Γ4 performs very well compared to Γ2 in terms of

the global expected content. As a result, when the prior distribution well reflects the

true underlying structure up to its distributional level, Γ4 would be the best choice

if one can endure a slight degradation of the global coverage probability; however, if
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the global level requirement needs to be strictly satisfied, then Γ2 would be the choice

as it shows a very robust result for any hyper-parameter combinations.

From now on, the simulations reflect the case the prior distribution itself deviates

from the true distribution: NΠ ≠ F∗. First, <Table 3.4> presents the simulation

result when the true underlying distribution is a uniform distribution.

Table 3.4: Prior Misspecification when the True Distribution is Uniform

Uniform Global Coverage Rate Global Content
1 − q = 0.9 MIEs η∗ = 0 η = 2 η = 4 η = 6 η∗ = 0 η = 2 η = 4 η = 6

τ = 1

Γ0 0.902 0.893 0.884 0.889 1.000 1.000 1.000 1.000
Γ1 0.900 0.892 0.884 0.889 0.712 0.789 0.829 0.847
Γ2 0.900 0.892 0.884 0.889 0.736 0.746 0.746 0.746
Γ3 0.522 0.000 0.000 0.000 0.181 0.181 0.181 0.181
Γ4 0.985 0.980 0.979 0.981 0.327 0.327 0.327 0.327

τ∗ = 2

Γ1 0.928 0.895 0.902 0.911 1.000 1.000 1.000 1.000
Γ1 0.920 0.895 0.902 0.910 0.718 0.793 0.832 0.850
Γ2 0.920 0.895 0.902 0.910 0.747 0.746 0.746 0.737
Γ3 0.986 0.929 0.001 0.000 0.328 0.328 0.328 0.328
Γ4 0.984 0.987 0.981 0.985 0.327 0.327 0.327 0.327

τ = 3

Γ1 0.889 0.890 0.909 0.904 1.000 1.000 1.000 1.000
Γ1 0.889 0.888 0.905 0.896 0.717 0.797 0.829 0.850
Γ2 0.889 0.888 0.905 0.896 0.746 0.755 0.747 0.746
Γ3 0.987 0.981 0.931 0.522 0.446 0.446 0.446 0.446
Γ4 0.985 0.987 0.992 0.986 0.327 0.327 0.327 0.327

While the classical z-based MIE always shows a consistent result as it has nothing

do to with the prior distribution, the other four MIEs show better performances than

the normal prior case. In particular, Γ1 and Γ2 provide greater reductions on the

global contents compared to the previous normal true distribution case; still, the

global level requirements are well satisfied, showing the global coverage probabilities

are greater than 1− q = 0.9. Compare to this, Γ3 and Γ4 achieve the larger reductions

on the global expected content with the higher global coverage probabilities, implying

the MIEs can reach the same reductions with less efforts. Still, Γ3 are very sensitive

to the location- or scale-wise deviations of the hyper-parameters.

The shapes of logistic and exponential distributions are quite far from the normal
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prior distribution. Thus, we would expect worse performances of the MIEs compared

to the previous cases. For this reason, we reset the true standard deviation of the

generating distribution to be τ = 1 to have better comparisons among the MIEs.

Table 3.5: Prior Misspecification when the True Distribution is Logistic

logistic Global Coverage Rate Global Content
1 − q = 0.9 MIEs η∗ = 0 η = 2 η = 4 η = 6 η∗ = 0 η = 2 η = 4 η = 6

τ = 0.5

Γ0 0.897 0.920 0.895 0.894 1.000 1.000 1.000 1.000
Γ1 0.877 0.637 0.000 0.000 0.792 0.779 0.505 0.504
Γ2 0.896 0.917 0.895 0.902 0.863 0.840 0.905 0.851
Γ3 0.000 0.000 0.000 0.000 0.095 0.095 0.095 0.095
Γ4 0.267 0.244 0.246 0.231 0.179 0.179 0.179 0.179

τ∗ = 1

Γ1 0.892 0.904 0.905 0.910 1.000 1.000 1.000 1.000
Γ1 0.887 0.904 0.904 0.869 0.857 0.873 0.891 0.868
Γ2 0.887 0.904 0.905 0.907 0.846 0.845 0.842 0.872
Γ3 0.241 0.000 0.000 0.000 0.181 0.181 0.181 0.181
Γ4 0.236 0.246 0.255 0.271 0.179 0.179 0.179 0.179

τ = 2

Γ1 0.909 0.896 0.897 0.896 1.000 1.000 1.000 1.000
Γ1 0.914 0.890 0.897 0.901 0.848 0.873 0.902 0.912
Γ2 0.914 0.890 0.897 0.901 0.830 0.837 0.868 0.861
Γ3 0.990 0.961 0.401 0.000 0.328 0.328 0.328 0.328
Γ4 0.253 0.275 0.263 0.229 0.179 0.181 0.179 0.180

<Table 3.5> provides the simulation result when the true underlying distribution

is a logistic distribution. Note that the global coverage probabilities of Bayes Credible

MIEs, Γ3 and Γ4, are lower than the nominal global level in any hyper-parameter

combinations except for the Γ3 with the less deviated prior mean (η = 0,2) and

diffused prior standard deviation (τ = 2). This is because the center value of the

credible interval, the posterior mean, is off the target as it is derived based on the

normal-normal model assumption. Note that the BMIE Thres with estimated hyper-

parameters, Γ2, still works well under this logistic true distribution. This implies that

the hyper-parameter estimation procedure itself is still viable. Lastly, Γ1 also shows

quite reasonable result except for some cases with the concentrated prior. The results

provide a example which re-enlighten the notion that the Bayesian approach can be

totally off when prior distribution is misspecified.
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Table 3.6: Prior Misspecification when the True Distribution is Exponential

exponential Global Coverage Rate Global Content
1 − q = 0.9 MIEs η∗ = 0 η = 2 η = 4 η = 6 η∗ = 0 η = 2 η = 4 η = 6

τ = 0.5

Γ0 0.889 0.901 0.888 0.874 1.000 1.000 1.000 1.000
Γ1 0.675 0.877 0.883 0.000 0.792 0.779 0.741 0.504
Γ2 0.896 0.900 0.888 0.872 0.916 0.919 0.922 0.922
Γ3 0.000 0.000 0.000 0.000 0.095 0.095 0.095 0.095
Γ4 0.010 0.015 0.011 0.013 0.177 0.178 0.178 0.178

τ∗ = 1

Γ0 0.896 0.917 0.896 0.896 1.000 1.000 1.000 1.000
Γ1 0.896 0.917 0.896 0.896 0.928 0.900 0.795 0.769
Γ2 0.895 0.917 0.896 0.895 0.920 0.922 0.921 0.921
Γ3 0.003 0.341 0.000 0.000 0.181 0.181 0.181 0.181
Γ4 0.013 0.008 0.022 0.022 0.178 0.178 0.178 0.178

τ = 2

Γ0 0.889 0.897 0.873 0.904 1.000 1.000 1.000 1.000
Γ1 0.889 0.892 0.873 0.904 0.921 0.850 0.820 0.770
Γ2 0.889 0.890 0.873 0.904 0.905 0.914 0.913 0.918
Γ3 0.916 0.978 0.864 0.001 0.328 0.328 0.328 0.328
Γ4 0.018 0.006 0.015 0.014 0.178 0.178 0.177 0.177

Lastly, <Table 3.6> shows the simulation result when the true underlying dis-

tribution is exponential. It shows quite unexpected behaviors; that is, the highest

global coverage probabilities are achieved not with η = 0 but with η = 2, which is

slightly deviated value from the truth. This would be due to the right-skewness of

the true generating distribution. Still, the general behaviors are similar to those of

logistic case. While Γ3 and Γ4 suffer from the off the target issue, Γ1 and Γ2 show a

consistent performance except for the Γ1 with concentrated prior distribution.

In conclusion, Γ3 cannot be beaten when the prior is correctly specified in terms

of the distribution as well as the corresponding hyper-parameters. It provides signifi-

cant reductions on the global expected contents while maintaining the global coverage

probability at least the global level. However, when the hyper-parameters deviate

from the truth, it becomes hard to satisfy the global level requirement; still, Γ4 is ro-

bust for these misspecified hyper-parameters. Now, when the prior distribution itself

deviates from the true generating distribution, then the both Γ3 and Γ4 suffer from

the low global coverage probability. When all these happen, Γ1 and Γ2 generally sat-
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isfy the global level requirement except for some extreme cases, providing reasonable

reductions on the global expected contents. Therefore, we can conclude that BMIE

Thres provides satisfactory robustness against the prior misspecification.

3.8 Summary

When a confidence interval is introduced, one faces the temptation to remove one side

of the interval to reach a shorter expected length which implies a better precision of

the interval estimation. Our procedure was motivated by this intuitive idea and

it is designed to realize the removal process. However, the procedure relies on the

additional prior information. Because of this, the individual estimator is no longer

within the class of classical confidence intervals but within the wider class, the class of

Bayes interval estimators which can be defined and evaluated by the integrals of the

performance quantities with respect to the prior distribution. We call our procedure

a Bayes MIE Thres as the integration process resembles the derivation of the Bayes

risk in a general statistical decision problem.

Under the independence assumption, the resulting BMIE Thres can be considered

as a hyper-rectangular region estimator in the M dimensional parameter space. As

we know, this would create a larger volume compared to an elliptical region estima-

tor, even after we discard one side of some intervals. However, in many situations,

researchers also want to inspect individual IEs which cannot be tracked from the

elliptical region estimator. In this context, the indepdent setting for the BMIE Thres

still has its own advantage despite its restriction. In fact, the real data applications

provide meaningful performances compared to the traditional z or t-based MIE.

While we utilize prior information, it is important to realize that the prior distri-

bution, which we assumed for the modeling, can be different from the true underlying

distribution, which actually generates the target parameters. The simulation setting

in the previous section takes this potential disagreement into consideration, generat-

48



ing the location parameters, µm’s, from the distinct true distributions. Coupled with

the comparison to the Bayes Credible MIEs, the simulation results flash a warning

signal in the use of unjustified prior information, i.e., the issue of prior misspecifi-

cation. Although a model works well in terms of the formula, it is the case under

the correctly specified prior distribution and the reality may be quite different from

this ideal situation. This reveals the common disadvantage of the general Bayesian

procedures, implying we cannot simply enjoy the benefit of the prior information.

