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Abstract

The Cox proportional hazards (PH) model and time dependent PH model are the

most popular survival models in survival analysis. The hazard discrimination sum-

mary HDS(t) proposed by Liang and Heagerty [2017] is used to evaluate the mean

hazard difference between cases and controls at time t. Liang and Heagerty [2017]

evaluated the discrimination performance under the PH model and time dependent

PH model with right censoring.

In this thesis, first, we further investigate their method via comprehensive sim-

ulations including 1) We extend the simulation in Liang and Heagerty [2017] under

the PH model by adding more scenarios such as different distributions, censoring

proportions under the PH model; and 2) similarly, more situations were added to

time dependent PH model such as different time dependent functions. Second, we

develop an estimation method of HDS(t) for the PH model with interval censored

data. Third, we apply the proposed method to HIV data from Health Sciences South

Carolina (HSSC).
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Chapter 1

Introduction and Notation

1.1 Background

Survival data, for which the outcome variable of interest is time to event, are com-

monly encountered in many fields, such as public health, engineering, and so on. The

event could be a negative individual experience such as occurrence of disease, death,

failure, etc, or a positive event like "time to recovery". Time could be measured in

days, weeks, months, etc. Censoring, a unique term in survival data, occurs when the

exact event time is unobserved. There are three types of censoring: left censoring,

interval censoring, and right censoring. Left (right) censoring occurs when the event

happens before (after) the first (last) observation times. Interval censoring refers to

the case when the event times occur between two adjacent observation times. We list

the detail notations and real data example in the following sections.

1.1.1 Right Censored Data

Right censored data is most commonly seen in practice, which may be caused by the

end of the study, and loss to follow up.

Notation

Let T1, . . . , Tn be i.i.d observed times and δ1, · · · , δn be i.i.d censoring indicators. For

subjects who have failures, δi = 1, and Ti is the exact time to event. For subjects who

are censored, δi = 0 and Ti is defined as the censoring time. Let Mi be the vector
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of predictors for the ith subject. Usually, we assume that conditional on M , T and δ

are independent, which is referred to as noninformative censoring.

Real Example

Let us consider the time to AIDS-related cancer (ARC) onset among HIV patients.

The start time is defined as the HIV diagnose date, which is denoted as T0i, i =

1, · · · , n. The observed date T1i is define as the minimum of ARC diagnose date or

last observation date. For patients who have ARC eventually, T1i is the ARC diagnose

date and δi = 1. For patients whose are cancer free at the last observation time, T1i

is the last observation time and δi = 0. Thus, {T1i−T0i, δi} is the observed follow up

for ARC onset for the ith patient.

1.1.2 Interval Censored Data

By interval censoring, time to event of interest is known only to lie within an interval

instead of being observed exactly. Common examples occur in medical or health

studies with periodic follow-up. Current status data is a special case of interval

censoring, where each subject is observed only once for the status of the occurrence

of the event of interest. Current status data is referred to as case I interval-censored

data and the general case as case II interval-censored data.

Notation

Let Li, Ri be the observed time interval and δi1, δi2, δi3 be the interval censoring

indicators for the ith subject. For subjects who are left censored, δi1 = 1, δi2 =

0, δi3 = 0, Li = NA, and Ri is the time to first observed event. For subjects who are

right censored, δi1 = 0, δi2 = 0, δi3 = 1, Ri = NA and Li is defined as the time to

last observation. δi1 = 0, δi2 = 1, δi3 = 0 are censoring indicators for those who are
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censored between Li and Ri. Let Mi be the vector of predictors for the ith subject. It

is also commonly assumed that conditional onM , L,R and δ1, δ2, δ3 are independent.

Real Example

We are interested in time to an undetectable viral load (UVL, viral load level <

50 copies/mL) among HIV patients who received antiretroviral therapy (ART). The

date of initiating ART is defined as the start-time point T0i, i = 1, · · · , n. Regular

lab visit at {T1i, T2i, · · · , } are recorded to monitor the patients’ HIV status. For

patients who finally have UVL but not at the first observation, we define the date

of first UVL as T2i, the date of last observation before T2i as T1i. Then, we define

the time interval as {Li = T1i − T0i, Ri = T2i − T0i}, and the censoring indicators

as δ1i = 0, δ2i = 1, δ3i = 0. For patients who have UVL at the first observation, we

define the first observation date as T2i. Then, time interval is {Li = 0, Ri = T2i−T0i},

and the censoring indicators are δ1i = 1, δ2i = 0, δ3i = 0 . We also define the last

observation date as T1i for patients who still haven’t had UVL at the end of the study.

Then, time interval is {Li = T2i − T0i, Ri = NA}, and the censoring indicators are

δ1i = 0, δ2i = 0, δ3i = 1 . Thus, {Li, Ri, δ1i, δ2i, δ3i} is the observed outcome for the ith

patient.

1.1.3 Evaluation of Survival Models

Survival analysis is a collection of statistical methods for analyzing survival data.

Many survival models exist to estimate the effects of potential risk factors on the

outcome and even to predict survival probability among a population of interest. For

example, the Cox PH model [Cox, 1972] is the most popular semiparametric survival

model, which is a special case in the generalized odds-rate (GOR) model [Dabrowska

and Doksum, 1988].
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1.2 Motivation and Outline of Thesis

Recently, hazard discrimination summary (HDS(t)) has been proposed to evaluate

the discrimination performance under survival models for right censored data at a cer-

tain time [Liang and Heagerty, 2017]. It was shown that the performance of HDS(t)

under the Cox PH model and time dependent PH model with exponential survival

distribution for right censored data is very effective [Liang and Heagerty, 2017]. Since

interval censored data is commonly seen in periodic visit, we are motivated to gen-

eralize HDS(t) to interval censored data. Based on the definition and estimation of

HDS(t), the estimation of HDS(t) under the PH model for the interval censored

data is feasible.

In this thesis, first, we further investigate their method via comprehensive sim-

ulations including 1) We extend the simulation in Liang and Heagerty [2017] under

the PH model by adding more scenarios such as different distributions, censoring

proportions under the PH model; and 2) similarly, more situations were added to

time dependent PH model such as different time dependent functions. Second, we

develop a estimation method of HDS(t) for the PH model with interval censored

data. Third, we apply the proposed method to HIV data from Health Sciences South

Carolina (HSSC).

The outline of the thesis is as follows.

• In Chapter 2, we introduce several discrimination performance measurements

for binary outcome, which are the basis of HDS(t). Then, we introduce the

definition of HDS(t) based on hazard function [Liang and Heagerty, 2017].

• In Chapter 3, we introduce two popular survival models, the Cox PH model

and time dependent PH model. The expression of HDS(t) could be simplified

after plugging in the hazard function under the Cox PH model. The estimator

and standard error for HDS(t) can be obtained by plugging in the estimators

4



of the Cox PH model and time dependent PH model.

• In Chapter 4, we evaluate the performance of HDS(t) under different survival

distributions, different sample sizes, and different right censoring rates for the

PH model and time dependent PH model. Then, we further investigate its

performance under the Cox PH model for interval censored data.

• In Chapter 5, we use two cleaned data sets from Health Sciences South Carolina

(HSSC) to illustrate the usage of HDS(t). The HDS(t) and its 95% confidence

interval are calculated and used to test the hypothesis that there is no discrim-

ination among cases and control under the Cox PH model or time dependent

PH model for right censored data. Similar approaches are applied to assess

the discrimination performance for the interval censored data. The HDS(t)

ratio, which evaluates the discrimination performance of a specific predictor,

is applied. Bootstrap method is used to construct the confidence interval for

HDS(t) ratio.

• In Chapter 6, we summarize and discuss the current work and outline some

future work.
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Chapter 2

Definition of ĤDS(t)

In this chapter, the motivation and definition of HDS(t) are illustrated. Section 2.1

introduces a discrimination performance measure for binary outcomes; section 2.2

illustrates the extension of this measure to survival outcomes; section 2.3 demon-

strates HDS(t), which is an incident-risk-based measure generalized from the previ-

ous cumulative-risk-based measure.

2.1 Risk-Based Measure for Binary Outcomes

For binary outcomes, we define the subjects who have events as cases and the subjects

who have no event as controls. In terms of the model based on binary outcomes like

logistic regression, one of the most important issues is to evaluate the discrimination

performance between cases and controls. With the motivation to summarize the

magnitude of mean risk between cases and controls, discrimination slope (DS) was

proposed [Yates, 1982]. Let M denotes the vector of predictors and D is the binary

outcome with D = 1 for cases and D = 0 for controls, DS is defined as

DS = E{P (D = 1|M)|D = 1} − E{P (D = 1|M)|D = 0}.

Based on the magnitude of risk, DS measures how well the cases and controls are

discriminated. The value of DS closes to zero, indicating that there is no discrimi-

nation of this model. The model performs well when DS closes to one, and there is

something wrong with the model when DS closes to negative one.
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2.2 Cumulative-Risk-Based Measure for Survival Outcomes

With outcome of interest is time to event, survival models become important methods

to predict risk. Thus, in order to generalize simple binary outcome prognostic measure

to a time varying measure, Chambless et al. [2011] proposed time-specific DS. Let

T denote time to event, the discrimination slope at time t is defined as

DS(t) = EM |T≤t{P (T ≤ t|M)|T ≤ t} − EM |T>t{P (T ≤ t|M)|T > t}.

The time-specific DS(t) is the difference in mean failure probabilities until time t

between subjects who already have failures by time t and subjects who are still free

of outcomes at time t. The interpretation of DS(t) is similar with that of DS. We

hope DS(t) is close to one over time, which indicates the survival model performs

well.

Moreover, DS(t) can be used to evaluate the improvement of discrimination per-

formance when a specific predictor is added in the survival model by calculating the

difference in DS(t) of the model including this predictor as well as the model not

including this predictor with other predictors fixed. This difference is named as the

integrated discrimination improvement (IDI):

IDI(t) = DSnew(t)−DSold(t)

Here, subscripts "new" and "old" are used to denote DS(t) for the survival with

this predictor and the survival model without this predictor, respectively. IDI(t)

scales the improvement of discrimination performance for the predictor we may be

interested in. The positive value of IDI(t) indicates adding the predictor into the

survival model improves the discrimination performance.

