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ABSTRACT

 Dysregulated inflammation is at the heart of countless human diseases. Graft 

rejection is the process by which an organ from an incompatible donor is rejected by the 

recipient whose immune cells attack the foreign tissue. Colitis is an inflammatory disorder 

caused by undue chronic inflammation in the colon and rectum that can progress to cancer. 

Colitis incidence is on the rise, especially in developing nations and Asia; and the list of 

patients who need organ transplants grow by the day. Therapies for both graft rejection and 

colitis are limited to immunosuppressive drugs that leaves patients vulnerable to infection, 

heart disease, nephrotoxicity and malignancy. Thus, new strategies to address the 

immunological problems facing these conditions are critical. In this dissertation, we tried 

to identify epigenetic, molecular, and cellular pathways involved in inflammation as seen 

during allograft rejection or development of colitis.   Data is presented regarding the 

expression of a pro-inflammatory microRNA cluster that is up-regulated with graft 

rejection, that when silenced, can provoke anti-inflammatory changes to the transplanted 

graft, providing a role for epigenetic modulation of inflammation. We also tested the role 

of cannabinoid receptors in regulating inflammation through use of natural compounds 

such as Δ9-tetrahydrocannabinol (THC), found in Cannabis sativa plant. THC was highly 

effective in suppressing colitis through complex pathways involving stimulation of 

colonocyte mucin production and barrier integrity mediated by tight-junction proteins to 

provide spatial separation between host and commensal organisms. In addition, THC 

modulated dendritic cell (DC) phenotype towards increased CD103 expression in the 
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colonic lamina propria (cLP) and enhanced DC TGF-β1 expression to expand the cLP 

Tregs. The current study has identified novel pathways of inflammation that can be targeted 

to benefit patients suffering from inflammatory diseases.
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CHAPTER 1 

INTRODUCTION

1.1 ALLOGRAFT REJECTION AND ORGAN TRANSPLANTATION 

 Organ transplantation is a life-saving, ultimate resort for people undergoing 

end-stage organ failure. Thanks to an armamentarium of immunosuppressive drugs, graft 

loss due to acute rejection is rare; however, chronic allograft failure persists, and 

immunosuppression leaves patients vulnerable to infection, heart disease, nephrotoxicity 

and malignancy, among others (1-2). Exciting developments in the generation of ex vivo 

expanded T regulatory cells (Tregs) are promising candidates for suppressing graft 

rejection sans global immunosuppression (3-6). However, increased attention is needed 

into the mechanisms that dictate and control the generation of antigen-specific Tregs, to 

prevent them from reverting to a pro-inflammatory phenotype once they are introduced 

into the diverse cytokine milieu found in vivo. As shown by others, there exists 

opportunities for Treg differentiation into Th1 and Th17 lymphocytes during inflammation 

(7-8). In an inflammatory environment, Tregs may undergo reprogramming, wherein the 

Treg-specific demethylation region (TSDR), which is constitutively demethylated in 

Tregs, may become methylated, or partially methylated with peripheral Tregs (pTregs), 

leading to a loss in Foxp3 expression and immunosuppressive activity, conferring an 

acquired proclivity for graft destruction in the reprogrammed cells (9-10). Investigations 

in recent years have delved into the factors dictating the differentiation (12-13), generation 
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(11, 13), and functions (11, 20-22) of Treg cells. Nevertheless, there remains a need for 

increased attention into the factors that can confer stable Treg suppressive activity. 

1.2   MICRORNA 

 MicroRNAs (miRNAs) are one of the critical players of T cell function and 

plasticity (16-19). miRNAs are a group of, short, single stranded, ~21 nucleotide-long 

RNA sequences that bind to the 3’ untranslated region (UTR) of target mRNAs through a 

6-8 nucleotide ‘seed sequence’, generally leading to degradation of target mRNA or 

inhibition of translation (18). MiRNAs are heavily influential in several areas of Treg 

biology, such as the effect of miR-155 on Treg fitness (21), miR-146a on Treg control of 

T helper suppression, specifically Th1 responses (22-23) and miR-21’s role in Treg 

expansion (24-25). However, there remains a paucity of information concerning what 

miRNAs hinder Treg generation in inflammatory models.  One factor critical to the 

development of FoxP3+ regulatory T cells is Transforming Growth Factor-Beta1 (TGF-

β1). At first contentious, many studies have since highlighted an indispensable role for 

TGF-β1 in the differentiation and generation of Tregs. Both thymic intra-medullary naïve 

CD4 cells (CD4+CD8-CD25-), and peripheral naïve CD4 cells can be differentiated into 

FoxP3 expressing Tregs after TCR stimulation in the presence of TGF-β1 (14,15).  

1.3 TGF-β AND T REGULATORY CELLS 

 TGF-β1 is a pleiotropic cytokine from the TGF-β signaling pathway superfamily 

that plays a role in virtually all cell processes starting from development to differentiation 

and apoptosis (65-68). In the context of immunity, much is known about the anti-

inflammatory properties of TGF-β1. It acts through reducing effector cell generation and 

proliferation as well as by inducing anti-inflammatory Tregs (11,65). Tregs are a CD4+ T 
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cell subset that express the transcription factor FoxP3 and quench inflammation by 

inhibiting inflammatory effector cells through a variety of mechanisms including: direct 

cell-cell contact, increased IL-2 uptake, adenosine release, and TGF-β1 secretion and 

activation, among others (10-15). Although the types of Tregs are still increasing, they fall 

into two main subsets, natural and peripheral Tregs, nTregs and pTregs, respectively. 

Natural or thymic Tregs arise in the thymus and protect the body against auto-immunity 

after complex interactions with specialized thymic antigen presenting cells (APCs) lead to 

Tregs with high avidity for self-antigens. Peripheral or induced Tregs, as the name 

suggests, arise in the periphery through a TGF-β1 dependent mechanism and allows for the 

tolerance to environmental antigens that are beneficial to the host (10-15,58,60). While the 

role for TGF-β1 in immunity is established and expanding; another TGF-β superfamily 

member, TGF-β2, has received a fraction of the interrogation into its immunomodulatory 

capacity. TGF-β2 is mainly studied in the context of development and Loeys-Dietz 

syndrome (69,70). Although some studies show anti-inflammatory properties available to 

TGF-β2 (78,79), and its expression in immune-privileged tissues like the eyes and testes 

implicate a role for immunity, more work needs to be done to examine its role in Treg 

induction and the resolution of inflammation.  

1.4 COLITIS AND COLITIS-ASSOCIATED COLON CANCER 

 The mammalian gastro-intestinal (GI) tract provides the architecture for solid and 

liquid nutrient absorption, while harboring a diverse and vast array of microbes to 

maximize catabolic potential for the host. The interplay between absorptive epithelial cells, 

surveilling immune cells and commensals calibrate according to age, diet, genetics, 

geography, immunity, xenobiotics and numerous other environmental and behavioral 
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variables (26). A perturbation in any of these factors in the GI tract can cause inflammatory 

bowel diseases (IBD), encompassing Crohn’s disease (CD) and ulcerative colitis (UC). 

These chronic idiopathic conditions are a major health concern, with prevalence in North 

America and Europe reaching 3.5 million people (27). Although immunomodulatory 

corticosteroids, anti-TNFα antibodies and 5-ASA therapies have shown potent remission-

inducing ability for IBD patients, they are accompanied by risks for infusion reactions and 

immunosuppression leading to opportunistic infection and malignancy (28). It has been 

shown conclusively that, besides the pernicious effects of IBD, those afflicted have an 

increased risk of developing colorectal cancer (CRC) during their lifetime (29,30).  

The precise pathological mechanisms underlying the development and progression 

of IBD remain unclear, however certain factors predispose or stave off developing disease. 

Host genetics can predispose an individual to IBD (31,32), and uncontrolled inflammation 

via mutation or dysregulated immunogenicity to commensals or dietary antigens precludes 

the causative pathology in IBD (33). Exogenous factors such as diet and microbial 

community have been recognized as significant contributors to the pathogenesis and 

prevention of IBD, such that a ‘western’ diet will predispose an individual to IBD, while a 

diet high in fiber promotes the production of mucus to protect gut epithelial lining and 

provide a matrix and substrate for which beneficial bacteria can flourish (34-36). Although 

many studies have investigated the specific microbial clades influencing IBD, no 

consensus has been reached, and the emerging hypothesis is that perturbations to the 

collective GI microbiome, deemed dysbiosis, contribute to IBD progression (37). The 

advances in biologics targeting inflammation, and beneficial effects of diet and exercise on 

IBD have stemmed the incidence of IBD in the westernized world; however, recent 
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epidemiological data suggest an accelerating incidence of disease in newly industrialized 

nations and Asia, highlighting a need for therapies and strategies that address multi-faceted 

mechanisms of disease prevention (27,28,38). 

1.5 CANNABINOIDS 

 Cannabinoids are a class of chemically unique compounds that bind to 

evolutionarily conserved yet geographically and functionally distinct G protein-coupled 

receptors: cannabinoid receptors 1 (CB1) and 2 (CB2). The first two exogenous ligands for 

the cannabinoid receptors to be discovered were Δ9-tetrahydrocannabinol (THC) and 

cannabidiol (CBD), the two main natural products derived from the plant Cannabis sativa. 

Investigation into CB1 and CB2 led to the discovery of the endogenous cannabinoids, N-

arachidonoyl-ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), which are 

synthesized on demand as bioactive lipids from the precursor arachidonic acid (39-41).  

Many early studies investigated the psychoactive properties of THC, but recent work, along 

with a plethora of largely anecdotal reports (41,42), have hailed THC, its non-psychoactive 

cousin CBD, and the endocannabinoids for their therapeutic potential in conditions of 

autoimmunity, spasticity, nausea and pain management (42,43). Cannabinoid receptor 

activation leads to a robust anti-inflammatory response, largely characterized by reduced 

antigen-presenting cell (APC) activation (44), a switch from a T helper 1 (Th1) phenotype 

to a T helper 2 (Th2) phenotype, and a direct induction of apoptosis in activated T cells 

(46-48). In the GI tract, cannabinoids exert a host of anti-colitic effects, demonstrated in 

several models (48-50). Activation of CB2 in the gut prompts anti-inflammatory responses 

that can ameliorate the symptoms of colitis, while activation of CB1 leads to reduced GI 

motility, gastric emptying, and increased epithelial integrity (48-52). Further support for 



6 

the notion that cannabinoids have therapeutic potential for IBD is that knockout mice 

lacking CB1 or CB2 develop more severe colitis symptoms (52,53). Despite the plethora 

of data from pre-clinical studies on the effectiveness of cannabinoids for IBD, only two 

clinical studies have been conducted, and there remains a lack of understanding how the 

myriad functions of cannabinoids work collectively to influence colitis development and 

progression (53-56). 

1.6 PROBLEM AND HYPOTHESIS 

 The process of allograft rejection and colitis are instances of allo- and 

autoimmunity, respectively, that encompass inflammation and thus treatment modalities 

that target inflammation are desired. The burden of these conditions on patient quality of 

life, risk of cancer development, and increasing health care costs are staggering (1-3,26-

28). There is an acute need to find remedies that re-program our immune system towards 

graft acceptance in the case of graft rejection, and to find preventative therapeutic options 

in the case of colitis. Therefore, we examined how to fine-tune the immune system in the 

case of graft rejection so that a natural epigenetic change that occurs in the host to dampen 

anti-inflammatory processes is suppressed, allowing increased Treg induction to stave off 

graft rejection. We explored the mechanism through which cannabinoids beneficially 

impact the complex interplay between colonic epithelial cells, underlying immune cells 

and the commensal microbiota to provide protection from colitis using mouse and human 

cell lines using CB antagonists, several animal models of colitis, and a model of colitis-

associated CRC.  
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CHAPTER 2 

MIR-466A TARGETING OF TGF-Β2 CONTRIBUTES TO FOXP3+ REGULATORY T 

CELL DIFFERENTIATION IN A MURINE MODEL OF ALLOGENEIC 

TRANSPLANTATION
1 

2.1 ABSTRACT 

The promise of inducing immunological tolerance through Regulatory T cell (Treg) 

control of effector T cell function is crucial for developing future therapeutic strategies to 

treat allograft rejection as well as inflammatory autoimmune diseases.  In the current study, 

we used murine allograft rejection as a model to identify microRNA (miRNA) regulation 

of Treg differentiation from naïve CD4 cells.  We performed miRNA expression array in 

CD4+ T cells in the draining lymph node (dLN) of mice which received syngeneic or 

allogeneic grafts to determine the molecular mechanisms that hinder the expansion of 

Tregs.  We identified an increase in miRNA cluster 297-669 (C2MC) after allogeneic 

transplantation, in CD4+ T cells, such that 10 of the 27 up-regulated miRNAs were all from 

this cluster, with one of its members, mmu-miR-466a-3p (miR-466a-3p), targeting TGF-

β2, as identified through reporter luciferase assay. Transfection of miR-466a-3p in CD4+ 

T cells led to decreased inducible FoxP3+ Treg generation while inhibiting miR-466a-3p 

                                                           
1 Becker W, Nagarkatti M, Nagarkatti PS. miR-466a Targeting of TGF-β2 Contributes to 

FoxP3+ Regulatory T Cell Differentiation in a Murine Model of Allogeneic 

Transplantation. Front Immunol. 2018;9:688.  

Reprinted here with permission of publisher. 
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expression through Locked Nucleic Acid (LNA) resulted in increased Tregs, and a 

reduction in effector T cells. Furthermore, in vivo inhibition of miR-466a-3p in an 

allogeneic skin graft model attenuated T cell response against the graft through an increase 

in TGF-β2. TGF-β2 was as effective as TGF-β1 at both inducing Tregs, and, through 

adoptive transfer, mitigating host effector T cell response against the allograft. 

Collectively, these data demonstrate for the first time a new role for microRNA-466a-3p 

and TGF-β2 in the regulation of Treg differentiation and thus offers novel avenues to 

control inflammatory disorders. 

2.2 INTRODUCTION 

 Allograft rejection is a robust T cell-mediated immune response involving 

activation of a large proportion of T cells that are alloreactive. We used that as model to 

study how Tregs are silenced. To that end, we performed expression profiling of miRNAs 

in CD4+ T cells found in the draining lymph node (dLN) of mice that received tail skin 

allografts to identify miRNA that influence the generation of Tregs.  Our results 

demonstrate that a cluster of miRNA is upregulated after alloantigen exposure, specifically 

in dLN CD4+ T cells, that act to suppress TGF-β2, resulting in decreased Treg generation 

and increased inflammation.  The accumulated data suggests a unique role for TGF-β2 in 

the regulation of Tregs and therefore opens new avenues to treat not only allograft rejection 

but other inflammatory disorders.  

2.3 MATERIALS AND METHODS 

Animals The University of South Carolina Institutional Animal Care and Use 

Committee approved all experiments. All mice were housed at the AAALAC-accredited 

animal facility at the University of South Carolina, School of Medicine (Columbia, SC), 
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and given ad libitum access to water and normal chow diet. Female C57BL/6 (H-2b wild-

type, BL6) and C3H (H-2k, C3H) mice, aged 8-12 weeks, with an average weight of 20g, 

were obtained from Jackson Laboratories (Bar Harbor, ME, USA). C57BL/6-FoxP3GFP 

mice were bred and maintained in-house. The number of mice for each experimental cohort 

is described in the figure legends. Each experiment was repeated at least twice, and in many 

cases, three or four times.  

Skin Transplant, LNA-based Treatment, and Adoptive iTreg Transfer 

Transplantation of tail skin from donor (C3H, allograft; C57BL/6, syngeneic graft) to 

recipient C57BL/6 mice, was carried out as described previously (83). Skin grafts were 

obtained by excising the tail from donor mice, and splitting the tail into equivalently sized 

~1x1 cm2 grafts. Recipient mice were anesthetized by an intraperitoneal injection of 

ketamine (80mg/kg) and xylazine (12mg/kg) (Southern Anesthesia & Surgical, Columbia, 

SC) in molecular grade water. Upon sufficient anesthetic depth, mice were shaved and 

~1x1 cm2 graft beds were made using curved scissors on the dorsal lateral surface. Donor 

skin grafts were placed onto the graft beds and mice were bandaged. Mice were monitored 

and kept in bandages for 7-9 days following skin transplantation surgery. In studies using 

Locked Nucleic Acid (LNA)-based miRNA inhibitor (anti-miR-466a-3p, Exiqon), the 

LNA (10mg/kg) was injected i.p. to graft recipient mice 1 day before skin transplant, and 

then every 3rd day after that until termination of the study. For studies involving expanded 

iTregs, these cells were cultured as described below, sorted for CD4+, FoxP3-GFP 

expression using BD FACSAria II, and 1x106 iTregs were adoptively transferred 1 day 

before skin-grafting. For graft rejection scoring, mice were scored as +/+, viable graft; +/-

, partially rejected the graft (>50% scabbed over or necrotic, or >50% reduction in graft 
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size); or -/-, fully rejected the graft (>80% necrotic). For depicting graft survival, +/+ and 

+/- skin grafts were considered viable, and -/- skin grafts were considered nonviable. The 

log-rank method was used to determine differences in graft survival. 

Target Prediction and Luciferase Reporter Assays Relevant targets for miR-466a-

3p and other miRNAs were investigated by cross-referencing predictions from TargetScan 

Mouse 6.2 software using a context+ score threshold greater than -0.02 and microRNA.org 

using a mirSVR score between -1.2 and -0.2. The 3’ UTR of candidate gene targets or 

mutated control were purchased from Integrated DNA Technologies (IDT) and cloned 

immediately downstream of luciferase in the pMiReport vector (Promega, Madison, WI, 

USA). Insertion of candidate mRNAs was verified through PCR and agarose gel 

electrophoresis. For luciferase assays, 2.5 x 105 EL-4 cells were plated in 24-well plates 

for 24 hr and subsequently transfected with either luciferase reporter constructs, together 

with miR-466a-3p mimics or the negative scramble control (Qiagen, Valencia, CA) using 

lipofectamine 3000 (Life Technologies). At 48hr post-transfection, dual luciferase assay 

system (Promega, Madison, WI, USA) was used to detect luciferase activity. Normalized 

data were calculated as the quotient of Renilla/firefly luciferase activities. The experiments 

were performed in duplicate and repeated at least 3 times.  