Consequently, any Bayesian procedures should be used with discretion. One of the

remedies would be the use of non-informative prior and it is closely related to the

topic in next chapter.
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Chapter 4

Equivariant MIE with Haar measures

4.1 Overview

Let us consider a simple decision theoretic structure. The first component is a pa-

rameter space, Θ, which consists of the true states controlled by Mother Nature. The

second component is an action space, A, which consists of the actions made by a

statistician. The statistician’s action, a, is then evaluated through a loss function:

L(θ, a) ∈ R for θ ∈ Θ, a ∈ A

Since the true state is unknown, the statistician designs an experiment to collect

sample data, X. The third component consists of the possible data and is denoted

by a sample (data) space, X . Therefore, based on the observed sample data, the

statistician’s action is determined based on the observed sample data via a (non-

randomized) decision, i.e., a function, δ(x) ∈ D, from the sample space to the action

space. The decision is then evaluated by a risk function:

R(θ, δ) = Eθ[L(θ, δ(X))] ∈ R for θ ∈ Θ, δ ∈ D

assuming the expectation exists. Now the goal of the statistician is to investigate

a decision which minimizes the risk function, R(θ, δ). As global approaches, we

could use a minimax procedure – maxθR(θ, δM) = minδ maxθR(θ, δ) – to obtain the

minimax decision (δM) or a Bayes procedure – r(δB; Π) = minδ ∫ΘR(θ, δ)dΠ(θ) – to

obtain the Bayes decision (δB) under the presence of the prior distribution, Π, on

Θ. On the other hand, we would restrict the class of decisions and attempt to reach
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the best decision within the restricted class. One of the most widely used classes is

the collection of unbiased decisions. Another useful class is the collection of invariant

decisions, our main interest in this study.

The idea of the Invariance Principle starts from the groups of transformations.

When a statistician is able to impose group structures on the three fundamental

components – the parameter space, the action space, and the sample space – the

dimension of the corresponding risk function for an equivariant decision can be sub-

stantially reduced through the symmetry of the group structures. Moreover, in the

case of the transitive parameter space, i.e., when all the elements of the parameter

space can be reached through the transformations in the group, we reach a constant

risk function, so that the investigation of the optimal decision becomes much more

accessible.

In addition, the Invariance Principle provides further useful results in combination

with Haar measures. The Haar measures are the mesaures for group structures and

invariant for the left- and right-hand side transformations. Under certain conditions,

these Haar measures can be exploited as the non-informative prior distributions for

the parameter space. The derived non-informative prior distributions are legitimate

because it leads to a reconciliation between the frequentist and Bayesian approaches

combined with equivariant decisions. Not to mention its theoretical importance, it

is also a practical result since determining the best equivariant decision through the

frequentist approach is not an easy task. By using the reconciliation, we can instead

search for a generalized Bayes equivariant decision based on the non-informative prior

distribution.

When the scope of the statistical decisions is reduced to IEs, the reconciliation be-

comes the equivalence between the frequentist coverage probability and the Bayesian

coverage probability with respect to the posterior distribution derived from the right

Haar measure. Furthermore, by using the left Haar measure, we can invariantly mea-
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sure the expected length of the equivariant IE. These results will be used to establish

a coherent framework to handle a set of heterogeneous parameters in multiple interval

estimations. That is, we categorize the different parameters in terms of their group

structures and reduce the dimension of the problem by using the equivariant IEs along

with the left and right Haar measures. Combined with a optimization procedure, the

resulting MIE is called an equivariant multiple interval estimator with Haar measures

(EMIE Haar).

A brief review of related studies is provided in section 2. Next, the invariance

structure and the corresponding left and right Haar measures are presented in sec-

tion 3. Section 4 contains the main idea of equivariant multiple interval estimator

with Haar measures. An optimization procedure modified for the EMIE Haar and a

corresponding application is provided in section 5. A paricular application with two

different group structures under the normal distribution is illustrated in section 6.

Lastly, a summary is presented in section 7.

4.2 Related Studies

The idea of invariance in statistical inference has existed for almost one hundred years.

For example, Pitman [44] derived general forms of the best invariant estimator under

location and scale transformations. In the frequentist perspective, the Invariance

Principle, like the Sufficiency Principle, allows us to achieve dimension reductions in

statistical problems. However, since the idea is very general, i.e., essentially related

to the use of symmetry structure, research has been developed from many other

perspectives. For example, Fraser [21] showed the relation between the invariance

and Fisher’s fiducial inference (Fisher [18]), and the idea was further developed in his

structural inference (Fraser [20]). In addition, with regard to the Bayesian approach,

the invariance was studied further in relation to non-informative priors. (Robert

[46]) The choice of prior is the issue in Bayesian statistics even in non-informative
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cases. Given a group structure, the right Haar measure can be utilized as a non-

informative prior which provides a compatible structure. Furthermore, the invariance

is considered to be a very useful tool not just in the field of statistics, but also in

fields such as quantum mechanics (Helland [25]).

The invariance structure is integrally related to the multivariate statistical setting

because it allows us to reduce the dimension of problems as in Eaton [12] and Giri

[22]. In particular, Eaton further studied the invariance procedure in-depth in Eaton

[11]. Wijsman [55] introduced the cross-section of orbits to derive the distribution

of maximal invariant statistics. He also further extended his research on invariance

problems in Wijsman [56]. Hooper applied his advisor Wisjman’s cross-section idea

to confidence sets in Hooper [31] and Hooper [30]. Zidek also worked on invariance

problems with his advisees as in Zidek [57] and Brewster, Zidek, et al. [5]. Helland [26]

summarized quite well the relation between confidence sets and credible sets under

transitive assumptions.

Research has also been conducted for non-transitive cases. One of the most famous

results is the Hunt-Stein theorem, which states that the minimax rule within the class

of invariant rules is overall minimax. It was first introduced in Stein’s unpublished

paper, but the content can be found in Lehmann and Romano [37]. The result was

extended to general cases in Kiefer et al. [35] and in Kudo [36].

The general idea of the Invariance Principle appears in many classical textbooks

as one of the data reduction approaches along with the Sufficiency Principle, e.g.,

Lehmann and Romano [37] or Ferguson [17]. Its Bayesian interpretation is also sum-

marized in some major textbooks, especially in relation to the non-informative prior

distribution, e.g., Berger [3] or Schervish [49]. As mentioned, the compatible non-

informative prior distribution turns out to be from the Haar measure. However, the

presentation remains a one dimensional case with limited group structures mainly

based on the location group, the scale group, and the location-scale group.
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4.3 Invariance Structure with Haar Measure

In this section, we introduce a general invariance structure and corresponding left

and right Haar measures.

4.3.1 Invariance Group Structure

Recall the three fundamental components with corresponding sigma algebras: the

sample space, (X ,F), the parameter space, (Θ,T ), and the action space, (A,A ).

Then define G to be a group of measurable transformations on X which satisfies the

following axioms with a binary (composition) operation, ⋅:

i) g′ ⋅ g′′ ∈ G for any g′ ∈ G and g′′ ∈ G

ii) g ⋅ (g′ ⋅ g′′) = (g ⋅ g′) ⋅ g′′ for any g, g′, and g′′ ∈ G

iii) There exists e ∈ G such that e ⋅ g = g ⋅ e = g for every g ∈ G

iv) For every g ∈ G, there exists g−1 ∈ G such that g−1
⋅ g = g ⋅ g−1 = e

Now we say a family of probability distributions, F = {Pθ ∶ θ ∈ Θ}, is invariant under

G if for any g ∈ G and θ ∈ Θ, there exists a unique θ′ ∈ Θ such that

Pθ[X ∈ A] = Pθ′[g(X) ∈ A]

for every A ∈ F . We define ḡ(θ) = θ′ in relation to g ∈ G. Then Ḡ = {ḡ ∶ g ∈ G}

forms a group of transformations on Θ. Note that the above equality is equivalent

to Pθ[g(X) ∈ A] = Pḡ(θ)[X ∈ A], meaning the probability resulting from the transfor-

mation of x via g is equivalent to the probability resulting from the transformation

of θ via ḡ. Throughout the study, we consider parametric settings with continuous

distributions. In addition, we say a loss function L(θ, a) is invariant under G if for

every g ∈ G and a ∈ A there exists a unique a′ ∈ A such that

L(θ, a) = L(ḡ(θ), a′)
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for all θ ∈ Θ. We also define g̃(a) = a′ in relation to g ∈ G. Then G̃ = {g̃ ∶ g ∈ G} forms

a group of transformations on A . The above equality means the loss remains the

same if we take the transformations of ḡ(θ) and g̃(a) concurrently.

Now suppose D is the class of non-randomized decisions. Then we say a decision

function, δ ∈ D, is equivariant if the following equality holds true for every x ∈ X and

g ∈ G:

δ(g(x)) = g̃(δ(x)).

This equality implies that the pre-transformed decision function, δ(g(x)), is the same

as the post-transformed decision, g̃(δ(x)). Given the settings, we introduce an im-

portant result in the following proposition:

Proposition 4.1. Suppose δ ∈ D is an equivariant decision. Then the following

equality holds true for every θ ∈ Θ and g ∈ G:

R(θ, δ) = R(ḡ(θ), δ).

In general, if θ and θ′ are connected to each other via a transformation in Ḡ,

e.g., there exists ḡ such that θ′ = ḡ(θ), we say θ and θ′ are in an equivalent relation.

This equivalent relation partitions the parameter space, Θ, into equivalent classes or

orbits. Therefore, the above proposition implies the important Invariance Principle

that an equivariant decision function yields a constant risk on each orbit. In addition,

if Ḡ generates only one orbit on Θ, it is called transitive. As a result, the risk becomes

a constant for an equivariant decision in the transitive case.

4.3.2 Right and Left Invariant Haar Measures

In addition to the classical invariance structure in the previous section, we add one

more layer, a prior distribution. In particular, the prior distribution should be com-

patible with the corresponding invariance structure. To achieve this, we first introduce

the concept of invariant Haar measures and link it to the prior distribution. Note
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that further in-depth material regarding the Haar measures can be found in Nachbin

[40]. We first define a left and right transformations.

Definition 4.2. Given ḡ0 ∈ Ḡ, we define the right and left transformations as

ḡ → ḡḡ0 & ḡ → ḡ0ḡ.

Similarly, we define the classes of the right and left transformations as

Aḡ0 = {ḡḡ0 ∶ ḡ ∈ A} & ḡ0A = {ḡ0ḡ ∶ ḡ ∈ A}.

Now the right and left Haar measures are defined in the following ways:

Definition 4.3. Let Ḡ be a group with the σ-field of subsets, Λ̄. Suppose A ∈ Λ̄,

ḡA ∈ Λ̄ for ḡ ∈ Ḡ, and A−1 = {ḡ−1 ∶ ḡ ∈ A} ∈ Λ̄. The measures HR and HL on Λ̄ are

called right and left Haar measures (RHM & LHM) if

HR(Aḡ) =HR(A) & HL(ḡA) =HL(A)

for every ḡ ∈ Ḡ and every A ∈ Λ̄. In addition, the right and left Haar densities on

Λ̄, hR(ḡ) and hL(ḡ), are defined to be the Radon-Nikodym derivatives of RHM and

LHM with respect to a proper measure, so that

∫
Aḡ0

hR(y)dy = ∫
A
hR(y)dy & ∫

ḡ0A
hL(y)dy = ∫

A
hL(y)dy

Intuitively speaking, the measures remain the same with respect to the right and

left transformations, respectively.

