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Abstract

In epidemiological applications, individual specimens (e.g., blood, urine, etc.) are of-

ten pooled together to detect the presence of disease or to measure the concentration

level of a specific biomarker. Due to the advantage of cost efficiency, pooled data

are also seen in diverse areas such as genetics, animal ecology, and environmental

science. With pooled data, individual observations are masked and new statisti-

cal methods are needed to estimate characteristics such as disease prevalence, the

underlying density function of a biomarker, etc. We focus on three estimation prob-

lems for pooled data. Chapters 2 and 3 propose nonparametric estimators for the

density function f(Y |X) of a biomarker’s concentration Y given a single covariate

X. We consider two types of pooling strategies: random pooling in Chapter 2 and

homogeneous pooling in Chapter 3. For both strategies, we derive asymptotic prop-

erties of density estimators and evaluate performance through numerical studies in

a variety of settings. We further illustrate the proposed methods by applying them

to a polyfluorochemical data set. In Chapter 4, we develop a method to estimate

disease prevalence and diagnostic accuracy probabilities (sensitivity and specificity)

simultaneously from two-stage hierarchical group testing data. Through theoretical

calculation and simulation, our approach is shown to be more efficient than existing

methods which utilize only pooled-level responses.
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Chapter 1

Introduction

1.1 Literature Review

The idea of pooling specimens traces back to 1943, when Robert Dorfman suggested

pooling blood samples to detect syphilis among American soldiers in World War

II. Instead of testing the samples individually, Dorfman proposed that one could

pool multiple blood samples together and then test the pooled sample. If the pool

diagnosis was negative, then all individuals inside the pool would be diagnosed as

negative. If the pool diagnosis was positive, then retests would be carried out for

every individual inside the pool. When the disease prevalence is low, most pools end

up with a negative result and no further retests are needed. This, in turn, leads to

a reduction in testing costs. Since Dorfman’s strategy was introduced, following the

same idea, more complex pooling strategies have been proposed, and corresponding

statistical methods have been developed to analyze these data. Pooling specimens,

which is often referred to as group testing or pooled testing, is a common practice in

numerous areas such as genetics (Gastwirth, 2000), animal ecology (Dhand, Johnson,

and Toribio, 2010), and nutrition (Fahey, Ourisson, and Degnan, 2006).

One of the main advantages of group testing is cost reduction. For example,

the State Hygienic Laboratory (SHL) at the University of Iowa is responsible for

chlamydia and gonorrhea testing throughout the state. These screening activities are

part of sexually transmitted disease assessment and prevention programs that occur

in all 50 states; see also Lewis, Lockary, and Kobic (2012). During 2009-2014, the

1



SHL estimates that using group testing has saved $3.1 million. Besides saving costs,

specimens may also be pooled to avoid undetectability below a certain concentration

level. For example, Bates et al. (2005) pool sera specimens to achieve desired volume

limits (approximately 50 ml) in a study of organochlorine compounds exposure among

adults in New Zealand.

The group testing literature can generally be split into two areas: case identifi-

cation and estimation. The case identification literature describes pooling strategies

and statistical models to classify an individual as positive or negative while achieving

cost efficiency and accuracy. On the other hand, the estimation literature describes

methods to estimate relevant characteristics such as disease prevalence in a popula-

tion, diagnostic accuracy, and regression models which connect pooled responses to

covariate information.

1.1.1 Case Identification

Most case identification strategies can be classified as one of two types: hierarchi-

cal and non-hierarchical. The hierarchical method first tests master pools and then

divides positive pools into non-overlapping subgroups for retesting. If positive diag-

noses are still found in the subgroups, further stages of dividing and retesting are

performed. Dorfman’s method, which uses two stages, is the simplest version of a

hierarchical algorithm. The non-hierarchical approach usually refers to array test-

ing algorithms. For instance, two-dimensional array testing arranges specimens in a

two-dimensional array. All rows and columns are pooled and are tested in the first

stage. When one column and one row both show a positive result, the intersection

is retested due to high suspicion of positivity. Non-hierarchical algorithms usually

perform better when the disease prevalence is very low while two-stage hierarchical

algorithms are easier to apply. Kim et al. (2007) offered a complete comparison of

various retesting algorithms in group testing. This comparison was performed under
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the assumption that all individuals have the same probability of infection.

In reality, however, one may assess the level of risk by a person’s covariate informa-

tion. To address this issue, “informative group testing” assumes different individual

risks and was proposed by Bilder, Tebbs, and Chen (2010), Black, Bilder, and Tebbs

(2012) and McMahan, Tebbs, and Bilder (2012a). Treating individual information

(e.g., age, race, etc.) as covariates, these authors predict an individual’s probability

of disease by a regression model and then adjust group testing strategies according to

the predicted probability on a per-individual basis. More recently, inspired by assays

that can detect multiple diseases simultaneously, Tebbs, McMahan, and Bilder (2013)

proposed a two-stage hierarchical group testing algorithm for multiple infections. Hou

et al. (2017) later generalized this work to hierarchical group testing algorithms with

more than two stages.

1.1.2 Estimation

There is a large literature on estimation with pooled data when the observations are

viewed as concentration levels of a specific biomarker. Early works such as Faraggi,

Reiser, and Schisterman (2003), Liu and Schisterman (2003) and Schisterman et al.

(2005) assume the concentration level is Gaussian and utilize the estimated den-

sity function to make inference on the receiver-operating characteristic (ROC) curve.

Schisterman (2003) proposed an estimator of Youden’s index, Mumford et al. (2006)

considered the effect of the limit of detection, and Vexler, Schisterman, and Liu

(2008) proposed a nonparametric kernel type method to analyze pooled data and

ROC curves. More recently, when covariate information is available, regression anal-

ysis has been utilized to analyze the relationship between the response and covari-

ates. Ma et al. (2011) proposed a linear regression model to discover the relationship

between the pooled biomarker and easily obtained covariates such as age. Mali-

novsky, Albert, and Schisterman (2012) extended the linear model by introducing
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random effects, and Mitchell et al. (2014) considered the case when the response is

right-skewed. Liu, McMahan, and Gallagher (2017) proposed a general regression

framework to incorporate different parametric models, while Lin and Wang (2018)

proposed a semi-parametric approach.

Regression analysis is generally limited to the mean biomarker level and thus can-

not reveal the complete relationship (e.g., skewness, mode, quantiles, etc.) between

the covariate and the response. Direct estimation of a biomarker’s conditional density

function conveys more information. In this context, the main difficulty lies in how

to recover individual information from the complex convolution of pooled data. The

aforementioned literature about ROC curves focuses on distributions of two distinct

groups such as disease status. However, it is also meaningful to consider the case

when the covariate is continuous. Based on pooled observations, Vexler, Liu, and

Schisterman (2010) proposed a nonparametric estimator of a density function in the

absence of covariates. Linton and Whang (2002) examined the problem of estimat-

ing a conditional density function nonparametrically when both the responses and

covariates are pooled and error-prone.

When the response is binary, a common goal in group testing is to estimate

the population prevalence p. Early works such as Thompson (1962) and Sobel and

Elashoff (1975) derived the maximum likelihood estimator (MLE) of p in the ideal sit-

uation that no misclassification occurs. Hughes-Oliver and Swallow (1994) proposed

an adaptive pooling strategy to adjust the group size based on a priori information

from a small number of pre-tests. In practice, when diagnostic tests are imperfect,

false negative and false positive results may occur. Sensitivity (Se) and specificity

(Sp) are two common criteria to measure diagnostic accuracy. Taking misclassifica-

tion into account, Tu, Litvak, and Pagano (1995) provided a maximum likelihood

estimator of p and derived asymptotic properties. They showed that the prevalence p

can be estimated more precisely by testing pools than by using individual testing. Liu
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et al. (2012) provided the upper bound on p under which group testing is more pre-

cise when fixing the number of subjects or the number of assays. Huang et al. (2017)

further assumed misclassification rates are unknown and proposed a design that can

estimate p, Se, and Sp simultaneously. They proved their designs are theoretically op-

timal using certain criteria. Based on more modern assays that can detect multiple

diseases simultaneously, Tebbs, McMahan, and Bilder (2013) estimated the preva-

lence of multiple infections using an expectation-maximization algorithm. Warasi

et al. (2016) addressed a similar problem by using a Bayesian approach.

Similar to the continuous case, regression models have been proposed to incor-

porate covariate information when the response is binary. Farrington (1992) pro-

posed a generalized linear model (GLM) to accommodate pooled data. Vansteelandt,

Goetghebeur, and Verstraeten (2000) extended Farrington (1992)’s GLM by flexibly

allowing imperfect tests, a broader collection of link functions, and different covari-

ate values in the same pool. Chen, Tebbs, and Bilder (2009) developed a regression

method to include random effects, and McMahan et al. (2017) proposed a Bayesian

approach that can utilize historical data for any group testing protocol. The latter

authors proposed a Metropolis-Hastings algorithm to fit a GLM and to estimate the

covariate effects as well as assay accuracy probabilities. Warasi et al. (2017) proposed

a regression model that incorporates the dilution effect and provided a hypothesis test

to test for dilution.

Besides parametric models for binary responses, there has been substantial progress

in developing semi-parametric and nonparametric methods in recent years. Wang et

al. (2013) proposed a semi-parametric regression model that can adjust for multiple

covariates. Assuming the responses are pooled randomly, Delaigle and Meister (2012)

constructed a kernel-type nonparametric estimator of p(x) where x is a scalar covari-

ate measured on each individual. Delaigle and Hall (2012) considered homogeneous

pooling and proposed the corresponding kernel-type nonparametric estimator. They
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showed that when the pool size is large, estimation accuracy is better when pooling

individuals homogeneously. Delaigle and Zhou (2015) later considered the scenario

when both the binary response and a continuous covariate are pooled. Delaigle and

Hall (2015) proposed a nonparametric method to accommodate the dilution effect

when estimating p(x) along with Se and Sp.

1.2 Outline

This dissertation focuses on three estimation problems. Chapter 2 and Chapter 3 ex-

amine the case when the pooled outcome is continuous. In Chapter 2, we introduce a

nonparametric method to estimate the conditional density function f(Y |X) where Y

is a continuous response; e.g., the concentration level of a biomarker, and X is a con-

tinuous covariate such as age. Instead of observing the response variable individually,

the Y ’s are pooled randomly, and we observe only the arithmetic average Ȳ plus a

measurement error ε. We refer to the estimator of f(Y |X) in this case as the random

pooling (RP) estimator. In Chapter 3, instead of pooling the Y ’s randomly, we pool

Y ’s with similar covariates. We propose a new nonparametric estimator of f(Y |X)

under this pooling strategy which we call the homogeneous pooling (HP) estimator.

In Chapter 4, we examine the case when the pooled outcome is binary. We compare

estimation efficiency of the disease prevalence, Se, and Sp between two group testing

algorithms: Dorfman testing and master pool testing. This chapter can be viewed as

an extension of Huang et al. (2017) when Dorfman testing is used to resolve positive

pools.
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Chapter 2

Conditional density estimation with random

pooling

2.1 Introduction

In epidemiological and environmental studies, it is increasingly common to pool in-

dividual specimens (e.g., blood, urine, etc.) together and then test the pools for the

concentration level of a particular biomarker. There are various advantages of doing

so. For example, specimens may be pooled to reduce the cost associated with assays

(Caudill, 2012), to avoid undetectability below a certain concentration level (Bates

et al., 2005; Schisterman and Vexler, 2008), or to conserve expensive, irreplaceable

specimens (Saha-Chaudhuri and Weinberg, 2013). The idea of pooling traces back

to 1943 when Dorfman pooled blood samples to detect syphilis among American sol-

diers in World War II. Since this seminal work, pooled data have been widely seen

in diverse applications such as in genetics (Gastwirth, 2000), animal ecology (Dhand,

Johnson, and Toribio, 2010), and nutrition (Fahey, Ourisson, and Degnan, 2006).

Regression is the most common method to analyze the relationship between a

response variable and covariates; see, e.g., Parikh et al. (2006) and Ai et al. (2010).

Considerable efforts have been made to estimate regression models with pooled data.

Ma et al. (2011), Malinovsky, Albert, and Schisterman (2012), Mitchell et al. (2014),

McMahan et al. (2016), and Liu, McMahan, and Gallagher (2017) focused on para-

metric models and Lin and Wang (2018) proposed a semi-parametric approach. How-

ever, regression models are limited to the expectation of the response; thus, they can-
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not reveal the relationship between the covariate and response variable completely.

Direct estimation of a biomarker’s conditional density function conveys more infor-

mation. One application of this is to make inference on the receiver-operating char-

acteristic (ROC) curve, which is a well-accepted tool to analyze the efficacy of a

biomarker to distinguish between two populations. For pooled data, Faraggi, Reiser,

and Schisterman (2003), Liu and Schisterman (2003), and Mumford et al. (2006)

studied this topic from a parametric point of view, and Vexler, Schisterman, and Liu

(2008) proposed a nonparametric method.

The aforementioned literature in density estimation focuses on distributions of

two distinct groups such as those bifurcated by disease status. However, it is also

meaningful to estimate the density function conditional on a continuous covariate.

In this chapter, our goal is to estimate f(y|x), the density function of Y , which is a

continuous response representing an individual’s concentration level, conditional on

X, which is a continuous covariate. Instead of observing the response variable directly,

the Y ’s are pooled randomly, and we observe only the arithmetic average Ȳ plus a

measurement error ε, whereas the covariate is observed for every individual. This

scenario is often seen when analyzing the relationship between a biomarker, which

is prohibitively expensive to measure, and an easily obtained demographic covariate

such as age.

This problem is closely related to the deconvolution problem which aims to recover

the individual density function from the sum of independent random variables. In

nonparametric statistics, deconvolution is common in the study of measurement error

(Carroll and Hall, 1988; Fan, 1991b), where the observed Y is considered to be the sum

of the random variable X and a measurement error ε. Pooled data can also be viewed

as the convolution of every individual’s contribution in the pool, and techniques

commonly seen in measurement error are also applied in this area. Vexler, Liu, and

Schisterman (2010) proposed a nonparametric density estimator without considering
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continuous covariates. Delaigle and Hall (2012), Delaigle, Hall, and Wishart (2014),

and Delaigle and Zhou (2015) studied deconvolution problems for pooled data with

binary response.

In this chapter, we propose a nonparametric local polynomial estimator of the

conditional density f(y|x) when the response Y is randomly assigned to a pool. In

economics, Linton and Whang (2002) considered the case where both the response

and the covariate are pooled. One could apply their approach to our context by

artificially pooling observed individual-level information together. However, such an

aggregation leads to a loss of information and thus potentially compromises estima-

tion. At the same time, extending their idea to our situation leads to three problems.

Computationally, they directly estimate f(y, x), the joint density of (Y,X), via a

two-dimensional inverse Fourier transform and then construct their estimator using

the formula f(y|x) = f(y, x)/fX(x), where fX(x) is the marginal density of X (which

can be estimated from the data). In two dimensions, performing an inverse Fourier

transform severely increases the computational burden and the difficulty in band-

width selection. Second, their estimator involves the complex-valued root calculation

of a bivariate characteristic function, which is hard to implement. Lastly, their proof

implicitly assumes the characteristic function of X is real, which is only true when X

is a symmetric random variable; see Delaigle and Zhou (2015). The method we in-

troduce uses a one-dimensional inverse Fourier transform, and our theoretical results

hold for skewed random variables as well.

The rest of this chapter is organized as follows. In Section 2.2, we introduce the

model and notation. In Sections 2.3 and 2.4, we propose estimators of f(y|x) and

present their asymptotic properties. In Section 2.5, we compare our estimators with

the one from Linton and Whang (2002). A practical data-driven bandwidth selection

method is included. We leave a comprehensive numerical study regarding estimators

of f(y|x) and real data analysis to Chapter 3, where we compare our estimator with
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those formulated under homogeneous pooling. Additional proofs and supplementary

materials are given in Appendix A.

2.2 Model and Data

We are interested in estimating the conditional density function f(y|x) of Y given

X = x, where Y is a continuous response (e.g., the concentration level of a certain

biomarker, etc.) and X is a continuous covariate (e.g., age, etc.). The ideal un-

observed data consist of independent and identical distributed (iid) pairs (Yij, Xij),

i = 1, . . . , c and j = 1, . . . , J . The index ij represents the ith individual in the jth

group, and the group size is fixed to be c, an integer greater than or equal to two.

In our pooling context, the Yij’s are not available. Instead, we observe an error-

laden measurement of the arithmetic average of the Yij’s in the jth pool; i.e., Z̄j =

Ȳj+εj, where Ȳj = c−1∑c
i=1 Yij and εj denotes a measurement error. One can view Ȳj

as the biomarker concentration level of the jth pooled specimen; see, e.g., Weinberg

and Umbach (1999), Faraggi, Reiser, and Schisterman (2003), Vexler, Schisterman,

and Liu (2008), Malinovsky, Albert, and Schisterman (2012), McMahan et al. (2016),

and Lin and Wang (2018). This is appropriate if the amount of specimen contributed

by each individual is the same and there exists no neutralization effect during pooling.

We further assume the error terms εj are iid random variables with a known den-

sity function fε and are independent of the (Yij, Xij)’s. We wish to estimate f(y|x)

nonparametrically from {(Z̄j, X1j, . . . , Xcj) : j = 1, . . . , J}.

2.3 Methodology

2.3.1 Regression equation

In our problem, the starting point is to construct a response from the data for each

covariate Xij with respect to f(y|x) such that E(response|Xij = x) = f(y|x). If
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we had the ideal data, which contain all the Yij’s, the response for Xij could be

approximated by Kh(Yij − y), where Kh(·) = h−1K(·/h); i.e.,

E{Kh(Yij − y)|Xij = x} ≈ f(y|x).

Then an estimator of f(y|x) could be defined by the minimizer of the weighted least-

squares sum

J∑
j=1

c∑
i=1
{Kh(Yij − y)− β0}2 K̄h̄(Xij − x) (2.1)

with respect to β0, where K (K̄) is a kernel function and h (h̄) is a bandwidth.

However, when the Yij’s are aggregated to the Z̄j’s with potential measurement error,

it is not obvious how to extract a response from Z̄j to estimate f(y|x). The method

we propose exploits the conditional characteristic function (CF) of Y |X = x, which

is denoted by φY |X=x(t) = E{exp(itY )|X = x} for t ∈ R. Rather than extracting

information from Z̄j, we allocate Z̄j to each Xij and then integrate out terms in Z̄j

that are not related to Xij.

To be more specific, denote by φZ̄|X=x the CF of Z̄j|Xij = x. Further, let φZ̄ , φY ,

and φε be the CFs of Z̄j, Yij, and εj, respectively. Straightforward calculation yields

φZ̄|X=x(ct) = E{exp(ictZ̄j)|Xij = x}

= E{exp(ictȲj)|Xij = x} × φε(ct)

= E{exp(itYij)|Xij = x} ×
c∏

k=1,k 6=i
E{exp(itYkj)} × φε(ct)

= φY |X=x(t)φY (t)c−1φε(ct).