Cell Culture Cells were cultured in a sterile incubator that was maintained at 37°C 

and 5% CO2. EL-4 cells were cultured in DMEM supplemented with 10% fetal bovine 

serum, 100 U/mL penicillin and 100 U/mL streptomycin. Primary cells were cultured in 

complete RPMI supplemented with 10% FBS, 100 U/mL penicillin, 100 U/mL 

streptomycin (both Gibco), 10mM HEPES (Gibco, Paisley, UK), and 50 μM β-

mercaptoethanol (Sigma-Aldrich, Gillingham, UK) (complete medium). 
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Treg Polarization, CD3/CD28 Stimulation and miRNA Transfection For Treg 

polarization and CD3/CD28 stimulation studies, naïve lymph nodes were harvested and 

processed into single-cell suspensions. CD4+ T cells were purified using EasySep PE 

Positive Selection Kit (Stemcell Technologies, 18557). CD4+ T cell purity was routinely 

>90% as verified through flow cytometry. Cells (1x 106) were plated in 12 well plates in 

complete medium supplemented with plate-bound anti-mouse CD3ε, clone 145-2C11 

(3µg/mL) in the presence of anti-mouse CD28, clone 37.51 (3µg/mL). For studies 

examining only CD23/CD28 stimulation, cells were harvested 48hr after plating for 

downstream analysis. For Treg polarization, cells were plated with recombinant mouse IL-

2 (5ng/mL) and recombinant human TGF-β1 (5ng/mL) or recombinant TGF-β2 (5ng/mL) 

(R&D Systems, Minneapolis, MN) where indicated, in addition to the aforementioned 

amounts of CD3 and CD28. Five days after plating, cells were harvested for downstream 

analysis and cell culture supernatants were collected for ELISAs. All cytokines were 

purchased from Biolegend (San Diego, CA). In both experiments, cells were transfected 

with either 25 nM miR-466a-3p mimic (UAUACAUACACGCACACAUAAGA), 100nM 

miR-466a-3p inhibitor (UAUACAUACACGCACACAUAAGA), or 25 nM scramble 

control, using HiPerfect Transfection Reagent from Qiagen (Valencia, CA). Transfection 

efficiency was validated using qRT-PCR. 

iTreg Generation CD4+ T cells from BL6 FoxP3GFP mice were purified using 

EasySep PE Positive Selection Kit (Stemcell Technologies, 18557). CD11c+ allogenic 

APCs were isolated from the spleens of C3H mice using EasySep PE Positive Selection 

Kit. The cells were co-cultured for 3 days at a ratio of 5:1, T cells : APCs. Additionally, 

anti-CD3ε (10µg/mL), anti-CD28 (4µg/mL) and IL-2 (5ng/mL) were added to all wells 
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and TGF-β1 (5ng/mL) and TGF-β2 (5ng/mL) were added where indicated. Cells were co-

cultured for 72 hours before being collected for downstream analysis or sorted for purity 

and injected intravenously. 

Alloantigen Co-culture Naïve lymph node cells were harvested and processed 

through a 100µm cell strainer to make single-cell suspensions. Cells (1x106) were plated 

in the presence of 50 μg/mL of alloantigen or no antigen (control) in complete RPMI in 

12-well plates for 10 days. Fresh medium was added on day 5, and LNA-based miRNA 

inhibitor (anti-miR-466a-3p, Exiqon, Denmark) and control LNA were added every 3 days 

at 50 ng/mL. After 10 days, cells were collected for downstream analysis and cell culture 

supernatants were stored at -20°C before being analyzed by cytokine-specific ELISA for: 

IFNγ, TNFα, IL-17A, total TGF-β1 (Biolegend, San Diego, Ca), and TGF-β2 (R&D 

Systems, Minneapolis, MN). 

Antigen Preparation (splenocyte lysates) C3H and C57BL/6 mice were euthanized 

and their spleens were aseptically removed, homogenized, and passed through a 100µm 

cell strainer to make single-cell suspensions in cold, serum-free media. Red blood cells 

(RBCs) were lysed and the cell suspension was washed twice with cold serum-free media. 

Then, cells were re-suspended at a cellular density of 1x108 cells/mL and subjected to 4 

freeze (5 min liquid nitrogen) – thaw (10 min 37 °C water bath) cycles. Cells were then 

sonicated for 5 min, and the lysate was centrifuged at 350g (10 min, 4 °C) and supernatant 

was recovered. The lysate was filtered with a 0.22 μm microporous membrane, protein 

concentration was determined using Qubit fluorometer (Thermo Fisher Scientific), and 

subsequently stored at 4 °C. 
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Graft Infiltrating Cell Extraction Mice that received a skin-transplant were 

sacrificed and the transplanted graft was aseptically excised. Grafts were cut longitudinally, 

minced and digested for 2 hours at 37°C 5% CO2 in PBS containing Type I Collagenase 

(2.5 mg/mL) and Hyaluronidase (0.25mg/ml) (both from Sigma). Subsequently, graft 

infiltrating cells (GICs) were obtained by spinning at 1000g for 7min at 4°C before being 

re-suspended in FACS buffer and live cells enumerated using a hematocytometer, and 

either stained immediately for flow cytometry or plated overnight to recover GIC culture 

supernatants. Cell-free culture supernatants were recovered and stored at -20°C before 

being analyzed by cytokine-specific ELISA. 

Flow Cytometry and Antibodies Relevant tissues were harvested and cells were 

homogenized and subsequently depleted of red blood cells as described above. To analyze 

immunophenotype surface markers, we stained single cell suspensions using the 

recommended dilutions indicated on the manufacturer product sheets, and gated them on 

PE conjugated anti-CD4 (GK1.5) or FITC conjugated anti-CD8α (53-6.7) where indicated. 

Antibodies used for flow cytometric analysis (BioLegend, San Diego, CA, USA) include 

Fc block, PE, PE/Cy7 and APC-Cy7 conjugated anti-CD4 (GK1.5), PE and BV421 

conjugated CD304 (Neuropilin-1) (3E12), PE conjugated anti-IL-17A (TC11-18H10.1) 

Alexa Fluor 488 and BV421 conjugated FoxP3 (MF-14), FITC conjugated Helios (22F6), 

APC conjugated IFNγ (XMG1.2), APC and PerCP-Cy5.5 conjugated LAP (TGF-β1) 

(TW7-16B4), FITC conjugated CD8α (53-6.7), BV650 conjugated CD223 (LAG-3) 

(C9B7W), Alexa Fluor 700 conjugated CD49b. PE conjugated IL-10 (JES5-16E3), PE 

conjugated GATA3 (16E10A23), FITC conjugated T-bet (4B10), APC conjugated CD62L 

(MEL-14), BV650 conjugated CD278 (ICOS)(DX29), (PE conjugated CD44 (IM7) and 
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PE/Cy7 and BV786 conjugated CD25 (3C7). Antibodies against nuclear proteins were 

probed using True-Nuclear Transcription Factor Buffer Set (BioLegend, San Diego, CA, 

USA) and intracellular cytokine staining was performed using Fixation/Permeabilization 

Solution Kit (BD, San Jose, CA). The stained cells were then assessed by flow cytometer 

(FC500; Beckman Coulter, Brea, CA, USA) or BD FACSCelesta (BD, San Jose, CA, USA) 

and the resulting data analyzed by Cytomics CXP software (Beckman Coulter), DIVA 

software, or FlowJo. Sorting of cells was performed using a BD FACSAria II (BD, San 

Jose, CA, USA). The gates were set following exclusion of debris.  Additionally, we used 

positive and negative controls for the fluorophores used.  The events were displayed as a 

dot plots or as a contour maps to show the relative intensity of scatter patterns.  The gates 

were set at around populations of cells with common characteristics such as forward 

scatter, side scatter and density of marker expression.   

miRNA Expression Profiling dLN CD4+ T cells purified to >90% purity using 

EasySep PE Positive Selection Kit (Stemcell Technologies, 18557) were subject to total 

RNA isolation using miRNeasy kit (Qiagen, Valencia, CA), following manufacturer’s 

protocol. The concentration and purity of the isolated RNA were determined using a 

spectrophotometer, and the integrity of the RNA was verified using Agilent Eukaryote 

Total RNA Nano Series II on an Agilent 2100 BioAnalyzer (Agilent Tech, Palo Alto, CA). 

Only samples with a RIN value above 8 were used for subsequent processing. Profiling of 

miRNA expression from samples was performed using the Affymetrix GeneChip miRNA 

4.0 array platform (Affymetrix, Santa Clara, CA) at the Johns Hopkins Deep Sequencing 

and Microarray Core (http://www.microarray.jhmi.edu/) following the manufacturer’s 

protocol. This array version covers all mature miRNA sequences in miRBase Release 20 
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(http://www.mirbase.org/). The stained chip was scanned on a GeneChip Scanner 

(Affymetrix) and microarray image data were analyzed using Affymetrix Power Tools 

(APT) to generate Robust MultiArray Average (RMA) values as well as detection above 

background (DABG) p-values as well as for normalization and quality control of data. 

Hybridization signals that that showed aberrant properties and were <3 standard deviations 

over the mean background value were excluded. Statistical significance (p values) for 

“detection calls” were determined by Affymetrix test. Probe sets with a p value lower than 

0.05 were called present (true). The log-transformed fluorescence intensity values were 

mean-centered and visualized by heat maps. miRNA fold changes were obtained from the 

array and miRNAs with only a greater than 1.5-fold change were considered for further 

analysis.  Predicted miRNA targets, alignments, and mirSVR scores were determined using 

online miRNA databases:microrna.org, and TargetScan Mouse 6.2. Heatmap was made 

using Genesis software (Graz University of Technology). Ingenuity Pathway Analysis 

(IPA) (Qiagen, Valencia, CA) was used to identify the molecular and functional 

annotations and canonical biological pathways potentially influenced by target genes of 

differentially expressed miRNA. The array data were deposited into the Genome 

Expression Omnibus (GEO) of NCBI (https://www.ncbi.nlm.nih.gov/geo/) and can be 

accessed via accession number GSE109160. 

 Immunoblotting Cell extracts were collected using RIPA lysis buffer 

supplemented with sodium orthovanadate, PMSF and protease inhibitor (Sigma). Protein 

concentration was measured using Qubit fluorometer (Thermo Fisher Scientific) and were 

subjected to gel-electrophoresis and transfer onto a nitrocellulose membrane. Blots were 

blocked with 5% BSA in TBST, washed, and probed overnight at 4 °C with antibodies 
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against TGFβ2 (1:1000, R&D Systems, MAB73461), TGFβR3 (1:2000, R&D Systems, 

AF5034), Smad2/3 (1:1000, CST, 5678), Phospho-Smad2 (Ser465/467)/Phospho-Smad3 

(Ser423/425), (1:1000, CST, 8828), Smad4 (1:1000, CST, 38454) and Phospho-Smad4 

(Thr276), (1:1000, Thermo Fisher Scientific, PA5-64712). The next day, blots were 

washed in TBST and then incubated at room temperature for 1 h with a horseradish 

peroxidase labeled secondary antibody. Following secondary antibody incubations, blots 

were washed multiple times with TBST, exposed to a chemiluminescent reaction, Pierce™ 

ECL Western Blotting Substrate (Thermo Fisher Scientific, Rockford, IL), and were 

exposed to film. Optical densities of films were quantified (sample minus background) 

using ImageJ. 

Measurement of cytokines Cell culture supernatants from indicated in vitro 

experiments, graft infiltrating cell culture supernatants obtained ex vivo, or serum samples 

were analyzed for the following cytokines: IFNγ, TNFα, IL-17A, total TGF-β1, latent 

TGF-β1, and free-active TGF-β1, enzyme-linked immunosorbent assay (ELISA) kits were 

purchased from Biolegend (San Diego, CA). For detection of TGF-β2, ELISA kit was 

purchased from R&D Systems (Minneapolis, MN). 

RNA Extraction and qPCR CD4+ T cells in the dLN or spleens of grafted mice 

were purified using EasySep PE Positive Selection Kit (Stemcell Technologies, 18557), 

and total RNA was isolated using miRNeasy kit (Qiagen, Valencia, CA), following 

manufacturer’s protocol. Expression of indicated mRNA and miRNA levels were 

determined by quantitative real-time PCR (qRT-PCR).  Quality and amount of RNA was 

investigated using Nanodrop 2000 (Thermo Fisher Scientific, Rockford, IL). For miRNA 

expression analysis, cDNA was made from total RNA using miRNA cDNA Synthesis Kit, 
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with Poly(A) Polymerase Tailing (ABM, Canada, G902). Two-step with hot-start miRNA 

qRT-PCR was carried out using EvaGreen miRNA Mastermix (ABM, Canada, 

MasterMix-mS) with mouse primers for SNORD96A (control), miR-466a-3p, miR-466e-

3p, miR-466p-3p, miR-15a-5p, miR-181c-5p, miR-27a-3p and miR-19b-3p (ABM, 

Canada). Expression levels were normalized to SNORD96A. For mRNA expression 

analysis, cDNA was made from total RNA using miScript cDNA synthesis kit from Bio-

Rad (Hercules, CA). Two-step amplification with a 60° annealing temp. for qRT-PCR was 

carried out using SsoAdvanced™ SYBR® green supermix from Bio-Rad (Hercules, CA) 

with mouse primers for TGFβ1, TGFβ2, TGFβR3, PTEN, FoxP3, Smad2, Smad3, 

TGFβR1 and TGFβ3. All qRT-PCR experiments were carried out on a CFX96 (or 384) 

Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA). Expression levels were 

normalized to β-actin mRNA levels. Fold changes were calculated using the 2−ΔΔCT 

method. Primers are detailed in Table 2.3. 

H&E Staining Grafts were excised and fixed by immersion in 4% 

paraformaldehyde (PFA) in PBS, overnight. Fixed tissues were embedded in paraffin, 

sectioned and stained with hematoxylin and eosin. Color bright field images and picture 

montages were taken using a Cytation-5 Imaging Reader (BioTek Instruments, Winooski, 

VT, USA).  

Statistical Analysis Prism 6 and 7 software (Graphpad) were used for statistical 

analysis. In skin graft experiments, we used groups of at least 7 mice. Data were depicted 

as means ±SEM. Student’s t test was used to compare data between 2 groups. One-way 

ANOVA with a Tukey post hoc test was used to compare 3 or more groups. A log-rank 
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(Mantel-Cox) test was used to determine the significance of survival curves.  A p<0.05 was 

considered significant.   

2.4 RESULTS 

Draining lymph node T regulatory cell response to allograft 

T regulatory cells (Treg) play a critical role in tolerance and the decrease in their 

functions is associated with strong inflammation (3-8).  To investigate the potential 

mechanisms that dampen the basal Treg induction during an immune response, we used an 

allogeneic skin-graft model of transplantation. To that end, C57BL/6 mice (H-2b, BL6), 

were given age and sex- matched syngeneic (syn) (BL6) or allogenic (allo) C3H (H-2k, 

C3H) full thickness ~1x1 cm2 tail skin transplants on the dorsal lateral surface. Ten days 

after transplantation, mice were sacrificed and their draining lymph nodes (dLN) and 

spleens were harvested and assessed for the type and frequency of Tregs present. Among 

the main Treg subtypes, we investigated natural Tregs (nTregs), that are demarcated by 

surface CD4+ and Neuropilin-1 (Nrp1) expression, and express the transcription factor 

FoxP3 (57,58,60), peripheral Tregs (pTregs) that are CD4+, FoxP3+, Nrp1-, or Nrp1LO 

(59,60); and Tr1 T cells, which are CD4+, FoxP3 -, CD25-, CD49b+, Lag-3+ (CD223+), 

and express inducible T-cell costimulatory (ICOS). In addition, these cells express higher 

latent-associated TGF-β and secrete IL-10 (57,84). In the dLN of allografted mice, but not 

in the spleen, there was a significant reduction in the percentage of nTregs and pTregs 

when compared to syngrafted mice (Figure 2.1A-E). In contrast, there were no significant 

changes in the percentages of Tr1 cells (Figure 2.1F-H). Additionally, when looking at the 

amount of latent-associated peptide –TGF-β1 (LAP) on CD4+FoxP3+ cells, we observed 

a notable decrease in the percentages of these Tregs in the allograft dLN (Figure 2.1I). Due 



 

19 

to the requirement of TGF-β1 for pTreg induction, and the decrease in LAP on Tregs after 

allotransplantation, we looked at TGF-β1 levels in the serum on the day the mice were 

euthanized and found that its presence was diminished after allotransplantation as well 

(Figure 2.1J). 

A miRNA cluster is altered in dLN CD4+ cells 

We next investigated if changes in Tregs were associated with alterations in 

miRNA expression because miRNA are known to regulate T cell differentiation and 

plasticity. To that end, we isolated total RNA from purified CD4+ T cells in the dLNs of 

syn- or allografted mice or naïve mice, pooled the RNA from mice in the same group, and 

performed a miRNA expression microarray as a preliminary screening tool using an n of 1 

per group. Differential fold change expression of 3,164 miRNAs between the naïve, syn 

and allo groups was performed. A table was constructed of all the miRNA from the array 

that displayed a 1.5 or greater fold change in the allo group compared the syn group, while 

also displaying changes between the allo and naïve group, most of which also displayed a 

fold change greater than 1.5, with miR-7648-3p being the sole exception (Table 2.1). A 

compelling finding was that 10 of the 27 miRNAs that were found to be up-regulated in 

the allo group (compared to both naïve and syn groups) all came from the same cluster of 

miRNA that was contained in the 10th intron of the Polycomb group gene Sex combs on 

the midleg with four MBT domains-2 (Sfmbt2) on mouse chromosome 2, henceforth 

referred to as Chromosome 2 miRNA cluster (C2MC) (Table 2.1). C2MC has also been 

referred to as the miR-297-669 cluster (61-63).  
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Validation of miR-466a expression and predicted mRNA targeting 

Next, we validated the expression of these miRNA through qRT-PCR (Figure 

2.2A). Using TargetScan Mouse 6.2 and microrna.org, several of the miRNA that were up-

regulated after allografting were found to target many members in the family of TGF-β 

signaling, consistent with a clear role for TGF-β1 in the differentiation of naïve CD4+ T 

cells into pTregs, and tolerance (64-66). These miRNAs and their associated fold changes 

were input into Ingenuity Pathway Analysis (IPA) to display them alongside their predicted 

targets (Figure 2.2B). Our data indicating a decrease in pTregs, LAP+ Tregs, and 

circulating TGF-β1 (Figures 2.1A, D, I, J) suggested that the TGF-β1 pathway may be 

attenuated after allotransplantation, an avenue that was further pursued.  Among the up-

regulated miRs, the specific miRNA from C2MC with the highest validated mean 

expression in CD4+ T cells draining from the allograft was miR-466a-3p (Figure 2.2A), 

henceforth referred to as miR-466a. This miRNA was chosen as the main miRNA of 

interest, both because of its noteworthy upregulation (Figure 2.2A), and because the seed 

sequence of miR-466a is identical to miR-297(a/b/c)-3p, miR-446d-3p, miR-467g and 

miR-669d-3p, other members of C2MC. Upregulation of miR-466a after 

allotransplantation was specific to dLN CD4+ cells, as it was not significantly altered in 

splenic CD4+ cells or other peripheral LN CD4+ cells (Figure 2.2C). Predicted targets of 

C2MC in (Figure 2.2B) were validated through qRT-PCR (Figure 2D) to be down-

regulated in allograft dLN CD4+ cells. We next investigated the mRNA specifically 

targeted by miR-466a.  Predicted target, binding, and miRSVR score of miR-466a - mRNA 

interactions are displayed in a Table (Table 2.2). We cloned the 3’-untranslated region (3’ 

UTR) of several mRNA of interest (Smad2, Smad3, TGF-β2 and TGF-βR3) as well as a 
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mutated 3’ UTR, immediately downstream of luciferase in a luciferase reporter assay. EL-

4 cells were transfected with the luciferase reporters or a control vector lacking any 3’ UTR 

inserts in the presence of either a miR-466a mimic or a scramble control. We found that in 

the presence of miR-466a mimic, the luciferase activity of the reporter with the TGF-β2 3’ 

UTR cloned into its sequence was significantly lower, while such a decrease was not seen 

in the presence of the scramble control, any of the other cloned 3’ UTRs, or in the mutated 

control group (Figure 2.2E). This finding was consistent with the predicted 7mer-m8 seed 

match shared between miR-466a and TGF-β2. 

miR-466a targets Treg polarization through TGF-β2 

To directly test the role of miR-466a on Treg differentiation, we used an in vitro 

Treg polarization model.  To that end, purified naïve CD4+ T cells cultured with cytokines 

were transfected with either mock (empty vector), scramble control (25nM), mimic 

(25nM), or mimic + inhibitor (100nM).  The data showed that transfection with mimic, but 

not any of the other conditions, could suppress the generation of Tregs as demarcated by 

the co-expression of CD4 and FoxP3 (Figure 2.3A-C). It was worth noting that the mimic 

caused a robust decrease in the total number of Tregs generated in culture when compared 

to controls (Figure 2.3C).  Transfection efficiency was validated with qRT-PCR (Figure 

2.4A). We next quantified the mRNA and protein levels of the predicted targets of miR-

466a after transfection and found that the mRNA expression of Smad2, Smad3, TGF-β1, 

TGF-β2 and TGF-βR3 were all reduced after mimic transfection compared to the other 

conditions (Figure 2.4B). However, upon examining the protein level, although both 

Smad2 and Smad3 showed active phosphorylation, as is to be expected upon TGF-β 

signaling, the only protein examined whose levels were decreased after mimic transfection 
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was TGF-β2 (Figure 2.3D-G). Continued Smad signaling despite the reduction in TGF-β2 

is likely due to persistent signaling through TGF-β1. Additionally, there was a decrease in 

the amount of free-active TGF-β1 in the cells transfected with miR-466a mimic, and this 

alteration was reversed with the addition of the inhibitor (Figure 2.4C). 