Property 4.4. Some useful results for the Haar densities are

i) hR(ḡ) and hL(ḡ) exist and are unique up to a multiplicative constant

ii) If Ḡ is symmetric (Abelian), then hR(ḡ) and hL(ḡ) are equivalent.
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The first property is intuitive from the definition of the Haar measures, and the

formal proof is provided in Weil [52] and Cartan [7]. The second property is evident

from the realization that the right and left transformations are equivalent for the

symmetric group.

For actual derivations, we use change-of-variable techniques with respect to the

group of transformation. Consider x = yḡ−1
0 on the left-hand side of the equality in

the definition of the right Haar density. Then,

∫
Aḡ0

hR(y)dy = ∫
A
hR(xḡ0)J

R
ḡ0(x)dx

where JRḡ0(x) is the Jacobian of the right transformation: x → xḡ0. Note that the

transformation can be multi-dimensional, so that the Jacobian becomes a square

matrix with the corresponding dimension. Because the integrand should be equivalent

to the right-hand side of the equality in the definition for any A ∈ Λ̄, ḡ and x in Ḡ,

we have the result hR(xḡ)JRḡ (x) = hR(x). Replacing x by the identity element, ē, of

Ḡ, we have the following expression:

hR(ḡ) =
hR(ē)

JRḡ (ē)
∶=

1
JRḡ (ē)

The second equality for the definition is due to the property (i) because hR(ē) is

a constant. Likewise, we can derive the form of the left invariant Haar density as

follows:

hL(ḡ) =
hL(ē)

JLḡ (ē)
∶=

1
JLḡ (ē)

Now examples follow for location, scale, and location-scale groups.

Example 4.5. (Location Group) The first example concerns a location group: Ḡ =

{ga ∶ ga(x) = x + a, a ∈ R} = {(a) ∶ a ∈ R}. Note that the group is Abelian. So

ḡḡ0 = a + a0 = a0 + a = ḡ0ḡ

In this case, the Jacobian is just 1. Now the Haar densities are identical: hLḡ0(ḡ) =

hRḡ0(ḡ) = 1.
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Example 4.6. (Scale Group) The second example concerns a scale group: Ḡ = {gb ∶

gb(x) = bx, b > 0} = {(b) ∶ b > 0}. This group is also Abelian. So

ḡḡ0 = bb0 = b0b = ḡ0ḡ

The Jacobian becomes b0. Then the Haar densities are identical: hLḡ0(ḡ) = h
R
ḡ0(ḡ) =

1
b0
.

Example 4.7. (Location-Scale Group) The last example concerns a location-scale

group: Ḡ = {g(a,b) ∶ g(a,b)(x, y) = (a + bx, by), (a, b) ∈ R ×R+} = {(a, b) ∶ (a, b) ∈ R ×R+}.

For any given ḡ0 = (a0, b0) ∈ Ḡ, the right and left transformations are as follows:

ḡ =(a, b) → ḡḡ0 = (a, b)(a0, b0) = (a + ba0, bb0)

ḡ =(a, b) → ḡ0ḡ = (a0, b0)(a, b) = (a0 + ba, bb0)

Based on these transformations, we can derive the right and left differentials and

corresponding Jacobians as follow:

DR
ḡ0(ḡ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 a0

0 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; JRḡ0(ḡ) = b0 & DL
ḡ0(ḡ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 0

0 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; JLḡ0(ḡ) = b
2
0

As a result, the right and left invariant Haar densities are hRḡ0(ḡ) =
1
b0

and hLḡ0(ḡ) =
1
b2

0
,

respectively.

4.3.3 Relation to Prior Distribution

We can relate the Haar densities to prior densities via the isomorphism between Ḡ

and Θ. This means the two spaces are essentially the same in the sense that there

exists a bijection between two spaces, preserving the composition structure. In this

study, we add further assumptions as in <Table 4.1>. The curly equalities represent

the isomorphisms between the spaces. Note that the usual relation between G and Ḡ

is the homomorphism, i.e., the injection which preserves the composition structure.

This is reasonable because the dimension of the sample space is higher than that of

the parameter space in general. However, we impose somewhat stronger assumptions
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Table 4.1: Assumptions for Invariance Structure

(X ,F) ≈ (Θ,T ) ≈ (A ,A)

≀≀ ≀≀ ≀≀

G ≈ Ḡ ≈ G̃

which are the isomorphisms among the spaces. In the applications, we will resort to

the Sufficiency Principle to satisfy the assumptions.

Given the settings, the right and left invariant Haar densities on Θ can be denoted

by πR(θ) and πL(θ) and called the right and left invariant prior densities. Note that

the densities turn out to be non-informative priors which have no information about

the parameter θ. Next we revisit the previous examples for location, scale, and

location-scale groups.

Example 4.8. (Location Group) Suppose X1, X2, . . . ,Xn is a random sample

from a N(µ,σ2) with an unknown µ. Then the sampling distribution of X̄ fol-

lows N(µ,σ2/n). Note that X = {x̄ ∶ x̄ ∈ R} and Θ = {µ ∶ µ ∈ R}. This implies

X ≈ G ≈ Ḡ ≈ Θ ≈ R. Therefore, the Haar densities from the previous example can be

used for the common prior density as follows:

πR(µ) = πL(µ) = 1.

Note that this is the conventional non-informative prior for a location parameter.

Example 4.9. (Scale Group) Suppose X1, X2, . . . ,Xn is a random sample from

a N(µ,σ2) with an unknown σ2. Then the sampling distribution of (n − 1)S2/σ2

follows χ2(n − 1). Note that X = {s2 ∶ s2 ∈ R+} and Θ = {σ2 ∶ σ2 ∈ R+}. Thus,

X ≈ G ≈ Ḡ ≈ Θ ≈ R+. As a result, the Haar densities from the previous example can

be used for the common prior density as follows:

πR(σ2) = πL(σ2) =
1
σ2 .

Note that this is also a non-informative prior for a scale parameter.
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Example 4.10. (Location-Scale Group) SupposeX1, X2, . . . ,Xn is a random sample

from a N(µ,σ2) with an unknown µ and σ2. The sufficient statistic is (X̄, S2). Then

X ≈ G ≈ Ḡ ≈ Θ ≈ (R,R+). Therefore, we can use the Haar densities from the previous

example for the prior densities:

πR((µ,σ2)) =
1
σ2 & πL((µ,σ2)) =

1
σ4 .

4.4 Equivariant Multiple Interval Estimator with Haar Measures

In this section, we define an equivariant MIE with Haar measures (EMIE Haar) and

investigate its property. To do so, we start from a single dimensional case with respect

to the corresponding group structures.

4.4.1 The Single Dimensional Case

We start this subsection by providing a classical definition of a confidence interval.

Definition 4.11. Given α ∈ (0,1), a 100 × (1 − α)% confidence interval for θ ∈ Θ is

defined by Γ ∶ X → T , such that

Pθ[θ ∈ Γ(X)] ≥ 1 − α for every θ ∈ Θ.

Suppose G and Ḡ are the group structures for (X ,F) and (Θ,T ), respectively.

Assume the transitivity of Θ via Ḡ. Then Γ is called a equivariant IE if it satisfies

the following equation:

Pθ[θ ∈ Γ(X)] = Pḡ(θ)[ḡ(θ) ∈ Γ(X)] for θ ∈ Θ, X ∈ X , and g ∈ G.

Observe that this result is immediate from the (Proposition 4.1) by using L(θ,Γ) =

I{θ ∈ Γ}. As mentioned previously, determining the best equivariant decision is not

an easy task, and the situation is the same for the best equivariant interval estimator

(EIE). However, given the assumptions in <Table 4.1>, the equlity between the

classical coverage probability and the Bayesian coverage probability holds true, so
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the best equivariant IE can be derived as the generalized Bayes decision based on the

posterior distribution with respect to the right invariant Haar measure. (Proposition

4.12) provides the result as follows:

Proposition 4.12. Suppose X , Θ, G, and Ḡ are all isomorphic. Then the following

equation holds for an equivariant interval estimator, Γ(⋅):

P πR(θ∣e)[θ ∈ Γ(e)] = P πR(θ∣x)[θ ∈ Γ(x)] = Pθ[θ ∈ Γ(X)] = Pē[ē ∈ Γ(X)].

As reminder, the prior distribution is the right Haar distribution. Although the

result is based on quite strong assumptions, it is a surprising result as it implies

a reconciliation between the frequentist and Bayesian procedures. In fact, this is

one definition of the non-informative prior distribution, the probability matching

prior. Observe that the posterior coverage probability is the same as the classical

coverage probability even after updating its information via the prior distribution.

This intuively implies the prior distribution has no information about the parameter θ.

Furthermore, the coverage probabilities can be obtained with respect to the identity

element of the group structure due to the Invariance Principle. Note that the result

holds for general equivariant statistical decisions, as in (Lemma 4.13).

Lemma 4.13. Suppose X , Θ, G, and Ḡ are all isomorphic. Then for an equivariant

decision rule δ(x) = x̃(δ(e)),

EπR(θ∣x)[L(θ, x̃(δ(e)))] = R(θ, δ) = ∫
X
L(ē, ỹ(δ(e)))f(y∣ē)dy

where πR(θ∣x) is the posterior distribution of θ given x with respect to the right Haar

prior distribution.

Next, we consider the expected length of an EIE. Note that the length of IEs

is positively unbounded, and it is difficult to compare the perfomance of IEs with

different group structures. This is quite different from hypothesis testing where the
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power of the test can be used to compare the performance of the different procedures.

However, Pratt [45] provides a different point of view on the expected length

Eθ[ν(Γ(X))] = ∫
Θ
Pθ[θ

′ ∈ Γ(X)]dθ′

where ν is the content measure of the interval estimator. The integrand on the

right-hand side is called a false coverage probability, and the equality implies that

its integral is equivalent to the expected length of the IE. Note that this relation is

proved for the location group case when ν(⋅) is the Lebesgue measure. Thus, it must

be further generalized to handle different group structures. Here, we utilize the idea

based on the left Haar measure as it appeared in Kiefer [34].

Definition 4.14. Suppose Γ(⋅) is an equivariant interval estimator. Then the ex-

pected length of the estimator is defined in the following manner:

Eθ[ν
L(Γ(X))] = ∫

X
∫

Γ(x)
πL(θ′)dθ′f(x∣θ)dx

where νL(Γ(x)) = ∫Γ(x) π
L(θ)dθ.

The suggested expected length can be simplified further through the invariance

property of the left Haar measure. Moreover, it can be elegantly interpreted using

the false coverage probability. These results are summarized in (Proposition 4.15) as

follows:

Proposition 4.15. Suppose Γ(⋅) is equivariant and Eθ[νL(Γ(X))] is the expected

content defined in (Definition 4.14). Then the following arguments hold true:

Eθ[ν
L(Γ(X))] = ∫

Θ
Prē[θ ∈ Γ(X)]πL(θ)dθ = νL(Γ(e)).