The second equality above is due to the independence between εj and (Yij, Xij). The

last two equalities are because the Ykj’s, where k 6= i, are independent of (Yij, Xij) and

E{exp(itYkj)} = φY (t). Thus, φY |X=x(t) = φZ̄|X=x(ct)/{φY (t)c−1φε(ct)} provided

φY (t) 6= 0 and φε(t) 6= 0,∀t ∈ R, which will be assumed throughout this chapter.

Because Yij’s are latent and only the Z̄j’s are observed, we further transform φY back
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to φZ̄ through φZ̄(ct) = φY (t)cφε(ct). Then, we have

φY |X=x(t) =
φZ̄|X=x(ct)

{φZ̄(ct)}(c−1)/c{φε(ct)}1/c .

By applying the Fourier inversion theorem, we obtain our regression equation

f(y|x) = 1
2π

∫ ∞
−∞

e−ityφY |X=x(t)dt

= 1
2π

∫ ∞
−∞

e−ityφZ̄|X=x(ct)
{φZ̄(ct)}(c−1)/c{φε(ct)}1/cdt

= 1
2π

∫ ∞
−∞

e−ityE(eictZ̄j |Xij = x)
{φZ̄(ct)}(c−1)/c{φε(ct)}1/cdt = E(Y ∗ij |Xij = x), (2.2)

where Y ∗ij is the response for Xij that we should extract from Z̄j with respect to

f(y|x); this response is given by

Y ∗ij = Y ∗ij(y) = 1
2π

∫ ∞
−∞

e−ityeictZ̄j

{φZ̄(ct)}(c−1)/c{φε(ct)}1/cdt. (2.3)

2.3.2 Nadaraya-Watson-type estimator

We start by constructing a basic ratio-type estimator of f(y|x) via Equations (2.2) and

(2.3), which is similar in spirit to the Nadaraya-Watson (NW) estimator employed

in standard nonparametric regression problems. This estimator can be viewed as

the minimizer of ∑J
j=1

∑c
i=1(Y ∗ij − β0)2K̄h̄(Xij − x) with respect to β0, similar to

(2.1). However, Y ∗ij involves φZ̄ which remains unknown. Thus, we use an empirical

surrogate Ŷ ∗ij of Y ∗ij . More specifically, we estimate φZ̄(t) = E{exp(itZ̄j)} by φ̂Z̄(t) =

J−1∑J
j=1 exp(itZ̄j) and replace φZ̄(ct) in Equation (2.3) by φ̂Z̄(ct) and define

Ŷ ∗ij = Ŷ ∗ij(y) = 1
2π

∫ ∞
−∞

e−ityeictZ̄j

{φ̂Z̄(ct)}(c−1)/c{φε(ct)}1/c
φK(ht)dt,

where φK denotes the Fourier transform of a symmetric kernel function K; i.e.,

φK(t) =
∫∞
−∞ e

itxK(x)dx, and h = hn > 0 is a bandwidth.

The role of φK(t) is similar to that of K in (2.1). More specifically, if we define

φ̂K∗(ht) = φK(ht)
{φ̂Z̄(ct)}(c−1)/c{φε(ct)}1/c

,
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and let K̂∗ be the inverse Fourier transform of φ̂K∗ ; i.e.,

K̂∗(y) = 1
2π

∫ ∞
−∞

e−ityφ̂K∗(t)dt,

then

Ŷ ∗ij = Ŷ ∗ij(y) = 1
2π

∫ ∞
−∞

eit(cZ̄j−y)φ̂K∗(ht)dt = K̂∗h(cZ̄j − y), (2.4)

where K̂∗h(·) = h−1K̂∗(·/h). Consequently, one can view K̂∗h(cZ̄j − y) as a surrogate

of Kh(Yij − y) in (2.1) when the Yij’s are aggregated in the errors, and the regression

Equation (2.2) can be written as E{K̂∗h(cZ̄j − y)|Xij = x} ≈ f(y|x). Consequently,

our NW-type estimator of f(y|x) is defined as the minimizer of

J∑
j=1

c∑
i=1

{
K̂∗h(cZ̄j − y)− β0

}2
K̄h̄(Xij − x), (2.5)

with respect to β0, which is given by

f̂RN(y|x) =
∑J
j=1

∑c
i=1 K̂

∗
h(cZ̄j − y)K̄h̄(Xij − x)∑J

j=1
∑c
i=1 K̄h̄(Xij − x)

. (2.6)

Some comments are in order regarding potential computational issues with f̂RN .

First, plugging Equation (2.4) into Equation (2.6) yields a more computationally

feasible formula

f̂RN(y|x) = 1
2π

∫ ∞
−∞

e−ity
φ̂Z̄|X=x(ct)

{φ̂Z̄(ct)}(c−1)/c{φε(ct)}1/c
φK(ht)dt, (2.7)

where φ̂Z̄|X=x(t) = ∑J
j=1

∑c
i=1 exp(itZ̄j)K̄h̄(Xij − x)/∑J

j=1
∑c
i=1 K̄h̄(Xij − x) can be

viewed as an NW-type estimator of φZ̄|X=x(t). Rather than computing the integral

in Equation (2.4) for each K∗h(cZ̄j − y), only one integral is needed if using Equation

(2.7). Second, if Z̄j (εj) is asymmetric, then φZ̄ (φε) is a complex function. This

creates a problem when computing both {φ̂Z̄(ct)}(c−1)/c and {φε(ct)}1/c in Equation

(2.7), because the roots of a complex-valued function are not unique. A careless

connection among the roots would easily violate the continuity requirement of a CF

on the real domain. Fortunately, Theorem 7.6.2 in Chung (2001) proved the existence
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and uniqueness of a connection such that the resulting CF is valid. Building on

this theorem, Meister (2007) and Delaigle and Zhou (2015) have provided numerical

guidance on how to construct the ideal connection.

2.3.3 Local-polynomial-type estimator

We use the regression function in Equation (2.2) and the surrogate in Equation (2.4)

to construct a local polynomial estimator (Fan, 2018); specifically, a local linear esti-

mator of f(y|x). In addition to estimating f(y|x), the local polynomial approximation

can estimate the derivatives ∂df(y|x)/∂xd, for d ≥ 1, provided these derivatives exist.

This proceeds by first approximating f(y|Xij) in a neighborhood of x via an `th-order

polynomial, where ` ≥ d, that is,

f(y|Xij) ≈ β0 + β1(Xij − x) + · · ·+ β`(Xij − x)`,

where βd = βd(y|x) = (d!)−1∂df(y|x)/∂xd, for d = 0, 1, . . . , `. Then, with the regres-

sion equation in (2.2) and the construction of Ŷ ∗ij in Equation (2.4), the βd’s can be

estimated by minimizing the weighted least-squares objective function
J∑
j=1

c∑
i=1

{
K̂∗h(cZ̄j − y)−

∑̀
d=0

βd(Xij − x)d
}2

K̄h̄(Xij − x). (2.8)

For d ≤ `, the `th-order local polynomial estimator of ∂df(y|x)/∂xd is defined by d!β̂d,

where β̂d = eeeTd SSS
−1
N (x)T̂TTN(y|x), eeed = (0, . . . , 0, 1, 0, . . . , 0)T is an (` + 1)-dimensional

vector with 1 as the (d + 1)th element, SSSN(x) = [SN,k1,k2(x)]0≤k1,k2≤` is an (` + 1)-

dimensional square matrix, and T̂TTN(y|x) = (T̂N,0(y|x), . . . , T̂N,`(y|x))T , where

SN,k1,k2 =
J∑
j=1

c∑
i=1

K̄h̄(Xij − x)(Xij − x)k1+k2

and

T̂N,k(y|x) =
J∑
j=1

c∑
i=1

K̂∗h(cZ̄j − y)K̄h̄(Xij − x)(Xij − x)k.

Consequently, we define our estimator of f(y|x) by β̂0 with ` = 1; i.e.,

f̂RL(y|x) = T̂N,0(y|x)SN,1,1(x)− T̂N,1(y|x)SN,0,1(x)
SN,0,0(x)SN,1,1(x)− SN,0,1(x)SN,1,0(x) . (2.9)
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Similar to Equation (2.7), one can also obtain a more computationally feasible ex-

pression of f̂RL(y|x).

2.4 Theoretical Properties

2.4.1 Smoothness classes

As noted earlier, our approach to estimate f(y|x) falls into the general context of

nonparametric deconvolution. In the statistical literature, density deconvolution has

a long history that can be traced back to Carroll and Hall (1988), where the goal

was to estimate the density of Y based on iid samples from the convolution Y + ε.

This problem has been thoroughly addressed by Fan (1991b) and its variations have

generated much interest. One key result delivered by Fan’s seminal works is that the

asymptotic properties of a nonparametric deconvolution density estimator is heavily

influenced by the decay rate of the error’s CF. This also holds in our context; in

addition, because our observed data are convolutions of the form c−1∑c
i=1 Yij + εj,

asymptotic properties of estimators of f(y|x) not only depend on the decay rate of

φε but also on the one of both φY and φY |X=x.

Following Fan (1991b), we categorize CFs into one of two classes: ordinary smooth

and super smooth. For example, the Laplace, gamma, double exponential CFs (and

their convolutions) are ordinary smooth, while the Cauchy and Gaussian CFs (and

their convolutions) are super smooth. In this chapter, we consider the case where

φY and φY |X=x belong to the same smoothness class. When φε and φY (φY |X=x) are

ordinary smooth, we refer to this scenario as “Condition OO.” When at least one of

φε and φY (φY |X=x) are super smooth, we refer to this as “Condition SS.” The specific

definitions are stated below.

Condition OO: α0, β0, ρ0(x) > 0 and ρ0(x) has third derivative; there exist constants

A1, A2, and A3(x) > 0 such that as t→∞,
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|φY (t)tα0 | → A1, |φ′Y (t)tα0+1| = O(1), |φε(t)tβ0| → A2, |φ′ε(t)tβ0+1| = O(1),

|φY |X=x(t)tρ0(x)| → A3(x), |∂φY |X=x(t)/∂t · tρ0(x)+1| = O(1).

Condition SS: α2, β2, ρ2(x) ≥ 0, α2β2 6= 0, ρ1(x) and ρ2(x) have third derivative;

there exist constants B1, B′1, B2, B′2, B3(x) > 0 and γ, ζ, %(x) > 0 such that

as t→∞,

|φY (t)||t|−α1 exp(|t|α2/γ)→ B1, |φ′Y (t)||t|−α1−α2+1 exp(|t|α2/γ) = O(1),

|φε(t)||t|−β1 exp(|t|β2/ζ)→ B2, |φ′ε(t)||t|
−β1−β2+1 exp(|t|β2/ζ) = O(1),

|φY |X=x(t)||t|−ρ1(x) exp{|t|ρ2(x)/%(x)} → B3(x),

|∂φY |X=x(t)/∂t||t|−ρ1(x)−ρ2(x)+1 exp{|t|ρ2(x)/%(x)} = O(1).

Note that in condition SS, α2 or β2 = 0 means the corresponding characteristic

function falls back into ordinary smoothness class.

2.4.2 Regularity conditions

Below are the regularity conditions needed for Theorems 2.1 and 2.2, which are pre-

sented in Section 2.4.3.

(C1) K̄(x) is a bounded symmetric density function with mean 0.

(C2) φK(t) is a real-valued symmetric continuous function with support [−1, 1] and

supt∈R |φ
(l)
K (t)| <∞ for l = 0, 1, where φ(l)

K (t) is the lth of φK(t) derivative with

respect to t.

(C3) For each x and y, ∂3f(y|x)/∂x3 <∞, ∂2f(y|x)/∂y2 <∞. In addition, fε is a

symmetric continuously differentiable density function.
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(C4) The Fourier transformation of K satisfies either φK(t) = I[−1,1](t) or

φK(t) =


1, |t| < τ

φ(|t|), τ ≤ |t| ≤ 1

0, |t| > 1,

where 0 < τ < 1 and φ : [τ, 1] → [0, 1] is a continuously differentiable, non-

increasing function such that φ(τ) = 1 and φ(j)(t) = aj(1− t)b−j + o{1− t}b−j

as t→ 1 for constants a0 > 0, a1 < 0, and b > 0, where j = 0, 1.

Conditions (C1) and (C2) are placed on the kernels K̄ and K, respectively, and

represent standard conditions in nonparametric regression and deconvolution prob-

lems. Common kernels that satisfy (C1) include the Gaussian and the Epanechnikov

kernels, while those satisfying (C2) include the infinite order sinc kernel φK(t) =

I[−1,1](t) and the second-order kernels φK(t) = (1 − t2)q · I[−1,1](t), for some positive

integer q. Condition (C3) describes regular smoothness conditions of fε and f(y|x).

Condition (C4) defines the limiting property of φK(t) when |t| → 1, which has been

used in Delaigle and Zhou (2015). This is an extra condition for Scenario SS which

leads to more accurate convergence rate estimation for Theorem 2.2.

2.4.3 Asymptotics of the RP estimator

We use the general notation f̂RP (y|x) to denote the NW-type estimator (local con-

stant) and the local linear estimator for random pooling (RP) and derive the theoret-

ical properties of f̂RP (y|x) under Conditions OO and SS. The proofs of our theorems

are long and technical and thus are placed in Appendix A. In general, local polynomial

estimators can be written as

f̂RP (y|x) =
∑J
j=1

∑c
i=1wij(x)K̂∗h(cZ̄j − y)∑J
j=1

∑c
i=1 wij(x)

, (2.10)
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where wij(x) is a generalized weight function related to K̄h̄(·) and Xij. In the local

constant (NW-type) estimator, wij(x) = K̄h̄(Xij − x). In the local linear estimator,

wij(x) = K̄h̄(Xij − x)
∑
j

∑
i

K̄h̄(Xij − x)(Xij − x)2

− K̄h̄(Xij − x)(Xij − x)
∑
j

∑
i

K̄h̄(Xij − x)(Xij − x).

The function b1(x) in Theorems 2.1 and 2.2 depends on whether f̂RP (y|x) is the local

constant or the local linear estimator.

Theorem 2.1. Assume that fX(x) > 0, c > 1, and (2c − 1)α0 + 2β0 > 1. Un-

der Conditions OO and (C1)–(C3), if h̄ → 0, h → 0, Jh2cα0+2β0 → ∞, and

h̄−1h2{α0−ρ0(x)} →∞, then

f̂RP (y|x)− f(y|x) = Bh̄,h(x, y) + V
1/2
h̄,h

(x, y),

where

Bh̄,h(x, y) = h̄2b1(x)
2

∂2f(y|x)
∂x2 + op(h̄2) + 1

2π

∫
exp(−ity)φY |X=x(t){φK(ht)− 1}dt

Vh̄,h(x, y) = Op{c−1+2β0J−1h̄−1h−2(c−1)α0−2β0−1}.

Theorem 2.1 describes asymptotic properties of f̂RP (y|x) when φY , φY |X=x, and

φε are ordinary smooth. The terms Bh̄,h(x, y) and Vh̄,h(x, y) describe the bias and

variance, respectively. As Delaigle and Zhou (2015) discuss, if
∫
uK(u)du = 0,∫

|u|2+α|K(u)|du < ∞, for 0 < α ≤ 1, and f(y|x) satisfies mild conditions, the

last term in Bh̄,h(x, y) can be expressed as h2∂2f(y|x)/∂y2 ×
∫
u2K(u)du/2. If we

take h̄ = J−d̄, h = J−d when d̄ = d = 1/{6+2(c−1)α0+2β0}, the mean-squared error

(MSE) can attain the optimal rate: J−2/{3+(c−1)α0+β0}. When c = 1 (no pooling), and

β0 = 0 (no measurement error), the optimal rate is J−2/3, which is the optimal rate

in standard conditional density estimation when individual data are available.
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Theorem 2.2 describes asymptotic properties of f̂RP (y|x) when at least one of

φY (t) and φε(t) is super smooth. Define

K∗(u) = 1
2π

∫ 1

−1
e−itu

φK(t)
{φY (t/h)}(c−1)φε(ct/h)dt, (2.11)

Theorem 2.2. Assume that fX(x) > 0 and c > 1. Under Conditions SS and (C1)–

(C4), if h̄→ 0, h→ 0,

h̄−1hc1 exp{2%(x)−1h−ρ2(x) − 2γ−1h−α2} → ∞,

and

Jhc2 exp(−2cγ−1h−α2 − 2cβ2ζ−1h−β2)→∞,

for any constant c1, c2, then

f̂RP (y|x)− f(y|x) = Bh̄,h(x, y) + V
1/2
h̄,h

(x, y),

where

Bh̄,h(x, y) = h̄2b1(x)
2

∂2f(y|x)
∂x2 + op(h̄2) + 1

2π

∫
exp(−ity){φY |X=x(t)− 1}φK(ht)dt.

If α2 ∨ β2 < 1,

Vh̄,h(x, y) =
v1(x)fcZ̄|x(y)

cJh̄h

∫
K∗2(u)du{1 + o(1)}.

If α2 ∨ β2 ≥ 1,

Vh̄,h(x, y) = Op[c−1−2β1J−1h̄−1hc3 exp{2(c− 1)γ−1h−α2 + 2cβ2ζ−1h−β2}],

for some constant c3.

Note that the value of α2 ∨ β2 determines the value of Vh̄,h(x, y) in Theorem 2.2.

When α2 ∨ β2 < 1, we show in the proof that Vh̄,h(x, y) can be expressed by a more

accurate rate; specifically,

c−1−2β1J−1h̄−1h(2b∗+1)α2+(2c−2)α1+2β1−1 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2},

where b∗ = 0 when φK(t) = I[−1,1](t) and b∗ = b when φK(t) is the function defined

in Condition (C4). Regardless of if α2 ∨ β2 ≥ 1 or α2 ∨ β2 < 1, Vh̄,h(x, y) is of order

Op[J−1h̄−1hc3 exp{2(c− 1)γ−1h−α2 + 2cβ2ζ−1h−β2}].
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2.5 Simulation Evidence

2.5.1 Comparison between Linton’s estimator and the RP estimators

We evaluate the performance of three estimators: the NW-type estimator f̂RN(y|x),

the local linear estimator f̂RL(y|x), and a modified version of Linton and Whang

(2002)’s estimator f̂LW (y|x). We first compare f̂RN(y|x) with f̂LW (y|x) by Linton

and Whang (2002) who considered a similar problem but with a goal to estimate the

regression curve E(Y |X = x). Their approach utilizes an estimator of f(y|x) which

can be extended to our context. The main idea of their approach comes from the

fact f(y|x) = f(y, x)/fX(x), where f(y, x) is the joint density function of (Y,X).

Using this formula, Linton and Whang (2002) defined a three-step estimator. The

first step is to invert an empirical CF of (Y,X) back to estimate f(y, x) through a

two-dimensional inverse Fourier transform; the second step estimates fX ; the last step

takes the ratio of their estimators of f(y, x) and fX(x). Extending their approach to

our problem, these three steps are now described.

Step 1: Denote by φY,X(t, s) = E[exp{i(tY +sX)}], the joint CF of (Y,X). Estimate

φY,X(t, s) by φ̂Y,X(t, s) = {φε(ct)}−1/c{J−1∑J
j=1 exp(ictZ̄j + icsX̄j)}1/c, where

X̄j = c−1∑c
i=1Xij. Obtain

f̂LW (y, x) = 1
4π2

∫ ∞
−∞

∫ ∞
−∞

exp{−i(ty + sx)}φ̂Y,X(t, s)φK(th)φK̄(sh̄)dsdt

via a two-dimensional inverse Fourier transform, where φK (φK̄) is the Fourier

transform of the kernel K (K̄) and h (h̄) is a bandwidth.