2.3 Incident-Risk-Based Measure for Survival Outcomes

Compared to binary outcomes, survival outcomes have time information so that not

only cumulative risk but also incident risk can be analyzed. However, DS(t) cannot
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take incident risk into consideration. Based on the hazard function which can reflect

the instantaneous risk, hazard discrimination summary (HDS(t)) was proposed by

Liang and Heagerty [2017]. HDS(t) is defined as a ratio of the mean hazard between

cases and controls at time t. Before illustrating the definition ofHDS(t), we introduce

the definition of hazard function.

2.3.1 Survival Function and Hazard Function

The hazard function is defined as

λ(t) = lim
∆t→0

P{T ∈ [t, t+ ∆t)|T ≥ t}/∆t

The survival function is defined as

S(t) = exp{−Λ(t)} = exp{−
∫ t

0
λ(u)du}

where Λ(t) is the cumulative hazard, which can be calculated via the integration of

λ(t). The Cox PH model [Cox, 1972] is defined based on the hazard function. More

details of definition and estimation for the Cox PH model are introduced in chapter

3.

2.3.2 Definition of HDS(t)

HDS(t) is defined as a ratio of expected hazards among cases to expected hazards

among controls at time t [Liang and Heagerty, 2017]. It is specified as the following:

HDS(t) = mean case hazard
mean control hazard = EM |T=t{λ(t|M)|T = t}

EM |T>t{λ(t|M)|T > t}
(2.1)

Here, we define the subjects who fail at time t as cases and subjects who are still

free of outcome as controls. The survival model used should have higher hazard on

the cases than on the controls. When HDS(t) is around a value of one, it can be

concluded that there is no discriminatory performance. The closer the HDS(t) is to
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infinity, the better the performance is. Conversely, the model is in appropriate when

the value of HDS(t) is close to zero.

It has been shown that the denominator can be transformed into the marginal

hazard [Liang and Heagerty, 2017]:

H0(t) = EM |T>t{λ(t|M)|T > t} = λ(t) (2.2)

Plugging (2.2) into (2.1), HDS(t) can be expressed as the following [Liang and Hea-

gerty, 2017]:

HDS(t) = EM |T=t{
λ(t|M)
λ(t) |T = t} (2.3)

This expression gives HDS(t) a second interpretation that the value of HDS(t) is

the increase in the average risk assigned to incident cases at time t associated with

knowing marker, M , as compared to the marginal risk associated without knowing

the marker [Liang and Heagerty, 2017].

2.3.3 HDS(t) Ratio

Similar to the function of IDI(t), the ratio ofHDS(t) also evaluates the improvement

of the discrimination performance of a specific predictor [Liang and Heagerty, 2017].

For the purpose of simple illustration, we use the following notation for the numerator

part in (2.1):

H1(t) = EM |T=t{λ(t|M)|T = t} (2.4)

The HDS(t) ratio can be simplified as follows:

HDS(t;Mod1)/HDS(t;Mod2) = H1(t;Mod1)/H0(t;Mod1)
H1(t;Mod2)/H0(t;Mod2)

= H1(t;Mod1)/λ(t)
H1(t;Mod2)/λ(t)

= H1(t;Mod1)
H1(t;Mod2)

= EMod1|T=t{λ(t|Mod1)|T = t}
EMod2|T=t{λ(t|Mod2)|T = t}

(2.5)
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Here, when the modelMod2 with the same markers asMod1 exceptM∗, the HDS(t)

ratio could be interpreted as the ratio of the average risk predicted by Mod1 to the

average risk predicted by Mod2 for time-specific incident cases [Liang and Heagerty,

2017]. HDS(t) ratio is greater than one, indicating that the predictor M∗ improves

the discrimination performance of the survival model.
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Chapter 3

Models and Estimation

In this chapter, we illustrate the estimation methods of HDS(t) under the Cox PH

model for right censored and interval censored data as well as time dependent PH

model for right censored data, respectively. Specifically, in section 3.1, we re-express

HDS(t) in terms of marginal expectations of functions of conditional hazard λ(t|M)

and cumulative hazard Λ(t|M). The estimator for HDS(t) can be obtained by in-

serting the estimators for λ(t|M) and Λ(t|M). Section 3.2 introduces estimation

methods for the Cox PH model with right censored data and interval censored data.

By plugging in those estimators, the estimator and standard error for HDS(t) can

be obtained. Section 3.3 illustrates an estimation method for time dependent PH

model with right censored data, and the estimation and standard error for localized

HDS(t).

3.1 HDS(t) in Terms of Marginal Expectations

It has been shown that H1(t) and H0(t) in (2.2) and (2.4) can be rewritten as ex-

pressions with expected functions of conditional hazard and cumulative hazard to

facilitate estimation as follows [Liang and Heagerty, 2017]:

H1(t) = EM |T=t{λ(t|M)|T = t} = EM [λ2(t|M) exp{−Λ(t|M)}]
EM [λ(t|M) exp{−Λ(t|M)}] (3.1)

H0(t) = EM |T>t{λ(t|M)|T > t} = EM [λ(t|M) exp{−Λ(t|M)}]
EM [exp{−Λ(t|M)}] (3.2)
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Given estimators for λ(t|M) and λ(t|M), the corresponding sample H1(t) and H0(t)

are as follows:

Ĥ1(t) =
∑n
i=1[λ̂2(t|mi) exp{−Λ̂(t|mi)}]∑n
i=1[λ̂(t|mi) exp{−Λ̂(t|mi)}]

(3.3)

Ĥ0(t) =
∑n
i=1[λ̂(t|mi) exp{−Λ̂(t|mi)}]∑n

i=1[exp{−Λ̂(t|mi)}]
(3.4)

3.2 HDS(t) under the Cox PH Model

Let λ0(t) denote baseline hazard function, Λ0(t) denote the cumulative baseline haz-

ard function, and β denote a vector of coefficients for predictor vector M . Then,

hazard at time t is defined as λ(t) = λ0(t) exp(β′M). Here, the exp(β) is the hazard

ratio (HR) when one unit increase in the corresponding mi with other variables fixed

at the same level.

3.2.1 Estimation Given Right Censored Data

For the right censored data, the partial likelihood estimator of β [Cox, 1972] and

nonparametric estimator of λ0(t) [Breslow, 1972] were proposed. The reason for

naming this method as partial likelihood is that we consider probabilities only for

subjects who fail, and we do not consider probabilities for subjects who are censored.

That is, the Cox likelihood is a product of probabilities for failures only at failure time

points. If t(1), ..., t(k) are the ordered failure times with the corresponding covariates

M(1), ...,M(k), the partial likelihood of the event occurring with the ithsubject at time

t(i) can be expressed as

Li(β) =
λ0(t(i))β′M (i)∑

l∈R(t(i)) λ0(t(i))eβ′M l
=

β′M (i)∑
l∈R(t(i)) eβ

′M l

where R(t(i)) is the set of the individual at risk at time t(i). The denominator for

each term corresponding to time tj (j = 1, 2, ...) is the sum of the hazards for those

subjects still at risk at time tj, and the numerator is the hazard for the subject who
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experiences the event at tj. Because the baseline hazard can be cancelled, the baseline

hazard does not need to be specified in a Cox PH model. Assuming noninformative

censoring, the log of partial likelihood is

`(β) =
k∑
i=1
{β′M (i) − log(

∑
l∈R(t(i))

eβ
′M l)}

The coefficients can be obtained via maximizing the above formula. The Hessian

matrix of the partial log likelihood is

`′′(β) = −
k∑
i=1

(
∑
l∈R(t(i)) e

β′M lM ′
lMl∑

l∈R(t(i)) eβ
′M l

−
[∑l∈R(t(i)) e

β′M lM ′
l ][

∑
l∈R(t(i)) e

β′M lMl]
[∑l∈R(t(i)) eβ

′M l ]2 )

The inverse of the Hessian matrix can be used as an approximate variance-covariance

matrix for the estimates.

For the estimation of baseline cumulative hazard, Breslow [1972] proposed a non-

parametric maximum likelihood estimation (NPMLE) method with Λ0(t) being esti-

mated by

Λ̂0(t) =
∑
ti≤t

1∑
j∈R(ti) exp(β̂′Mj)

.

The estimators are available in several statistical packages such as coxph in R software

and phreg in SAS software.

3.2.2 Estimation Given Interval Censored Data

Given the PH model with interval censored data, the likelihood can be written as

L(β) =
n∏
i=1

F (Ri|Mi)δi1{F (Ri|Mi)− F (Li|Mi)}δi2{1− F (Li|Mi)}δi3

where F (t|Mi) = 1−exp{−Λ0(t)exp(β′Mi)} is a conditional cumulative density func-

tion.

Assuming Λ0(·) = ∑k
l=1 γlbl(·), Wang et al. [2016] proposed an EM based augmen-

tation method, which is computational efficient. Here, bl(·)’s are integrated spline

basis functions, which are estimated using I-spline. The degree and placement of
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knots determine the k spline basis functions, where k is equal to the degree plus the

number of interior knots. It has been shown that given initial values for β and γ,

the estimators for β and γ are obtained through iterative process until convergence

[Wang et al., 2016]. The estimated variance-covariance matrix for (β, γ) is derived

by the inverse of the Hessian matrix, using Louis’ method [Louis, 1982]. Interval

censored data can be analyzed under the Cox PH model by using ICsurv package

in R [Wang et al., 2016]. An alternative package is ICGOR, which can also give

approximate estimators for the Cox PH model with interval censoring [Zhou et al.,

2017].