Next, we examined the effect of miR-466a inhibition in a model wherein there was 

no exogenously administered TGF-β1. To that end, naïve CD4+ cells were purified and 

stimulated in vitro with anti-CD3/CD28 Ab in the presence of a locked nucleic acid (LNA), 

designed specifically to inhibit miR-466a/b/c/d/e/p-3p (will be referred to as LNA-466), or 

a control that was designed not to target any known miRs (LNA-ctrl). Cells treated with 

LNA-466 exhibited an increase in the number of CD4+CD25HILAP+FoxP3+ Tregs 

compared to controls (Figure 2.3H). To confirm that TGF-β2 can have a pronounced effect 

on Treg polarization, naïve CD4 cells were polarized with either TGF-β1 (5ng/mL) or 

TGF-β2 (5ng/mL). Both culture conditions induced the polarization of naïve T cells into 

Tregs, but TGF-β2 induced Tregs had increased expression of inducible T-cell 

costimulatory (ICOS), a marker of Treg fitness (82), compared to TGF-β1 induced Tregs 

(Figure 2.3I). 

miR-466a inhibitor decreases pro-inflammatory and increases anti-

inflammatory cells after coculture with alloantigen 

To mimic more closely the in vivo environment of transplantation, we implemented 

an in vitro coculture model wherein naïve LN cells were cultured with either syngeneic 

antigen or alloantigen (50μg/mL). LN cells cocultured with syngeneic antigen died 

between days 3-5; however, LN cells cultured with alloantigen persisted and expanded. 

Coculture with alloantigen provoked a robust increase in expression of miR-466a at several 
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time points compared to cells cultured with syngeneic antigen (Figure 2.5A).  Next, LN 

cells were cocultured with alloantigen and LNA-466 or control inhibitor and cells were 

analyzed by flow cytometry. LNA-466 addition resulted in a decrease in pro-inflammatory 

T helper 1 (Th1) cells that were CD4+IFNγ+, cytotoxic effector CD8+ IFNγ+ cells (Tc1), 

and CD4+ IL-17A+ T helper 17 (Th17) cells (Figure 2.5B). In the same cultures, LNA-

466 induced increased proportions of CD4+CD25HI cells, and concomitantly increased 

FoxP3+ expression among that population, compared to controls (Figure 2.5C, D).    

LNA-466 attenuates inflammatory markers after allogenic skin 

transplantation 

Because LNA-466 was effective in attenuating inflammatory T cells induced by 

alloantigen in vitro, we investigated its effect in vivo. To that end, C57BL/6 mice were 

given either C57BL/6 (syn) or C3H (allo) skin grafts and were administered LNA-466 or 

LNA-ctrl at a dose of 10 mg/kg starting 1 day before allografting, and every 3rd day 

thereafter, until termination of the study. While LNA-466 caused a slight delay in allograft 

rejection, it was statistically not significant (Figure 2.6A).  However, mice given the 

allograft + LNA-466 did exhibit a significant decrease in the size and total cellularity of 

draining lymph nodes, thereby indicating decreased host-versus-graft response and 

inflammation (Figure 2.6B, C).  In the same experiment, LNA-466 failed to induce 

significant changes in the size and cellularity of the spleens (Figure 2.7A, B), thereby 

demonstrating that LNA-466 was targeting the dLNs, the primary site of immune response 

against alloantigen, and the site of mir-466a upregulation. To determine if LNA-466-

mediated effect on Tregs was having a functional impact on inflammatory cytokines, dLN 

cells harvested from LNA-466-treated mice were cultured overnight and the supernatants 
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were examined for cytokines.  The data showed that LNA-466 derived cultures had 

significantly lower effector cytokines such as TNFα and IFNγ levels when compared to 

cells derived from allograft + LNA-ctrl treated mice (Figure 2.6D, E).  

Mice receiving LNA-466 exhibited no significant changes in the amounts of 

circulating TGF-β1; however, consistent with the ability of miR-466a to target TGF-β2, 

the LNA-466 group demonstrated increases in circulating TGF-β2 when compared to syn 

or allograft + LNA-ctrl groups (Figure 2.6F, G). Corroborating this finding, we found an 

increase in the number of circulating memory Treg cells (Figure 2.6H, I) in the LNA-466 

group, surpassing the number of memory Tregs in the syn group.  

When we performed histopathological analysis of the grafts, we noted that allograft 

+ LNA-466 mice showed a decrease in the levels of cellular infiltration and graft damage 

compared to allograft + LNA-controls (Figure 2.6J).  

LNA reduces intragraft effector cells and cytokines 

Next, we directly studied the nature of cells and cytokines seen within the graft 

after LNA-466 or LNA-ctrl treatment.  To that end, the grafts were excised minced and 

digested to retrieve graft infiltrating cells (GICs), which were either immediately stained, 

or plated for 24hr in complete media to obtain GIC culture supernatants. The data revealed 

that LNA-466 treated animals had a decrease in effector CD4+ and CD8+ GICs compared 

to the LNA-ctrl group (Figure 2.8A-C). LNA-466 treatment also resulted in an increase in 

the percentage of graft infiltrating CD4, CD62L, FoxP3+ Tregs, compared to the LNA-ctrl 

group (Figure 2.8D, E). Graft culture supernatants revealed that LNA-466treatment led to 

reduced levels of effector inflammatory cytokines, TNFα (Figure 2.8F) and IFNγ (Figure 

2.8G), as well as increases in total TGF-β1 and TGF-β2 (Figure 2.8H & I). 
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TGF-β2 induced Tregs are as potent as TGF-β1 induced Tregs in attenuating 

allograft rejection response 

To study the role of TGF-β2-induced Tregs in suppressing inflammation, CD4+ 

cells from C57BL/6 FoxP3GFP reporter mice were isolated and cultured with splenic 

APCs from allogenic mice along with anti-CD3ε (10µg/mL), anti-CD28 (4µg/mL) and IL-

2 (10 ng/mL). TGF-β1 is conventionally used to stimulate the production of both 

polyclonal and antigen-specific induced Tregs (iTregs) (4-8). Here, we tested the effect of 

culture with either TGF-β1 (5ng/mL) or TGF-β2 (5ng/mL) on iTreg generation.  Similar 

to the polarization findings in Figure 2.3I, after 3 days of culture, we found that TGF-β2 

was able to induce the generation of iTregs (Tβ2-iTregs) to the same extent and phenotype 

as TGF-β1 (Tβ1-iTregs) (Figure 2.9A, B). To test the efficacy of these cells at delaying 

acute rejection in vivo, after 3 days of co-culturing, iTregs were sorted for CD4+, 

FoxP3GFP co-expression and 1x106 cells were intravenously injected into allograft 

recipient mice 1 day before skin transplantation. Syngenic mice which did not receive any 

iTregs were used as controls. Tβ2-iTregs displayed potency equivalent to Tβ1-iTregs at 

delaying graft rejection (Figure 2.9C), preventing graft destruction at a rate greater than 

iTregs generated without the addition of TGF-β1 or TGF-β2. iTregs were verified to be 

present in the dLN (Figure 2.9D, E) to the same extent among all groups, although iTregs 

induced with TGF-β1 or TGF-β2 showed greater potential to home to the allograft (Figure 

2.9F, G). Indeed, grafts harvested 12 days after allotransplantation that were derived from 

mice administered Tβ1-iTregs and Tβ2-iTregs showed a decrease in graft infiltrating 

memory CD4+ cells (Figure 2.9H, I), and a decrease in the number of graft infiltrating 

memory and effector CD8+ cells (Figure 2.9H, J). In the periphery, Tβ1-iTregs and Tβ2-
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iTregs reduced circulating CD4+ and CD8+ cells displaying a memory phenotype but did 

not cause any change in circulating Tregs (Figure 2.10A-F). Lastly, Tβ1-iTregs and Tβ2-

iTregs could significantly reduce the number of graft infiltrating IFNγ-secreting CTLs 

compared to mice which received only iTregs (Figure 2.9K, L).  

2.5 DISCUSSION 

Treg generation and administration is rapidly becoming a promising treatment 

option for patients undergoing end-stage organ failure (3-8). Because alloantigens, unlike 

conventional antigens, activate a large proportion of T cells and induce a strong 

inflammatory response, we considered using this model to study the impact of such 

activation on miRNA expression in T cells leading to induction of proinflammatory T cells, 

while constraining Tregs. Our results provide a mechanistic perspective on how epigenetic 

shifts in CD4+ T cell miRNA expression can influence the generation of Tregs by 

modification of TGF-β2 expression. Our data demonstrated an upregulation of many 

members of rodent miRNA cluster, C2MC, after allotransplantation in dLN CD4+ cells. 

Through pathway analyses, these miRNAs, and specifically miR-466a-3p, were predicted 

to target several members of the TGF-β signaling family. We showed that miR-466a 

directly binds to the 3’ UTR of TGF-β2 through reporter luciferase assays. It should be 

noted that while miR-466a and its target were validated in this study, there were still several 

miRNA picked up by the array that were not investigated further and it is possible that such 

miRNA may contribute to the complex inflammatory cascade perpetuating graft rejection.  

Despite being an isoform of the widely studied TGF-β1 (11,14-15,64-68), little 

information is known about the role of TGF-β2 in the immune system (67,68).  Indeed, 

most of the information concerning TGF-β2 is in regard to its role in development and 
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function of aorta (69), Loeys-Dietz syndrome (70) and cancer (71-73).  Moreover, most 

studies performed  involving TGF-β1 in immune cells have used TGF-βRII deficient cells 

to highlight the role of TGF-β1, however, this also cancels out any potential TGF-β2 

signaling. Thus, our findings that miR-466a regulates TGF-β2, which in turn plays a key 

role in the generation of Tregs, are novel.  This was demonstrated conclusively in our study 

by altering TGF-β2 levels via transfection of CD4+ cells under Treg polarizing conditions 

with miR-466a mimics, which led to decreased generation of Tregs, while mimic inhibition 

reversed this effect. Furthermore, this reduction in Treg generation was associated with 

decreased mRNA levels of TGF-β family members and signaling molecules Smad2/3; 

however, at the protein level, while Smad2/3 showed consistent activation status between 

the groups, only TGF-β2 expression was altered upon mimic transfection. The persistence 

in Smad signaling despite changes in TGF-β2 expression are likely due to signaling through 

exogenously administered TGF-β1 in that model of in vitro polarization. Interestingly, we 

found TGF-β2 to be equally as effective as TGF-β1 at polarizing naïve CD4 cells in vitro, 

even conferring increased ICOS expression to the polarized Tregs, a marker of Treg fitness 

(82). To further corroborate the role of miR-466a in T cell differentiation, we used locked 

nucleic acid (LNA) in a co-culture model to inhibit miR-466a expression and found that 

LNA-466 caused an increase in CD4+CD25HI FoxP3+ Tregs and a decrease in pro-

inflammatory T helper 1 (Th1) cells, CD8+ IFNγ+ cells (Tc1), and CD4+ IL-17A+ (Th17) 

cells.  Mice bearing allograft and treated with LNA-466 exhibited a significant decrease in 

inflammation, an increase in FoxP3+ Tregs at the grafted site, and an increase in circulating 

TGF-β2 and circulating memory Treg cells.  Together, the current study demonstrates for 

the first time that allografts induce miR-466a in CD4+ T cells which inhibits Treg 
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differentiation through suppression of TGF-β2.  Our data suggest that in vivo modulation 

of miR-466a may constitute a novel approach to induce Tregs and thereby inhibit 

inflammation that is seen in a variety of clinical disorders.   

Contrary to our hypothesis that in vivo inhibition of miR-466a using LNA-466 

would result in delayed allograft rejection, our data showed that LNA administration failed 

to delay allograft rejection compared to controls. This may be because allografts activate a 

larger proportion of T cells compared to conventional antigens, thereby provoking a more 

robust inflammatory response, and the effect of LNA-466 may be too subtle to quell this 

pernicious immune response in a model with such a high degree of genetic mismatch.  

Moreover, in humans, HLA matching eliminates such strong host-versus-graft reactions, 

which are further controlled by immunosuppressive drugs.  Nonetheless, LNA-466 

administration significantly altered the immune cell environment towards a more anti-

inflammatory phenotype, and this was without altering the circulating levels of TGF-β1. 

Despite TGF-β1 levels remaining stable in this experiment, we cannot discount the 

confounding role TGF-β1 may have in these studies. Future work utilizing TGF-β1-/- 

knockout mice will need to be performed to accurately dissect the specific impact each 

TGF-β isoform is having on the generation and maintenance of Tregs. Thus, the data 

presented in this study paint a picture of a complex inflammatory environment wherein 

modulation of TGF-β2, specifically, via miR-466a downregulation can modify most 

greatly the inflammatory environment in circulation and within the allograft.  

After demonstrating how changes in TGF-β2 levels could alter Treg generation, we 

investigated the role of TGF-β2 and compared it to its well-studied isoform, TGF-β1, in 

Treg induction and expansion. TGF-β2 was found to be as effective as TGF-β1 at inducing 
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Tregs in an allogenic coculture model. Additionally, these Tβ2-iTregs demonstrated an 

ability to reduce allograft-directed inflammation at a rate comparable to Tβ1-iTregs, and 

better than iTregs that were not cultured with TGF-β isoforms. This is a novel finding that 

surely warrants further work – to dissect the differences, if any, between Tregs generated 

via TGF-β1 or TGF-β2.  

miR-466a-3p is a member of C2MC, one of the largest clusters of miRNAs, 

containing 71 miRNA genes (61-63). C2MC contains subclusters 297~466~467~699, 

many of which have been implicated in disease processes, from cell fate decision (76), and 

apoptosis (74) to aging in the heart (75); however, most members of the 466 subcluster 

have been implicated in immune regulation (76,77). C2MC is under tight, temporal and 

spatial regulatory control, and exists in Sfmbt2, a region known to be imprinted (62). 

Sfmbt2 is expressed preferentially in the paternal allele in early embryos, and in later stage 

extra-embryonic tissue; while CpG islands spanning the transcriptional start site are 

differentially methylated on the maternal allele during embryogenesis (62,63). The 

developmental regulation of C2MC is especially germane to this work, because the 

member of C2MC that was most highly upregulated after alloantigen exposure, miR-466a, 

was found to target TGF-β2, a protein that is also under considerable governance due to its 

extensive involvement in proper development (69,70). Another possible mechanism that 

could be mediating the effects of TGF-β2 on the immune system, other than the direct 

effect we noticed on CD4+ cells, is the effect of TGF-β2 on antigen presenting cells 

(APCs). In a model of experimental autoimmune uveoretinitis (EAU) and anterior 

chamber-associated immune deviation (ACAID), TGF-β2 treated APCs could provoke 

antigen specific tolerance via Treg induction in vitro and in vivo (78,79). This is an exciting 
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progression, and is concordant with our finding that increases in TGF-β2 levels occurred 

in tandem with increased levels of Tregs, and more importantly that TGF-β2 can robustly 

induce Tregs in an alloantigen coculture model. We found that purified CD4+ T cells, 

draining the allograft expressed heightened miR-466a; it is quite possible these cells could 

be secreting their miRNAs in exosomes as a form of cell-cell communication in the dLN 

microenvironment to dendritic cells. Exosomal trafficking between CD4+ cells and DCs 

has been well documented, and if CD4+ cells were secreting miRNA-filled exosomes to 

decrease DC TGF-β2 expression, in accordance with the studies mentioned above, this 

could result in less Tregs being induced (80). Indeed, Wilson et al. found this form of 

paracrine exosomal signaling to be dominant in CD4+ cells, specifically in Treg cells (81). 

Interestingly, in that same study, it was found that several members of C2MC were among 

the top up-regulated miRs in Treg-derived exosomes (81). Considering clinical 

transplantation involves lesser HLA incompatibilities than used in our murine model, and 

due to the salutary effects in vivo manipulation of miR-466a had on allograft rejection, we 

suggest that miRNA management of TGF-β2 may constitute a therapeutic modality for 

allograft rejection or other inflammatory diseases - clearly additional studies are necessary 

to reinforce this point.  Our studies also indicate a heretofore unrecognized role for TGF-

β2 in the robust induction of T regulatory cells, an observation that could be an additional 

strategy for decreasing allograft rejection severity without resorting to global 

immunosuppression. 
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Table 2.1 miRNA Array Analysis 

 

Transcript ID Allogeneic vs. 

Naive 

Allogeneic vs. 