From the first equality, the expected length is the same as the false coverage

probability averaged with respect to the left Haar distribution. Therefore, this can

be useful to compare the expected lengths among different group structures by con-

sidering them to be the averages of the false coverage probabilities. Note that these
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averages are generalized in the sense that the left Haar density is a non-informative

prior. Furthermore, the second equality says the expected length is a constant for

any x; therefore, we can replace x with the identity element e. Later, in (Proposition

4.17), this simplicity provides a relatively easy way to derive an optimized EIE.

Finally, we formally define an optimal equivariant interval estimator with the Haar

measures (EIE Haar):

Definition 4.16. Given α ∈ (0,1), a 100 × (1 − α)% interval estimator, Γ(⋅), is the

best equivariant if it minimizes E[νL(Γ(X))] subject to

P πR(θ∣x)[θ ∈ Γ(x)] = Pθ[θ ∈ Γ(X)] ≥ 1 − α.

Observe that this definition encompasses both the frequentist and Bayesian per-

spectives at the same time. Furthermore, the invariant property simplfies the cover-

age probability and expected length as in (Proposition 4.12) and (Proposition 4.15).

However, it may be difficult to derive the best equivariant interval estimator (BEIE)

directly from the definition. For the actual derivation, we can use the following

proposition:

Proposition 4.17. The best equivariant interval estimator (BEIE) Γ⋆ satisfies

Γ⋆(x) = x̃Γ⋆(e) where

Γ⋆(e) = {θ ∈ Θ ∶ πR(θ∣e) ≥ CπL(θ)}

where C can be chosen by

P πR(θ∣e)[θ ∈ Γ⋆(e)] = 1 − α.

As illustrations, we provide a few examples under a normal distribution.

Example 4.18. (Location Group) Suppose X1,X2, . . . ,Xn is a random sample from

N(µ,σ2) with an unknown µ and a known σ2. The goal is to construct the BEIE
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for µ. We know this problem has the location group structure and the resulting left

and right Haar densities are 1 from (example 4.5). In addition, in (example 4.8), we

confirmed the isomorphic structure was represented by R, so that the non-informative

prior density becomes πR(µ) = πL(µ) = 1. Then

πR(µ∣x̄) =
f(x̄∣µ)πR(µ)

∫ f(x̄∣µ)π
R(µ)dµ

= f(x̄∣µ)

Note that the identity element e = 0 for the location group and set σ2
0 to be σ2/n. In

this case, by (Proposition 4.17),

Γ(0) ={µ ∈ R ∶
1

√
2πσ0

exp(−
µ2

2σ2
0
) > C}

={µ ∈ R ∶
1
σ0
φ(

µ

σ0
) > C}

where C can be chosen by

1 − α =P πR(µ∣0)[µ ∈ Γ(0)] = ∫ I{L(0) ≤ µ ≤ U(0)}πR(µ∣0)dµ

=∫

U(0)

L(0)

1
σ0
φ(

µ

σ0
)dµ = Φ(

U(0)
σ0

) −Φ(
L(0)
σ0

)

Therefore, Γ(0) should have the following form

Γ(0) = [L(0), U(0)] = [−zα/2σ0, zα/2σ0] = [−zα/2
σ

√
n
, zα/2

σ
√
n
]

where zα = Φ−1(1 − α).

Figure 4.1: BEIE for location group under a normal distribution
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Lastly,

Γ∗(x̄) = [x̄ ± zα/2
σ

√
n
]

Note that the resulting BEIE is identical to the classical z-based confidence interval

for µ. Just as this known σ2 case generates the form of a z-based confidence interval,

an unknown σ2 case generates the form of a t-based confidence interval.

Example 4.19. (Scale Group) Suppose X1,X2, . . . ,Xn is a random sample from

N(µ,σ2). This time we assume both µ and σ2 are unknown. The goal is to construct

BEIE for σ2. We know this problem has the scale group structure and the resulting

left and right Haar densities are 1/b from (example 4.6). In addition, in (example

4.9), we confirmed the isomorphic structure was represented by R+, so that the non-

informative prior density becomes πR(σ2) = πL(σ2) = 1/σ2. Suppose fn−1 denotes the

density of the χ2(n − 1) distribution. Then

πR(σ2∣s2) =

(n−1)
σ2 fn−1 (

(n−1)s2

σ2 ∣σ2)πR(σ2)

∫
(n−1)
σ2 fn−1 (

(n−1)s2

σ2 ∣σ2)πR(σ2)dσ2
=K

(n − 1)
σ4 fn−1 (

(n − 1)s2

σ2 ∣σ2)

By adjusting the identity element e = 1 to the posterior distribution, the constant K

becomes 1. Therefore, by (Proposition 4.17),

Γ(1) =[L(1), U(1)] = {σ2 ∈ R+ ∶
(n − 1)
σ4 fn−1 (

(n − 1)
σ2 ∣σ2) ≥

C

σ2}

={σ2 ∈ R+ ∶
(n − 1)
σ2 fn−1 (

(n − 1)
σ2 ∣σ2) ≥ C}

={σ2 ∈ R+ ∶ (
n − 1
σ2 )

n−1
2

exp(−
n − 1
2σ2 ) > C ′}

={σ2 ∈ R+ ∶ a <
n − 1
σ2 < b}

={σ2 ∈ R+ ∶
n − 1
b

< σ2 <
n − 1
a

} = [
n − 1
b

,
n − 1
a

]

Note that tn−1
2 exp(−t/2) is unimodal as the kernel of fn+1. Thus, we have the following

first equation: fn+1(a) = fn+1(b). In addition, we obtain the second equation from

the coverage condition:

1 − α =P πR(σ2∣1)[σ2 ∈ Γ(1)] = ∫ I{L(1) ≤ σ2 ≤ U(1)}πR(σ2∣1)dσ2
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=∫

U(1)

L(1)
(Γ(

n − 1
2 )2n−1

2 )
−1

(
n − 1
σ2 )

n−1
2

exp(−
n − 1
2σ2 )

1
σ2dσ

2

=∫

b

a
(Γ(

n − 1
2 )2n−1

2 )
−1

(t)
n−1

2 −1 exp(−
t

2)dt

=∫

b

a
fn−1(t)dt

By solving the two equations numerically, we have the form, Γ⋆(1) = [
(n−1)
b , (n−1)

a ].

Figure 4.2: BEIE for scale group under a normal distribution

Lastly, the BEIE has the following form:

Γ⋆(S2) = [
(n − 1)S2

b
,
(n − 1)S2

a
]

Note that the resulting BEIE is identical to the shortest unbiased interval, which min-

imizes the expected false coverage probability among all unbiased intervals. There are

other intervals, the likelihood ratio based interval and the minimum length interval,

which satisfy the first equation fn+2(a) = fn+2(b) and fn+3(a) = fn+3(b), respectively,

as in Tate and Klett [51]. The length comparison among the IEs is summarized in

<Figure 4.3>. IE1 is the BEIE, IE2 is the likelihood ratio based interval, IE2 is the

minimum length interval, and IE4 is the usual equi-tailed interval which assigns the

same probability to both tails. It is important to note that the interval lengths are

determined by the measure based on the left Haar measure.

Example 4.20. (Location-Scale Group) Suppose X1,X2, . . . ,Xn is a random sample

from N(µ,σ2) with unknown µ and σ2. Since the problem has the location-scale

group structure, the resulting right and left Haar densities have the form of 1/b and

1/b2 from (example 4.7). In addition, in (example 4.10), we confirmed the isomorphic
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Figure 4.3: Length Comparison between IEs based for different n

structure was represented by R×R+, so that the non-informative prior density becomes

πR((µ,σ2)) = 1/σ2 and πL((µ,σ2)) = 1/σ4. Then

πR((µ,σ2)∣(x̄, s2)) =Kf((x̄, s2)∣(µ,σ2))πR((µ,σ2))

=K ′ (s
2)

n−3
2

(σ2)
n
2 +1 exp(−

(x̄ − µ)2

2σ2/n
) exp(

−(n − 1)s2

2σ2 )

Note that the identity element e = (0,1) for the location-scale group. Thus, by

(Proposition 4.17),

Γ((0,1)) ={(µ,σ2) ∈ R ×R+ ∶K ′ 1
(σ2)

n
2 +1 exp(−

nµ2

2σ2 ) exp(
−(n − 1)

2σ2 ) > C
1
σ4}

={(µ,σ2) ∈ R ×R+ ∶ (σ2)−(n/2−1) exp(−
nµ2 + (n − 1)

2σ2 ) > C ′}

where C ′ is chosen by P πR((µ,σ2)∣(0,1))[(µ,σ2) ∈ Γ(0,1)] = 1 − α.

The optimal estimator can be numerically derived, so that

Γ∗((x̄, s2)) = (x̄, s2)Γ((0,1)) = {(x̄ + s2v, s2w) ∶ (v,w) ∈ Γ((0,1))}.

4.4.2 The Multi-Dimensional Extension

In this subsection, we extend the single EIE Haar to an EMIE Haar. While the MIE

still attempts to minimize the global expected content under the global coverage
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Figure 4.4: BEIE for location-scale group under a normal distribution

constraint, it has an additional goal by contrast to the BMIE Thres. Note that

the BMIE Thres handles M homogeneous parameters simultaneously. These are

homogeneous in the sense that the parameters are of a single particular type, e.g., the

population means, from identical probability distributions, e.g., normal distributions.

On the other hand, the EMIE Haar is designed to handleM heterogeneous parameters

which can be different types from distinct probability distributions. To do so, we

categorize the different parameters with respect to corresponding group structures so

that the Invariance Principle can be utilized for the parameter groups, respectively.

Through the process, we raise the unit of estimation from the individual parameter

level to the individual group level. Still, this is not a simple task because we have to

deal with the both within- and between-group structures as follows:
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variance

standard deviation

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Within-group

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Between-group

As with the BMIE Thres, we first introduce the mathematical setting for the EMIE

Haar. Consider a statistical model (X ,F ,P) where X = ⨉
M
m=1Xm, F = σ (⨉

M
m=1Fm),

and P is the collection of probability measures on the product space. In addition,

(Θ,T ) is a measurable space with Θ = ⨉
M
m=1 Θm and T = σ (⨉

M
m=1 Tm), where Θm and

Tm are themth parameter space and its σ-field. Suppose Pθ is the family of continuous

probability distribution functions with respect to P on X . From the model, a random

quantity X is observed from Pθ. Assume the conditional independence of Xm∣θm’s

throughout the indexm = 1,2, . . . ,M , so that Pθ(X) = ∏
M
m=1Pθm(Xm). We also allow

the individual distribution functions to be from different probability distributions.

