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ABSTRACT

Topology optimization is a numerical design tool used to generate structural concepts that

present optimal load paths for a given set of functional requirements. This functional

generative design capability has been used to lightweight high performance structures with

1D, 2D and 3D stress states. On the other hand, fiber-reinforced composites are the perfect

candidate material to use in high performance structures due to the tailorability of their

stiffness and strength properties. Although numerical tools that simultaneously tailor the

composite material properties while optimizing the structural topology exist, these tools

are inherently limited to 1D and 2D stress states.

This work aims to address this limitation by presenting a new topology optimization

framework for 3D design of fiber-reinforced composites. Such computational design

framework is composed of three key elements: (i) a macromechanical model, called

multi-thread theory, that estimates the stiffness properties of 3D fiber reinforced

composites; (ii) a stable coupling algorithm between macro-mechanics and structural

analysis codes; and (iii) a scalable optimization algorithm.

To evaluate the feasibility of this framework, 2D and 3D topology optimization

results are presented. The 2D numerical results are used to investigate the benefits of

the new continuation scheme formulated within the optimization algorithm. Moreover,

by optimizing 3D topologies with geometric conditions such that the stress state is

approximately plane stress, the 2D results are used to show consistency between this

computational design framework and other 2D approaches based on classical laminate

theory. Finally, to demonstrate the capability of this framework a 3D MBB-beam is

simultaneously optimized for both topology and fiber reinforcement orientation. This
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problem optimized 249,452 design variables to yield an optimized MBB 3D-beam that is

75% lighter, yet only 16.5% more flexible. Such step-change improvement in performance

was due to the complex geometry of the optimized MBB 3D-beam (and its aligned

reinforcement) involving structural elements such as curvilinear arches, variable-thickness

sidewalls and uni-axial struts connecting these walls.
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CHAPTER 1

INTRODUCTION

3D topology optimization of spatially reinforced composites is a niche engineering

application. As such, its value depends on the context of the design and manufacturing

processes where it will be applied. This chapter provides such a context. First, Sec. 1.1

motivates the need for this work by briefly describing the challenges of using topology

optimization for additive manufacturing of composites. Then the principal elements of this

work are outlined in Sec. 1.2.

1.1 MOTIVATION

Topology optimization is a numerical design tool used to generate structural concepts that

present optimal load paths for a given set of functional requirements. This functional

generative design capability has been used to lightweight high performance structures with

1D, 2D and 3D stress states. On the other hand, fiber-reinforced composites are the perfect

candidate material to use in high performance structures due to the tailorability of their

stiffness and strength properties. Although numerical tools that simultaneously tailor the

composite material properties while optimizing the structural topology exist, these tools

are inherently limited to 1D and 2D stress states.

Similarly, early 3D printing hardware implementations, although called 3D printers,

were almost entirely based on 2D X-Y plotter type contraptions. Hence, the use of 2D

topology optimization techniques were easily extended to design "3D printed" parts. As

confidence in design and manufacturing of these quasi-3D printed parts increased, so did

the complexity of the part geometry and dimensionality. This led to the development of 3D

1



topology optimization techniques. For metallic parts, use of 3D topology optimization

yields end-use structural parts that meet the functional requirements. For nonmetallic

materials, use of 3D printed plastics is not structurally capable enough to be end-use parts

and has been limited to rapid prototyping applications. Hence the need for carbon fiber

reinforced plastics, and particularly 3D topology optimization of spatially fiber reinforced

composites.

However, addressing this need is not without challenges. One challenge in applying

topology optimization techniques for design of 3D printed parts is to quantify the

stiffness and strength improvements that stem from the use of carbon fibers in 3D

parts. Fiber-reinforced composite materials are heterogeneous bi-phasic materials

composed of a reinforcement phase embedded in a continuous phase. The fiber provides

high-performance load-carrying properties. Reason for which this phase is called the

reinforcement. The reason for using fibers, as substantiated by Jones (1975), is because

in a fiber the crystals are aligned along the fiber axis and thus fewer internal defects, like

dislocations, appear. Thus, a fiber has better mechanical properties than the material in

bulk form. These fibers are embedded in a continuous phase whose purpose is to hold

the fibers together. This phase is called the matrix, and it acts as a binder. The matrix

distributes the loads as tension to the fibers and homogenizes deformations, however it has

low-performance load-carrying properties. This requires 3D behavior models of both the

composite material and the part.

Besides the challenge of developing behavior models, the anisotropy inherent in

fiber-reinforced composite materials and the anisotropy that emerges from the build

direction need to be designed for as well. From a design optimization perspective,

the simultaneous design of shape and reinforcement orientation poses a challenge of

computational tractability. Topology optimization itself is a large-scale problem with

thousands of design variables. Adding just as many variables to design the reinforcement

orientation further exacerbates the curse of dimensionality.
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Computational tractability is a critical barrier to the adoption of 3D topology

optimization for carbon-fiber additive manufacturing. Another, is the limitations of the

manufacturing hardware itself. These limitations must either be accounted for in the

design or removed by new additive manufacturing hardware. This work does not include

limitations of state-of-the-art manufacturing hardware. Rather, this work aims to develop

a scalable approach to rapid optimal design of 3D structures with both topology and

reinforcement orientation as variables under design.