Step 2: Estimate fX(x) by f̂LW (x) = N−1∑J
j=1

∑c
i=1 K̄h̄(Xij − x).

Step 3: Estimate f(y|x) by f̂LW (y|x) = f̂LW (y, x)/f̂LW (x).

Recall that Linton and Whang (2002) assume individual covariates X’s are pooled

together and the deconvolution method is used to estimate fX(x). As the individ-

ual covariates are accessible in our scenario, we utilize the ordinary kernel density
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estimator of fX(x) in Step 2 above, which has a faster convergence rate than the

deconvolution method. Recall also that Linton and Whang (2002) use the same

bandwidth on both kernels K and K̄. In the three steps above, we allow h and h̄ to

be different.

It is insightful to note that, mimicking Linton and Whang (2002)’s approach,

f̂RN(y|x) could be obtained by using the following three steps:

Step 1: Denote by

φ̂Y,X(t, s) = {φε(ct)}−1/c

N−1
J∑
j=1

c∑
i=1

exp(ictZ̄j + isXij)

 {φ̂Z̄(ct)}(c−1)/c.

Obtain

f̂RN(y, x) = 1
4π2

∫ ∞
−∞

∫ ∞
−∞

exp{−i(ty + sx)}φ̂Y,X(t, s)φK(th)φK̄(sh̄)dsdt.

Step 2: Estimate fX(x) by f̂RN(x) = N−1∑J
j=1

∑c
i=1 K̄h̄(Xij − x).

Step 3: Estimate f(y|x) by f̂RN(y|x) = f̂RN(y, x)/f̂RN(x).

A comparison between the three-step procedures for both estimators provides a better

understanding of the difference between them. The essential difference lies in Step

1, where different approaches are utilized to estimate the joint CF φY,X(t, s). Note

that h̄ (h) has exactly the same effect in both the RN and the Linton and Whang

(LW) estimators; h̄ (h) is the bandwidth of kernel K̄ (K) which controls the weight

regarding Xij (Z̄j). This enables us to make a fair comparison between f̂LW (y|x) and

f̂RN(y|x) by taking the same value for h̄ and h. However, one drawback of the LW

estimator is the cth complex-valued root of a complex bivariate function in Step 1.

The existence and uniqueness of this root have been discussed in Finkelstein, Tucker,

and Veeh (1999); however, there is no algorithm to calculate it to the best of our

knowledge.
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In the example below, we perform a simulation study to evaluate the performance

of our estimators. The comparison uses a model in which φY,X(t, s) is real; more com-

prehensive studies are presented in Chapter 3. Along with f̂RN(y|x) and f̂LW (y|x),

we include f̂RL(y|x) in our comparison. Specifically, we assume

Model 1: Yij ∼ Normal(Xij, 0.52),

where Xij ∼ Unif(−0.5, 0.5), i = 1, . . . , c and j = 1, . . . , J . Using the same notation

as in Section 2.2, Yij can not be observed directly; Z̄j = Ȳj + εj is observed instead,

where εj ∼ Normal(0, 0.052). Due to symmetry, J−1∑J
j=1 exp(ictZ̄j + icsX̄j) in Step

1 when calculating f̂LW (y|x) has a negligible imaginary part; thus, we do not need

to worry about the cth root of a bivariate complex function. We simulated B = 500

data sets from this model using the group size c = 2.

To compare the three estimators, we calculate the mean integrated square error

(MISE) defined by ∫ 0.4

−0.4

∫ ∞
−∞
{f̂(y|x)− f(y|x)}2f(x)dydx,

where f̂(y|x) is an estimator of f(y|x). We applied a truncated integration from -0.4

to 0.4 on x to rule out poor estimation near the boundary ±0.5. This criterion has

been used in the definition of MISE previously in the literature; see, e.g., Fan and

Yim (2004). To keep consistent with Linton and Whang (2002), we use Gaussian

kernels for both K and K̄. Figure 2.1 displays the mean MISE of 500 simulations for

different h̄ and h. We can see that in regards to MISE, f̂RN(y|x) is almost uniformly

better than f̂LW (y|x), and f̂RL(y|x) overall outperforms the other two estimators.

When h̄ grows larger, both f̂RN(y|x) and f̂LW (y|x) collapse to the global constant

estimator and their performance tends to be similar. On the other hand, the MISE

of f̂RL(y|x) stays low as h̄ increases. This is not surprising because as h̄ grows larger,

f̂RL(y|x) collapses to global linear regression, which fits a linear relationship between

Xij and Yij (which is largely maintained even after pooling).
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Figure 2.1: MISE of f̂(y|x) for different combinations of h̄ and h when J = 5000 and
c = 2. Each plot describes the curves of mean MISE of 500 simulations at a given h̄: Linton
and Whang’s estimator (dotted red), Nadaraya-Watson estimator (solid green), and local
linear estimator (dotted blue). Bandwidths h̄ = 0.1, 0.15, 0.2, 0.25, 0.3 are shown.
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2.5.2 Bandwidth selection

Bandwidth selection is hard in our problem. Expressions for the asymptotic bias and

variance involve complicated forms of unknown parameters, which prevents us from

using the plug-in method, and cross-validation methods are computationally intense.

We propose a data-driven two-step bandwidth selection method which chooses h̄ first

and then h second. Simulation results show we can estimate f(y|x) accurately across

different values of x by using this method. Throughout this subsection, we use K̄ as

the normal kernel and K as the infinite order sinc kernel; both are commonly used

kernels in the literature.

To determine h̄, if we could observe (Y1j, X1j), . . . , (Ycj, Xcj) for each j = 1, . . . , J ,

then we could estimate fY |X=x by using a local constant estimator ∑i,j K̄h̄(Xij −

x)Kh(Yij−y)/∑i,j K̄h̄(Xij−x) or a higher order local-polynomial-type estimator. In

this setting, methods for selecting h and h̄ are well developed; see, e.g., Bashtannyk

and Hyndman (2001) and Hyndman and Yao (2002). However in our scenario, we

do not observe the Yij’s. Instead, we extend the grouped data (Z̄j, X1j, . . . , Xcj) to c

paired data (Z̄j, X1j), . . . , (Z̄j, Xcj) for each j = 1, . . . , J and construct the estimator

in Equation (2.6); i.e., ∑i,j K̄h̄(Xij − x)K∗h(Z̄j − y)/∑i,j K̄h̄(Xij − x) or a higher

order estimator described in Equation (2.9). We use the bandwidth selection method

described in Bashtannyk and Hyndman (2001) and Hyndman and Yao (2002) on the

(Z̄j, Xij)’s instead of the (Yij, Xij)’s and take their h̄ as our selection. Our simulation

results show this approximation performs very well when the measurement error ε is

small. Once h̄ is determined, we can then estimate φY |X=x(t) by

φ̂Y |X=x(t) =
φ̂Z̄|X=x(ct)

{φ̂Z̄(ct)}(c−1)/c{φε(ct)}1/c
.

The bandwidth h is the tuning parameter of φK(ht) in the inverse Fourier transforma-

tion. We develop an adaptive bandwidth selection method for h called the Empirical

Rule Selection (ERS). Here “adaptive” means h is adapted for different values of x
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in the estimation process.

Our ERS method is motivated by the fact that the empirical characteristic func-

tion will become wiggly when t goes beyond a certain boundary. Diggle and Hall

(1993) discussed this phenomenon and developed a selection method for nonpara-

metric density estimation with known measurement error. However, their method

involves subjective judgment and does not fit into our pooled data structure. Moti-

vated by Diggle and Hall (1993)’s method, we develop a concise but efficient method

to select h. In our case, φK(ht) is a truncated function between [−1/h, 1/h]. Letting

T = 1/h, we apply the following algorithm to determine T :

Step 1: Locate the closest turning point T0 in the plot of |φ̂Y |X=x(t)|, i.e., T0 =

inf{t > 0 : ∂|φ̂Y |X=x(t)|/∂t > 0}, assuming ∂|φ̂Y |X=x(t)|/∂t exists for t ∈ R.

Step 2: Select T to be a multiple of T0, i.e., T = λT0.

Selecting λ is based on the belief that the “best” T should be neither too conserva-

tive to be less than T0 (which will cause an over-smooth estimate) nor too far away

(which will cause a spiky estimate). Based on the observation that φ̂Y |X=x(t) quickly

enters a “wiggly” area, which is believed to contain little information about the data,

we recommend using λ = 1.2. Even though our method involves empirical assess-

ments, this selection turns out to be quite effective in practice. Numerical evidence

demonstrating this is provided in Chapter 3, where we evaluate the performance of

our estimators further.
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Chapter 3

Conditional density estimation with

homogeneous pooling

3.1 Introduction

In Chapter 2, we proposed nonparametric estimators of f(y|x) when the response Y

is randomly assigned to pools. When individual covariate information is accessible

ahead of time, we can pool specimens that have similar covariates together. This is

called homogeneous pooling (HP). In regression settings with continuous response,

it has been shown homogeneous pooling can attain better estimation performance

than random pooling in parametric settings (Mitchell et al., 2015). Delaigle and

Hall (2012) proposed a nonparametric estimator for group testing binary regression

with homogeneous pooled data. They also showed homogeneous pooling gains more

efficiency than random pooling, especially when the group size is large.

In this chapter, we propose local polynomial estimators of f(y|x) when homoge-

neous pooling is used. As in Chapter 2, we focus on the case where the response

variable Y is continuous and show theoretically, excluding the impact of measure-

ment error, the performance of the HP estimator essentially depends on the decay

rate of φY |X=x(t) while the random pooling (RP) estimator in Chapter 2 depends

only on the decay rate of the marginal CF φY (t). Furthermore, in the special case

that the decay rate of φY |X=x(t) does not depend on the covariate x, the HP esti-

mator achieves a faster rate of convergence than the RP estimator, especially when

the pool size is large. Our theoretical conclusions are reinforced through simulation,
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and we apply our estimation methods to a data set regarding the bio-accumulation

of perfluorooctane sulfonate (PFOS).

3.2 Data and Methodology

In homogeneous pooling, individual specimens with similar covariates are pooled

together. Assuming covariates (e.g., age, etc.) are observed ahead of time, we sort

the specimens in ascending order by the covariate x and pool every c specimens

together. Denote X = {X(1), . . . , X(N)} as the order statistics of {X1, . . . , XN}. The

jth homogeneous group consists of individuals whose covariates values are

{X(cj−c+1), X(cj−c+2), . . . , X(cj)}.

To keep notation concise, we use the subscript (ij) to represent the ith individual in

the jth homogeneous pool and relabel the ideal data as {Y(ij), X(ij)}, for i = 1, . . . , c,

j = 1, . . . , J . Note that we abuse the notation slightly by letting X(ij) denote the

(cj − c + i)th order statistic of X1, . . . , XN . Again, the Y(ij)’s are latent, and we

instead observe Z̄(j) = c−1∑c
i=1 Y(ij) + εj.

Let X̄(j) denote the arithmetic average of the jth homogeneous pool. It is rea-

sonable to assume the covariate values in the same pool are “close” as N → ∞,

i.e., X̄(j) ≈ X(ij), for i = 1, . . . , c. Based on this idea, Delaigle and Hall (2012)

developed a nonparametric estimator of the probability of response given one co-

variate. With a continuous response, our approach constructs an estimator for

q(x, t) = E(eitY(ij)|X(ij) = x) = φY |X=x(t) and applies a Fourier transformation to

estimate f(y|x). We start by noting

E(eictZ̄(j)|X ) =
c∏
i=1

E(eitY(ij)|X(ij))φε(ct) =
c∏
i=1

q(X(ij), t)φε(ct) ≈ q(X̄(j), t)cφε(ct)

and

E(eictZ̄(j) |X ) = E(eictZ̄(j) |X(cj−c+1), X(cj−c+2), . . . , X(cj)) ≈ E(eictZ̄(j)|X̄(j)).
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Combining the two equations above and letting X̄(j) = x, we obtain

E(eictZ̄(j)|X̄(j) = x) ≈ q(x, t)cφε(ct).

We suggest estimating the left side using φ̂Z̄|X̄=x(ct), which is defined by

φ̂Z̄|X̄=x(ct) =
∑J
j=1wj(x) exp(ictZ̄(j))∑J

j=1 wj(x)
, (3.1)

where wj(x) is a generalized weight. Analogous to that in Chapter 2, for the NW-type

(local constant) estimator, wj(x) = Kh̄(X̄(j) − x). For the local linear estimator,

wj(x) = K̄h̄(X(j) − x)
∑
j

K̄h̄(X(j) − x)(X(j) − x)2

− K̄h̄(X(j) − x)(X(j) − x)
∑
j

K̄h̄(X(j) − x)(X(j) − x).

Then we estimate q(x, t) by {φ̂Z̄|X̄=x(ct)/φε(ct)}1/c. Lastly, we use the Fourier inver-

sion formula to estimate f(y|x) by

f̂HP (y|x) = 1
2π

∫ ∞
−∞

e−ity

 φ̂Z̄|X̄=x(ct)
φε(ct)


1/c

φK(ht)dt, (3.2)

where f̂HP (y|x) is the general notation for the NW-type estimator and the local

linear estimator. The kernel function K (K̄) and the bandwidth h (h̄) are defined as

in Equation (2.1).

3.3 Theoretical Properties

3.3.1 Asymptotics of the HP estimator

We derive the theoretical properties of f̂HP (y|x) under Conditions OO and SS which

were stated in Chapter 2. Proofs of our theorems are in Appendix B. The conditions

for the generalized weight function wj(x) in f̂HP (y|x) are generalized to Condition

H, which are also listed in this appendix. The quantity b2(x), which appears in the

theorems, is also included in Condition H.
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Denote ∂lq(x, t)/∂lx as q(l)(x, t). The technical conditions about the decay rate

of q(l)(x, t) are generalized to conditions TO and TS when q(x, t) is ordinary smooth

and super smooth, respectively. We include these in Appendix B.

Theorem 3.1. Assume that fX(x) > 0, c > 1, and ρ0(x) > 1. Suppose Conditions

OO, H, TO, (C1)–(C3) hold and h̄→ 0, h→ 0, and Jh̄h2cρ0(x)+2β0 →∞. For ε > 0,

if J1−εh̄→∞ and h̄ log(h)→ 0, then

f̂HP (y|x)− f(y|x) = Bh̄,h(x, y) + V
1/2
h̄,h

(x, y),

where

Bh̄,h(x, y) = h̄2b2(x) 1
2π

∫ ∞
−∞

e−ity
{

1
2q
′′(x, t) + c− 1

2
q′(x, t)2

q(x, t)

}
φK(ht)dt

+ op(h̄2) + 1
2π

∫
exp(−ity)q(x, t){φK(ht)− 1}dt

Vh̄,h(x, y) = Op{c−2+2β0J−1h̄−1h−2(c−1)ρ0(x)−2β0−1}.

Theorem 3.2. Assume that fX(x) > 0 and c > 1. Suppose Conditions SS, H, TS,

(C1)–(C3) hold and h̄→ 0, h→ 0, and

Jh̄hd1 exp{−2c%(x)−1h−ρ2(x) − 2cβ2ζ−1h−β2} → ∞,

for any d1. For ε > 0, if J1−εh̄→∞ and h̄hd2 → 0 for any d2, then

f̂HP (y|x)− f(y|x) = Bh̄,h(x, y) + V
1/2
h̄,h

(x, y),

where

Bh̄,h(x, y) = h̄2b2(x) 1
2π

∫ ∞
−∞

e−ity
{

1
2q
′′(x, t) + c− 1

2
q′(x, t)2

q(x, t)

}
φK(ht)dt

+ op(h̄2) + 1
2π

∫
exp(−ity)q(x, t){φK(ht)− 1}dt

Vh̄,h(x, y) = Op[c−2−2β1J−1h̄−1hd3 exp{2(c− 1)%(x)−1h−ρ2(x) + 2cβ2ζ−1h−β2}],

for some constant d3.

The conclusions of Theorems 3.1 and 3.2 are similar to that of Theorems 2.1 and

2.2. We leave a comparison to next section.
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3.3.2 Comparison of the asymptotic properties of the RP and HP

estimators

If we exclude the impact of measurement error, the asymptotics of the HP estimator

of f(y|x) depends on ρ0(x) in the ordinary smooth case and on ρ2(x) in super smooth

case. That is, the performance of f̂HP (y|x) is closely related to the tail behavior of

q(x, t) = φY |X=x(t) as t → ∞. In this subsection, we discuss the scenario when the

decay rate of φY |X=x(t) does not depend on x, that is, ρ0(x) = α0 and ρ2(x) = α2.

This means a change in x does not affect the shape of f(y|x). For example, in the

normal distribution, x is only related to the mean. Or, in the gamma distribution, x

is only related to the rate parameter but not the shape parameter.

In the ordinary smooth case when α = ρ0(x), both estimators have the same bias

rate:

Op(h̄2) + 1
2π

∫ ∞
−∞

exp(−ity)φY |X=x(t){φK(ht)− 1}dt.

The variance of random pooling is Op{c−1+2β0J−1h̄−1h−2(c−1)α0−2β0−1} and that of the

homogeneous pooling is Op{c−2+2β0J−1h̄−1h−2(c−1)α0−2β0−1}. We can see the conver-

gence rate is the same in regards to J but the HP estimator’s variance is c times

smaller than that of the RP estimator. The same conclusion holds for the super

smooth case. This conclusion is consistent with Delaigle and Hall (2012), who com-

pare RP and HP when the response variable Y is binary. When the decay rate of

φY |X=x(t) is related to x, the situation becomes much more complicated. We use

simulation to explore this further.

3.4 Numerical Study

We illustrate a data-driven bandwidth selection method for the HP estimator. Then,

a comparison between the performance of the HP and RP estimators is made using

three different models.
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3.4.1 Bandwidth selection method

Similar to the RP estimator, there are 2 bandwidths: h̄ and h which correspond to

the kernels K̄ and K, respectively. We use K̄ as the normal kernel and K as the

infinite order sinc kernel. The bandwidth selection procedure is similar to that of the

RP estimator. The first step is to estimate h̄. Based on the data (Z̄(j), X̄(j)), the

bandwidth selection method of the nonparametric kernel type estimator of fZ̄|X̄=x,

denoted by f̂Z̄|X̄=x, has been discussed in Bashtannyk and Hyndman (2001) and

Hyndman and Yao (2002). We use the bandwidth of the X(j)’s in f̂Z̄|X̄=x as our h̄.

Once h̄ is determined, we apply the ERS method described in Section 2.5.2 on the

characteristic function

φ̂Y |X=x(t) =

 φ̂Z̄|X̄=x(ct)
φε(ct)


1/c

in Equation (3.2).

3.4.2 Comparisons

We examine the performance of the RP and the HP estimators in Model 1 (see Section

2.5.1) and two additional models:

Model 2: Yij ∼ Gamma(9, 2Xij + 3)

Model 3: Yij ∼ Lognormal{1 + 0.25Xij, (0.5 + 0.25Xij)2},

where Xij ∼ Unif(−0.5, 0.5), i = 1, . . . , c and j = 1, . . . , J . Recall Yij can not be

observed directly; Z̄j = Ȳj + εj is observed instead, where εj ∼ Normal(0, 0.052).