Lastly, for each fixed θm ∈ Θm, let fθm be the density of Pθm and assume the mapping

(θm, xm) ↦ fθm(xm) = f(xm∣θm) is product-measurable.

Define (G, Ḡ) to be the families of groups for the sample and parameter spaces.

That is, both G and Ḡ contain K number of heterogeneous group structures, such as

location, scale, location-scale, general linear, etc. Therefore, we assume thatMk num-

ber of individual estimations are assigned to Gk for k = 1,2, . . . ,K with ∑K
i=1Mk =M .

Then the forms of Haar measures depend on the specified group structures. Let

HLk and HRk be the kth left and right Haar measures for Gk with the corresponding

distribution and density functions, HL
k (⋅), HR

k (⋅), hLk (⋅), and hRk (⋅). In this study,

we further assume all X , Θ, G and Ḡ satisfy the additional assumption in <Table
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4.1> along with the transitivities. Under these conditions, the kth Haar distributions

and densities will be shared as the prior distribution and densities for any individual

estimations which have the kth group structures. In this study, we mainly restrict

ourselves to the location-scale group structures, but further generalizations are pos-

sible involving a larger class of groups. As mentioned, once all the M dimensional

random quantities are observed, then they can be rearranged so that proper group

structures can be assigned to the individual estimations.

X1
1 ,X

1
12, . . . ,X

1
1n1 ∼ f

1
1 (⋅ ∣θ1

1)

⋮

X1
m1,X

1
m2, . . . ,X

1
mnm ∼ f1

J(⋅ ∣θ1
1)

⋮

X1
M11,X

1
M12, . . . ,X

1
M1nM1

∼ f1
J(⋅ ∣θ1

M1
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

θ1
1, θ

1
2, . . . , θ

1
Mk
∼ πL1 (⋅) & πR1 (⋅)

⋮ ⋮

⋮

Xk
m1,X

k
m2, . . . ,X

k
mnm ∼ fkm(⋅ ∣θkm)

⋮

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

θk1 , θ
k
2 , . . . , θ

k
Mk
∼ πLk (⋅) & πRk (⋅)

⋮ ⋮

XK
11,X

K
12, . . . ,X

K
1n1 ∼ f

K
1 (⋅ ∣θK1 )

⋮

XK
MK1,X

K
MK2, . . . ,X

K
MKnMK

∼ fKMK
(⋅ ∣θKMK

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

θK1 , θ
K
2 , . . . , θ

K
MK
∼ πLK(⋅) & πRK(⋅)

Suppose a random sample follows the mth probability distribution of the kth

group structure. Then, by the Sufficiency Principle, let us say the sample informa-

tion regarding the target parameter is summarized in T km. Given αkm ∈ (0,1), recall

that the corresponding equivariant interval estimator (EIE) satisfies the relation,

Γkm(gk(tkm);αkm,Gk) = ḡk(Γkm(tkm);αkm,Gk). Then (Corollary 4.12) suggests its coverage
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probability can be summarized either by the frequentist or Bayesian perspective as

follows:

P πRk (θ
k
m∣t

k
m) [θkm ∈ Γkm(tkm;αkm,Gk)] = Pθkm [θkm ∈ Γkm(T km;αkm,Gk)]

for m = 1,2, . . . ,Mk and k = 1,2, . . . ,K. Note that the posterior probability on

the left-hand side is based on the prior distribution with respect to the right Haar

distribution, HR
k (θm). Since the equality holds for any k, we define the global coverage

probability of the EMIE Haar as follows.

Definition 4.21. Let G be the family of group structures with K distinct groups.

Suppose the kth group is assigned to Mk number of estimations for k = 1,2, . . . ,K.

Then, given q ∈ (0,1), a 100 × (1 − q)% equivariant multiple interval estimator with

Haar measure for θ is a map, Γ(⋅) ∶ X Ð→ T , such that

K

∏
k=1

Mk

∏
m=1

P πRk (θ
k
m∣e

k
m)[θkm ∈ Γkm(ekm;αkm,Gk)] =

K

∏
k=1

Mk

∏
m=1

Pēkm[ēkm ∈ Γkm(T km;αkm,Gk)] ≥ 1 − q.

In addition, the left-hand side quantity is called the equivariant family-wise coverage

rate of Γ(X) and denoted by EFWCR[α;G].

Our goal is to determine the best EMIE Haar. This requires an optimality condi-

tion which is based on the global expected content as follows.

Definition 4.22. The best equivariant multiple intervals estimator with Haar mea-

sures is the EMIE Haar which minimizes the following global expected content:

νL(Γ(x;α,G)) = 1
K

K

∑
k=1

[
∑
Mk
m=1 ν

L
k (Γkm(ekm;αkm,Gk))

βk +∑
Mk
m=1 ν

L
k (Γkm(ekm;αkm,Gk))

]

where βk’s are positive constants.

Note that νLk (Γkm(ekm;αkm,Gk)) is the individual expected length in (Definition

4.14). Here, the βk’s have an important role in handling the within- and between-

group structures. First, they are the decision factors for the individual level alloca-

tions within the groups through the confidence level investing strategy. In addition,
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they decides the weights of the groups as seen in the following reparametrization:

1
K
∑
k

∑m ν
L
k (Γkm)

βk +∑m ν
L
k (Γkm)

=
1
K
∑
k

1/βk∑m ν
L
k (Γkm)

1 + 1/βk∑m ν
L
k (Γkm)

=
1
K
∑
k

∑m γkν
L
k (Γkm)

1 +∑m γkν
L
k (Γkm)

.

4.5 Optimization

In this section, we introduce an optimization procedure which can handle different

group structures in a MIE. Note that this procedure is a variation of the general

optimization strategy in chapter 2 with the folowing goal:

minimize Rβ
0(θ, δ) subject to R1(θ, δ) ≤ q

where two global risk functions are refined as follows:

Rβ
0(θ, δ) =

1
K

K

∑
k=1

[
∑
Mk
m=1 ν

L
k (Γkm(ekm;αkm,Gk))

βk +∑
Mk
m=1 ν

L
k (Γkm(ekm;αkm,Gk))

] ;

R1(θ, δ) =1 −
K

∏
k=1

Mk

∏
m=1

P πRk (θ
k
m∣e

k
m)[θkm ∈ Γkm(ekm;αkm,Gk)].

A challenging part of the optimization is that it consists of K different components,

which reflect the corresponding group structures. If we had information about group-

wise level conditions, 1 − qk for k = 1,2, . . . ,K such that 1 − q = ∏K
k=1(1 − qk), then

we could simply perform the K separate optimizations and combine these results.

However, this approach has an apparent limitation: it requires information about

qk’s; moreover, it does not offer any interactions among the group structures. In this

study, we do not assume the information and we let the procedure decide the weights,

βk’s. Before proceeding to the actual application, we rewrite the optimization problem

in terms of the EFWCR as follows:

minimize 1
K

K

∑
k=1

[
∑
Mk
m=1 ν

L
k (Γkm(ekm;αkm,Gk))

βk +∑
Mk
m=1 ν

L
k (Γkm(ekm;αkm,Gk))

]

subject to
K

∑
k=1

Mk

∑
m=1

log (P πRk (θ
k
m∣e

k
m)[θkm ∈ Γkm(ekm;αkm,Gk)]) ≥ log(1 − q).
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4.6 Application: Mean and Variance of Normal Distribution

In this section, we prepare an application to illustrate the case in which we determine

the best EMIE Haar. This particular application is for the means and variances of

normal distributions. Note that this is the case for K = 2 where G1 and G2 are

location and scale groups, respectively.

4.6.1 Application Procedure

Suppose we observe random quantities as follows:

X1
11,X

1
12,X

1
13, . . . ,X

1
1n1 ∼ N(µ

1
1, (σ1

1)2)

⋮

X1
M11,X

1
M12, . . . ,X

1
M1nM1

∼ N(µ1
M1
, (σ1

M1
)2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

µ1
1, µ

1
2, . . . , µ

1
M1 ∼ π

L
1 (⋅) & πR1 (⋅)

X2
11,X

2
12,X

2
13, . . . ,X

2
1n1 ∼ N(µ

2
1, (σ2

1)2)

⋮

X2
M21,X

2
M22, . . . ,X

2
M2nM2

∼ N(µ2
M2
, (σ2

M2
)2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(σ2
1)2, (σ2

2)2, . . . , (σ2
M2)

2 ∼ πL2 (⋅) & πR2 (⋅)

where (σ1
1)

2, (σ1
2)

2, . . . , (σ1
M1

)2 and µ2
1, µ

2
2, . . . , µ

2
M2

are known. As the location and

scale groups are commutative, the corresponding left and right prior densities are

identical:

πL1 (µ) =π
R
1 (µ) = 1;

πL2 (σ
2) =πR2 (σ2) =

1
σ2 .

The resulting mth individual EIEs based on the identity elements have similar forms

in (Example 4.18) and (Example 4.19):

Γ1
m(e1

m;α1
m,G1) =

⎡
⎢
⎢
⎢
⎢
⎣

±zα1
m/2

σ1
m

√
n1
m

⎤
⎥
⎥
⎥
⎥
⎦

;

Γ2
m(e2

m;α2
m,G2) = [

(n2
m)

bm(α2
m)
,

(n2
m)

am(α2
m)

] .
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where am(α2
m) and bm(α2

m) are determined by two equations, ∫
bm
am

fnm(t)dt = 1 −

α2
m and fnm+2(am) = fnm+2(bm), with fnm being the density function of the χ2(nm)

distribution. From the indivdual EIEs, the optimization problem becomes as follows:

minimize ∑
M1
m=1 2zα1

m/2σ
1
m

β1 +∑
M1
m=1 2zα1

m/2σ
1
m

+
∑
M2
m=1 log(bm(α2

m)/am(α2
m)

β2 +∑
M2
m=1 log(bm(α2

m)/am(α2
m))

subject to
M1

∑
m=1

log(1 − α1
m) +

M2

∑
m=1

log(1 − α2
m) ≥ log(1 − q).

We adjust the reparametrization νm = Φ−1(1 − α1
m/2), νUm = F −1

nm(1 − α2
m/2) and νLm =

F −1
nm(α2

m/2), with the χ2(n) distribution function Fn and provide a form we can solve

through the Lagrange equation and Newton-Raphson method:

minimize ∑
M1
m=1 2νmσ1

m

β1 +∑
M1
m=1 2νmσ1

m

+
∑
M2
m=1 log(νUm/νLm)

β2 +∑
M2
m=1 log(νUm/νLm)

subject to
M1

∑
m=1

log(Φ(2νm − 1)) +
M2

∑
m=1

log(Fn2
m
(νUm) − Fn2

m
(νLm)) ≥ log(1 − q).