1.2 DISSERTATION OUTLINE

This works is organized as a linear research story. Chapter 2 presents a review of

computational design processes reported in the literature. Unlike computer-aided design,

the role the computer plays in these reviewed processes involves some degree of decision

making. In particular, this survey focuses on using optimization algorithms to drive certain

steps of the design process. The body of knowledge that uses optimization algorithms in

structural design processes is called structural and multidisciplinary optimization. This

body of knowledge is reviewed in Sec. 2.1 to situate topology optimization among

other structural optimization techniqes and also for engineering diagrams that allow

to communicate an algorithm effectively and succintly. Such as the extended design

structure matrix. Although Chapter 2 is focused towards design optimization processes

of fiber-reinforced composites, see Sec. 2.3 and Sec. 2.4, topology optimization techniques

are reviewed regardless of the material’s degree of anisotropy, see Sec. 2.2.

After the topology optimization and composites design literature review of Chapter 2,

a new computational design framework is reported in Chapter 3. The novelty of this

framework is in designing, with a 3D stress state in 3D Eucledian space, both the

shape and fiber orientation angles. The formulation of the three key elements of the

framework are presented therein. Sec. 3.1 formulates a macromechanical theory of the

3D stress-state behavior of fiber-reinforced composites. The macromechanical theory

3



serves to model the stiffness properties of a given fiber-matrix architecture. However, to

achieve a curvilinear fiber format this fiber-matrix architecture must vary spatially from

point to point. The coupling between this spatial variation of the stiffness properties and

a finite element analysis code constitutes the second key element of the framework and is

reported in Sec. 3.2. The last key element of the framework is its optimization algorithm

which is presented as a design problem formulation and its associated solution algorithm.

Sec. 3.3 formulates the design problem and Sec. 3.4 presents the solution algorithm. This

framework will be later used for numerical studies discussed in Chapters 5 and 6. However,

the test plan of all these studies is summarized in Sec. 3.5.

To carry out the numerical test plan of Sec. 3.5, the computational framework is

implemented into a computer program. This computer program is not an application for

solving optimal design problems. Rather it is an optimization toolkit used for developing

application-specific optimization scripts. The specifications of this topology optimization

toolkit are presented in Chapter 4. A design application can be described as having three

modeling domains: (i) composites, (ii) structural analysis, (iii) optimal design. A library

for each of these domains is presented in Sec. 4.1, Sec. 4.2 and Sec. 4.3 respectively.

The implementation is then used to solve the MBB beam application. This application

is of interest because its a benchmark in the topology optimization literature and also

because it can be validated with three point bending tests. Chapter 5 discusses the results

of solving the MBB beam problem for 2D stress states and Chapter 6 does the same for an

MBB 3D-beam problem. Both chapters present solutions ranging from isotropic material

to a curvilinear fiber format.

Finally, the significant contributions, compromises and limitation, and

recommendations for future research are summarized in Chapter 7. The contributions

are presented based on their significance to two audiences. Sec. 7.1.1 presents the

contributions to the structural and multidisciplinary optimization research area. While

Sec. 7.1.2 presents the contributions of this work to the overall goal of the McNair Center

4



for Aerospace Innovation and Research (McNAIR).
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CHAPTER 2

COMPUTATIONAL DESIGN OF FIBER-REINFORCED

COMPOSITES

2.1 STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION

The field of structural optimization studies (i) the mathematical formulation of structural

design problems and (ii) aims to solve these formulated problems by applying

appropriate numerical search techniques. Most practical design problems are ill-defined

decision-making problems that aim to minimize the cost of engineering an (elastic) system

from a set of functional requirements. Consequently, formulating in mathematical terms

all of these design alternatives requires a quantification of the cost of each alternative

and of the degree of compliance with the functional requirements. Quantifying the

requirement compliance allows to systematically assess the feasibility of a design option

and discard unfeasible design alternatives. Whereas quantifying the cost allows to decide

between competing feasible designs. However, these two quantification steps are not

straightforward. Cost quantification requires comprehensive cost models of the whole

life-cycle of the product. Life-cycle cost modeling is an across-the-board multidisciplinary

effort. That is why proxies such as weight are used in structural optimization. The

expectation is that if the proxy metric is minimized, the cost will also be minimized to

a certain extent. Note that this assumption assumes all the other cost factors remain

the same. For example, a part geometry with purposeful complexity will reduce weight

and consequently the direct operating cost, yet the development cost will increase.

Besides structural economy, the structure must perform its function of carrying loads with
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constraints on the deformation and damage behavior. The US aeronautical authorities via

the Federal Aviation Regulations state in FAR 25.305 that

the structure must be able to support limit loads without detrimental permanent

deformation. With regards to failure, the structure must be able to support

ultimate loads without failure for at least 3 seconds.

The analysis of the ability of a structure to integrally perform its function without

excessive deformation or damage is called an analysis of structural integrity or structural

analysis, for short.

To describe all the possible design alternatives in terms of computable structural

models, these mathematical models must be expressed in terms of parameters that modify

the size, shape, or connectivity of the elastic members that make up the structure. The

model parameters that change the structure from one design alternative to another are called

design variables. The quantified cost and functional requirements which are a function

of the design variables are defined in terms of a scalar objective function which will be

minimized and a set of constraints that must be satisfied. Together, design variables,

objective function, and constraints make up the elements of the problem formulation.