Model 1 specifies a Gaussian distribution for Yij and its mean is a linear function of

x. Model 2 specifies a gamma distribution where its rate parameter is also a linear

function of x. The decay rate of φY |X=x(t) in both models does not depend on x.

Different from the first two models, the decay rate of φY |X=x(t) in Model 3 depends

on x. We focus on the local linear estimator for RP and HP, denoted by f̂RL(y|x)

and f̂HL(y|x), respectively. We simulate 500 data sets for each simulation setting. In

31



Table 3.1: Mean MISE of 500 simulations for f̂RL(y|x) and f̂HL(y|x) (×10−2). For each
method, we use group sizes c = 2, 3, 4, 5 and sample sizes N = 1800, 3600.

Normal Gamma Lognormal
c Method 1800 3600 1800 3600 1800 3600

2 RL 2.067 1.635 1.032 0.810 1.020 0.723
HL 1.749 1.322 0.992 0.754 1.002 0.774

3 RL 3.947 3.193 2.282 1.853 2.435 1.746
HL 2.890 2.424 1.641 1.323 1.829 1.549

4 RL 5.749 4.814 3.612 2.949 3.988 2.983
HL 3.777 3.106 2.105 1.802 2.451 2.149

5 RL 7.727 6.517 5.070 4.237 5.606 4.490
HL 4.668 3.908 2.620 2.279 3.150 2.751

each simulation, we determine f̂RL(y|x) and f̂HL(y|x) using the bandwidth selection

method described in Chapters 2 and 3 and calculate the MISE for group sizes c = 2

to 5.

Table 1 shows the mean MISE from B = 500 simulations. We can observe that as

the group size c increases, the MISE increases for each model. This is within expecta-

tion because as c increases, the number of observations decreases and the convergence

rate is reduced. It is also not surprising to see that f̂HL(y|x) generally performs bet-

ter than f̂RL(y|x) and the gap between the MISE of f̂HL(y|x) and f̂RL(y|x) grows

larger as c increases. This is in line with the theoretical result in Section 3.3.2 which

shows the HP estimator’s variance is c times smaller than that of the RP estimator.

Lastly, consistent with the deconvolution theory, we can observe that Model 2 (which

represents an ordinary smooth distribution) has smaller MISE than Model 1 (which

represents a super smooth distribution).

Based on the 500 simulated data sets, Figures 3.1 and 3.2 display percentiles of

f̂RL(y|x) and f̂HL(y|x) when N = 3600 and c = 2. Both RP and HP estimators can

recover the shape of the distribution accurately whenever x is in the center (0) or

near the boundary (±0.3) in all three model settings. Furthermore, the performance

indicated in the bottom two rows in each figure suggests our method can provide
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Figure 3.1: Random pooling. Plots of f̂RL(y|x) when J = 3600 and c = 2. Top: Model 1
(normal distribution); Middle: Model 2 (gamma distribution); Bottom: Model 3 (lognormal
distribution). Left: x = −0.3; Middle: x = 0; Right: x = 0.3. For each y, we calculate
the 2.5th, 50th, and 97.5th percentiles based on 500 data sets. The red curve is the true
density.
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Figure 3.2: Homogeneous pooling. Plots of f̂HL(y|x) when J = 3600 and c = 2. Top:
Model 1 (normal distribution); Middle: Model 2 (gamma distribution); Bottom: Model 3
(lognormal distribution). Left: x = −0.3; Middle: x = 0; Right: x = 0.3. For each y, we
calculate the 2.5th, 50th, and 97.5th percentiles based on 500 data sets. The red curve is
the true density.
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accurate estimation when the underlying distribution is skewed.

3.5 Real Data Analysis

We illustrate our estimation methods using a data set collected between 2011 and

2012 which is available at the National Health and Nutrition Examination Survey

(NHANES) website. Polyfluorochemicals (PFCs) are a family of artificial chemicals

that are widely used in nonstick cookware and fabrics. Some PFCs, such as perfluo-

rooctane sulfonate (PFOS) are difficult to break down naturally and have been found

in humans. Due to the potential risk of bio-accumulation, it is meaningful to study

the distribution of PFCs in the human population. Kärrman et al. (2006) studied

the relationship between PFCs and age, gender, and geographic region using pooled

serum samples from Australian residents.

We use the NHANES data set to explore the relationship between PFOS concen-

tration level and age. This data set consists of individual measurements of PFOS

from serum samples, and observations from N = 1812 individuals in the United

States are used in the analysis. We utilize the age (year) as X and the concentration

level of PFOS (ng/ml) as Y . To emulate pooling, we artifically create pools of size

c to obtain Ȳj. Measurement error is further added to Ȳj, that is, Z̄j = Ȳj + εj

where εj ∼ Normal(0, 0.52). We implement this procedure for B = 500 times and

average the 500 curves of f̂RL(y|x) and f̂HL(y|x) for each x. We do not know the

true underlying distribution f(y|x) for these data; therefore, we use the local linear

estimator calculated from the original individual (c = 1) data, denoted by fREF (y|x),

as a reference.

Figure 3.3 displays the estimates f̂RL(y|x) and f̂HL(y|x) for ages x between 16 and

75 years. The red curves serve as the reference distribution fREF (y|x), calculated

from the individual data. One can observe the accumulation of PFOS is low at

a young age; however, the PFOS level is higher on average and its distribution is
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Figure 3.3: Data analysis. Left: fREF (y|x) (solid red) and f̂RL(y|x) (dotted black). Right:
fREF (y|x) (solid red) and f̂HL(y|x) (dotted black). The y axis shows ages from 19 to 75
years. Each curve represents an estimated density function at a specific age x.
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Figure 3.4: Quantile plot of X (age) and Y (PFOS level). The five lines shown are the
5th, 25th, 50th, 75th, and 95th quantiles, respectively. Dashed black: fRL(y|x); Dotted
black: fHL(y|x); Solid red: fREF (y|x). Obervations larger than 50 ng/ml are omitted.
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more spread out for larger ages. Comparing the estimators with fREF (y|x), we see

f̂RL(y|x) fails to capture the shape of f(y|x) at a young age, but approximates the

reference distribution adequately. On the other hand, the HP estimate f̂HL(y|x) does

an adequate job for nearly all ages. Treating fREF (y|x) as the true distribution, the

MISE of f̂RL(y|x) and f̂HL(y|x) are 8.90× 10−5 and 1.44× 10−5, respectively, which

indicates the improved performance of the HP estimate.

Figure 3.4 shows the quantile plot of PFOS level against age. One notes the

estimate f̂RL(y|x) is much more spread out at a young age (<25), which is also

observed in Figure 3.3. Both f̂RL(y|x) and f̂HL(y|x) fit the 25th, 50th, and 75th

quantiles well but underestimate the 5th quantile. This is expected because the data

are sparse in the lower tail.
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Chapter 4

Prevalence estimation for two-stage

hierarchical group testing

4.1 Introduction

Group testing, or pooled testing, is a strategy that pools individual specimens (e.g.,

blood, urine, etc.) and tests the pools for the presence of a disease. The idea of

group testing traces back to 1943 when Dorfman proposed pooling blood samples to

detect syphilis among American soldiers in World War II. Since his seminal work,

group testing has been used to screen for various diseases, including HIV (Pilcher

et al., 2005), influenza virus (Van et al., 2011), and chlamydia and gonorrhea (Lewis,

Lockary, and Kobic, 2012).

The group testing literature generally splits into two topics: case identification and

estimation. The case identification literature describes algorithms to classify every

individual as positive or negative; see Kim et al. (2007) for a review. One widely used

protocol is two-stage hierarchical group testing, or Dorfman testing (DT). In the first

stage, individual specimens are pooled together and tested. If the pool diagnosis is

positive, a second stage of retesting is used to identify the status of each specimen

inside the pool. When the disease prevalence is low, DT can save substantial costs

when compared to testing specimens one by one. This strategy has been utilized by

the State Hygienic Laboratory (SHL) at the University of Iowa and has saved millions

of dollars since 1999 (Jirsa, 2008).

In the estimation problem, one aims to estimate the population-level prevalence
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(Hepworth and Watson, 2009; Liu et al., 2012) or to build regression models which

link the true individual disease status with covariates (Vansteelandt, Goetghebeur,

and Verstraeten, 2000; McMahan et al., 2017). For the former goal, group testing can

improve estimation precision in the presence of misclassification errors. The literature

describing this phenomenon mainly focuses on the protocol that tests master pools

only and does not involve further retests. We refer to this pooling protocol as master

pool testing (MPT). Tu, Litvak, and Pagano (1995) and Liu et al. (2012) showed that

MPT can be used to estimate the disease prevalence more precisely when compared

to testing specimens individually. While their work assumes the assay sensitivity and

specificity are known, Huang et al. (2017) proposed MPT designs that consist of three

different pool sizes to estimate the disease prevalence (p), the sensitivity (Se), and

the specificity (Sp) simultaneously. Their designs are proved to be the best in terms

of D-optimality and Ds-optimality criteria among all MPT configurations.

A natural question is whether DT, which adds a retesting stage after MPT, can be

utilized in the estimation problem considered by Huang et al. (2017). In this chapter,

we propose using maximum likelihood to estimate p, Se, and Sp using DT. We also

construct confidence sets for these parameters and four widely used operating char-

acteristics in the classification problem. There are two advantages to the methods we

propose. First, it is common to assume the true p, Se, and Sp are known when eval-

uating the case identification operating characteristics of DT (e.g., expected number

of tests, expected correct classification rate, etc.) However, these values are usually

unknown in practice. Therefore, our work enables researchers to estimate p, Se, Sp

and the operating characteristics directly from the observed data. Second, for a large

range of values of p, we show through theoretical calculation and simulation that the

estimation precision using DT is higher than that using the optimal MPT design in

Huang et al. (2017).

The rest of this chapter is organized as follows. In Section 4.2, we summarize
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the group testing data collected from the DT procedure and describe our estimation

methods for p, Se, Sp and the case identification operating characteristics. In Section

4.3, we assess our estimation methods using simulation and then apply them to a

chlamydia data set collected at the SHL. In Section 4.4, we provide the optimal DT

design for a fixed budget and compare it with the optimal MPT design provided by

Huang et al. (2017). In Section 4.5, we conclude with a summary and discuss future

work. Derivations and additional results are in Appendix C.

4.2 Data and Methodology

4.2.1 Dorfman testing data

The two-stage hierarchical procedure proposed by Dorfman (1943) is described below.

Stage 1: Randomly assign individuals to non-overlapping master pools. Test the

master pools.

Stage 2: Based on the diagnosis of the master pool,

• if the diagnosis is negative, then every individual in the master pool is

diagnosed as negative;

• if the diagnosis is positive, then every individual within the pool is retested.

Diagnoses are based on the results of the individual tests.

When p is low, most master pools in Stage 1 test negatively, which leads to a

reduction in testing costs. When a master pool tests positive, the retests in Stage

2 further classify all the involving individuals. We refer to the collection of all the

testing results from both stages as DT data. Our goal is to use DT data to estimate

θ = (p, Se, Sp)T .

To present DT data more formally, we denote by N the total number of individ-

uals. The N individuals are randomly assigned to n non-overlapping groups, each
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of size x = N/n, where n divides N and x > 1. Let y denote the number of pools

that have been diagnosed as positive in Stage 1. For j = 1, . . . , y, we further de-

note by zj the number of individuals in the jth positive pool that have been retested

positive in Stage 2. The DT data can be formally presented by (n, x, y, z), where

z = {z1, . . . , zy}.

4.2.2 Estimation

We pursue maximum likelihood estimation of θ and propose three ways to construct

confidence regions for θ. We also write Wald confidence intervals for four widely used

operating characteristics in DT.

Our estimation proceeds under two assumptions. First, the test results are in-

dependent conditional on the true statuses of the individuals. Second, there is no

dilution effect, i.e., Se and Sp are the same for different pool sizes. These assump-

tions are standard in literature; see, e.g., Tebbs, McMahan, and Bilder (2013). Under

these two assumptions, the log-likelihood function of θ can be derived as

lD(θ|n, x, y, z) = (n− y) log{1− π(x|θ)} (4.1)

+
y∑
j=1

log[{π(x|θ)− Se}(1− Sp)zjSx−zjp + π(1|θ)zj{1− π(1|θ)}x−zjSe],

where π(x|θ) = (1− p)x(1−Sp) + {1− (1− p)x}Se is the probability of a pool of size

x being diagnosed as positive. See Appendix C for a detailed derivation.

Denote by θ̂D the maximum likelihood estimator (MLE) of θ; that is,

θ̂D = argmax
θ

lD(θ|n, x, y, z).

Obtaining a closed-form expression for the MLE θ̂D is not possible, but it is straight-

forward to maximize θ̂D numerically. We accomplish this in R by using the maxLik

package.
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We can construct confidence regions for θ by inverting the Wald, score, and like-

lihood ratio tests. First, denote the score function by

UD(θ|n, x, y, z) = ∂lD(θ|n, x, y, z)
∂θ

and the Fisher information matrix

ID(θ|n, x) = Ey,z

{
−∂

2lD(θ|n, x, y, z)
∂θ∂θT

}
. (4.2)

Note that UD(θ|n, x, y, z) and ID(θ|n, x) involve the derivatives of the log-likelihood

function in Equation (4.1). Because these derivatives are complex, we use R to derive

UD(θ|n, x, y, z) and ID(θ|n, x) symbolically. Denote by χ2
1−α,3 the upper α quantile of

the chi-square distribution with three degrees of freedom. A large-sample 100(1−α)%

Wald confidence region is given by

{θ : (θ̂D − θ)T ID(θ̂D|n, x)(θ̂D − θ) < χ2
1−α,3}.

In addition, large-sample 100(1 − α)% score and likelihood ratio confidence regions

are given by

{θ : UD(θ|n, x, y, z)T ID(θ|n, x)UD(θ|n, x, y, z) < χ2
1−α,3}

and

{θ : 2lD(θ̂D|n, x, y, z)− 2lD(θ|n, x, y, z) < χ2
1−α,3},

respectively. These regions are also obtained numerically.

Along with estimating θ, we can estimate operating characteristics commonly

seen in the group testing literature to measure the efficiency and accuracy of DT;

see, e.g., Kim et al. (2007) and Malinovsky, Albert, and Roy (2016). We focus on

four characteristics: the expected number of tests per individual E(T ), the expected

correct classification rate E(C), the pooling positive predictive value PPV and the

42



pooling negative predictive value NPV . These expressions are given by

E(T ) = Se − (1− p)x(Se + Sp − 1) + 1
x

E(C) = (1− p)x{(1− Sp)(Sp + Se − 1)}+ (1− p)(1− Se + SpSe − S2
e ) + S2

e

PPV = pSe(DT )
(1− p){1− Sp(DT )}+ pSe(DT )

NPV = (1− p)Sp(DT )
p{1− Se(DT )}+ (1− p)Sp(DT ) ,

where

Se(DT ) = S2
e

Sp(DT ) = 1− (1− Sp)[(1− Sp)(1− p)x−1 + Se{1− (1− p)x−1}].

The quantity E(T ) measures cost efficiency and E(C), PPV , and NPV are measures

of classification accuracy.

Note these four operating characteristics can be thought of as functions of θ, say

h(θ), where h : R3 → R1. Based on the large-sample properties of MLEs, when n is

large, we have

θ̂D ∼ AN(θ, ID(θ|n, x)−1)

and

h(θ̂D) ∼ AN
(
h(θ), hθ(θ)T ID(θ|n, x)−1hθ(θ)

)
,

where hθ(θ) = ∂h(θ)/∂θ, by the Delta Method. For any continuously differentiable

function h, a large-sample 100(1− α)% Wald confidence interval of h(θ) is given by

[h(θ̂D)− zα/2sd{h(θ̂D)}, h(θ̂D) + zα/2sd{h(θ̂D)}],

where zα/2 is the upper α/2 quantile of the standard normal distribution, and

sd{h(θ̂D)} =
√
hθ(θ̂D)T ID(θ̂D|n, x)−1hθ(θ̂D).

Similar to UD(θ|n, x, y, z) and ID(θ|n, x), we derive hθ(θ) symbolically.

43



Table 4.1: Point estimation using DT with a fixed number of individuals N = 5000. BIAS
denotes the average bias over B = 1000 Monte Carlo data sets. SD denotes the sample
standard deviation of the 1000 estimates, and SE denotes the averaged standard error. The
Mean-squared error (MSE) is also shown. All values are multiplied by 103.

x = 5, n = 1000 x = 10, n = 500
p Se Sp p Se Sp

BIAS 1.30 -6.57 1.01 0.71 -2.48 0.01
SD 6.90 43.36 10.74 5.66 39.47 8.24
SE 7.36 52.27 11.32 5.93 42.75 7.99

MSE 0.05 1.92 0.12 0.03 1.56 0.07

Table 4.2: Number of tests and coverage probabilities of θ using DT with a fixed number
of individuals N = 5000. MNT and SDNT denote the mean and standard deviation of the
number of tests using DT over B = 1000 Monte Carlo data sets. W-CP, S-CP, and LR-CP
denote the coverage probability of joint 95% Wald, score, and likelihood ratio confidence
regions of θ.

MNT SDNT W-CP S-CP LR-CP
x = 5, n = 1000 2272 71 0.948 0.937 0.949
x = 10, n = 500 2560 108 0.958 0.944 0.958

4.3 Simulation Evidence and Real Data Analysis

4.3.1 A simulation study

We use simulation to assess the finite-sample performance of our estimators. We set

N = 5000, p = 0.05, and consider Se, Sp ∈ {0.90, 0.95, 0.99} and x ∈ {5, 10}. For

each (p, Se, Sp, N, x), we first generate the true disease statuses of the N individuals

independently from a Bernoulli distribution with probability of success being p. Set-

ting the pool size to be x, we then implement the two-stage hierarchical algorithm

described in Section 4.2.1 to simulate a set of DT data. Finally, we apply our esti-

mation methods to the DT data set. We repeat the process of data generation and

estimation 1000 times. Results for Se = Sp = 0.95 are summarized in Tables 4.1–4.3.

Results for other considered Se’s and Sp’s are included in Appendix C.

Tables 4.1 and 4.2 summarize the performance of the MLE of θ. We first see that,

for both x = 5 and x = 10, the MLEs exhibit small bias and variance, indicating
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Table 4.3: Operating characteristics for DT with a fixed number of individuals N = 5000.
True value (TRUE), coverage probability (CP), and average length (LEN) of 95% Wald
confidence intervals for E(T ), E(C), PPV , NPV are shown.

x = 5, n = 1000 x = 10, n = 500
TRUE CP LEN TRUE CP LEN

E(T ) 0.454 0.949 0.054 0.511 0.953 0.086
E(C) 0.985 0.979 0.019 0.977 0.959 0.020
PPV 0.814 0.960 0.159 0.713 0.946 0.150
NPV 0.995 0.970 0.024 0.995 0.997 0.019

that our method works well in estimating p, Se, and Sp. It is interesting to see that

the estimation of Sp outperforms the one of Se. A possible reason is when p is low

as 0.05, truly negative pools are much more than truly positive ones, which provides

more information to the estimation of Sp. We also notice that the averaged standard

errors are in agreement with the sample standard deviations of the estimates. This

agreement is further reinforced by Table 4.2 where the coverage probability of joint

95% Wald, score, and likelihood ratio confidence regions of θ are all at the nominal

level.