4.6.2 Application Result

We implement the application for four different cases as follows. First, fix M2 = 100

and choose n2
1, n

2
2, . . . , n

2
100 to be a sequence of positive integers from 2 to 101. Then

assign four different set of positive numbers for σ1
1, σ

1
2, . . . , σ

1
M1

so that we can as-

certain the results for the different parameter combinations. <Table 4.2> presents

the setting of the application. It is natural to have different equivariant global ex-

Table 4.2: Description of Application

Case Size of σ1
m’s σ1

m’s M1 n2
m’s M2 M

I Small 0.1, 0.2, . . ., 1 10 2, 3, . . ., 101 100 110
II Medium 0.1, 0.31, . . ., 3 15 2, 3, . . ., 101 100 115
III Small 0.005, 0.01, . . ., 1 200 2, 3, . . ., 101 100 300
IV Large 90, 91, . . ., 100 10 2, 3, . . ., 101 100 110

pected lengths (EGEL) from the four cases as we assume different σ1
m’s. Therefore,

for each case, we provide the relative EGEL compared to the Sidak adjusted EGEL.

In addition, we compare the best βk’s among the cases to see whether they work
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Table 4.3: Result of Application

Case β1 β2 Relative EGEL
I 1000 1000 85.01%
II 1000 226.52 94.84%
III 1000 2 99.47%
IV 1000 2 85.36%

properly as weighting devices. The results are summarized in <Table 4.3>. First, let

us observe that the relative EGEL is less than 1 for each individual case, implying

the optimization procedure helps to reduce the EGEL compared to the EMIE Haar

with Sidak adjustment. Notice that the β’s vary for different cases. We can ascertain

that the procedure chooses appropriate weights, β1 and β2, for different parameter

combinations. As a result, this process allows us to achieve the minimum relative

EGEL. The values are gathered through a graphical search as presented in <Figure

4.5>. Observe that the value 1000 is used in the practical sense for several cases.

Figure 4.5: Choice of β1 and β2 for Different Cases
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This is because the EGEL becomes stable for numbers larger than 1000.

4.7 Summary

The philosophical basis of Bayesian statistics is subjectivism. However, in practice,

many Bayesian procedures utilize non-informative priors. The standard way to choose

a non-informative prior distribution is due to Jeffreys. (Kass and Wasserman [33])

The formal rule is proposed in Jeffreys [32] as follows:

π(θ) ∝ det(I(θ))1/2

where I(θ)ij = E [− B
2l

BθiBθj
], the Fisher information matrix. There are many other ways

to derive non-informative priors and our study corresponds to the method based on

the Invariance Principle with Haar measures. Intuitively, if a prior distribution is

truly non-informative, then the amount of information in the posterior distribution

should be equivalent to the amount of information in the likelihood function. (Lemma

4.13) formally represents this reconciliation between the frequentist and Bayesian

procedures. That is, given an invariance structure combined with an appropriate

non-informative prior, an equivariant decision function results in the same posterior

and classical risks. This relation then holds true for IEs as in (Proposition 4.12).

Notice that the method based on the Invariance Principle generates two non-

informative priors with respect to the right and left Haar measures. Staticians differ

on which of the two priors is most suitable. For example, the prior distribution with

respect to the left Haar measure coincides with the Jeffreys’ prior for non-location

parameters. On the other hand, the prior distribution with respect to the right Haar

measure is used in the EIE Haar because it provides the reconciliation between the

coverage probabilities. The left Haar measure is also utlized to measure the expected

lengtht of the EIE Haar. Due to the left-hand side invariance property, the expected

content can also be calculated with respect to the identity element e. Combined
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with the invariance property of the coverage probability, this simplifies the way to

determine the best EIE Haar in (Proposition 4.17).

It is worth noticing that the result of the reconciliation in (Lemma 4.13) is based

on the strong assumptions in <Table 4.1>. For example, the isomorphic relation

between the sample space and parameter space may be unrealistic as the dimension

of the sample space is generally higher than that of the parameter space. This is

the reason we exploit the Sufficiency Principle prior to the actual procedure. The

strong assumption can be partially relaxed by using homomorphisms. Under the

relaxed assumption, a standard invariance technique which is based on a probability

distribution conditioned by maximal invariant statistics ensures the reconciliation

result as in Schervish [49]. Note that a famous example of the standard technieque is

the Pitman estimator, or minimum risk equivariant estimator, in Pitman [44]. Further

relaxations are possible; however, these require considerably deeper knowledge in

group theory, e.g., the concept of amenability in Bondar and Milnes [4].

The main focus of the EMIR Haar, the multiple extension of EIE Haar, is how to

handle a set of heterogeneous parameters simultaneously. To do so, each parameter

is categorized with respect to the corresponding group structure. Then the basic unit

of estimation becomes the set of IEs which share the group structure. This makes

the IEs in the same group structure comparable. At the same time, the modified op-

timization procedure handles the between-group structure, assigning proper weights

to the groups. This approach is meaningful in the sense that it deals with the het-

erogeneous parameters among different group structures. Moreover, the optimization

excludes the subjective choice on the weights of the groups by letting the procedure

decides the best weights to minimize the global expected content.
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Chapter 5

Conclusion and Future Works

5.1 Concluding Remarks

The goal of this dissertation was to construct MIEs under the existence of prior

information. It started by determining the proper extension of the global performance

quantities: the global coverage probability and global expected content. Throughout

the manuscript, the family-wise coverage rate was defined and utilized for the global

coverage probability, and the average expected length was used for the global expected

content. In terms of the prior information, we impose informative or non-informative

prior distribution for different goals and purposes. Therefore, the two major topics,

the BMIE Thres and EMIE Haar, assume the existence of prior distributions to

enhance the performance of the MIEs. However, they are not intended to follow the

frequentist or Bayesian paradigm. The BMIE Thres utilized an informative prior

distribution to estabilish thresholds; however, the hyper-parameters could later be

estimated in a way similar to the parametric empirical Bayes approach. On the other

hand, the EMIE Thres utilized a non-informative prior distribution which played a

role as a link between two paradigms in statistics under certain assumptions.

As mentioned, it is possible to categorize the BMIE Thres as one of the empirical

Bayes MIEs. Several previous studies on empirical Bayes MIEs have investigated

hyper-ellipsoid estimators. However, the resulting BMIE Thres is essentially a hyper-

rectangular estimator. Although the BMIE Thres will be dominated by the former

estimators in terms of the global expected content, it has an advantage in evaluating
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the individual IEs’ performances which is demanded in actual practices. In addition,

the BMIE Thres with estimated hyper-parameters achieves a better level of robustness

compared to the regular hyper-rectangular empirical Bayes MIE. This provides its

own niche combined with the confirmed reduction of the global expected content via

thresholding.

It is a quite ambitious idea to build up a procedure to simultaneously handle het-

erogeneous parameters which may even come from different probability distributions.

The idea of EMIE Haar is to categorize the parameters within the proper groups so

that they can be treated in similar fashion. The procedure mainly relies on the In-

variance Principle with the corresponding Haar measures to simplify the problem as

much as possible. Due to its complexity, the problem may not be completely handled

by this analytic procedure. Then, the remaining parts are covered by the optimiza-

tion procedure which allocates individual levels as well as weights to group structures.

Certainly, there exists more room for further improvement to EMIE Haar. However,

we believe the procedure delivers a meaningful result in the topic of multiple interval

estimation.

Throughout the investigations on MIEs, we can see the dynamics and importance

of the topic and realize again that they are worth independently study. One limitation

of our study is the use of the FWCR for the global coverage probability. While major

studies of MTPs have been reorganized based on FDR for the global type-I error rate,

there exists a need for a refined global coverage probability to replace the FWCR.

This is not a simple task, as the exact dual procedure of the FDR is impossible to

obtain due to the non-existence of alternative hypothesis information in MIEs. If a

refined global coverage probability is established, we can reformulate the BMIE Thres

and EMIE Haar by replacing the global risk function in the optimization procedure.
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5.2 Future Works

5.2.1 Bayes MIE with thresholding

In section 3.6, we used a plug-in procedure in the data application to construct the

BMIE Thres under unknown standard deviations. However, we could also have built

the procedure upwards from the full prior structure as follows:

Xm∣µm, λm ∼N (µm, (nmλm)−1) & (nm − 1)S2
m∣λm ∼g1 = Gamma(

nm−1
2 , λm2 )

µm∣λm ∼N (η, (κmλm)−1) & λm ∼g2 = Gamma(a, b)

where the normal distributions consist of location and precision parameters and the

gamma distributions consist of shape and rate parameters. Given this structure, the

form of the mth individual BIE Thres has the following form:

Γm(Xm;αm) = (Xm − tnm−1
αm/2

Sm√
nm
IL(Xm, η),Xm + tnm−1

αm/2
Sm√
nm
IR(Xm, η))

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IL(Xm, η) = I {Xm − η > −C
√

b
κm

Γ(a−1
2 )

Γ(a) } ,

IR(Xm, η) = I {Xm − η < C
√

b
κm

Γ(a−1
2 )

Γ(a) } ,

tnm−1
αm/2 = F −1

tnm−1(1 − αm/2); S2
m = 1

nm−1 ∑
nm
i=1(Xi −Xm)2.

The corresponding Bayes coverage probability and Bayes expected length can be

derived, but no closed forms exist. The hardest part is the estimation of the hyper

parameters: η, a, b, and κm’s. If this issue can be resolved, then we will be able to

apply the above BMIE Thres to actual data.

Another interesting direction for future study of BMIE Thres is its nonparametric

extensions. Note that under the normal-normal model, BMIE Thres shares the same

setting as the parametric empirical Bayes. Therefore, a reasonable starting point

for the extension would be the nonparametric empirical Bayes setting, and we could

derive a threshold based on that nonparametric structure. Another extension would

be the discovery of a method which does not rely on prior information, but instead
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borrows the information for thresholding from a domain study such as economics,

engineering, or biology.

5.2.2 Equivariant MIE with Haar Measures

Relaxation of the assumptions regarding the EMIE Haar was mentioned mainly in

terms of the isomorphisms. In addition, the relaxation on the transitivity assumption

is an interesting problem. When we lose the transitivity, a risk function has a distinct

value on each orbit. Therefore, we must depend on the appropriate minimax estima-

tion with respect to the orbits. The concept of cross-sections introduced in Wijsman

[55] can be helpful in relaxing the assumptions. Note that this idea was also used by

Hooper [31] and Hooper [30] in studies of invariant set estimation.

As in the BMIE Thres case, nonparametric extension of the EMIE Haar is an

interesting area of study. Under the nonparametric setting, the distribution itself

may be considered a nuisance parameter, so the current invariant structure should

be refined to involve handling the additional structure. A good starting point was

arranged in Peña and Kim [42]. Under a single dimensional nonparametric setting,

they utilized the relaxed invariance structure to derive the optimal equivariant esti-

mator within a certain class of estimators. Moving forward from their work, the next

key step would be to determine the proper form of Haar measures for the extended

invariant structure, i.e., the Haar measure of function spaces. It might be a reason-

able conjecture that this Haar measure will be a non-informative nonparametric prior

distribution.
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Appendix A

Proof of Propositions

Proposition A.1. The Bayes expected length (BEL) of the mth BIE Thres has the

form of

BEL[C,αm;σm, τ] = 2zαm/2σmΦ(Cm)

where Cm = Cτ/
√
σ2
m + τ 2, and the BEL approach the expected length of the corre-

sponding z-based IE as C goes to infinity.