Structural optimization problems are normally classified in terms of the geometric

parameterization strategy. Assuming the structure is discretized using the finite element

method the following problem classes are defined:

• Sizing optimization problems where the material properties and mesh are fixed (i.e,

the position of the nodes is fixed). The only geometric parameters under design are

cross-section properties such as areas of 1D bodies or thicknnesses of 2D bodies

• Shape optimization problems where the position of the nodes is variable (although

these need not represent design variables) and thus the shape of the boundary of

the structure is under design control. Shape optimization approaches change the
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boundary shape based on boundary variation methods and are thus limited to curves

of a given parametric family

• Topology optimization problems where although the position of the nodes is fixed,

their presence is not. The on or off state of each node is encoded by high and low

binary values of the material properties

Note that each class of problem does not focus on a different geometrical aspect. In

fact each problem is more general than the previous. For instance, a shape optimization

problem will also change the size of the structure.

Solution of the problem formulation using numerical search techniques requires an

organized execution procedure of different computational elements. For instance, solving

systems of differential equations, function approximations, and design update rules are

computational elements that make up any solution algorithm. A visual illustration that

efficiently communicates the solution algorithm is the so-called extended design structure

matrix (XDSM), proposed by Lambe and Martins (2012). The syntax of XDSM diagrams

is introduced in Sec. 2.1.1.

Finally, the fundamental concepts pertaining to the solution algorithm as introduced

above and shown in Fig. 2.1 are of general application to any optimal design problem.

Consequently, the numerical search technique can also be a general numerical optimization

technique like those presented in the nonlinear programming literature (Nocedal and

Wright 2006). Typically such approaches formulate the structural optimization problem

in terms of a standard problem formulation to interface with general-purpose optimization

codes. In addition, the field of structural optimization also has domain-specific solution

algorithms. For instance, fully stressed design is a heuristic criteria that defines an optimal

structure as the structure where all its members are stressed to the maximum material

allowable.
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Figure 2.1: Elements of an optimization model

2.1.1 EXTENDED DESIGN STRUCTURE MATRIX

This section provides textual explanation for the diagram used in this work to visualize

numerical algorithms. This graphical representation is called an Extended Design Structure

Matrix (XDSM) and was developed by Lambe and Martins (2012). The aim of XDSM is

to provide sufficient details of the problem formulation and solution algorithm in a single

diagram.

The design optimization process used in this work can be described as a sequence

of three steps. First, an initialization step that models the ground structure and external

loading, material properties definition, and the design parameterization of the composite

anisotropy and structural geometry. Second, an iterative step consisting of an optimization

loop that updates the design variables based on simulations of predictive models. While

the first step is comprised of non-recurrent computations, the second step has recurrent

computational expenses. Finally, the third step interprets the optimal design. Interpretation
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efforts range from performance comparison with the initial design, to interpretation of the

boundaries of the structural topology. The interpretation step is also a non-recurrent cost

of the process. This procedural paradigm is captured by the problem formulation and

solution algorithm specifications. The problem formulation specifies the data dependency

via the use of mathematical functional dependencies and the solution algorithm specifies

the process flow of the sequential execution of each computational element. Both define

the recurring or non-recurring costs of each design optimization step. For instance, the

symbolic computation of a closed-form solution of the structural behavior results in a more

expensive non-recurring initialization step than using a numerical update scheme during

each iteration step, which results in a non-recurring cost.

The combination of the problem formulation and solution algorithm is called the

architecture of the design optimization process. Specifying the architecture into computer

codes is called an implementation. And making the implementation reach a runnable

state on a given computing hardware is called a realization. This development model of

the design optimization process is akin to the engineering of software systems presented

by Brooks (1975). Note that there is not a one-to-one correspondence between architecture

and implementation. Many implementations can implement a given architecture with, for

example, different communication strategies. For instance, the communication between

the composites code and the structural analysis code can use file input-output (I/O) or a

direct memory access. The former requires more time to read and write files whereas the

latter does not.

An XDSM diagram represents computational elements with boxes, I/O data with

parallelepipeds, data dependency with thick grey connection lines, and process flow with

thin black lines. If the computational element is a master process then the component is

illustrated with a rounded rectangle, whereas if the computational element is a slave process

the component is illustrated with a straight rectangle. With similar intent, if the I/O data

is persisted (i.e., written to disk) the parallelepiped is white, while a greyed parallelepiped
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represents volatile I/O data.

The action of drawing an XDSM diagram starts with laying out the computational

elements along the diagonal of a matrix. The first computational element starts in the

second diagonal position. Then the data dependency lines are drawn to connect any source

computational element to a target computational element. The I/O data parallelepiped

of the internal data passed from the source to the target is situated in the same row as

the source and the same column of the target. If the source precedes the target then the

relationship is a feed-forward and the I/O data is situated in the matrix upper triangle. A

feed-back relationship where the target precedes the source situates the I/O data in the

matrix lower triangle. The external I/O data is located in the first row and column of the

matrix. The first row shows user-specified input data that is needed by the same-column

computational element. And the first column shows the persisted results of the design

optimization and is situated in the same row as the computational element that calculates

such output. For example, Fig. 2.2 shows an XDSM diagram with an optimizer, solver,

structural model, and objective function and constraint as computational elements. The

optimizer feeds the design vector x to the structural model, yet passes control to the solver.