When estimating the four operating characteristics for DT, Table 4.3 shows that

the empirical coverage probabilities using our confidence interval estimates are all

close to the nominal level except the ones for E(C) and NPV . This is because that

the true values of these two characteristics are very close to 1, the upper bound of

the corresponding parameter space. In these cases, we might need a much larger N

to reveal the asymptotic normality established by the Delta Method.

From the perspective of testing cost, Table 4.2 shows that using DT with x = 5

or x = 10 yields about 50% cost reduction when comparing to individual testing. It

is important to note that using data collected from individual testing cannot identify

p, Se, and Sp simultaneously. When comparing x = 5 to x = 10, the average number

of tests increased from 2272 to 2560. This is because that pools of size 10 have a

larger chance to be truly positive than the ones of size 5. The larger number of tests
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also provides more information to the estimation of θ. As a result, the MSEs of p,

Se, and Sp when x = 10 are all smaller than the ones when x = 5 (see Table 4.1).

However, this pattern does not imply that large pool sizes are always preferable to

small ones. In Section 4.4, we derive the optimal design of DT given a fixed number

of tests, and then compare it with the optimal MPT design proposed by Huang et al.

(2017).

4.3.2 Real data analysis

We assess our methods using a chlamydia data set collected at the SHL. Every year

the SHL utilizes group testing to screen Iowa residents for chlamydia and gonorrhea,

and have saved approximately $3.1 million dollars from 2009 to 2014. Collaborating

with the SHL, McMahan et al. (2017) provided a group testing data set that was

collected from screening female swab specimens using DT with pool size 4. There are

2273 pools in total.

We apply our estimation method to the DT data set and summarize the estimates

in Table 4.4 and Figure 4.1, where values that exceed 1 are not truncated in order

to show the whole range of the confidence intervals or region. We make several

observations here. First, the estimates of p and Sp are consistent with the previous

studies using the similar data sets (McMahan, Tebbs, and Bilder, 2012a, McMahan

et al., 2017). Our estimator of Se is exactly 1. McMahan et al. (2017) presents a

smaller estimate of Se but they utilize regression models with covariate information.

Second, the joint confidence region of θ is a skewed ellipsoid whose volume equals

1.91× 10−5. This is significantly smaller than the volume of the cuboid (3.94× 10−5)

formed by the marginal confidence intervals of p, Se, and Sp separately (shown in

Table 4.4). This is not surprising since the joint confidence region accounts for the

correlation between the parameter estimates. Finally, our estimates of the operating

characteristics indicate that DT saves more than 40% of tests when compared to
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Figure 4.1: 95% Wald confidence region (red) of θ in Iowa chlamydia data set.

Table 4.4: Parameter estimates in Iowa chlamydia data set. The results include parameter
estimate, estimated standard error and 95% confidence interval of p, Se, Sp, and operating
characteristics E(T ), E(C), PPV , NPV .

Estimate SE 95% CI
p 0.077 0.005 (0.068,0.087)
Se 1.000 0.021 (0.958,1.042)
Sp 0.982 0.006 (0.970,0.994)
E(T ) 0.539 0.009 (0.520,0.557)
E(C) 0.996 0.002 (0.992,1.001)
PPV 0.953 0.018 (0.918,0.989)
NPV 1.000 0.004 (0.992,1.008)

individual testing, and remains a high accuracy.

4.4 The Optimal DT Design

To find the optimal DT design for estimating θ, we focus on a widely used criterion,

D-optimality, which seeks to minimize the determinant of the estimate’s covariance

matrix, or equivalently, maximizes the determinant of the Fisher information matrix

for the estimate of θ. In our context, we seek for the (nD, xD) that maximizes

log |ID(θ|n, x)| with respect to (n, x), where ID(θ|n, x) is presented in (4.2). We

assume θ as known (or can be estimated in advance).

Recall from Section 4.2.2 that we have assumed Se and Sp do not depend on the
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pool size. This is often not true when the pool size becomes unrealistically large.

The same concern has appeared in Huang et al. (2017), where, as a solution, the

maximum allowable pool size has been set to be 61. However, a pool of size 61 is

rarely used in practice; e.g., Van et al. (2011) used the real-time PCR methodology to

detect Influenza virus in pools of size 10; Lewis, Lockary, and Kobic (2012) screened

chlamydia and gonorrhea using pool size of 4 in the Infertility Prevention Project;

American red cross applies a general group testing framework of pool size 16 to screen

the blood donations for infectious diseases (Hepatitis B, Zika virus, etc.) Therefore,

we choose the maximum allowable pool size as xU = 20.

In addition, we set the maximum affordable number of tests to be a predetermined

value m, because most screening practices only have a limited budget. Our search of

(nD, xD) is conducted subject to this cost constraint as well. However, in DT it is

impossible to determine the number of tests exactly before conducting the screening,

because whether to test individuals or not is decided by the uncertain master pool

diagnosis. Therefore, we consider the distribution of the number of tests instead.

If n pools are tested using DT, when n is large, the number of tests approximately

follows a normal distribution with mean n{1 + xπ(x|θ)} and standard deviation

x
√
nπ(x|θ)(1− π(x|θ)). To make our search reasonable, for a given pool size x, we

choose n to be the largest integer satisfying

n{1 + xπ(x|θ)}+ 3x
√
nπ(x|θ){1− π(x|θ)} ≤ m, (4.3)

i.e., the mean number of tests plus three standard deviations is still smaller than m.

Even in the worst case, DT will almost certainly cost less tests than m.

Under the restrictions, x ≤ xU and (4.3), we use the following steps to determine

the optimal design for DT:

• Step 1: For each x from 2 to xU , calculate the largest integer n that satisfies

Equation (4.3).
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• Step 2: Go through each pair of (n, x) identified by Step 1. Find the optimal

setting

(nD, xD) = argmax
(n,x)

|ID(θ|n, x)|.

The Fisher information under the optimal setting is ID(θ|nD, xD).

4.4.1 Theoretical comparison with MPT

In MPT protocol, one must utilize data collected from pools of at least three different

sizes to estimate θ to avoid the identifiability issue. When the number of tests

is fixed to be m, Huang et al. (2017) proved that the D-optimal MPT design is

to test m/3 pools of size xL, m/3 of size xM , and m/3 of size xU , where xL is a

predetermined minimum allowable pool size, xM is a function of xL and xU ; see

Theorem 2 of Huang et al. (2017). Denote nM = (nL, nM , nU)T = (m/3,m/3,m/3)T

and xM = (xL, xM , xU)T . The optimal MPT design is then (nM ,xM). It follows that

the corresponding Fisher information is

IM(θ|nM ,xM) =
∑

i∈{L,m,U}

ni
π(xi|θ){1− π(xi|θ)}

∂π(xi|θ)
∂θ

∂π(xi|θ)
∂θ

T

,

where

∂π(x|θ)
∂θ

=
{
x(1− p)x−1(Se + Sp − 1), 1− (1− p)x,−(1− p)x

}T
.

Define

f(θ,m, xL, xU) = log |ID(θ|nD, xD)| − log |IM(θ|nM ,xM)| .

We take logarithm to make the value of f(θ,m, xL, xU) in an appropriate scale. If

f(θ,m, xL, xU) > 0, DT provides a larger determinant of the Fisher information

matrix (therefore, a more efficient estimator of θ) when compared to MPT and vice

versa. Figure 4.2 shows the value f(θ,m, xL, xU) under the setting: 0 < p < 0.2,

Se, Sp ∈ {0.90, 0.95, 0.99}, xL = 1, xU = 20, and m = 3000. The selection of p, Se,
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Figure 4.2: f(θ, 3000, 1, 20) of different p, Se, and Sp. The horizontal red line indicates
the position of 0.

50



and Sp is comparable to the previous studies (e.g., McMahan, Tebbs, and Bilder,

2012a).

We make two observations on Figure 4.2. First, given Se and Sp, f appears to be

a decreasing, convex function of p. Second, the optimal DT design provides a better

(theoretical) estimation efficiency than the one of MPT in a large range of values

of the disease prevalence: from p = 0 to p = 0.05 in low sensitivity and specificity

(e.g., Se = Sp = 0.9), and up to p = 0.2 in high sensitivity and specificity (e.g.,

Se = Sp = 0.99).

4.4.2 Numerical comparison with MPT

We also use simulation to verify the theoretical comparison. We focus on the setting

of the center plot in Figure 4.2: Se = Sp = 0.95. Other parameters are the same

as in Figure 4.2: xL = 1, xU = 20, and m = 3000. Three representative values

of the disease prevalence are selected: p = 0.05, 0.10, 0.15, corresponding to the

scenarios that f(θ, 3000, 1, 20) is greater than, approximately equal to, and less than

0, respectively. We generate group testing data using the optimal MPT and DT

designs and implement the estimation procedure 1000 times.

The simulation results fit the center plot in Figure 4.2 very well. In Table 4.5,

MSEs of estimates based on DT are significantly better, a bit better, generally worse

than the ones based on MPT when p = 0.05, 0.10, 0.15, respectively. In Table 4.6,

the number of tests is fixed to be 3000 for MPT, while mean number of tests for DT

stays approximately three standard deviations below 3000, indicating the cost of DT

almost never exceeds the budget. The performance of the joint 95% Wald confidence

region is also within expectation; e.g., when p = 0.05, the DT coverage probability is

close to 95% while the MPT coverage probability is significantly pinned down while

the average volume of DT is only approximately 1/3 of the one of MPT. Lastly,

Huang et al. (2017) also explored the Ds-optimal design, which only focuses on the
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Table 4.5: Point estimation comparison between MPT and DT with a fixed number of
tests m = 3000 and test accuracies Se = Sp = 0.95. BIAS denotes the average bias over
B = 1000 Monte Carlo data sets. SD denotes the sample standard deviation of the 1000
estimates, and SE denotes the averaged standard error. The Mean-squared error (MSE) is
also shown. All values are multiplied by 103.

MPT DT
p Se Sp p Se Sp

p = 0.05

BIAS 3.38 -20.45 2.05 0.73 -2.87 0.02
SD 9.37 78.98 11.49 5.48 37.37 8.49
SE 13.09 135.40 12.33 5.71 40.07 8.71

MSE 0.10 6.66 0.14 0.03 1.40 0.07

p = 0.10

BIAS 0.39 2.36 0.60 0.44 0.43 -0.32
SD 10.27 32.35 15.27 9.32 29.51 11.11
SE 10.92 36.95 15.86 9.64 31.07 11.32

MSE 0.11 1.05 0.23 0.09 0.87 0.12

p = 0.15

BIAS -0.54 2.03 -0.37 1.17 -0.78 0.95
SD 10.67 14.97 19.55 13.57 27.88 14.13
SE 10.87 15.07 19.38 13.73 28.27 14.51

MSE 0.11 0.23 0.38 0.19 0.78 0.20

Table 4.6: Test characteristics comparison between MPT and DT with a fixed number of
tests m = 3000 and test accuracies Se = Sp = 0.95. MNT and SDNT denote the mean and
standard deviation of the number of tests over B = 1000 Monte Carlo data sets. CP and
VOL denote the coverage probability and the average volume of joint 95% Wald confidence
region of θ over the 1000 simulations.

MPT DT
p = 0.05 p = 0.10 p = 0.15 p = 0.05 p = 0.10 p = 0.15

MNT 3000 3000 3000 2721 2779 2815
SDNT 0 0 0 94 74 64
CP 0.869 0.94 0.94 0.963 0.945 0.946

VOL(×105) 25.591 14.537 11.939 9.431 19.132 15.983

estimation efficiency of p instead of θ. We follow a similar idea as in this section to

compare Ds-optimal designs between DT and MPT. The result is in Section C.3 in

Appendix C and the conclusion is similar.
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4.5 Conclusion

We propose MLEs of p, Se, and Sp in DT protocol. We also provide the confidence

intervals for operating characteristics such as E(T ), E(C), PPV , and NPV . These

values can assist lab technicians to measure the efficiency of DT when lacking knowl-

edge of the disease prevalence and the assay sensitivity and specificity. DT strongly

competes with MPT for two reasons: First, DT can not only estimates p, Se, and Sp

but can identify each individual’s disease status as well. Even when the prevalence

estimation is the primary goal, it is usually beneficial to know the disease status of

a patient. Second, from the perspective of estimation efficiency, our result shows DT

outperforms MPT in a large range of values of p, e.g., for Se = Sp = 0.95, the optimal

design of DT is more efficient than the one of MPT when p is below 0.1.

The focus of this study is DT, which uses the two-stage hierarchical structure with

one pool size. In case identification, McMahan, Tebbs, and Bilder (2012b) found that

one can reduce the number of tests by using adaptive pool sizes based on different

levels of risk for each individual. Black, Bilder, and Tebbs (2015) investigated the

optimal configuration for multiple stages to minimize the cost. One future work is

to explore whether these generalizations of DT can help to improve the estimation

efficiency. Other extensions include relaxing the assumptions in Section 4.2.1 by

taking dilution effects and conditional dependence into consideration.
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mators”. In: Sankhyā: The Indian Journal of Statistics, Series A, pp. 97–110.

Fan, Jianqing (1991b). “On the optimal rates of convergence for nonparametric de-
convolution problems”. In: Annals of Statistics, pp. 1257–1272.

Fan, Jianqing (2018). Local Polynomial Modelling and Its Applications: Monographs
on Statistics and Applied Probability 66. Routledge.

Fan, Jianqing and Tsz Ho Yim (2004). “A crossvalidation method for estimating
conditional densities”. In: Biometrika 91.4, pp. 819–834.

Faraggi, David, Benjamin Reiser, and Enrique Schisterman (2003). “ROC curve anal-
ysis for biomarkers based on pooled assessments”. In: Statistics in Medicine 22.15,
pp. 2515–2527.

55



Farrington, Paddy (1992). “Estimating prevalence by group testing using generalized
linear models”. In: Statistics in Medicine 11.12, pp. 1591–1597.

Finkelstein, Mark, Howard Tucker, and Jerry Veeh (1999). “Extinguishing the dis-
tinguished logarithm problems”. In: Proceedings of the American Mathematical
Society, pp. 2773–2777.

Gastwirth, Joseph (2000). “The efficiency of pooling in the detection of rare muta-
tions”. In: American Journal of Human Genetics 67.4, p. 1036.

Hepworth, Graham and Ray Watson (2009). “Debiased estimation of proportions
in group testing”. In: Journal of the Royal Statistical Society: Series C (Applied
Statistics) 58.1, pp. 105–121.

Hou, Peijie, Joshua Tebbs, Christopher Bilder, and Christopher McMahan (2017).
“Hierarchical group testing for multiple infections”. In: Biometrics 73.2, pp. 656–
665.

Huang, Shih-Hao, Mong-Na Lo Huang, Kerby Shedden, and Weng Kee Wong (2017).
“Optimal group testing designs for estimating prevalence with uncertain testing
errors”. In: Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 79.5, pp. 1547–1563.

Hughes-Oliver, Jacqueline and William Swallow (1994). “A two-stage adaptive group-
testing procedure for estimating small proportions”. In: Journal of the American
Statistical Association 89.427, pp. 982–993.

Hyndman, Rob and Qiwei Yao (2002). “Nonparametric estimation and symmetry
tests for conditional density functions”. In: Journal of Nonparametric Statistics
14.3, pp. 259–278.

Jirsa, Sandy (2008). “Pooling specimens: A decade of successful cost savings”. In:
National STD Prevention Conference.

Kärrman, Anna, Jochen Mueller, Bert Van Bavel, Fiona Harden, Leisa-Maree Toms,
and Gunilla Lindström (2006). “Levels of 12 perfluorinated chemicals in pooled
Australian serum, collected 2002- 2003, in relation to age, gender, and region”.
In: Environmental Science and Technology 40.12, pp. 3742–3748.

Kim, Hae-Young, Michael Hudgens, Jonathan Dreyfuss, Daniel Westreich, and Christo-
pher Pilcher (2007). “Comparison of group testing algorithms for case identifica-
tion in the presence of test error”. In: Biometrics 63.4, pp. 1152–1163.

56



Lewis, Joanna, Vivian Lockary, and Sadika Kobic (2012). “Cost savings and increased
efficiency using a stratified specimen pooling strategy for Chlamydia trachomatis
and Neisseria gonorrhoeae”. In: Sexually Transmitted Diseases 39.1, pp. 46–48.

Lin, Juexin and Dewei Wang (2018). “Single-index regression for pooled biomarker
data”. In: Journal of Nonparametric Statistics, pp. 1–21.

Linton, Oliver and Yoon-Jae Whang (2002). “Nonparametric estimation with aggre-
gated data”. In: Econometric Theory 18.2, pp. 420–468.

Liu, Aiyi and Enrique Schisterman (2003). “Comparison of diagnostic accuracy of
biomarkers with pooled assessments”. In: Biometrical Journal: Journal of Math-
ematical Methods in Biosciences 45.5, pp. 631–644.

Liu, Aiyi, Chunling Liu, Zhiwei Zhang, and Paul Albert (2012). “Optimality of group
testing in the presence of misclassification”. In: Biometrika 99.1, pp. 245–251.

Liu, Yan, Christopher McMahan, and Colin Gallagher (2017). “A general frame-
work for the regression analysis of pooled biomarker assessments”. In: Statistics
in Medicine 36.15, pp. 2363–2377.

Ma, Chang-Xing, Albert Vexler, Enrique Schisterman, and Lili Tian (2011). “Cost-
efficient designs based on linearly associated biomarkers”. In: Journal of Applied
Statistics 38.12, pp. 2739–2750.

Malinovsky, Yaakov, Paul Albert, and Anindya Roy (2016). “Reader reaction: A note
on the evaluation of group testing algorithms in the presence of misclassification”.
In: Biometrics 72.1, pp. 299–302.

Malinovsky, Yaakov, Paul Albert, and Enrique Schisterman (2012). “Pooling designs
for outcomes under a Gaussian random effects model”. In: Biometrics 68.1, pp. 45–
52.

McMahan, Christopher, Joshua Tebbs, and Christopher Bilder (2012a). “Informative
Dorfman screening”. In: Biometrics 68.1, pp. 287–296.

McMahan, Christopher, Joshua Tebbs, and Christopher Bilder (2012b). “Two-dimens-
ional informative array testing”. In: Biometrics 68.3, pp. 793–804.

McMahan, Christopher, Alexander McLain, Colin Gallagher, and Enrique Schister-
man (2016). “Estimating covariate-adjusted measures of diagnostic accuracy based
on pooled biomarker assessments”. In: Biometrical Journal 58.4, pp. 944–961.

57



McMahan, Christopher, Joshua Tebbs, Timothy Hanson, and Christopher Bilder
(2017). “Bayesian regression for group testing data”. In: Biometrics 73.4, pp. 1443–
1452.

Meister, Alexander (2007). “Optimal convergence rates for density estimation from
grouped data”. In: Statistics and probability letters 77.11, pp. 1091–1097.