Proof. We can first manipulate the original length as follows.

ν(Γm(Xm;αm)) =zαm/2σm [I {X̄m < η +Cτ} + I {X̄m > η −Cτ}]

=zαm/2σm [1 + I {η −Cτ < X̄m < η +Cτ}]

where ν is the content measure which is Lebesgue in this location parameters case.

To derive the Bayes length, we take the expectations as follows:

∫
Θm
∫
Xm

ν(Γm(xm;αm))dPm(xm∣µm)dΠ(µm)

=Eµm [EX̄m∣µm[ν(Γm(Xm;αm))]]

=zαm/2σm (1 +EµmPZm [
η−Cτ−µm

σm
< Zm <

η+Cτ−µm
σm

])

=zαm/2σm (1 −Eµm [Φ (
µm−η−Cτ

σm
) −Φ (

µm−η+Cτ
σm

)])

=zαm/2σm (1 −EZ′m [Φ (
Z′m−C
σm/τ

) −Φ (
Z′m+C
σm/τ

)])

=zαm/2σm (1 −Φ( −Cτ√
σ2
m+τ

2 ) +Φ( Cτ√
σ2
m+τ

2 )) = 2zαm/2σmΦ( Cτ√
σ2
m+τ

2 )

where the Zm and Z ′
m follow the standard normal distribution. Once the form is

derived, it is easy to observe, as C goes to infinity, this Bayes length approaches the

expected length, 2zαm/2σm, of the classical z-based IE.
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Proposition A.2. The Bayes coverage probability (BCP) of the mth BIE Thres has

the form of

BCP [C,αm;σm, τ] = 2∫
Cm

−∞
{Φ(σmτ y +

√

1 + σ2
m

τ2 zαm/2) −Φ (σm
τ y)}dΦ(y)

where Cm = Cτ/
√
σ2
m + τ 2, and BCP converges to the coverage probability of the

corresponding z-based IE as C goes to infinity.

Proof. For the derivation, it is better to use the posterior and marginal distributions:

µm∣X̄m ∼ N ( τ2

τ2+σ2
m
X̄m +

σ2
m

τ2+σ2
m
η, τ

2σ2
m

τ2+σ2
m
) & X̄m ∼ N (η, σ2

m + τ 2) .

Then, the Bayes coverage probability becomes:

∫
Θm

Pµm[µm ∈ Γm(Xm;αm)]dΠ(µm)

=EX̄mEµm∣X̄mI {LBm ≤ µm ≤ UBm}

=EX̄mPµm∣X̄m [µm < X̄m + zαm/2σmI {X̄m − η < Cτ}]

−EX̄mPµm∣X̄m [µm < X̄m − zαm/2σmI {X̄m − η > −Cτ}]

=EZ′mΦ(σmτ Z
′
m +

√
τ2
m+σ

2
m

τ zαm/2I {Z
′
m < Cτ√

τ2+σ2
m

})

−EZ′mΦ(σmτ Z
′
m −

√
τ2
m+σ

2
m

τ zαm/2I {Z
′
m > −Cτ√

τ2+σ2
m

})

=∫

Cm

−Cm
{Φ(σmτ z

′
m +

√
τ2
m+σ

2
m

τ zαm/2) −Φ(σmτ z
′
m −

√
τ2
m+σ

2
m

τ zαm/2)}φ(z
′
m)dz′m

+∫

∞

Cm
{Φ (σm

τ z
′
m) −Φ(σmτ z

′
m −

√
τ2
m+σ

2
m

τ zαm/2)}φ(z
′
m)dz′m

+∫

−Cm

−∞
{Φ(σmτ z

′
m +

√
τ2
m+σ

2
m

τ zαm/2) −Φ (σm
τ z

′
m)}φ(z′m)dz′m

=2∫
Cm

−∞
{Φ(σmτ z

′
m +

√
τ2
m+σ

2
m

τ zαm/2) −Φ (σm
τ z

′
m)}φ(z′m)dz′m

where Cm = Cτ√
τ2+σ2

m

. Although is has no closed form, it is a smooth increasing function

with respect to C and approaches the nominal coverage probability of the classical

z-based IE, 1 − αm. That is,

lim
C→∞

BCP [C,αm;σm, τ] =2∫
∞

−∞

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Φ
⎛
⎜
⎝

y+

√
τ2+σ2

m

σm
zαm/2

τ/σm

⎞
⎟
⎠
−Φ (

y−0
τ/σm

)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

φ(y)dy
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=2{Φ (Φ−1 (αm/2)) − 1
2} = 1 − αm

Proposition A.3. The Bayes threshold ratio (BTR) has the form of

BTR[C;σ, τ] = 2
M

M

∑
i=1

Φ(−Cm)

where Cm = Cτ/
√
σ2
m + τ 2. As C increases from zero to infinity, the BTR decreases

from 1 to 0.

Proof. Note that X̄m marginally follows N(η, σ2
m + τ 2). Then,

EX̄m [
1
M

M

∑
i=1

[I{X̄m > η +Cτ} + I{X̄m < η −Cτ}]]

=
1
M

M

∑
i=1

[P [X̄m > η +Cτ] + P [X̄m < η −Cτ]]

=
1
M

M

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎣

P

⎡
⎢
⎢
⎢
⎢
⎣

X̄m − η
√
σ2
m + τ 2

>
Cτ

√
σ2
m + τ 2

⎤
⎥
⎥
⎥
⎥
⎦

+ P

⎡
⎢
⎢
⎢
⎢
⎣

X̄m − η
√
σ2
m + τ 2

<
−Cτ

√
σ2
m + τ 2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

=
1
M

M

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎣

1 −Φ
⎛

⎝

Cτ
√
σ2
m + τ 2

⎞

⎠
+Φ

⎛

⎝

−Cτ
√
σ2
m + τ 2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=
2
M

M

∑
i=1

Φ
⎛

⎝

−Cτ
√
σ2
m + τ 2

⎞

⎠
=

2
M

M

∑
i=1

Φ(−Cm)

where Cm = Cτ/
√
σ2
m + τ 2.

Corollary A.4. Given M parameters and a 1 − q global level, the Bayes relative

expected length (BREL), the Bayes family-wise coverage rate (BFWCR), and the

Bayes thresholding ratio (BTW) have the following forms:

BREL[C,α;σ, τ] = 1
M

M

∑
i=1

[2zαSσmΦ(Cm)]/
1
M

M

∑
i=1

[2zαSσm] ;

BFWCR[C,α;σ, τ] =
M

∏
i=1

[2∫
Cm

−∞
{Φ(

σm
τ
y +

√

1 + σ2
m

τ2 zαS) −Φ (σm
τ y)}dΦ(y)] ;

BTR[C;σ, τ] = 2
M

M

∑
i=1

Φ(−Cm)

where Cm = Cτ/
√
σ2
m + τ 2, and αS is the Sidak adjusted level, 1 − (1 − q)1/M .
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Proof. From (Proposition 3.4) and (Definition 3.3), we can obtain the BAELs of

BMIE Thres and z-based MIE, respectively. Then BREL[C,α;σ, τ] is the ratio

of these two BAELs. In addition, the BFWCR[C,α;σ, τ] can be obtained from

(Proposition 3.5) and (Definition 3.2) by multiplying M individual BIEs. Lastly,

BTR[C;σ, τ] is an immediate result from (Proposition 3.6).

Proposition A.5. Suppose δ ∈ D is an equivariant decision function. Then the

following equality holds trus:

R(θ, δ) = R(ḡ(θ), δ)

for every θ ∈ Θ and g ∈ G.

Proof.

LHS =Eθ[L(θ, δ(X))]

=Eθ[L(ḡ(θ), g̃(δ(X)))]

=Eθ[L(ḡ(θ), δ(g(X)))]

=Eḡ(θ)[L(ḡ(θ), δ(X))] = RHS

Note that the second equality is due the invariant loss function and the third equality

is because δ is equivariant. Lastly, the fourth equality is because of the invariance on

the family of probability distributions.

Lemma A.6. Suppose X , Θ, G, and Ḡ are all isomorphic. Then for an equivariant

decision rule δ(x) = x̃(δ(e)),

EπR(θ∣x)[L(θ, x̃(δ(e)))] = R(θ, δ) = ∫
X
L(ē, ỹ(δ(e)))f(y∣ē)dy

where πR(θ∣x) is the posterior distribution of θ, given x, with respect to the right

invariant Haar prior density.

Proof. We prove the theorem based on the following three small claims and prove

these claims later.
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1. f(x∣ḡ) = f(g−1(x)∣ē)JL
g−1(x)

2. There exists K ∈ R such that for any integrable function t

∫ t(x
−1)hR(x)dx =K ∫ t(y)h

L(y)dy

3. There exists ν(g) such that for any integrable function t

∫ t(yg
−1)hL(y)dy = ν(g) ∫ t(y)h

L(y)dy

∫ L(θ, x̃(δ(e)))f(x∣θ)hR(θ)dθ
2
=K ∫ L(ȳ−1, x̃(δ(e)))f(x∣ȳ−1)hL(y)dy

=K ∫ L(ē, ỹx̃(δ(e)))f(x∣ȳ−1)hL(y)dy

1
=K ∫ L(ē, ỹx(δ(e)))f(yx∣ȳ−1)JLy (x)h

L(y)dy

=K ∫ L(ē, ỹx(δ(e)))f(yx∣ȳ−1)
hL(x)

hL(yx)
hL(y)dy

3
=KhL(x)ν(x)∫ L(ē, ỹx(δ(e)))f(yx∣ȳ−1)dy

Note that the second equality holds due to the invariant loss function and the fourth

equality holds because of the form of the left Haar density. Now set the loss function

to be 1 in the first and last terms of the equations. Then, the integral with the density

on the right-hand side becomes zeto, so that

∫ f(x∣θ)HR(θ)dθ =KhL(x)ν(x).

Therefore,

ΠR(θ∣x) =
f(x∣θ)hR(θ)

∫ f(x∣θ)h
R(θ)dθ

=
f(x∣θ)hR(θ)

KhL(x)ν(x)

But then we verify the first and the third terms are equivalent by movingKhL(x)ν(x)

to the other side. Furthermore, the second term is obtained immediately from the

third term becuase of transitivity.

proof of 1. Note the following equation holds due to the invariant family of 
probability distributions.

