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ABSTRACT

 Conversion of lignocellulosic biomass into transportation fuels or commodity and 

specialty chemicals will be an important and fast-growing industry within the United 

States over the coming decades. Its growth will be driven by a variety of factors, 

including increased energy demands, environmental considerations, national security, and 

government mandates. To achieve the desired energy efficiency and economic impact, 

the emerging biorefining industries need novel heterogeneous catalysts with exceptional 

activity, selectivity, and stability. Catalytic materials developed in the petrochemical 

industries are generally not suitable for processing highly functionalized feedstocks 

typical of the biorefinery landscape. Due to the characteristics of this biomass feedstock 

(aqueous, highly water soluble, very reactive, and thermally unstable), liquid-phase 

processing technologies are exceedingly sought after to reduce the process cost as well as 

to increase the targeted product selectivity. Despite making considerable progress in our 

understanding of the stability and the surface properties of metal-supported nanoparticles 

in vapor phase environments, the effect of condensed phase is less investigated and not 

well-understood due to the added complexity of the reaction system containing both a 

complex heterogeneous catalyst and a condensed phase. 

In order to gain fundamental understanding of the solvation phenomena occurring 

at solid-liquid interfaces, our research is primarily focused on the development, 

validation, and application of solvation methods for the rational design of novel 
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heterogeneous transition metal catalysts for biomass conversion processes. As 

prototypical reactions with relevance to biomass catalysis, we investigated the 

hydrodeoxygenation (HDO) of various model biomolecules such as ethanol, ethylene 

glycol, and guaiacol under vapor and aqueous phase processing conditions to elucidate 

the reaction mechanism and the effect of condensed phase on the reaction kinetics. Using 

first principles calculations, continuum solvation models, and mean-field microkinetic 

modeling, we characterized the solvent effects on the kinetics of reactions and product 

distributions. An important outcome of our study is the identification of uncertainty in 

computed solvent effects due to the uncertainty of the cavity radius of transition metal 

atoms in implicit solvation schemes. To further elucidate the role of water on the reaction 

mechanism, we performed solvation calculations with our explicit solvation scheme for 

metal surfaces (eSMS). We found that implicit solvation models are most appropriate 

whenever directional hydrogen bonding is not present or does not change significantly 

along the reaction coordinate. Explicit solvation calculations agree with the implicit 

solvation models for C-H and C-OH bond cleavages of polyols where they both predict a 

small (<0.10 eV) solvent effect. In contrast and unlike the implicit solvation models, our 

explicit solvation model predicts a larger solvent stabilization (>0.35 eV) for the O-H 

bond cleavage due to its ability to approximately describe hydrogen bonding. 

Consequently, O-H bond dissociations are significantly favored over C-H and C-OH 

bond dissociations of polyols under aqueous processing conditions of biomass. 
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CHAPTER 1 

INTRODUCTION

The ability to include the effect of a liquid phase environment on chemical 

reactions occurring at solid-liquid interfaces is a distinctive challenge in computational 

catalysis. Liquid molecules can affect the stability of an adsorbed moiety and can provide 

low energy pathways for reactions, which affects the activity and selectivity of a catalyst. 

Reaction free energies and free energy barriers of elementary reactions occurring at solid-

liquid interfaces can be very different for the same processes occurring at solid-gas 

interfaces. Describing such a system quantum mechanically from first principles is 

computationally very expensive due to limited computational resources, where the 

system size is limited to hundreds of atoms, while simulating an aqueous phase often 

requires thousands of molecules to be included in the system. The objective of my 

research is to gain a better understanding of the chemistry at solid-liquid interfaces using 

both continuum solvation and hybrid QM/MM solvation approaches. 

This dissertation has been written following the manuscript style formatting, 

meaning each chapter of this dissertation is an independent scientific publication. In 

chapter 2, we examined some of the prevailing approaches for modeling condensed 

phases in heterogeneous catalysis and applied our own hybrid QM/MM model, called 

eSMS, to the C-H and O-H bond cleavage of ethylene glycol over Pt(111) model surface 

under aqueous phase processing conditions. This article has recently (January 2018) been 
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published in ACS Catalysis as a full-length viewpoint scientific article. All atom quantum 

chemical (DFT) methods and classical force field simulations are currently not the most 

practical approaches for describing solvent effects in heterogeneous catalysis due to the 

large computational expense and limited/unknown accuracy, respectively. Microsolvation 

and bilayer adsorption/ice models are most appropriate whenever the system temperature 

is low enough or the solvent-solute interaction strong enough that entropic effects along 

the reaction coordinate can be described accurately by the harmonic approximation. 

There is a risk that due to a lack of extensive configuration space sampling, these models 

significantly overestimate solvent effects whenever the harmonic approximation breaks 

down. Likely, these models are more appropriate for predicting enthalpies of solvation 

than free energies of solvation. In agreement with prior reports, we found that enthalpies 

of solvation are generally larger than free energies of solvation (roughly twice as large 

although the overestimation is temperature and system dependent). Next, the implicit or 

continuum solvation models are the easiest models to apply that can convey qualitative 

results for the computation of solvent effects. They are most appropriate whenever 

directional hydrogen bonding is not present or does not change significantly along a 

reaction coordinate. We found these models to underestimate strong hydrogen bonding 

effects. Also, the parameterization for transition metal element dependent parameters 

needs a more thorough validation. Finally, we deem QM/MM models to be currently the 

most appropriate models for predicting solvation effects in heterogeneous catalysis with 

an adequate balance between computational expense and chemical accuracy in regard to 

potential energy surface description and configuration space sampling. In this manuscript, 

we reviewed such a hybrid QM/MM model, called eSMS, and applied it to C-H and O-H 
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bond cleavage of ethylene glycol on Pt(111) under aqueous phase reforming conditions to 

explain the counter-intuitive (and likely wrong) result of implicit solvation models that 

predict hardly any aqueous solvent effect in O-H bond cleavage. 

In my second publication (chapter 3, recently submitted to Journal of Physical 

Chemistry C), using the O-H splitting reaction of ethylene glycol over Pt(111) as a case 

study and characteristic reaction for various biomass platform molecule conversion 

reactions over noble metal catalysts, we studied the required timescale to reach thermal 

equilibrium, the sampling time scale necessary to explore the configuration space, and the 

size of the simulation system for obtaining reliable and converged free energies of 

activation and reaction with our eSMS methodology for studying solvation effects in 

heterogeneous catalysis. Due to the difficulty in determining the correlation time in free 

energy calculations, we recommend that all explicit solvation calculations be repeated 

multiple times just as it is common for experiments. Only by repeating simulations at 

least three times can confidence intervals (resulting from insufficient configuration space 

sampling and intricacies from our QM/MM-FEP methodology) be estimated. Assuming 

our test reactions are characteristic for various reactions on metal surfaces, our heuristic 

recommendations lead to free energies with 95% confidence intervals of < 0.1 eV. After 

establishing protocols for calculating solvent effects using multiscale models, we 

calculated solvent effects on the free energy of reaction and free energy of activation for 

primary dehydrogenation and dehydroxylation reactions of ethylene glycol at the 

hydroxyl group and -C. Our explicit solvation model predicts that aqueous phase effects 

are small (< 0.1 eV) for the C-H bond cleavage and the activation barrier of the C-OH 

bond cleavage. In contrast, solvation effects are large (> 0.35 eV) for the O-H bond 
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cleavage and the reaction free energy of the C-OH bond scission. While the choice of a 

different Pt-water force field can lead to differences in predicted solvation effects of up to 

0.2 eV, the differences are usually much smaller (< 0.1 eV) and the trends are always the 

same. In contrast, implicit solvation models only qualitatively agree with the explicit 

solvation results for the C-H bond cleavage and they are unable to anticipate the 

hydrogen bonding stabilization for the O-H and even the C-OH cleavage reactions. 

In chapter 4 (third publication), we extended our previously reported in-depth 

vapor phase modeling of HDO of guaiacol over Ru(0001) model surface to the liquid 

phase and examined the solvent influence on the reaction mechanism and possible 

activity descriptors for HDO of guaiacol over Ru(0001) model surface. Several studies 

conducted at relatively mild reaction conditions have reported the presence of aromatic 

ring saturated products which was not considered in our previous study. In this study, we 

extended our calculations to investigate the formation of phenyl ring saturated products in 

vapor phase and condensed phases. While electrostatic interactions and hydrogen 

bonding contributions are instrumental for the interaction between a polar adsorbate and a 

polar solvent, london dispersion forces play a crucial part for non-polar adsorbate-solvent 

systems. To consider both of these scenarios, four different solvents of varying degree of 

polarity� (depending� on� Kamlet� and� Taft’s� solvatochromic� parameters)� have� been�

employed for this study. Specifically, we focused on the effects of liquid water which is a 

polar, protic solvent, 1-butanol,�a�polar�aprotic�solvent,�diethyl�ether,�a�‘borderline’�polar�

aprotic solvent, and a non-polar solvent, n-hexane. Using first principles calculations and 

a novel implicit solvation scheme for solid surfaces (iSMS), we characterized the solvent 

effects on the thermodynamics and kinetics of elementary reactions. A mean field 
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microkinetic reactor model was then developed to reexamine the most abundant surface 

intermediates, dominant reaction pathways, and general kinetic trends in condensed 

phases. Our model predicted that for HDO of guaiacol to aromatics production, less 

protic solvents have a positive effect on the reaction kinetics compared to vapor and 

aqueous phases. We also observed that aqueous phase has a more favorable effect for 

cycloalkane production from phenol compared to that of vapor phase and other less protic 

solvents. 
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CHAPTER 2 

LIQUID PHASE MODELING IN HETEROGENEOUS CATALYSIS
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The notion that solvents can affect the chemical reactivity has been prevalent in 

the homogeneous catalysis community, going back as far as 1863.1 Remarkable changes 

in reaction rate have been reported in the seminal work of Menschutkin, who 

demonstrated a change in reaction rate constant up to a factor of 700 as a function of the 

solvents employed for the reaction of triethylamine with ethyl iodide at 373 K.2 It is well 

known nowadays that solvents can affect the reaction rate, reaction mechanism, and 

selectivity of chemical reactions occurring in condensed phase. While solvent effects 

usually lead to changes in reaction rates of up to three orders of magnitude, rate increases 

of nine orders of magnitude have been reported.3-4 In homogeneous metal catalysis such 

as hydroformylation, hydrogenation, and cross-coupling reactions, solvent effects have 

been studied systematically and exploited for industrial applications.5 Substantial solvent 

effects have also been reported in heterogeneous catalysis for several hydrogenation,6-9 

oxidation,10-12 and electro-chemical reactions (where electric field effects lead in addition 

to an electric double layer13-16). However, in heterogeneous catalysis, systematic studies 

of solvation effects are rare and solvent effects are generally not well understood. In this 

context, we note that liquid phase processing is highly desirable for process cost 

reduction and high product selectivity for the heterogeneously catalyzed conversion of 

highly functionalized lignocellulosic biomass, since the feedstocks contain significant 

amounts of water, are produced in aqueous phase environments, and reactant molecules 

are highly water soluble, reactive, and thermally unstable.17-19 Processing at relatively 

low temperatures in condensed phase has therefore the potential to (1) minimize 

undesirable thermal degradation reactions, (2) increase the targeted product selectivity, 



 

8 

and (3) facilitate the product separation from excess water since reaction products often 

contain less oxygen and are therefore less hydrophilic than the feed streams.  

Computational catalysis has in the last 20 years become an increasingly important 

tool for understanding catalytic reactions and designing new catalytic materials of 

industrial relevance.20-22 However, progress has been limited to vapor-phase catalysis and 

theoretical studies8,11,23-24 of solvent effects in heterogeneous catalysis are still in their 

infancies.  The relative lack of progress in computational catalysis at solid-liquid 

interfaces can be explained by the added complexity of a reaction system containing both 

a complex heterogeneous catalyst and a condensed phase and by fundamental modeling 

challenges of systems for which the harmonic approximation25 for estimating partition 

functions and free energies is no longer valid. The later challenge is a long-standing issue 

in the molecular simulations community for systems that require extensive configuration 

space sampling on a high dimensional potential energy surface that cannot be described 

by simple, empirical potentials but requires a quantum chemical description as it is 

generally the case for transition metal catalysis. It should be highlighted that due to the 

typical correlation lengths (on the order of nanometers26) and correlation times in most 

liquids (on the order of picoseconds for water reorientation27), all-atomistic free energy 

computations of processes at solid-liquid interfaces require a simulation system 

containing a few hundred if not a few thousand liquid molecules sampled for at least a 

few hundred (or thousand) picoseconds. Accordingly, on the order of 10� times more 

energy evaluations are needed for estimating free energy changes in liquid phase for a 

system containing at least one order of magnitude more atoms than what is typical for 

heterogeneous vapor phase catalysis.  Thus, brute force ab initio molecular dynamics 
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(AIMD) simulations28-30 are prohibitively expensive and most likely not practical for the 

foreseeable future (although some very interesting results have been reported11-12,31).  

This brings us to the key issue: Can we come up with an alternative, 

computationally affordable and reliable method for computing free energy changes (and 

rates within transition state theory) for chemically activated processes occurring at solid-

liquid interfaces? In this contribution, we aim to (1) examine some of the prevailing 

approaches to model condensed phases and discuss the potential advantages and pitfalls 

associated with these. Then, (2) we describe our hybrid quantum mechanical and 

molecular mechanical (QM/MM) approach to resolve the well-established challenge of 

reducing the computational expense all the while keeping a robust chemical accuracy of 

the reaction system. Finally, (3) we employ our computational approach for the initial O-

H and C-H bond cleavages of ethylene glycol (EG) over Pt(111) under aqueous phase 

processing conditions and contrast our explicit solvation model with implicit solvation in 

regards to their ability to describe hydrogen bonding and entropic contributions for free 

energy computations.  

Conceptually, there are five different approaches to accelerate the computation of 

solvation effects on reaction and activation free energies at solid-liquid interfaces.  

Bilayer adsorption/ice model. A buckled hexagonally closed-packed network of 

water molecules resembling the (001) basal plane of ice was proposed by Doering and 

Madey32 and was primarily developed based on low temperature (� ≪ 273��) 

experiments on interfacial water over  metal (Ru) surfaces. Considering the solid-like 

behavior of the ice-film, classical (gas phase) partition functions can be used for free 
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energy estimations requiring a very limited configuration space sampling. However, little 

is known on how an adsorbed species like a sugar molecule perturbs the ice structure.33 

Different types of ice-structures can form34 on non-extended surfaces (e.g., a 

nanoparticle) or stepped surfaces that stabilize or destabilize an adsorbed species 

differently. Thus, we consider it unlikely that under practical biomass conversion 

conditions in a three-phase reactor, ice-like structures can form on a catalyst surface 

considering that Natarajan and Behler27 did not observe such structures on solid-liquid 

interfaces of Cu surfaces at 300 K.  

Implicit solvation model. Another approach that circumvents the difficulties 

associated with phase space sampling is to use isotropic continuum solvation models 

(CSM), where the solvent is represented as a homogenous constant dielectric continuum 

surrounding the solute. In this way, implicit solvent models consider thermally averaged 

solvent molecules which leads to a model with only a small number of parameters used to 

represent the solvent with reasonable accuracy in most situations. CSM based models are 

first principle methods which have the advantage of having a computational expense 

similar to gas-phase models with a wide range of applicability.35-39 A key limitation of 

this approach is the inability or approximate approach for describing the site-specific 

interactions between the solute and the solvents, e.g., hydrogen bonding. Also, the 

parameterization of transition metal element specific parameters in the solvent models 

remains a challenge due to a lack of reliable experimental data (for main group elements 

implicit solvation models are highly accurate and predictive results can be obtained), e.g., 

there is a large uncertainty for the cavity radius of implicit solvation models to be used 

for transition metal atoms.  To give an example, the default cavity radius for Pt used in 
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the PCM (Gaussian),40 COSMO-RS (Turbomole/COSMOtherm),41-44 SM8 (universal 

solvation model),45 and PBF (Jaguar)46 solvation models are 2.332, 2.223, 1.740, and 

1.377 Å, respectively.  It seems that even if program codes report solvation model 

parameters for transition metal elements, these parameters have not been verified 

extensively since standard databases used for solvation model parameterization do not 

contain transition metal elements.47  Fortunately, the cavity radius parameter of the 

transition metal is only of importance in implicit solvent models if the surface segments 

of the metal atom are exposed to the solvent, i.e., the metal is not fully surrounded by 

ligands. This is indeed the case for most catalysis studies of supported nanoparticles in 

solution; however, it is usually not the case for fully coordinated transition metal 

complexes of importance in homogeneous catalysis studies, explaining why the reliability 

of these parameters has been of less concern in the past.  Figure 2.1 illustrates an extreme 

example of the importance of the cavity radius on the predicted water solvent effect on an 

adsorbed OH species on Ru(0001) computed with our implicit solvation method for metal 

surfaces (iSMS).24  While increasing the Turbomole default cavity radius for Ru by 10% 

(which leads approximately to the PCM default radius in Gaussian) changes the solvation 

energy by only ~0.5 kcal/mol; reducing the cavity radius by 10% (which leads 

approximately to the SM8 default radius) changes the solvation energy by more than 6 

kcal/mol.  We stress that the application of the isodensity approach, that avoids 

specifying cavity radii in implicit solvation models as done in VASPsol,48 has also its 

challenges considering that a single isodensity value has to be specified (i.e., there is less 

flexibility in optimizing the solvation model) and we have observed for metal systems 

that the solvation energy varies significantly in the typical range of isodensity values of 
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0.001-0.003 a.u. (VASPsol uses an isodensity value of 0.0025 e/Å3 which has been 

optimized together with other parameters by comparing a number of molecular solvation 

energies in water48).   

Microsolvation. To address the challenge of site-specific interactions in 

continuum solvation models, mixed continuum models are often adopted, in which in 

addition to the implicit solvent a few (usually one or two) solvent molecules are explicitly 

included to the ab initio description of the reaction system to better characterize, e.g., 

hydrogen bonding.49 This approach, dubbed as microsolvation,49-51 has been successfully 

applied for the accurate prediction of the ��� values of mono and polyprotic acids in 

aqueous solution and should be very accurate whenever the solute-(explicit) solvent 

interaction is strong enough that it can be well described within the harmonic 

approximation along the whole reaction coordinate.52-53 However, for most applications 

the solute-solvent interaction is sufficiently weak or changes significantly along the 

reaction coordinate that it is likely very challenging to obtain reliable results with the 

microsolvation approach. Practical challenges are related to (1) the solvation model 

correctly reproducing the boundary condition between the solute and the bulk,54-56 (2) 

difficulties associated with the correct placement and orientation of the individual solvent 

molecules, and (3) the inability to evaluate entropic effects beyond the harmonic 

approximation associated with the explicit solvent molecules.23  

Explicit solvation models using empirical/fitted force fields. A classical force field 

or empirical potential description of a solid-liquid interface system is computationally 

very efficient and has been used to simulate thousands of atoms for nanoseconds as 

performed for example with the ReaxFF force field in the study of hydrogen hopping at 
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the silica-water interface57 and with neural network potentials for the study of the water-

Cu(111) interface.27  We consider these approaches to be very interesting, although the 

potential parameterization and transferability of potential parameters58 remains a 

formidable task such that we consider this approach to be less attractive for biomass 

catalysis applications, where distinct, chemically different bonds are broken and formed.  

Getman and coworkers33,59 have recently adopted a combination of classical MD 

simulations and DFT calculations for computing adsorption and reaction energies at 

solid-liquid interfaces. Their approach is based on classical (force field) MD simulations 

for generating characteristic structures that are subsequently refined by quantum chemical 

DFT calculations.  Unfortunately, they stated that the proposed method is unable to 

describe the water-adsorbate interactions for larger adsorbates (e.g.,������� ∗).33   

Explicit hybrid (QM/MM) models. A rational improvement would be the use of a 

well calibrated multilevel quantum mechanical (QM) and molecular mechanical (MM) 

method60-63 with a proper free energy estimator. In this class of methods, all atoms 

involved in the reaction coordinate of an elementary process are treated quantum 

mechanically while the rest of the system is described classically. Due to the first 

principles treatment of the bond breaking/forming region, parameterization of MM atoms 

is significantly facilitated and the success of these models in the enzyme and 

homogeneous catalysis communities have been highlighted with the 2013 Nobel prize for 

chemistry to Karplus, Levitt, and Warshel.  

In the following, we describe our explicit solvation model for metal surface64 

(eSMS) method which is such an explicit, hybrid (QM/MM) approach for metal surfaces 

that is conceptionally similar to the ONIOM method used in the homogeneous and 
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enzyme catalysis community.65-66 Our fundamental idea has been that while the 

electrostatic interaction between solvent molecules and adsorbed moieties is long ranged 

requiring large simulation systems, the indirect effect of solvent molecules on the free 

energy of elementary processes on a transition metal surface by changing the electron 

density of surface metal atoms is short ranged (a consequence of the mobile charge 

carriers in metals screening electric fields). As a result, the energy of an adsorbed moiety 

on a metal surface in a liquid (aqueous) reaction environment can be described as a 

perturbation (small or large) from the system in vacuum (best described through periodic 

slab models), where the perturbation is described by cluster models embedded in a point-

charge field of the solvent. In other words, for liquid water:  

��������+���������
����� = ���������+���������

������ � ���������+���������
����� ����������+���������

������ �

 (2.1) 

where, ��������+���������
������  is the plane wave DFT energy of the periodic metal slab in 

absence of water (computed using VASP 5.367-68), ��������+���������
�����  is the QM/MM 

energy of the system with water molecules and metal atoms away from the reaction zone 

being replaced by MM models, and ��������+���������
������  is the QM/MM energy of the 

system with the same treatment of metal atoms in absence of water. The last two energy 

terms are computed in our workflow using the non-periodic gaussian-orbital based 

electronic structure program package TURBOMOLE 6.541,69-70 (one QM calculation in 

the electrostatic mean field of water molecules71-73 and one calculation in the absence of 

water) and the force field based molecular dynamics code DL_POLY 4.03.74 To afford 

sampling of the water/solvent configuration space, only one electronic structure 

calculation can be performed for a given configuration of QM atoms in the evaluation of 
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��������+���������
�����  and we use the fixed charge approximation73 as commonly done in the 

enzyme community (also validated by us64) when calculating the system energy for 

different water conformations. Having determined an efficient yet accurate interaction 

potential for our reaction system at a metal-water interface that is based on a hybrid 

QM/MM approach, we can use various tools developed in the enzyme community for 

computing free energy differences and barriers and we have implemented the QM/MM 

minimum free energy path (QM/MM-MFEP) method for optimizing the intrinsic reaction 

coordinate on a quantum chemical potential of mean force (PMF) surface in our program 

codes.75-78   

 Finally, we briefly note that alternative hybrid (QM/MM) solvent models such as 

3D-RISM-KH that have their roots in the integral equation theory of liquids and that 

describe the solvent by probabilistic radial distributions functions (RDF) have recently 

been developed.79-81 These methods promise to significantly reduce the computational 

sampling effort of hybrid QM/MM models.  However, these novel theories also require 

an interaction potential between the solvent and the metal (a limitation of all QM/MM 

methods) and current implementations are limited to 2-body interactions,82 i.e., they can 

likely not be used for metallic systems. Finally, these integral equation theories cannot be 

more accurate than our explicit hybrid (QM/MM) model since they involve an additional 

approximation in regard to the closure relation, and Fujita and Yamamoto observed a 

substantial size-dependent error in solvation free energies for hydrophobic solutes 

computed by 3D-RISM.83   

In the following, we employ our computational eSMS approach for the initial O-

H and C-H bond cleavages of ethylene glycol (EG) over Pt(111) under aqueous phase 
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processing conditions and contrast our explicit solvation (eSMS) results with implicit 

(iSMS) solvation data (see computational details in the supporting info). We have chosen 

EG as the probe reactant since EG is the smallest, i.e., computationally most accessible, 

oxygenated hydrocarbon with a C-C bond and a C:O stoichiometric ratio of 1:1 that has 

been used as a representative reactant molecule for carbohydrates in various experimental 

studies.84-86 A detailed first principles (PBE87-88) microkinetic modeling study of EG 

reforming on a Pt(111) model surface suggested that in condensed water (implicit 

solvation with iSMS24) the initial O-H splitting and the subsequent -H abstraction to 

glycoaldehyde are the most kinetically relevant elementary steps over a wide range of 

temperatures (373-673K), with Campbell degree of rate control values, ��� , at 500 K of 

0.69 and 0.26, respectively (deviations from zero indicate rate control).89  Calculations 

further indicated that the aqueous phase significantly facilitates the primary C-H bond 

scission relative to the O-H bond scission at all temperatures (see free energy barriers in 

Table 2.1). Along these lines, Gu et al.90 have recently pointed out that O-H bond 

cleavage for aqueous phase reforming of ethanol over Pt(111) is thermodynamically 

unfavorable compared to C-H cleavage.  They used the periodic continuum solation 

model, VASPsol, to derive this conclusion.48 However, it has long been argued that the 

inclusion of explicit water in the reaction system significantly facilitates the O-H bond 

scission on hydrophobic interfaces through hydrogen bonding or ����+����
+complex 

formation91-97 − an effect not directly examined in previous computational studies 

utilizing implicit solvation models. Hydrogen bonding and a strong electrostatic 

interaction between an adsorbed species and the water solvent should lead to a 

considerable enthalpic stabilization.� Following� the� classic� example� of� the� “Iceberg”�
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model,32,98 such an enthalpic stabilization leads to an increased ordering of water 

molecules around the solute which again comes with an entropy penalty and hence, it is 

critical to accurately describe the anticipating entropy-enthalpy compensation that cannot 

be described by microsolvation or the bilayer adsorption/ice model.  A promotional effect 

of water acting as a co-catalyst for H-abstraction during the dissociative chemisorption of 

alcohols has also been suggested in some experimental studies.99-100 Overall, it seems that 

computational models that do not sample configuration space (e.g., implicit solvent 

models) are challenged with accurately describing the aqueous solvent effect in O-H 

bond cleavage originating from directional hydrogen bonding.  Here, we test if our 

explicit solvation model, eSMS, might be able to predict a solvation effect for O-H 

cleavage in EG more in agreement with intuition and experimental studies. 