The solver feeds a guess of the displacement field u to the structural model which, in

conjunction with the x data, computes the residual error of this guess’s compliance of the

governing equations and feeds it back to the solver. Once this iteration loop is converged,

the solver feeds the converged displacement to the objective function and constraint. The

objective function and constraint are evaluated for u and x, and these metrics are feed back

to the optimizer to update the design vector x. Once the optimization has converged, the

persisted results are the optimal design x∗ and its structural behavior u∗.

The problem formulation for Fig. 2.2 can be written as

minimize
x

f(x, u(x)) (2.1)

where u(x) is implicitly computed by the structural analysis inner loop. This is called
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5 : f, g
4:
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Figure 2.2: Nested analysis and design

a nested analysis and design (NAND) architecture. A major architectural decision

for simulation-driven design optimization processes is the question of using a NAND

architecture or allow the analysis converge concurrently with the optimization iterations.

The later case is called a simultaneous analysis and design (SAND) architecture and has

the following problem formulation

minimize
x, u

f(x, u

subject to R(u) = 0
(2.2)

where now the structural analysis is formulated as an equality constraint. Note that in a

NAND architecture the displacements are also treated as design variables under the control

of the optimizer. Fig. 2.3 illustrates a NAND architecture.

The SAND architecture is the least computationally expensive of the two, because

the heavy analysis is no longer a recurrent cost. However, unless the SAND design

optimization process fully converges the intermediate designs are physically meaningless.

For the NAND architecture, if the optimization process is cut short one may still obtain
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Figure 2.3: Simultaneous analysis and design

optimized (although suboptimal) results. Moreover, a NAND architecture requires access

to the mathematical system of the model. Most commercial analysis codes are black-box

codes and hence do not provide access to such an interface.

2.2 TOPOLOGY OPTIMIZATION

The origins of topology optimization can be traced back to the weight minimization

problem of frames, as studied by Michell (1904). The study of the optimal layout of

discrete 1D structures where among the first problems to be studied in this field. The reason

lies in the fact that for 1D structures the cross-section area serves as a continuous variable

that when it reaches zero (or any small numeric threshold) it can be interpreted as the

suppression of that bar. Thus, fully stressed design approaches which size the cross-section

area based on the ratio of the internal stress and the material allowable are applicable to

do topology optimization of 1D structures. Moreover, such optimization problem can be

formulated as a linear programming problem which scales up to handle many bars very

efficiently. The maturity of these algorithms is revealed by Sokół (2011) in a paper that

presents the implementation of the algorithm in less than 100 lines of code and designs
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Figure 2.4: Optimal truss layout using Sokol’s algorithm for Michell type structures

thousands of bars in a manner of minutes (using a typical personal computer). Fig. 2.4

shows the optimal topology generated by Sokol’s algorithm for a cantilever truss under a

tip load.

The following challenge on the topology optimization of 2D structures can be solved

by density-based methods and was introduced by Bendsøe and Kikuchi (1988). This

density based method pre-multiplies the stiffness tensor by a penalized density field. The

density field is discretized at the elements of the finite element (FE) mesh. Thus, any

implementation of this topology optimization algorithm necessitates an FE analysis code

that allows the specification of variable stiffness properties. The reason for choosing

an element-wise discretization as given by Bendsøe and Sigmund (2011) is due to the

minimum implementation effort that is needed, since most FE analysis codes assume an

elementwise constant stiffness material.

Contrary to 1D structures, 2D continuum structures designed with the density-based

method of Bendsøe and Kikuchi (1988) showed numerical instabilities. One of them

was the presence of checkerboard regions. Checkerboards are defined, by Sigmund

and Petersson (1998), as regions with alternating void and solid elements ordered in a

checkerboard like fashion. Figure shows these checkerboard regions for a 2D MBB beam

problem. Far from representing optimal microstructures, checkerboards appear due to the

poor modeling of the stiffness of a checkerboard by low-order finite elements. The FE
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method admits stiffness discontinuities. Thus, a checkerboard-like structure is perfectly

admissible for analysis. Moreover, a super-element constituted by a checkerboard region

has a stiffness similar to a grayscale, with the same volume as a grayscale yet it is

not a grayscale (which is penalized by the method). This weakness is exploited by the

optimization algorithm to yield spurious solutions. As explained by Jog and Haber (1996)

and Díaz and Sigmund (1995), the stiffness of a checkerboard is zero due to the stress

singularities at the corners of the solid regions. Several checkerboard prevention schemes

have been presented in the literature, to evolve the element-centered algorithm. Díaz and

Sigmund (1995) and Jog and Haber (1996) suggest the use of higher-order elements.