Syngeneic 

Mmu-miR-1291 -1.940334 -2.6569 

Mmu-miR-5112 -3.72864 -2.11819 

Mmu-miR-6368 -2.4931 -2.02958 

Mmu-miR-7011-5p -2.10665 -1.9088 

Mmu-miR-1894-3p -2.03285 -1.78943 

Mmu-miR-6912-5p -2.71246 -1.78591 

Mmu-miR-6937-5p -2.00668 -1.68382 

Mmu-miR-6971-5p -1.83436 -1.64353 

Mmu-miR-7016-5p -2.06684 -1.6174 

Mmu-miR-7648-3p -0.26363 -1.49674 

Mmu-miR-324-3p 1.729733 1.5072 

Mmu-miR-18a-5p 4.699893 1.531172 

Mmu-miR-484 2.595994 1.551924 

Mmu-miR-27b-3p 1.819848 1.631183 

Mmu-miR-194-5p 1.819848 1.631183 

Mmu-miR-181c-5p 6.726528 1.649867 

Mmu-miR-128-3p 4.711249 1.682522 

Mmu-miR-27a-3p 1.77744 1.685586 

Mmu-miR-421-3p 3.317828 1.855922 

Mmu-miR-19b-3p 2.20629 1.883595 

Mmu-miR-192-5p 4.342631 1.888075 

Mmu-miR-182-5p 2.459444 1.889462 

Mmu-miR-let-7f-5p 5.910496 1.890165 

Mmu-miR-30b-5p 1.916419 2.029614 

Mmu-miR-30e-5p 2.124878 2.029614 

Mmu-miR-21a-5p 1.916419 2.029614 

Mmu-miR-30a-5p 2.191086 2.09029 

Mmu-miR-15a-5p 3.724949 2.236029 

Mmu-miR-466a-3p 2.332244 2.284712 

Mmu-miR-466e-3p 4.058871 2.303314 

Mmu-miR-466b-3p 3.908921 2.445917 

Mmu-miR-466c-3p 2.474084 2.464956 

Mmu-miR-466p-3p 2.452085 2.826219 

Mmu-miR-669a-3p 2.601293 2.878352 

Mmu-miR-669o-3p 2.129959 2.955524 

Mmu-miR-467c-5p 2.129959 2.955524 

Mmu-miR-467a-5p 2.97326 2.956093 
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Table 2.2 miRNA-mRNA Predicted Binding 
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Table 2.3 List of Primers 

 

  

Gene Primer Sequence (5’ – 3’) 
Accession 

Number 

Β actin 
Forward 

Reverse 

GGCTGTATTCCCCTCCG 

CCAGTTGGTAACAATGCCATGT 
NC_000071.6 

PTEN 
Forward 

Reverse 

TGGATTCGACTTAGACTTGACCT 

GCGGTGTCATAATGTCTCTCAG 
NM_008960.2 

FoxP3 
Forward 

Reverse 

CCCATCCCCAGGAGTCTTG  

ACCATGACTAGGGGCACTGTA 
NM_054039.2 

TGF-β3 
Forward 

Reverse 

AACAGCCACTCACGCACAGTG 

GCACAACGAACTGGCTGTCTG 
NM_009368.3 

TGF-β2 
Forward 

Reverse 

CTTCGACGTGACAGACGCT  

GCAGGGGCAGTGTAAACTTATT  
NM_009367.4 

TGF-βR1 
Forward 

Reverse 

TCTGCATTGCACTTATGCTGA 

AAAGGGCGATCTAGTGATGGA 
NM_009370.3 

TGF-βR3 
Forward 

Reverse 

GGTGTGAACTGTCACCGATCA 

GTTTAGGATGTGAACCTCCCTTG 
NM_011578.4 

TGF-β1 
Forward 

Reverse 

GAGAAGAACTGCTGTGTGCG 

GTGTCCAGGCTCCAAATATAGG 
NM_011577.2 

Smad2 
Forward 

Reverse 

ATTCCAGAAACGCCACCTCC 

GCTATTGAACACCAAAATGCAGG 
NM_010754 

Smad3 
Forward 

Reverse 

GCGTGCGGCTCTACTACATC 

GCACATTCGGGTCAACTGGTA 
NM_013095.3 
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Figure 2.1 Allografting alters the dLN T regulatory cell phenotype. Ten days after syn- 

or allografting, mice were sacrificed and organs of interest were harvested. Draining 

lymph nodes (dLN) and spleens were analyzed for T regulatory cell phenotype by flow 

cytometry. A Representative flow cytometry dot plots gated on CD4+ cells, displaying 

the percentage of natural Tregs (nTreg) present through co-expression of CD4, FoxP3 

and Nrp1 and the percentage of peripheral Tregs (pTreg) that are CD4 and FoxP3 

positive, and Nrp1LO or negative. F Dot plots (lower panel) gated on CD4+, FoxP3- cells 

(upper panel), displaying CD223 (LAG-3), CD49b double positive Tr1 cells. I Overlaid 

histograms gated on CD4+FoxP3+ cells, displaying LAP expression. B, C, D, E, G, H 

Quantification of flow cytometry results. J ELISA of total TGF-β1 in the serum of mice 

on the day of sacrifice. n = 12 (Syngeneic) or 18 (Allogeneic) mice per group. Data are 
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presented as mean ± SEM of three independent experiments. *P<0.05, **P<0.01, 

****P<0.0001 by Student’s t-test. 

 

Figure 2.2. Alloantigen induced miRNAs target TGF-β family members and signaling 

molecules. Total RNA was extracted from purified CD4+ cells in the dLN of syn- or 

allografted mice 10 days post-transplant. A Validation of microarray results through qRT-

PCR. B Ingenuity Pathway Analysis (IPA) of seven of the top up-regulated miRNAs and 

their predicted targets. C Fold change miR-466a expression in the dLN, spleen, or 

mesenteric lymph node (mLN) of purified CD4+ cells derived from syn- or allografted 

mice. D qRT-PCR validation of mRNA expression changes in the dLN CD4+ cells of syn- 

or allografted mice; n = 8 (Syngeneic) or 12 (Allogeneic) mice per group. E Relative 

luciferase expression in EL-4 cells transfected with luciferase reporter constructs which 

contained 3′UTR of proteins of interest or a mutated 3’UTR, together with miR-466a-3p 

mimics or the negative scramble control. A total of 48 h after transfection, luciferase 

activity was detected. Normalized data were calculated as the quotient of Renilla/firefly 

luciferase activities and are presented as mean ± SEM of three independent experiments 

with 2 technical replicates indicating 6 measurements. *P<0.05, **P<0.01, ***P<0.005, 

****P<0.0001 by Student’s t-test. 
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Figure 2.3. miRNA 466a-3p transfection inhibits Treg polarization. Purified naïve CD4+ 

T cells were cultured under Treg polarizing conditions along with the indicated mimic, 

control or inhibitor conditions. Cells were harvested 48 hours after addition of cytokines 

and miRNA mimics, inhibitors, or controls and subject to flow cytometry, immunoblot and 

qRT-PCR. Success of Treg polarization is examined as A representative dot plots, and 

quantified in B and C. Representative immunoblots of indicated proteins are presented in 

D and F, along with associated densitometric measurements of TGF-β2 and TGF- βR3 E, 

and quantification of activated Smad 2, 3 and 4 G. CD4+ cells were purified from naïve 

mouse LNs and stimulated ex vivo with CD3 (3μg/mL) and CD28 (3μg/mL) for 48 hours 

and administered LNA or controls at the time of seeding. Quantification of flow cytometry 

data from LAP expressing FoxP3 positive Treg cells. H Purified naïve CD4+ T cells were 

cultured with either TGF-β1 (5ng/mL) or TGF-β2 (5ng/mL), along with CD3 (3μg/mL), 



 

37 

CD28 (3μg/mL) and IL-2 (5ng/mL) for 5 days. I  Representative dot plots of FoxP3, CD4 

positive Tregs, J and their associated CD278 (ICOS) expression. Data are presented as 

mean ± SEM of three independent transfection experiments. *P<0.05, **P<0.005, 

****P<0.0001 by ANOVA with Tukey’s multiple comparisons test. 

 

Figure 2.4. miRNA-466a-3p transfection in primary mouse CD4+ T Cells. CD4+ T cells 

were isolated from naïve mouse LNs and purified using magnetic bead isolation. CD4+ 

cells were transfected with empty vector (mock), a scramble control, a miRNA-466a-3p 

mimic, or an inhibitor specific to miRNA-466a under Treg polarizing conditions for 48 

hours in complete media before total RNA was harvested and cell supernatants were 

collected. Quantitative real-time PCR (qRT-PCR) of miRNA-466a-3p A, and indicated 

mRNAs B.  ELISA of free-active TGF-β1 in the supernatants of indicated groups C. Data 

are presented as mean ± SEM of two independent transfection experiments indicating six 

measurements. *P<0.05, **P<0.005, ***P<0.001, ****P<0.0001 by ANOVA with 

Tukey’s multiple comparisons test.  
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Figure 2.5. miR-466a inhibitor decreases pro-inflammatory and increases anti-

inflammatory cells after co-culture with alloantigen. Co-culture of LN cells with 

alloantigen increases miR-466a-3p expression compared to LN cells cultured with 

syngenic antigen at the indicated time points as determined by qRT-PCR A. LN cells were 

administered alloantigen (50μg/mL) for 10 days in complete media. Fresh media and 

miRNA inhibitors or controls were added every 3 days. Cells were harvested and stained 

for Tc1, Th1, Th17 and Treg cells. B Quantitation of flow cytometry plots. C Histogram 

of FoxP3 expression (bottom row), gated on CD4+, CD25+ dot plots (top row), and 

quantified in D. Data are presented as mean ± SEM of two independent transfection 

experiments indicating six measurements. *P<0.05, **P<0.005, ***P<0.001, 

****P<0.0001 by ANOVA with Tukey’s multiple comparisons test. 
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Figure 2.6. LNA mitigates dLN effector cell and cytokines. Female C57BL/6 mice were 

given either syn (BL6) or allo (C3H) tail skin grafts. Mice receiving allografts were given 

either LNA-466 (10mg/kg) or LNA-ctrl (10mg/kg) i.p. 1 day before skin transplantation, 

and every 3rd day after that until termination of the study. A Survival curve of mice 

receiving skin transplants and indicated LNA or controls; n = 4 (Syngeneic), 7 (Allogeneic 

+ Ctrl), or 8 (Allogeneic+ LNA). Draining lymph nodes were harvested twelve days after 

skin transplantation from indicated groups, imaged in B and absolute cell counts were taken 

in C. dLN cells were plated overnight in complete media and culture supernatants were 

harvested and subjected to ELISA for TNFα D and IFNγ E.  Serum was taken upon 

sacrifice and subjected to ELISA for TGF-β1 F and TGF-β2 G. Dot plots of circulating 

cells double positive for FoxP3 and CD62L, data are gated on CD4+ cells H, and quantified 

in I. J H&E stains of grafts excised from mice upon sacrifice. Data are presented as mean 

± SEM; n= at least 4 per group. *P<0.05, **P<0.005, ***P<0.001, ****P<0.0001 by 

ANOVA with Tukey’s multiple comparisons test. 
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Figure 2.7. Splenic inflammation after skin transplantation. Female C57BL/6 mice were 

given either syn (BL6) or allo (C3H) tail skin grafts. Mice receiving allografts were given 

either LNA (10mg/kg) or PBS i.p. 1 day before skin transplantation, and every 3rd day after 

that until termination of the study. Image A and weight B of spleens harvested from mice 

in indicated groups upon rejection of allografts. Data are presented as mean ± SEM; n= at 

least 4 per group. *P<0.05, **P<0.005, ***P<0.001, ****P<0.0001 by ANOVA with 

Tukey’s multiple comparisons test. 
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Figure 2.8. LNA reduces intragraft effector cells and cytokines. Female C57BL/6 mice 

were given either syn (BL6) or allo (C3H) tail skin grafts. Mice receiving allografts were 

given either LNA-466 (10mg/kg) or LNA-ctrl (10mg/kg) i.p. 1 day before skin 

transplantation, and every 3rd day after that until termination of the study. Upon rejection, 

grafts were aseptically excised, minced and enzymatically digested to dislodge graft 

infiltrating cells (GICs). GICs were spun down, culture supernatants were collected and 

live cells were used for flow cytometric analysis. Representative dot plots displaying naïve 

(CD62LLow, CD44Neg), memory (CD62L+, CD44HI) and effector (CD62LLow, CD44HI) cell 

types gated on CD8+ (A, upper row) and CD4+ (A, lower row) cells. Percentages for 

CD8+ and CD4+ are quantified in B and C, respectively. Dot plots of GICs double-positive 

for FoxP3 and CD62L, data are gated on CD4+ cells D, and quantified in E; n = 7 

(Allogeneic + Ctrl) or 8 (Allogeneic+ LNA). GIC supernatants were collected and 

subjected to ELISA for the interrogation of effector cytokines TNFα F and IFNγ G, as well 

as anti-inflammatory cytokines TGF-β1 H and TGF-β2 I. Data are presented as mean ± 

SEM. *P<0.05, **P<0.005, ***P<0.001, ****P<0.0001 by ANOVA with Tukey’s 

multiple comparisons test or a Students t-test.  
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Figure 2.9. TGF-β2 induced Tregs are equally as potent as TGF-β1 induced Tregs in 

ameliorating allograft rejection. CD4+ cells were purified from naïve BL6 FoxP3GFP mice 

and cocultured with allogenic splenic APCs along with anti-CD3ε (10µg/mL), anti-CD28 

(4µg/mL) and IL-2 (10 ng/mL). Tβ1, and Tβ2-iTregs were also administered TGF-β1 

(5ng/mL) or TGF-β2 (5ng/mL), respectively.  Coculture proceeded for 3 days at which 

point the cells were either analyzed for FoxP3GFP expression, or sorted into 

CD4+FoxP3GFP+ cells and injected intravenously into graft-recipient mice 1d before 

transplantation. B Histograms of FoxP3-GFP expression gated on dot plots of 

CD4+CD25+ cells in A. Female C57BL/6 mice were given either syn (BL6) or allo (C3H) 
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tail skin grafts. Mice receiving allografts were administered 1x106 iTregs intravenously 1d 

before transplant. Grafts were scored starting 7 days after transplantation and continued 

until mice were sacrificed on day 12. GICs, dLNs and blood were collected for flow 

cytometric analysis. C Survival curve of indicated groups. D, F Pseudocolor plots of GFP+, 

CD4+ co-expressing iTregs in the D dLN and F among graft infiltrating cells. H 

Pseudocolor plots displaying graft infiltrating CD4+ and CD8+ naïve, memory and effector 

phenotypes. K Dot plots displaying IFNγ, CD8+ CTLs. Flow cytometry results quantified 

in B, E, G, I, J, L. n = 5 (iTreg), 10 (Tβ1-iTreg), or 9 (Tβ2-iTreg) mice per group. Data 

are presented as mean ± SEM. *P<0.05, **P<0.005, ***P<0.001, ****P<0.0001 by 

ANOVA with Tukey’s multiple comparisons test, or a log-rank (Mantel-Cox) test for the 

survival curve.  
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Figure 2.10 Circulating inflammatory profile after iTreg administration. CD4+ cells 

were purified from naïve BL6 FoxP3GFP mice and cocultured with allogenic splenic APCs 

along with anti-CD3ε (10µg/mL), anti-CD28 (4µg/mL) and IL-2 (10 ng/mL). Tβ1, and 

Tβ2-iTregs were also administered TGF-β1 (5ng/mL) or TGF-β2 (5ng/mL), respectively. 

Female C57BL/6 mice were given either syn (BL6) or allo (C3H) tail skin grafts. Mice 

receiving allografts were administered 1x106 iTregs intravenously 1d before transplant. 12 

days post-transplant, mice were sacrificed and exsanguinated. A, B Zebra plots displaying 

naïve, memory and effector phenotypes, gated on CD4+ or CD8+ cells. E Dot plot of 

circulating Tregs. C, D, F Quantification of flow cytometry results. Data are presented as 

mean ± SEM; n= at least 4 per group. *P<0.05, **P<0.005, ***P<0.001, ****P<0.0001 

by ANOVA with Tukey’s multiple comparisons test.



 

45 

CHAPTER 3 

CANNABINOID RECEPTOR ACTIVATION INCREASES GUT BARRIER INTEGRITY 

AND INDUCES ANTI-INFLAMMATORY CD103+ DENDRITIC CELLS TO PROTECT 

AGAINST COLITIS
2 

3.1 ABSTRACT 

Intestinal homeostasis consists of the immense responsibility shared between 

enterocytes and immune cells to tolerate foreign nutrients and commensal microbes, while 

maintaining vigilance against pathogens. A perturbance to the coordination between host 

cells and its symbionts can lead to inflammatory bowel diseases, and increased 

susceptibility to colon cancer.  New therapeutic approaches to prevent these disorders are 

needed to attenuate their increasing global incidence. Cannabinoids are used globally for 

recreational and therapeutic ends. In the current study, we demonstrate using multiple 

models of colitis that Δ9-tetrahydrocannabinol (THC) was highly effective in attenuating 

colitis and colon cancer.  Cannabidiol when administered alone was not effective against 

colitis and a combination of THC+CBD had no noticeable effect.  The action of THC was 

associated with stimulation of colonocyte mucin production and barrier integrity mediated 

by tight-junction proteins to provide spatial separation between host and commensal 

                                                           
2 Becker W, Alrafas H, Nagarkatti M, Nagarkatti PS. Cannabinoid receptor activation 

increases gut barrier integrity and induces anti-inflammatory CD103+ dendritic cells 

to protect against colitis. Manuscript in preparation. 
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organisms. In addition, THC modulated dendritic cell (DC) phenotype towards increased 

CD103 expression in the colonic lamina propria (cLP) and enhanced DC TGF-β1 

expression to expand the cLP Treg population, protecting the host from inflammation. Our 

findings reveal THC’s salutary capacity in preventing colonic inflammation by 

harmonizing the balance between colonocyte and immune cell function. 3.2 

INTRODUCTION 

Despite the plethora of data from pre-clinical studies on the effectiveness of 

cannabinoids for IBD, only two clinical studies have been conducted, and there remains a 

lack of understanding how the myriad functions of cannabinoids work collectively to 

influence colitis development and progression (53-56). We set out to garner a holistic view 

of the gut macroenvironment after cannabinoid administration. To accomplish this, the 

most commonly used cannabinoids, THC and CBD, were used alone or in tandem in 

several murine models of colitis with disparate etiologies to investigate how the gut 

immune cells, intestinal barrier, and gut flora work synergistically after cannabinoid 

treatment to prevent colitis.  

3.3 MATERIALS AND METHODS 

Mice The University of South Carolina Institutional Animal Care and Use 

Committee approved all experiments. All mice were housed at the AAALAC-accredited 

animal facility at the University of South Carolina, School of Medicine (Columbia, SC) 

under specific pathogen-free conditions and 12 hr dark/light cycles in temperature-

controlled rooms and given ad libitum access to water and normal chow diet. Female 

C57BL/6 and BALB/C mice, aged 8-12 weeks were obtained from Jackson Laboratories 

(Bar Harbor, ME, USA). Cnr1-/-, Cnr2-/-, and double knockout Cnr1-/-Cnr2-/- mice are 
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on a C57BL/6 background and were bred and maintained in-house. The number of mice 

for each experimental cohort is described in the Figure legends. 

Colitis induction and treatments For all colitis experiments, unless otherwise 

indicated, treatments began three days before disease induction with CBD (10mg/kg), THC 

(10mg/kg) or a combination of THC+CBD (10mg/kg, both), or the vehicle control 

(ethanol). All treatments were suspended in ethanol and delivered to animals as a ratio of 

2:1:18 ethanol:Tween-80:PBS by oral gavage. For the induction of TNBS-induced colitis, 

BALB/C mice were anesthetized by light isofluorane administration and given an 

intrarectal administration of 100 μL of 1mg of TNBS (Millipore, Sigma) dissolved in 50% 

ethanol. Mice were kept vertical for 30s after TNBS administration to keep the TNBS in 

contact with the colonic mucosal surface. DSS colitis was induced by dissolving 2% DSS 

(MP Biomedicals) in the drinking water and giving mice ad libitum access until the end of 

the study or humane endpoints were reached. To induce anti-CD40 colitis, mice were 

injected i.p. with 100 μL of 200 μg of anti-CD40 IgG2a monoclonal antibody (clone 

FGK4.5) or isotype rat IgG2a control (both from Bio X Cell), dissolved in PBS. Studies 

examining the effects of Treg depletion on anti-CD40 colitis progression proceeded as 

above but with an i.p. injection of rat anti-mouse CD25 (clone PC61, 100 mg/kg) or isotype 

control (both from Biolegend) one day before anti-CD40 injection.  