���������� ∗∗���∗�↔ ���������� ∗∗���� ∗  (2.2) 

Accurate estimation of free energy differences between any two states requires 

significant phase space overlap which can be accomplished by initiating a sufficient 

number of transitional images between them. Figure 2.2 illustrates a free energy profile 

(potential of mean force - PMF) by introducing 39 intermediate states between the 

reactant and the transition state and 15 intermediate images between the transition state 

and the product state. In all cases, it has been ensured that the difference in energy 

between two adjacent images is always lower than the thermal energy (��� =

0.043�������500�). Our eSMS calculations indicate that an aqueous reaction 

environment has a significant impact on both the free energy of reaction (∆∆���� =

��0.37 ± 0.08���) and the free energy of activation (∆∆�† = ��0.46 ± 0.05���) for the 

primary O-H scission of ethylene glycol. This contrast with our implicit (iSMS) 
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computations, where we found at 500 K ∆∆���� = ��0.09��� and ∆∆�† = ��0.02���. 

Due to the ambiguity associated with the definition of the Pt cavity radius in implicit 

solvation models,40,43,45-46 we repeated all calculations with a 10% smaller and larger Pt 

cavity. No noteworthy effect on free energies (smaller 0.03 eV) was detected because of a 

change in Pt cavity radius.  

To better understand the underlying reason of the solvent stabilization of the 

transition state and dissociated product state (all approximated to be identical in all 

reaction environments), we repeated our explicit solvation calculations (eSMS) at five 

different temperatures, ranging from 460 to 540 K, and computed the solvent effect on 

the heat of reaction. The results shown in Figure 2.3 indicate that due to the strong 

hydrogen bonding between adsorbed species and water, there is a strong enthalpic 

stabilization (∆∆���� = ��0.85���) that is partially compensated by a strong entropic 

contribution (-�∆∆���� = ��0.55�������500�) in the computation of the free energy. 

Again, our implicit (iSMS) method predicts a much smaller enthalpic and entropic 

solvent effect of ∆∆���� = ��0.13��� and -�∆∆���� = ��0.05�������500�.  

Interestingly, both solvation models agree qualitatively with the concept derived for two 

interacting dipoles101-102 that the free energy of solvation is approximately half the 

solvation enthalpy due to the free energy cost associated with the loss of configurational 

freedom.  

Next, we turn our focus on the -H bond scission of ethylene glycol to 

glycoaldehyde. 

���������� ∗∗���∗�↔ ���������� ∗∗ ���� ∗  (2.3) 
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Figure 2.4 illustrates a free energy profile for the C-H bond cleavage comprised of 23 

intermediate states between the reactant and the transition state, and 25 intermediary 

images between the transition state and the product state. Our eSMS calculations indicate 

that the aqueous reaction environment has only a minor impact on both the free energy of 

reaction (∆∆���� = ��0.02 ± 0.06���) and free energy of activation (∆∆�† = ��0.16 ±

0.05���) at 500 K. The difference between the effect of water for the C-H and O-H bond 

cleavage reactions can be traced back to the presence of a well-exposed (to the aqueous 

phase) oxygen atom in the reacting hydroxyl group that can accept hydrogen bonds and 

can particularly be stabilized by the surrounding water molecules in the transition and 

product state.  In contrast, in the C-H bond cleavage the carbon atom cannot accept 

hydrogen bonds and interacts similarly with the surrounding water in the reactant and 

product state.  Only in the transition state, the elongated C-H bond is stabilized by 

surrounding electrostatic and possibly hydrogen-bond interactions between the 

dissociating hydrogen atom and the surrounding water molecules.  

Considering that hydrogen bonding is of lesser importance in the C-H bond 

cleavage, our explicit (eSMS) solvation model calculations are in good agreement with 

our implicit (iSMS) solvation data (see Table 2.1). Our implicit solvation model predicts 

that the presence of water has virtually no impact on the free energy of reaction 

(∆∆���� = ��0.005���) and only a small favorable effect on the kinetics (∆∆�† =

��0.08���) at 500 K. 

Since any stabilization of adsorbed moieties in our continuum solvation model, 

that is based on COSMO-RS,43,103 has to originate from the polarization surface charge 

densities (SCD) (even hydrogen bonding is empirically parameterized based on SCD104-
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105), we examined the charge densities of the surface segments along the C-H reaction 

coordinate to understand the implicit solvent effect on free energies for this reaction in 

more detail. We note that the hydroxyl groups are equally exposed to the aqueous phase 

in the reactant (RS), transition (TS), and product states (PS) such that they do not 

significantly contribute to a change in solvation free energy. In both the reactant and 

product state the most polarized SCD segments in the proximity of the reacting moiety 

are somewhat similar ( ���−�
�� = -0.70 

�

��� versus ���−�
�� = -0.90 

�

��� ) (see Supporting 

Information, Figure A.1.4 (a) and (c)).  This contrasts with the generally higher surface 

charge densities around the reacting moiety in the transition state with a maximum value 

of  ���−�
�� = -1.35 

�

��� (see Figure A.1.4 (b)). The larger SCDs in the transition state lead 

to a stronger interaction with the surrounding aqueous phase and a stabilization of the 

transition state relative to the reactant state for C-H bond cleavage on Pt(111).  

To conclude, we examined some of the prevailing approaches for modeling 

condensed phases in heterogeneous catalysis. All atomistic quantum chemical (DFT) 

methods and classical force field simulations are currently not the most practical 

approaches for describing solvent effects in heterogeneous catalysis due to the large 

computational expense and limited/unknown accuracy, respectively. Microsolvation and 

bilayer adsorption/ice models are most appropriate whenever the system temperature is 

low enough or the solvent-solute interaction strong enough that entropic effects along the 

reaction coordinate can be described accurately by the harmonic approximation.  There is 

a risk that due to a lack of extensive configuration space sampling, these models 

significantly overestimate solvent effects whenever the harmonic approximation breaks 

down. Likely, these models are more appropriate for predicting enthalpies of solvation 
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than free energies of solvation. In agreement with prior reports, we found that enthalpies 

of solvation are generally larger than free energies of solvation (roughly twice as large 

although the overestimation is temperature and system dependent). Next, the implicit or 

continuum solvation models are the easiest models to apply that can convey qualitative 

results for the computation of solvent effects.  They are most appropriate whenever 

directional hydrogen bonding is not present or does not change significantly along a 

reaction coordinate. We found these models to underestimate strong hydrogen bonding 

effects. Also, the parameterization for transition metal element dependent parameters 

needs a more thorough validation. Finally, we deem QM/MM models to be currently the 

most appropriate models for predicting solvation effects in heterogeneous catalysis with 

an adequate balance between computational expense and chemical accuracy in regard to 

potential energy surface description and configuration space sampling. In this 

contribution, we reviewed such a hybrid QM/MM model, called eSMS, and applied it to 

C-H and O-H bond cleavage of ethylene glycol on Pt(111) under aqueous phase 

reforming conditions to explain the counter-intuitive (and likely wrong) result of implicit 

solvation models that predict hardly any aqueous solvent effect in O-H bond cleavage. 

Explicit solvation (eSMS) effect calculations agree with the implicit solvation models for 

C-H bond cleavage where they both predict a small solvation effect.  In contrast and 

unlike the implicit solvation models, our explicit solvation model predicts a larger solvent 

stabilization of both the transition state and product state in O-H bond cleavage due to its 

ability to approximately describe hydrogen bonding.  As a result, O-H bond dissociations 

are significantly favored over C-H bond dissociations under aqueous processing 

conditions of biomass.   
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It should be noted here that our eSMS model is currently limited to the 

computation of free energy differences of processes at solid-liquid interfaces and the 

successful application of the model hinges on the availability of metal-water interaction 

potentials (we generally assume that the adsorbed hydrocarbon-water interaction can be 

described approximately with current force fields developed in the homogeneous and 

enzyme catalysis communities). As a result, it can currently not be applied to, e.g., high 

index metal surfaces, supported nanoparticle models, hydroxylated oxides, zeolites 

etc.106-108 However, we are currently in the process of developing artificial neural network 

potentials for the description of metal-water interactions for various transition metal 

elements and surface structures.27,109-110 Also, we aim to introduce required modifications 

to our eSMS model to compute free energies of the adsorption/desorption processes in 

the near future. 
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2.2 Tables and Figures 

Table 2.1: Aqueous phase effects on the free energy of reaction, free energy of activation, 
heat of reaction, and entropic contributions for O-H and C-H model reactions at 
500 K on Pt(111) using implicit and explicit solvation models. Vapor phase PBE 
calculations predicted at 500 K for C-H bond cleavage: ∆���� = ��0.48���, 
∆���� = ��0.40���, ∆�† = ��0.73��� and for O-H bond cleavage:  ∆���� =
�0.38���, ∆���� = ��0.45���, ∆�† = ��0.70���. 

 

Reaction 
Solvation 

model 
∆∆���� 

(eV) 
∆∆�† 
(eV) 

∆∆���� 
(eV) 

��∆∆���� 
(eV) 

���������� ∗
∗ � ∗�
↔ ��������� ∗
∗��� ∗ 

iSMS -0.09 -0.02 -0.13 0.05 

eSMS -0.37±0.08 -0.46±0.05 -0.85 0.55 

���������� ∗
∗ � ∗�
↔ ��������� ∗
∗ ��� ∗ 

iSMS 0.01 -0.08 5.68×10-3 -1.21×10-4 

eSMS -0.02±0.06 -0.16±0.05 - - 
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Figure 2.1: Effect of cavity radius of Ru (±10% of the Turbomole value of 2.223 Å) on 
the water solvation free energy of an adsorbed OH group (HCP) on Ru(0001) at 
298 and 423 K. Plotted is the difference in the adsorption free energy of OH 
in the presence of liquid water (OH(g) + ∗(l) ↔ OH∗(l) ) and absence of any 
aqueous solvent (OH(g) + ∗(g) ↔ OH∗(g)).  



 

25 

 

 

Figure 2.2: Free energy profile for O-H bond cleavage of ethylene glycol in vapor and 
aqueous phases over a Pt(111) model surface at 500 K (without considering 
vibrational contributions of the adsorbed ethylene glycol species to the partition 
function). The aqueous phase profile has been plotted for a single QM/MM 
calculation using Bennett Acceptance Ratio111 (BAR) as the free energy estimator 
among the 10 QM/MM calculations performed. The transition state appears to have 
a lower energy compared to adjacent images because the intermediate images 
introduced along the approximate reaction coordinate were not optimized to the 
minimum free energy path.   



 

26 

 

 

Figure 2.3: Temperature dependence of aqueous solvation effect on the free energy 
reaction for the primary O-H bond scission of ethylene glycol over a Pt(111) model 
surface. The error bars indicate 95% confidence interval for the aqueous phase 
effect on the free energy of the specified reaction.   
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Figure 2.4: Free energy profile for C-H bond cleavage of ethylene glycol in vapor and 
aqueous phases over a Pt(111) model surface at 500 K (without considering 
vibrational contributions to the partition function). The aqueous phase profile has 
been drawn for a single QM/MM calculation using Bennett Acceptance Ratio111 
(BAR) as the free energy estimator among the 10 QM/MM calculations performed.  
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CHAPTER 3 

COMPUTATIONAL INVESTIGATION OF AQUEOUS-PHASE 

EFFECTS ON THE DEHYDROGENATION AND 

DEHYDROXYLATION OF POLYOLS OVER Pt(111)
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3.1 Abstract 

Prediction of solvation effects on the kinetics of elementary reactions occurring at 

metal-water interfaces is of high importance for the rational design of catalysts for the 

biomass- and electrocatalysis communities. A lack of knowledge of the reliability of 

various computational solvation schemes for processes on metal surfaces is currently a 

limiting factor. Using a multilevel quantum mechanical/molecular mechanical (QM/MM) 

description of the potential energy surface, we determined characteristic time and length 

scales for typical free energy perturbation (FEP) calculations of bond cleavages in 

ethylene glycol, a sugar surrogate molecule, over Pt(111). Our approach is based on our 

explicit solvation model for metal surfaces (eSMS) and the repetition of FEP calculations 

to estimate confidence intervals. Results indicate that aqueous phase effects on the free 

energies of elementary processes can be determined with 95% confidence intervals from 

limited configuration space sampling and the fixed charge approximation used in the 

QM/MM-FEP methodology of smaller 0.1 eV. Next, we computed the initial O-H, C-H, 

and C-OH bond cleavages in ethylene glycol over Pt(111) in liquid water utilizing two 

different metal-water interaction potentials. Our calculations predict that aqueous phase 

effects are small (< 0.1 eV) for the C-H bond cleavage and the activation barrier of the C-

OH bond cleavage. In contrast, solvation effects are large (> 0.35 eV) for the O-H bond 

cleavage and the reaction free energy of the C-OH bond scission. While the choice of a 

different Pt-water force field can lead to differences in predicted solvation effects of up to 

0.2 eV, the differences are usually smaller (< 0.1 eV) and the trends are always the same. 

In contrast, implicit solvation methods appear to currently not be able to reliably describe 
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solvation effects originating from hydrogen bonding for metal surfaces even 

qualitatively.  

3.2 Introduction 

 The ubiquitous nature of solvents and their pervasive usage in the chemical 

industry1 makes the study of solvent effects an important area of investigation. The fact 

that the presence and nature of solvents can affect chemical equilibria was recognized as 

early as 1896 with the concurrent revelation of the keto-enol tautomerism in 1,3-

dicarbonyl compounds and the nitro-isonitro tautomerism of primary and secondary nitro 

compounds.2-5 As evidenced by the seminal work of Menschutkin,6 it was also 

demonstrated early on that the rate of chemical reactions can be attuned through the 

prudent choice of solvents. The role of solvents in homogeneous catalysis has long been 

systematically investigated and appropriated for industrial applications for several 

hydrogen addition and abstraction processes,7-8 oxo-synthesis,9-12 cross-coupling 

reactions,13-15 cycloadditions16-17 etc. One prominent example of the industrial practice of 

solvent effects is the aqueous two-phase catalysis in hydroformylation, which helps 

overcome the fundamental hurdle of homogeneously catalyzed processes, namely the 

separation of catalyst and product.18 Solvents have also been reported to affect the 

activity and selectivity of certain heterogeneously catalyzed hydrogenations,19-25 

oxidations,26-30 and electrochemical reactions.31-34 It is now predominantly acknowledged 

that solvents have pronounced effects on reaction equilibria, reaction pathways, yields, 

and product selectivity. Therefore, it is no wonder that liquid-phase processing 

technologies are exceedingly sought after for the heterogeneously catalyzed conversion 

of highly functionalized lignocellulosic biomass which has the potential to reduce process 
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cost as well as increase the target product selectivity. To design highly active, selective, 

and robust catalysts for these processes, there is a critical need to gain a molecular-level 

understanding of the chemical reactions at the solid-liquid interface. By understanding 

the role of the solvent for surface catalyzed reactions, solvent properties can be chosen to 

tailor� the� catalyst� activity� and� selectivity.� This� process� of� “solvent� engineering”� could�

lead to the design of more selective and less energy intensive processes for challenging 

chemical transformations such as the conversion of biomass. Despite considerable 

progress in our understanding of the stability and the surface properties of metal-

supported nanoparticles in gas phase environments, the effect of a liquid phase is less 

investigated and not well understood, partly due to the limited availability of 

experimental (in situ and in operando)28,35-38 and theoretical studies,25,30,39-41 and partly 

due to the added complexity of a reaction system containing both a complex 

heterogeneous catalyst and a condensed phase.  

Including the effect of a liquid phase environment to chemical reactions occurring 

at solid-liquid interfaces is an intricate challenge in computational chemistry due to the 

enormity of the tasks in hand, viz., (1) an all-atomistic quantum mechanical description 

of the chemically relevant part of the system involving all the atoms and their immediate 

neighborhood relevant to the bond breaking and forming processes, (2) computation of 

partition functions in condensed phase systems where the harmonic approximation42 is no 

longer valid, which requires an extensive phase space sampling on a high dimensional 

potential energy surface, and (3) a sufficiently large computational model system that 

adequately describes the long ranged electrostatic interactions between solute and solvent 

molecules, the non-harmonic dynamic fluctuations of the complex liquid phase, and can 
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circumvent the pitfalls of finite-size effects.43-44 While� ‘on� the� fly’� electronic� structure�

calculations in brute force ab initio molecular dynamics (AIMD) simulations45-47 have 

been employed lately to present some thought-provoking results,30,48-49 the massive 

computational cost associated with it constrains both the size of the simulation system (a 

few hundred atoms) and the time scale of simulation (a few picoseconds).50-52 An 

alternative approach is to use continuum solvation models, where the solvent is replaced 

by a continuum with an appropriate dielectric constant and the solute is placed in cavities 

constructed within this continuum.53 Although continuum solvation models provide a 

much faster way to approximate free energies of reaction in solution, they perform poorly 

for describing the anisotropic site-specific interactions between solute and solvent 

molecules.54 The need for an accurate description of the potential energy surface (level of 

theory), statistically relevant portrayal of the phase space, and adequate model system-

size, all the while keeping the computational cost affordable can be realized by 

employing multilevel quantum mechanical/molecular mechanical (QM/MM) methods.55-

57 In this class of methods, the active site and the immediate reaction environment are 

treated from first-principles while the nonreactive part of the system and the bulk of the 

solvent medium are treated using a classical molecular mechanical level of theory. We 

have previously developed such a hybrid QM/MM model dubbed as Explicit Solvation 

model for Metal Surfaces (eSMS)58 for describing heterogeneously catalyzed reactions at 

solid-liquid interfaces and applied it to describe aqueous phase effects on the C-C bond 

cleavage of a double-dehydrogenated ethylene glycol moiety on Pt(111).  

At first glance, the use of molecular dynamics (MD) simulations in hybrid 

QM/MM models for equilibrium phase space sampling and computation of a potential of 
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mean force appears trivial. The solute of interest surrounded by some number of solvent 

molecules is equilibrated with respect to an initial configuration, and dependent on the 

correlation time of the solvent molecules, the phase space is sampled by collecting 

assorted snapshots from the MD trajectories. The so-called�‘equilibration’� stage�ensures�

that by the end of this stage the system is sampling from a proper thermodynamic 

ensemble, i.e., the averages and probability of localized fluctuations of thermodynamic 

properties follows statistical equilibrium rules. However, the significant computational 

effort needed for phase space sampling, paired with the requirement for results converged 

to the appropriate level of accuracy to answer the problem at hand, leads to a desire to 

identify a priori the required timescale for the equilibration and sampling phase of the 

MD simulations. This knowledge is particularly relevant also if a high level of theory 

such as DFT is needed to describe the entire simulation system, instead of a QM/MM 

level of theory.  Only with such knowledge can we estimate whether enough 

computational resources are available for a given level of theory. Next, finite size effects 

are ubiquitous in many simulation phenomena.59-60 For example, ensemble size effects61-

62 that arise from a too small number of particles in a simulation system and implicit or 

anomalous size effects59,63-64 that can originate from an artificial stabilization of the 

system due to imposing an infinite periodicity are common challenges. Thus, for practical 

computations of solvation effects in heterogeneous catalysis, it is essential to possess a 

knowledge of a characteristic system size required for converged simulation results.  

In a previous study, we performed a detailed first-principles vapor and aqueous 

phase (implicit solvation) investigation of ethylene glycol (EG) reforming over a Pt(111) 

model surface.65 Our calculations suggested the primary O-H scission and the subsequent 
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-H abstraction to be the key rate controlling steps over a wide range of temperatures 

(373-673 K). We then employed our QM/MM minimum free energy path (QM/MM-

MFEP) methodology to calculate the aqueous phase effects on the above-mentioned bond 

cleavages (without optimization in aqueous phase).54 Our results indicated that the 

aqueous phase has a much larger effect on the free energy of reaction and the free energy 

of activation of O-H splitting compared to that of C-H splitting. In this study, using the 

O-H splitting of ethylene glycol as a case study, we first identify convergence criteria for 

our QM/MM calculations, namely, the required timescale for equilibration, the required 

amount of phase space sampling, and the number of solvent molecules to be included in 

the simulation to accurately represent the physical system. Next, we investigate the initial 

O-H, C-H and C-OH bond dissociations in liquid water over Pt(111) using our QM/MM-

FEP methodology with two different Pt-water force fields (Spohr-Heinzinger66 and Metal 

potential67) and various implicit solvation methods.53,68-70 Although the C-OH bond 

cleavage was not identified by our implicit solvation study to be rate controlling, 

understanding solvation effects for C-OH bond cleavages is similarly essential to C-H 

and O-H bond cleavages for catalytic biomass processing.   

In contrast to our previous study, all reactants, products, and transition states for 

the above-mentioned reactions are optimized in the aqueous reaction environment.  The 

results of these calculations suggest that aqueous phase effects are small (< 0.1 eV) for 

the C-H bond cleavage and the activation barrier of the C-OH bond cleavage while they 

are large (> 0.35 eV) for the O-H bond cleavage and the reaction free energy of the C-OH 

bond scission. While the choice of a different Pt-water force field can lead to differences 

in predicted solvation effects of up to 0.2 eV, the differences are usually much smaller (< 
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0.1 eV) and the trends are always the same. In contrast, implicit solvation methods appear 

to currently not be able to reliably describe these solvation effects for metal surfaces even 

qualitatively.  