3.2.3 Estimation for HDS(t) under The Cox PH Model

As mentioned in section 3.1, HDS(t) can be expressed in terms of marginal expected

functions of conditional hazard and cumulative hazard. Under the Cox PH model,

λ0(t) is cancelled, and HDS(t) is expressed as follows

HDS(t) = H1(t)
H0(t)

= EM [exp{2β′M − eβ′MΛ0(t)}]EM [exp{−eβ′MΛ0(t)}]
EM [exp{β′M − eβ′MΛ0(t)}]2 (3.5)

The estimated HDS(t) under the Cox PH model can be obtained by plugging in the

estimators β̂, Λ̂0(t), and sample predictors mi, i = 1, 2, ..., n, which is

ĤDS(t) =
∑n
i=1 exp{2β̂′mi − eβ̂

′miΛ̂0(t)}∑n
i=1 exp{−eβ̂′miΛ̂0(t)}

[∑n
i=1 exp{β̂′mi − eβ̂′miΛ̂0(t)}]2

(3.6)

For right censored data, β̂ is the partial likelihood estimator from the Cox PH model

[Cox, 1972] and Λ̂0(t) is the Breslow estimator for the cumulative baseline hazard

[Breslow, 1972]. For interval censored data, the estimated ĤDS(t) can be obtained

by plugging in the β̂ and Λ̂0(t) estimated from the R package ICsurv [Wang et al.,

2016].
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3.2.4 Standard Errors for ĤDS(t)

Let fθ = EM [exp{θ · β′M − eβ′MΛ0(t)}] and f̂θ = ∑n
i=1 exp{θ · β̂′mi − eβ̂

′miΛ̂0(t)} for

θ = 0, 1, 2, we have HDS(t) = f2f0

f 2
1

and ĤDS(t) = f̂2f̂0

f̂ 2
1

ĤDS(t) =
∑n
i=1 exp{2β̂′mi − eβ̂

′miΛ̂0(t)}∑n
i=1 exp{−eβ̂′miΛ̂0(t)}

[∑n
i=1 exp{β̂′mi − eβ̂′miΛ̂0(t)}]2

(3.7)

It was proved that the estimated HDS(t) has an asymptotic normal distribution [?],

which is
√
n(ĤDS(t)−HDS(t)) ∼ N(0, A(

∑
1 +B

∑
0B
′)A′)

where A is the Jacobian of the map (f0, f1, f2)→ f2f0
(f1)2 ;

∑
1 is the variance-covariance

matrix of (f0, f1, f2); ∑
0 is the asymptotic variance matrix for (β,Λ0(t)) which was

derived by Tsiatis et al. [1981] and van der Vaart et al. [2007]; B is a matrix of the

derivatives of (f0, f1, f2)′ with respect to β and Λ0(t), respectively. After analyzing

right censored or interval censored data under the Cox PH model, plugging in the

estimators of β, Λ0(t), and estimated variance matrix of β, the standard error of

estimated HDS(t) can be obtained.

3.3 HDS(t) under Time Dependent PH Model

The validity of the Cox PH model is based on the satisfaction of PH assumption.

When the PH assumption is violated, the time dependent PH model is an alternative.

The time dependent PH model is defined as

λ(t) = λ0(t)exp(β′(t)M).

Then, the HR is a function of time instead of a constant. By relaxing the coefficients,

time dependent PH model is more Flexible than the Cox PH model.
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3.3.1 Estimation Given Right censored Data

The estimation of βh(s) is based on a weighted local log partial likelihood function,

as proposed by Cai and Sun [2003] and Tian et al. [2005].

`(βh(s)) = (nhn)−1
k∑
i=1

K(s− t(i)
hn

){β′
h(s)M (i) − log(

∑
l∈R(t(i))

eβ
′
h(s)M

l)} (3.8)

where K(·) is a symmetric kernel function with support [−1, 1], mean 0, and bounded

first derivative, for example, the Epanechnikov kernel K(u) = 3
4(1 − u2) for −1 ≤

u ≤ 1, otherwise, K(u) = 0; the bandwidth hn = O(n−v) with v > 0. It has been

shown that uniformly consistent estimators could be obtained when 1/4 < v < 1/2

[Tian et al., 2005]. The variance-covariance matrix for estimators is approximately

I−1{β̂(t), t}
∫ 1
−1K

2(u)du with second derivative of weighted log partial likelihood

function in (3.8) I(β(t), t) [Tian et al., 2005]. Similar to estimation of Λ0(t) under

Cox PH model, the generalized Breslow estimator for Λh(t) under time dependent

model is as follows Λ̂h(t) = ∑
ti≤t

1∑
j∈R(ti) exp(β̂

′
h
Mj) [Cai and Sun, 2003].

3.3.2 Estimator for HDS(t) Under Time Dependent PH Model

It has been shown that estimator for HDS(t) under time dependent PH model

(HDSLC(t)) is available by replacing β̂ with β̂h(t) and replacing Λ̂0(t) with Λ̂h(t)

[Liang and Heagerty, 2017]:

ĤDS
LC

(t) =
∑n
i=1 exp{2β̂′h(t)mi − eβ̂

′
h(t)miΛ̂h(t)}

∑n
i=1 exp{−eβ̂′h(t)miΛ̂h(t)}

[∑n
i=1 exp{β̂′h(t)mi − eβ̂

′
h

(t)miΛ̂h(t)}]2
(3.9)

where β̂h(t) is the smoothed estimate of β(t) as proposed by Cai and Sun [2003], and

Λ̂h(t) is the corresponding estimate of Λ0(t) [Tian et al., 2005].
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3.3.3 Standard Errors for ĤDS
LC

(t)

It is also shown that the estimator ĤDS
LC

(t) has an asymptotically normal distri-

bution [Liang and Heagerty, 2017].

√
nh(ĤDS

LC
(t)−HDSLC(t)) ∼ N(0, AC

∑
2C
′A′) (3.10)

where ∑
2 is a variance-covariance matrix for β; C is a matrix of the derivatives of

(f0, f1, f2)′ with respect to β. The estimated standard error for ĤDS
LC

(t) is shown

to be a function of estimated standard error of β̂ through delta method. By plugging

the smoothed estimator of βh(t), Λh(t), and variance-covariance matrix of β̂h(t) into

(3.10), the estimated standard error of HDS(t) can be obtained as proposed by Cai

and Sun [2003] and Tian et al. [2005].
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Chapter 4

Simulations to Evaluate ĤDS(t) and ĤDS
LC

(t)

The performance of HDS(t) has been tested under the Cox PH model and time

dependent PH model [Liang and Heagerty, 2017]. However, only the right censor-

ing type, exponentially distributed survival function, and time varying coefficients

proportional to time were considered. In practice, the survival function could follow

other distributions rather than exponential distribution such as Weibull distribution.

Moreover, the effects of predictors could increase with time rapidly (proportional to

squared time) or slowly (proportional to log(t)). Apart from right censoring, interval

censored data is also ubiquitous. Therefore, it is motivated to extend the estimation

of HDS(t) under more situations.

To evaluate the performance of ĤDS(t) and ĤDS
LC

(t), we conduct comprehen-

sive simulation in this chapter. In section 4.1, we evaluate the performance of ĤDS(t)

for right censored data under the Cox PH model. In section 4.2, the performance of

ĤDS
LC

(t) for right censored data under time dependent PH model will be evaluated.

Finally, in section 4.3, we extend the simulation to the interval censored data under

the Cox PH model.

For each simulation setting, we assumed a Cox PH model or a time dependent PH

model with different censoring rates, different sample sizes, and different distribution

types. For the purpose of simple illustration, we summarize the common settings as

follows

• Case I: investigate different distributions:

Assuming censoring rate as 25% and sample size n=500, we consider exponen-
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tial, Weibull, Log-Log, and Log Normal distribution.

• Case II: investigate different sample sizes:

Assuming the moderate censoring rate 25% and exponential distribution, we

consider different sample sizes including n=200, 500, 800.

• Case III: investigate different censoring rates:

Assuming sample size n=500 and exponential distribution, we consider censor-

ing rate at 15%, 25%, and 30%.

In the following sections, we detail the simulations under different models. The

results of 1000 simulations under different cases are presented in the following sections.

In each table, we report the time points to be evaluated, true value of HDS(t),

the corresponding estimated HDS(t), standard error (SE), and coverage probability

(CP).

4.1 Cox PH Model with Right Censoring

We use the same data generating mechanism as in Liang and Heagerty [2017]. The

Cox PH model is assumed as

λ(t|M) = λ0(t) · exp(0.5 ·M1 + 1.5 ·M2)

We consider exponential, Weibull, Log-Log, and Log Normal distribution, and

their corresponding baseline hazard function and survival distributions are shown in

Table 4.1. Here, Φ is the cumulative density function of standard normal distribution.

We generated a random number from a uniform distribution with the support [0, 1]

as the true survival probability individually. For each subject, both of the predictors

follow a uniform distribution with the support [0, 2]. The censoring time is generated

from a uniform distribution with the support [0, c], while c is a constant, adjusting

19



Table 4.1 Parameters for different survival distributions under
the Cox PH model

Distribution Baseline Hazard λ0(t) Parameters
Exponential k k=0.5
Weibull kpptp−1 k=0.5, p=2
Log-Logistic kp(kt)p−1

1+(kt)p k=0.5, p=2
Log Normal ∂

∂t
{−log{1− Φ( log(t)−µ

σ
)}} µ=0.5, σ=2

which censoring rate can be controlled. For whose censoring time is smaller than

event time, the censoring indicator is equal to zero, otherwise, one.

The results of three cases under the Cox PH model for right censored data are

reported in Table 4.2, 4.3, 4.4. From Table 4.2 we can see that the estimated ĤDS(t)

shows very little bias and the coverage probability is close to 95% for each evaluated

time under different distributions. From the results of different sample size (see

Table 4.3), the coverage probability also seems close to 95% but under small sample

size the bias is a little greater than the bias under larger sample size. Compared

to the results of small censoring rate, the coverage probability under large censoring

rate like 60% is relatively less than 95% after 0.9 due to the lack of sample data. (see

Table 4.4).