However, this approach substantially increases computational time and is less likely

to be scalable to more design variables. Alternatively, Bendsøe et al. (1993) propose

dividing the domain into patches of elements. However, the checkerboards are not entirely

removed. Some checkerboards are observed between patches because two neighboring

patches do not overlap and thus these checkerboards patches are not detected by the

prevention scheme. By far, the most popular checkerboard prevention scheme are filters

based on a neighborhood size. These filters average the density (or its sensitivity) of

the current element with that of the adjacent neighborhood. This converts checkerboard

regions into elements with grayscales which are inherently penalized by the density-based

method. Sigmund (1994) presents a filter based on sensitivities, and Bourdin (2001)

presents a generalization of the filtering approaches to topology optimization.

Yet another way to prevent checkerboards is by discretizing the density field at the

nodes. Rahmatalla and Swan (2004) propose a node-centered approach for topology

optimization, and show checkerboard-free topologies. However the topologies shown for

the MBB problem only match the benchmark when using perimeter constraints. Otherwise,

topologies with islands of points appear. Yi et al. (2014) also propose a node-centered

approach where the elementwise densities are approximated using a Shepard interpolation

function with a diameter playing the same role of the above mentioned filters.
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Another issue of density-based methods is mesh-dependency where the topology is

qualitatively different for different mesh sizes. Solving this issue involves a separation of

concerns where the density discretization is not driven by the analysis accuracy. For a

generic anisotropic material whose microstructure is contained in a reference volume of

length-scale l3, the FE mesh intended for analysis must have elements of size la such that

la � l3, (2.3)

where a larger separation yields more computationally efficient analyses. Note that l3

serves to quantify the size of a point in the continuum structure. On the other side the

FE mesh must be small enough with respect to a typical dimension of size L

la � L (2.4)

so as to have an accurate approximation. With respect to the density discretization in terms

of a mesh with elements of size ld, the resolution of the design must be large enough to

reduce the curse of dimensionality, so

ld � l3. (2.5)

Note that density-based methods are inherently large-scale problems. The

computational cost increases with the number of design variables, which inherently are

many if an accurate boundary description is needed.

Mesh dependency becomes an issue when the FE mesh intended for analysis is shared

by the density discretization,

ld = la. (2.6)

In such cases, some structural members will have a length-scale ld dictated by the need

of having an accurate analysis. Even when the design intent is otherwise. Moreover,
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Figure 6.11: Sideview of a curvilinear fiber format thick MBB 3D wireframe, for η = 0.25,
and fiber orientation segment distribution.

Finally, several thin struts connect the arches together to prevent the sidewalls from

opening up. The wireframe rearview shown in Fig. 6.12 illustrates these struts with their

horizontal reinforced fibers.

Figure 6.12: Rearview of a curvilinear fiber format thick MBB 3D wireframe, for η = 0.25,
and fiber orientation segment distribution.

Overall, this curvilinear fiber format thick MBB 3D-beam demonstrates the breadth of

structural members along with all the possible fiber orientation angles that can be generated

using this framework. Although the topology is 75% lighter, the simultaneous design

of topology and fiber orientation yielded a structure that is only 16.5% more flexible.
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Resulting in an extended optimality of 0.29.
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CHAPTER 7

CONCLUDING REMARKS

This work lies in the crossroads of two research areas. On the one hand, as reviewed in

Chapter 2, the optimization algorithms proposed in this work contribute to the literature

of structural and multidisciplinary optimization. As noted by Haftka et al. (2019), in an

editorial to the structural and multidisciplinary optimization (SMO) journal, "almost all the

papers in SMO are about computational algorithms". On the other, this work contributes

to the mission of the McNair Center for Aerospace Innovation and Research to push the

boundary of discovery for additive manufacturig in general and composites manufacturing

in particular. Sec. 7.1 lists the contributions of this work based on its significance to each

of these audiences. Because this work presents a new computational design framework

with many research avenues, many compromises have been made to narrow its scope.

These compromises, along with the limitations they present, are listed in Sec. 7.2. Finally,

Sec. 7.3 provides a list of recommendations on how to carry on future work within this

framework.

7.1 SIGNIFICANT CONTRIBUTIONS

This work lies in the crossroads of two research areas. On the one hand, it contributes new

optimization algorithms to the literature of structural and multidisciplinary optimization.

On the other, this work contributes to the mission of the McNair Center for Aerospace

Innovation and Research (McNAIR). Section 7.1.1 lists the contributions of this work to

the former, while Sec. 7.1.2 lists its contributions to the latter.
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7.1.1 STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION

A new computational framework for 3D design of fiber-reinforced composites has been

presented. This framework has been shown to be consistent with plane-stress, or 2D,

approximations for various degrees of anisotropy. The framework proposed a new topology

optimization algorithm, which combines the benefits of linear and reciprocal interpolation

via a continuation scheme. This continuation scheme was successfully applied to MBB

2D-beam problems.

Besides the computational design framework, a new post-processing algorithm that

smooths node-centered 2D topologies into densely rasterized images for STL file

conversion was successfully used to 3D print an optimized node-centered 2D topology.

When combined with the computational design framework, this post-processing algorithm

contributes in the development of a function-to-print capability. The ability of going from

functional specifications to a printed part is needed for experimental validation of the

optimization algorithms. Note that the MBB beam problems, numerically studied in this

work, may be validated with three point bend tests.

By applying the computational design framework to MBB 3D-beam problems with

varying degrees of anisotropy, this work has contributed in the exploration of the design

latitude provided by topology optimization. Variable-thickness box beam and I-beam

structures have been generated with this framework.