3.3 Computational Details 

3.3.1 Planewave DFT Calculations 

Vapor phase DFT calculations were carried out by employing periodic boundary 

conditions as implemented in the Vienna Ab Initio Simulation Package (VASP 5.4).71-72 

A frozen-core, all-electron projector augmented-wave (PAW)73 method was utilized to 

avoid the singularities of Kohn-Sham wavefunctions at the nuclear positions. The number 

of valence electrons considered for Pt, C, O, and H are 10 (5d96s1), 4 (2s22p2), 6 (2s22p4), 

and 1(1s1), respectively. The purely quantum mechanical phenomena of electron 

exchange and correlation effects were accounted for by using the Perdew-Burke-

Ernzerhof (PBE)74-75 functional within the semi-local generalized gradient 

approximation.76 Brillouin zone integrations have been performed with a 4×4×1 

Monkhorst-Pack77 k-point grid and electronic wavefunctions at each k-point were 

expanded using a discrete plane-wave basis set with kinetic energies limited to 400 eV. 

Due to the partial filling of bands for the metallic Pt, a first order smearing method 

(Methfessel-Paxton)78 with 0.10 eV smearing width was employed, which allowed us to 

calculate the entropic contributions due to the smearing very accurately. Dipole and 

quadrupole corrections (along the surface normal) to the total energy have been 

calculated using a modified version of the Makov-Payne79 method and Harris corrections, 

based on the non-self-consistent Harris-Foulkes80-81 functional, have been applied to the 
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stress-tensor and forces. A 4×4-unit cell with four layers of metal atoms (bottom two 

layers fixed in their bulk positions) has been employed to mimic the Pt(111) model 

surface in the vapor phase. The interaction between the periodic images along the surface 

normal has been curtailed by introducing a 15 Å vacuum on top of the surface. The self-

consistent field (SCF) convergence criterion for the electronic degrees of freedom of the 

valence electrons was set to 1.0×10-7 eV. Transition state structures for the elementary 

processes were located using a combination of climbing-image nudged elastic band82-83 

and dimer84-85 methods. Finally, the minima and the first order saddle points were 

validated by computing the Hessian matrix and vibrational spectra. 

3.3.2 Non-periodic cluster calculations 

Cluster model DFT calculations in vacuum have been carried out using the 

TURBOMOLE 7.2 program package.86-88 Two layers of Pt atoms with a hexagonal 

shaped geometry (51 atoms) were chosen to model the Pt(111) cluster surfaces. The 

convergence of the total QM/MM energy with respect to the lateral size and depth of the 

cluster geometry can be found elsewhere.58 An improved version of the default 

TURBOMOLE basis sets (def-bases) with split valence and polarization functions (def2-

SVP)89-90 were employed to represent the adsorbate atoms. Pt atoms were represented 

using scalar relativistic effective core potentials (ECPs) in conjunction with split valence 

basis sets augmented by polarization functions.90-91 Electron exchange and correlation 

effects were accounted for by employing the PBE functional.74-75 To speed up the 

calculation as recommended by TURBOMOLE, the RI-J approximation with auxiliary 

basis sets was used to approximate the coulomb integrals.92-93 An SCF convergence 
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criterion of 1.0 ×�10−� Hartree was established and a Gauss-Chebyshev type spherical 

grid, m4, was employed to perform the numerical integrations.87  

3.3.3 Molecular Dynamics (MD) Simulations 

MD simulations were carried out using the DL_POLY 4.03 molecular simulation 

program package.94 The initial 4×4 Pt(111) unit cell was augmented laterally to a 16×20 

surface with further vacuum added in the Z-direction resulting in a 45.0 Å × 48.7 Å × 

49.0 Å simulation box comprising of 1280 Pt atoms. The simulation box height was 

selected based on the work from Behler et al.95 who found that simulations of metal-

water interfaces should contain a water layer of ~40 Å height. The experimental saturated 

liquid water density of ~0.8 g/cm3 at 500 K was achieved by packing the simulation box 

with 2200 water molecules. All metal and adsorbate atoms were kept fixed while the 

geometry of water molecules was constricted to that of TIP3P96 geometry with the 

RATTLE algorithm,97 a velocity version of the SHAKE algorithm,98 in conjunction with 

the velocity Verlet (VV) integrator99 to solve the Newton’s� equations� of� motion.� � The�

TIP3P model was employed for the force field parameters of liquid water while the van 

der Waals parameters for adsorbate atoms were obtained from the OPLS force field.100-101 

In addition to the OPLS parameters, the Lennard-Jones parameters from the CHARMM 

all-atom force field102 were used for the hydrogen atoms of the adsorbed moieties. 

Lennard-Jones parameters for hydrogen atoms are important in QM/MM optimizations 

that permit hydrogen atoms to approach water molecules and leave the protective 

environment of a neighboring carbon or oxygen atom. Both the Spohr-Heinzinger (SH)66 

and Metal potential67 were employed to describe the Pt-water interaction. However, only 

the SH potential was utilized for the optimization of the adsorbed species in liquid water, 
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because this potential has recently been found to give a better description of the water-

Pt(111) interaction compared to that of the Metal potential.103 The charges for the QM 

atoms were estimated using the natural population analysis (NPA).104 To describe the 

interaction of the TIP3P water point charges with the quantum chemically described 

cluster model, we employed the periodic electrostatic embedded cluster method 

(PEECM)105 as implemented in TURBOMOLE. Simulations were carried out in a 

canonical ensemble (NVT) with Nosé-Hoover thermostat.106-107 A 1 ps relaxation time 

constant for temperature fluctuations was used to maintain the average system 

temperature. Electrostatic interactions were accounted for by using the Smoothed Particle 

Mesh Ewald (SPME) method108 with automatic parameter optimization for default SPME 

precision and a 12 Å cutoff radius was adopted for the van der Waals interactions and the 

transition between short and long range electrostatic interactions. If not specified 

differently, all systems were equilibrated for 250 ps and sampled for 725 ps using a 1 fs 

timestep. To optimize structures in an aqueous reaction environment, we utilized the 

fixed-size ensemble approximation with 10,000 MM conformations recorded every 50 fs. 

The time interval for recording structures is based on a recent study of liquid water by 

Cowan et al.109 who� concluded� that� “liquid� water� essentially� loses� the� memory� of�

persistent correlations in its structure�within�50�fs”.� 

3.3.4 QM/MM Energy Calculation 

A QM/MM minimum free energy path (QM/MM-MFEP)56-57 method for 

optimizing the intrinsic reaction coordinate on a potential of mean force (PMF) 

description of the reaction system has been implemented in our program packages. A full 

description of this methodology, eSMS (Explicit Solvation for Metal Surfaces) can be 
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found elsewhere.58 Free energy calculations require energy evaluation from uncorrelated 

measurements of the system and ideally the energy estimator should also be capable of 

minimizing the statistical bias and variance of the free energy differences of the physical 

system being studied. Exponential averaging (EXP), also known as the Zwanzig 

relationship110 has long been applied to study a variety of problems such as amino acid 

recognition,111 RAS-RAF binding affinity,112 and octanol/water partition coefficients,113 

etc. However, the EXP has been shown to represent poor efficiency and phase space 

overlap,114-115 and also is largely dependent on the distribution of the QM/MM energy.116 

Here, we employed the Bennett acceptance ratio (BAR)117 as the free energy estimator 

which uses both the forward and reverse distributions simultaneously in a more efficient 

way than simply averaging the forward and reverse exponential estimators. BAR has 

been demonstrated to be advantageous in practical atomistic simulations as it displays a 

lower bias and variance of the free energy estimates when compared to EXP and 

thermodynamic integration (TI).114,118  Finally, the whole free energy estimation 

procedure has been repeated three times to establish 95% confidence intervals for 

evaluating the free energy of reaction and free energy of activation, assuming a normal 

distribution.119 All uncertainties reported in this study are 95% confidence intervals. 

3.3.5 Periodic Implicit Solvation Calculations 

 In addition to implicit solvation calculations performed with the iSMS method,41 

we performed implicit solvation calculations at 500 K using VASPsol69-70 with a relative 

permittivity of water of 30.55 at reaction conditions.120 We used the default values for the 

parameter ��  that defines the value at which the dielectric cavity forms and for the width 

of the diffuse cavity, � .69 We also employed the default effective surface tension 
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parameter, � , for describing the cavitation, dispersion, and repulsive interaction between 

the solute and the solvent that are not captured by the electrostatic terms.69 While this 

parameter is likely most accurate only for simulations at 298 K and not at 500 K, it is an 

optimized parameter of the solvent model that cannot easily be obtained at other 

temperatures. Due to the absence of adequate experimental solvation data at 500 K, we 

decided that the default parameter is likely most meaningful. All other computational 

details for periodic implicit solvation calculations were kept the same as in our periodic 

vapor phase calculations. 

3.4 Results and Discussion 

The bidentate binding mode of ethylene glycol on the Pt(111) surface in vapor 

phase (adsorption through hydroxyl groups and formation of intramolecular hydrogen 

bonds due to the directionality of the hydroxyl groups, Figure B.1a) makes the direct C-C 

and C-O bond cleavages energetically unfavorable with a high activation barrier of 2.07 

eV and 2.09 eV, respectively. In the vapor phase, the initial hydrogen abstraction from 

the hydroxyl group to form an alkoxide intermediate is thermodynamically unfavorable 

(∆���� = ��0.40���� compared to the dehydrogenation of ethylene glycol to form 1,2-

dihydroxyethyl (∆���� = ��0.48����. However, due to the close proximity of the H atom 

of the hydroxyl group to the surface and the required rotation of the second hydroxyl 

group away from the surface for the C-H scission, the O-H bond cleavage is slightly more 

energetically favorable.54,65 The choice of the O-H bond scission reaction to establish the 

characteristic parameters for a well-converged QM/MM calculation has been motivated 

by the fact that the activation barrier is neither too high to make the FEP procedure 

computationally prohibitive, nor too low to make the PMF procedure ill-founded and the 
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characterization of the aqueous phase effect extremely problematic. We have recently 

demonstrated that in an aqueous reaction environment, the entropy-enthalpy 

compensation plays a major role in facilitating the O-H bond scission on hydrophobic 

interfaces and exhibits a substantial solvent effect on the free energy of reaction and free 

energy of activation, which makes this model reaction all the more compelling for 

determining characteristic parameters for explicit solvation calcualtions.54 

3.4.1 Timescale for equilibration 

Conventional approaches for achieving a thermal equilibrium in an MD 

simulation involve an equilibration stage. Although the timescale for the equilibration 

period is dependent on the initial phase space point and can be determined from the 

relaxation time of various properties and a normal distribution of their fluctuations; in 

practice, it is difficult to determine the slowest time scale of the simulation system and 

the equilibration time scale is often determined by computational affordability (even if it 

risks biasing the simulation result) and therefore, varies wildly from 300 fs in AIMD 

simulations121 to 10 ps in QM/MM simulations122 and 2 ns in combined DFT-MD123-124 

investigations that use a classical force field for the equilibration stage.  

Figure B.4a illustrates the total energy and Figure B.4b depicts the root mean 

square fluctuations (RMSF) of the potential energy during a 975 ps MD simulation of 

ethylene glycol solvated by 2200 water molecules, thermally coupling all the atoms to a 

Nosé-Hoover heat bath at 500 K. While the total energy graph might suggest that an 

equilibrated state has been obtained after ~4 ps, the RMSF appears to be converged only 

after ~200 ps. In order to quantify the timescale required for equilibration to predict 
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aqueous phase effects on a surface catalyzed reaction with greater certainty, we 

performed QM/MM free energy perturbation calculations with three distinct equilibration 

periods of 50 ps, 100 ps, and 250 ps. For each equilibration timescale, we explored the 

equilibrium phase space for 150 ps (1000 MM conformations 150 fs apart) with 3 

independent MD simulations. We employed BAR as the free energy estimator for each 

individual trajectory and computed 95% confidence intervals from the 3 independent 

observations. Figure 3.1 and Table B.1 display the variability in the estimation of the free 

energy of reaction and free energy of activation for our model reaction. Our calculations 

indicate that all equilibration stages lead overlapping error bars and approximately the 

same estimation of the free energy of reaction and activation (∆���� ≈ �0.09���, ∆�† ≈

�0.11 eV). Also, predicted error bars are smaller than 0.06 eV and therefore well within 

the inherent error of density functional theory calculations.125 Although the error bars are 

slightly larger for the simulations with the longest equilibration stage, we use in the 

following a 250 ps equilibration period for calculating aqueous phase effects on the free 

energies of surface catalyzed reactions. Our selection is motivated by the high degree of 

the RMSF in the potential energy at and below 100 ps (Figure B.4b), the fact that we do 

not possess estimates of the error bar of our error bars, and that we show in the next 

section that typical rotational water correlation times near our adsorbate are on the order 

of ~40 ps.  

3.4.2 Configuration space sampling 

An overarching theme in the calculation of liquid phase effects on free energies of 

elementary processes is the calculation of ensemble averages.116,126 To calculate a reliable 

estimate of an ensemble average, the potential energy surface has to be adequately 
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sampled for all the relevant configurations of the system. However, the sheer size of the 

configuration space originating from the sizable number of solvent molecules included in 

the simulation box makes extensive exploration of the configuration space extremely 

challenging. Owing to a lack of consensus on how much sampling of the configurational 

space is sufficient for a solvated adsorbed carbohydrate species on a metal surface for an 

error smaller than 0.1 eV, we computed the average rotational correlation time for water 

molecules� in� close� proximity� (up� to� 5� Å)� to� adsorbed� ethylene� glycol� on� Pt(111)� and�

performed QM/MM-MFEP calculations for our test reaction with ensemble averages 

calculated from 100, 500, and 1000 MM conformations that are 150 fs apart (i.e., 

sampling for 15 to 150 ps). Figure B.5 illustrates a three-exponential fit to the rotational 

correlation time of water molecules in close proximity to the adsorbate. The average 

rotational correlation lifetime is computed to be ~40 ps. This result agrees with both the 

correlation time of hydrogen bonds between a water layer and a hydrocarbon species 

adsorbed on Pt(111) and the hydrogen bond correlation time of a water layer on various 

Cu surfaces, all of which have been determined to be between 1 and 10 ps.95,124 For the 

free energy calculations, the procedure was repeated 3 times with independent MD 

trajectories to establish the confidence interval estimates of the free energy of reaction 

(Figure 3.2a) and the free energy of activation (Figure 3.2b). Independent trajectories are 

obtained from trajectories separated by at least 125 ps which is significantly larger than 

the correlation times discussed above. As illustrated in the Figure 3.2, the uncertainty in 

the calculation of free energies are statistically indistinguishable (see also Table B.2). To 

err on the side of caution and sample for at least three times the correlation lifetime of 

water molecule rotations, we employed 1000 MM conformations for all subsequent free 
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energy calculations (sampling of 150 ps). A repetition of the simulations and computation 

of confidence intervals was found essential since the fluctuations of a single potential of 

mean force calculation were often significant as evidenced by 95% confidence intervals 

of up to 0.1 eV from 3 measurements. The significant fluctuations of a single potential of 

mean force calculation originate from both the limited phase space sampling and from the 

use of the fixed charge approximation used in the QM/MM-FEP methodology.  We note 

that each FEP calculation requires one to compute the ESP charges on the QM atoms as a 

mean field of the electrostatic potential of 100 MM conformations.  By repeating the 

calculations 3 times, we both increase our total configuration space sampling and obtain 

simulation results for 3 slightly different ESP charges on the QM atoms, overall 

improving the reliability of our predictions.  

3.4.3 System-size effects 

The infinite periodicity of a computational simulation system makes it less 

susceptible to finite-size effects when compared to non-periodic system simulations. 

However, a periodic system with a small simulation box tends to show crystal-like long-

range order while an unnecessarily large simulation system might result in wasted 

computational resources without adding any germane information needed to describe the 

physical system.127 To explore the effect of the system size on the solvent effect on free 

energies of our model reaction, we constructed four different simulation boxes by 

changing the lateral box size while maintaining a constant liquid height (49.0 Å) to keep 

the system pressure and density constant. In decreasing order, the lateral dimensions of 

the simulation boxes are 45.0�Å × 49.0�Å, 45.0�Å × 39.0�Å, 33.7�Å × 39.0�Å, and 

33.7�Å × 29.2�Å, which corresponds to solvating the metal surface and adsorbate by 
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2200, 1760, 1320, and 990 water molecules. We note that we refrained from decreasing 

the box size below this point since it would result in a simulation box with the smallest 

dimension being less than twice the cutoff employed for calculating vdW interactions. 

As shown in Figure 3.3, there is no statistically significant difference in the 

predicted free energies and we conclude that even our smallest simulation box is likely 

sufficiently large for our free energy calculations. Nevertheless, we use in the following 

our simulation box containing ~2200 water molecules. While for our eSMS solvation 

model, the length scales of relevance are not computationally prohibitive, for a full 

quantum chemical description of the potential energy surface it is interesting that 

correlation lengths appear to be smaller than 15� Å� (half� the� shortest� simulation� box�

length).  

3.4.4 Optimization of adsorbed moieties 

Vapor phase optimized structures were employed as the initial configuration for 

the optimization of reactants, transition states, and product states of the O-H, C-OH, and 

C-H bond cleavages of ethylene glycol in aqueous phase. Each optimization cycle 

consisted of a 750 ps MD simulation with 250 ps of equilibration stage and 500 ps of 

equilibrium configuration space sampling. Geometries were then optimized in a fixed 

size ensemble of 10,000 MM conformations recorded at 50 fs intervals with a force-based 

convergence criterion of 1.0 × 10−� au/atom. The optimized QM structure was then 

employed for the generation of a new ensemble of MM conformations and the whole 

procedure was repeated until the QM/MM energy was converged. 
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Generally, the aqueous phase appears to have only a minor effect on the reactant 

(∆��� = �0.06 ± 0.01����, product (∆��� = �0.10 ± 0.01���� and transition state 

�∆��� = 0.03 ± 0.01���) relaxations for the O-H bond cleavage. In the reactant state, 

going from the vapor (Figure B.1a) to an aqueous phase (Figure B.1b), the Pt-O bond 

length increases by 0.10 Å. Similarly, the product state (Figure B.1e & B.1f) is pushed 

upwards into the aqueous phase and the Pt-O bond length increases by 0.78 Å. 

Considering the hydrophobicity of the Pt(111) surface,128 this places the adsorbed moiety 

in the immediate vicinity of the first layer of the water molecules (Figure B.6), leading to 

many hydrogen bonding arrangements plausible with the neighboring water molecules 

which results in a slightly stabilized reactant and product state. Additionally, for the 

reactant state, the distance between the hydrogen atom (H2) of the non-reacting hydroxyl 

group and the oxygen atom of the reacting hydroxyl group (O1) decreases by 0.18 Å, 

making intra-molecular hydrogen bonding more probable. The transition state does not 

show a significant change (less than 0.02 Å) in H2-O1 distance and the Pt-O bond length; 

only the transition state bond length gets reduced by 0.18 Å when going from the vapor 

to an aqueous phase. 

Figure B.2 and B.3 illustrate the corresponding effect of an aqueous phase on the 

structure of various states in the C-H and C-OH bond cleavage reactions. Similar to the 

O-H bond cleavage, the transition state and the product state moieties of the C-OH bond 

cleavage reaction move upwards, going from vapor to aqueous phase, which explains 

their stabilization in an aqueous phase (∆��� = �0.09 ± 0.01���, ∆��� = �0.03 ±

0.01�����. The transition state bond length also increases by 0.10 Å due to the presence 

of an aqueous phase. Unlike the O-H and C-OH bond cleavages, the aqueous phase has 
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no perceptible effect on the transition state and the product state of the C-H bond 

cleavage (∆��� = 0.06 ± 0.01���, ∆��� = 0.01 ± 0.01�����. Except for a minimal 

rotational change, both the transition state and the product state of the C-H bond cleavage 

largely remain unaffected by the presence of an aqueous phase, resulting in a nominal 

solvent effect. The transition state bond length also remains largely unaltered (less than 

0.02 Å) going from vapor to an aqueous phase. 

3.4.5 Free energy profile 

Figures 3.4-3.6 illustrate the free energy (potential of mean force) profiles for the 

O-H, C-H and C-OH bond cleavages, respectively. For the O-H and C-H bond cleavages, 

we presented previously54 similar profiles without the optimization of the critical points 

in aqueous phase and without vdW parameters for hydrogen atoms of the adsorbate 

molecules that are only needed for an optimization. To establish adequate phase space 

overlap throughout the reaction coordinate, we introduced 41 intermediate states between 

the reactant and transition state, and 19 intermediate states between the transition state 

and the product state for the O-H cleavage reaction (Figure 3.4). The number of windows 

is determined by our desire to have an energy difference between windows smaller than 

twice the thermal energy�< 2����). Similarly, the free energy profile for the C-H 

cleavage reaction (Figure 3.5) has been constructed by inserting 26 intermediate states 

between the reactant and transition state, and 29 intermediate images between the 

transition state and the product state. Finally, the potential of mean force profile for the 

C-OH bond cleavage (Figure 3.6) has been constructed by inserting 72 intermediate 

states between the reactant and transition state, and 66 intermediate images between the 
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transition state and the product state. A summary of our calculation results is shown in 

Table 3.1 and Figure 3.7.  

Figure 3.7 illustrates that the aqueous phase has a much larger effect on the O-H 

bond scission than on the C-H and C-OH bond scissions of ethylene glycol. The free 

energy of reaction of the C-OH bond scission is also significantly affected by the aqueous 

environment. These observations can be understood by the structural changes along the 

reaction coordinate in each of the above-mentioned reactions. The presence of liquid 

water and formation of hydrogen bonds between the adsorbate and the surrounding water 

weakens the intramolecular hydrogen bonding (increase in distance between OH groups) 

for the reactant, transition state, and product state of the C-H bond cleavage. The C-H 

bond scission also exposes a C atom to the neighboring aqueous phase environment 

which is unable to form hydrogen bonds with the water molecules. As a result, the 

aqueous phase has only a very minor effect on the net hydrogen bonding along the 

reaction coordinate and solvation effects are small and within the accuracy of our 

calculations. In contrast, the O-H bond cleavage exposes a highly electronegative O atom 

(��− = ��0.74��−) to the surrounding environment which is able to accept hydrogen 

bonds from the hydrogen atoms of the water molecules, changing the hydrogen bonding 

energy contribution along the reaction coordinate, and resulting in a sizable exergonic 

solvation effect on the free energy of reaction and free energy of activation.  

The presence of an aqueous phase has a significant endergonic effect on the 

thermodynamics of the C-OH bond cleavage while the kinetics of the reaction remains 

unaffected. Figure B.7 shows a snapshot of the distribution of water molecules on top of 

the Pt(111) surface for the reactant, transition state, and product state of C-OH bond 
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cleavage of ethylene glycol. In the reactant state (Figure B.7a) the adsorbed species 

(ethylene glycol) is immersed in the first layer of water molecules. However, in the 

product state (Figure B.7c), the cleaved OH species lies beneath the layer of water 

molecules, which reduces the number of hydrogen bonding arrangements for the 

adsorbed moiety, resulting in an endergonic effect on the thermodynamics of the reaction. 

Unlike the O-H bond scission, the C-OH bond scission exposes a C atom to the 

surrounding aqueous phase environment which is unable to form hydrogen bonds with 

water molecules, leading to a nominal aqueous phase effect on the kinetics of this 

reaction. Michel and coworkers have recently claimed that C-OH bond cleavages are 

promoted by the explicit presence of a water molecule (microsolvation129-131 

approach).132 While the inclusion of water coordinates in the reaction coordinate can 

indeed lead to a lower activation barrier that is currently not considered in our 

simulations, the microsolvation approach does not sample the configuration space and 

therefore neglects any temperature dependent entropic cost associated with placing a 

water molecule at a specific location.  