4.2 Time Dependent PH Model with Right Censoring

Three time dependent PH models are assumed as follows:

Model I: HR proportional to time

λ(t|M) = λ0(t) · exp(t ·M1 + 0.5 ·M2)

Model II: effect changes slowly

λ(t|M) = λ0(t) · exp(log(t) ·M1 + 0.5 ·M2)
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Table 4.2 HDS(t) under the Cox PH model for right censored data with
censoring rate 25%; sample size = 500:

Exponential Weibull
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.82 1.83 0.13 0.97 1.79 1.81 0.12 0.90
0.050 1.84 1.84 0.13 0.97 1.80 1.81 0.12 0.90
0.100 1.83 1.84 0.12 0.95 1.81 1.82 0.13 0.91
0.200 1.76 1.76 0.09 0.89 1.83 1.85 0.13 0.91
0.300 1.66 1.66 0.08 0.90 1.84 1.85 0.12 0.92
0.400 1.56 1.57 0.07 0.92 1.79 1.81 0.11 0.92
0.500 1.49 1.49 0.06 0.95 1.71 1.72 0.09 0.92
0.600 1.43 1.43 0.06 0.96 1.60 1.61 0.07 0.94
0.700 1.38 1.39 0.06 0.96 1.50 1.50 0.06 0.95
0.800 1.35 1.35 0.05 0.96 1.41 1.42 0.06 0.97
0.900 1.32 1.32 0.05 0.96 1.34 1.35 0.05 0.98
1.000 1.29 1.30 0.05 0.96 1.29 1.30 0.05 0.98

Log-Log Log Normal
0.025 1.79 1.80 0.12 0.95 1.83 1.84 0.13 0.95
0.050 1.80 1.80 0.12 0.95 1.84 1.85 0.12 0.95
0.100 1.81 1.81 0.12 0.96 1.79 1.80 0.10 0.93
0.200 1.83 1.84 0.13 0.95 1.64 1.65 0.07 0.92
0.300 1.84 1.85 0.12 0.95 1.53 1.54 0.06 0.94
0.400 1.80 1.81 0.11 0.93 1.46 1.47 0.06 0.96
0.500 1.72 1.73 0.09 0.93 1.41 1.41 0.06 0.97
0.600 1.63 1.63 0.07 0.93 1.37 1.38 0.05 0.97
0.700 1.53 1.54 0.06 0.94 1.34 1.35 0.05 0.96
0.800 1.45 1.46 0.06 0.95 1.32 1.32 0.05 0.97
0.900 1.39 1.39 0.06 0.96 1.30 1.31 0.05 0.97
1.000 1.34 1.34 0.05 0.98 1.28 1.30 0.05 0.97

Model III: effect changes rapidly

λ(t|M) = λ0(t) · exp(t2 ·M1 + 0.5 ·M2)

The baseline hazard under different distributions are specified in Table 4.5. We

assumed the predictor M1 follows a uniform distribution with the support [1, 3], and

the predictor M2 follows a standard normal distribution. The process of censoring

time is similar to that in section 4.1.
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Table 4.3 HDS(t) under the Cox PH model for right censored data with
censoring rate 25%; exponential survival distribution:

n=200 n=500
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.82 1.85 0.20 0.96 1.82 1.83 0.13 0.97
0.050 1.84 1.87 0.20 0.96 1.84 1.84 0.13 0.97
0.100 1.83 1.86 0.19 0.95 1.83 1.84 0.12 0.95
0.200 1.76 1.78 0.15 0.94 1.76 1.76 0.09 0.89
0.300 1.66 1.67 0.12 0.93 1.66 1.66 0.08 0.90
0.400 1.56 1.58 0.10 0.94 1.56 1.57 0.07 0.92
0.500 1.49 1.50 0.10 0.95 1.49 1.49 0.06 0.95
0.600 1.43 1.44 0.09 0.97 1.43 1.43 0.06 0.96
0.700 1.38 1.39 0.08 0.96 1.38 1.39 0.06 0.96
0.800 1.35 1.36 0.08 0.97 1.35 1.35 0.05 0.96
0.900 1.32 1.33 0.08 0.97 1.32 1.32 0.05 0.96
1.000 1.29 1.30 0.08 0.97 1.29 1.30 0.05 0.96

n=800 n=1000
0.025 1.82 1.83 0.10 0.95 1.82 1.83 0.09 0.95
0.050 1.84 1.84 0.10 0.95 1.84 1.84 0.09 0.95
0.100 1.83 1.84 0.09 0.94 1.83 1.84 0.08 0.94
0.200 1.76 1.76 0.07 0.92 1.76 1.76 0.06 0.93
0.300 1.66 1.66 0.06 0.93 1.66 1.66 0.05 0.93
0.400 1.56 1.57 0.05 0.95 1.56 1.57 0.05 0.94
0.500 1.49 1.49 0.05 0.95 1.49 1.49 0.04 0.95
0.600 1.43 1.43 0.04 0.96 1.43 1.43 0.04 0.96
0.700 1.38 1.39 0.04 0.97 1.38 1.39 0.04 0.96
0.800 1.35 1.35 0.04 0.98 1.35 1.35 0.04 0.98
0.900 1.32 1.32 0.04 0.98 1.32 1.32 0.03 0.98
1.000 1.29 1.29 0.04 0.98 1.29 1.29 0.03 0.98

An Epanechnikov kernel K(u) = 3
4(1− u2)I|u|≤1 scaled by a bandwidth of h, was

used for all ĤDS
LC

(t) calculations. Since it has been shown that consistent estima-

tors can be obtained by choosing bandwidth hn = O(n−v) with 1/4 < v < 1/2 [Tian

et al., 2005], we chose h = 0.26, 0.20, 0.19, 0.18 for data with n = 200, 500, 800, 1000,

respectively.

Tables 4.6, 4.7, 4.8 show the results of three cases under time dependent PH model

with coefficients proportional to time. As is presented in Table 4.6, the ĤDS(t) shows
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Table 4.4 HDS(t) under the Cox PH model for right censored data with
sample size = 500; exponential survival distribution:

CR=15% CR=25%
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.82 1.83 0.12 0.96 1.82 1.83 0.13 0.97
0.050 1.84 1.85 0.12 0.95 1.84 1.84 0.13 0.97
0.100 1.83 1.85 0.12 0.93 1.83 1.84 0.12 0.95
0.200 1.76 1.77 0.09 0.92 1.76 1.76 0.09 0.89
0.300 1.66 1.66 0.07 0.92 1.66 1.66 0.08 0.90
0.400 1.56 1.57 0.06 0.93 1.56 1.57 0.07 0.92
0.500 1.49 1.49 0.06 0.94 1.49 1.49 0.06 0.95
0.600 1.43 1.44 0.06 0.95 1.43 1.43 0.06 0.96
0.700 1.38 1.39 0.05 0.96 1.38 1.39 0.06 0.96
0.800 1.35 1.35 0.05 0.96 1.35 1.35 0.05 0.96
0.900 1.32 1.32 0.05 0.96 1.32 1.32 0.05 0.96
1.000 1.29 1.29 0.05 0.95 1.29 1.30 0.05 0.96

CR=30% CR=60%
0.025 1.82 1.83 0.13 0.96 1.82 1.84 0.16 0.94
0.050 1.84 1.85 0.13 0.96 1.84 1.86 0.16 0.94
0.100 1.83 1.85 0.12 0.95 1.83 1.85 0.15 0.93
0.200 1.76 1.77 0.10 0.92 1.76 1.77 0.12 0.91
0.300 1.66 1.66 0.08 0.93 1.66 1.67 0.10 0.93
0.400 1.56 1.57 0.07 0.94 1.56 1.57 0.09 0.94
0.500 1.49 1.49 0.06 0.97 1.49 1.50 0.09 0.94
0.600 1.43 1.43 0.06 0.96 1.43 1.45 0.10 0.94
0.700 1.38 1.39 0.06 0.97 1.38 1.43 0.10 0.94
0.800 1.35 1.35 0.06 0.97 1.35 1.41 0.10 0.91
0.900 1.32 1.32 0.06 0.97 1.32 1.41 0.10 0.88
1.000 1.29 1.30 0.06 0.97 1.29 1.41 0.10 0.81

little bias under exponential and Log Normal distribution and greater bias under

Weibull and Log-Log distribution, but coverage probability varies between 0.86 and

0.98 across different survival distributions for the model with the coefficient propor-

tional to time. From Table 4.7, the estimated HDS(t) has greater bias under small

sample size, and the bias will be narrower as the sample size increases. Moreover,

under smaller censoring rate, the bias will be less and the coverage probability will

increase (see Table 4.8). The estimated HDS(t) at 1.000 is unavailable since there is
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Table 4.5 Parameters for different survival distributions under
time dependent PH model

Distribution Baseline Hazard λ0(t) Parameters
Exponential k k=1
Weibull kpptp−1 k=1, p=2
Log-Logistic kp(kt)p−1

1+(kt)p k=1, p=2
Log Normal ∂

∂t
{−log{1− Φ( log(t)−µ

σ
)}} µ=1, σ=2

no observed time later than 1.000 under large censoring rate (60%).

The results of three cases under time dependent PH model with coefficients pro-

portional to log(t) are presented in Table 4.9, 4.10, 4.11. Since the model has a

coefficient proportional to log(t), fewer failures will be observed between 0 and 0.5.

The time points to be evaluated are moved to the period between 0.5 and 1.5. It

is apparent that the bias grows as the evaluated time points away from 0.9 under

each setting. The coverage probability is closer to 0.95 after 0.9 than before 0.9

(Table 4.9). The bias decreases as sample size increases or the right censoring rate

decreases (Table 4.10 and Table 4.11). There seems no obvious differences in cov-

erage probability under different sample size. However, it will not work well when

right censoring rate is quite large (Table 4.11). Since the time range under the sce-

nario with coefficients proportional to log(t) is larger than the time range under the

case with coefficients proportional to t, we conduct two additional simulations under

exponential survival distribution, with a 500 sample size and a 25% censoring rate

with a larger bandwidth h = 0.25 and h = 0.30. Though the coverage probability

before 0.80 is still far from 0.95, the bias and standard errors decrease when we use a

larger bandwidth (see Table 4.12). Actually, the optimal bandwidth could be chosen

by K-fold cross-validation (see real data example in section 5.2).