∫
g−1A

f(x∣θ)dx = Pθ[X ∈ g−1A] = Pθ[gX ∈ A] = Pḡ(θ)[X ∈ A] = ∫
A
f(x∣ḡ(θ))dx
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Then for any A ∈ F , by the change of variable with g−1y = x,

LHS = ∫
A
f(g−1y∣θ)JLg−1(y)dy = RHS.

Thus, f(g−1y∣θ) = f(y∣ḡ(θ)) for any y, θ, and g. Then the result is immediate

by choosing θ = ē.

proof of 2. Consider ∫A h
R(x)dx = ∫Ag h

R(x)dx. Set up a change of variable with 
x = y−1.

Then

∫
A−1

hR(y−1)J(y)dy = ∫
g−1A−1

hR(y−1)J(y)dy.

Observe that hR(y−1)J(y) is a left Haar density. Thus, hR(y−1)J(y) =KhL(y)

because the Haar density is unique up to constants. Thus,

∫ t(x−1)hR(x)dx = ∫ t(y)hR(y−1)J(y)dy = ∫ t(y)KhL(y)dy.

proof of 3. Let HL
g (A) = ∫Ag h

L(y)dy. Then it is a left Haar measure because

g (g0A) = HL
g(A). Then HL

g (A) = ν (g)HL(A) because the Haar measure 

is unique up to constants. Therefore, the following holds for any A ∈ F

LHS =∫
Ag
hL(y)dy = ∫

A
hL(xg)JR(x)dx;

RHS =ν(g)∫
A
hL(y)dy.

Therefore, hL(xg)JRg (x) = ν(g)HL(x) for all x and g. Lastly,

∫ t(yg−1)hL(y)dy = ∫ t(xgg−1)hL(xg)JRg (x)dx = ∫ t(x)ν(g)hL(x)dx.

Note that this proof is based on a result in Berger [3]. Slightly different approach is

provided in Schervish [49].

Proposition A.7. Under the same assumptions, suppose Γ(⋅) is an equivariant in-

terval estimator. Then,

P πR(θ∣e)[θ ∈ Γ(e)] = P πR(θ∣x)[θ ∈ Γ(x)] = Pθ[θ ∈ Γ(X)] = Pē[ē ∈ Γ(X)]
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Proof. The result is immediate from (Lemma 4.13) with the following loss function,

L(θ,Γ(x)) = I{θ ∈ Γ(a)}.

Proposition A.8. Suppose Γ(⋅) is equivariant and E[νL(Γ(X))] is the expected

content defined in (Definition 4.14). Then, the following arguments hold true:

E[νL(Γ(X))] = ∫
Θ
Prē[θ ∈ Γ(X)]πL(θ)dθ = νL(Γ(e))

Proof. The first equality is related to the false coverage probability used for deriving

the uniformly most accurate interval estimator (Lehmann and Romano [37]).

E[νL(Γ(X))] =∫
X
∫

Γ(x)
πL(θ′)dθ′f(x∣θ)dx

=∫
X
∫

Θ
I{θ′ ∈ Γ(x)}πL(θ′)dθ′f(x∣θ)dx

=∫
Θ
∫
X
I{θ′ ∈ Γ(x)}f(x∣θ)dxπL(θ′)dθ′

=∫
Θ
∫
X
I{θ′ ∈ Γ(x)}f(x∣θ)dxπL(θ′)dθ′

=∫
Θ
∫
X
I{θ′ ∈ Γ(x′)}f(x′∣ē)dx′πL(θ′)dθ′ = ∫

Θ
Prē[θ ∈ Γ(X)]

The second equality follows straightforwardly from the property of the left Haar

measure.

E[νL(Γ(X))] =∫
X
∫

Γ(x)
πL(θ′)dθ′f(x∣θ)dx

=∫
X
∫
x̄Γ(e)

πL(θ′)dθ′f(x∣θ)dx

=∫
X
∫

Γ(e)
πL(θ′)dθ′f(x∣θ)dx

=∫
Γ(e)

πL(θ′)dθ′∫
X
f(x∣θ)dx = νL(Γ(e))

Proposition A.9. The best equivariant interval estimator (BEIE) Γ⋆ satisfies

Γ⋆(x) = x̃Γ⋆(e) where

Γ⋆(e) = {θ ∈ Θ ∶ πR(θ∣e) ≥ CπL(θ)}
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with C chosen in order that

P πR(θ∣e)[θ ∈ Γ⋆(e)] = 1 − α

Proof. First, define O∗(x) = I{πR(x∣e) ≥ CπL(x)}. In addition, we let O(x) to be

an arbitrary indicator function which satisfy the condition ∫ O(x)πR(x∣e)dx ≥ 1 − α.

Note that O∗(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if πR(x∣e) ≥ CπL(x)

0 if πR(x∣e) < CπL(x)
. Therefore, the following inequality

always holds true:

(O∗(x) −O(x))(πR(x∣e) −CπL(x)) ≥ 0

Integrating both sides,

∫ (O∗(x) −O(x))(πR(x∣e) −CπL(x))dx ≥ 0

⇔∫ (O∗(x) −O(x))πR(x∣e)dx ≥ C ∫ (O∗(x) −O(x))πL(x)dx.

However, by construction, the left hand side is non-positive, implying the right hand

side is also non-positive. Therefore,

∫ O∗(x)πL(x)dx ≤ ∫ O(x)πL(x)dx.

Since O(x) has been chosen arbitrary, this implies Γ⋆(e) minimizes the expected

content defined in (Definition 4.14). Note that this proof is based on (Theorem 3) in

Peña and Kim [43].
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Appendix B

Solving Optimization Problem

In this appendix, we provide the derivation of the Lagrange equation and correspond-

ing Newton-Raphson method to solve the optimization problem in chapter 2.

B.1 Application: Mean of Normal Distribution

Minimize 1
M

M

∑
m=1

2νmσm
β + 2νmσm

subject to
M

∑
m=1

log(2Φ(νm) − 1) ≥ log(1 − q)

Now, we set up a Lagrange equation:

J(ν, λ) =
M

∑
m=1

2νmσm
β + 2νmσm

+ λ{
M

∑
m=1

log(2Φ(νm) − 1) − log(1 − q)}

The corresponding partial derivatives are:

B

Bνm
J(ν, λ) =

2βσm
(β + 2νmσm)2 + λ

2φ(νm)

2Φ(νm) − 1;

B

Bλ
J(ν, λ) =

M

∑
m=1

log(2Φ(νm) − 1) − log(1 − q).

Setting the first partial derivatives to zeros, we obtain m equations by taking log of

both sides. In addition, by averaging those m equations and substituting one of the

terms using the second partial derivative, we can obtain one more equation.

log(2Φ(νm) − 1) + log(2βσm) = log(−λ) + log(2φ(νm)) + 2 log(β + 2νmσm)

log(1−q)
M +

∑ log(2βσm)
M = log(−λ) + ∑ log(2φ(νm))

M +
2∑ log(β+2νmσm)

M
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Subtracting one equation from the other equation, we obtain m equations as follows:

fβm(ν) = log(2Φ(νm) − 1) + log(σm) − log(φ(νm)) − 2 log(β + 2νmσm)

− 1
M ∑(log(σm) − log(φ(νm)) − 2 log(β + 2νmσm)) − 1

M log(1 − q) = 0.

After we vertically merge those equations, fβ(v) = [fβ1 (v), fβ2 (v), . . . , fβM(v)]T , we

can solve this system of equations using Newton-Raphson method:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vnew

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vold

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B

Bvf
β
(vold)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fβ(vold)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the Jacobian consists of

diagonal mth element: B

Bνm
fm(v) = 2φ(νm)

2Φ(νm)−1 +
M−1
M (νm − 4σm

β+2νmσm )

off-diagonal (m,n)th element: B

Bνn
fm(v) = − 1

M (νn −
4σn

β+2νnσn )

B.2 Application: Variance of Normal Distribution

Minimize 1
M

M

∑
m=1

log(νUm) − log(νLm)

β + log(νUm) − log(νLm)

subject to
M

∑
m=1

log(Fnm(νUm) − Fnm(νLm)) ≥ log(1 − q)

where νUm = χ2
αm/2,nm and νLm = χ2

1−αm/2,nm . By managing the upper and lower quantiles

separately, we have twice as many equations compared to the normal mean case.

Then, the form of Lagrange multiplier becomes

J(νU ,νL, λ) = 1
M

M

∑
m=1

log(νUm) − log(νLm)
β + log(νUm) − log(νLm)

+λ{
M

∑
m=1

log(Fnm(νUm) − Fnm(νLm)) − log(1 − q)}

The corresponding partial derivatives are:

B

BνUm
J =

1
M

β/νUm
(β + log(νUm) − log(νLm))2 + λ

fnm(νUm)

Fnm(νUm) − Fnm(νLm)

B

BνLm
J = −

1
M

β/νLm
(β + log(νUm) − log(νLm))2 − λ

fnm(νLm)

Fnm(νUm) − Fnm(νLm)
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B

Bλ
J =

M

∑
m=1

log(Fnm(νUm) − Fnm(νLm)) − log(1 − q)

The rest of the procedures are similar to the previous normal mean case except that

we have 2M equations for the νUm’s and νLm’s.

B.3 Application: Median of Unknown Distribution

Minimize 1
M

M

∑
m=1

{F̂ −1
h (1 − αm/2) − F̂ −1

h (αm/2)} σ̂m/
√
nm

β + {F̂ −1
h (1 − αm/2) − F̂ −1

h (αm/2)} σ̂m/
√
nm

subject to
M

∑
m=1

log(1 − αm) ≥ log(1 − q)

Similar to the normal case, we do reparametrizations as follows:

νLm = F̂ −1
h (αm/2); νUm = F̂ −1

h (1 − αm/2)); σm = σ̂m/
√
nm.

Then, the problem becomes

minimize 1
M

M

∑
m=1

(νUm − νLm)σm
β + (νUm − νLm)σm

subject to
M

∑
m=1

log {F̂h(ν
U
m) − F̂h(ν

L
m)} ≥ log(1 − q).

By managing the upper and lower quantiles separately, 58 = 29×2 unknown equations

for the optimization. Then, the form of Lagrange multiplier becomes

J(νU ,νL, λ) =
1
M

M

∑
m=1

(νUm − νLm)σm
β + (νUm − νLm)σm

+ λ{
M

∑
m=1

log{F̂h(νUm) − F̂h(ν
L
m)} − log(1 − q)}

The corresponding partials are:

B

BνUm
J =

βσm
(β + (νUm − νLm)σm)2 + λ

2f̂h(νUm)

F̂h(νUm) − F̂h(νLm)

B

BνLm
J = −

βσm
(β + (νUm − νLm)σm)2 − λ

2f̂h(νLm)

F̂h(νUm) − F̂h(νLm)

B

Bλ
J =

M

∑
m=1

log(F̂h(νUm) − F̂h(ν
L
m)) − log(1 − q)

The rest of the procedures are similar to the normal variance case.
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