3.4.6 Comparison of metal-water interaction potentials 

 The predictive power of any solvation approaches that uses classical molecular 

mechanics simulations suffer from a fundamental issue; the accuracy and transferability 

of force fields.103,133-134 To compare how the metal-water interaction potentials affect the 

reaction thermodynamics and kinetics, we have performed our QM/MM FEP calculations 

for the O-H, C-H, and C-OH bond cleavages of ethylene glycol with two different force 

field parameters; the Spohr-Heinzinger (SH) potential66 and Lennard-Jones (LJ) 

potential.67 Figure B.6 illustrates the distance distribution of water O atoms over a 
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Pt(111) surface using the above-mentioned metal-water interaction potentials. The LJ 

potential predicts a higher density of water molecules closer to the surface compared to 

the SH potential. Also, the highest water density is by ~0.1 Å closer to the surface for the 

LJ potential, although some water molecules move slightly closer to the surface for the 

SH potential. 

 Table 3.1 and Figure 3.7 show the effect of these potentials on the 

thermodynamics and kinetics of our test reactions. The aqueous phase exerts an 

endergonic effect on the thermodynamics of the C-OH bond cleavage of ethylene glycol. 

While both the LJ and SH potentials predict only a nominal effect on the free energy of 

activation, the LJ potential predicts a less endergonic effect on the free energy of reaction 

�∆����
��

= 0.49 ± 0.02���� compared to that of the SH potential �∆����
�� = 0.57 ±

0.02����. This phenomenon can likely be explained by the LJ potential having a higher 

water density closer to the surface (Figure B.6), being able to at least somewhat stabilize 

the surface OH group in the product state (see Figure B.7). Next, for the C-H bond 

cleavage, both Pt-water potentials predict similarly small solvation effects with the LJ 

potential predicting a minimally larger effect on the activation and reaction free energies.  

Finally, the LJ potential shows a less exergonic effect on the O-H bond scission of 

ethylene glycol compared to the SH potential. For the O-H cleavage of ethylene glycol, 

all stationary points are submerged in the surface water layer such that the effect of Pt-

water potential originates likely from the difference in water density adjacent to the 

surface (Figure B.6). While both potentials suggest that O-H bond dissociation is 

significantly accelerated and more exergonic in liquid water, intricacies of the potential 

lead to free energy predictions deviating by as much as 0.2 eV. Given the large solvation 
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effects for O-H bond dissociations, it appears that a more accurate/reliable Pt-water 

potential is required to predict solvation effects for O-H bond cleavage with an accuracy 

comparable to DFT.  

3.4.7 Comparison between implicit and explicit solvation methods 

Finally, we compare our explicit solvation results to implicit solvation 

calculations performed with VASPsol69-70 and our iSMS methodology.41 Both implicit 

solvation models (iSMS and VASPsol) fail to capture the full solvent stabilization during 

the O-H cleavage of ethylene glycol (see Table 3.1 and Figure 3.7). However, VASPsol 

predicts even an endergonic effect on both the free energy of reaction and the free energy 

of activation for this model reaction. This prediction contradicts both of our predictions 

with iSMS and explicit solvation methodology (and are contradictory to our intuition and 

experimental studies).128,135-140 For the C-H bond cleavage, implicit and explicit solvation 

models anticipate comparable solvent effects which is plausible considering that 

directional hydrogen bonding contributions do not change significantly along the reaction 

coordinate for this reaction. Finally, for the C-OH bond cleavage both implicit models do 

not predict the strong endergonic solvent effect on the reaction thermodynamics of the C-

OH bond cleavage that results from the water molecules being unable to fully solvate the 

surface OH group in the product state. To conclude, the reliability of implicit solvation 

calculations for heterogeneous (metal) catalysis applications is currently limited 

(unknown) due to the very limited availability of experimental data that can be used in 

the parameterization of the implicit solvation models. This is currently a clear advantage 

of� explicit� solvation� models� that� rely� “only”� on� a� meaningful� potential� energy�

description.  
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3.5 Conclusion 

Very little experimental information is currently available to assess the accuracy 

of various computational approaches for predicting solvation effects on free energies of 

activation and free energies of reaction for elementary processes on heterogeneous 

catalysts. As a result, computational models can primarily only be compared against each 

other and chemical intuition. In principle, the most accurate computational solvation 

models use an explicit description of the solvent molecules and describe the potential 

energy surface at a high level of theory. This however requires sufficient configuration 

space sampling which is usually not affordable for a high level of theory description of 

the potential energy surface.  In this contribution, using the O-H splitting reaction of 

ethylene glycol over Pt(111) as a case study and characteristic reaction for various 

biomass platform molecule conversion reactions over noble metal catalysts, we studied 

the required timescale to reach thermal equilibrium, the sampling time scale necessary to 

explore the configuration space, and the size of the simulation system for obtaining 

reliable and converged free energies of activation and reaction with our eSMS 

methodology for studying solvation effects in heterogeneous catalysis. Due to the 

difficulty in determining the correlation time in free energy calculations, we recommend 

that all explicit solvation calculations be repeated multiple times just as it is common for 

experiments. Only by repeating simulations at least three times can confidence intervals 

(resulting from insufficient configuration space sampling and intricacies from our 

QM/MM-FEP methodology) be estimated. Assuming our test reactions are characteristic 

for various reactions on metal surfaces, our heuristic recommendations lead to free 

energies with 95% confidence intervals of < 0.1 eV.  
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After having established protocols for calculating solvent effects using multiscale 

models, we calculated solvent effects on the free energy of reaction and free energy of 

activation for primary dehydrogenation and dehydroxylation reactions of ethylene glycol 

at the hydroxyl group and -C. Vapor phase optimized geometries were re-optimized in 

the aqueous phase environment and vibrational contributions were calculated using 

numerical gradients and central differences with a 0.02 au step size, assuming non-

equilibrium solvation. Our explicit solvation model predicts that aqueous phase effects 

are small (< 0.1 eV) for the C-H bond cleavage and the activation barrier of the C-OH 

bond cleavage. In contrast, solvation effects are large (> 0.35 eV) for the O-H bond 

cleavage and the reaction free energy of the C-OH bond scission. While the choice of a 

different Pt-water force field can lead to differences in predicted solvation effects of up to 

0.2 eV, the differences are usually much smaller (< 0.1 eV) and the trends are always the 

same. In contrast, implicit solvation models only qualitatively agree with the explicit 

solvation results for the C-H bond cleavage and they are unable to anticipate the 

hydrogen bonding stabilization for the O-H and even the C-OH cleavage reactions. 
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3.7 Tables and Figures 

Table 3.1: Aqueous phase effects on the free energy of reaction and the free energy of 
activation of model reactions of ethylene glycol over Pt(111) at 500 K. QM/MM-
FEP calculations describe the solvent effect on the critical points identified by gas-
phase calculations while using the gas-phase vibrational partition function for the 
adsorbed species and transition states. The superscript SH and LJ (SH = Spohr-
Heinzinger, LJ = Metal Lennard-Jones) denotes the potential used to describe the 
metal-water interaction. QM/MM-FEP(OPT) represents the solvent effects for the 
model reactions (using SH potential) where the respective reactant, transition, and 
product states have all been optimized in an aqueous-phase environment and the 
vibrational frequencies are computed in the liquid phase assuming the timescale for 
re-orientation of solvent molecules is much larger than the timescale for molecular 
vibrations. Implicit solvation calculations have been performed using both non-
periodic (iSMS)41 and periodic (VASPsol)69 approaches. 

 

Reaction 
Reaction 

Environment 
∆���� 
(eV) 

∆�† 
(eV) 

���������� ∗∗ � ∗
↔ ��������� ∗∗ �� ∗ 

Vapor phase 0.45 0.70 

iSMS 0.36 0.68 

VASPsol 0.57 0.76 

QM/MM-FEPSH -0.09±0.06 0.11±0.04 

QM/MM-FEPLJ 0.08±0.02 0.29±0.01 

QM/MM-
FEPSH(OPT) 

-0.23±0.05 0.21±0.03 

���������� ∗∗ � ∗�
↔ ��������� ∗∗ �� ∗ 

Vapor phase -0.40 0.73 

iSMS -0.39 0.65 

VASPsol -0.35 0.59 

QM/MM-FEPSH -0.38±0.02 0.64±0.02 

QM/MM-FEPLJ -0.26±0.06 0.56±0.01 

QM/MM-
FEPSH(OPT) 

-0.36±0.01 0.73±0.02 
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���������� ∗∗ � ∗ 
↔ �������� ∗∗ ���� ∗ 

Vapor phase 0.26 2.11 

iSMS 0.15 2.04 

VASPsol 0.30 2.04 

QM/MM-FEPSH 0.57±0.02 2.16±0.01 

QM/MM-FEPLJ 0.49±0.02 2.18±0.01 

QM/MM-
FEPSH(OPT) 

0.64±0.03 2.11±0.03 
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(a) 

 

(b) 

Figure 3.1: 95% confidence interval estimates of (a) free energy of reaction and the (b) 
free energy of activation of the O-H bond cleavage of ethylene glycol over a 
Pt(111) surface at 500 K. Total QM/MM energies have been computed by 
employing three distinct equilibration times of 50 ps, 100 ps, and 250 ps. 
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(a) 

 

(b) 

Figure 3.2: Effect of phase space sampling time on the estimation of (a) free energy of 
reaction and (b) free energy of activation of the model O-H bond scission reaction 
of ethylene glycol on a Pt(111) surface at 500 K. The error bars represent the 95% 
confidence interval estimate of the free energy of the specified reaction.  
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(a) 

 

(b) 

Figure 3.3: System size effect on (a) free energy of reaction and (b) free energy of 
activation of the prototypical O-H bond cleavage reaction of ethylene glycol on a 
Pt(111) model surface at 500K. The error bars represent the 95% confidence 
interval estimate of the free energy of the specified reaction.   
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Figure 3.4: Free energy profile for the O-H bond cleavage of ethylene glycol in vapor and 
aqueous phases on a Pt(111) model surface at 500 K without considering 
vibrational contributions to the partition function. See Table 3.1 for corresponding 
data that include vibrational contributions. The points lying on the vertical dashed 
lines represent the geometries optimized in vapor phase while the magenta dots on 
the QM/MM-FEP(Optimized) profile represent the aqueous phase optimized 
structures of the reactant state, transition state, and product state for the O-H bond 
cleavage. The aqueous phase profiles portray the average of 3 QM/MM-FEP 
calculations that possess 95% confidence intervals smaller than ±0.1 eV.  
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Figure 3.5: Free energy profile for the C-H bond cleavage of ethylene glycol in vapor and 
aqueous phases on a Pt(111) model surface at 500 K without considering 
vibrational contributions to the partition function. See Table 3.1 for corresponding 
data that include vibrational contributions. The points lying on the vertical dashed 
lines represent the geometries optimized in vapor phase while the magenta dots on 
the QM/MM-FEP(Optimized) profile represent the aqueous phase optimized 
structures of the reactant state, transition state, and product state for the C-H bond 
cleavage. The aqueous phase profiles are the average of 3 QM/MM-FEP 
calculations that possess 95% confidence intervals smaller than ±0.1 eV.  
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Figure 3.6: Free energy profile for the C-OH bond cleavage of ethylene glycol in vapor 
and aqueous phases on a Pt(111) model surface at 500 K without considering 
vibrational contributions to the partition function. See Table 3.1 for corresponding 
data that include vibrational contributions. The points lying on the vertical dashed 
lines represent the geometries optimized in vapor phase while the magenta dots on 
the QM/MM-FEP(Optimized) profile represent the aqueous phase optimized 
structures of the reactant state, transition state, and product state for the C-OH bond 
cleavage. The aqueous phase profiles are the average of 3 QM/MM-FEP 
calculations that possess 95% confidence intervals smaller than ±0.1 eV.  
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Figure 3.7: Effect of aqueous phase on the free energy of reaction and activation of a) O-
H, b) C-H, and c) C-OH bond cleavages of ethylene glycol over Pt(111) using 
different implicit and explicit solvation models. Error bars for the explicit solvation 
models are 95% confidence intervals.  
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CHAPTER 4 

INVESTIGATION OF SOLVENT EFFECTS ON THE 

HYDRODEOXYGENATION OF GUAIACOL OVER Ru CATALYST
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4.1 Abstract 

 The effects of a liquid phase environment on the hydrodeoxygenation of guaiacol, 

a prototypical compound of phenol derivatives and lignin derived oligomers over Ru 

catalyst have been investigated from first principles. A microkinetic reactor model with 

parameters obtained from density functional theory and implicit solvation schemes was 

developed to study the effects of condensed phases on the reaction mechanism and 

kinetic parameters. Phenol was found to be the major aromatic product across all reaction 

environments. Our model predicts that less protic solvents such as 1-butanol, diethyl 

ether, and n-hexane have a positive effect on the reaction kinetics compared to vapor and 

aqueous phases for the production of phenolics. The dominant reaction mechanism for 

unsaturated aromatics production remains unchanged across all reaction medium. Next, 

we investigated the possibility of cycloalkane production through hydrogenation of 

phenol in vapor and liquid phase environments. Our calculations indicated that the 

reaction pathway for cycloalkane production from phenol is most likely to go through 

initial dehydrogenation at the hydroxyl group. Based on the vapor phase density 

functional theory calculations, we proposed a probable reaction pathway and calculated 

the condensed phase effects along the reaction route. We observed that aqueous phase has 

a more favorable effect for cycloalkane production from phenol compared to that of 

vapor phase and other less protic solvents. 

 

Keywords: Solvent effects; Guaiacol; Phenol; Hydrodeoxygenation; Microkinetic 

modeling; Density functional theory; Ruthenium  
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4.2 Introduction 

The discourse about the feasibility and the economic viability of utilizing biomass 

as an alternative energy source to produce biofuels has been intensified lately.1 Despite 

the sustainability and the environmental friendliness of this renewable resource, the over 

reliance of the existing technologies on food grade biomass resources poses some 

significant challenges.2-3 Therefore, upgrading of lignocellulosic biomass to second 

generation liquid transportation fuels has been receiving widespread attention.4-6 

Thermochemical conversion processes such as flash pyrolysis or hydrothermal 

liquefaction can be employed to produce environmentally benign bio-oils from these 

biomass sources. Bio-oils have higher energy density and better transportability than 

feedstock biomass and can generate CO2 and SOx credits with lower NOx emissions 

compared to fossil fuels.7 Depending on the biomass sources and the conversion 

processes adopted, the oxygen content in bio-oils can approach as high as 50%, despite 

having low sulfur and nitrogen content in comparison to fossil-based oils.8-9 The presence 

of a large oxygen content combined with corrosive acids and reactive aldehydes in the 

complex bio-oil mixture leads to several undesirable properties, such as low heating 

value, high viscosity, non-volatility, thermal instability, high degree of corrosiveness, and 

tendency to polymerize upon exposure to air9 which limits the prospect of direct 

substitution of bio-oils for petroleum fuels. Therefore, some upgrading processes need to 

be employed to reduce the O/C ratio of the pyrolysis oil for wider range of applications. 

Catalytic flash pyrolysis and hydrodeoxygenation (HDO) are two of the most 

promising catalytic upgrading processes for bio-oil. In-situ catalytic flash pyrolysis 

processes have the advantage of being operated at atmospheric pressure in absence of 
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hydrogen;7 however, the high degree of oxygen removal and the ability to prevent coke 

deposition on the catalyst surface have made HDO the more promising alternative.10 

Catalytic HDO of bio-oils is typically performed at high hydrogen pressure to reduce the 

oxygen content as well as to increase the H/C ratio. Sulfided catalysts such as CoMo and 

NiMo on -Al2O3 support have been thoroughly studied for HDO due to their 

conventional industrial application in the hydrodesulfurization (HDS) of petroleum 

oils.11-13 However, the instability of the sulfided catalysts in presence of sulfur free bio-

oils,14-15 evolution of sulfur containing HDO intermediates owing to the co-feeding of 

H2S to maintain the sulfide structure,16 boehmite formation of the acidic support in 

presence of water present in the bio-oil mixture,15,17 and deactivation of the catalyst 

surface by polymerization and coke formation18-19 restrict the prospect employing 

conventional HDS catalysts for HDO purposes. The tendency of bio-oils to thermal 

degradation and coke formation makes noble metals industrially attractive catalysts 

despite the higher cost due to their excellent activity, selectivity and stability.16,20 They 

are expected to operate at mild reaction conditions without any introduction of sulfur, and 

fast deactivation by coke formation in the presence of phenolic compounds can be 

avoided by employing high hydrogen pressure during HDO. Nonetheless, further 

improvement of the catalyst design by tailoring the active phase and the support is 

required to reduce the hydrogen consumption and increase the yield of selective oils. 

Bio-oils derived from different feedstocks are typically a complex mixture of 

water (10-30%) and 300 different organic compounds, comprising of insoluble pyrolytic 

lignin, aldehydes, organic acids, sugar oligomers, alcohols, and phenol derivatives.21 

Guaiacyl species, being the primary structure of lignin, are predominant in bio-oils and 
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tend to repolymerize to form coke and heavy hydrocarbons during bio-oil upgrading 

processes.22-23 The presence of these diverse organic compounds complicates the bio-oil 

upgrading process which makes the mechanistic investigation of reaction pathways and 

catalytic activities very challenging. Therefore, for better understanding of the catalytic 

upgrading process, it is imperative to select a model compound representative of the 

pyrolysis oil. In the current study, guaiacol (2-methoxyphenol) has been chosen as the 

prototypical compound of phenol derivatives and lignin derived oligomers which 

contains a phenyl ring, two different oxygenated functions, and has been known to play a 

significant role in the catalyst deactivation process. HDO of guaiacol over a wide range 

of monometallic transition metals such as Pt16,24-31, Rh16,26,30,32, Pd16,26,28,30,33-34, 

Ru26,28,30,33,35-36, Fe28,37, Mo33, Ir33, W33, Cu28,33; post transition metals such as Sn24 as well 

as bimetallic catalysts such as Rh-Pd32, Rh-Pt32, Pt-Sn24, Ni-Cu38, Pd-Fe28 have been 

reported. Due to the critical role of metal-support interaction, support acidity, 

susceptibility of conventional -Al2O3 support to coke formation8,39, and its instability in 

presence of water17,39; various supports such as C26,28,33,35, ZrO2
16,32,38, TiO2

29,35, 

SiO2
26,35,37-38, CeO2

38,40, MgO27,36 have also been tested rigorously. Heeres et al.41 

presented a thorough catalyst screening using noble metals catalysts and compared that 

with the conventional hydrotreatment catalysts for HDO of fast pyrolysis oil. They 

addressed Ru/C as the most promising candidate for bio-oil upgrading regarding oil 

yields, deoxygenation activity, and hydrogen consumption. Our group has previously 

reported an in-depth vapor phase mechanistic investigation of HDO of guaiacol over 

Ru(0001) model surface and concluded phenol to be the major product.42 However, the 

presence of substantial amount of water in bio-oil feed (30%) combined with the 
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production of more water during the HDO process can affect the activity as well as the 

surface structure and chemical composition of the catalysts.9 If used as a solvent, water 

has the potential to increase the targeted product selectivity, reduce the undesirable 

thermal degradation, and facilitate product separation. Sharpless et al.43 reported 

accelerated reaction rates of hydrophobic organic compounds in water and argued that the 

biphasic boundary between water and hydrophobic oil can also play a role. Conversely, 

Grunwaldt and coworkers44-45 have investigated various polar and non-polar solvents 

influence on HDO of guaiacol over Pt based catalysts and reported a higher HDO ability 

in presence of non-polar solvents. 

To address this lack of fundamental understanding of solvent effects, we report 

herein an investigation of solvent influence on the reaction mechanism and possible 

activity descriptors for HDO of guaiacol over Ru(0001) model surface. Several studies 

conducted at relatively mild reaction conditions have reported the presence of aromatic 

ring saturated products36,46 which was not considered in our previous study. Therefore, in 

this study, we have extended our calculations to investigate the formation of phenyl ring 

saturated products in vapor phase and condensed phases. While electrostatic interactions 

and hydrogen bonding contributions are instrumental for the interaction between a polar 

adsorbate and a polar solvent, london dispersion forces play a crucial part for non-polar 

adsorbate-solvent systems. To consider both of these scenarios, four different solvents of 

varying�degree�of�polarity�(depending�on�Kamlet�and�Taft’s�solvatochromic�parameters)�

have been employed for this study.47 Specifically, we focused on the effects of liquid 

water which is a polar, protic solvent, 1-butanol, a polar aprotic solvent, diethyl ether, a 

‘borderline’� polar� aprotic� solvent,� and� a� non-polar solvent, n-hexane. Using first 



 
 

83 

principles calculations and a novel implicit solvation scheme for solid surfaces (iSMS),48 

we characterized the solvent effects on the thermodynamics and kinetics of elementary 

reactions. A mean field microkinetic reactor model was then developed to reexamine the 

most abundant surface intermediates, dominant reaction pathways, and general kinetic 

trends in condensed phases. We conclude our findings with a deliberation of our 

hypotheses and suggest further research. To the best of our knowledge, no theoretical 

report on solvent effects on the catalytic hydrodeoxygenation of guaiacol over transition 

metals catalysts has yet been published. 

4.3 Computational Approach 

4.3.1 Solvation Model  

Solvent molecules can affect activity and selectivity of a heterogeneously 

catalyzed reaction in a number of ways, it can 1) compete with the adsorbed moieties for 

the active catalyst sites, 2) directly involve itself in the reaction coordinate, thereby 

providing lower energy pathways, for example, Grotthuss mechanism,49 and 3) affect the 

stability of the charged intermediates or transition states. While computational 

investigations of chemical reactions occurring at solid-liquid interfaces can be very 

challenging,50 in this study, the liquid phase effect has been approximated by employing 

the iSMS method.48  A detailed discussion about the iSMS methodology and validation 

can be found elsewhere.48,50-54  

The fundamental idea behind the iSMS methodology is to include long-range 

metallic interactions through periodic-slab models in the absence of solvent molecules 

and to represent the liquid phase effect as a perturbation on the (free) energy differences 
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which is described by (sufficiently large) cluster models embedded in an isotropic 

continuum of constant dielectric. Consequently, the free energy function of a moiety 

adsorbed on a periodic metal slab submerged in liquid can be illustrated using the 

following subtraction scheme, 

��ur����+i�t�r��di�t�
�i�uid

= ��ur����+i�t�r��di�t�
���uu� +(���u�t�r+i�t�r��di�t�

�i�uid
� E��u�t�r+i�t�r��di�t�

���uu� ) 

(4.1) 

where ��ur����+i�t�r��di�t�
���uu�  is the free energy of the adsorbed moieties in vapor phase, 

���u�t�r+i�t�r��di�t�
�i�uid

 is the free energy of the surface cluster model immersed in an 

implicit solvent which is fashioned by extracting selected metal atoms and removing the 

periodic boundary conditions, and E��u�t�r+i�t�r��di�t�
���uu�  is the DFT energy of the same 

cluster in absence of any fluid phase environment. Conductor-like Screening Model for 

Real Solvents (COSMO-RS)55 approach using the COSMOtherm program package56 has 

been employed to finally compute ��ur����+i�t�r��di�t�
�i�uid

. Solvent thermodynamic 

properties are readily available in COSMOtherm database,56 which are based on the 

quantum chemical COSMO calculations at the BP-TZVP level of theory. For any other 

adsorbed moiety, the COSMO-RS input file was generated with the help of COSMO 

calculations at the same level of theory. 