From Table 4.13, 4.14, 4.15, we can see that the results of the model with a

coefficient proportional to t2 seem very similar to the results of the model with a
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Table 4.6 HDSLC(t) under time dependent PH Model with coefficient
proportional to t; with censoring rate 25%; sample size = 500:

Exponential Weibull
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.28 1.32 0.11 0.89 1.28 1.44 0.21 0.85
0.050 1.28 1.31 0.10 0.89 1.28 1.41 0.19 0.86
0.100 1.28 1.30 0.09 0.89 1.29 1.37 0.15 0.88
0.200 1.28 1.29 0.08 0.93 1.29 1.34 0.11 0.90
0.300 1.28 1.29 0.09 0.94 1.31 1.33 0.10 0.92
0.400 1.29 1.30 0.09 0.94 1.32 1.33 0.09 0.93
0.500 1.30 1.31 0.10 0.94 1.33 1.33 0.09 0.94
0.600 1.32 1.33 0.12 0.93 1.33 1.34 0.09 0.96
0.700 1.34 1.35 0.14 0.94 1.34 1.34 0.11 0.95
0.800 1.36 1.38 0.17 0.94 1.34 1.34 0.13 0.96
0.900 1.37 1.41 0.22 0.95 1.33 1.34 0.16 0.96
1.000 1.38 1.46 0.29 0.93 1.31 1.34 0.21 0.95

Log-Log Log Normal
0.025 1.28 1.48 0.23 0.90 1.28 1.34 0.15 0.88
0.050 1.28 1.45 0.20 0.91 1.28 1.33 0.14 0.89
0.100 1.29 1.39 0.16 0.86 1.28 1.32 0.12 0.89
0.200 1.29 1.34 0.12 0.89 1.29 1.31 0.11 0.89
0.300 1.31 1.32 0.10 0.88 1.30 1.32 0.11 0.92
0.400 1.32 1.33 0.10 0.95 1.32 1.35 0.12 0.92
0.500 1.33 1.34 0.10 0.97 1.34 1.37 0.13 0.92
0.600 1.35 1.35 0.10 0.98 1.37 1.40 0.14 0.92
0.700 1.36 1.35 0.11 0.98 1.40 1.44 0.15 0.93
0.800 1.37 1.36 0.13 0.94 1.44 1.47 0.17 0.94
0.900 1.38 1.39 0.16 0.95 1.48 1.52 0.19 0.94
1.000 1.39 1.43 0.22 0.95 1.53 1.55 0.21 0.93

coefficient proportional to time. The only obvious difference is that the former one

performs worse when the censoring rate is large (Table 4.15).
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Table 4.7 HDSLC(t) under time dependent PH model with coefficient
proportional to t; with censoring rate 25%; exponential survival
distribution

n=200 n=500
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.28 1.35 0.17 0.90 1.28 1.32 0.11 0.89
0.050 1.28 1.34 0.16 0.91 1.28 1.31 0.10 0.89
0.100 1.28 1.32 0.14 0.91 1.28 1.30 0.09 0.89
0.200 1.28 1.30 0.12 0.92 1.28 1.29 0.08 0.93
0.300 1.28 1.30 0.12 0.93 1.28 1.29 0.09 0.94
0.400 1.29 1.31 0.13 0.94 1.29 1.30 0.09 0.94
0.500 1.30 1.33 0.15 0.94 1.30 1.31 0.10 0.94
0.600 1.32 1.35 0.17 0.93 1.32 1.33 0.12 0.93
0.700 1.34 1.38 0.20 0.94 1.34 1.35 0.14 0.94
0.800 1.36 1.42 0.25 0.93 1.36 1.38 0.17 0.94
0.900 1.37 1.46 0.33 0.94 1.37 1.41 0.22 0.95
1.000 1.38 1.53 0.44 0.93 1.38 1.46 0.29 0.93

n=800 n=1000
0.025 1.28 1.31 0.09 0.89 1.28 1.30 0.08 0.91
0.050 1.28 1.30 0.08 0.90 1.28 1.30 0.07 0.91
0.100 1.28 1.29 0.07 0.90 1.28 1.29 0.06 0.90
0.200 1.28 1.28 0.07 0.92 1.28 1.28 0.06 0.91
0.300 1.28 1.29 0.07 0.92 1.28 1.29 0.06 0.92
0.400 1.29 1.29 0.07 0.94 1.29 1.29 0.07 0.92
0.500 1.30 1.31 0.08 0.94 1.30 1.31 0.08 0.93
0.600 1.32 1.33 0.10 0.93 1.32 1.32 0.09 0.94
0.700 1.34 1.34 0.11 0.94 1.34 1.34 0.10 0.95
0.800 1.36 1.37 0.14 0.93 1.36 1.36 0.12 0.94
0.900 1.37 1.39 0.17 0.94 1.37 1.38 0.15 0.92
1.000 1.38 1.42 0.22 0.95 1.38 1.40 0.20 0.93

4.3 Cox PH Model with Interval Censoring

To evaluate the performance for interval censored data, we use the same survival

model as used in the simulation under right censoring (section 4.1). For interval

censored data, the exact event time is calculated to catch the interval between which

we observe the event. To control the right censoring rate, we generated the intervals

as follows. The number of observation times for each subject is equal to one plus a
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Table 4.8 HDSLC(t) under time dependent PH model with coefficient
proportional to t; with sample size = 500; exponential survival distribution:

CR=15% CR=25%
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.28 1.32 0.12 0.93 1.28 1.32 0.11 0.89
0.050 1.28 1.31 0.11 0.93 1.28 1.31 0.10 0.89
0.100 1.28 1.30 0.09 0.93 1.28 1.30 0.09 0.89
0.200 1.28 1.29 0.08 0.94 1.28 1.29 0.08 0.93
0.300 1.28 1.29 0.09 0.93 1.28 1.29 0.09 0.94
0.400 1.29 1.30 0.09 0.94 1.29 1.30 0.09 0.94
0.500 1.30 1.32 0.10 0.94 1.30 1.31 0.10 0.94
0.600 1.32 1.33 0.12 0.94 1.32 1.33 0.12 0.93
0.700 1.34 1.35 0.13 0.95 1.34 1.35 0.14 0.94
0.800 1.36 1.37 0.16 0.95 1.36 1.38 0.17 0.94
0.900 1.37 1.40 0.20 0.95 1.37 1.41 0.22 0.95
1.000 1.38 1.43 0.25 0.95 1.38 1.46 0.29 0.93

CR=30% CR=60%
0.025 1.28 1.32 0.11 0.87 1.28 1.33 0.08 0.74
0.050 1.28 1.31 0.10 0.87 1.28 1.32 0.08 0.74
0.100 1.28 1.30 0.09 0.88 1.28 1.31 0.07 0.74
0.200 1.28 1.29 0.08 0.90 1.28 1.29 0.07 0.83
0.300 1.28 1.29 0.08 0.92 1.28 1.30 0.08 0.85
0.400 1.29 1.30 0.09 0.93 1.29 1.31 0.10 0.86
0.500 1.30 1.32 0.10 0.94 1.30 1.35 0.14 0.86
0.600 1.32 1.33 0.12 0.93 1.32 1.38 0.18 0.89
0.700 1.34 1.36 0.15 0.94 1.34 1.43 0.25 0.91
0.800 1.36 1.40 0.18 0.93 1.36 1.54 0.38 0.92
0.900 1.37 1.44 0.24 0.93 1.37 1.95 0.72 0.93
1.000 1.38 1.49 0.33 0.93 1.38

random count which follows a Poisson distribution with mean θ = 5. This ensures

each subject has at least one visit, and the number of visits varies among subjects.

The gap time between adjacent observations was generated based on an exponential

distribution with mean φ = 0.1. This combination of (θ, φ) let the right censoring

rate under exponential distribution close to 25%. We use (θ = 7, φ = 1/9), (θ =

7, φ = 1/9), (θ = 5, φ = 1/14) to control the right censoring rate equal to 25%

under Weibull, Log-Log, Log-Normal distribution, respectively. We also use (θ =
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Table 4.9 HDSLC(t) under time dependent PH model with coefficient
proportional to log(t); with censoring rate 25%; sample size = 500:

Exponential Weibull
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.500 1.47 1.33 0.12 0.65 1.47 1.34 0.12 0.68
0.600 1.37 1.29 0.10 0.75 1.37 1.29 0.11 0.76
0.700 1.32 1.27 0.10 0.83 1.32 1.27 0.10 0.85
0.800 1.28 1.26 0.09 0.89 1.28 1.26 0.09 0.90
0.900 1.26 1.27 0.10 0.94 1.26 1.26 0.09 0.93
1.000 1.25 1.28 0.11 0.95 1.25 1.27 0.10 0.95
1.100 1.25 1.28 0.13 0.95 1.24 1.24 0.09 0.97
1.200 1.25 1.30 0.16 0.95 1.23 1.25 0.11 0.96
1.300 1.26 1.34 0.21 0.94 1.23 1.26 0.14 0.95
1.400 1.27 1.42 0.30 0.94 1.23 1.29 0.20 0.95
1.500 1.27 1.57 0.48 0.93 1.23 1.35 0.30 0.96

Log-Log Log Normal
0.500 1.47 1.38 0.15 0.75 1.48 1.39 0.18 0.72
0.600 1.38 1.32 0.12 0.79 1.39 1.34 0.15 0.80
0.700 1.32 1.29 0.11 0.84 1.33 1.32 0.14 0.86
0.800 1.28 1.28 0.10 0.90 1.30 1.31 0.13 0.90
0.900 1.26 1.28 0.10 0.92 1.28 1.31 0.13 0.92
1.000 1.26 1.28 0.10 0.94 1.27 1.33 0.13 0.93
1.100 1.25 1.27 0.10 0.97 1.28 1.34 0.13 0.96
1.200 1.26 1.28 0.11 0.98 1.28 1.36 0.14 0.96
1.300 1.26 1.30 0.13 0.97 1.29 1.38 0.15 0.97
1.400 1.27 1.33 0.16 0.97 1.31 1.40 0.16 0.97
1.500 1.27 1.36 0.21 0.97 1.32 1.43 0.18 0.98

7, φ = 1/9), (θ = 4, φ = 1/11), (θ = 3, φ = 1/28) to control the right censoring rate

equal to 15%, 30%, and 60% under exponential distribution, respectively. Then, the

observation times are calculated by the cumulative gap times. For the ith subject,

the observed interval (Li, Ri) is two cumulative times between which the event time

Ti lies. When Ti is less (greater) than the smallest (largest) observation time, define

Li (Ri) as NA and let Ri (Li) equal to the smallest (greatest) observation time.