Assessment of colitis disease parameters For all colitis models, mice were weighed 

daily, and colon lengths were measured at experimental end-points. Stool scores were 

measured according to a modified stool scoring system (Table 3.1). Colonoscopy images 

were taken at indicated time points by anesthetizing the mice and using a high-resolution 

mouse endoscopic system Karl Storz (Tuttlingen, Germany) Tele Pack Vet X LED 
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endoscope designed for small animals. The severity of colitis was scored using the mouse 

endoscopy and murine endoscopic index of colitis severity (MEICS) system, detailed in 

(Table 3.2). To investigate the levels of proteins clinically relevant to the diagnosis of 

colitis severity, mice were sacrificed, and blood was taken via the portal vein, allowed to 

clot, and serum was taken after centrifugation. Serum samples were subjected to sandwich 

ELISAs for Serum amyloid A (SAA; Abcam), Lipocalin-2 (LCN-2; Invitrogen) and 

Myeloperoxidase (MPO; Invitrogen), according to manufacturer’s instructions.  

AOM/DSS model of colitis-induced colorectal cancer C57BL/6 mice aged 8-10 

weeks old were injected i.p. with azoxymethane (AOM, MPBIO) (10mg/kg). DSS (1%) 

was added to the drinking water one week after AOM administration for one week before 

regular drinking water was returned for two weeks. Three of these DSS (1%)-regular water 

cycles were completed before mice were kept on regular water and monitored for polyps 

via colonoscopy until sacrifice. Treatments with VEH, THC (10mg/kg) or THC/CBD 

(10mg/kg, both) began one week after administration of AOM and continued twice weekly 

until the end of the last DSS cycle. 

Gut permeability assay On day 2 of TNBS-induced colitis, and day 9 of DSS-

induced colitis, mice had their food and water removed in the evening. The next morning, 

mice were gavaged with 600 mg/kg of 4kD FITC-dextran (MilliporeSigma) in 100 μL 

PBS. Food and water were returned, and 4 hours later, blood was collected by retroorbital 

bleeding, blood was allowed to clot, and serum was separated after which FITC-dextran 

concentrations were determined using a PerkinElmer Life Sciences (Boston, MA) 

spectrophotometer with excitation wavelength at 480 nm.  
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Histology Proximal colon tissues were excised, rinsed with PBS and fixed by 

immersion in 3% paraformaldehyde (PFA) for 24 hours. Fixed tissues were embedded in 

paraffin, sectioned and stained with hematoxylin and eosin. For Periodic Acid-Schiff 

(PAS) staining, a staining kit purchased from MilliporeSigma was used following 

manufacturer’s instructions. Color bright field images and picture montages were taken 

using a Cytation-5 Imaging Reader (BioTek Instruments, Winooski, VT, USA).  

Tissue Processing Mesenteric lymph nodes (MLNs) and spleens were excised and 

brought to a single cell suspension. Spleens were subjected to red blood cell lysis before 

both spleens and MLNs were passed through a 70 μM filter, spun down and re-suspended 

in FACS buffer for flow-cytometric analyses.  

To isolate the colonic lamina propria (cLP), colons were excised and luminal 

contents were removed by gliding curved forceps down the length of the colon, colons 

were opened longitudinally and mucus was removed by gentle scraping in sterile 1X PBS. 

Tissue was cut into 0.5 cm pieces and incubated in pre-warmed sterile 1X HBSS (without 

Ca2+ and Mg2+) containing FBS (3%vol/vol), 10mM EDTA (Cellgro), and 5mM DL-

Dithiotreitol (DTT; MilliporeSigma) for 30 minutes at 37°C while shaking. The intra-

epithelial cells (IECs) containing immune cells and enterocytes were recovered by filtering 

the colon pieces over a 100μM filter. The supernatant containing the IEC fraction was put 

on ice for at least 10 minutes to allow sedimentation of debris, and the IEC fraction was 

taken from the upper part of the supernatant. Remaining tissue containing the cLP was 

incubated in pre-warmed 1X HBSS (with Ca2+ and Mg2+) solution (15mL/colon) 

containing FBS (3%vol/vol), 1% L-glutamine, 1% penicillin–streptomycin, 10 mM 

HEPES, 0.5 mg/mL collagenase D (Roche), 0.5 mg/mL Dispase (MilliporeSigma) and 0.04 
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mg/mL DNase I (MilliporeSigma) for 45 minutes at 37°C while shaking. The supernatant 

was filtered over a 70μm cell strainer into ice cold sterile 1X PBS. cLP cells were passed 

through a Percoll (GE Healthcare) gradient (40%/80%(v/v) gradient) and spun at 620xg 

for 20 minutes with low acceleration and no brake. Cells at the 40/80 interface were 

collected and washed twice with supplemented FACS buffer and prepared for flow 

cytometric analysis.   

Flow cytometry Relevant tissues were brought to a single cell suspension, then 1-2 

x 106 cells were washed with PBS and then stained with Live/Dead Fixable Aqua Dead 

Cell Stain Kit (Invitrogen) for 30 minutes at 4°C to aid in excluding dead cells. Cells were 

then washed and incubated with TruStain FcX anti-mouse CD16/32 (Biolegend) to block 

Fc receptors. Extracellular antigens were stained for 20 minutes at room temperature in 

staining buffer. Cells were fixed and permeabilized with BD Cytofix/Cytoperm (for 

cytokine restimulations) or BD Transcription Factor Buffer Set (for transcription factor 

staining) per manufacturer’s instructions. Intracellular antigens were stained for 1 hour at 

4°C in the appropriate 1x Perm/Wash buffer. Cells were washed with staining buffer and 

passed through a 100 μm nylon mesh before acquisition on a BD FACSCelesta (Becton 

Dickinson). Analysis was performed using FlowJo software (FlowJo, BD). All samples 

were recorded based on the same live cell threshold per tissue. Compensation was set using 

fluorochrome labeled CompBeads (BD Biosciences). Fluorochrome-conjugated antibodies 

are detailed in Table 4.  

Cell culture and in vitro treatments Cells were cultured in a sterile incubator 

maintained at 37°C and 5% CO2. Caco-2 and LS174T cells were obtained from American 

Type Culture Collection (ATCC; Manassas, VA), while MC-38 cells were obtained from 
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Kerafast (Boston, MA). Cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM; Life Sciences) supplemented with 10% fetal bovine serum, 100 U/mL penicillin 

and 100 U/mL streptomycin, 1% (v/v) non-essential amino acids and 10mM HEPES (all 

Gibco, Paisley, UK). For experiments involving the addition of compounds, all cell lines 

were used at a population doubling (PD) between 10-20. Cells were seeded at 0.5 x 106 

cells/well in a 6-well plate. Upon ~80% confluence, media was removed and replaced with 

media containing vehicle with THC, CBD, AM251, SR144528 or a combination (all at 

10μM). Primary cells were cultured in complete RPMI supplemented with 10% FBS, 100 

U/mL penicillin, 100 U/mL streptomycin, 10mM HEPES (Gibco, Paisley, UK), and 50 μM 

β-mercaptoethanol (MilliporeSigma, Gillingham, UK) (complete medium). 

Bone marrow dendritic cell generation and DC: T cell coculture Naïve bone 

marrow cells were collected from the femurs of 10-week-old C57BL/6 mice and plated at 

a density of 1x106 cells/mL in 24-well plates with GM-CSF (20ng/mL) and IL-4 (10 

ng/mL) supplementation to generate bone-marrow dendritic cells (BMDCs). 18 hours after 

initial plating, debris and non-adherent cells were removed and media containing GM-CSF 

was replaced and cells were monitored for 7 days until the end of culture. VEH or THC 

(10µM) were added to wells at initial plating and at media changes. On day 7, floating cells 

were collected and analyzed by flow cytometry, recovered supernatants were subjected to 

ELISA for TGF-β1. On day 6, floating cells were collected and DCs were purified by 

magnetic sorting for CD11c (EasySep, STEMCELL Technologies). Some purified DCs 

were re-plated in complete media for another day before supernatants were collected. 

Concurrently, naïve C57BL/6 mice were sacrificed, spleens and lymph nodes were 

harvested and brought to a single cell suspension before CD3+ T cells were isolated via 
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magnetic sorting and pulsed with CFSE (5µM). CD11c purified BMDCs treated with VEH 

or THC were plated with naïve T cells in 48-well plates at a ratio of 1:5 DCs to T cells with 

either 50 µg IgG control (Biolegend) or 50 µg anti-CD40 (BioXCell). Co-cultures 

continued for 3 days and select wells were harvested daily for examination of T cell 

proliferation.  

RNA extraction and qPCR After isolation and purification, tissues of interest were 

snap frozen in liquid N2, or placed in RNAlater (Qiagen) and transferred to -80°C until 

ready for processing. Total RNA was isolated using RNeasy kit (Qiagen). Quality and 

quantity of RNA was determined by Nanodrop 2000 or Qubit fluorometer (both 

Invitrogen). Lithium chloride precipitation was carried out on tissues derived from DSS-

treated mice to remove DSS contamination from RNA samples according to (100). Total 

RNA was used to make cDNA using miScript cDNA synthesis kit from Bio-Rad. qRT-

PCR was carried out using SsoAdvanced SYBR green supermix from Bio-Rad. All qRT-

PCR experiments were carried out on a CFX96 (or 384) Touch Real-Time PCR Detection 

System (Bio-Rad), using two-step amplification with a 60°C annealing temperature. 

Expression levels were normalized to 18S mRNA levels in mouse tissue samples; samples 

derived from MC38 cells were normalized to a combination of β-actin and 18S expression. 

Caco-2 samples were normalized to a combination of B2M and RPLPO expression, based 

on (101) and stable expression between treatment groups. Fold changes were calculated 

using the 2-ΔΔCT method. Primers for genes of interest are detailed in (Table 3.3).  

Short Chain Fatty Acid Quantification using GC-MS At sacrifice, cecal contents 

were snap frozen in liquid N2 until ready for processing. Cecal contents were weighed and 

homogenized in ultrapure water to a concentration of 250 mg/mL. 1:4 volumes of 25% 
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metaphosphoric acid was added to samples for 30 minutes on ice. Acidified samples were 

centrifuged at 12,000xg for 15 minutes at 4°C before filtering the supernatant over Ultra-

free MC columns (MilliporeSigma) using the same spin. An internal standard (IS) of 2-

ethylbutyric acid was added to all samples and standards at a concentration of 0.1mM 

before addition of methyl tert-butyl ether (MTBE). Acidified and filtered samples with IS 

and MTBE were vortexed, spun down at 200xg for 5 minutes at room temperature, and the 

organic layer was recovered and subjected to a HP 5890 gas chromatograph configured 

with flame-ionization detectors (GC-FID). Stabilwax®-DA Column (fused silica) of 30 m 

× 0.32 mm i.d. coated with 0.50 μm film thickness was used. Helium was supplied as the 

carrier gas at a flow rate of 15 mL/min. The temperature was programmed to achieve the 

following run parameters: initial temperature 100°C, hold for 0.5 min, ramp 20°C/min, 

final temperature 250°C, maintain for 5 min. The injected sample volume for GC analysis 

was 1 μL splitless and the total run time was 18.0 min. Calibration standards were prepared 

as aqueous stock solutions using these fatty acids at the given concentration; acetic, 

propionic, and n-butyric at 400 mM,  isovaleric and valeric 200 mM, isobutyric 100 mM,  

caproic and n-heptanoic 50 mM (all from MilliporeSigma). Each standard was injected to 

identify their retention times. Standard mixture was prepared at several concentrations 

suitable for the samples. Response factors (RF) were calculated via dividing the peak areas 

of the responses by the respective concentrations of the standards. To quantify the peak 

area in terms of concentration, the relative response factor (RRF) was used. The RRF was 

calculated using the formula RRF = RFStandard/RFIS. The concentration of the samples 

was calculated using the following equation, Conc. samples = Peak AreaSample x (Conc. 

IS/ Peak AreaIS)(1/RRF).  
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Antibiotic treatment BL6 mice were randomized and subjected to antibiotics in 

their drinking water for at least 3 weeks. Antibiotics included: ampicillin (1g/L), 

metronidazole (1g/L), neomycin (1g/L) and vancomycin (0.5g/L). Fresh antibiotic water 

was replaced every week. At the end of the antibiotic treatment, stool was collected, DNA 

was extracted, and PCR using Eubacteria primers was conducted and analyzed via agarose 

gel electrophoresis to determine extinction of bacterial DNA from post-antibiotic treated 

mice compared to pre-antibiotic mice. Fecal transfer donor mice (3-4 per group) were given 

at least three administrations of THC (10mg/kg) or vehicle before being moved to clean 

cages. After finishing their antibiotic regimen, recipient mice were then randomized again 

and placed into the old donor mouse cages with their used bedding. Three days after the 

end of antibiotic treatment, donor mice were placed in clean cages, stool was collected and 

re-suspended in PBS to 120mg of feces/mL of sterile PBS. Stool was homogenized by 

vortexing and shaking and spun down at 800xg for 6 minutes at room temperature. 

Supernatant was passed through a 40μM filter and administered to recipient mice in 200μL 

by oral gavage for 3 days before beginning DSS colitis.  

16S Sequencing Fecal pellets were collected on indicated days and stored at -80°C. 

For isolation of mucus-associated bacteria, colons were excised upon sacrifice, luminal 

contents were removed, colons were opened longitudinally and gently rinsed in a petri dish 

with PBS. Mucus was then scraped from the luminal surface of the colons and stored at -

80°C. Colon-associated bacteria was harvested by taking a ~1cm piece of the proximal 

colon after the mucosal lining was removed and snap freezing it in liquid N2. Bacterial 

DNA was extracted using the QIAamp Fast DNA Stool Mini Kit (Qiagen). Double-

stranded DNA was quantified by Qubit Fluorometer (Invitrogen). Primers for the V4 region 
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of the 16S rRNA bacterial gene were used for amplification, then samples were 

individually barcoded to label each sample according to Illumina 16S Sample Preparation 

Guide (Illumina). Amplified 16S rDNA was sequenced using Illumina MiSeq. Sequence 

data were processed using QIIME. Read pairs were quality filtered and joined to form a 

complete V4 amplicon sequence. Operational taxonomic units (OTUs) were selected by 

clustering reads at 99% sequence similarity in relation to the Greengenes reference 

database using the consensus method implemented in QIIME.  

Statistical Analyses Data were analyzed using GraphPad Prism software with the 

statistical test and number of experimental repetitions indicated in the respective Figure 

legends. Unless otherwise stated, data are presented as individual dots for each 

sample/mouse, a line for mean, and bars indicating SEM. Tests were always 2-sided where 

applicable; P < 0.05 was considered significant. 

3.4 RESULTS 

Cannabinoids ameliorate TNBS-induced colitis and reduce effector cell 

phenotypes. 

We investigated the beneficial effects of cannabinoids on intestinal inflammation 

by examining a murine model of acute colitis that mimics the human symptoms of 

ulcerative colitis. BALB/c mice were injected intrarectally with 100 mg/kg of 2,4,6-

Trinitrobenzenesulfonic acid (TNBS) in 50% ethanol.  To test if cannabinoid treatment 

would prevent the onset of the diseases, we initiated the treatment 3 days before disease 

induction.  We used 4 groups of mice:  TNBS+Vehicle, TNBS+CBD, TNBS+THC and 

TNBS+THC+CBD.  We used 10mg/kg of THC or CBD or 10 mg/kg each of THC and 

CBD in the combination group.  We used THC+CBD because these cannabinoids are found 

together in Cannabis and may offer beneficial effects when combined.  THC and 
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THC+CBD treatment was able to reduce the body weight loss compared to VEH control, 

while CBD alone failed to reduce weight loss (Figures 3.1A, B). Colonoscopy revealed 

significant inflammation, bleeding and ulcers in the VEH and CBD groups, which was 

diminished in the THC and THC+CBD groups (Figure 3.1C, 1D, 3.2A).  The VEH group 

had significant colon shortening attenuated with THC or THC+CBD treatment but not with 

CBD alone (Figures 3.1E, F).  Inflammatory markers including serum Amyloid A (SAA), 

Lipocalin-2 (LCN2) and Myeloperoxidase (MPO) were all reduced in the THC or 

THC+CBD group mice, when compared to vehicle controls, with less striking effects in 

MPO levels, while CBD alone failed to have significant effect (Figures 3.1G-I). Periodic 

acid-Schiff’s staining showed that VEH and CBD groups had significant tissue damage, 

more immune cell infiltration, and less mucus deposition compared to THC and 

THC+CBD groups (Figure 3.1J). To characterize the immune cell populations, the colonic 

lamina propria (cLP) cells were subjected to flow cytometric analysis. Gating strategy are 

detailed in (Figures 3.2B-E). THC and THC+CBD reduced the number of CD8+IFNγ+ 

cytotoxic T cells (CTLs) compared to VEH and CBD groups (Figures 3.1K-, L). There was 

no change in CD4+ IL-17A secreting Th17 cells (Figure 3.1L, M); however, THC and 

THC+CBD increased the FoxP3+ T regulatory cells in the cLP compared to VEH and CBD 

groups (Figure 3.1O, P).  Overall, these data demonstrated that while CBD alone at the 

dose tested (10mg/kg) was not effective in attenuating TNBS-mediated colitis, THC or a 

combination of THC+CBD were highly effective.  Also, THC alone was as effective as 

THC+CBD.  
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Cannabinoids prevent DSS-induced colitis and reduce effector cell 

phenotypes.  

Due to the success of THC and THC+CBD in ameliorating TNBS-induced colitis, 

we next sought to investigate how cannabinoids may benefit a model of colitis with a 

different etiology, dextran sodium sulfate (DSS)-mediated colitis.  C57BL/6 mice were 

treated with VEH or cannabinoids for 3 days before disease induction via 2% DSS in the 

drinking water and body weight, stool parameters and colonoscopies were performed 

periodically throughout the 13-day disease course. THC or THC+CBD were efficacious at 

preventing weight loss and bloody diarrhea when compared to VEH controls while CBD 

alone was not effective (Figures 3.3A, B; 3.4B). The colonoscopies revealed less 

inflammation and a thicker mucus layer in the THC and THC+CBD groups than the VEH 

and CBD groups throughout the study (Figures 3.3C, D; 3.4A). Colon lengths were 

measured at sacrifice and provided further evidence of the disease-preventative effects of 

THC and THC+CBD (Figures 3.3E, F), bolstered by the serum biomarkers SAA and LCN-

2 that were also reduced in treatment groups (Figures 3.3G, H), while MPO was not (Figure 

3.3I). Overall, CBD alone was ineffective except for reducing SAA (Figure 3.3G). PAS 

stains of the proximal colon exhibited prominent immune cell infiltration in the VEH and 

CBD groups and decreased mucus production from goblet cells which was reversed in the 

THC or THC+CBD groups (Figure 3.3J). Flow cytometry of cLP effector immune 

populations revealed a reduction in the THC and THC+CBD groups of inflammatory Th17 

cells, CD8+IFNγ+ cells (Figures 3.3K-N), and an increase in Tregs (Figure 3.4C, D). 