Mitchell, Emily, Robert Lyles, Amita Manatunga, Michelle Danaher, Neil Perkins,
and Enrique Schisterman (2014). “Regression for skewed biomarker outcomes sub-
ject to pooling”. In: Biometrics 70.1, pp. 202–211.

Mitchell, Emily, Robert Lyles, Amita Manatunga, and Enrique Schisterman (2015).
“Semiparametric regression models for a right-skewed outcome subject to pool-
ing”. In: American Journal of Epidemiology 181.7, pp. 541–548.

Mumford, Sunni, Enrique Schisterman, Albert Vexler, and Aiyi Liu (2006). “Pooling
biospecimens and limits of detection: effects on ROC curve analysis”. In: Bio-
statistics 7.4, pp. 585–598.

Parikh, Chirag, Jaya Mishra, Heather Thiessen-Philbrook, Belda Dursun, Qing Ma,
Caitlin Kelly, Catherine Dent, Prasad Devarajan, and Charles Edelstein (2006).
“Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac
surgery”. In: Kidney International 70.1, pp. 199–203.

Pilcher, Christopher, Susan Fiscus, Trang Nguyen, Evelyn Foust, Leslie Wolf, Del
Williams, Rhonda Ashby, Judy Owen O’dowd, J Todd McPherson, Brandt Stalzer,
et al. (2005). “Detection of acute infections during HIV testing in North Carolina”.
In: New England Journal of Medicine 352.18, pp. 1873–1883.

Saha-Chaudhuri, Paramita and Clarice Weinberg (2013). “Specimen pooling for ef-
ficient use of biospecimens in studies of time to a common event”. In: American
Journal of Epidemiology 178.1, pp. 126–135.

Schisterman, Enrique and Albert Vexler (2008). “To pool or not to pool, from whether
to when: applications of pooling to biospecimens subject to a limit of detection”.
In: Paediatric and Perinatal Epidemiology 22.5, pp. 486–496.

Schisterman, Enrique, Neil Perkins, Aiyi Liu, and Howard Bondell (2005). “Optimal
cut-point and its corresponding Youden Index to discriminate individuals using
pooled blood samples”. In: Epidemiology, pp. 73–81.

Sobel, Milton and Robert Elashoff (1975). “Group testing with a new goal, estima-
tion”. In: Biometrika 62.1, pp. 181–193.

58



Tebbs, Joshua, Christopher McMahan, and Christopher Bilder (2013). “Two-stage
hierarchical group testing for multiple infections with application to the infertility
prevention project”. In: Biometrics 69.4, pp. 1064–1073.

Thompson, Keith (1962). “Estimation of the proportion of vectors in a natural pop-
ulation of insects”. In: Biometrics 18.4, pp. 568–578.

Tu, Xin-Ming, Eugene Litvak, and Marcello Pagano (1995). “On the informative-
ness and accuracy of pooled testing in estimating prevalence of a rare disease:
application to HIV screening”. In: Biometrika 82.2, pp. 287–297.

Van, Tam, Joseph Miller, David Warshauer, Erik Reisdorf, Daniel Jernigan, Rosemary
Humes, and Peter Shult (2011). “Pooling nasopharyngeal/throat swab specimens
to increase testing capacity for influenza viruses by PCR”. In: Journal of Clinical
Microbiology, JCM–05631.

Vansteelandt, Stijn, Els Goetghebeur, and Thomas Verstraeten (2000). “Regression
models for disease prevalence with diagnostic tests on pools of serum samples”.
In: Biometrics 56.4, pp. 1126–1133.

Vexler, Albert, Aiyi Liu, and Enrique Schisterman (2010). “Nonparametric deconvolu-
tion of density estimation based on observed sums”. In: Journal of Nonparametric
Statistics 22.1, pp. 23–39.

Vexler, Albert, Enrique Schisterman, and Aiyi Liu (2008). “Estimation of ROC curves
based on stably distributed biomarkers subject to measurement error and pooling
mixtures”. In: Statistics in Medicine 27.2, pp. 280–296.

Wang, Dewei, Christopher McMahan, Colin Gallagher, and Karunarathna Kulasekera
(2013). “Semiparametric group testing regression models”. In: Biometrika 101.3,
pp. 587–598.

Warasi, Md, Joshua Tebbs, Christopher McMahan, and Christopher Bilder (2016).
“Estimating the prevalence of multiple diseases from two-stage hierarchical pool-
ing”. In: Statistics in Medicine 35.21, pp. 3851–3864.

Warasi, Md, Christopher McMahan, Joshua Tebbs, and Christopher Bilder (2017).
“Group testing regression models with dilution submodels”. In: Statistics in Medi-
cine 36.30, pp. 4860–4872.

Weinberg, Clarice and David Umbach (1999). “Using pooled exposure assessment to
improve efficiency in case-control studies”. In: Biometrics 55.3, pp. 718–726.

59



Appendix A

Proof for Chapter 2

A.1 Proof of Theorem 2.1

In this chapter, we present the proofs of Theorems 2.1 and 2.2. Lemmas are shown

in the end of each proof. From Equations (2.7) and (2.10), our local polynomial

estimator f̂RP (y|x) can be written as

f̂RP (y|x) = 1
2π

∫ ∞
−∞

e−ity
φ̂Z̄|X=x(ct)

{φ̂Z̄(ct)}(c−1)/c{φε(ct)}1/c
φK(ht)dt, (A.1)

where

φ̂Z̄|X=x(t) =
∑J
j=1

∑c
i=1 exp(itZ̄j)wij(x)∑J
j=1

∑c
i=1wij(x)

,

in which the form of wij(x) depends on the value of `; i.e., the order of the (local)

polynomial. When ` = 0, wij(x) = K̄h̄(Xij − x), and Equation (A.1) provides the

local constant (Nadaraya-Watson) estimator of f(y|x). When ` = 1,

wij(x) = K̄h̄(Xij − x)
∑
j

∑
i

K̄h̄(Xij − x)(Xij − x)2

− K̄h̄(Xij − x)(Xij − x)
∑
j

∑
i

K̄h̄(Xij − x)(Xij − x),

and Equation (A.1) defines the local linear estimator. The proofs presented below

focus on the local linear case. The Proofs for the local constant estimator follow a

similar pattern and are hence omitted.

Before presenting the proofs, we need to introduce some notation. Recalling from

Condition (C2), the support of φK is [−1, 1]. Denote by

BJ = {t ∈ R : |t| ≤ h−1}.
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Then φK(ht) is not zero only when t ∈ BJ . Let φȲ (t) be the CF of Ȳj. Noting

that Z̄j = Ȳj + εj, and εj and Ȳj are independent, we define our empirical estimator

of φȲ (t) to be φ̂Ȳ (t) = φ̂Z̄(t)/φε(t). We write φY |X=x(t) as φY |x(t). In addition,

letting φȲ |x(t) = E{exp(itȲj)|Xij = x} = φZ̄|x(t)/φε(t), similarly, we have our es-

timator of φȲ |x(t) by φ̂Ȳ |x(t) = φ̂Z̄|x(t)/φε(t), where we write φZ̄|Xij=x(t) = φZ̄|x(t)

and φ̂Z̄|Xij=x(t) = φ̂Z̄|x(t) for the simplicity of notation. We also write φȲ |Xij(t) =

E{exp(itȲj)|Xij} and φZ̄|Xij(t) = E{exp(itZ̄j)|Xij}. Lastly, the notation f(n) � g(n)

means there exist M1,M2 > 0 such that M1g(n) ≤ f(n) ≤M2g(n).

Proof of Theorem 2.1. To obtain the asymptotic property of f̂RP (y|x) − f(y|x), we

decompose it by

f̂RP (y|x)− f(y|x) = 1
2π

∫
e−ity

{
φ̂Y |x(t)− φY |x(t)

}
φK(ht)dt (A.2)

+ 1
2π

∫
e−ityφY |x(t) {φK(ht)− 1} dt, (A.3)

where

φ̂Y |x(t) =
φ̂Z̄|x(ct)

φ̂Ȳ (ct)(c−1)/cφε(ct)
. (A.4)

The term (A.3) is exactly the last summand in Bh̄,h(x, y) in Theorem 2.1. For term

(A.2), because φK(ht) is not zero only when t ∈ BJ , it suffices to look into the

difference between φ̂Y |x(t) and φY |x(t) when t ∈ BJ .

We start with the term φ̂Ȳ (ct)−(c−1)/c in φ̂Y |x(t) for t ∈ BJ . Noting that φ̂Ȳ (ct) is

complex, when t ∈ BJ , we can expand φ̂Ȳ (ct)−(c−1)/c into power series as

1
φ̂Ȳ (ct)(c−1)/c

= 1
φȲ (ct)(c−1)/c

{
1− c− 1

c

∆(ct)
φȲ (ct) + λ̃2,r0(t) ∆(ct)2

φȲ (ct)2

}
, (A.5)

where |λ̃2,r0(t)| ≤ 4 and ∆(ct) = φ̂Ȳ (ct) − φȲ (ct). To make this expansion valid,

one needs to show that (i) φ̂Ȳ (ct)/φȲ (ct) is larger than a positive constant when

t ∈ BJ , and (ii) the cth root of φ̂Ȳ (ct) exists. To prove (i), we show when t ∈ BJ and
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Jh2cα0+2β0 →∞, |∆(ct)/φȲ (ct)| < 1/2 uniformly on t with probability 1. Note that

E|∆(ct)|2 = 1
J2|φε(ct)|2

E

∑
j

{
eictZ̄j − φZ̄(ct)

}∑
j

{
e−ictZ̄j − φZ̄(−ct)

}
= 1− |φZ̄(ct)|2

J |φε(ct)|2
.

When t ∈ BJ ,

E

{
|∆(ct)|2
|φȲ (ct)|2

}
= 1− |φZ̄(ct)|2

J |φZ̄(ct)|2 = O

{
1

J |φZ̄(ct)|2

}
= O

( 1
Jh2cα0+2β0

)
.

The last equation is due to inft∈BJ |φZ̄(ct)| = |φY (1/h)|c|φε(c/h)| for large J and φY

and φε are ordinary smooth of orders α0 and β0, respectively. When Jh2cα0+2β0 →∞,

|∆(t)/φȲ (t)| = op(1) and thus is less than 1/2 uniformly on t ∈ BJ with probability

1. For (ii), with the property |∆(t)/φȲ (t)| = op(1), |φ̂Ȳ (ct)| ≥ inft∈BJ |φȲ (ct)|/2 > 0,

which means that φ̂Ȳ (ct) will not vanish when t ∈ BJ . According to Chung (2001), the

cth root of φ̂Ȳ (ct) exists. Therefore, we have established the expansion in Equation

(A.5).

Let ∆2(t) = φ̂Z̄|x(t)/φε(t)−φȲ |x(t). Plugging Equation (A.5) into Equation (A.4)

yields a decomposition of φ̂Y |x(t)− φY |x(t); i.e.,

φ̂Y |x(t)− φY |x(t) = ∆2(ct)
φȲ (ct)(c−1)/c + 1− c

c

φȲ |x(ct)
φȲ (ct)(2c−1)/c∆(ct) + 1− c

c

∆(ct)∆2(ct)
φȲ (ct)(2c−1)/c

+ λ̃2,r0(t)
φȲ |x(ct)

φȲ (ct)(3c−1)/c∆(ct)2 + λ̃2,r0(t)∆(ct)2∆2(ct)
φȲ (ct)(3c−1)/c . (A.6)

Let ∆1(t) = φ̂Z̄(t)− φZ̄(t). Noting that

φȲ (ct)1/c = φY (t) and φȲ |x(ct) = φY |x(t)φY (t)c−1,

we write Equation (A.6) as

φ̂Y |x(t)− φY |x(t) = ∆2(ct)
φY (t)c−1 + 1− c

c

φY |x(t)∆1(ct)
φY (t)cφε(ct)

+ 1− c
c

∆1(ct)∆2(ct)
φY (t)2c−1φε(ct)

+ λ̃2,r0(t)φY |x(t)∆1(ct)2

φY (t)2cφε(ct)2 + λ̃2,r0(t) ∆1(ct)2∆2(ct)
φY (t)3c−1φε(ct)2 . (A.7)
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Plugging Equation (A.7) into term (A.2) yields 5 terms, which are denoted by T1 to

T5. We list them below and evaluate them one by one. The most important term is

T1 = 1
2π

∫
exp(−ity) ∆2(ct)

φY (t)c−1φK(ht)dt

= 1
2π

∫
exp(−ity)

∑J
j=1

∑c
i=1wij(x){φZ̄|Xij(ct)− φZ̄|x(ct)}∑J

j=1
∑c
i=1wij(x)φε(ct)

 φK(ht)
φY (t)c−1dt

+ 1
2π

∫
exp(−ity)

∑J
j=1

∑c
i=1wij(x){eicZ̄jt − φZ̄|Xij(ct)}∑J
j=1

∑c
i=1 wij(x)φε(ct)

 φK(ht)
φY (t)c−1dt

= T ∗1 + T ∗∗1 . (A.8)

In the following, we show that term T ∗1 , together with (A.3), provides Bh̄,h(x, y); term

T ∗∗1 provides V 1/2
h̄,h

(x, y); the rest terms T2, . . . , T5 are all op(T ∗∗1 ).

For T ∗1 , we have

T ∗1 = 1
2π

∫
exp(−ity)

[∑J
j=1

∑c
i=1wij(x){φY |Xij(t)− φY |x(t)}∑J

j=1
∑c
i=1wij(x)

]
φK(ht)dt

=
∑J
j=1

∑c
i=1wij(x){f(y|Xij)− f(y|x)}∑J

j=1
∑c
i=1wij(x)

{1 + op(1)}

=
∑J
j=1

∑c
i=1 wij(x)

{∑J
j=1

∑c
i=1wij(x)}

{
∂f(y|x)
∂x

(Xij − x) + ∂2f(y|x)
2∂x2 (Xij − x)2 +Op(Xij − x)3

}

× {1 + op(1)}

= h̄2b1(x)∂
2f(y|x)
2∂x2 + op(h̄2), (A.9)

where b1(x) = µ2 and µ2 =
∫
u2K(u)du. The last equation follows the typical ar-

gument of local polynomial estimator; see, e.g., Fan (2018). Combining term (A.9)

with term (A.3) yields Bh̄,h(x, y).

For T ∗∗1 , letting

Wi(x) =
J∑
j=1

wij(x)/
c∑
i=1

J∑
j=1

wij(x),

we have T ∗∗1 = ∑c
i=1Wi(x)T ∗∗1i , where

T ∗∗1i = 1
2π

∫
exp(−ity)

∑J
j=1wij(x){eicZ̄jt − φZ̄|Xij(ct)}∑J

j=1wij(x)φε(ct)

 φK(ht)
φY (t)c−1dt.
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Denote by Xi = {Xi1, . . . , XiJ} for i = 1, . . . , c. Using Lemmas A.1 and A.2 and

Parseval’s identity, the order of E(T ∗∗21i |Xi) is the same as the order of∑J
j=1wij(x)2

{∑J
j=1 wij(x)}2

∫ {
1

2πh

∫
exp

(
−ity − cZ̄j

h

)
φK(t)

φY (t/h)c−1φε(ct/h)dt
}2

fZ̄|Xij(Z̄j)dZ̄j,

which is

c2β0v1(x)fcZ̄|x(y)
2πJh̄h2(c−1)α0+2β0+1

∫ |φK(t)|2t2(c−1)α0+2β0

A
2(c−1)
1 A2

2
dt{1 + op(1)},

where v1(x) = ν0/fX(x), ν0 =
∫
K2(u)du, and fZ̄|Xij and fZ̄|x are the density functions

of Z̄j given Xij and Xij = x, respectively. Combining the above result with the

definition of Wi(x), the order of T ∗∗1 equals

Op{c−1/2+β0J−1/2h̄−1/2h−(c−1)α0−β0−1/2},

which is V 1/2
h̄,h

(x, y).

Now we show that T2, . . . , T5 are all op(T ∗∗1 ). Starting from T2, we rewrite it as

T2 = 1− c
c

1
2π

∫
exp(−ity)φY |x(t)

φY (t)c ∆(ct)φK(ht)dt

= 1− c
c

1
2πJ

J∑
j=1

∫
exp(−ity)φY |x(t)φK(ht)

φY (t)cφε(ct)
{eicZ̄jt − φZ̄(ct)}dt. (A.10)

Then following the similar argument in deriving T ∗∗1 , we have

T2 = Op{J−1/2h−cα0+ρ0(x)−β0−1/2}.

As h̄−1h2{α0−ρ0(x)} →∞, we have T2 = op(T ∗∗1 ). The T3, T4, and T5 are written by

T3 = 1
2π

∫
exp(−ity)1− c

c

∆1(ct)∆2(ct)
φY (t)2c−1φε(ct)

φK(ht)dt (A.11)

T4 = 1
2π

∫
exp(−ity)λ̃2,r0(t)φY |x(t)∆1(ct)2

φY (t)2cφε(ct)2 φK(ht)dt (A.12)

T5 = 1
2π

∫
exp(−ity)λ̃2,r0(t) ∆1(ct)2∆2(ct)

φY (t)3c−1φε(ct)2φK(ht)dt. (A.13)

We conclude

T3 = Op{J−1h̄−1/2h−(2c−1)α0−2β0−1/2}
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from Lemmas A.3. Comparing the order of T ∗∗1 , T2, and T3, we have as

h̄−1h2{α0−ρ0(x)} →∞ and Jh2cα0+2β0 →∞,

T2 = op(T ∗∗1 ) and T3 = op(T ∗∗1 ), respectively. For T4 and T5, as |∆(ct)|/|φȲ (ct)| < 1/2

when t ∈ BJ , we have T4 = Op(T2) and T5 = Op(T3). Consequently, T4 = op(T ∗∗1 ) and

T5 = op(T ∗∗1 ), respectively.

In summary, we have completed the proof of Theorem 2.1 by showing that

f̂RP (y|x)− f(y|x) = 1
2π

∫
e−ityφY |x(t) {φK(ht)− 1} dt+ T ∗1 + T ∗∗1 {1 + op(1)}

= Bh̄,h(x, y) + V
1/2
h̄,h

(x, y),

where

Bh̄,h(x, y) = (2π)−1
∫
e−ityφY |x(t) {φK(ht)− 1} dt+ T ∗1

Vh̄,h(x, y) = T ∗∗21 {1 + op(1)}.

A.1.1 Lemmas for Theorem 2.1

Lemma A.1 is from Lemma 2.1 in Fan (1991a). Lemma A.2 verifies the condition

of Lemma A.1. Lemmas A.3 uses techniques similar to Delaigle and Zhou (2015) to

show the order of T3.

Lemma A.1. Suppose that Fn(·) is a sequence of Borel functions satisfying Fn(y)→

F (y) and supn|Fn(y)| ≤ F ∗(y), where F ∗(y) satisfies

∫
F ∗(y)dy ≤ ∞ and lim

y→∞
|yF ∗(y)| = 0.

If x is a continuous point of a density f(·), then for any sequence hn → 0, we have

lim
n→∞

1
hn

∫
Fn
(x− y
hn

)
f(y)dy = f(x)

∫
F (y)dy.
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Lemma A.2. Under Conditions OO and (C2),

|h(c−1)α0+β0K∗(x)| ≤ min(C1, C2/x),

where C1 and C2 are constants.