This work not only explores the design space unlocked by 3D topology optimization,

but also contributes with further numerical evidence to the promise of unprecedented

performance benefits when optimizing both the shape and material properties. In particular,

a curvilinear fiber format MBB 3D-beam with 249,451 design variables describing both

density and fiber orientation angles has been ligthweighted to 25% its original weight, yet

has only increased in flexibility by 16.5%.
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7.1.2 MCNAIR

The overall endeavor at the McNAIR Center is to push the boundary of discovery

for additive manufacturing in general and for composites manufacturing, predominately

Automated Fiber Placement (AFP), in particular. In the context of AFP, this work precedes

path planning studies for AFP (Rousseau et al. 2018) where finding the optimal tool path

for laying fibers along the prescribed fiber orientation angle distribution is sought. One

of the principal conditions in path planning is the minimization of AFP defects (Harik

et al. 2018) and the effect they can have on the integrity of the structure (Wehbe et al.

2019). Although this work is situated in the conceptual stage of the design process,

the toolkit specifications presented in Chapter 4 provide a blueprint that can latter be

integrated with more efficient 2D design processes (Albazzan et al. 2019) that incorporate

AFP manufacturing considerations. Thus, laying the groundwork for future integration of

manufacturing considerations early in the conceptual design stage. Moreover, the MARIA

libraries provide programmatic interfaces that can complement research projects such as

integrated design and manufacturing analysis for AFP (Noevere et al. 2019), automation

of process planning (Halbritter et al. 2019), heat optimization (Xia et al. 2018), automated

inspection (Sacco et al. 2019) and rapid assessment tools (Bahamonde et al. 2018) aimed

at providing a better integral lay-up quality.

In sum, this work actively participates in the advancement of additive manufacturing

and AFP by providing computational tools that can be reused in other design processes

and harnessed to tailor both shape and material properties to the functionality required.

Thus, it supports the overall McNAIR goal to thrust advanced manufacturing innovation

and research.

7.2 COMPROMISES AND LIMITATIONS

Although this work demonstrated that centering densities at the nodes solves

checkerboarding instabilities, the length-scale control problem has not been addressed.
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As seen in Sec. 5.2, arbitrarily refining the density mesh results in structural members of

arbitrarily small length scale. The length scale control problem also relates to fiber steering

during manufacturing. There is no design control on the radius of curvature of curvilinear

uni-axial members and fiber paths. In general, this work formulates no manufacturing

considerations in the design problem. For example, Fig. 7.1 shows a smooth MBB

2D-beam with a zero degree fiber path using the Eiger printing software from Markforged.

Figure 7.1: MBB 2D-beam boundary with 0 degree fiber path and watertight boundary
finish

Upon inspection of Fig. 7.1, the path planning software predicts that a single filament

can barely squeeze through the thin bottom horizontal bars. Because the part boundary

is finished with nylon material shown in white in Fig. 7.1 to provide a watertight part,

filaments deposited with this hardware may not be able to reinforce certain thin members.

Such manufacturing considerations limit the realizability of certain solutions generated by

this design framework.

Besides manufacturability, the functionality of this computational design framework is

limited to stiffness optimization. To scale the framework up to 249,451 design variables,

this work used non-gradient heuristic design rules. These rules optimize stiffness, and only

for uni-axial members with a curvilinear fiber format strength improves as a by-product,

but cannot be generalized to other design criteria such as strength or buckling. Moreover,

the design rule based on stress trajectories appears to be biased with respect to the initial

fiber orientation angle distribution. Thus, starting with different fiber orientation angle

distributions leads to different optimized topologies. A continuation scheme or any other

solution to the bias of stress trajectories has not been provided.
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7.3 RECOMMENDATIONS

The general recommendation is to continue the study of this new framework with further

numerical and experimental studies such as to increase confidence on the framework

and generate benchmarks against which the framework capabilities can be improved. In

particular, based on the previously outlined capabilities and limitations of the framework,

the remainder of this section recommends the following projects for future research.

First, an experimental validation of the framework using MBB 2D-beam topologies

is recommended. The function-to-print workflow is already available and the MBB

problem almost directly translates into a three point bend test. However, caution in

selecting topologies with the right deformation modes is recommended. For instance, the

topologies optimized in Sec. 5.3 for a straight fiber format may prove difficult to validate.

Because these topologies couple shear with extensional deformation, the displacement of

the mid-section will not serve as a valid metric for compliance since the supports will

dissipate most of this lateral deformation through friction.

Second, a project to replace stress trajectories with non-interactive failure criteria is

recommended. The MBB problems subject the structure to in-plane bending where the top

fibers are subject to compression and the bottom fibers to tension. Somewhere in between

the stress changes from tension to compression, which is where the stress trajectories rule

abruptly changes the fiber orientation angle. This results in sub-optimal solutions which

can be addressed by using non-interactive failure criteria. Instead of orienting the fiber

along the maximum principal stress, the non-interactive failure criterion can be used as a

function to be minimized on every finite element where the orientation of the fibers is the

design variable. Not only will this project provide insight into the shortcomings of using

stress trajectories alongside topology optimization, but also serves as a stepping stone into

strength-focused research projects which may require use of gradient-based optimization.