Additionally, we found a reduction in T-bet+ Th1 cells but no significant change in Gata3+ 

Th2 population in THC or THC+CBD groups when compared to VEH group (Figure 3.3O, 
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P).  Overall, these data are consistent with the findings from the TNBS-induced colitis 

model in that while CBD alone was not effective in attenuating DSS-induced colitis, THC 

alone or a combination of THC+CBD was highly effective.  Also, THC was as effective as 

THC+CBD suggesting that CBD, at the dose tested, provided no additional benefit.  

Cannabinoid receptor 1 activation leads to increases in gram-negative bacteria 

and short-chain fatty acid dysregulation that are inconsequential to DSS progression.  

To examine whether the anti-colitic effects of cannabinoids such as THC are due 

to any changes in the gut flora, we first performed studies using naïve mice.  Stool was 

collected from a pool of naïve mice before (Pre-Tx) and after five administrations of either 

VEH (VEH 5X) or THC (THC 5X, 10 mg/kg, oral gavage), DNA was extracted and 16S 

rRNA sequencing was performed. Short-term THC administration, compared to Pre-Tx 

mice and VEH 5X mice, showed increases in gram-negative Bacteroidetes and 

Proteobacterial phyla (Figures 3.5A-C). The specific Proteobacteria altered after THC 

administration belonged to the classes alpha- and gammaproteobacteria (Figure 3.5D). To 

assess how acute (1X) and short-term (5X) THC administration altered levels of bacterial 

metabolites heavily implicated in homeostatic host functioning, analysis of short-chain 

fatty acids (SCFAs), was performed on the cecal contents.  The data showed an increase in 

acetate and butyrate 24 hours after a single (1X) administration of THC compared to VEH 

(Figure 3.5E), however, this increase was transient, as there were no differences in cecal 

SCFA levels after short-term (5X) THC administration (Figure 3.5F). To identify if 

changes in gut microbiota were mediated through cannabinoid (CB) receptors, CB1 (Cnr1-

/-), CB2 (Cnr2-/-) or double CB receptor knockout (Cnr1-/-Cnr2-/-) mice were utilized. 

Administration of THC 5X in Cnr2-/- mice led to similar bacterial community changes as 
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seen in WT mice, with an increase in the THC 5X group of bacteroides and 

gammaproteobacteria, suggesting a CB2-independent mechanism through which they are 

increased (Figure 3.5G). Despite similar changes in bacterial composition in Cnr2-/- and 

WT mice given THC, Cnr2-/- mice given THC short-term had reduced levels of butyrate 

in their cecal contents (Figure 3.5H), and this was not seen after acute administration 

(Figure 3.6A). In Cnr1-/- mice given THC, we saw an opposite trend wherein THC, acutely 

and after short-term administration, reduced acetate and proprionate levels in the cecum 

(Figures 3.6B, C), and short-term THC administration led to increases in gram-positive 

Firmicutes classes (Figure 3.6D). Notedly, it is through the CB receptors that THC exerts 

its flora-altering effects, because short-term THC administration in Cnr1-/-Cnr2-/- mice 

showed inconsequential effects on bacterial community shift or SCFA production 

compared to VEH or Pre-Tx mice (Figures 3.6E, F).  

Next, we investigated how cannabinoids impact the microbial balance in the DSS-

induced colitis model. We found that despite some overlap between all groups, the THC 

and THC+CBD group, in which colitis was attenuated, were clustered closer together and 

farther away from the VEH and CBD groups, that developed severe colitis (Figure 3.5I). 

Concordantly, the THC and THC+CBD groups had higher levels of acetate, proprionate 

and butyrate in their cecal contents when compared to the VEH and CBD groups (Figure 

3.5J). To test whether the changes in bacterial community seen with THC administration 

are the mechanism of protection against colitis development, we did a fecal transfer (FT) 

experiment wherein naïve mice were given antibiotics (ABX) in their water for 4 weeks to 

deplete their microbiota. Then they were taken off ABX water and placed in cages with the 

used bedding of mice that had received short-term VEH or THC administration which 
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would be the FT donor mice. After 3 days in the used cages with regular drinking water, 

stool from donor FT mice was collected freshly and gavaged to recipient mice for 3 days 

before giving DSS and then for another 5 days after giving DSS.  Weight loss was 

monitored and the data revealed that the fecal bacterial community from THC treated mice 

could not protect mice from colitis (Figure 3.5K).  

Cannabinoids utilize both cannabinoid receptors to specifically increase 

colonic barrier integrity and mucus production to protect against colitis induction  

Because barrier integrity plays a critical role in colitis, we investigated the effect of 

cannabinoids on this property. On the last day of DSS colitis (day 12) and TNBS colitis 

(day 4), mice were gavaged with 4kD FITC-Dextran and 4 hours later, serum FITC-

Dextran levels were analyzed as a measure of gut permeability. The data showed that 

cannabinoids were ineffective at reducing gut permeability induced by DSS colitis, 

compared to VEH group (Figure 3.7A); however, in the TNBS colitis model, both THC 

and to a lesser extent THC+CBD reduced the gut permeability caused by TNBS (Figure 

3.7B). To resolve this incongruity, we recalled that the THC and THC+CBD groups in both 

DSS and TNBS colitis models evinced increased mucus production via both colonoscopy 

imaging and PAS staining.  To substantiate, mice were given acute or short-term VEH or 

THC administration, and proximal colons were harvested 24 hours later, and PAS stains 

were performed to assess mucus deposition in the colonic lumen. We observed a striking 

increase in mucus emanating from the goblet cells in the THC 1X group into the lumen, 

that while reduced in vibrance in the 5X THC administration group, was still noticeably 

increased in the lumen at that time point compared to VEH (Figure 3.7C). We then 

considered the nature of the DSS and TNBS models and how the DSS model of Crohn’s 
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disease instigates inflammation throughout the entire GI tract, while TNBS colitis is more 

restricted to the colonic epithelium, akin to ulcerative colitis. Thus, we looked at mucus 

and tight-junction protein expression in the proximal colon (PC) and small intestine (SI) in 

VEH (1X) or THC (1X) mice and found that THC increases mRNA expression of gel-

forming Muc2 and Muc5ac specifically in the PC (Figure 3.7D). Similarly, increases in 

tight-junction proteins: Claudin and Zonula occludens-1 (ZO-1), but not Occludin, were 

specifically seen in the PC after acute THC treatment (Figure 3.7D). Given that mucin 

expression and the regulation of anti-microbial peptides, β-defensins, are intertwined 

(95,96), we then examined β-defensin 1 and 3 expression and found that it was also 

increased after short term THC administration, and specifically in the PC, not in the SI 

(Figure 3.7D). We tested whether the observed expression increases persist in situations of 

DSS-induced inflammation and found THC, but not CBD, increases the colonic expression 

of Muc2, Muc5ac, ZO-1 and β-Defensin 3 (Figure 3.7E). Moreover, this effect was 

observed in the mouse MC38 adenocarcinoma cell line (Figure 3.7F). Treating the human 

adenocarcinoma cell line, Caco-2 with THC and CB antagonists AM251 (CB1) and 

SR144528 (CB2) revealed THC-mediated increases in ZO-1 were through CB1, as they 

were reduced in the THC+AM251 group (Figure 3.7G).  Contrary to the work in mice, β-

Defensin 1 expression was reduced by THC and was dependent on both CB receptors 

(Figure 3.7G). THC administration to Caco-2 cells was able to increase Muc2 and Muc5ac 

expression in this cell line, and this is also dependent on both CB receptors, because only 

with a combination of AM251 and SR144528 are expression levels returned to the level of 

the vehicle (Figure 3.7G). Further evidence that THC requires both CB receptors to 

increase mucus and defensin production is mirrored by work in Cnr1-/- and Cnr2-/- mice 
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where THC has no effect (Figure 3.6G).  To approximate how the increased colonocyte 

barrier integrity caused by THC effects disease initiation and prevention, TNBS and DSS 

colitis models were initiated as was done previously, but with a THC pre-treatment group 

(Pre-Tx), that began receiving treatment 3 days before disease initiation, and a treatment 

group (Tx), that received treatment concurrently with disease initiation. Although both 

methods display efficacy in reducing disease parameters, THC pre-treatment was 

significantly more effective than concurrent treatment at preventing colitis in both TNBS 

and DSS-colitis models as evidenced by a decrease in weight loss and colon shortening 

(Figure 3.7H-K).  

THC treatment reduces αCD40 colitis severity through a reduction in 

dendritic cell activity.  

TNBS and DSS-induced colitis result from luminal damage to the enterocyte layer, 

while anti-CD40 Ab injection is known to trigger colitis resulting from robust intestinal 

inflammation stemming from the macrophage and DC activation (97,98). Importantly, this 

model acts solely on the immune system, and is independent of the microbiota or intestinal 

permeability to stimulate inflammation (93,97,98). To study the effect of cannabinoids in 

this model, 3 days before disease induction, we began treatment with VEH or THC as done 

in previous colitis models, and then a single injection of αCD40 Ab or IgG control Ab was 

administered intraperitoneally (ip). Disease severity peaked 3 days post αCD40 Ab 

injection and treatment continued until 7 days post disease-induction at sacrifice. Both 

VEH and THC treated mice lost significant weight compared to IgG controls, some losing 

up to 15% in 3 days; there was no ameliorative effect of THC on weight loss caused by 

disease (Figure 3.8A).  However, spleen weight used as a marker of systemic inflammation 
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and mesenteric lymph node cellularity, were both significantly reduced by THC treatment 

(Figures 3.8B, C).  THC treatment was also able to reduce levels of serum pro-

inflammatory cytokines, IFNγ and TNFα (Figure 3.8D). In this model, the levels of Th2 

cytokines such as IL-4, IL-5, and IL-13 were low and remained unchanged after THC 

treatment. Colonoscopy at peak of disease on day 3 also revealed decreased inflammation 

in the THC treated group when compared to VEH group, and once again noticeable mucus 

deposition was seen in the lumen of THC treated mice (Figure 3.8E, F).  Immune cell 

phenotyping in the cLP showed a decrease in the percentage and numbers of infiltrating 

CD45+ immune cells in THC group when compared to VEH group (Figures 3.8G-I). Also, 

there were less cLP macrophages in the THC treated group (Figures 3.8J, K); however, 

there was no difference in the activation markers CD80 or CD86 on the macrophages 

(Figures 3.9A, B). Dendritic cells (DCs), by comparison, were not reduced in percentage 

in the cLP (Figures 3.8L, M), but their levels of activation marker CD80 were reduced in 

the THC group (Figures 3.9C, D). In the mLN, THC treatment reduced IFNγ secreting 

CD8+ cells and CD4+ Th1 cells, when compared to VEH (Figures 3.9E-H), while there 

were no observed differences in CD4+ IL-17A, IL-10 or IL-4 secreting cells, or in DC 

phenotype (Figures 3.9I-L). To assess how cLP DCs played a role in disease, we 

characterized the subsets of DCs known to heavily influence intestinal inflammatory 

balance. We phenotyped DCs for their expression of surface markers CD103 and CD11b, 

because DCs with higher expression of CD103 have been shown to play a role in promoting 

an anti-inflammatory response through Treg induction (88), whereas DCs with more 

CD11b expression are catalysts for T cell and innate lymphoid cell (ILC) inflammatory 
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responses (99). THC treatment caused an increase in CD103+ DCs and a concurrent 

decrease in CD103+CD11b+ DCs at sacrifice compared to VEH mice (Figure 3.8N, O). 

Dendritic cell re-programming and not Treg induction are the mechanism 

through which THC ameliorates αCD40-induced inflammation. 

Considering the observed DC phenotype switch, we examined the numbers of 

Tregs in the cLP of αCD40 and IgG control mice after VEH or THC administration. Flow 

cytometric analysis of Treg phenotype revealed that αCD40 Ab treated mice had an 

increase in Helios+FoxP3+ natural Tregs (nTregs), when compared to control mice, and 

THC treatment further enhanced this population (Figure 3.10A, B). Because an increase in 

FoxP3+ Tregs was seen in the TNBS and DSS model as well after THC and THC+CBD 

treatment, we considered this as a possible mechanism through which THC exerts its anti-

colitic effects. However, depleting Tregs using an anti-CD25 antibody (clone PC61, 100 

mg/kg) one day before disease induction with αCD40, proved to be an unlikely mechanism 

through which THC acts, as there was no change in the body weight loss or spleen weight 

between αCD40 mice treated with THC with or without an intact Treg pool (Figures 3.10C, 

D). In the TNBS, DSS and αCD40 models, we observed a THC-mediated phenotypic 

change towards increased DC CD103 expression (Figure 3.11A-D). Therefore, we shifted 

our focus back towards THC’s effects on DCs and looked at how THC affects intestinal 

DCs acutely, in situations without overt inflammation. Acute (1X) THC treatment 

increased the percent of CD103+ single positive and reduced the percent of 

CD103+CD11b+ double positive DCs in the cLP 24 hours after a single THC 

administration (Figure 3.10E, F). One mechanism through which CD103+ DCs can 

influence Treg induction is through TGF-β1 secretion (88), and supernatants recovered 
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from cLP cells harvested from THC or VEH 1X mice and plated overnight revealed a trend 

towards increased TGF-β1 production in THC-treated mice (Figure 3.10G). The increase 

in CD103+ DCs seen in the cLP after THC administration was not noticed in the mLN of 

these mice (Figure 3.10H, I), and the increase in TGF-β1 seen in the cLP after THC 

treatment was also not seen in the mLN (Figure 3.10J), suggesting a cLP specific effect. 

Because DCs traffic between the cLP and mLN, their temporal and spatial activity after 

THC treatment is important to understand their functioning. CCR7 expression is linked to 

trafficking between the mLN and cLP (98), therefore, we looked for CCR7 expression on 

cLP and mLN DCs after THC 1X exposure and found that THC acutely reduced DC CCR7 

expression in the cLP but especially in the mLN (Figure 3.10K, L), suggesting that DCs 

were migrating less between the immune tissues in the intestines. To isolate the effects of 

THC on DCs specifically, bone-marrow dendritic cells (BMDCs) were generated by 

addition of GM-CSF and IL-4 to a culture of naïve bone marrow cells treated with VEH or 

THC.  The data showed THC treated BMDCs had more TGF-β1 in their supernatant when 

compared to controls (Figure 3.10M). Although there were equivalent percentages of DCs 

in the VEH and THC treated cultures, a BMDC culture is a mixed population of cells, and 

thus on day 6 of BMDC culture, CD11c+ DCs were purified and plated overnight, and 

analysis of their supernatant revealed that TGF-β1 levels were increased from the THC-

treated BMDCs compared to VEH controls (Figure 3.10N). We observed a decrease in DC 

CD80 expression, but not CD86 expression in THC treated cultures; and THC-treated DCs 

reduced CD4 and CD8 T-cell proliferation in vitro (Figures 3.11E-G). Furthermore, THC 

administration increases the number of cLP Helios+FoxP3+ nTregs in a CB2 dependent 

manner, and while DC phenotype is consistent between knockout and WT mice, there are 
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significantly reduced numbers of total DCs in the cLP of Cnr2-/- mice (Figure 3.12A-D). 

Next, we analyzed other immune cell changes that occur after acute THC administration 

under naïve conditions and found that THC does not affect the percentage of innate 

lymphoid cells (ILCs): ILC2, NCR or LTi ILC3s in the cLP, nor the number of 

macrophages, although there was an increase in FCεRI+c-Kit+ mast cells in the cLP after 

THC administration, which appeared to be mediated through CB2 (Figures 3.12E-J). 

Moreover, THC 1X treated mice whose cLP was isolated and plated overnight showed 

only small differences in cytokine production by an increase in IL-2 and IL-6 compared to 

VEH treated mice (Figure 3.12K).  

Cannabinoid receptor activation stems the progression of colitis-induced colon 

cancer by reducing IL-22 production in the epithelial microenvironment. 

Given the well-established propensity for colitis to lead to the development of colon 

cancer (29,30), we next investigated the effect of THC or THC+CBD on a murine model 

of colitis-associated colon cancer. To induce colon cancer, we used the well-established 

model of carcinogen injection, azoxymethane (AOM, 10 mg/kg, ip), followed by three 

cycles of DSS to induce colon carcinogenesis.  We halted cannabinoid treatment after the 

third DSS cycle to examine the effects of cannabinoids solely on cancer initiation, and not 

the potential direct effects of cannabinoids on tumors. Disease progression and 

experimental schematic is detailed in (Figure 3.13A), revealing that mice given 

DSS+AOM to induce colon cancer (CC group) but treated with cannabinoids, lost less 

weight compared to the CC + VEH group (Figure 3.13A). At termination of the study, 

colonic tumors and spleen weights were increased in the CC + VEH group compared to 

both CC + THC and CC + THC+CBD groups (Figure 3.13B-D). Colonoscopies revealed 
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reduction in inflammatory severity as well as tumor induction in CC + THC and CC + 

THC+CBD groups when compared to CC + VEH group (Figure 3.13E, F). Notable was 

that consistent with earlier data shown in (Figures 3.1C, D; 3.2C, D; 3.7C) where we saw 

that the colons of both disease and naive control mice given THC or THC+CBD had 

increased colonic mucus, here we see mucus deposition persists after many weeks of 

treatment (Figure 3.13E, F). Since CC + THC and CC + THC+CBD mice did not develop 

any tumors, we looked at immune parameters relevant to carcinogenesis that might be 

differentially regulated in the treatment groups. IL-22 is a cytokine produced by Th22 cells 

and ILCs that is critical to the development, maintenance, and stemness of inflammation-

induced colon cancer (105-107). The CC + VEH group had a significant increase in the 

amount of CD4+IL-22+ Th22 cells in the intra-epithelial cell fraction (IEC) of the colon 

compared to CC + THC and CC + THC+CBD groups, while there was no change in cLP 

CD4+RORγt+ cells (Figure 3.13G-I). Taking the cells from the cLP and IEC and plating 

them overnight to collect supernatants revealed that the increase in IL-22 seen in the 

CC+VEH group in the colonic microenvironment is coming specifically from cells in the 

IEC (Figure 3.13J, K), not the cLP. 

3.5 DISCUSSION 

The synergy between immune cells, enterocytes and symbiotic and pathogenic 

microbes in the GI tract requires a delicately balanced network that can adapt as new 

signals are acquired. A disruption in that balance can lead to chronic inflammation. Recent 

epidemiological evidence suggests this disruption in the form of colitis is on the rise in 

developing nations and its current burden in North America and Europe is daunting (26-

28). New strategies that can safely tip the gut equilibrium toward host defense without 

sparking inflammatory cascades or leave the host vulnerable to other maladies will be the 
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most effective strategy for preventing disease.  In the current study, we demonstrated the 

potential for cannabinoids in the prevention and amelioration of gut inflammation.  