Proof. Note under Condition OO, there exists a large M such that

|tα0φY (t)| > A1/2 and |tβ0φε(t)| > A2/2, when |t| > M .

Then for c > 1,

|h(c−1)α0+β0K∗(x)| ≤
∫ 1

−1

∣∣∣∣∣ h(c−1)α0+β0φK(t)
φY (t/h)c−1φε(ct/h)

∣∣∣∣∣ dt
≤
∫
Mh≤|t|≤1

∣∣∣∣∣t(c−1)α0+β0φK(t)
(A1/2)c−1A2/2

∣∣∣∣∣ dt
+
∫

0≤|t|≤Mh

supt |φK(t)|
min|t|≤M |φY (t)c−1φε(ct)|

dt = O(1). (A.14)

On the other hand, by integration by parts, we have, as J →∞ and x 6= 0,

|K∗(x)| =
∣∣∣∣∣ 1
2π

∫ 1

−1
exp(−itx) φK(t)

φY (t/h)c−1φε(ct/h)dt
∣∣∣∣∣ ≤ F1 + F2, (A.15)

where

F1 =
∣∣∣∣∣ 1
xπ

φK(1)
φY (1/h)c−1φε(c/h)

∣∣∣∣∣
F2 =

∣∣∣∣∣ 1
2xπ

∫ 1

−1
exp(−itx)

{
φK(t)

φY (t/h)c−1φε(ct/h)

}′
dt

∣∣∣∣∣ .
For F1, when J is large, F1 = O{h−(c−1)α0−β0/x}. For F2,

F2 =
∣∣∣∣∣ 1
2xπ

∫ 1

−1
exp(−itx) φ′K(t)

φY (t/h)c−1φε(ct/h)dt
∣∣∣∣∣

+
∣∣∣∣∣ 1
2xπ

∫ 1

−1
exp(−itx)φK(t){φY (t/h)c−1φε(ct/h)}′

{φY (t/h)c−1φε(ct/h)}2 dt

∣∣∣∣∣
≤ 1

2xπ

∫ 1

−1

∣∣∣∣∣ φ′K(t)
φY (t/h)c−1φε(ct/h)

∣∣∣∣∣ dt+ (c− 1)h−1

2xπ

∫ 1

−1

∣∣∣∣∣ φK(t)φ′Y (t/h)
φY (t/h)cφε(ct/h)

∣∣∣∣∣ dt
+ ch−1

2xπ

∫ 1

−1

∣∣∣∣∣ φK(t)φ′ε(ct/h)
φY (t/h)c−1φε(ct/h)2

∣∣∣∣∣ dt
= F21 + F22 + F23.
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For F21,

F21 ≤
1

2xπ

∫
0<|t|<Mh

| supt φ′K(t)|
min|t|≤M |φY (t)c−1φε(ct)|

dt

+ h−(c−1)α0−β0

2xπ

∫
Mh<|t|<1

t(c−1)α0+β0 supt |φ′K(t)|
(A1/2)c−1A2/2

dt = O{h−(c−1)α0−β0/x}.

For F22, provided that φ′Y (t)tα0+1 = O(1) in Condition OO,

F22 ≤
(c− 1)h−1

2xπ

∫
0<|t|<Mh

sup
t
|φ′K(t)| min

|t|≤M

|φ′Y (t)|
|φY (t)cφε(ct)|

dt+

const.
(c− 1)h−(c−1)α0−β0

2xπ

∫
|t|>Mh

t(c−1)α0+β0−1|φK(t)|
(A1/2)cA2/2

dt = O{h−(c−1)α0−β0/x}.

For F23, provided that φ′ε(t)tβ0+1 = O(1) in Condition OO,

F23 ≤
ch−1

2xπ

∫
0<|t|<Mh

sup
t
|φK(t)| min

|t|≤M

|φ′ε(ct)|
|φY (t)c−1φε(ct)2|

dt

+ const.
ch−(c−1)α0−β0

2xπ

∫
|t|>Mh

t(c−1)α0+β0−1φK(t)
(A1/2)c−1(A2/2)2

dt = O{h−(c−1)α0−β0/x}.

Combining F1, F21, F22, and F23, we have |h(c−1)α0+β0K∗(x)| = O(1/x). Further

combining this with Equation (A.14), we finish our proof.

Lemma A.3. Under Conditions OO and (C1)-(C3), when (2c− 1)α0 + 2β0 > 1,

T3 = Op{J−1h̄−1/2h−(2c−1)α0−2β0−1/2}.

Proof. Recall that |λ̃2,r0(t)| ≤ 4 when t ∈ BJ ,

E(T 2
3 ) ≤ 16E


∣∣∣∣∣
∫

exp(−ity)φK(ht)∆2(ct)∆1(ct)
φY (t)2c−1φε(ct)

dt

∣∣∣∣∣
2


= 16
∫ ∫

exp {−i(u− v)y} φK(hu)φK(−hv)
φY (u)2c−1φY (−v)2c−1φε(cu)2φε(−cv)2

× E {∆2(cu)φε(cu)∆2(−cv)φε(−cv)∆1(cu)∆1(−cv)} dudv. (A.16)

To keep notation concise, further define

ωj(t) = eitZ̄j − φZ̄(t)

τj(t) =
c∑
i=1

wij(x){eitZ̄j − φZ̄|x(t)}/
J∑
j=1

c∑
i=1

wij(x).
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Then we have,

E {∆2(cu)φε(cu)∆2(−cv)φε(−cv)∆1(cu)∆1(−cv)}

= 1
J2E


J∑
j=1

τj(cu)
J∑
j=1

τj(−cv)
J∑
j=1

ωj(cu)
J∑
j=1

ωj(−cv)


= 1
J2E

 ∑
j1 6=j2

τj1(cu)τj1(−cv)ωj2(cu)ωj2(−cv)


+ 1
J2E

 ∑
j1 6=j2

τj1(cu)τj2(−cv)ωj1(cu)ωj2(−cv)


+ 1
J2E

 ∑
j1 6=j2

τj1(cu)τj2(−cv)ωj2(cu)ωj1(−cv)


+ 1
J2E


J∑
j=1

τj(cu)τj(−cv)ωj(cu)ωj(−cv)

+RJ(u, v), (A.17)

where RJ(u, v) is negligible to the other four terms and thus is omitted in the following

calculation. Plugging Equation (A.17) into Equation (A.16) yields 4 terms, which are

denoted by F1, F2, F3, and F4. We focus on

F1 = 16
J2

∫ ∫
exp {−i(u− v)y} φK(hu)φK(−hv)

φY (u)2c−1φY (−v)2c−1φε(cu)2φε(−cv)2

×
∑
j1 6=j2

E {τj1(cu)τj1(−cv)ωj2(cu)ωj2(−cv)} dudv

to illustrate this procedure. Let X̃ = {X1, . . . , XN}. To calculate F1, first we have

E {τj1(cu)τj1(−cv)ωj2(cu)ωj2(−cv)} (A.18)

= E

E

∑c
i=1wij1(x){eiuZ̄j1 − φZ̄|x(u)}∑c

i=1 wij1(x){e−ivZ̄j1 − φZ̄|x(−v)}
{∑J

j=1
∑c
i=1wij(x)}2

∣∣∣∣∣X̃



× [φZ̄{c(u− v)} − φZ̄(cu)φZ̄(−cv)],

which is of the same order as

E


∑c
i=1w

2
ij1(x)

[
φZ̄|Xij1{c(u− v)} − φZ̄|x(cu)φZ̄|X1j1

(−cv)
]

{∑J
j=1

∑c
i=1wij(x)}2

+
∑c
i=1w

2
ij1(x)

[
−φZ̄|Xij1 (cu)φZ̄|x(−cv) + φZ̄|x(cu)φZ̄|x(−cv)

]
{∑J

j=1
∑c
i=1wij(x)}2


× [φZ̄{c(u− v)} − φZ̄(cu)φZ̄(−cv)]. (A.19)
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The dominant term inside term (A.19) is

E

∑c
i=1w

2
ij1(x)φZ̄|Xij1{c(u− v)}

{∑J
j=1

∑c
i=1wij(x)}2

φZ̄{c(u− v)}. (A.20)

Thus, replacing (A.18) with its dominant term (A.20), we have

|F1| =
16(J − 1)

J2

∣∣∣∣∣
∫ ∫

exp {−i(u− v)y} φZ̄{c(u− v)}φK(hu)φK(−hv)
φY (u)2c−1φY (−v)2c−1φε(cu)2φε(−cv)2

× E

∑J
j=1

∑c
i=1w

2
ij(x)φZ̄|Xij{c(u− v)}

{∑J
j=1

∑c
i=1wij(x)}2

 dudv∣∣∣∣∣
= 16(J − 1)

J2

∣∣∣∣∣
∫ ∫

exp {−i(u− v)y} φY (u− v)2c−1φε(cu− cv)2φK(hu)φK(−hv)
φY (u)2c−1φY (−v)2c−1φε(cu)2φε(−cv)2

× E
[∑J

j=1
∑c
i=1w

2
ij(x)φY |Xij(u− v)

{∑J
j=1

∑c
i=1wij(x)}2

]
dudv

∣∣∣∣∣
≤ 16

J

∫ ∫ |φY (u− v)2c−1||φε(cu− cv)2|
|φY (u)2c−1||φY (−v)2c−1||φε(cu)2||φε(−cv)2|

dudv

× E
[ ∑J

j=1
∑c
i=1 w

2
ij(x)

{∑J
j=1

∑c
i=1wij(x)}2

]
,

which is of the same order as
v1(x)
J2ch̄

∫ ∫ |φY (u− v)2c−1||φε(cu− cv)2|
|φY (u)2c−1||φY (−v)2c−1||φε(cu)2||φε(−cv)2|

dudv. (A.21)

To evaluate the integral, we partition R2 into eight regions: R2 = ∪8
r=1Ar, and write∫ ∫

R
=

8∑
r=1

∫ ∫
Ar

where

A1 = {(u, v) ∈ R2 : 2|u− v| > M, |u| > M, |v| > m}

A2 = {(u, v) ∈ R2 : 2|u− v| > M, |u| > M, |v| ≤ m}

A3 = {(u, v) ∈ R2 : 2|u− v| > M, |u| ≤M, |v| > m}

A4 = {(u, v) ∈ R2 : 2|u− v| > M, |u| ≤M, |v| ≤ m}

A5 = {(u, v) ∈ R2 : 2|u− v| ≤M, |u| > M, |v| > m}

A6 = {(u, v) ∈ R2 : 2|u− v| ≤M, |u| > M, |v| ≤ m}

A7 = {(u, v) ∈ R2 : 2|u− v| ≤M, |u| ≤M, |v| > m}

A8 = {(u, v) ∈ R2 : 2|u− v| ≤M, |u| ≤M, |v| ≤ m}.
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The leading term among these 8 integrals is(∫ ∫
A1

+
∫ ∫

A5

) |φK(hu)||φK(hv)||φY (u− v)2c−1||φε(cu− cv)2|
|φY (u)2c−1||φY (−v)2c−1||φε(cu)2||φε(−cv)2|

dudv. (A.22)

The integral with respect to A1 is of the same order as∫ ∫
A1
|φK(hu)||φK(hv)| |u|

(2c−1)α0+2β0|v|(2c−1)α0+2β0

|u− v|(2c−1)α0+2β0
dudv,

and the one with respect to A5 is of the same order as∫ ∫
A5
|φK(hu)||φK(hv)||φY (u− v)2c−1||φε(cu− cv)2||u|(2c−1)α0+2β0|v|(2c−1)α0+2β0dudv.

When |u− v| ≥M , we have

|u− v|(2c−1)α0+2β0

{1 + |u− v|}(2c−1)α0+2β0
≥ M (2c−1)α0+2β0

{1 +M}(2c−1)α0+2β0
,

and thus

{|u− v|(2c−1)α0+2β0}−1 ≤ const.{1 + |u− v|}−(2c−1)α0−2β0 .

When |u− v| ≤M , we can find a large L such that

|φY (u− v)2c−1||φε(cu− cv)2| ≤ L(1 + |u− v|)−(2c−1)α0−2β0 ;

e.g., let L = sup|t|≤M{|φY (t)2c−1||φε(ct)2|}(1+M)(2c−1)α0+2β0 . Thus, (A.22) is bounded

by a constant times∫ ∫
A5∪A1

|φK(hu)||φK(hv)| |u|
(2c−1)α0+2β0|v|(2c−1)α0+2β0

(1 + |u− v|)(2c−1)α0+2β0
dudv

≤ const.
∫ ∫

|φK(hu)||φK(hv)| |u|
(2c−1)α0+2β0|v|(2c−1)α0+2β0

(1 + |u− v|)(2c−1)α0+2β0
dudv

≤ const.
∫ ∫

|φK(hu)||φK(hv)| |u|
(2c−1)α0+2β0(1 + |v|)(2c−1)α0+2β0

(1 + |u− v|)(2c−1)α0+2β0
dudv

≤ const.
∫ ∫

|φK(hu)||φK(hv)| |u|
(2c−1)α0+2β0(|u|+ 1 + |u− v|)(2c−1)α0+2β0

(1 + |u− v|)(2c−1)α0+2β0
dudv

≤ const.
∫ ∫

|φK(hu)||φK(hv)| |u|
(2c−1)α0+2β0(|u|+ 1 + |u− v|)(2c−1)α0+2β0

(1 + |u− v|)(2c−1)α0+2β0
dudv

≤ const.
∫ ∫

|φK(hu)||φK(hv)| |u|2(2c−1)α0+4β0

(1 + |u− v|)(2c−1)α0+2β0
dudv

+ const.
∫ ∫

|φK(hu)||φK(hv)||u|(2c−1)α0+2β0dudv = G1 +G2.
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The last inequality is due to the fact that when a > 1,

(x1 + x2)a ≤ 2a−1xa1 + 2a−1xa2.

For G1, noting that supv |φK(hv)| ≤ 1 and substituting u− v with s, we have

G1 ≤
∫
|φK(hu)||u|2(2c−1)α0+4β0du

∫ 1
(1 + |s|)(2c−1)α0+2β0

ds,

When (2c−1)α0+2β0 > 1, the order ofG1 is h−2(2c−1)α0−4β0−1. The termG2 is of order

h−(2c−1)α0−2β0−2, which is smaller than h−2(2c−1)α0−4β0−1. Therefore, the order of the

integral inside term (A.21) equals h−2(2c−1)α0−4β0−1. Then the order of term (A.21),

which is the leading term of F1, equals Op{J−2h̄−1h−2(2c−1)α0−4β0−1}. Following the

similar arguments, we can show the terms F2, F3, and F4 are negligible to term F1.

Then we can see T3 is of order Op{J−1h̄−1/2h−(2c−1)α0−2β0−1/2}.

A.2 Proof of Theorem 2.2

Proof of Theorem 2.2. The proof is similar to Theorem 2.1. The main step is to plug

Equation (A.7) into term (A.2) and to analyze the 5 terms yielded. Before this step,

we need to verify that it is valid to expand 1/{φ̂Ȳ (ct)}(c−1)/c into power series at

φȲ (ct). This can be done by showing: As t ∈ BJ and

Jhc2 exp{−2cγ−1h−α2 − 2cβ2ζ−1h−β2} → ∞,

for any c2, we have |∆(ct)/φȲ (ct)| < 1/2 uniformly on t with probability 1 and φ̂Ȳ (t)

does not vanish.

Once we establish Equation (A.5), by plugging it into Equation (A.4), we obtain a

decomposition of φ̂Y |x(t)−φY |x(t), i.e., Equation (A.7). Plugging Equation (A.7) into

term (A.2) yields 5 terms T1 to T5 defined in (A.8), (A.10)–(A.13). We will evaluate

them one by one.

The calculation of T ∗1 is the same as Equation (A.9) in Theorem 2.1. We have

T ∗1 = h̄2b1(x)∂
2f(y|x)
2∂x2 + op(h̄2).
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Term T ∗1 , together with term (A.3), makes up the bias Bh̄,h(x, y). Now we focus on

the evaluation of variance Vh̄,h(x, y), which is related to T ∗∗1 , T2, T3, T4, and T5. We

will show that T ∗∗1 provides V 1/2
h̄,h

(x, y), and the rest terms T2, T3, T4, and T5 are all

op(T ∗∗1 ). For the proof below, we assume α2 ≥ β2, i.e., the CF of Y decays faster than

the CF of ε. For α2 < β2, the proof is in the same pattern. Now we start our proof,

which will check the order of T ∗∗1 , T2, T3, T4, and T5.

The most challenging part is T ∗∗1 , where we further split into two cases: α2 < 1

and α2 ≥ 1. In Case 1, where α2 < 1, with Condition (C4), we can calculate the

accurate order of T ∗∗1 . In Case 2, where α2 ≥ 1, it’s hard to calculate the exact order

of T ∗∗1 and we estimate the upper bound instead. We include the conclusion of the

two cases in Lemma A.4. Note that from (A.42) in the proof of Lemma A.4, we show

whenever in Case 1 or Case 2,

T ∗∗1 = Op[J−1/2h̄−1/2hc4 exp{(c− 1)γ−1h−α2 + cβ2ζ−1h−β2}], (A.23)

for some constant c4. Equation (A.23) will be used to compare the order of T ∗∗1 with

the rest terms T2–T5 below.

For T2,

E(T 2
2 ) � (1− c)2

c2
1
J
E

[ 1
2π

∫
exp

{
−it

(
y − cZ̄j

)} φY |x(t)φK(ht)
φY (t)cφε(ct)

dt

]2


= (1− c)2

c2
1
Jh2E

[ 1
2π

∫ 1

−1
exp

{
−it

(
y − cZ̄j

h

)}
φY |x(t/h)φK(t)
φY (t/h)cφε(ct/h)dt

]2 ,
which is less than a constant times

1
Jh2

∫ 1

0

|φY |x(t/h)φK(t)|
|φY (t/h)cφε(ct/h)|dt.

We partition
∫ 1
0 into

∫Mh
0 and

∫ 1
Mh, whereM is a large number such that when t > M ,

for some positive constant CY 1, CY 2, Cε1 and Cε2,

CY 1|t|α1 exp(−|t|α2/γ) ≤ φY (t) ≤ CY 2|t|α1 exp(−|t|α2/γ)
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Cε1|t|β1 exp(−|t|β2/ζ) ≤ φε(t) ≤ Cε2|t|β1 exp(−|t|β2/ζ),

according to Condition SS. Then we have∫ Mh

0

|φY |x(t/h)φK(t)|
|φY (t/h)cφε(ct/h)|dt ≤

Mh

mint∈(0,M) |φY (t)cφε(ct)|
= O(h), (A.24)

and ∫ 1

Mh

|φY |x(t/h)φK(t)|
|φY (t/h)cφε(ct/h)|dt

≤ const.
[
hcα1−ρ1(x)+β1

∫ 1

Mh
t−cα1+ρ1(x)−β1×

exp{cγ−1h−α2tα2 − %(x)−1h−ρ2(x)tρ2(x) + cβ2ζ−1h−β2tβ2}dt
]

= O[hconst. exp{cγ−1h−α2 + cβ2ζ−1h−β2 − %(x)−1h−ρ2(x)}]. (A.25)

Combining (A.24) and (A.25), we get

T2 = Op[J−1/2hconst. exp{cγ−1h−α2 + cβ2ζ−1h−β2 − %(x)−1h−ρ2(x)}], (A.26)

For T3, by hölder inequality,

E(|∆1(ct)∆2(ct)|) ≤
√
E|∆1(ct)|2

√
E|∆2(ct)|2 � 1

Jh̄1/2φε(ct)
.