4.3.2 Periodic and Non-periodic DFT Calculations 

The catalyst model investigated in this study has been explored earlier for the 

vapor phase hydrodeoxygenation of guaiacol over Ru(0001) model surface,42 and we 

encourage the interested readers to review the methods section of that article for a 

comprehensive summary of the computational details employed to perform the periodic 
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plane-wave DFT calculations. However, it has been demonstrated lately that the Bayesian 

error estimation functional with van der Waals correction (BEEF-vdW)57 perform 

significantly better for calculating the adsorption energies of larger adsorbates58-59  as 

well as simple adsorbates such as CO60-61 in comparison to the PBE functional62 with 

dispersion corrections.63 Hence, the energetics of the adsorption-desorption processes as 

well as the all the elementary steps of the phenol hydrogenation network investigated in 

this study have been computed utilizing the BEEF-vdW functional. Non-periodic cluster 

model DFT calculations have been performed using the TURBOMOLE 6.564-65 program 

package. The cluster surfaces have been constructed by removing the periodicity of the 

geometries obtained from plane-wave DFT calculations and modeled as a 55 surface 

with 2 layers of metal atoms. Atoms that comprise the adsorbate molecules have been 

characterized by employing all electron basis sets of triple- quality,66 while a relativistic 

small core potential (ECP) combined with a basis set of the same quality as the adsorbate 

atoms have been employed for the valence electrons of the metal (Ru) atoms.67 Electron 

exchange and correlation terms of DFT have been described by utilizing the BP86 

functional68-69 and coulomb potentials were approximated in conjunction with the RI-J 

approximation using auxiliary basis sets.70-71 Single point energy calculations have been 

performed for the cluster models using a self-consistent field energy convergence 

criterion of 1.0 × 10−� Ha with an m4 spherical grid.72 Multiple spin states were 

investigated for each cluster model to identify the lowest energy spin state. For the lowest 

energy spin state, Conductor like screening model calculations (COSMO)73-74 were 

performed where the solute molecule is embedded in a molecule shaped cavity 

surrounded by a dielectric medium of infinite dielectric constant (hence Conductor). 
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Finally, the dielectric constant was scaled down to the respective dielectric constant of 

the solvents by utilizing the COSMO-RS56 program package to obtain the solvation 

energy. Considering the ambiguity associated with the interpretation of cavity radius of 

transition metal atoms in implicit solvation models,50,75 all calculations have been 

repeated with a 10% incremental change on the default cavity radius of Ru atoms. 

4.3.3 Solvents Investigated 

HDO of guaiacol have been previously studied for the pure reactant diluted in 

water, diethylether, decane, octanol, hexadecane, and tetrahydrofuran 

experimentally.44,76-78 In organic chemistry, the solvent effects have been attempted to 

understand regarding the polarity of the solvent, which can be very challenging to convey 

quantitatively. Empirical estimation of solvent polarity has been calculated based on 

linear free energy relationships of substituent solvent parameters and equilibrium, kinetic, 

and spectroscopic measurements.47 By employing solvatochromic comparison method in 

linear solvation energy relationship (LSER) theory, Kamlet and Taft presented a set of 

solvent parameters to establish a solvent polarity scale, namely, π∗, α, and β,  which are 

related to distinct configurational properties in solution, e.g., solubilities, partition 

coefficients, thermodynamic and kinetic properties of chemical reactions, etc.79-81 They 

correlated solvent dependent physicochemical properties of a given solvent and a 

reference solvent by introducing some solvent independent coefficients (s, a, b) which 

specifies the susceptibility of the corresponding parameters, dipolarity/polarizability (π∗), 

hydrogen-bond donor acidities (α), and hydrogen-bond acceptor basicities (β), 

respectively. Table C.1 from the supporting information includes the Kamlet-Taft solvent 

parameters as well as the normalized solvent polarity parameter (E�
�) for the four 
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different solvents explored in this study, i.e., water, 1-butanol, diethylether, and n-

hexane. The recorded values clearly indicate that water is the most polar protic solvent 

with high polarizability and hydrogen bond donating ability while n-hexane lies at the 

other end of the spectrum with no hydrogen bond accepting/donating capability. 1-

butanol and diethylether lies in between the above mentioned two as evident from their 

normalized polarity values.  

4.4. Model Development  

4.4.1 Microkinetic Modeling 

To analyze the implication of reaction energies and the reaction pathways under 

realistic process conditions, a mean-field microkinetic model was formulated. The 

formulation of the partition function in the liquid phase environment is complex and 

dynamic contributions to the free energy of the solute are in general insensitive to 

whether the solute vibrational frequencies are computed in the gas phase or  in the 

solution. In the parameterization of implicit solvation models, the vibrational partition 

function is computed for the gas phase species. Hence, the zero-point corrections to the 0 

K energies and vibrational partition functions under harmonic approximation were 

calculated using the vibrational frequencies (νi) obtained from vapor phase periodic 

plane-wave DFT calculations. 

EZ�� =
1

2
∑hνi
i

 
(4.2) 

q�i� = �∏
1

1 � exp��
hνi
kBT

�i

 
(4.3) 
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It should be noted here that the frequency calculations include relaxations of only 

adsorbed moieties which result in a reduction of the accuracy of low-lying frequencies 

that are coupled with surface metal atoms. Considering the accuracy of DFT (or lack 

thereof) and the inadequacy of harmonic approximation to describe low-lying 

frequencies, we established a 100 cm-1 cutoff value for frequencies (real) that lie below 

the aforementioned value. This accommodation was not required for the gas phase 

molecules since the rotational and the vibrational partition functions were rigorously 

calculated using statistical mechanics.82 

To account for the liquid phase environment, the solvation free energy obtained 

from COSMO-RS calculations were utilized to reparametrize the microkinetic model. For 

the adsorption/desorption processes,  

Δ�������t = �Δ���� ����d��solv� � �Ru�solv� (4.4) 

where ��d��solv� and �Ru�solv� are the free energies of solvation of a Ru cluster with 

and without an adsorbate, respectively. It is worth mentioning here that the chemical 

potential of all the gas phase species in a particular solvent is given by the partial pressure 

(fugacity) of that species in the vapor phase which is in equilibrium with the solvent 

phase, i.e. we assumed gas-liquid equilibrium in the absence of any mass transfer 

limitations. The free energy of reaction (Δ�������t
r�� ) and free energy of activation 

(Δ�������t
‡ ) of the elementary surface reactions were calculated as, 

Δ�������t
r�� = �Δ����

r�� ����S�solv� ���IS�solv� (4.5) 

Δ�������t
‡ = �Δ����

‡ ����S�solv� ���IS�solv� (4.6) 
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where the subscripts IS, TS, and FS denotes the initial state, transition state, and final 

state, respectively. All reactions were presumed to be reversible reactions. Forward rate 

constants were calculated using harmonic transition state theory (hTST)83 for all surface 

mediated elementary processes. 

k��rw�rd = �
γkBT

h
exp��

�∆�‡

kBT
� 

(4.7) 

Here, ∆�‡ is the free energy of activation, T is the absolute temperature, γ is the 

transmission coefficient, which was assumed to be 1.0 for all cases, and kB and h are the 

Boltzmann and Planck constants, respectively. Collision theory was employed for 

calculating the forward rate constants of non-activated adsorption processes. 

k��rw�rd = �
σ

N�√2πmkBT
 (4.8) 

Here, � stands for the sticking probability (assumed to be 1.0 for all cases), �� is the 

number of catalytic sites per unit surface area, and � is the molecular weight of the 

adsorbate. Thermodynamic consistency was ensured by calculating the reverse rate 

constants from thermodynamic equilibrium constants. 

��� = exp��
�Δ����

���
� 

(4.9) 

�������� = �
��������

���
 

(4.10) 

Finally, with all the rate parameters known, a microkinetic reactor model was developed 

as a system of differential algebraic equations (DAEs). The fractional coverage of a 

surface intermediate at steady state is given by, 
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���
��

=∑��,���
�

= 0 
(4.11) 

where index � refers to the �th adsorbed species and index � loops over all the elementary 

reactions. Furthermore, the total number of catalytic sites were conserved, and overall 

site balance equation was employed to calculate the fractional coverage of empty sites. 

∑����
�

= 1 (4.12) 

A complete list of the number of sites assigned to each species (��) can be found in our 

vapor phase study.42 All microkinetic models were initialized with a clean Ru surface and 

solved as a system of DAEs to achieve fractional surface coverages and turnover 

frequencies (TOFs) at steady state under realistic process conditions. 

4.4.2 Adsorbate-adsorbate Interactions 

Adsorbate-adsorbate interactions can play a significant role on the adsorption 

strength as well as the stability of the adsorbed moieties which in turn can affect catalytic 

activity of transition metal catalysts.54,75,84-85 Getman et al.86-87 demonstrated a remarkable 

change in ��� dissociation capability of Pt(111) surface when � coverage is typical of 

�� oxidation catalysts. As reported in our vapor phase study,42 without considering any 

adsorbate-adsorbate interactions, �, ��, and phenoxy (�����) become the most 

abundant surface intermediates while performing a microkinetic modeling study. Hence, 

to mimic the local chemical environment dependence of adsorption energy in a realistic 

reaction environment, lateral interaction functional forms have been included in our 

microkinetic model. While the true description of adsorbate-adsorbate interactions can be 

very complicated and computationally demanding to realize, we employed the two-



 
 

91 

parameter lateral interaction model proposed by Grabow et al.88 considering its 

simplicity. Table C.2 of the supporting information includes the functional forms of the 

lateral interactions introduced in our microkinetic models. A detailed description of the 

calculation procedure to obtain these functional forms have been discussed in our vapor 

phase invetigation.42 

4.5 Results and Discussion 

Experimental studies have reported a range of alicyclic and aromatic products for 

HDO of guaiacol such as 2-methoxy-cyclohexanol, cyclohexanol, cyclohexanone, 

cyclohexane, benzene, catechol etc. with phenol being a major intermediate detected at 

short reaction times.28,30,33,36,46  Therefore, in this study, we aim to describe HDO of 

guaiacol over Ru(0001) catalysts  in two segments. At first, we carried out our study in 

condensed phases to verify the formation of phenol from hydrodeoxygenation of 

guaiacol. Next, we examine the possibility of phenyl ring saturation in vapor and 

condensed phases to produce two major products observed in experimental studies, 

cyclohexanol and cyclohexanone from phenol.78,89-92  

4.5.1 HDO of Guaiacol to Unsaturated Aromatics   

4.5.1.1 Solvent Effects on the Adsorption Strength of Reaction Intermediates 

The introduction of solvent using a continuum solvation model can alter the 

adsorption strength of reaction intermediate in two different ways, i) incorporating an 

implicit solvent introduces the previously unaccounted for adsorbate-solvent interaction, 

and ii) it modifies the metal-adsorbate interaction by changing the electronic structure of 

the metal due to indirect solvent-metal interactions. Solvent induced changes in the 
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adsorption strength of a reaction intermediate can significantly affect the overall activity 

of a catalyst site by modifying the activation and reaction free energies. To investigate 

the effects of solvent on the adsorption strength of the intermediates involved in HDO of 

Guaiacol, we computed the difference in adsorption free energy in the absence and 

presence of solvent, 

 ���� �∗ ��� ↔ � ∗ ��� (4.13) 

 ���� �∗ ��� ↔ � ∗ ��� (4.14) 

 ∆(����,�) = ����,���� � ����,���� 

= [��∗��� � ��∗���] � [�∗��� � �∗���] �= ∆�∆�� 

 

(4.15) 

where, ����,���� and ����,���� are the free energies of adsorption of a gas molecule of 

intermediate A in the presence and absence of the solvent, ��∗��� and ��∗��� are free 

energies of adsorbed moiety A in the presence and absence of solvent, and �∗��� and 

�∗��� are free energies of the clean surface model in the presence and absence of 

solvent, respectively. It should be noted here that while many adsorbed moieties can be 

unstable when separated from their adsorption site; nonetheless, this scheme permits us to 

compare relative adsorption strength in liquid phase environment with respect to gas 

phase adsorption strength.  

The investigated surface moieties in the reaction network of HDO of guaiacol and 

the calculated change in their adsorption strength in various reaction environments are 

listed in Table 4.1. In total, we investigated 39 surface intermediates in our reaction 

network that includes guaiacol, phenol, catechol, and their derivatives. Snapshots of all 

adsorbed geometries can be found in our previous vapor phase study.42 For the 
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convenience of comparison of solvent effect on the adsorption strength of the surface 

intermediates, we classified the intermediates into four different classes of structurally 

similar species. 

Class I: Guaiacol and Its Derivatives 

Presence of a liquid-phase environment significantly stabilizes the adsorption of 

guaiacol on Ru(0001) sites (∆�∆������� = �0.22���, ∆�∆��−�������� =

�0.47���, ∆(∆�����ℎ����ℎ��) = �0.43���, ∆�∆��−ℎ������ = �0.33����. Solvents 

employed in this study can be arranged in the order of their effect on adsorption strength 

of guaiacol and its dehydrogenated and partially hydrogenated derivatives as 1-Butanol > 

Diethyl ether > n-Hexane > Water. This phenomenon can be attributed to the fact that 

guaiacol has a large non-polar aromatic ring with a polar hydroxyl group and slightly 

polar methoxy group. The presence of a polar solvent (Water) ensures favorable solute-

solvent interaction i.e. formation of hydrogen bonds, thereby increasing the adsorption 

strength of guaiacol and its derivatives. Reducing the polarity of the solvent (1-Butanol, 

Diethyl ether) enhances the stabilization of adsorption strength of these species because 

of the additional favorable interaction between non-polar fragments of solute and solvent 

due to increased London forces all the while retaining some of the favorable interaction 

between polar fragments of solute and solvent. For non-polar aprotic solvents such as n-

hexane, the stabilization of adsorption strength only comes from the favorable solute-

solvent interaction due to London dispersion forces, which reduces the solvent effect on 

the adsorption strength of guaiacol and its derivatives compared to that of 1-Butanol and 

Diethyl ether. Partially hydrogenated (C6H4H/(OH)(OCxHy)), x=[0,1], y=[0,3]) and 
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dehydrogenated (C6H4(OvHw)(OxCyHz)), v=[0,1], w=[0,1], x=[0,1], y=[0,1], z=[0,3]) 

species of guaiacol all maintain the same order of solvent effect on the adsorption 

strength. For example, 2-methoxy-phenyl (C6H4(OCH3)) intermediate can be produced 

by Caryl()-OH bond scission of guaiacol. Due to the loss of polar hydroxyl group, the 

solvent stabilization of the adsorption strength in water gets reduced (∆�∆������� =

�0.07���� compared to that of guaiacol, while the increasingly non-polar solvents such 

as 1-Butanol, Diethyl ether and n-Hexane retain most of the solvent stabilization 

(∆�∆��−�������� = �0.35���, ∆(∆�����ℎ����ℎ��) = �0.33���, ∆�∆��−ℎ������ =

�0.24���) due to dispersion forces between non-polar fragments of solute and solvent. 

Class II: Phenol, Anisole, Catechol, Benzene and Their Derivatives 

Phenol, due to the presence of strongly polar hydroxyl group shows significant 

solvent stabilization in aqueous phase (∆�∆������� = �0.20���), and the presence of 

non-polar aromatic ring ensures the increase in adsorption strength for other solvents with 

various degree of polarity (∆�∆��−�������� = �0.38���, ∆(∆�����ℎ����ℎ��) =

�0.35���, ∆�∆��−ℎ������ = �0.26���). On the other end of the spectrum, benzene, 

being non-polar, shows small solvent stabilization in its adsorption strength in the 

aqueous phase ((∆�∆������� = �0.10���). However, the favorable solute-solvent 

interaction due to increased london dispersion forces in other solvents, it shows a sizable 

solvent stabilization in adsorption strength (∆�∆��−�������� =

�0.26���, ∆(∆�����ℎ����ℎ��) = �0.24���, ∆�∆��−ℎ������ = �0.17���). Overall, phenol 

(C6H5OH), anisole (C6H5OCH3), catechol (C6H4(OH)2), Benzene(C6H6), and their 



 
 

95 

dehydrogenated surface intermediates follow the same order of solvent stabilization as 

mentioned before for guaiacol species. 

Class III: Methane and Its Derivatives 

Methane and its dehydrogenated derivatives such as methyl (CH3), methylene 

(CH2), and methylidene (CH) show marginally weaker adsorption strength in the aqueous 

phase due to their non-polar nature. For example, adsorption strength of methane in 

liquid water gets increased by 0.04 eV. We also find that adsorption strength of methane 

and its derivatives is hardly affected by the presence of other solvents such as 1-butanol, 

diethyl ether, and n-hexane. 

Class IV: Methanol and Its Derivatives 

Presence of liquid water weakens the adsorption strength of strongly polar 

methanol and its dehydrogenated species methoxy (CH3O) (∆�∆����ℎ����
����� � =

0.12���, ∆(∆����ℎ���
����� ) = 0.09���). This inverse solvent effect on a polar species can be 

rationalized by observing their binding modes and their strongly polar nature. Both 

methanol and methoxy species binds to the Ru(0001) surface through the O atom, a 

hydrogen bond donor. Due to their polar nature, these species have a favorable solute-

solvent interaction in polar solvents (through hydrogen bonding) which in turn weakens 

solute-surface interaction, thereby reducing the adsorption strength when following bond 

order conservation principles. As we decrease the polarity of the solvents, the adsorption 

strength gets stabilized. For less polar dehydrogenated species such as formaldehyde 

(CH2O) and formyl (CHO), the presence of a liquid phase environment hardly affects the 

adsorption strength. 
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4.5.1.2 Solvent Effects on Elementary Processes 

Figure 4.1 illustrates a schematic of the investigated elementary reactions 

involved in the HDO of guaiacol over Ru(0001) model surface. Energetics of all 

adsorption/desorption reactions are reported in Table 4.2 using PBE-D3 and BEEF-vdW 

functionals in different reaction environments at 473K reaction temperature. Free 

energies of reaction and free energies of activation of all elementary surface processes in 

different reaction environment are listed in Table 4.3 for a reaction temperature of 473K.  

In the following, we discuss the solvent effects on the free energy of reaction and 

free energy of activation of various elementary processes involved in HDO of guaiacol. 

For the convenience of comparison, the reaction pathways have been labeled from 2 to 8 

according to the first reaction step labeled in Figure 4.1, adsorption of guaiacol being the 

first reaction step. Pathways 2 and 3 start with selective hydrogenation of Caryl() and 

Caryl() of guaiacol, respectively. Direct removal of a hydroxyl group, methoxy group, and 

a methyl group from guaiacol have been considered in pathways 4, 5, and 7, respectively. 

Pathways 6 and 8 considers the dehydrogenation of guaiacol through C-H bond scission 

of the methoxy group and O-H bond scission of the hydroxyl group, respectively. 

I: Selective hydrogenation of the phenyl ring 

 Selective hydrogenation of the phenyl ring of guaiacol to form 

C6H4H(OH)(OCH3) (step 2) and C6H4H(OH)(OCH3) (step 3) are both endergonic steps 

in the vapor phase (∆�r�� = 0.40�eV and ∆�r�� = 0.51�eV, respectively) and kinetically 

demanding with a free energy of activation of 1.10 eV and 1.14 eV, respectively, which 

makes pathways 2 and 3 unfavorable. Liquid solvents employed in this study (water, 1-
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butanol, diethyl ether, and n-hexane) have an unfavorable effect on the free energies of 

Caryl()-H hydrogenation, making it more endergonic (free energy of reaction ranging 

from 0.41 eV to 0.49 eV) and making it kinetically more demanding. Liquid water does 

not have any effect on the free energy of reaction of Caryl()-H hydrogenation, with a 

minimal increase of the free energy of activation (∆�Δ�‡�=0.04eV). Employing other 

solvents such as 1-butanol, diethyl ether, or n-hexane have a minimal exergonic effect on 

the free energy of reaction with a slight increase in the free energy of activation 

(∆�Δ��−�ut����
‡ � =0.06eV, ∆�Δ�di�t�y���t��r

‡ � =0.06eV, ∆�Δ��−������
‡ � =0.07eV). 

 Similar to the vapor phase, further dehydrogenation of the methoxy group (step 9) 

remains challenging compared to the methoxy group removal (step 10) of 

C6H4H(OH)(OCH3) in all solvents studied. Liquid water increases the free energy of 

activation of subsequent methylene group removal (step 23) process by 0.16 eV while it 

remains largely unaffected in all other solvent medium. Energetics of the hydrogenation 

of resulting C6H4H(OH)(O) species to produce C6H5(OH)2 (step 36) also show minimal 

perturbation from the vapor phase for different solvent media. The final step to produce 

phenol involves dehydroxylation of the phenyl ring (step 41) and employing increasingly 

non-polar solvents makes this step more facile by 0.11-0.15 eV. 

  Less protic solvent mediums such as 1-butanol, diethyl ether, and n-hexane have 

an endergonic effect on the free energy of activation for dehydroxylation of Caryl() 

hydrogenated species of guaiacol (step 11) to produce anisole while the energetics remain 

unchanged in water compared to that of vapor phase. Different reaction medium also 

exerts limited effect on the kinetics of the subsequent dehydrogenations of anisole (step 
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24 and step 37). Overall, the energetics of pathways 2 and 3 suggest that HDO of 

guaiacol does not proceed through selective hydrogenation of the phenyl ring, similar to 

the vapor phase, which supports the experimental observations.28  

II: Direct removal of functional groups 

 Pathways 4, 5, and 7 consider direct removal of -OH, -OCH3, and -CH3 functional 

group, which were found to be kinetically difficult in the vapor phase and it remains the 

same in liquid phase environment. Liquid phase environment exerts an endergonic effect 

on the thermodynamics of removal of hydroxyl species from guaiacol to produce 2-

methoxy phenyl species (C6H4OCH3) (step 4). While presence of an aqueous phase 

increases the free energy of activation by 0.07 eV, other solvent media hardly affects the 

kinetics of the reaction. Subsequent hydrogenation to anisole, however, gets more 

exergonic in the liquid phase environment with water contributing the most ∆�∆�r��� =

�0.22�eV) while the kinetics also become slightly facilitated. 

 In the methoxy group removal pathway (pathway 5), the removal of -OCH3 

species (step 5) becomes kinetically more unfavorable in water (∆�Δ�†�=0.07eV) while 

other solvents have a minimal effect. Subsequent hydrogenation of 2-hydroxy phenyl 

species (C6H4OH) to produce phenol (step 13) becomes thermodynamically more 

favorable in the liquid phase environment compared to that of vapor phase. 

 The seventh pathway consists of removal of a methyl group from guaiacol to 

produce a hydrogen catecholate species (C6H4(OH)(O)) (step 7) which is largely 

exergonic in the vapor phase (∆�r�� = �1.35�eV). Introduction of a liquid phase 

environment has an endergonic effect on the thermodynamics of the reaction while the 
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kinetics remain mostly unchanged. The hydrogen catecholate can be hydrogenated to 

catechol (step 18) which remains largely unchanged in liquid water, while less protic 

solvents have a favorable effect on both the thermodynamics and the kinetics of this 

elementary process. Catechol can be either dehydroxylated to 2-hydroxy phenyl species 

(C6H4OH) (step 27) or hydrogenated to produce C6H5(OH)2 species (step 28) which are 

both kinetically very demanding. Presence of a liquid phase environment does not affect 

the kinetics of these processes while having minimal effect on thermodynamics.  

 In summary, liquid phase environment does not help these kinetically demanding 

processes of direct functional group removal to make them more facile. 

III: Dehydrogenation of methoxy and hydroxyl groups 

 In pathways 6 and 8, we discuss the initial dehydrogenation of -OCH3 and -OH 

group of guaiacol. The removal of methoxy group from guaiacol to produce 2-methylene-

oxy-phenol intermediate (C6H4(OH)(OCH2)) (step 6) is both thermodynamically and 

kinetically favorable in the vapor phase (∆�r�� = �0.36�eV, Δ�‡ = 0.50�eV). 