Third, further exploration of closed-section topologies is recommended. The

variable-thickness box-type topologies of Sec. 6.2 have been shown to minimize the
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extended optimality metric. Future research should explore if using variable orientation

quasi-isotropic thread planes results into boxed beams as well. This project can add further

credibility into using topology optimization as a tool for monocoque shell conceptual

design.

Finally, a project to transition the computational design framework to use

gradient-based optimization is recommended. In particular, the use of the adjoint sensitivity

analysis procedure as formulated by (Cacuci 2003) is recommended to maintain the

scalability of the framework when using a large number of design variables. Unlike the

previously recommended research projects, which require a limited modification if any

of the framework, this project involves substantial work. The finite element analysis

code must be able to compute adjoint sensitivities of the responses with respect to

element-centered stiffnesses. It is also recommended to use the chain rule along with the

dependency trees introduced in Chapter 3 to compute the sensitivities of the objectives with

respect to the design variables.
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APPENDIX A

MATERIAL PROPERTIES

The material properties used in this work are summarized in Table A.1. These

properties are defined in terms of engineering constants and have been compiled from

literature. The material NISO1 is used by Andreassen et al. (2011) to perform topology

optimization of an isotropic MBB 2D-beam. Similarly, the material NUND1 is obtained

by non-dimensionalizing the engineering constants presented by Setoodeh et al. (2005)

for simultaneous optimization of topology and fiber path of 2D bending problems.

Moreover, the material NISO2 is obtained by when computing the effective properties of a

quasi-isotropic laminate whose material is NUND1. The effective properties are given by

Ex = 1
h

(A11A22 − A2
12

A22
)
, (A.1)

and

νxy = A12

A22
. (A.2)
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Table A.1: Material properties using engineering constants

name type values

NISO1 isotropic E = 1, ν = 0.3

NISO2 isotropic E = 0.43, ν = 0.23

NUND1 transversely isotropic E1 = 1.0, E2 = 0.068, ν12 = 0.318,
G12 = 0.0464, ν23 = 0.3

NUND2 transversely isotropic E1 = 1.0, E2 = 0.068, ν12 = 0.3,
G12 = 0.0464, ν23 = 0.0
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APPENDIX B

NON-DIMENSIONAL TRANSVERSELY ISOTROPIC

STIFFNESSES

Based on Nemeth (2011), the linear elastic constitutive equations of a transversely isotropic

material can be represented in matrix form as

[Cijkl] =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66



, (B.1)

which expressed in terms of engineering constants

C11 = ET
1 + νTT

1− ET

EL
ν2
LT

1− νTT − 2ET

EL
ν2
LT

, (B.2)

C12 = ET
1 + νTT

νTT + ET

EL
ν2
LT

1− νTT − 2ET

EL
ν2
LT

, (B.3)

C13 = νLTET

1− νTT − 2ET

EL
ν2
LT

, (B.4)

C33 = EL(1− νTT )
1− νTT − 2ET

EL
ν2
LT

, (B.5)
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C44 = C55 = GTL (B.6)

C66 = ET
2(1 + νTT ) , (B.7)

where T denotes the transversal direction and L the longitudinal direction. Factoring

EL from Eqs. (B.2)-(B.7) yields

C11 = EL

ET

EL

1 + νTT

1− ET

EL
ν2
LT

1− νTT − 2ET

EL
ν2
LT

, (B.8)

C12 = EL

ET

EL

1 + νTT

νTT + ET

EL
ν2
LT

1− νTT − 2ET

EL
ν2
LT

, (B.9)

C13 = EL
νLT

ET

EL

1− νTT − 2ET

EL
ν2
LT

, (B.10)

C33 = EL
1− νTT

1− νTT − 2ET

EL
ν2
LT

, (B.11)

C66 = EL

ET

EL

2(1 + νTT ) , (B.12)

including the shear stiffnesses

C44 = EL
GTL

EL
, (B.13)

C55 = EL
GTL

EL
, (B.14)

where the stiffnesses are now defined as functions of the non-dimensional set ET/EL,

νTT , νLT , GTL/EL premultiplied by the dimensional EL. Quod erat demonstrandum

Cijkl = EL ˆCijkl (B.15)
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APPENDIX C

LAGRANGE MULTIPLIER COMPUTATION

The Lagrange multiplier is computed by solving the following non-linear system of

algebraic equations

xn+1 =



max{(1− ζ)xn, 0} if xnBn(µn) ≤ max{(1− ζ)xn, 0}

min{(1 + ζ)xn, 1} if min{(1 + ζ)xn, 1} ≤ xnBn(µn)

xnBn(µn) otherwise

(C.1)

V (xn+1)
V0

− η = 0 (C.2)

where the inequality constraint, Eq. (3.36), is assumed to be active, and V (xn+1)

is approximated with Eq. (3.44). By replacing Eq. (C.1) into Eq. (C.2), the resulting

non-linear equation follows the functional implicit form

F (V (µn;xn, ρn, p, β, ζ);V0, η) = 0 (C.3)

with µn being unknown. Note that

lim
µ→0

F (µ) = 1− η, (C.4)

while

lim
µ→∞

F (µ) = −η. (C.5)
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This sign changing interval motivates the use of a bracketing method. However

to benefit from the speed of open methods while maintaining the reliability of

bracketing, Brent (2002) method is used to compute the Lagrange multiplier.
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APPENDIX D