From Table 4.16, we can see that there is little bias in HDS(t) under different

survival distributions over time. Moreover, the coverage probability is close to 95%
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Table 4.10 HDSLC(t) under time dependent PH model with coefficient
proportional to log(t); with censoring rate 25%; exponential survival
distribution:

n=200 n=500
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.500 1.47 1.37 0.18 0.75 1.47 1.33 0.12 0.65
0.600 1.37 1.32 0.15 0.82 1.37 1.29 0.10 0.75
0.700 1.32 1.29 0.14 0.88 1.32 1.27 0.10 0.83
0.800 1.28 1.28 0.14 0.90 1.28 1.26 0.09 0.89
0.900 1.26 1.29 0.14 0.93 1.26 1.27 0.10 0.94
1.000 1.25 1.29 0.15 0.95 1.25 1.28 0.11 0.95
1.100 1.25 1.29 0.16 0.96 1.25 1.28 0.13 0.95
1.200 1.25 1.31 0.19 0.96 1.25 1.30 0.16 0.95
1.300 1.26 1.35 0.24 0.95 1.26 1.34 0.21 0.94
1.400 1.27 1.41 0.32 0.96 1.27 1.42 0.30 0.94
1.500 1.27 1.49 0.45 0.97 1.27 1.57 0.48 0.93

n=800 n=1000
0.500 1.47 1.33 0.10 0.59 1.47 1.32 0.09 0.57
0.600 1.37 1.28 0.08 0.69 1.37 1.28 0.08 0.67
0.700 1.32 1.26 0.08 0.82 1.32 1.26 0.07 0.78
0.800 1.28 1.25 0.07 0.88 1.28 1.26 0.07 0.88
0.900 1.26 1.26 0.08 0.92 1.26 1.26 0.07 0.93
1.000 1.25 1.27 0.08 0.94 1.25 1.27 0.08 0.95
1.100 1.25 1.26 0.09 0.97 1.25 1.26 0.08 0.97
1.200 1.25 1.28 0.10 0.97 1.25 1.27 0.09 0.97
1.300 1.26 1.30 0.13 0.96 1.26 1.29 0.11 0.97
1.400 1.27 1.31 0.16 0.97 1.27 1.30 0.14 0.96
1.500 1.27 1.33 0.20 0.96 1.27 1.32 0.18 0.95

most of time except at two or three time points under each distribution. The bias

decreases and standard error shrinks as sample size increases, while the coverage

probability seems stable (Table 4.17). It performs well when right censoring rate is

not too large and works less well after 0.5 with huge right censoring rate (Table 4.18).
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Table 4.11 HDSLC(t) under time dependent PH model with coefficient
proportional to log(t); with sample size = 500; exponential survival
distribution:

CR=15% CR=25%
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.500 1.47 1.34 0.12 0.68 1.47 1.33 0.12 0.65
0.600 1.37 1.29 0.11 0.76 1.37 1.29 0.10 0.75
0.700 1.32 1.27 0.10 0.85 1.32 1.27 0.10 0.83
0.800 1.28 1.26 0.09 0.90 1.28 1.26 0.09 0.89
0.900 1.26 1.26 0.09 0.93 1.26 1.27 0.10 0.94
1.000 1.25 1.27 0.10 0.95 1.25 1.28 0.11 0.95
1.100 1.25 1.27 0.10 0.98 1.25 1.28 0.13 0.95
1.200 1.25 1.28 0.12 0.97 1.25 1.30 0.16 0.95
1.300 1.26 1.30 0.14 0.97 1.26 1.34 0.21 0.94
1.400 1.27 1.32 0.18 0.96 1.27 1.42 0.30 0.94
1.500 1.27 1.34 0.22 0.93 1.27 1.57 0.48 0.93

CR=30% CR=60%
0.500 1.47 1.34 0.12 0.67 1.47 1.35 0.11 0.62
0.600 1.37 1.29 0.10 0.73 1.37 1.30 0.10 0.72
0.700 1.32 1.27 0.10 0.85 1.32 1.28 0.10 0.79
0.800 1.28 1.27 0.09 0.89 1.28 1.27 0.10 0.87
0.900 1.26 1.27 0.10 0.92 1.26 1.28 0.10 0.88
1.000 1.25 1.27 0.11 0.95 1.25 1.30 0.13 0.89
1.100 1.25 1.27 0.11 0.96 1.25 1.32 0.16 0.89
1.200 1.25 1.29 0.13 0.97 1.25 1.37 0.21 0.89
1.300 1.26 1.32 0.17 0.96 1.26 1.51 0.35 0.92
1.400 1.27 1.34 0.21 0.96 1.27 1.69 0.61 0.93
1.500 1.27 1.38 0.28 0.95 1.27
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Table 4.12 HDSLC(t) under time dependent PH model with
coefficient proportional to log(t); censoring rate 25%; n = 500;
exponential survival distribution:

h = 0.25 h = 0.30
Time HDS(t) ĤDS(t) SE CP ĤDS(t) SE CP
0.500 1.47 1.33 0.11 0.64 1.33 0.10 0.60
0.600 1.37 1.29 0.09 0.74 1.29 0.08 0.71
0.700 1.32 1.27 0.09 0.83 1.27 0.08 0.81
0.800 1.28 1.26 0.08 0.89 1.26 0.08 0.88
0.900 1.26 1.26 0.09 0.92 1.26 0.08 0.94
1.000 1.25 1.27 0.09 0.94 1.26 0.08 0.96
1.100 1.25 1.28 0.10 0.96 1.27 0.09 0.96
1.200 1.25 1.29 0.12 0.97 1.28 0.11 0.97
1.300 1.26 1.31 0.14 0.97 1.29 0.13 0.96
1.400 1.27 1.33 0.18 0.97 1.31 0.16 0.97
1.500 1.27 1.35 0.23 0.95 1.34 0.20 0.96
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Table 4.13 HDSLC(t) under time dependent PH model with coefficient
proportional to t2; with censoring rate 25%; sample size = 500:

Exponential Weibull
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.28 1.32 0.12 0.89 1.28 1.48 0.24 0.84
0.050 1.28 1.31 0.11 0.89 1.28 1.43 0.20 0.84
0.100 1.27 1.30 0.10 0.89 1.28 1.38 0.16 0.84
0.200 1.26 1.29 0.09 0.90 1.28 1.32 0.12 0.85
0.300 1.26 1.28 0.09 0.91 1.28 1.30 0.10 0.88
0.400 1.26 1.28 0.10 0.92 1.27 1.30 0.10 0.90
0.500 1.26 1.28 0.10 0.93 1.28 1.30 0.09 0.93
0.600 1.27 1.29 0.11 0.93 1.29 1.30 0.09 0.94
0.700 1.30 1.31 0.12 0.93 1.30 1.31 0.09 0.95
0.800 1.34 1.35 0.14 0.93 1.33 1.32 0.10 0.95
0.900 1.39 1.39 0.16 0.93 1.36 1.34 0.12 0.93
1.000 1.45 1.44 0.20 0.93 1.38 1.34 0.16 0.94

Log-Log Log Normal
0.025 1.28 1.48 0.25 0.84 1.28 1.35 0.16 0.88
0.050 1.28 1.44 0.21 0.83 1.28 1.34 0.15 0.88
0.100 1.28 1.39 0.17 0.85 1.28 1.32 0.13 0.88
0.200 1.28 1.33 0.13 0.87 1.27 1.31 0.12 0.90
0.300 1.28 1.30 0.11 0.88 1.27 1.31 0.13 0.91
0.400 1.28 1.30 0.10 0.91 1.27 1.32 0.13 0.90
0.500 1.28 1.30 0.10 0.91 1.28 1.33 0.14 0.89
0.600 1.29 1.31 0.10 0.93 1.30 1.35 0.14 0.91
0.700 1.31 1.33 0.10 0.94 1.34 1.39 0.15 0.92
0.800 1.35 1.36 0.11 0.95 1.39 1.44 0.16 0.94
0.900 1.40 1.39 0.13 0.95 1.47 1.51 0.17 0.95
1.000 1.46 1.43 0.16 0.93 1.57 1.61 0.19 0.95
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Table 4.14 HDSLC(t) under time dependent PH model with coefficient
proportional to t2; with censoring rate 25%; exponential survival
distribution:

n=200 n=500
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.28 1.35 0.18 0.90 1.28 1.32 0.12 0.89
0.050 1.28 1.34 0.17 0.90 1.28 1.31 0.11 0.89
0.100 1.27 1.32 0.15 0.90 1.27 1.30 0.10 0.89
0.200 1.26 1.30 0.13 0.92 1.26 1.29 0.09 0.90
0.300 1.26 1.29 0.13 0.91 1.26 1.28 0.09 0.91
0.400 1.26 1.29 0.14 0.91 1.26 1.28 0.10 0.92
0.500 1.26 1.30 0.15 0.93 1.26 1.28 0.10 0.93
0.600 1.27 1.32 0.16 0.93 1.27 1.29 0.11 0.93
0.700 1.30 1.34 0.17 0.93 1.30 1.31 0.12 0.93
0.800 1.34 1.38 0.20 0.93 1.34 1.35 0.14 0.93
0.900 1.39 1.42 0.24 0.93 1.39 1.39 0.16 0.93
1.000 1.45 1.47 0.30 0.93 1.45 1.44 0.20 0.93

n=800 n=1000
0.025 1.28 1.30 0.09 0.91 1.28 1.31 0.09 0.88
0.050 1.28 1.30 0.09 0.91 1.28 1.30 0.08 0.88
0.100 1.27 1.29 0.08 0.91 1.27 1.29 0.07 0.87
0.200 1.26 1.27 0.07 0.90 1.26 1.28 0.07 0.90
0.300 1.26 1.27 0.07 0.89 1.26 1.27 0.07 0.92
0.400 1.26 1.27 0.08 0.93 1.26 1.27 0.07 0.94
0.500 1.26 1.27 0.08 0.93 1.26 1.27 0.07 0.93
0.600 1.27 1.28 0.09 0.93 1.27 1.29 0.08 0.94
0.700 1.30 1.31 0.09 0.92 1.30 1.31 0.09 0.93
0.800 1.34 1.34 0.11 0.94 1.34 1.35 0.10 0.94
0.900 1.39 1.39 0.13 0.94 1.39 1.38 0.12 0.94
1.000 1.45 1.44 0.16 0.93 1.45 1.42 0.15 0.93
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Table 4.15 HDSLC(t) under time dependent PH model with coefficient
proportional to t2; with sample size = 500; exponential survival
distribution:

CR=15% CR=25%
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.28 1.32 0.13 0.92 1.28 1.32 0.12 0.89
0.050 1.28 1.31 0.12 0.91 1.28 1.31 0.11 0.89
0.100 1.27 1.30 0.10 0.91 1.27 1.30 0.10 0.89
0.200 1.26 1.28 0.09 0.92 1.26 1.29 0.09 0.90
0.300 1.26 1.27 0.09 0.93 1.26 1.28 0.09 0.91
0.400 1.26 1.27 0.10 0.93 1.26 1.28 0.10 0.92
0.500 1.26 1.28 0.10 0.95 1.26 1.28 0.10 0.93
0.600 1.27 1.29 0.11 0.95 1.27 1.29 0.11 0.93
0.700 1.30 1.32 0.12 0.94 1.30 1.31 0.12 0.93
0.800 1.34 1.35 0.13 0.95 1.34 1.35 0.14 0.93
0.900 1.39 1.39 0.15 0.95 1.39 1.39 0.16 0.93
1.000 1.45 1.44 0.19 0.95 1.45 1.44 0.20 0.93

CR=30% CR=60%
0.025 1.28 1.33 0.12 0.89 1.28 1.32 0.10 0.81
0.050 1.28 1.32 0.11 0.88 1.28 1.32 0.09 0.82
0.100 1.27 1.30 0.09 0.88 1.27 1.30 0.08 0.82
0.200 1.26 1.28 0.09 0.90 1.26 1.29 0.08 0.86
0.300 1.26 1.27 0.09 0.91 1.26 1.29 0.08 0.85
0.400 1.26 1.28 0.09 0.91 1.26 1.29 0.09 0.85
0.500 1.26 1.29 0.10 0.92 1.26 1.31 0.10 0.83
0.600 1.27 1.30 0.11 0.92 1.27 1.33 0.12 0.83
0.700 1.30 1.33 0.12 0.95 1.30 1.37 0.15 0.79
0.800 1.34 1.36 0.14 0.94 1.34 1.48 0.22 0.78
0.900 1.39 1.40 0.17 0.94 1.39 2.02 0.52 0.81
1.000 1.45 1.45 0.22 0.94 1.45 2.02 0.52 0.78
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Table 4.16 HDS(t) the Cox PH model for interval censored data with
right censoring rate 25%; sample size = 500:

Exponential Weibull
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.82 1.84 0.14 0.96 1.79 1.83 0.13 0.95
0.050 1.84 1.86 0.14 0.96 1.80 1.83 0.13 0.95
0.100 1.83 1.86 0.12 0.94 1.81 1.84 0.14 0.95
0.200 1.76 1.78 0.07 0.80 1.83 1.87 0.15 0.95
0.300 1.66 1.67 0.06 0.85 1.84 1.87 0.13 0.91
0.400 1.56 1.57 0.07 0.93 1.79 1.82 0.08 0.80
0.500 1.49 1.50 0.07 0.96 1.71 1.72 0.07 0.80
0.600 1.43 1.44 0.07 0.98 1.60 1.61 0.07 0.90
0.700 1.38 1.39 0.06 0.98 1.50 1.50 0.07 0.95
0.800 1.35 1.35 0.06 0.97 1.41 1.42 0.07 0.98
0.900 1.32 1.32 0.05 0.96 1.34 1.35 0.06 0.97
1.000 1.29 1.29 0.05 0.96 1.29 1.30 0.05 0.96

Log-Log Log Normal
0.025 1.79 1.82 0.14 0.96 1.83 1.85 0.14 0.96
0.050 1.80 1.82 0.14 0.96 1.84 1.87 0.13 0.95
0.100 1.81 1.83 0.14 0.96 1.79 1.81 0.08 0.83
0.200 1.83 1.86 0.15 0.96 1.64 1.66 0.06 0.85
0.300 1.84 1.86 0.13 0.93 1.53 1.54 0.07 0.95
0.400 1.80 1.82 0.09 0.82 1.46 1.47 0.07 0.97
0.500 1.72 1.74 0.07 0.80 1.41 1.42 0.07 0.97
0.600 1.63 1.63 0.07 0.89 1.37 1.38 0.06 0.97
0.700 1.53 1.54 0.08 0.95 1.34 1.35 0.06 0.97
0.800 1.45 1.46 0.07 0.97 1.32 1.32 0.06 0.95
0.900 1.39 1.40 0.07 0.98 1.30 1.31 0.06 0.93
1.000 1.34 1.35 0.06 0.98 1.28 1.30 0.06 0.92
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Table 4.17 HDS(t) under the Cox PH model for interval censored data
with right censoring rate 25%; exponential survival distribution:

n=200 n=500
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.82 1.88 0.23 0.97 1.82 1.84 0.14 0.96
0.050 1.84 1.90 0.24 0.97 1.84 1.86 0.14 0.96
0.100 1.83 1.90 0.20 0.92 1.83 1.86 0.12 0.94
0.200 1.76 1.80 0.12 0.81 1.76 1.78 0.07 0.80
0.300 1.66 1.69 0.11 0.86 1.66 1.67 0.06 0.85
0.400 1.56 1.58 0.12 0.91 1.56 1.57 0.07 0.93
0.500 1.49 1.51 0.12 0.94 1.49 1.50 0.07 0.96
0.600 1.43 1.45 0.11 0.94 1.43 1.44 0.07 0.98
0.700 1.38 1.40 0.10 0.95 1.38 1.39 0.06 0.98
0.800 1.35 1.36 0.10 0.95 1.35 1.35 0.06 0.97
0.900 1.32 1.33 0.09 0.94 1.32 1.32 0.05 0.96
1.000 1.29 1.30 0.08 0.93 1.29 1.29 0.05 0.96

n=800 n=1000
0.025 1.82 1.85 0.11 0.96 1.82 1.84 0.10 0.96
0.050 1.84 1.87 0.11 0.96 1.84 1.86 0.10 0.96
0.100 1.83 1.87 0.10 0.91 1.83 1.86 0.08 0.93
0.200 1.76 1.78 0.05 0.76 1.76 1.77 0.05 0.78
0.300 1.66 1.67 0.05 0.83 1.66 1.67 0.04 0.84
0.400 1.56 1.57 0.06 0.93 1.56 1.57 0.05 0.94
0.500 1.49 1.50 0.06 0.96 1.49 1.50 0.05 0.97
0.600 1.43 1.44 0.05 0.96 1.43 1.44 0.05 0.98
0.700 1.38 1.39 0.05 0.97 1.38 1.39 0.04 0.98
0.800 1.35 1.35 0.05 0.97 1.35 1.35 0.04 0.98
0.900 1.32 1.32 0.04 0.96 1.32 1.32 0.04 0.98
1.000 1.29 1.29 0.04 0.96 1.29 1.29 0.04 0.97
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Table 4.18 HDS(t) under the Cox PH model for interval censored data
with sample size = 500; exponential survival distribution:

CR=15% CR=25%
Time HDS(t) ĤDS(t) SE CP HDS(t) ĤDS(t) SE CP
0.025 1.82 1.85 0.13 0.96 1.82 1.84 0.14 0.96
0.050 1.84 1.87 0.14 0.96 1.84 1.86 0.14 0.96
0.100 1.83 1.86 0.12 0.92 1.83 1.86 0.12 0.94
0.200 1.76 1.78 0.07 0.81 1.76 1.78 0.07 0.80
0.300 1.66 1.67 0.06 0.85 1.66 1.67 0.06 0.85
0.400 1.56 1.57 0.07 0.93 1.56 1.57 0.07 0.93
0.500 1.49 1.50 0.07 0.97 1.49 1.50 0.07 0.96
0.600 1.43 1.44 0.06 0.97 1.43 1.44 0.07 0.98
0.700 1.38 1.39 0.06 0.97 1.38 1.39 0.06 0.98
0.800 1.35 1.35 0.05 0.97 1.35 1.35 0.06 0.97
0.900 1.32 1.32 0.05 0.96 1.32 1.32 0.05 0.96
1.000 1.29 1.30 0.04 0.95 1.29 1.29 0.05 0.96

CR=30% CR=60%
0.025 1.82 1.84 0.14 0.95 1.82 1.84 0.17 0.96
0.050 1.84 1.86 0.14 0.96 1.84 1.86 0.17 0.96
0.100 1.83 1.85 0.12 0.92 1.83 1.86 0.14 0.91
0.200 1.76 1.77 0.07 0.78 1.76 1.78 0.09 0.80
0.300 1.66 1.66 0.07 0.85 1.66 1.67 0.10 0.88
0.400 1.56 1.57 0.08 0.92 1.56 1.58 0.12 0.91
0.500 1.49 1.49 0.08 0.96 1.49 1.54 0.13 0.87
0.600 1.43 1.43 0.07 0.98 1.43 1.53 0.12 0.78
0.700 1.38 1.39 0.07 0.98 1.38 1.53 0.12 0.68
0.800 1.35 1.35 0.06 0.97 1.35 1.53 0.12 0.58
0.900 1.32 1.32 0.06 0.95 1.32 1.53 0.12 0.50
1.000 1.29 1.29 0.06 0.93 1.29 1.53 0.12 0.42
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Chapter 5

Real Data Analysis

South Carolina ranked the eighth highest rates of HIV diagnoses in the United States

in 2017 [for Disease Control and Prevention]. A large number of studies investigated

the association between HIV-related diseases and potential predictors, such as viral

load level (VLD). We are particularly interested in time to first time of viral load

suppression [Yehia et al., 2015]. Antiretroviral therapy (ART) is recommended for

everyone who has HIV. It helps patients living with HIV (PLWHs) live longer, health-

ier lives and reduces the risk of HIV transmission. PLWHs are suggested to start ART

as soon as possible. Once HIV patients are linked to care, initiating ART is another

challenging task in HIV prevention [Palella et al., 2003].