Introduction of aqueous phase has an endergonic effect on the free energy of reaction 

�∆�∆�r��� = 0.09�eV) with negligible impact on the free energy of activation (∆�Δ�‡� =

0.02�eV). All the other less protic solvents (1-butanol, diethyl ether, and n-hexane) have a 

less endergonic effect on the thermodynamics of the reaction compared to water 

�∆�∆�r��� = 0.04�eV) with kinetics remaining unperturbed. 2-methylene-oxy-phenol 

species can go through -OCH2 removal (step 14), dehydrogenation at the hydroxyl group 

(step 15), dehydrogenation of the methylene group (step 16), and removal of -CH2 (step 

17). The most facile path in the vapor phase is dehydrogenation of the methylene group 
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(step 16) (∆�r�� = �0.53�eV, Δ�‡ = 0.02�eV), which remains unchanged in the liquid 

phase environment. However, while the liquid phase environment does not affect the free 

energy of reaction of this elementary step, the free energy of activation is perturbed 

differently for polar and non-polar solvents. The reaction becomes barrierless in an 

aqueous phase while for other solvents, the free energy of activation increases by 0.10 eV 

compared to that of the vapor phase. The product of step 16, 2-methylidyne-oxy-phenol 

(C6H4(OH)(OCH)) can then either undergo methyne (-CH) removal to produce hydrogen 

catecholate intermediate (C6H4(OH)O) (step 26) or formyl (-OCH) removal to produce 2-

hydroxy-phenyl species (C6H4OH) (step 25). Step 26 is much more facile compared to 

step 25 in the vapor phase which remains consistent in the presence of liquid phase 

environment. However, while liquid water makes the process more exergonic by 0.09 eV, 

other less protic solvents makes it more endergonic by 0.17 eV compared to that of the 

vapor phase. Elementary processes involving C6H4(OH)O species have already been 

discussed in the previous section and consequently will not be discussed further. 

 Finally, the pathway eight, which involves dehydrogenation of the hydroxyl group 

of guaiacol to produce guaiacolate intermediate(C6H4(O)(OCH3)) (step 8) is the most 

facile reaction pathway in vapor phase (∆�r�� = �0.77�eV, Δ�‡ = 0.29�eV). In the liquid 

phase, all solvents pose an endergonic effect on the free energy of reaction of this 

elementary process by ~0.10 eV. The free energy of activation remains unaltered in less 

protic solvents while liquid water shows an endergonic effect (∆�Δ�‡� = 0.08�eV) 

making this step competitive with the dehydrogenation of the methoxy group of guaiacol 

(step 6). Next, the methoxy group is dehydrogenated (step 22) which is more facile 

(∆�r�� = �0.32�eV, Δ�‡ = 0.53�eV) compared to the alternative step which involves 
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complete removal of the methoxy group (step 21) (∆�r�� = 0.21�eV, Δ�‡ = 1.08�eV) in 

the vapor phase. Liquid water further facilitates the kinetics of methoxy group 

dehydrogenation step (step 22) (∆�Δ�‡� = �0.06�eV). The product of step 22, 2-

methylene-oxy-phenolate (C6H4(O)(OCH2)) species then undergoes a barrierless 

dehydrogenation reaction (step 33) across all reaction environment to produce 2-

methylidyne-oxy-phenolate (C6H4(O)(OCH)) species where the thermodynamics of the 

process becomes slightly exergonic (by ~0.05 eV) when using less protic solvents 

compared to that of the vapor phase. In the vapor phase, two kinetically competing 

reactions develop at this point, methylidyne (-CH) removal (step 34) and hydrogen 

removal (step 35) from C6H4(O)(OCH) intermediate. In the liquid phase environment, the 

reactions become further competitive, e.g., the difference between the free energy of 

activation of these two elementary processes in 1-butanol solvent is 0.07 eV. The product 

of step 34, a catecholate species (C6H4O2) then undergoes hydrogenation (step 42) which 

connects the eighth pathway with the sixth at this point. Product of the other elementary 

step (step 35), 2-carbide-oxy-phenolate species (C6H4(O)(OC)) then goes through 

decarbonylation (step 43) to produce 2-oxyphenyl (C6H4O) intermediate. While the 

kinetics of this reaction mostly remains unperturbed due to the presence of a liquid phase, 

the free energy of reaction becomes more endergonic �∆�∆�r��� = 0.21�eV) in liquid 

water while other less protic solvents makes this process more exergonic �∆�∆�r��� =

�0.08�eV). Lastly, the C6H4O species gets hydrogenated to phenol (C6H5OH) (step 30) 

and aqueous phase environment facilitates this process both thermodynamically 

�∆�∆�r��� = �0.12�eV) and kinetically (∆�Δ�‡� = �0.09�eV). 
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Based on thermodynamics and kinetics of the elementary processes, we can 

presume that the dominant reaction pathway of the vapor phase (pathway 8) remains 

dominant in all condensed phase reaction medium. However, any computational catalysis 

study based on only free energies remains inadequate for not considering the realistic 

reaction conditions and not predicting the experimental observables which can be 

compared directly. Therefore, in the following sections, we investigate the effect of 

solvents on the turn-over frequency (TOF) and the coverage of most abundant surface 

intermediates through mean-field microkinetic modeling. 

4.5.1.3 Mean-field Microkinetic Modeling 

 In our previous study, we investigated the vapor phase kinetics of HDO of 

guaiacol over Ru(0001) surface42 where we found that at low hydrogen partial pressure 

and moderate reaction temperature (573K), kinetically the most favorable pathway 

proceeds through dehydrogenation of the hydroxyl group of guaiacol (pathway 8) and the 

major reaction product was phenol with catechol as the most relevant side product. In this 

study, we extend our microkinetic model to account for the effect of solvation by 

including the change in free energy of reaction and free energy of activation due to the 

presence of a condensed phase. We utilized the experimental reaction conditions of 0.50 

g of guaiacol in 10 g of solvent under relatively mild reaction conditions (473 K) and 15 

bar partial pressure of H2, similar to the reaction conditions of Tomishige et al.36,46 To 

find�the�corresponding�partial�pressure�of�guaiacol,�we�utilized�the�modified�Raoult’s�law, 

f�u�
� = �P�u� = � x�u�γ�u�P�u�

��t     (4.16) 



 
 

103 

Thermodynamic data such as activity coefficient, saturation pressure of guaiacol, and 

fugacity of pure solvent have been calculated using COSMOtherm program package.73-74 

We calculated guaiacol partial pressure to be 0.94 bar at 473 K and assuming a 1% 

conversion, the phenol partial pressure was set at 9.4 × 10−� bar. Using low conversion 

conditions to other reaction products such as catechol, anisole, and benzene, their partial 

pressures were set at 10−� bar. We chose a slightly higher partial pressure of CO (10−� 

bar) to observe the poisoning effect of CO on the reaction mechanism, similar to our prior 

research.42 For all simulations, we employed the same coverage dependent adsorption 

energies as reported in our previous contribution42 for the three most abundant surface 

intermediates of the vapor phase, H, CO, and phenoxy (C6H5O). A summary of our 

calculated TOFs at four different reaction temperatures and at various reaction 

environments are presented in Table 4.4. 

I. Liquid Water Effects 

 In the presence of an aqueous phase at 473 K (i.e., at a corresponding equilibrium 

water partial pressure of 15.536 bar), we observe that the surface is predominantly 

covered with CH, CO, H, and phenoxy (C6H5O) species (Table 4.5). The computed 

overall TOF decreases by a factor of 2.9 going from the vapor phase (TOFoverall-vapor = 

1.95 × 10−� ) to an aqueous phase (TOFoverall-water = 6.70 × 10−� ). The calculated TOFs 

along the dominant reaction pathway in different reaction environments are shown in 

Figure 4.2. The major product in the aqueous phase is predicted to be phenol (TOFphenol = 

6.66 × 10−� ), similar to the vapor phase.42 However, unlike the vapor phase where 

catechol was found to be the major side product, in liquid water we found benzene to be 
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the major side product with a two order of magnitude lower production rate than that of 

phenol (TOFbenzene = 4.02 × 10−� ).  

As we have reported previously,50,75 a fundamental caveat of using a continuum 

solvation scheme to compute the solvent effects is the uncertainty associated with the 

cavity radius of transition metal atoms. To account for the uncertainty of Ru atoms, we 

performed our aqueous phase calculations at three different cavity radii of Ru atoms: the 

default cavity radius provided by the TURBOMOLE64 program package (2.223 Å), a 

10% increased cavity radius (2.445 Å), and a 10% decreased cavity radius (2.0007 Å). 

Our microkinetic model results indicated that the usage of different cavity radius does not 

change the dominant reaction mechanism in an aqueous phase. However, we also 

observed that the overall TOF lowers by 2 orders of magnitude (TOFw�t�r
��SM�−��= 1.35 ×

10−� ) when we decrease the cavity radius of Ru atoms while with a 10% increase, TOF 

increases by a factor of 1.22 (TOFw�t�r
��SM�+��= 8.19 × 10−� ). 

Hellinger et al.44 studied the solvent effect on HDO of guaiacol over Pt/SiO2 and 

Pt/H-MFI 90 catalysts at 450 K and 50 bar hydrogen partial pressure. They surmised that 

polar solvents lead to lower conversion of HDO of guaiacol due to the oxygen containing 

solvents being strongly adsorbed on the active sites of the catalysts leading to blockage of 

active sites,93 which partly explains our model predicted lower activity of Ru catalysts in 

aqueous phase. Nakagawa et al.36 investigated of HDO of guaiacol over Ru/C catalysts in 

aqueous phase at relatively low temperature (433K) and 15 bar H2 partial pressure. The 

major products they observed are phenyl ring saturated products such as cyclohexanol, 2-

methoxycyclohexanol, and cyclohexane. Addition of MgO to the reaction media 

increased the yield of cyclohexanol and methanol. Using the same reaction conditions, 
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Ishikawa et al.46 studied HDO of guaiacol over carbon black supported Ru-MnOx catalyst 

(Ru-MnOx/C) and found cyclohexanol and methanol to be the major product. However, 

in both cases they observed phenol at short reaction times and the selectivity of phenol 

decreased with guaiacol conversion and cyclohexanol production, which agrees with our 

calculations of HDO of guaiacol at low conversion conditions. 

II. Less Protic Solvent (1-Butanol, Diethyl ether, and n-Hexane) Effects 

 Microkinetic models for 1-butanol, diethyl ether, and n-hexane were performed 

under similar reaction conditions except that we employed a water partial pressure similar 

to our vapor phase simulations (P��� = 10−� bar). Our simulations predict a factor two 

increase in catalytic activity (TOF�−�ut���� = 4.66 × 10−�, TOFdi�t�y���t��r =

4.33 × 10−�, TOF�−������ = 5.17 × 10−�) relative to the vapor phase (TOF�−�ut���� =

1.95 × 10−�) for less protic solvents which agrees with the observation of Hellinger et 

al.44 that non polar solvents have a positive effect on the HDO of guaiacol. Except for 

higher temperatures (>523 K), we found that the presence of a less protic solvent 

facilitates the phenol production. Chen et al.76 reported phenol as an intermediate for 

HDO of guaiacol over Ru/C at 413-533 K and 4 MPa hydrogen partial pressure using 

ethanol as a solvent, which has a normalized polarity close to that of 1-butanol. Lu et al.77 

investigated the HDO of guaiacol over Ru/TiO2, Ru/ZrO2, and Ru supported on TiO2-

ZrO2 composite oxides at 473-533K and 2 MPa hydrogen partial pressure using a non-

polar solvent, n-dodecane as the reaction medium. They found 2-methoxycyclohexanol, 

cyclohexanol, and phenol to be the major reaction products at low reaction temperature 

(473K) which partially confirms our microkinetic model predictions.  
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4.5.1.4 Apparent Activation Barrier, Reaction Orders, and Sensitivity Analysis 

We calculated the apparent activation barrier (E�) and reaction orders 

(n�u�, n��, &�n��
) (Table 4.6), and performed sensitivity analysis in different reaction 

environments (Table 4.7). Going from the vapor to an aqueous phase, the estimated 

apparent activation barrier for the temperature range of 423 K-573 K increases by 0.03 

eV which explains the decrease in TOF in liquid water. In less protic solvents such as 1-

butanol, diethyl ether, and n-hexane, we predict very similar apparent activation energies 

of 1.55 eV, 1.57 eV, and 1.58 eV, respectively. 

Next, we investigated the dependence of overall TOF on the partial pressures of 

guaiacol, CO, and H2, and the results have been summarized in Table 4.6. An increase in 

partial pressure of guaiacol increases the reaction rate across all reaction environment 

with the less protic solvents predicting same reaction order for guaiacol (0.12). Site 

blocking due to increase in CO partial pressure leads to a negative reaction order for CO 

in all reaction environments where aqueous phase shows the more pronounced effect 

(n��
w�t�r= -0.65). We also observed an inhibiting effect of low H2 partial pressure (0.20 – 

0.40 bar) in vapor and aqueous phase environment. However, our model indicated that in 

other less protic solvents, even at low temperature range, the hydrogen reaction order 

remains positive. Further increase in partial pressure of hydrogen (0.60 - 20.0 bar) assists 

the reaction rate in all reaction environments. 

To identify the rate controlling steps and surface intermediates, we used 

Campbell’s�degree�of�rate�control�and�degree�of�thermodynamic�rate�control94-96 analyses. 

Results of the sensitivity analyses are summarized in Table 4.7. We observed that H, CO, 
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and CH have a poisoning effect on the catalyst due to their high surface coverage in 

vapor and aqueous phase processing conditions such that destabilizing their adsorption 

increases the overall reaction rate. In less protic reaction environments, the largest degree 

of rate controlling species was found to be C6H4O2 which has a similar poisoning effect 

on the surface. Due to the high surface coverage of the CH species in vapor and aqueous 

phases, our model predicts methyl hydrogenation to methane as one of the rate 

controlling steps in the reaction mechanism. However, in less protic solvents, 

dehydrogenation of the hydrogen catecholate species (C6H4(OH)O) to 2-oxyphenyl 

(C6H4O), which serves as a precursor to phenol production, becomes the most rate 

controlling reaction such that lowering the activation barrier increases the overall reaction 

rate. Across all reaction environments, our model predicts that dehydrogenation of 2-

methyledyne-oxy-phenolate species (C6H4(O)(OCH)) to catecholate species (C6H4O2) 

has an inhibiting effect while dehydrogenation to 2-carbide-oxy-phenolate intermediate 

(C6H4(O)(OC)) facilitates the overall TOF. Owing to the lack of availability of free sites 

available for catalysis, our model also predicts a moderate degree of rate control for the 

guaiacol adsorption process. 

4.5.2 Hydrogenation of Phenol to Alicyclic Products 

4.5.2.1 Reaction Network 

 The hydro-upgrading of phenol to cycloalkanes can occur in a number of different 

ways. Hydrogen addition steps can happen at the -C (C1 pathway), ortho- (C2 pathway), 

meta- (C3 pathway), or para- (C4 pathway) positions of the phenolic ring to produce 

cyclohexanol and cyclohexanone (Figure 4.4 and Figure 4.5). Furthermore, phenol can 
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undergo dehydrogenation to produce a phenoxy species and then go through 

hydrogenation steps to produce cyclohexanone. Cyclohexanone can then undergo keto-

enol tautomerization to form cyclohexanol (Keto-enol tautomerization pathway, Figure 

4.6). The naming convention employed in the reaction network schemes is as follows: 

first hydrogenation of the phenyl ring at Cx position leads to the formation of HCX-1 

intermediate species [X=1, 2, 3, 4], and subsequent hydrogenated moieties are denoted 

adding a second integer. Different structures with same number of hydrogenations of 

phenol are distinguished by adding a letter at the end. For example, HC1-3a (Figure 4.4) 

refers to an intermediate species in C1 hydrogenation pathway with three hydrogenations 

of the phenyl ring, the last of which occurs at the C5 position, while HC1-3b refers to an 

adsorbed species of the same pathway with same number of hydrogenations, the last of 

which happening at C6 position. Finally, cyclohexanol being a species hydrogenated at all 

six carbons of phenol is denoted as HC-6 species. 

For the keto-enol tautomerization pathway (Figure 4.7), dehydrogenation of 

phenol at the hydroxyl group leads to the formation of a phenoxy species (KET-1). 

Subsequent hydrogenated products along the reaction network are denoted using an 

integer� after� ‘KET’,� e.g.,� KET-5d refers the to a phenolate species that has been 

hydrogenated four times, the last of which occurs at C6 position. KET-6 (Cyclohexanone) 

refers to complete hydrogenation of the phenolate species. In total, we investigated 114 

elementary steps along the reaction network for phenol hydrogenation to cycloalkanes 

over Ru(0001) surface. Table C.3 of the supporting information summarizes the free 

energies of these elementary processes at three different reaction temperatures. In the 

following sections, we discuss the energetics of these elementary processes in vapor and 
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condensed phases. Unless otherwise stated, the free energies of reaction and free energies 

of activation are interpreted at 473 K reaction temperature. 

4.5.2.2 Energetics in Vapor Phase 

 In C1 pathway, addition of a hydrogen to phenol (step 1) leads to the formation 

HC1-1 species (C6H5HOH) which is an endergonic process (Δ�r�� = 0.41�eV) and 

requires overcoming a free energy of activation of 1.16 eV. Subsequent hydrogenation to 

HC1-2a (step 2, second hydrogenation at the para- position) or HC1-2b (step 3, second 

hydrogenation at the ortho- position) are both highly endergonic processes with free 

energies of reaction of 0.85 eV and 0.80 eV, respectively (See Table C.3). In pathway C2, 

hydrogenation of phenol (step 37) results in HC2-1 species (C6H5HorthoOH) which is a 

thermodynamically and kinetically challenging process (Δ�r�� = 0.58�eV, Δ�‡ =

1.11�eV). HC2-1 can then undergo a second hydrogenation step to produce HC2-2a (step 

38) or HC2-2b (step 39) which are again thermodynamically demanding processes 

(Δ�r��
�� = 0.62�eV, Δ�r��

�� = 0.78�eV�. 

 Hydrogenation of phenol at the meta position (Pathway C3) leading to the 

formation of HC3-1 species (step 52) is a kinetically difficult endergonic process (Δ�‡ =

1.05�eV). Second hydrogenations of phenol along this reaction pathway to produce HC3-

2a or HC3-2b moieties are also endergonic processes with free energies of reaction of 

0.72 eV and 0.74 eV, respectively. Along the C4 pathway, hydrogenation of phenol (step 

77) produces HC4-1 (C6H5HparaOH) species which is also an endergonic and kinetically 

challenging process (Δ�r�� = 0.71�eV, Δ�‡ = 1.15�eV). 
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Finally, in the keto-enol tautomerization pathway (Figure 4.7), the initial O-H 

scission of phenol at the hydroxyl group (step 80) was found to be a facile exergonic 

process (Δ�r�� = �0.76�eV, Δ�‡ = 0.31�eV). Therefore, it is most likely that phenol at 

first undergoes to dehydrogenation to form a phenolate species before further 

hydrogenations. Subsequent hydrogenations of phenolate (KET-1) species to KET-2a 

(step 81) and KET-2b (step 102) are both thermodynamically challenging processes 

(Δ�r��
�� = 0.99�eV, Δ�r��

��� = 0.94�eV�. Due to the enormity of the reaction network, we 

made use of the Evans-Polanyi principle97 at this stage, which points to the favorability of 

step 102 over step 81 due to its less endergonicity. Thermodynamics of subsequent 

hydrogenations of KET-2b species (step 103, 104, 105, and 106) predicts the most 

thermodynamically favorable pathway to be step 105 to produce KET-3g species 

(Δ�r�� = 0.27�eV, Δ�‡ = 0.84�eV).  Next, KET-3g is hydrogenated to KET-4d (step 109) 

which is an endergonic process with challenging kinetics (Δ�r�� = 0.42�eV, Δ�‡ =

1.06�eV). KET-4d intermediate, which is the same as KET-4b, is subsequently 

hydrogenated to KET-5c (step 92) or KET-5d (step 93), of which the former is 

thermodynamically more favorable (Δ�r��
�� = 0.17�eV, Δ�r��

�� = 0.82�eV) with a free 

energy of activation of 1.07 eV. KET-5c then undergoes hydrogenation (step 96) to 

produce KET-6 (Cyclohexanone) with a moderately endergonic reaction free energy 

(Δ�r�� = 0.32�eV� and a high free energy of activation (Δ�‡ = 1.21�eV). KET-6 finally 

undergoes hydrogenation at the hydroxyl group to form KET-7a (step 98) and 

subsequently hydrogenated (step 100) to produce HC-6 (Cyclohexanol). Although 

kinetically very demanding, on the basis of these energetics calculations alone, the likely 

pathway to produce cyclohexanol from phenol proceeds through,  
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Phenol → KET � 1� → KET � 2b�� → KET � 3g� → KET � 4b�� → KET � 5c� → KET �

6� → KET � 7a� → HC � 6. This probable pathway is highlighted in figure 4.6. Next, we 

look into the condensed phase effects on this more likely path to understand if the 

presence of solvent causes the difference. 

4.5.2.3 Energetics in Liquid Phase 

 Table 4.8 summarizes the thermodynamics and kinetics of the important 

elementary surface processes for hydrogenation of phenol at various reaction 

environments. Presence of a solvent barely affects the thermodynamics or the kinetics of 

phenolate (KET-1) production from phenol (step 80) or the subsequent hydrogenation 

steps to form KET-2b species (step 102) and KET-3g species (step 105). However, liquid 

water reduces the free energy of activation of the next hydrogenation step to produce 

KET-4d/b species (step 109) by 0.13 eV where the non-polar aprotic n-hexane 

demonstrates less dramatic effect. Introduction of a liquid phase environment also 

facilitates the subsequent hydrogenation of KET-4b to KET-5c (step 92), with water 

displaying the largest facilitating effect �Δ(Δ�w�t�r
‡ ) = �0.17�eV�. KET-5c then 

undergoes hydrogenation to produce KET-6 species (step 96) where condensed phases 

have a nominal effect on the thermodynamics of the reaction. However, the reaction 

become more facile in the liquid phase, with liquid water reducing the free energy of 

activation by 0.17 eV.  The thermodynamics and kinetics of the final two subsequent 

hydrogenation steps (step 98 & 100) are minimally affected by the presence of a 

condensed phase. Overall, addition of a liquid phase reaction media facilitates the likely 

pathway proposed in the previous section with liquid water liquid water exhibiting the 
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largest facilitating effect which compare favorably with the observation of Zhong et al.92 

However, the kinetics of some of these elementary processes (Table 4.8) still remains 

very demanding. 

4.6 Conclusion 

 Solvent influence on the hydrodeoxygenation of guaiacol over Ru(0001) model 

surface has been investigated in a two-step fashion by means of periodic and non-

periodic DFT calculations, implicit solvation calculations with the iSMS scheme, and 

microkinetic modeling.  In the first step, we examined the formation of unsaturated 

aromatic products such as phenol, anisole, catechol etc. from guaiacol. We developed 

mean-field microkinetic reactor models at different temperatures and experimental 

reaction conditions.36,46 Under all reaction environments and reaction conditions, we 

found the same dominating HDO mechanism with the most favored pathway following 

the initial dehydrogenation at the hydroxyl group of guaiacol, followed by complete 

dehydrogenation of the methoxy group and subsequent decarbonylation, which then 

undergoes two subsequent hydrogenations to produce phenol. Less protic solvents such 

as 1-butanol, diethyl ether, and n-hexane demonstrates higher HDO ability compared to 

that of vapor and aqueous phases which is qualitatively in good agreement with the 

experimental results.44 After verifying the presence of phenol, which is often referred to 

as� a� ‘short-lived� intermediate’,�we� investigated� the� production�of� cycloalkanes� through�

phenol hydrogenation in vapor and condensed phases. We observed that dehydrogenation 

of phenol to a phenolate species (keto-enol tautomerization pathway) is the most likely 

pathway to produce cyclohexanol and cyclohexanone from phenol. Based on the vapor 

phase first-principles calculations, we proposed a plausible pathway for cycloalkane 
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formation. Next, we investigated the solvent effects on this probable reaction pathway 

and demonstrated a facilitating effect of the aqueous phase along the proposed reaction 

mechanism which is in line with experimental observations.98 Therefore, our study 

addresses a crucial issue, how the presence of a condensed phase affects the 

hydrogenation of aromatic rings on Ru catalysts. We should note here that the proposed 

pathway still remains kinetically very challenging and it is possible that the 

cyclohexanone and cyclohexanol production follows a different reaction route along the 

keto-enol tautomerization pathway. Investigations have also shown that the support plays 

a major role in the hydrogenation of phenol which might also facilitate the kinetics of the 

reactions along the hypothesized reaction mechanism.89 However, a full computational 

investigation of phenol hydrogenation is out of the scope of the present study and we 

encourage further computational investigations on phenol hydrogenation for the 

production of cycloalkanes.  
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4.8 Tables and Figures 

Table 4.1: Solvent effects on the adsorption strength of various surface intermediates in 
the HDO of Guaiacol over Ru(0001) model surface at 473 K temperature. 