IN-PLANE INVARIANT MATRICES

The stiffness tensor transformation equations are given by

C̄ijkl = aiqajraksaltCqrst, (D.1)

where the aiq rank-two tensors are orthogonal tensors composed of direction cosines. The

rotation matrices are written below

[Aθ] =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , (D.2)

[Aφ] =


cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ

 . (D.3)

Note the lack of the third Euler angle due to symmetry of the thread. Thus, the general

rotation matrix is written as

[A] = [Aφ][Aθ] =



cos θ cosφ sin θ sinφ − sinφ

− sin θ cos θ 0

cos θ sinφ sin θ sinφ cosφ


. (D.4)

Based on Ting (1987) the general stiffnesses can be transformed into a general axes system

by the following transformation law

[C̄] = [Q][C][Q]T , (D.5)
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where the transformation matrix [Q] is a quadratic transform which can be written in block

matrix form as

[Q] =


[K] 2[M ]

[N ] [L]

 . (D.6)

Each block matrix is given by the following indexed expression:

kij = a2
ij, (D.7)

mij = aikaip j 6= k 6= p, (D.8)

nij = arjasj i 6= r 6= s, (D.9)

lij = arkasp + arpask j 6= k 6= p 6=, i 6= r 6= s, (D.10)

where the repeated index does not imply summation. If the rotation θ is only about the

x3-axis (e.g, φ = π/2), the transformation matrix simplifies to

[Q] =



m2 n2 0 0 0 2mn

n2 m2 0 0 0 −2mn

0 0 1 0 0 0

0 0 0 m n 0

0 0 0 −n m 0

mn −mn 0 0 0 m2 − n2



(D.11)

where

m = cos θ, n = sin θ. (D.12)

Using the double angle trigonometric functions, the simplified transformation matrix can

be expanded to

[Q] = [Q0] + [Q1] cos θ + [Q2] sin θ + [Q3] cos 2θ + [Q4] sin 2θ, (D.13)
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where

[Q0] =



1/2 1/2 0 0 0 0

1/2 1/2 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, (D.14)

[Q1] =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0



, (D.15)

[Q2] =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 −1 0 0

0 0 0 0 0 0



, (D.16)
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[Q3] =



1/2 −1/2 0 0 0 0

−1/2 1/2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1



, (D.17)

[Q4] =



0 0 0 0 0 1

0 0 0 0 0 −1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1/2 −1/2 0 0 0 0



. (D.18)

Thus, a stiffness tensor transformation around x1 = 0 can also be expanded to

[Q][C][Q]T =
(

[Q0] +
4∑
i=1

[Qi]vi
)

[C]
(

[Q0]T +
4∑
i=1

[Qi]Tvi
)
, (D.19)

which under the special case of C46 = C56 = C14 = C24 = C15 = C25 = C35 = 0, the

transformation simplifies to

[Q][C][Q]T = [Γ0] + [Γ1] cos 2θ + [Γ2] sin 2θ + [Γ3] cos 4θ + [Γ4] sin 4θ, (D.20)
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where [Γi] are called material invariant matrices.

[Γ0] =



U1 U4
C13 + C23

2 0 0 C16 − C26

2
U4 U1

C13 + C23

2 0 0 −C16 − C26

2
C13 + C23

2
C13 + C23

2 C33 0 0 0

0 0 0 C44 + C55

2 0 0

0 0 0 0 C44 + C55

2 0
C16 − C26

2 −C16 − C26

2 0 0 0 U5



,

(D.21)

[Γ1] =



U2 U2
C13 − C23

2 0 0 0

−U2 −U2 −C13 − C23

2 0 0 0

0 0 0 0 0 0

0 0 0 C44 − C55

2 C45 0

0 0 0 C45 −C44 − C55

2 0
C16 + C26

2
C16 + C26

2 C36 0 0 0



,

(D.22)

[Γ2] =



C16 + C26

2
C16 + C26

2 C36 0 0 0

−C16 + C26

2 −C16 + C26

2 −C36 0 0 0

0 0 0 0 0 0

0 0 0 C45 −
C44 − C55

2 0

0 0 0 0 −C44 − C55

2 −C45

U2/2 U2/2
C13 − C23

2 0 0 0



,

(D.23)
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[Γ3] =



U3 −U3 0 0 0 0

−U3 U3 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −U3



, (D.24)

[Γ4] =



C16 − C26

2 −C16 − C26

2 0 0 0 U3

−C16 − C26

2
C16 − C26

2 0 0 0 −U3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

U3 −U3 0 0 0 C16 − C26

2



, (D.25)

where

U1 = (3C11 + 3C22 + 2C12 + 4C16)/8, (D.26)

U2 = (C11 − C22)/2, (D.27)

U3 = (C11 + C22 − 2C12 − 4C66)/8, (D.28)

U4 = (C11 + C22 + 6C12 − 4C66)/8, (D.29)

U5 = (C11 + C22 − 2C12 + 4C66)/8. (D.30)
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