We apply the HDS(t) and HDS(t) ratio to the Health Sciences South Carolina

(HSSC) data to investigate the discrimination among HIV suppression and the adher-

ence to treatment. In section 5.1, time to first time viral suppression are considered.

The HDS(t) and HDS(t) ratio under the Cox PH model and time dependent PH

model are calculated. In section 5.2, initiating ART data are used. In both sec-

tions, we test the hypothesis that the main predictor improves the discrimination

performance by using the methods in chapter 3.

5.1 Right Censored HSSC Data

We use the days from the date of first diagnosed HIV to the date of first suppression

(VLD < 200 copies/mL) as the outcome, and number of years of retention in care

(careny) as the main predictor. We also include age at baseline, nadir CD4 cell
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count (lcd4), and log(VLD) at baseline as the risk factors into the survival model.

There are 1051 PLWHs in the suppression data set, for whom 498 achieved success

in suppression (47.38%).

The characteristic of this sample is shown in Table 5.1. Survival probability

Table 5.1 Characteristics of suppression data

Variable Mean Std Dev Minimum Maximum
age 42.9 13.2 14.0 81.0

careny 2.0 1.6 0.0 5.0
lcd4 295.9 233.2 1.0 1746.0
log 8.5 2.9 3.7 15.9

of suppression is plotted using a nonparametric method, the Kaplan-Meier method

(Kaplan and Meier, 1958). Obviously, from Figure 5.1 we see that survival probability

dramatically decreases at two time points, once around 150 days and again around

2200 days (nearly 6 years). Before estimating HDS(t), we check the PH assumption

Figure 5.1 Kaplan-Meier curve for
suppression data
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using cumulative sums of martingale residuals [Lin et al., 1993]. From Table 5.2,

we can see that only the p-value for nadir CD4 is greater than the significance level

(0.05); thus, we have evidence to reject the hypothesis and conclude that the PH

assumption is violated for years in care, age, and log(VLD). Since the PH assumption

Table 5.2 Supremum Test for Proportionals Hazards Assumption

Value Maximum Absolute Replications Seed Pr > MaxAbsVal
careny 3.2289 1000 1208787608 <.0001

lcd4 1.5259 1000 1208787608 0.0650
age 2.2458 1000 1208787608 0.0010
log 4.4485 1000 1208787608 <.0001

is not satisfied, we relax the proportional hazards to time dependent hazards to get

an estimator for localized HDSLC(t). For the analysis of HDSLC(t), we choose the

"optimal" bandwidth by using theK-fold cross-validation method, which is commonly

used for nonparametric estimation [Hoover et al., 1998][Tian et al., 2005]. The data

is split into K=13 equal-sized parts. Given a certain bandwidth h, we estimate

smoothed coefficients based on the sample data excluding the kth part, k = 1, 2, ..., K.

We then calculate the "prediction error", PEk(h), by using the estimates to predict

the kth part of the data. If t(1), ...t(Dk) are the ordered failure times in the kth part of

the sample,

PEk(h) = −
Dk∑
i=1
{β̂′h(t(i))M(i) − log(

∑
l∈R(t(i))

exp(β̂′h(t(i))Ml))}

where M is the kth part of the dataset, β̂h(t) is an estimate vector of the remaining

K−1 parts at time t, and R(t(i)) is the risk set at time t(i). The optimal bandwidth is

such that total prediction error, PE(h) = ∑13
k=1 PEk(h), is minimized. We randomize

the original dataset 50 times, each time repeating this cross-validation process at

bandwidth h = 500, 510, ..., 750. Most of the optimal h falls into the interval [710, 740]
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(see Table 5.3). Since for almost half of the times, PE at h = 740 is the smallest, we

choose h = 740 as the bandwidth for localized HDSLC(t).

Table 5.3 Choices of Optimal Bandwidth

h 520 700 710 730 740 750
frequency 1 1 9 14 24 1

The HDS(t) ratio is calculated by comparing the HDS(t) of the model with the

number of years the patients receive retention in care and the HDS(t) of the model

without the number of years retention in care. [figure]singlelinecheck=on

Figure 5.2 Time-varying Log(HR) Estimates for
suppression data

The estimated coefficients under time dependent PH model as time changes is

shown in Figure 5.2. We see that under time dependent PH model, after 1800 days

the effect of number of years in care on suppression changes from negative to posi-
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tive, while most of time baseline age and log(VLD) affect the hazard of suppression

negatively. There is nearly no effect of nadir CD4 over time.

The estimates of HDSLC(t) under time dependent PH model are presented in

Figure 5.3. We see that HDSLC(t) is significantly greater than one over time, which

indicates that the discrimination performance of time dependent PH model including

these four predictors is quite effective. We can also see that including these four

predictors, the discriminatory ability of this time dependent PH model is quite strong

around 2100 days.

Figure 5.3 HDSLC(t) for suppression
data

However, from Figure 5.4, the lower bound of 95% confidence interval forHDSLC(t)

ratio varies around one, indicating that the association of improvement in predicting

survival and years of retention in care is not significant most of the time.

5.2 Interval Censored HSSC Data

The interval in the data set Data.art covers the exact time of initiating ART. We

analyze ART data to evaluate the discrimination performance of the Cox PH model

with initial CD4 cell count (incd4), log(VLD), and baseline age, and we test the
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Figure 5.4 HDSLC(t) Ratio for
suppression data

hypothesis that taking initial CD4 cell count into the Cox PH model improves the

discrimination of initiating ART. 1007 PLWHs are included, among which 85, 396,

526 patients are left censored, interval censored, and right censored, respectively.

The characteristic of ART data is shown in Table 5.4. From Table 5.5, we see

Table 5.4 Characteristics of ART data

Variable Mean Std Dev Minimum Maximum
incd4 385.9 280.9 1.0 1812.0

log 8.5 3.0 3.7 15.9
age 42.9 13.1 14.0 81.0

that the 95% confidence interval (C.I.) of estimates for CD4 cell count is lower than

zero. We estimate that the log(HR) of receiving ART is around -0.0009 when one cell

count increase in CD4 with other predictors fixed, and we have evidence to conclude

that lower initial CD4, which indicates the subject is in a worse health condition,

increases the probability of initiating ART earlier. Analyzing HDS(t) under the Cox
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Table 5.5 log(HR) and 95% C.I. for estimates
using ART data

Variable estimate Std Dev LCI UCI
incd4 -0.0009 0.0002 -0.0013 -0.0005

log 0.0222 0.0174 -0.0119 0.0563
age 0.0034 0.0037 -0.0038 0.0106

PH model by using the proposed methods, we see that the 95% confidence interval for

HDS(t) covers one over time. We don’t have evidence to reject the null hypothesis

that there is no discriminatory performance of the Cox PH model with these three

predictors (Figure 5.5). The confidence interval for HDS(t) ratio of including initial

Figure 5.5 HDS(t) for ART data

CD4 or not is presented in Figure 5.6. We see that the lower bound is less than one,

which indicates that including initial CD4 does not improve the Cox PH model.
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Figure 5.6 HDS(t) Ratio for ART
data
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Chapter 6

Conclusions and Future Study

HDS(t) is a time-varying measure which generalizes the discrimination slope to eval-

uate the discrimination performance for survival models proposed by Liang and Hea-

gerty [2017]. It has been shown that the estimation for HDS(t) under the Cox PH

model and time dependent HDS(t) performs effectively with exponential distribution

for right censored data [Liang and Heagerty, 2017]. Based on the referenced paper,

we evaluated the performance of estimation for HDS(t) under the Cox PH model

and time dependent PH model with different survival distributions, different sample

sizes, and different right censoring rates.

Firstly, according to the results of simulation studies, HDS(t) performs well based

on data with a large sample size and a small right censoring rate. When PH assump-

tion is violated, an alternative method is to analyze data using time dependent PH

model. Using a proper bandwidth, which can be chosen by k-fold cross-validation,

HDSLC(t) under time dependent PH model also works well.

Secondly, we also extended the application of HDS(t) to interval censored data.

It has been shown that the discrimination performance of a survival model, given

interval censored data, can be evaluated by HDS(t). Although at some time points

the bias of estimated HDS(t) is not small, most of the time it works adequately with

a large sample size and a small right censoring rate.

In addition, we can test whether a main predictor of interest improves the survival

model through the estimation of HDS(t) ratio. Since the standard error for HDS(t)

ratio is quite complicated, we can make inferences by using a bootstrap method to
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construct a confidence interval of HDS(t) ratio.

Currently, there are many other survival models to predict the survival probabil-

ity, such as the generalized odds rate model (GOR model), which is more generalized

and flexible [Dabrowska and Doksum, 1988]. Some avenues for future study include

the extension of the HDS(t) under the GOR model so that the measure of discrimi-

nation performance for survival will be more flexible. We also can relax HDS(t) to

the localized HDS(t) for interval censored data so that we can evaluate the discrimi-

nation performance of survival models for interval censored data in a safe and robust

way. Furthermore, when new data comes, we could better explore suppression and

initiating ART for PLWHs.
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