 

Surface 
Intermediates 

Water 
Δ(ΔG)�(eV) 

1-Butanol 
Δ(ΔG)�(eV) 

Diethyl ether 
Δ(ΔG)�(eV) 

n-Hexane 
Δ(ΔG)�(eV) 

C6H4(OH)(OCH3)       -0.22 -0.47 -0.43 -0.33 
C6H4Hβ(OH)(OCH3)     -0.18 -0.36 -0.34 -0.25 
C6H4Hα(OH)(OCH3)     -0.19 -0.53 -0.50 -0.39 
C6H4OCH3        -0.07 -0.35 -0.33 -0.24 
C6H4OH              -0.20 -0.33 -0.31 -0.22 
C6H4(OH)(OCH2)       -0.15 -0.43 -0.40 -0.30 
C6H4(OH)(O)           -0.22 -0.26 -0.23 -0.15 
C6H4(O)(OCH3)        -0.16 -0.35 -0.31 -0.22 
C6H4Hβ(OH)(OCH2)     -0.37 -0.38 -0.35 -0.26 
C6H5OCH3           -0.25 -0.41 -0.38 -0.29 
C6H4(OH)(OCH)        -0.17 -0.44 -0.41 -0.30 
C6H4(OH)2          -0.22 -0.39 -0.36 -0.25 
C6H4O               -0.05 -0.33 -0.31 -0.22 
C6H4(O)(OCH2)         -0.14 -0.29 -0.25 -0.17 
C6H4Hβ(OH)(O)         -0.19 -0.33 -0.29 -0.20 
C6H5OCH2           -0.17 -0.32 -0.28 -0.19 
C6H5O               -0.13 -0.32 -0.29 -0.20 
C6H5OH              -0.20 -0.38 -0.35 -0.26 
C6H5(OH)2          -0.14 -0.28 -0.25 -0.18 
C6H4O2              -0.26 -0.34 -0.31 -0.23 
C6H5                -0.14 -0.31 -0.29 -0.21 
C6H6OH              -0.22 -0.28 -0.25 -0.17 
C6H6                -0.11 -0.26 -0.24 -0.17 
C6H4Hα(O)(OH)�������� -0.19 -0.27 -0.24 -0.17 
C6H4(O)(OCH)          -0.18 -0.34 -0.32 -0.24 
C6H4(O)(OC)           -0.27 -0.32 -0.29 -0.20 
H                   0.04 0.01 0.01 0.01 
OH                  0.04 -0.02 -0.02 0.01 
H2O                 0.01 -0.10 -0.09 -0.05 
CH                  -0.05 -0.02 -0.01 0.01 
CH2                 0.02 -0.02 -0.01 0.00 
CH3                 0.11 -0.01 -0.01 0.00 
CH4                 0.04 -0.03 -0.03 -0.03 
CO                  0.00 -0.06 -0.06 -0.04 
CHO                 0.02 -0.04 -0.04 -0.01 
CH2O                -0.02 -0.03 -0.02 0.00 
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CH3O                0.09 -0.07 -0.06 -0.04 
CH3OH 0.12 -0.10 -0.09 -0.05 

 

Table 4.2: Energetics of adsorption-desorption reactions (in eV) for HDO of guaiacol in 
the limit of zero coverage at 473 K temperature under different reaction 
environments. 

 

ID Reaction 
Vapor 
phase, 
∆���� 

Water, 
∆���� 

1-Butanol, 
∆���� 

Diethyl 
ether, 
∆���� 

n-
Hexane, 
∆���� 

1 
C6H4(OH)(OCH3) (gas) + 4*  ↔ 
C6H4(OH)(OCH3) **** 

-0.29 -0.51 -0.75 -0.72 -0.62 

53 
C6H5(OCH3)**** ↔ C6H5(OCH3) 
(gas) + 4* 

0.35 0.60 0.75 0.73 0.64 

54 
C6H4(OH)2**** ↔ C6H4(OH)2(gas) 
+ 4* 

0.41 0.63 0.80 0.77 0.66 

55 
C6H5OH**** ↔ C6H5OH (gas) + 
4* 

0.45 0.65 0.83 0.80 0.71 

56 C6H6*** ↔ C6H6(gas) + 3* 0.47 0.58 0.72 0.70 0.64 

57 CH4* ↔ CH4(gas) + * -0.39 -0.43 -0.36 -0.36 -0.36 

58 CH3OH* ↔ CH3OH (gas) + * -0.38 -0.50 -0.28 -0.29 -0.33 

59 H2O* ↔ H2O (gas) + * -0.33 -0.34 -0.23 -0.24 -0.28 

60 CO* ↔ CO (gas) + * 0.96 0.96 1.02 1.01 1.00 

53 H* ↔ 0.5H2 (gas) + * 0.18 0.22 0.19 0.19 0.19 
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Table 4.3: Energetics of all elementary surface reaction steps (in eV) for HDO of 
guaiacol to unsaturated aromatics in the limit of zero coverage at 473 K 
temperature in the presence of liquid water, 1-butanol, diethyl ether, and n-hexane 
solvents. 

 

ID Reaction 

Vapor 
phase 

Water 1-Burtanol 
Diethyl 
ether 

n-Hexane 

∆���� ∆�‡ ∆���� ∆�‡ ∆���� ∆�‡ ∆���� ∆�‡ ∆���� ∆�‡ 

2 

C6H4(OH)(OCH3)**** + 
H* ↔ 
C6H4Hβ(OH)(OCH3)**** 
+ * 

0.40 1.10 0.41 1.12 0.49 1.27 0.48 1.28 0.47 1.25 

3 

C6H4(OH)(OCH3) **** + 
H*  ↔ 
C6H4Hα(OH)(OCH3)**** 
+  * 

0.51 1.14 0.51 1.18 0.43 1.20 0.44 1.20 0.45 1.21 

4 
C6H4(OH)(OCH3)**** + 
*   ↔ C6H4(OCH3)**** +  
OH* 

-0.22 1.06 -0.03 1.13 -0.13 1.06 -0.13 1.06 -0.12 1.07 

5 
C6H4(OH)(OCH3)**** + 
* ↔ C6H4OH**** + 
CH3O* 

-0.49 0.88 -0.37 0.95 -0.43 0.89 -0.42 0.90 -0.42 0.90 

6 

C6H4(OH)(OCH3)**** + 
2* ↔ 
C6H4(OH)(OCH2)***** 
+ H* 

-0.36 0.50 -0.25 0.52 -0.32 0.51 -0.32 0.51 -0.32 0.51 

7 
C6H4(OH)(OCH3)**** + 
* ↔ C6H4(OH)(O)**** + 
CH3* 

-1.35 1.40 -1.23 1.43 -1.15 1.36 -1.15 1.37 -1.17 1.38 

8 
C6H4(OH)(OCH3)**** + 
* ↔ C6H4(O)(OCH3)**** 
+ H* 

-0.77 0.29 -0.67 0.37 -0.65 0.29 -0.64 0.29 -0.65 0.31 

9 

C6H4Hβ(OH)(OCH3)**** 
+ 2* ↔ 
C6H4Hβ(OH)(OCH2)****
* + H* 

-0.12 0.93 -0.27 0.81 -0.13 0.91 -0.12 0.92 -0.12 0.93 

10 
C6H4Hβ(OH)(OCH3)**** 
+ * ↔ C6H5OH**** + 
CH3O* 

-1.05 0.72 -0.97 0.61 -1.13 0.66 -1.12 0.67 -1.10 0.68 

11 
C6H4Hα(OH)(OCH3)**** 
+ * ↔ C6H5(OCH3)**** 
+ OH* 

-0.91 0.57 -0.93 0.59 -0.81 0.70 -0.81 0.70 -0.81 0.68 

12 
C6H4(OCH3)**** + H* 
↔ C6H5(OCH3)**** + * 

-0.18 0.64 -0.40 0.58 -0.25 0.55 -0.25 0.55 -0.24 0.56 

13 
C6H4OH**** + H* ↔ 
C6H5OH**** + * 

-0.16 0.62 -0.20 0.59 -0.22 0.61 -0.21 0.61 -0.21 0.60 

14 
C6H4(OH)(OCH2)***** 
+ * ↔ C6H4OH****  + 
CH2O** 

-0.25 1.23 -0.33 1.10 -0.19 1.34 -0.19 1.33 -0.18 1.32 

15 

C6H4(OH)(OCH2)***** 
+ * ↔ 
C6H4(O)(OCH2)***** + 
H* 

-0.73 0.28 -0.69 0.31 -0.58 0.32 -0.58 0.32 -0.59 0.31 

16 

C6H4(OH)(OCH2)***** 
+ * ↔ 
C6H4(OH)(OCH)***** + 
H*  

-0.53 0.02 -0.52 0.00 -0.53 0.12 -0.53 0.12 -0.53 0.11 

17 
C6H4(OH)(OCH2)***** 
↔ C6H4(OH)(O)**** + 
CH2*  

-1.25 0.42 -1.30 0.43 -1.10 0.40 -1.10 0.40 -1.11 0.41 
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18 
C6H4(OH)(O)**** + H* 
↔ C6H4(OH)2**** + * 

0.75 1.03 0.71 1.03 0.61 0.92 0.61 0.92 0.64 0.93 

19 
C6H4(OH)(O)**** + H* 
↔ C6H4Hα(OH)(O)**** 
+ * 

0.89 1.40 0.87 1.47 0.86 1.37 0.86 1.37 0.85 1.38 

20 
C6H4(OH)(O)**** + * ↔ 
C6H4O**** + OH* 

0.51 1.15 0.72 1.11 0.41 1.14 0.42 1.14 0.45 1.15 

21 
C6H4(O)(OCH3)****  + * 
↔ C6H4O**** + CH3O* 

0.21 1.08 0.32 1.04 0.16 1.15 0.17 1.16 0.19 1.16 

22 

C6H4(O)(OCH3)****  + 
2* ↔ 
C6H4(O)(OCH2)***** + 
H* 

-0.32 0.53 -0.27 0.47 -0.25 0.52 -0.25 0.51 -0.26 0.51 

23 
C6H4Hβ(OH)(OCH2)****
* ↔ C6H4Hβ(OH)(O)**** 
+ CH2* 

-0.84 0.39 -0.65 0.55 -0.81 0.39 -0.80 0.40 -0.79 0.41 

24 
C6H5(OCH3)**** + * ↔ 
C6H5(OCH2)**** + H* 

-0.32 0.51 -0.20 0.52 -0.22 0.55 -0.21 0.56 -0.21 0.57 

25 
C6H4(OH)(OCH)***** + 
* ↔ C6H4OH**** + 
CHO** 

-0.26 1.00 -0.27 0.99 -0.20 0.95 -0.20 0.95 -0.20 0.95 

26 
C6H4(OH)(OCH)***** 
↔ C6H4(OH)(O)**** + 
CH* 

-1.29 0.31 -1.38 0.31 -1.12 0.32 -1.12 0.33 -1.13 0.34 

27 
C6H4(OH)2**** + * ↔ 
C6H4OH**** + OH* 

-0.16 1.16 -0.09 1.09 -0.13 1.16 -0.13 1.16 -0.13 1.15 

28 
C6H4(OH)2**** + H* ↔ 
C6H5(OH)2**** + * 

0.55 1.15 0.59 1.25 0.65 1.19 0.65 1.19 0.62 1.17 

29 
C6H4Hα(OH)(O)**** + * 
↔ C6H5O**** + OH* 

-1.29 0.76 -1.20 0.74 -1.37 0.73 -1.36 0.73 -1.31 0.74 

30 
C6H4O**** + H* ↔ 
C6H5O**** + * 

-0.92 0.52 -1.04 0.43 -0.92 0.44 -0.91 0.45 -0.91 0.46 

31 
C6H4(O)(OCH2)***** + 
* ↔ C6H4O**** + 
CH2O** 

0.40 1.03 0.46 1.01 0.32 1.02 0.32 1.02 0.34 1.01 

32 
C6H4(O)(OCH2)*****  + 
* ↔ C6H4O2***** + 
CH2* 

-0.95 0.52 -1.05 0.50 -1.02 0.51 -1.02 0.51 -1.01 0.50 

33 

C6H4(O)(OCH2)*****  + 
* ↔ 
C6H4(O)(OCH)***** +  
H* 

-0.52 0.02 -0.52 0.02 -0.57 0.00 -0.57 0.00 -0.58 0.00 

34 
C6H4(O)(OCH)***** + * 
↔ C6H4O2***** + CH* 

-1.00 0.50 -1.13 0.52 -1.02 0.51 -1.01 0.53 -0.98 0.54 

35 
C6H4(O)(OCH)***** + * 
↔ C6H4(O)(OC)***** + 
H* 

-0.34 0.40 -0.39 0.41 -0.31 0.45 -0.30 0.46 -0.29 0.47 

36 
C6H4Hβ(OH)(O)**** + 
H* ↔ C6H5(OH)2**** + 
* 

0.25 0.91 0.26 0.94 0.29 0.92 0.28 0.92 0.27 0.92 

37 
C6H5(OCH2)**** + * ↔ 
C6H5O**** + CH2* 

-1.30 0.18 -1.24 0.16 -1.32 0.24 -1.32 0.23 -1.31 0.23 

38 
C6H5O**** + H* ↔ 
C6H5OH**** + * 

0.84 1.03 0.73 1.00 0.77 1.04 0.76 1.04 0.77 1.03 

39 
C6H5OH**** + * ↔ 
C6H5**** + OH* 

-0.10 1.17 -0.01 1.09 -0.07 1.21 -0.06 1.21 -0.05 1.20 

40 
C6H5OH**** + H* ↔ 
C6H6OH**** + * 

0.59 1.25 0.53 1.21 0.67 1.34 0.67 1.34 0.67 1.33 

41 
C6H5(OH)2**** + * ↔ 
C6H5OH**** + OH* 

-0.87 0.56 -0.89 0.57 -0.99 0.41 -0.99 0.41 -0.95 0.45 

42 
C6H4O2***** + H* ↔ 
C6H4(OH)(O)**** + 2* 

0.43 0.95 0.44 0.97 0.50 0.95 0.51 0.95 0.50 0.95 
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43 
C6H4(O)(OC)***** ↔ 
C6H4O**** + CO* 

-0.49 0.66 -0.28 0.70 -0.57 0.69 -0.57 0.70 -0.55 0.69 

44 
C6H5**** + H* ↔ 
C6H6*** + 2* 

-0.20 0.54 -0.21 0.56 -0.15 0.53 -0.15 0.54 -0.17 0.55 

45 
C6H6OH**** ↔ C6H6*** 
+ OH* 

-0.89 0.53 -0.74 0.59 -0.88 0.55 -0.89 0.54 -0.88 0.54 

46 CH* + H* ↔ CH2* + * 0.57 0.61 0.60 0.60 0.56 0.18 0.56 0.21 0.56 0.35 

47 CH2* + H* ↔ CH3* + * 0.27 0.62 0.31 0.61 0.26 0.31 0.26 0.33 0.26 0.39 

48 CH3* + H* ↔ CH4* + * 0.43 1.03 0.32 1.08 0.40 0.62 0.39 0.65 0.40 0.75 

49 OH* + H* ↔ H2O* + * 0.48 1.13 0.41 1.04 0.39 1.11 0.40 1.11 0.42 1.12 

50 
CHO** + H* ↔ CH2O** 
+ * 

0.54 0.51 0.46 0.48 0.54 0.50 0.55 0.50 0.54 0.50 

51 
CH2O** + H* ↔ CH3O* 
+ 2* 

0.13 0.69 0.21 0.71 0.08 0.68 0.08 0.67 0.08 0.67 

52 
CH3O* + H* ↔  
CH3OH* + * 

0.71 1.21 0.69 1.16 0.67 1.23 0.67 1.23 0.69 1.23 

 

Table 4.4: Computed overall turnover frequencies at various reaction temperatures and 15 
bar partial pressure of hydrogen for HDO of guaiacol over Ru(0001) surface. 
Microkinetic models have been simulated for 1% conversion of guaiacol using 0.5 
g guaiacol in 10 g of different solvent medium. 

 

TOF (s-1) 
Temperature 

423 K 473 K 523 K 573 K 

Vapor phase 6.46 × 10-7 1.95 × 10-4 4.31 × 10-2 2.35  

Water 1.54 × 10-7 6.70 × 10-5 3.25 × 10-2 4.82 × 10-1 

1-Butanol 4.64 × 10-6 4.66 × 10-4 1.76 × 10-2 3.08 × 10-1 

Diethyl ether 4.07× 10-6 4.33 × 10-4 1.80 × 10-2 2.98 × 10-1 

n-Hexane 4.94× 10-6 5.17 × 10-4 2.34 × 10-2 4.14 × 10-1 
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Table 4.5: Coverages (%) of most abundant surface intermediates in various reaction 
environments for HDO of guaiacol at 473K temperature. 

 

Surface 
Intermediates 

Vapor 
phase 

Water 1-Butanol 
Diethyl 
ether 

n-Hexane 

�∗ 0.13 0.10 0.39 0.41 0.35 
��
∗  7.04 11.73 11.42 11.49 11.03 

���
∗  28.17 25.78 29.96 30.09 29.65 

���
∗  62.75 60.20 0.03 0.05 0.34 

�������
∗  0.65 0.10 46.7 48.45 51.20 

��ℎ�����
∗  0.76 1.84 9.72 8.24 5.68 

 

Table 4.6: Kinetic parameters computed at 473 K for HDO of guaiacol over Ru(0001) 
model surface at low conversion conditions under various reaction environments. 

 

Properties 
Partial 

pressure 
(bar) 

Vapor 
phase 

Water 1-Butanol 
Diethyl 
ether 

n-Hexane 

Apparent 
Activation 
Energy(eV) 

- 2.12 2.15 1.55 1.57 1.58 

Guaiacol 
order 

0.20 - 10.0 0.17 0.20 0.12 0.12 0.12 

Carbon 
monoxide 
order 

1.0 × 10−�-
1.0 × 10−� 

-0.51 -0.65 -0.18 -0.18 -0.18 

Hydrogen 
order 

0.20 – 0.40 -1.18 -4.02 0.68 0.59 0.42 
0.60-20.0 1.74 1.62 0.46 0.46 0.08 
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Table 4.7: Thermodynamic and kinetic sensitivity analysis at 473 K for HDO of guaiacol 
over Ru(0001) model surface. 

 

Degree of thermodynamic rate control 

Species Vapor Water 1-Butanol Diethyl ether n-Hexane 

H* -0.94 -0.35 -0.60 -0.66 -0.55 

CO* -0.63 -0.79 -0.18 -0.20 -0.21 

CH* -0.90 -0.86 0.00 0.00 0.00 

C6H4O2***** -0.01 0.00 -0.80 -0.82 -0.82 

Degree of kinetic rate control 

C6H4(OH)(OCH3) (gas) + 4*  ↔  
C6H4(OH)(OCH3)**** 

0.15 0.20 0.16 0.16 0.16 

C6H4(OH)(O)****  + *   ↔  
C6H4O**** +  OH* 

-0.01 0.01 0.77 0.80 0.82 

C6H4(O)(OCH)***** + *   ↔  
C6H4O2***** +  CH* 

-0.72 -0.75 -0.60 -0.61 -0.64 

C6H4(O)(OCH)***** + *   ↔  
C6H4(O)(OC)***** +  H* 

0.74 0.73 0.57 0.58 0.61 

CH3* + H*  ↔  CH4* +  * 0.84 0.86 0.00 0.00 0.01 
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Table 4.8: Energetics of important elementary surface reaction steps (in eV) in the limit 
of zero coverage at 473 K temperature in the presence of liquid water, 1-butanol, 
diethyl ether, and n-hexane solvents for phenol hydrogenation to cyclohexanol. 

 

ID Reaction 
Vapor phase Water 1-Burtanol Diethyl ether n-Hexane 

∆���� ∆�‡ ∆���� ∆�‡ ∆���� ∆�‡ ∆���� ∆�‡ ∆���� ∆�‡ 

1 
Phenol**** + H* ↔ 
HC1-1**** + * 

0.41 1.16 - - - - - - - - 

37 
Phenol**** + H* ↔ 
HC2-1**** + * 

0.58 1.11 - - - - - - - - 

52 
Phenol**** + H* ↔ 
HC3-1**** + * 

0.51 1.05 - - - - - - - - 

77 
Phenol**** + H* ↔ 
HC4-1**** + * 

0.71 1.15 - - - - - - - - 

80 
Phenol**** + * ↔ 
KET-1**** + H* 

-0.76 0.31 -0.77 0.34 -0.75 0.32 -0.75 0.32 -0.75 0.31 

92 
KET-4b**** + H* ↔ 
KET-5c**** + * 

0.17 1.07 0.12 0.90 0.10 0.97 0.10 0.98 0.10 0.99 

96 
KET-5c**** + H* ↔ 
KET-6**** + * 

0.32 1.21 0.23 1.04 0.24 1.15 0.24 1.17 0.24 1.18 

98 
KET-6**** + H* ↔ 
KET-7a**** + * 

0.60 1.22 0.57 1.17 0.59 1.24 0.59 1.25 0.59 1.26 

100 
KET-7a**** + H* ↔ 
HC-6**** + * 

-0.11 1.17 -0.13 1.09 -0.14 1.10 -0.13 1.11 -0.13 1.11 

102 
KET-1**** + H* ↔ 
KET-2b**** + * 

0.94 1.14 0.90 1.21 0.90 1.14 0.90 1.13 0.90 1.12 

105 
KET-2b**** + H* ↔ 
KET-3g**** + * 

0.27 0.84 0.24 0.86 0.23 0.81 0.23 0.80 0.23 0.80 

109 
KET-3g**** + H* ↔ 
KET-4d**** (=KET-
4b****) + * 

0.42 1.06 0.44 0.93 0.44 0.95 0.44 0.96 0.43 1.02 
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Figure 4.1: Reaction network investigated for the hydrodeoxygenation of guaiacol over 
Ru(0001) model surface. Duplicate structures are highlighted by identical 
background colors. 
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Figure 4.2: Turnover frequencies (1/s) along the dominant reaction pathway for HDO of 
guaiacol to unsaturated aromatic products over Ru(0001) surface computed in 
different reaction environments.  
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Figure 4.3: Turnover frequencies (1/s) along the dominant reaction pathway for HDO of 
guaiacol to unsaturated aromatic products over Ru(0001) surface in vapor and 
aqueous phases. Aqueous phase calculations have been performed using three 
different cavity radius of Ru atoms. 