Previous reports have found that cannabinoids acting through CB1 can reduce gut motility 

(49,85) and gastric acid secretion (86), and increase barrier integrity (49,51). Studies from 

our lab and others have demonstrated the CB2 dependent anti-inflammatory properties of 

cannabinoids working directly through immune cells (46, 48-50, 87). The work herein 

builds on those studies to provide a comprehensive evaluation of how the most commonly 

used cannabinoids, positively influence host gastrointestinal homeostasis through 

increased coordination between immune cells, colonocytes and gut flora.  

The most commonly consumed cannabinoids come in the form of recreational 

marijuana, whose primary bioactive components are CBD and THC (41,42). With cannabis 

legalization and public consumption of marijuana and CBD extracts increasing, it is 

important to parse out the scientifically proven beneficial effects of these compounds to 

cut through the noise of increasing anecdotal reports (41, 108, 112). Purified forms of CBD 

come as the FDA-approved drug Epidiolex for epilepsy, and purified THC comes as 

Dronabinol to treat spasticity and pain, among others (43, 108). A combination of THC 

and CBD is sold under the trade name Sativex and is prescribed to treat the symptoms of 

multiple sclerosis (42, 43). Numerous reports from animal studies and one prospective 

placebo-controlled human study tout the effectiveness of cannabinoids for ameliorating 

colitis (41, 42, 48-54). Our goal was to understand how each component, CBD and THC, 

can affect disease course to best understand the therapeutic potential of these compounds. 

To accomplish this, we used three models of colitis and one model of inflammation induced 
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colorectal cancer, looking at gut immunity, barrier function and host-microbiota 

interactions to gain a clear view of where the efficacy of cannabinoid in treating colitis lie.  

In the TNBS and DSS model of colitis, THC and a combination of THC+CBD were 

effective at preventing the symptoms of colitis, but CBD was not. Our results align with a 

human trial on CBD for Crohn’s disease (55); however, their sample size was low, and it 

is possible that in both cases the dose of CBD used was too low, as there are reports of 

CBD being effective for treating inflammatory pain (108,109) and liver inflammation 

(110,111). Nonetheless, THC was significantly more effective than CBD at protecting 

against TNBS and DSS-induced colitis, with no significant benefit added when combining 

CBD with THC. TNBS and DSS colitis are both induced via luminal delivery of 

xenobiotics that induce colitis by damage to the epithelial layer and allowing microbes to 

infiltrate host tissue in the case of DSS, and by disrupting the luminal mucus layer with 

ethanol and haptenizing colonic proteins in the case of TNBS. In examining tissues from 

THC and THC+CBD treated mice, we noticed less inflammation than the VEH and CBD 

groups but also more mucus deposition into the luminal layer. We confirmed that THC 

alone stimulates the production of Muc2 and Muc5ac after a single administration in naïve 

mice, as well as in inflamed DSS-diseased mice. In addition to increasing mucus 

production, THC also increases the expression of tight-junction proteins ZO-1 and Claudin. 

Importantly, this effect was specific to the colon. This explains why, despite similarly 

improved clinical parameters of disease, DSS mice treated with cannabinoids had gut 

leakage comparable to VEH mice, while TNBS mice treated with cannabinoids did not. 

DSS delivered in the drinking water will also break up the epithelial lining of the small 

intestine and other parts of the GI tract, leading to leakage, while TNBS induced damage 
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is specific to the colon. Using cannabinoid receptor (CB) knockout mice, MC38 and Caco-

2 adenocarcinoma cell lines, we were able to show that CB1 is responsible for the THC-

mediated increases in tight-junction proteins, confirming work by others (51). Novel to this 

study was that the increase in mucus and β-defensins that occurs after THC administration 

is dependent on both CB1 and CB2. The increase in mucus expression was prevalent in 

mouse tissue, cell lines and human cell lines, but Caco-2 cells given THC had the opposite 

trend in β-defensin production when administered THC, this could be attributable to the 

nature of that cell line or a non-conserved mechanism. Regardless, additional human data 

is needed to support this finding. The observed increases in colonic barrier integrity were 

shown to be important for disease prevention, as mice pre-treated for 3 days with THC 

developed less severe TNBS and DSS colitis compared to mice whose treatment began 

concurrently with disease induction.  

Importantly, the THC-mediated increase in tight-junction proteins and mucus were 

seen only in the proximal colon samples, but not in the small intestine where there is less 

contact with microbes. Mucus is a glycoprotein, that once deposited into the lumen 

polymerizes into a polysaccharide gel. This gel is an excellent source of defense from 

microbes and has been protective in colitis and colon cancer (95,96); however, it also acts 

as fuel for microbes. The increase in mucus production and deposition after THC 

administration may be why the changes in bacterial composition seen after THC 

administration favor the gram-negative phyla of Bacteroidetes and Proteobacteria, two 

phyla well known for their voracious appetite for carbohydrates (90). This would also 

explain why those bacteria, which are commonly thought of as pathogenic with colitis (90, 

91), were not disease promoting in our THC treated mice, because those bacteria were not 
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opportunistic pathogens, simply a result of increase in their preferential food source.  

Further support for this notion is the finding that acute administration of THC caused a 

small increase in acetate and butyrate levels in the cecum, that is diminished after short-

term administration, indicating an initial burst of microbial mucus metabolism that wanes. 

It would also explain why the fecal transfer from THC-treated mice was ineffective at 

suppressing colitis progression. Yet another compensatory mechanism in this complex 

interplay at the luminal surface is that the increased mucus production is balanced by an 

increase in defensin production, as seen from both our in vivo animal experiments and in 

vitro MC38 cells.  

By increasing the mucus production from goblet cells, and the observed increases 

in tight junction message expression, THC likely prevented the mechanism of action of 

disease induction in TNBS and DSS colitis; consequently, we used the αCD40 model of 

colitis to isolate the effects of THC on GI immunity. Injection of αCD40 causes acute 

wasting disease and colitis dependent on secretion of inflammatory cytokines TNF-α, IL-

12 and IL-23 (97,98). We found THC reduced inflammation systemically and in the colon 

in the αCD40 colitis model via reduction in gross intestinal pathology and circulating pro-

inflammatory cytokines IFNγ and TNFα. Flow cytometry of the cLP and Treg-depleting 

studies revealed in this inflammatory model, the most likely immune cell through which 

THC exerts its most potent anti-inflammatory effects are DCs.  

DCs are the master antigen-presenting cells, and a reduction in their ability to 

stimulate other immune cells stops the overwhelming inflammatory cascade before it can 

start. Acting through CB2, we demonstrated that THC can modulate DC phenotype 

towards a more anti-inflammatory state, characterized by decreased expression of CD80 in 
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vitro as well as in vivo in αCD40 colitic mice. DCs in the cLP can promote the expansion 

of T regulatory cells. Several studies have examined this mechanism, suggesting that DCs, 

primarily CD103+ DCs, upregulate CCR7 to migrate to the mLN where they secret TGF-

β1 and retinoic acid to induce T regulatory cells (88). Our results showed that THC 

administration in naïve mice and after αCD40 induced colitis caused a decrease in CCR7 

expression on DCs in both the cLP and mLN, suggesting THC reduces DC migration 

between gastrointestinal lymph tissue.  In addition, we found that BMDCs treated with 

THC and cells from the cLP of mice treated with THC exhibited increased levels of TGF-

β1. Taken together these data indicate that THC causes DCs to, instead of migrating to the 

mLN and induce Tregs, remain in the cLP, secrete TGF-β1, and increase the percentage of 

Tregs and influence other local cell types through the anti-inflammatory actions of TGF-

β1. Indeed TGF-β1 is critical for intestinal homeostasis. Global TGF-β1-/- mice develop 

spontaneous colitis around 3-4 weeks of age, and DC specific knockout of TGF-β1 also 

results in spontaneous colitis (102,103). Moreover, DCs are an important source and 

activator of TGF-β1 in the intestine, necessary for controlling Treg and Th17 

differentiation (103) and colonocyte homeostasis (104). The effect of THC on DCs is 

consistent with the observation that THC treatment reduces APC activity in vitro in human 

cells (44).  

A frequently observed finding in studies examining the effect of cannabinoids on 

the immune system is the ability of CB receptor activation to switch T helper phenotype 

from Th1 to Th2 (47,48). We did not find evidence in our models for this switch to be 

occurring. THC reduced Th1 activity, although there was no evidence through flow 

cytometric analysis of CD4+Gata3 expression or in IL-4, IL-5 or IL-13 production that a 
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Th2 phenotype was being induced. This suggested that in the gut, the effect of THC may 

be different in that down-regulation of Th1 cells may not result from a switch from Th1 to 

Th2 but mere suppression of Th1 cells by TGF-β, as shown in other studies (47,48,103).   

Taken together these data indicate a sophisticated network of mechanisms through 

which THC promotes cooperation and balance in the colonic macroenvironment. THC-

mediated decreases in DC activation reduce effector cell generation, while DC secretion of 

TGF-β1 increases Tregs locally to promote tolerance. The decrease in immunogenicity 

from cLP immune cells is counterbalanced by increased barrier integrity, mucus production 

and antimicrobial peptide release that stave off unwanted microbial interference, while still 

allowing for the uptake of their beneficial metabolites (Figure 3.14). We also showed, 

crucially, these effects can last long term. In the AOM+DSS model of colorectal cancer, 

THC and THC+CBD maintained a thick mucus layer and was able to reduce the amount 

of intra-epithelial-infiltrating IL-22 producing Th22 cells. IL-22 has recently gained 

attention for its carcinogenic properties in human patients as well as in animal models of 

colon cancer by promoting cancer stemness through STAT-3 activation (99, 105-107). Our 

results show THC decreased the amount of tumorigenic IL-22 in the colonocyte 

microenvironment where cancer initiation and progression occur. Ultimately, the presented 

data provide robust evidence for the multi-faceted efficacy of THC in colitis prevention. 
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Table 3.1. Macroscopic scoring of colitis models. 

 

Table 3.2. Mouse endoscopy and murine endoscopic index of colitis severity (MEICS).  

   

Feature Description Score 
 

 

Stool score 

Normal, solid pellets 0 

Loosely-shaped, moist pellets 1 

Diarrhea 2 

Occult blood presenta 3  5 

Parameter Description Score 

Translucency of the Colon Mucosa 

Transparent 0 

Moderate 1 

Marked 2 

Non-transparent 3 

Vascular Patter 

Normal 0 

Moderate 1 

Marked 2 

Bleeding 3 

Fibrin Visible 

None 0 

Little 1 

Marked 2 

Extreme 3 

Stool Consistency 

Normal + solid 0 

Still shaped 1 

Unshaped 2 

Spread 3 
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Table 3.3. List of Primers 

Gene 
Name 

Accession 
Number Primer Sequence 5’  3’ 

mMUC2 NM_023566 
Forward 

 

Reverse 

CTACCATTACCACCACTAC 
 

GTCTCTCGATCACCACCATTT 

mMUC5ac NM O88715 
Forward 

 

Reverse 

CTGTAACACCCAGTGTCCTAAG  
 

AGGCTGGTAGAAGTAGGTAGAG 

m18S NR_003278 
Forward 

 

Reverse 

CGTCGTAGTTCCGACCATAAA 
 

TTTCAGCTTTGCAACCATACTC 

mβ-actin NM_007393 
Forward 

 

Reverse 

GGCTGTATTCCCCTCCATCG 
 

CCAGTTGGTAACAATGCCATGT 

mβ-
Defensin 1 NM_007843 

Forward 
 

Reverse 

CACAGGCTTCCTGGGATATAAA 
 

CGCTCTGGTTGGACAACTTA 

mβ-
Defensin 3 NM_013756 

Forward 
 

Reverse 

TTGAGGAAAGGAGGCAGATG 
 

CGGGATCTTGGTCTTCTCTATTT 

mZO-1 NM_009386 
Forward 

 

Reverse 

GCCGCTAAGAGCACAGCAA 
 

TCCCCACTCTGAAAATGAGGA 

mClaudin1
8 

NM_001194
921 

Forward 
 

Reverse 

TGGGTTTTGTGGTGTCACTG 
 

GGTAGTTGAATACAGCGGTCAC 

mOccludin NM_001360
536 

Forward 
 

Reverse 

TTGAAAGTCCACCTCCTTACAGA 
 

CCGGATAAAAAGAGTACGCTGG 

mLyz-1 NM_013590 
Forward 

 

Reverse 

CCTCCAAGTAACAGGACTTCAG 
 

CTGACTGACAAGGGAGACTTTG 

mLyz-2 NM_017372 
Forward 

 

Reverse 

AGTTCTTCAGCCAGGAAGTG 
 

CCAAGATCAACTGGTCTCCTATAA 

hB2M NM_004048 
Forward 

 

Reverse 

GAGGCTATCCAGCGTACTCCA  

 

CGGCAGGCATACTCATCTTTT 

hRPLPO NM_053275 
Forward 

 

Reverse 

CCATTCTATCATCAACGGGTACAA  

 

TCAGCAAGTGGGAAGGTGTAATC 

hDEFB1 NM_005218 
Forward 

 

Reverse 

GGTGGGTCAAAATGTGTGAGT 

 

GCTGTGGTAGGTCAGGCTTC 
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hDEFB103
A 

NM_001081
551.3 

Forward 
 

Reverse 

TGCTCTTCCTGTTTTTGGTGC 
 

TGCCGATCTGTTCCTCCTTT 

hZO-1 NM_001301
025 

Forward 
 

Reverse 

CGGTCCTCTGAGCCTGTAAG 
 

GGATCTACATGCGACGACAA 

hMUC2 NM_002457 
Forward 

 

Reverse 

CACCTGTGCCCTGGAAGGC 
 

CGGTCACGTGGGGCAGGTTC 

hMUC5AC NM_017511 
Forward 

 

Reverse 

CGGGTCCACGAGGAGACGGT 
 

GCTTCTGCAGCCAGGCACGA 

hGAPDH NM_002046 
Forward 

 

Reverse 

GAAGGTCGGAGTCAACGGATT 
 

CGCTCCTGGAAGATGGTGAT 
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Figure 3.1 Cannabinoids ameliorate TNBS-induced colitis and reduce effector cell 

phenotypes. BALB/c mice were injected intrarectally with 100 mg/kg TNBS in 50% 

ethanol. Starting three days before disease induction and continuing daily, mice were 

gavaged with either: Vehicle (10% EtOH in PBS+Tween-80), CBD (10 mg/kg), THC 

(10mg/kg) or a combination of THC and CBD (10 mg/kg, both), (n=10). Mice were 

sacrificed at 5 days post disease induction and blood as well as organs of interest were 

harvested and analyzed for colitis-relevant parameters. (A) Percent weight change and 

(B) actual weight change over the course of disease. (C) Representative colonoscopy 
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images taken on day 5. (D) Quantification of colitis scores at indicated timepoints 

throughout disease course, (n=5 per group, per time point). (E) Representative image and 

(F) length of colons at sacrifice (n=10). (G-I) ELISAs from serum at sacrifice 

quantifying disease relevant biomarkers of colitis severity (n=4-5). (J) PAS stain of 

proximal colons from representative mice taken at sacrifice. (K, M) Representative flow 

cytometry psuedocolor dot plots (gate: Live,CD45+) displaying effector cell types from 

the lamina propria of indicated mice at sacrifice. (O) Offset histograms of FoxP3 

expression (gate: Live, CD45+CD4+) in colonic lamina propria at sacrifice. (L, N, P) 

Quantification of flow cytometry results (n=6). Data are presented as mean ± SEM of 

three independent experiments. *P<0.05, **P<0.01, ****P<0.0001 by Two-way 

ANOVA with Tukey’s multiple-comparisons test. 
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Figure 3.2 TNBS-induced colitis treated with cannabinoids supplemental data and 

representative flow gating strategies BALB/c mice were injected intrarectally with 100 

mg/kg TNBS in 50% ethanol. Starting three days before disease induction and continuing 

daily, mice were gavaged with either: Vehicle (10% EtOH in PBS+Tween-80), CBD (10 

mg/kg), THC (10mg/kg) or a combination of THC and CBD (10 mg/kg, both), (n=10). 

(A) Representative colonoscopy images from mice at every time point assessed. (B-E) 

Representative flow cytometry gating strategies.  
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Figure 3.3. Cannabinoids prevent DSS-induced colitis and reduce effector cell 

phenotypes. To induce DSS-colitis, C57BL/6 mice were treated with either: Vehicle 

(10% EtOH in PBS+Tween-80), CBD (10 mg/kg), THC (10mg/kg) or a combination of 

THC and CBD (10 mg/kg, both) for 3 days before 2% DSS was added to their drinking 

water. DSS remained in the drinking water until termination of the study 14 days later. 

Mice were sacrificed at 14 days post disease induction and blood as well as organs of 

interest were harvested and analyzed for colitis-relevant parameters. (A) Percent weight 

change and (B) stool score assessed over the course of disease (n=5). (C) Representative 

colonoscopy images taken on day 10. (D) Quantification of colitis scores at indicated 

timepoints throughout disease course (n=8 per group, per time point). E Representative 

image and (F) length of colons at sacrifice (n=5). (G-I) ELISAs from serum at sacrifice 

quantifying disease relevant biomarkers of colitis severity (n=10, SAA; n=5, LCN-2, 
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MPO). J PAS stain of proximal colons from representative mice taken at sacrifice. (K, 

M, O) Representative flow cytometry psuedocolor dot plots (gate: Live,CD45+) 

displaying effector cell types from the lamina propria of indicated mice at sacrifice. (L, 

N, P) Quantification of flow cytometry results (n=4-8). Data are presented as mean ± 

SEM of three independent experiments. *P<0.05, **P<0.01, ****P<0.0001 by Two-way 

ANOVA with Tukey’s multiple comparisons test.  
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Figure 3.4 DSS-induced colitis treated with cannabinoids supplemental data To induce 

DSS-colitis, C57BL/6 mice were treated with either: Vehicle (10% EtOH in 

PBS+Tween-80), CBD (10 mg/kg), THC (10mg/kg) or a combination of THC and CBD 

(10 mg/kg, both) for 3 days before 2% DSS was added to their drinking water. DSS 

remained in the drinking water until termination of the study 14 days later. Mice were 

sacrificed at 14 days post disease induction and blood as well as organs of interest were 

harvested and analyzed for colitis-relevant parameters. (A) Representative colonoscopy 

images from mice at every time point assessed. (B) Actual weight change throughout the 

experiment (n=5). (C) Representative overlaid histograms displaying FoxP3 expression 

in the cLP at sacrifice (gate: Live, CD45+CD4+). (D) Quantification of flow cytometry 

results (n=8). Data are presented as mean ± SEM of three independent experiments. 