  



 
 

125 

 

 

Figure 4.4: Reaction network investigated along the C1 and C2 hydrogenation pathway of 
phenol over Ru(0001) model surface. Duplicate structures have been highlighted by 
identical border colors. 
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Figure 4.5: Reaction network investigated along the C3 and C4 hydrogenation pathway of 
phenol over Ru(0001) model surface. Duplicate structures have been highlighted by 
identical border colors. 
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Figure 4.6: Reaction network investigated along the keto-enol tautomerization pathway 
of phenol over Ru(0001) model surface. Duplicate structures have been highlighted 
by identical border colors. Proposed reaction mechanism and the reaction steps 
involved for cycloalkane production from phenol have also been highlighted. 
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APPENDIX A: 

SUPPORTING INFORMATION FOR LIQUID PHASE MODELING IN 

HETEROGENEOUS CATALYSIS 
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A.1 Computational Details 

A.1.1 Planewave periodic DFT calculations 

All vapor phase DFT calculations presented in this contribution were carried out 

using the Vienna Ab Initio Simulation Package (VASP 5.3)1-4 under periodic boundary 

conditions. The ion-core electronic states were described by the projector-augmented 

wave (PAW)5 method while the electron exchange and correlation effects were accounted 

for using the Perdew-Burke-Erznzerhof (PBE)6-7 functional within the semilocal 

Generalized Gradient Approximation (GGA).8 The electronic wavefunctions were 

expanded using a plane-wave basis set with a kinetic energy cutoff of 400 eV and the k-

point sampling in the Brillouin zone was performed by employing the Monkhorst-Pack9 

scheme. Entropic contributions arising from the fractional occupancies of bands were 

accounted for using a first order cold smearing method (Methfessel-Paxton10) with 0.10 

eV smearing window. All self-consistent field (SCF) calculations for the valence 

electrons were converged up to 1.0 × 10−� eV. The Pt(111) model surface was mimicked 

using a 4×4 unit cell with 4 layers of Pt atoms (top two layers relaxed) and a 15 Å 

vacuum was introduced on top of the surface to minimize the interaction between 

periodic images along the surface normal. A modified version of Makov-Payne method11 

was employed to account for the dipole and quadrupole corrections (parallel to the 

surface plane) to the energy. Transition state searches were carried out using a 

combination of climbing-image nudged elastic band12-13 and dimer14-15 methods. Finally, 

dynamical matrix calculations were performed to ascertain the location of minima and 

transition state structures.  
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A.1.2 Implicit Solvation (iSMS) 

 A hexagonal Pt(111) cluster model with 2 layers of Pt atoms (51 atoms) was used 

to calculate the free energies of solvation with the implicit solvation scheme, iSMS. 

Nonperiodic cluster model calculations were performed for multiple spin states in search 

for the lowest-energy spin state with the TURBOMOLE 6.516-18 program package. 

Adsorbate atoms were represented using all electron basis sets of triple-ζ� quality�

(TZVP),19-20 while relativistic effective core potentials (ECPs) combined with triple-ζ�

quality basis sets for valence electrons were employed for describing the metal (Pt) 

atoms.21-22 The PBE functional6-7 was utilized for describing the electron exchange and 

correlation effects and coulomb potentials were approximated with the RI-J 

approximation using auxiliary basis sets.23-24 A 1.0 × 10−� Hartree SCF energy 

convergence criterion was established with an m4 spherical grid. Finally, implicit 

solvation calculations for the lowest energy spin state were performed using the 

COSMO25-26 and COSMO-RS27-28 procedures. Due to the specification of the COSMO-

RS parameterization, these calculations were performed by employing the BP-86 

functional.29 A detailed description of our iSMS methodology can be found elsewhere.30 
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A.1.3 Hybrid QM/MM methodology and free energy estimator  

An augmented 16×20 unit cell with 4 layers of Pt atoms resulting in a 45.0 Å × 

48.7 Å × 49.0 Å simulation box comprising 1280 Pt atoms was employed for our 

QM/MM methodology (eSMS) and the MD simulations, performed using the DL_POLY 

4.03 program package.31 The experimental density of saturated liquid water at 500 K was 

used in our simulations by packing the simulation box with 2200 water molecules. The 

geometry of the water molecules was constrained to that of the TIP3P32 water model with 

the SHAKE33 algorithm. The Spohr-Heinzinger potential34 was used for describing the 

interaction between the metal atoms (Pt) and the water molecules while the OPLS force 

field parameters35-36 were used for adsorbate (ethylene glycol) and water interaction 

(partial charges for all QM atoms are obtained from natural population analysis - NPA37). 

Simulations were carried out in a canonical (NVT) ensemble along with the Berendsen 

thermostat38 to maintain the simulation temperature. A 12 Å cutoff value was used for all 

van-der-Waals interactions and for splitting the long-range electrostatic interactions into 

short- and long-range interactions.  A reformulated particle mesh Ewald method (Smooth 

Particle Mesh Ewald, SPME)39 with B-spline interpolation was used to account for the 

long-range electrostatic interactions.  

Utilizing ultrafast spectroscopy, it has been reported that in liquid water, the 

correlation time within the hydrogen bonded network of water molecules is ~50 fs40 and 

hence, the total QM/MM energy has been computed in a fixed-size ensemble of MM 

conformations (1000) recorded every 50 fs from an MD simulation consisting of a 250 ps 

equilibration period and a 50 ps sampling period. A detailed description of our QM/MM 

methodology can be found elsewhere.41 
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An accurate estimation of free energies at solid-liquid interfaces requires the 

generation of statistically uncorrelated water conformations and the use of a free energy 

estimator that reduces the statistical bias and variance of the calculated free energy 

difference.42-45 We used the Bennett acceptance ratio46 (BAR) as the free energy 

estimator which makes use of both forward and reverse exponential averaging and which 

has been shown to lower the bias and variance of the free energy difference between two 

non-physical states relative to exponential averaging (EXP) and thermodynamic 

integration (TI).44 For each model reaction, the whole calculation procedure was repeated 

ten times to establish 95% confidence intervals for the calculation of the free energy of 

reaction and activation, assuming a normal distribution.47 Overall, the computational 

expense of our eSMS method is only two orders of magnitude higher than the expense for 

conventional gas-phase computations.   
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A.1.4 Solvent accessible surface (SAS) and surface charge density (SCD) 

 

 

 

 

   

 

        (a)                        (b) 

 

                                             

     

 

 

 

              (c) 

Figure A.1.4: Maximum surface charge densities (SCDs) of the reacting hydrogen atom 
during C-H bond cleavage of ethylene glycol over Pt(111): (a) Reactant, (b) 
transition, and (c) product states.  
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APPENDIX B: 

SUPPORTING INFORMATION FOR COMPUTATIONAL 

INVESTIGATION OF AQUEOUS-PHASE EFFECTS ON THE 

DEHYDROGENATION AND DEHYDROXYLATION OF POLYOLS 

OVER Pt(111)
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Table B.1: Effect of equilibration time on the free energy of reaction and the free energy 
of activation for the O-H bond cleavage of ethylene glycol over a Pt(111) model 
surface under aqueous phase processing conditions. 

 

Reaction environment 
Equilibration time 

(ps) 
∆���� 
(eV) 

∆�† 
(eV) 

Vapor phase - 0.45 0.70 

Aqueous phase 
50 -0.09±0.03 0.11±0.01 
100 -0.11±0.04 0.10±0.02 
250 -0.09±0.06 0.11±0.04 

 

Table B.2: Aqueous phase effects on the free energy of reaction and the free energy of 
activation for the O-H bond cleavage of ethylene glycol over a Pt(111) model 
surface at 500 K, ensemble averages computed by sampling different amounts of 
phase space. 

 

Reaction environment 
Number of water 

conformations 
∆���� 
(eV) 

∆�† 
(eV) 

Vapor phase - 0.45 0.70 

Aqueous phase 
100 -0.11±0.09 0.12±0.05 
500 -0.10±0.01 0.12±0.01 
1000 -0.09±0.06 0.11±0.04 
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Table B.3: Aqueous phase effects on the free energy of reaction and the free energy of 
activation for the O-H bond cleavage of ethylene glycol over a Pt(111) model 
surface at 500 K, solvated using different number of water molecules. 

 

Reaction environment 
Number of water 

molecules 
∆���� 
(eV) 

∆�† 
(eV) 

Vapor phase - 0.45 0.70 

Aqueous phase 

990 -0.09±0.05 0.10±0.02 
1320 -0.08±0.04 0.11±0.03 
1760 -0.10±0.03 0.11±0.01 
2200 -0.09±0.06 0.11±0.04 
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(a)      (b) 

 

(c)      (d) 
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(e)      (f) 

Figure B.1: Optimized geometries of the reactant state [(a) and (b)], transition state [(c) 
and (d)], and product state [(e) and (f)] for the O-H bond scission of ethylene glycol 
over a Pt(111) surface at 500 K. Figures (a), (c), and (e) represent the optimized 
geometries in vapor phase while (b), (d), and (f) represent the optimized geometries 
in aqueous phase. 
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(a)      (b) 

 

(c)      (d) 

Figure B.2: Optimized geometries of the transition state [(a) and (b)] and product state 
[(c) and (d)] for the C-H bond scission of ethylene glycol over a Pt(111) surface at 
500 K. Figures (a) and (c) represent the optimized geometries in vapor phase while 
(b) and (d) represent the optimized geometries in aqueous phase. 
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(a)      (b) 

 

(c)      (d) 

Figure B.3: Optimized geometries of the transition state [(a) and (b)] and product state 
[(c) and (d)] for the C-OH bond scission of ethylene glycol over a Pt(111) surface 
at 500 K. Figures (a) and (c) represent the optimized geometries in vapor phase 
while (b) and (d) represent the optimized geometries in aqueous phase. 
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(a) 

 

(b) 

 

Figure B.4: Time dependence of (a) total energy and (b) root mean square fluctuations 
(RMSF) of potential energy for a 975 ps molecular dynamics simulation of 
ethylene glycol adsorbed on a Pt(111) surface solvated using 2200 water 
molecules. The time dependent total energy is only displayed for the initial 10 ps. 
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Figure B.5: Rotational time correlation function of liquid water molecules residing in a 5 
Å radius of adsorbed ethylene glycol (C2H5OH*) species on Pt(111), for the 
Lennard-Jones (LJ) and Spohr-Heinzinger (SH) potential. Both LJ and SH potential 
predicted correlation functions have been fitted with three exponential functions to 
calculate average rotational correlation times of ~20 ps (LJ) and ~40 ps (SH). 
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Figure B.6: Distance distribution function of water O atoms over a Pt(111) surface for 2 
different metal-water interaction potentials. The two vertical dotted lines enclose 
the distance range from the surface within which the adsorbed ethylene glycol C- 
and O-atoms reside. 
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(a)           (b) 

 

(c)           (d) 

 

 (e)           (f) 

 

Figure B.7: Snapshot of water molecules on top of Pt(111) for the reactant state ((a) and 
(b)), transition state ((c) and (d)), and product state ((e) and (f)) of C-OH bond 
cleavage of ethylene glycol. Figures (a), (c), and (e) illustrate the geometries where 
the metal-water interaction has been described using the Spohr-Heinzinger 
potential while figures (b), (d), and (f) portray that of the Lennard-Jones potential. 
The black balls represent the oxygen and hydrogen atoms of the water molecules. 
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APPENDIX C: 

SUPPORTING INFORMATION FOR INVESTIGATION OF SOLVENT 

EFFECTS ON THE HYDRODEOXYGENATION OF GUAIACOL OVER 

Ru CATALYST
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Table C.1: Kamlet�and�Taft’s�solvatochromic�parameters;�polarizability���∗�, hydrogen-
bond donor ���and acceptor ���, and normalized polarity ���

��; derived from the 
solvatochromism of pyridinium N-phenolate betaine for solvents employed in the 
HDO of guaiacol over Ru(0001) model surface.  

 

Solvents �∗ � � ��
� 

Water 1.09 1.17 0.47 1.000 
1-Butanol 0.47 0.84 0.84 0.586 

Diethyl ether 0.24 0.00 0.47 0.117 
n-Hexane -0.11 0.00 0.00 0.009 

 

Table C.2: Lateral interaction parameters employed in the microkinetic model for HDO 
of guaiacol over Ru(0001) model surface. 

 

 

 

 

 

 

 

  

Adsorbate pairs Lateral interaction (eV) 

H-H 0.150(��  - 0.100) 

CO-CO 1.686(��� - 0.092) 

H-CO (0.229+2.140√�����)����  

H-Phenoxy (-1.124+16.565√��ℎ�������)���ℎ����� 

CO-Phenoxy (0.851+11.255√��ℎ��������)���ℎ����� 
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Table C.3: Free energies of reaction (in eV) in the limit of zero coverage at 473 K 
temperature under different reaction environments for phenol hydrogenation over 
Ru(0001) surface. 

 

ID Reaction 
Vapor phase, ∆���� 

423 K 473 K 523 K 
1 Phenol**** + H* ↔ HC1-1**** + * 0.40 0.41 0.41 
2 HC1-1**** + H* ↔ HC1-2a**** + * 0.85 0.85 0.85 
3 HC1-1**** + H* ↔ HC1-2b**** + * 0.80 0.80 0.80 
4 HC1-2a**** + H* ↔ HC1-3a**** + * 0.50 0.50 0.50 
5 HC1-2a**** + H* ↔ HC1-3b**** + * 0.57 0.57 0.57 
6 HC1-2a**** + H* ↔ HC1-3c**** + * 0.49 0.49 0.49 
7 HC1-2a**** + H* ↔ HC1-3d**** + * 0.58 0.58 0.59 
8 HC1-2b**** + H* ↔ HC1-3e**** + * 0.63 0.63 0.63 
9 HC1-2b**** + H* ↔ HC1-3f**** + * 0.48 0.47 0.46 
10 HC1-2b**** + H* ↔ HC1-3g**** + * 0.16 0.16 0.15 
11 HC1-2b**** + H* ↔ HC1-3h**** + * 0.64 0.64 0.64 
12 HC1-3a**** + H* ↔ HC1-4a**** + * 0.00 -0.01 -0.02 
13 HC1-3b**** + H* ↔ HC1-4a**** + * -0.07 -0.08 -0.08 
14 HC1-3c**** + H* ↔ HC1-4b**** + * 0.01 0.01 0.00 
15 HC1-3d**** + H* ↔ HC1-4b**** + * -0.08 -0.09 -0.10 
16 HC1-3e**** + H* ↔ HC1-4c**** + * 0.09 0.08 0.08 
17 HC1-3f**** + H* ↔ HC1-4c**** + * 0.24 0.25 0.25 
18 HC1-3g**** + H* ↔ HC1-4d**** + * 0.40 0.39 0.39 
19 HC1-3h**** + H* ↔ HC1-4d**** + * -0.08 -0.09 -0.10 
20 HC1-4a**** + H* ↔ HC1-5a**** + * 0.26 0.26 0.26 
21 HC1-4a**** + H* ↔ HC1-5b**** + * 0.67 0.67 0.67 
22 HC1-4b**** + H* ↔ HC1-5c**** + * 0.27 0.27 0.27 
23 HC1-4b**** + H* ↔ HC1-5d**** + * 0.65 0.64 0.64 
24 HC1-4c**** + H* ↔ HC1-5e**** + * 0.44 0.43 0.43 
25 HC1-4c**** + H* ↔ HC1-5f**** + * 0.47 0.47 0.47 
26 HC1-4d**** + H* ↔ HC1-5g**** + * 0.27 0.27 0.27 
27 HC1-4d**** + H* ↔ HC1-5h**** + * 0.64 0.64 0.64 
28 HC1-5a**** + H* ↔ HC-6**** + * -0.16 -0.17 -0.17 
29 HC1-5b**** + H* ↔ HC-6**** + * -0.57 -0.58 -0.59 
30 HC1-5c**** + H* ↔ HC-6**** + * -0.17 -0.18 -0.18 
31 HC1-5d**** + H* ↔ HC-6**** + * -0.55 -0.56 -0.56 
32 HC1-5e**** + H* ↔ HC-6**** + * -0.51 -0.51 -0.51 
33 HC1-5f**** + H* ↔ HC-6**** + * -0.55 -0.55 -0.55 
34 HC1-5g**** + H* ↔ HC-6**** + * -0.17 -0.18 -0.18 
35 HC1-5h**** + H* ↔ HC-6**** + * -0.55 -0.55 -0.56 
36 HC-6**** + 2* ↔ KET-6**** + 2H* -0.50 -0.49 -0.49 
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37 Phenol**** + H* ↔ HC2-1**** + * 0.58 0.58 0.58 
38 HC2-1**** + H* ↔ HC2-2a**** + * 0.62 0.62 0.63 
39 HC2-1**** + H* ↔ HC2-2b**** + * 0.78 0.78 0.78 
40 HC2-2b**** + H* ↔ HC2-3a**** + * 0.47 0.47 0.48 
41 HC2-2b**** + H* ↔ HC2-3b**** + * 0.46 0.46 0.47 
42 HC2-2b**** + H* ↔ HC2-3c**** + * 0.57 0.57 0.57 
43 HC2-2b**** + H* ↔ HC2-3d**** + * 0.50 0.50 0.50 
44 HC2-3a**** + H* ↔ HC2-4a**** + * 0.09 0.09 0.09 
45 HC2-3b**** + H* ↔ HC2-4a**** + * 0.10 0.10 0.10 
46 HC2-3c**** + H* ↔ HC2-4b**** + * -0.21 -0.22 -0.22 
47 HC2-3d**** + H* ↔ HC2-4b**** + * -0.14 -0.14 -0.15 
48 HC2-4b**** + H* ↔ HC2-5a**** + * 0.30 0.30 0.31 
49 HC2-4b**** + H* ↔ HC2-5b**** + * 0.23 0.23 0.24 
50 HC2-5a**** + H* ↔ HC-6**** + * -0.17 -0.18 -0.18 
51 HC2-5b**** + H* ↔ HC-6**** + * -0.10 -0.11 -0.11 
52 Phenol**** + H* ↔ HC3-1**** + * 0.51 0.51 0.51 
53 HC3-1**** + H* ↔ HC3-2a**** + * 0.72 0.72 0.72 
54 HC3-1**** + H* ↔ HC3-2b**** + * 0.74 0.74 0.74 
55 HC3-2a**** + H* ↔ HC3-3a**** + * 0.12 0.11 0.11 
56 HC3-2a**** + H* ↔ HC3-3b**** + * 0.57 0.57 0.57 
57 HC3-2a**** + H* ↔ HC3-3c**** + * 0.52 0.52 0.53 
58 HC3-2a**** + H* ↔ HC3-3d**** + * 0.09 0.09 0.09 
59 HC3-2b**** + H* ↔ HC3-3e**** + * 0.55 0.55 0.56 
60 HC3-2b**** + H* ↔ HC3-3f**** + * 0.59 0.59 0.60 
61 HC3-2b**** + H* ↔ HC3-3g**** + * 0.48 0.49 0.49 
62 HC3-2b**** + H* ↔ HC3-3h**** + * 0.58 0.58 0.59 
63 HC3-3a**** + H* ↔ HC3-4a**** + * 0.39 0.39 0.39 
64 HC3-3b**** + H* ↔ HC3-4a**** + * -0.06 -0.06 -0.07 
65 HC3-3c**** + H* ↔ HC3-4b**** + * 0.01 0.00 -0.01 
66 HC3-3d**** + H* ↔ HC3-4b**** + * 0.43 0.43 0.43 
67 HC3-3e**** + H* ↔ HC3-4c**** + * -0.07 -0.07 -0.08 
68 HC3-3f**** + H* ↔ HC3-4c**** + * -0.11 -0.11 -0.11 
69 HC3-3g**** + H* ↔ HC3-4d**** + * 0.20 0.19 0.19 
70 HC3-3h**** + H* ↔ HC3-4d**** + * 0.10 0.10 0.09 
71 HC3-4a**** + H* ↔ HC3-5a**** + * 0.22 0.22 0.22 
72 HC3-4a**** + H* ↔ HC3-5b**** + * 0.27 0.28 0.28 
73 HC3-4d**** + H* ↔ HC3-5c**** + * 0.46 0.46 0.46 
74 HC3-4d**** + H* ↔ HC3-5d**** + * 0.43 0.42 0.42 
75 HC3-5a**** + H* ↔ HC-6**** + * -0.11 -0.11 -0.12 
76 HC3-5b**** + H* ↔ HC-6**** + * -0.16 -0.17 -0.18 
77 Phenol**** + H* ↔ HC4-1**** + * 0.71 0.71 0.71 
78 HC4-1**** + H* ↔ HC4-2a**** + * 0.52 0.52 0.52 
79 HC4-1**** + H* ↔ HC4-2b**** + * 0.54 0.55 0.56 
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80 Phenol**** + * ↔ KET-1**** + H* -0.77 -0.76 -0.76 
81 KET-1**** + H* ↔ KET-2a**** + * 0.99 0.99 0.99 
82 KET-2a**** + H* ↔ KET-3a**** + * 0.62 0.62 0.62 
83 KET-2a**** + H* ↔ KET-3b**** + * 0.45 0.45 0.45 
84 KET-2a**** + H* ↔ KET-3c**** + * 0.31 0.31 0.31 
85 KET-2a**** + H* ↔ KET-3d**** + * 0.76 0.76 0.76 
86 KET-3a**** + H* ↔ KET-4a**** + * 0.51 0.51 0.51 
87 KET-3b**** + H* ↔ KET-4a**** + * 0.68 0.68 0.68 
88 KET-3c**** + H* ↔ KET-4b**** + * 0.32 0.32 0.32 
89 KET-3d**** + H* ↔ KET-4b**** + * -0.12 -0.13 -0.13 
90 KET-4a**** + H* ↔ KET-5a**** + * 0.45 0.44 0.44 
91 KET-4a**** + H* ↔ KET-5b**** + * 0.35 0.35 0.35 
92 KET-4b**** + H* ↔ KET-5c**** + * 0.17 0.17 0.16 
93 KET-4b**** + H* ↔ KET-5d**** + * 0.81 0.82 0.82 
94 KET-5a**** + H* ↔ KET-6**** + * -0.45 -0.45 -0.45 
95 KET-5b**** + H* ↔ KET-6**** + * -0.35 -0.36 -0.36 
96 KET-5c**** + H* ↔ KET-6**** + * 0.31 0.32 0.32 
97 KET-5d**** + H* ↔ KET-6**** + * -0.33 -0.33 -0.34 
98 KET-6**** + H* ↔ KET-7a**** + * 0.61 0.60 0.60 
99 KET-6**** + H* ↔ KET-7b**** + * 0.36 0.36 0.36 
100 KET-7a**** + H* ↔ HC-6**** + * -0.11 -0.11 -0.12 
101 KET-7b**** + H* ↔ HC-6**** + * 0.13 0.13 0.12 
102 KET-1**** + H* ↔ KET-2b**** + * 0.94 0.94 0.94 
103 KET-2b**** + H* ↔ KET-3e**** + * 0.28 0.28 0.28 
104 KET-2b**** + H* ↔ KET-3f**** + * 0.82 0.82 0.82 
105 KET-2b**** + H* ↔ KET-3g**** + * 0.27 0.27 0.27 
106 KET-2b**** + H* ↔ KET-3h**** + * 0.82 0.82 0.82 
107 KET-3e**** + H* ↔ KET-4c**** + * 0.47 0.47 0.46 
108 KET-3f**** + H* ↔ KET-4c**** + * -0.06 -0.07 -0.08 
109 KET-3g**** + H* ↔ KET-4d**** + * 0.42 0.42 0.42 
110 KET-3h**** + H* ↔ KET-4d**** + * -0.13 -0.13 -0.14 
111 KET-4c**** + H* ↔ KET-5e**** + * 0.10 0.09 0.09 
112 KET-4c**** + H* ↔ KET-5f**** + * 0.77 0.77 0.78 
113 KET-5e**** + H* ↔ KET-6**** + * 0.33 0.33 0.34 
114 KET-5f**** + H* ↔ KET-6**** + * -0.34 -0.35 -0.35 
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