*P<0.05, **P<0.01, ****P<0.0001 by Two-way ANOVA with Tukey’s multiple 

comparisons test.  
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Figure 3.5. Cannabinoid receptor 1 activation leads to increases in gram-negative 

bacteria and short-chain fatty acid dysregulation that are inconsequential to DSS 

progression Stool was collected before any compound administrations (Pre-Tx n=15), 

and after five administrations of VEH (n=12) or THC (n=11), DNA was extracted and 

subjected to 16S rRNA sequencing. (A) Stacked bar plot displaying % OTUs of phyla of 

indicated groups. (B) % OTUs of the phylum Bacteroidetes and (C) Proteobacteria. (D) 

% OTUs of the classes of Proteobacteria. WT mice were given a single (n=10) (E) or five 

(n=9) (F) administrations of VEH or THC, sacrificed one day later and cecal contents 

were analyzed for SCFAs. (G) LDA score of Cnr2-/- mice before (n=6) or after five 
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administrations of VEH or THC (n=3). (H) SCFA analysis of Cnr2-/- mice (n=4), given 

five VEH or THC administrations. (I) PCOA plot displaying the bacterial community 

clustering from indicated mice on day 14 of DSS colitis (n=5). (J) Cecal SCFA 

quantification of indicated mice (n=5). Letters above error bars indicate p<0.05 against 

the indicated group, a=DSS+VEH, b=DSS+CBD, c=DSS+THC, d=THC+CBD. Mice 

were given antibiotics (ABX) in their drinking water for 4 weeks before antibiotic-free 

water was returned, mice were placed in the cages of donor fecal transfer (FT) mice 

containing their used bedding. Three days after cessation of antibiotics, mice were given 

daily fecal transfers from stool of indicated donor mice. DSS (2%) was administered in 

the drinking water after three days of fecal transfers and (K) body weight was recorded 

throughout the study (n=7-8 per group). Data are presented as mean ± SEM. Fecal 

transfer experiment was repeated three times. *P<0.05, **P<0.01, ****P<0.0001 by 

Two-way ANOVA with Tukey’s multiple comparisons test.  
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Figure 3.6. Cannabinoid receptors mediate the gut flora and short-chain fatty acid 

changes seen after THC administration (A, B, C, F) Mice of indicated genotype were 

given one (1X) or five (5X) administrations of VEH or THC and sacrificed 24 hours later. 

Their cecal contents were removed and SCFAs were quantified by GC-MS (n=5, all 

groups). (D, E) LDA score of significant bacterial changes occurring between groups. 

(G) qRT-PCR results from PC or SI of WT, Cnr1-/- or Cnr2-/- mice taken 24 hours after 

one administration of VEH or THC. Data are presented as mean ± SEM of two 

independent experiments. *P<0.05, **P<0.01, ****P<0.0001 by Two-way ANOVA with 

Tukey’s multiple comparisons test or by Students t-test.  
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Figure 3.7. Cannabinoids utilize both cannabinoid receptors to specifically increase 

colonic barrier integrity and mucus production to protect against colitis induction (A) 

and (B) At day 4 of the TNBS-colitis (n=5-10) and day 13 of the DSS-colitis experiment 

(n=5), mice were fasted overnight and the next morning were gavaged with 100 uL of 

4kD FITC-Dextran (600 mg/kg), 4 hours later blood was collected by retroorbital bleed, 

and serum was analyzed for the presence of FITC-Dextran as a measure of gut 

permeability. (C) PAS stain of proximal colon from mice after one or five VEH or THC 



 

87 

administrations. (D) qRT-PCR results from proximal colon (PC) or small intestine (SI) 

24 hours after one administration of VEH or THC (n=5-7). (E) qRT-PCR results from PC 

of mice who received DSS (2%) in their drinking water for 13 days. (F) MC38 cells were 

treated with VEH, CBD, THC, or a combination of THC and CBD (all 10μM), for six 

hours before RNA was collected and qRT-PCR was run on indicated genes (n=4). (G) 

Caco-2 cells were treated with VEH, THC, AM251 (AM) or SR144528 (SR), or a 

combination where indicated for 12 hours before RNA was collected and qRT-PCR was 

run on indicated genes (n=6). TNBS and DSS colitis models were induced as was done 

previously but we used three groups. The VEH and THC Pre-Tx (THC, 10mg/kg, oral 

gavage) group received treatments beginning three days before colitis initiation, while the 

THC Tx group began receiving daily treatments the same day colitis was induced. (H, J) 

Percent weight change over the disease course, and (I, K) colon lengths at sacrifice 

(n=5). Data are presented as mean ± SEM. *P<0.05, **P<0.01, ****P<0.0001 by Two-

way ANOVA with Tukey’s multiple comparisons test. 
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Figure 3.8. THC treatment reduces αCD40 colitis severity through a reduction in 

dendritic cell activity Mice were pre-treated daily with VEH or THC (10 mg/kg) for 3 

days before intraperitoneal injection of rat anti-mouse IgG (control) or rat anti-mouse 

αCD40 (200 μg, clone FGK4.5 in PBS) and treatment continued for 7 days post disease 

induction to monitor progression of inflammatory severity. (A) Percent weight change 

over the course of disease (n=3-10). Spleen weight (n=3-10) (B) and absolute mesenteric 

lymph node cell number (n=3-6) (C) were recorded at sacrifice. At peak of disease on 



 

89 

day 3, blood was collected via retroorbital bleed, serum was separated and subjected to 

Legendplex assay for serum T helper cytokine levels (D) (n=3 per group). (E) 

Representative images of colonoscopies performed at peak of disease on day 3, and their 

quantification in (F) (n=4 per group). (G) Representative overlaid histograms displaying 

CD45+ cell percentages from the colonic lamina propria of indicated mice at sacrifice. 

(H) Quantification of CD45 percentages and (I) absolute cell counts of CD45+ colonic 

lamina propria cells. (J) Representative contour plots of macrophages (gate: Live, 

CD45+) (n=3-5) and (L) dendritic cells (gate: Live, CD45+) (n=5-8). (N) Representative 

contour plots of cLP dendritic cell subsets at sacrifice (gate: 

Live,CD45+MHCIIHICD11c+) (n=3-9). (K, M, & O) Quantification of flow cytometry 

results. Data are presented as mean ± SEM. *P<0.05, **P<0.01, ****P<0.0001 by Two-

way ANOVA with Tukey’s multiple comparisons test.  
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Figure 3.9. THC treatment reduces dendritic cell activation lessening the severity of 

αCD40 colitis Mice were pre-treated for 3 days with VEH or THC before disease 

induction via i.p. injection of 200 μg anti-mouse αCD40 or IgG control. Treatments 

continued until sacrifice seven days post disease induction. At sacrifice, mLNs or cLPs 

were taken and analyzed by flow cytometry for immune cells of interest. (A, C) 

Representative overlaid histograms displaying CD80 and CD86 expression in cLP 
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macrophages, (A) (gate: Live, CD45+CD11b+F4/80+), and in cLP dendritic cells (C) 

(gate: Live, CD45+MHCIIHICD11c+). (E, G, I, K) Representative flow cytometry plots 

from the mLN of CD8+IFNγ+ cells (E) (gate: CD3+CD4-CD8+); IL-17A and IFNγ 

single and double positive cells (G) (gate: CD3+CD4+); IL-10 and IL-4 positive cells (I) 

(gate: CD3+CD4+); and dendritic cell subsets (K) (gate: MHCIIHICD11c+). (F, H, J, L) 

Quantification of flow cytometry results (n=3 IgG groups, n=5-7 αCD40 groups). Data 

are presented as mean ± SEM of two independent experiments. *P<0.05, **P<0.01, 

****P<0.0001 by Two-way ANOVA with Tukey’s multiple comparisons test.  
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Figure 3.10. Dendritic cell re-programming and not Treg induction are the mechanism 

through which THC ameliorates αCD40-induced inflammation. Mice were pre-treated 

for 3 days with VEH or THC before disease induction via i.p. injection of 200 μg anti-

mouse αCD40 or IgG control. Treatments continued until sacrifice seven days post 

disease induction. (A) Representative flow cytometry contour plots of n- and iTregs in 

the cLP (gate: Live,CD45+CD4+). (B) Quantification of flow cytometry results (n=3-8). 

Mice were pre-treated with VEH or THC for 2 days before depletion of Tregs via i.p. 

injection of rat anti-mouse CD25 (clone PC61, 100 mg/kg) or isotype control. The next 
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day disease was induced by i.p. injection of αCD40 or IgG control. (C) Weight was 

monitored, and spleen weight was recorded on day 7 at sacrifice (D) n=3 IgG, n=5 

αCD40 + IgG, n=7 αCD40 + αCD25). Data are presented as mean ± SEM. *P<0.05, 

**P<0.01, ****P<0.0001 by Two-way ANOVA with Tukey’s multiple comparisons test. 

Naïve mice were administered VEH or THC once and 24 hours later were sacrificed and 

cLP and mLN were harvested. Representative contour plots of dendritic cell subsets in 

the cLP (E) and mLN (H), that are quantified in (F) and (I), respectively (n=5 per group). 

1x106 live cLP or mLN cells from indicated groups were plated in complete media 

overnight, spun down, and supernatants were collected and subjected to sandwich ELISA 

for TGF-β1 quantification. TGF-β1 levels in the cLP (G) (n=5) and mLN (J) (n=3) 

supernatants of indicated groups. (K) Overlaid histograms of CCR7 expression in DCs 

from indicated mice in the cLP or mLN. (L) Mean fluorescence intensity of CCR7 

expression (n=5). TGF- β1 levels from the supernatant of BMDCs treated with VEH or 

THC after 7 days of culture (M) or after one day of culture after CD11c+ cell selection 

(N) (n=3 per group). Data are presented as mean ± SEM. *P<0.05, **P<0.01, 

****P<0.0001 by Students t-test. 
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Figure 3.11. THC reduces pro-inflammatory DCs and decreases CD80 expression to 

reduce T cell responses. BALB/c mice were injected intrarectally with 100 mg/kg TNBS 

in 50% ethanol. Starting three days before disease induction and continuing daily, mice 

were gavaged with either: Vehicle (10% EtOH in PBS+Tween-80), CBD (10 mg/kg), 

THC (10mg/kg) or a combination of THC and CBD (10 mg/kg, both). (A) Representative 

contour plots of cLP dendritic cell subsets at sacrifice (gate: 

Live,CD45+,MHCIIHICD11c+) (n=7). C57BL/6 mice were treated with either: Vehicle, 

CBD (10 mg/kg), THC (10mg/kg) or a combination of THC and CBD (10 mg/kg, both) 

for 3 days before 2% DSS was added to their drinking water. DSS remained in the 
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drinking water until termination of the study 14 days later. Mice were sacrificed at 14 

days post disease induction and cLP was isolated and stained for markers of dendritic cell 

phenotype CD103 and CD11b. (C) Representative contour plots of cLP dendritic cell 

subsets at sacrifice (gate: Live,CD45+,MHCIIHICD11c+) (n=7-8). Bone marrow cells 

were cultured in vitro with GM-CSF, IL-4 and either THC (10µM) or VEH for 7 days to 

induce dendritic cell generation from bone marrow precursors. (E) Representative 

overlaid histograms of CD80 and CD86 expression gated on dendritic cells 

(MHCIIHICD11c+). (B, D, F) Quantification of flow cytometry results. After 6 days of 

BMDC generation, CD11c+ cells were selected from wells treated with either THC or 

VEH and then co-cultured with naïve CFSE-pulsed CD3+ T cells at a ratio of 1:5, DCs : 

T cells. Un-stimulated wells received 50µg of IgG control antibody, while experimental 

groups received 50µg of anti-CD40. Cells were collected daily for flow cytometric 

analysis of CFSE dilution among CD4 and CD8 T cell subsets after being co-cultured 

with VEH or THC treated DCs. (G) Representative offset histograms of CFSE expression 

gated on CD4 cells (upper panel) or CD8 (lower panel) after incubation with VEH or 

THC treated DCs and stimulated with IgG (control – unstimulated), or anti-CD40. Data 

are presented as mean ± SEM. *P<0.05, **P<0.01, ****P<0.0001 Two-way ANOVA 

with Tukey’s multiple comparisons test (A-D) or by Students t-test (E, F).  
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Figure 3.12. THC administration causes cLP immune cell phenotype changes through 

CB2. Mice were given one administration of VEH or THC and were sacrificed 24 hours 

later. cLP was harvested and analyzed via flow cytometry for immune cell populations of 

interest. (A) Contour plots displaying FoxP3+Helios+ nTregs and FoxP3+Helios- iTregs 

(gate: Live, CD45+CD4+). (C) Contour plots displaying total cLP DCs (right column) 

and DC phenotype (left column, gate: Live,CD45+MHCIIHICD11c+) from indicated 

mice. (B, D) Quantification of flow cytometry results (n=3-5 per group). (E, F) 
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Representative pseudocolor dot plots displaying CD11b+F4/80+ macrophages (E) (gate: 

Live, CD45+), and FCεRI+C-kit+ mast cells (F) (gate: Live, CD45+CD11b+) in the cLP. 

(G, H) Quantification of flow cytometry results (n=4 per group). (I, J) Histogram and dot 

plots showing NCR ILC3s (Lineage-CCR6+NKp46+), LTi ILC3s (Lineage-

CCR6+NKp46-) and ILC2s (Lineage-Gata3+). (K) 1x106 live cLP cells from the 

indicated groups were plated overnight, supernatants were collected, and subjected to 

Legendplex assay for Mouse T helper cytokines (n=2 per group). Data are presented as 

mean ± SEM. *P<0.05, **P<0.01, ****P<0.0001 by Students t-test. 
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Figure 3.13. Cannabinoid receptor activation stems the progression of colitis-induced 

colon cancer by reducing IL-22 production in the epithelial microenvironment. To 

induce colitis-associated colon cancer (CC), mice were given a single injection of AOM, 

i.p. (10 mg/kg), then 1 week later treatment started concurrently with the induction of the 

first cycle of colitis with 2% DSS in the drinking water. Weeklong cycles of DSS (2%) 

were followed by 2 weeks of regular drinking water for 3 cycles lasting 9 weeks. 
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Treatment with VEH (10% EtOH in PBS-Tween-80), THC (10 mg/kg) or a combination 

of THC and CBD (10 mg/kg, both) were given twice a week until the last DSS cycle was 

completed and then treatments were halted to monitor the effects of cannabinoids on 

induction of cancer, not the direct effects of the cannabinoids on cancer itself. Control 

mice were treated twice weekly, but disease was not induced (ctrl). (A) Diagram showing 

percent weight change, treatment schedule and disease course. (n=5, ctrl groups; n=7-9 

CC groups). (B) Graph showing the number of tumors in each colon at sacrifice. (C) 

Representative photo and (D) quantification of spleen weights from indicated mice at 

sacrifice. Colonoscopies were performed throughout the experiment and representative 

images are shown in (E) and quantified in (F) (n=5-8, ctrl groups; n=8 CC groups). cLP 

and intra-epithelial cell fraction (IEC) was isolated at sacrifice and stained for 

CD4+RORγt+ and CD4+IL-22+ Th22 cells. (G) Representative contour plots displaying 

CD4+RORγt+ Th17 cells in the cLP (top two panels) and CD4+IL-22+ Th22 cells in the 

IEC fraction (bottom two panels). (H, I) Quantification of flow cytometry plots (n=3, ctrl 

groups; n=6, CC groups). (J, K) 1x106 cells deriving from the cLP or IEC layers from 

indicated groups were plated overnight, supernatants were collected and subjected to 

ELISAs for TGF-β1 (n=3, ctrl groups; n=6, CC groups). Data are presented as mean ± 

SEM. *P<0.05, **P<0.01, ****P<0.0001 by Two-way ANOVA with Tukey’s multiple 

comparisons test. AOM-DSS model was repeated twice. Data presented are from 1 

experiment.  
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Figure 3.14. Graphical abstract of THC-induced effects in the colonic 

microenvironment 
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CHAPTER 4: SUMMARY & CONCLUSIONS 

 

Inflammation is at the heart of a growing number of diseases. Strategies to govern 

our immune system so that immunogenecity towards symbiotic commensals or the gift of 

a crucial yet foreign organ transplant are needed. The work presented display how research 

examining the nature and treatment of disease can reveal innovative strategies for 

regulating inflammation.  

In a model of allogeneic organ transplantation, we examined how a cluster of 

miRNAs induced after exposure to alloantigen in graft-responding CD4+ T cells work to 

reduce the activity of anti-inflammatory TGF-β2. We showed that TGF-β2 has the same 

potency in inducing Tregs as TGF-β1, and that increasing TGF-β2 levels in vivo by 

blocking the interfering miRNA cluster can reduce inflammatory severity. Advances in 

treating graft rejection may use TGF-β2 to induce Tregs, and we established a new miRNA 

cluster as a target for alleviating inflammation. 

Cannanoids are natural compounds extracted from the Cannabis sativa plant. 

Evidence for their therapeutic efficacy in treating several diseases is growing. The rate of 

colitis and colon cancer globally are rising, thus new strategies to prevent them are critical. 

We tested the most frequently consumed cannabinoids, CBD and THC, alone and in 

tandem to illuminate which component has the greatest therapeutic efficacy in preventing 

colitis and colitis-associated colon cancer. Our results revealed that THC was very effective 

at preventing the inflammation induced by three separate models of colitis with disparate 
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etiologies and one model of colitis-associated colon cancer. We found that CBD had no 

colitis-preventative value at the dose tested, and if it synergized with THC for a greater 

effect, the effect was minimal and relegated to longer term models.  

THC prevented colitis in two models by increasing the defenses around the colonic 

microenvironment. THC acted directly on colonocytes and goblet cells to stimulate tight-

junction protein and mucus production that are the first line of defense against luminal 

disturbances and microbes. The increased mucus became a source of food for commensal 

microbes that led to an increase in the SCFAs acetate and butyrate being secreted after 

acute THC administration. The changes in bacterial composition seen after THC 

administration were increases in gram negative Bacteroidetes and Proteobacteria. While 

these bacteria were not pathogenic in THC treated mice, they also were not the mechanism 

through which THC protects against colitis development, as fecal transfers from THC 

treated mice did not alleviate colitis. THC, working through CB1 and CB2, stimulates the 

secretion of anti-microbial peptides from colonocytes to balance the increase in gram-

negative bacteria. Mice treated prophylactically with THC built up a thicker mucus layer 

and displayed more protection from colitis than mice who received treatment to alleviate 

disease.  

We utilized a model of colitis that acts solely on the immune system to examine the 

gut immunological benefits of THC on colitis development. Our work revealed that THC, 

through CB2, acts directly on dendritic cells (DCs) to stimulate TGF-β1 production that 

can induce Tregs and directly suppress effector T cells in the colonic lamina propria. THC 

also reduces DC migration between gut lymphatic tissue, reducing the expansion of T cells 

induced in anti-CD40, TNBS and DSS models of colitis. In the AOM + DSS model of 
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colitis-associated colon cancer, THC proved efficacious at preventing colitis and 

associated cancer in a longer model, displaying prolonged mucus secretion and a reduction 

in intra-epithelial IL-22 secreting Th22 cells, which can promote cancer. Our data paint a 

picture wherein THC enacts a sophisticated network of interaction between colonocyte 

production of mucus and defensins to regulate the gut microbiota, while calming the 

underlying immune cells from ruinous inflammation through DC secretion of TGF-β1 and 

the induction of Tregs.  

Through an examination of the mechanisms that cause and prevent inflammation, 

the work described in this dissertation reveal epigenetic, molecular and cellular pathways 

that regulate inflammation.
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