Thus,

E|T3| ≤ const.
∫ E|∆1(ct)∆2(ct)|
|φY (t)|2c−1|φε(ct)|

|φK(ht)|dt

� 1
Jh̄1/2

∫ |φK(ht)|
|φY (t)|2c−1|φε(ct)|2

dt = 1
Jh̄1/2h

∫ |φK(t)|
|φY (t/h)|2c−1|φε(ct/h)|2dt.

Following the argument similar to Equation (A.24) and (A.25), by partitioning the

integral into
∫Mh

0 and
∫ 1
Mh, we have

T3 = Op[J−1h̄−1/2hconst. exp{(2c− 1)γ−1h−α2 + 2cβ2ζ−1h−β2}]. (A.27)

Comparing the order of T2 in Equation (A.26) and T3 in Equation (A.27) with the

order of T ∗∗1 in Equation (A.23), we have when

h̄−1hc1 exp{2%(x)−1h−ρ2 − 2γ−1h−α2} → ∞

Jhc2 exp{−2cγ−1h−α2 − 2cβ2ζ−1h−β2} → ∞,
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for any c1, c2, T2 = op(T ∗∗1 ) and T3 = op(T ∗∗1 ) hold, respectively. For T4 and T5, noting

that |∆(ct)/φY (t)c| < 1/2 when t ∈ BJ , T4 = Op(T2) = op(T ∗∗1 ) and T5 = Op(T3) =

op(T ∗∗1 ), respectively.

In summary, we have completed the proof of Theorem 2.2 by showing that

f̂RP (y|x)− f(y|x) = (2π)−1
∫
e−ityφY |x(t) {φK(ht)− 1} dt+ T ∗1 + T ∗∗1 {1 + op(1)}

= Bh̄,h(x, y) + V
1/2
h̄,h

(x, y),

where

Bh̄,h(x, y) = (2π)−1
∫
e−ityφY |x(t) {φK(ht)− 1} dt+ T ∗1

Vh̄,h(x, y) = T ∗∗21 {1 + op(1)}.

When α2 < β2, the pattern is the same but the position of α2 and β2 is switched

in the proof.

A.2.1 Lemmas for Theorem 2.2

Lemma A.4 presents the rate of term T ∗∗21 in the proof of Theorem 2.2.

Lemma A.4. Under Conditions SS, (C1)–(C4), and the assumption that α2 > β2,

if α2 < 1, the term T ∗∗21 in the proof of Theorem 2.2 equals

v1(x)fcZ̄|x(y)
cJh̄h

∫
K∗2(u)du{1 + o(1)}.

If α2 ≥ 1, then

T ∗∗21 = Op[c−1−2β1J−1h̄−1hc3 exp{2(c− 1)γ−1h−α2 + 2cβ2ζ−1h−β2}],

for some constant c3.

Proof. To calculate the order of T ∗∗1 , recalling in the proof of Theorem 2.1, we have

shown T ∗∗1 = ∑c
i=1Wi(x)T ∗∗1i , where

Wi(x) =
J∑
j=1

wij(x)/
c∑
i=1

J∑
j=1

wij(x)
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T ∗∗1i = 1
2π

∫
exp(−ity)

∑J
j=1wij(x){eicZ̄jt − φZ̄|Xij(ct)}∑J

j=1wij(x)φε(ct)

 φK(ht)
φY (t)c−1dt.

Denote by Xi = {Xi1, . . . , XiJ}, for i = 1, . . . , c. We have also shown that, using

Lemmas A.1 and A.2 and Parseval’s identity, the order of E(T ∗∗21i |Xi) is the same as

the order of∑J
j=1wij(x)2

{∑J
j=1 wij(x)}2

∫ {
1

2πh

∫
exp

(
−ity − cZ̄j

h

)
φK(t)

φY (t/h)c−1φε(ct/h)dt
}2

fZ̄|Xij(Z̄j)dZ̄j,

which can be written as∑J
j=1wij(x)2

{∑J
j=1wij(x)}2

1
h2

∫
K∗2(y − cZ̄j

h
)fZ̄|Xij(Z̄j)dZ̄j, (A.28)

where

K∗(u) = 1
2π

∫ 1

−1
e−itu

φK(t)
φY (t/h)c−1φε(ct/h)dt

is defined in Equation (2.11).

We discuss the order of (A.28) by considering two cases: Case 1, where α2 < 1,

and Case 2, where α2 ≥ 1. In Case 1, we derive the order of
∫
|K∗(x)|2dx and∫

|xK∗(x)|2dx and use them to calculate the accurate order of (A.28). According to

Condition (C4), φK(t) is I[−1,1](t) or a more complex piecewise function. When φK(t)

is the piecewise function, by Parseval’s identity, for large J ,
∫
|K∗(x)|2dx = 1

π

∫ 1

0

|φK(t)|2
|φY (t/h)c−1φε(ct/h)|2dt

= 1
π

{∫ Mh

0
+
∫ τ

Mh
+
∫ 1

τ

}
|φK(t)|2

|φY (t/h)c−1φε(ct/h)|2dt. (A.29)

The first two terms are less than a constant times

h+ h(2c−2)α1+2β1 exp{(2c− 2)γ−1(τ/h)α2 + 2ζ−1(cτ/h)β2}
∫ τ

Mh
t−(2c−2)α1−2β1dt.

For the last term, we can first write it as

1
πc2β1

h(2c−2)α1+2β1
∫ 1

τ
φK(t)2 exp{(2c− 2)γ−1(t/h)α2 + 2ζ−1(ct/h)β2}t−(2c−2)α1−2β1dt.

(A.30)
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Substituting t with 1− hα2s, we have∫ 1

τ
φK(t)2 exp{(2c− 2)γ−1(t/h)α2 + 2ζ−1(ct/h)β2}t−(2c−2)α1−2β1dt

= hα2
∫ (1−τ)/hα2

0

[
φK(1− hα2s)2(1− hα2s)−(2c−2)α1−2β1

× exp{(2c− 2)γ−1(1− hα2s)α2h−α2 + 2cβ2ζ−1(1− hα2s)β2h−β2}
]
ds

= h(2b+1)α2 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2}

×
∫ (1−τ)/hα2

0

[
φK(1− hα2s)2

(hα2s)2b s2b(1− hα2s)−(2c−2)α1−2β1

× exp
{

(2c− 2)γ−1 (1− hα2s)α2 − 1
hα2s

s+ 2cβ2ζ−1 (1− hα2s)β2 − 1
hα2s

hα2−β2s

}]
ds

= a2
0h

(2b+1)α2 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2}
∫ ∞

0
s2b exp{−(2c− 2)γ−1α2s}ds.

(A.31)

For the last equation, noting that dxα2/dx = α2x
α2−1 and φK(1−t)/tb → a0 as t→ 0,

for large enough J , we have the function inside the integral is bounded by

const.|s|2b exp{−(c− 1)γ−1α2s},

which is integrable. Then we can use the dominated convergence theorem to guarantee

the last equation hold. Plugging Equation (A.31) into (A.30), and noting term (A.30)

is the dominant term of (A.29), we have∫
|K∗(x)|2dx � c−2β1h(2b+1)α2+(2c−2)α1+2β1 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2}.

(A.32)

In addition, similar to (A.15), using Parseval’s identity and integration by parts, we

have ∫
|xK∗(x)|2dx ≤ const.


∫ 1

0

∣∣∣∣∣ φ′K(t)
φY (t/h)c−1φε(ct/h)

∣∣∣∣∣
2

dt

+ 1
h2

∫ 1

0

∣∣∣∣∣ φK(t)φ′Y (t/h)
φY (t/h)cφε(ct/h)

∣∣∣∣∣
2

dt

+ 1
h2

∫ 1

0

∣∣∣∣∣ φK(t)φ′ε(ct/h)
φY (t/h)c−1φε(ct/h)2

∣∣∣∣∣
2

dt

 . (A.33)
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Partitioning the integral to
∫Mh
0 +

∫ τ
Mh +

∫ 1
τ , we can see all three terms in (A.33) are

bounded by

h(2b−1)α2+(2c−2)α1+2β1 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2}.

That is,∫
|xK∗(x)|2dx = O[h(2b−1)α2+(2c−2)α1+2β1 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2}].

(A.34)

When φK(t) = I[−1,1](t), following the similar argument as above,∫
|K∗(x)|2dx = O[c−2β1hα2+(2c−2)α1+2β1 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2}],

(A.35)

and ∫
|xK∗(x)|2dx = O

[
h−α2+(2c−2)α1+2β1 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2}

]
.

(A.36)

Note that Equations (A.35) and (A.36) are compatible with Equations (A.32) and

(A.34) by setting b∗ = b when φK(t) is the piecewise function and b∗ = 0 when

φK(t) = I[−1,1](t). Combining Equations (A.32) and (A.34), and Equations (A.35)

and (A.36), we can see that no matter φK(t) is the piecewise function or I[−1,1](t),

(A.28) can be written as∑J
j=1wij(x)2

{∑J
j=1wij(x)}2

1
h2

∫
K∗2

(
y − cZ̄j

h

)
fZ̄|Xij(Z̄)dZ̄

=
∑J
j=1wij(x)2

{∑J
j=1wij(x)}2

1
h

∫
K∗2(u)fcZ̄|Xij(y − hu)du

=
∑J
j=1wij(x)2

{∑J
j=1wij(x)}2

1
h

{
fcZ̄|Xij(y)

∫
K∗2(u)du+ h2

∫
u2K∗2(u)f ′′cZ̄|Xij(y − θyhu)du

}

= v1(x)
Jh̄h

fcZ̄|x(y)
∫
K∗2(u)du{1 + o(1)} (A.37)

= v1(x)
πc2β1Jh̄

a2
0fcZ̄|x(y) h(2b∗+1)α2+(2c−2)α1+2β1−1 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2}

×
∫ 1

0
s2b exp{−(2c− 2)γ−1α2s}ds{1 + o(1)}, (A.38)
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which is of the same order as

c−2β1J−1h̄−1h(2b∗+1)α2+(2c−2)α1+2β1−1 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2}.

Combining the definition of Wi(x), the order of T ∗∗21 equals

Op[c−1−2β1J−1h̄−1h(2b∗+1)α2+(2c−2)α1+2β1−1 exp{(2c− 2)γ−1h−α2 + 2cβ2ζ−1h−β2}].

(A.39)

Note that T ∗∗21i can be written as (A.37). Thus, the T ∗∗21 can be further written as

v1(x)fcZ̄|x(y)
cJh̄h

∫
K∗2(u)du{1 + o(1)}.

In Case 2, where α2 ≥ 1, it’s hard to calculate the exact rate of T ∗∗1 . Instead we

calculate the upper bound. For large enough J , supy |K∗(y)| is less than

const.
∫ 1

0

|φK(t)|
|φY (t/h)c−1φε(ct/h)|dt

≤ const.
[
h+ h(c−1)α1+β1

∫ 1

Mh
t−(c−1)α1−β1 exp{(c− 1)γ−1h−α2tα2 + cβ2ζ−1h−β2tβ2}dt

]
= O[hconst.c−β1 exp{(c− 1)γ−1h−α2 + cβ2ζ−1h−β2}]. (A.40)

Thus, the order of T ∗∗21 equals

Op[J−1c−1−2β1h̄−1hc3 exp{2(c− 1)γ−1h−α2 + 2cβ2ζ−1h−β2}], (A.41)

for some constant c3. Note that no matter in Case 1 or Case 2, by combining (A.39)

and (A.41), T ∗∗1 can be written as

T ∗∗1 = Op[J−1/2h̄−1/2hc4 exp{(c− 1)γ−1h−α2 + cβ2ζ−1h−β2}], (A.42)

for some constant c4.
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Appendix B

Proof for Chapter 3

In this chapter, we present the conditions and proofs for Theorems 3.1 and 3.2.

To keep notation concise, we use Xij, X̄j, and Ȳj to denote X(ij), X̄(j), and Ȳ(j)

throughout this chapter. Letting q(x, t) = φY |X=x(t), we also denote ∂q(x, t)/∂x as

q′(x, t), ∂2q(x, t)/∂x2 as q′′(x, t), and ∂3q(x, t)/∂x3 as q′′′(x, t). Lastly, the notation

f(n) � g(n) means there exist M1,M2 > 0 such that M1g(n) ≤ f(n) ≤M2g(n).

B.1 Conditions

In this section, we list the conditions that are used in the proof of Chapter 3. Con-

dition H is similar to the conditions for local polynomial estimators in Delaigle and

Meister (2012): For a given x and fixed c, when J →∞,

1. ∑J
j=1wj(x)(X̄j − x)/∑J

j=1wj(x) = 0

2. ∑J
j=1wj(x)(X̄j − x)2/{∑J

j=1wj(x)}2 = b2(x)h̄2 + op(h̄2)

3. ∑J
j=1wj(x)2/{∑J

j=1wj(x)}2 = v2(x)/(Jh̄) +Op{1/(Jh̄)}

4. ∑j1 6=j2 wj1(x)wj2(x)/{∑J
j=1wj(x)}2 = op(1)

5. ∑J
j=1wj(x)k/{∑J

j=1wj(x)}k = Op{1/(Jh̄)k−1}

6. wj(x) = 0 when |X̄j − x| > Ch̄, where C is a constant.

The quantities b2(x), v2(x) are continuous functions and are related to wj(x). The

weight function wj(x) is the generalized weight and is related to K̄h̄(·), X̄j, and
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the type of estimator. Note that condition (i) does not hold for the local constant

estimator. Like in the Theorems 2.1 and 2.2, we only focus on the proof of the local

linear estimator. The proof for local constant estimator is omitted.

Condition TO describes the tail behavior of q(x, t) and its derivatives in the or-

dinary smooth case: When q(x, t) is ordinary smooth, as t→∞,

1. |q′(x, t)| � t−ρ0(x) log(t)

2. |q′′(x, t)| � t−ρ0(x) log(t)2

3. |q′′′(x, t)| � t−ρ0(x) log(t)3.

Condition TS describes the tail behavior of q(x, t) and its derivatives in the super

smooth case: When q(x, t) is super smooth, as t→∞,

1. |q′(x, t)| � exp{−|t|ρ2(x)/%(x)}|t|ρ1(x)+ρ2(x) log(t)

2. |q′′(x, t)| � exp{−|t|ρ2(x)/%(x)}|t|ρ1(x)+2ρ2(x) log(t)2

3. |q′′′(x, t)| � exp{−|t|ρ2(x)/%(x)}|t|ρ1(x)+3ρ2(x) log(t)3.

B.2 Proof of Theorem 3.1

Proof of Theorem 3.1. The homogeneous estimator f̂HP (y) can be written as

f̂HP (y) = 1
2π

∫ ∞
−∞

e−ityÛ(ct)1/cφK(ht)dt,

where

Û(ct) =
∑J
j=1wj(x) exp(ictZ̄j)∑J

j=1wj(x)φε(ct)
.

To obtain the asymptotic property of f̂HP (y|x) − f(y|x) under Condition OO, we

start with the following decomposition,

f̂HP (y|x)− f(y|x) = 1
2π

∫
e−ity

{
Û(ct)1/c − q(x, t)

}
φK(ht)dt (B.1)

+ 1
2π

∫
e−ityq(x, t) {φK(ht)− 1} dt. (B.2)
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The term (B.2) is exactly the last summand in Bh̄,h(x, y) in Theorem 3.1. It suffices

to check (B.1), which can be written as

1
2π

∫
e−ity

[
{Ũ(ct) + ∆3(ct)}1/c − q(x, t)

]
φK(ht)dt,

where

Ũ(ct) = E[Û(ct)|X ] =
∑J
j=1wj(x)E[exp(ictȲj)|X ]∑J

j=1 wj(x)
, (B.3)

and ∆3(ct) = Û(ct) − Ũ(ct). We want to expand Û(ct)1/c = {Ũ(ct) + ∆3(ct)}1/c

to power series at Ũ(ct). To achieve this goal, recalling that φK(ht) 6= 0 only on

BJ = (−1/h, 1/h), we need (i) |∆3(ct)/Ũ(ct)| < 1/2 on BJ , and (ii) Û(ct) dost not

vanish on BJ . To prove (i), first we have

E{|∆3(ct)|2|X} ≤
∑J
j=1wj(x)2

|φε(ct)|2{
∑J
j=1wj(x)}2 = Op

{
1

Jh̄|φε(ct)|2

}
.

We show in Lemma B.1 that Ũ(ct) = q(x, t)c{1 + op(1)} for a fixed t. Noting that

the order of q(x, t) is t−ρ0(x) under Condition OO, we have

E

{
|∆3(ct)|2

|Ũ(ct)|2

∣∣∣∣∣X
}

= Op

{ 1
Jh̄h2cρ0(x)+2β0

}
.

Thus, |∆3(ct)|2/|Ũ(ct)| = op(1) as Jh̄h2cρ0(x)+2β0 →∞. That is, |∆3(ct)/Ũ(ct)| < 1/2

for all t ∈ BJ uniformly with probability 1. To prove (ii), we can see |Û(ct)| >

inft∈BJ |Ũ(ct)|/2 > 0 as t ∈ BJ and thus Û(ct) does not vanish on BJ . Therefore, we

have when t ∈ BJ ,

Û(ct)1/c = {Ũ(ct) + ∆3(ct)}1/c

= Ũ(ct)1/c + 1
c
Ũ(ct)1/c−1∆3(ct) + λ̃∗∗2 (t)Ũ(ct)1/c−2∆3(ct)2, (B.4)

where |λ̃∗∗2 (t)| ≤ 4. Plugging Equation (B.14) in Lemma B.1 into (B.4), we have

Û(ct)1/c − q(x, t) = 1
c
q(x, t)1−cRŨ(t) + 1

c
Ũ(ct)1/c−1∆3(ct) + λ̃∗2(t)q(x, t)1−2cRŨ(t)2

+ λ̃∗∗2 (t)Ũ(ct)1/c−2∆3(ct)2, (B.5)
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where RŨ(t) and λ̃∗2(t) are defined in Equations (B.20) and (B.14) in Lemma B.1.

Plugging Equation (B.5) into (B.1), we get 4 terms denoted by T1, . . . , T4. We will

show that term T1, together with (B.2), makes up the bias for f̂HP (y|x); the square

of term T2 makes up the variance; terms T3 and T4 are negligible to T1 and T2,

respectively. We list them below and evaluate them one by one. Term T1 is

T1 = 1
2πc

∫ ∞
−∞

e−ityq(x, t)1−cRŨ(t)φK(ht)dt.

Plugging RŨ(t) in Equation (B.20), we have

T1 = h̄2 b2(x)
2π

∫ ∞
−∞

e−ity
{

1
2q
′′(x, t) + c− 1

2
q′(x, t)2

q(x, t)

}
φK(ht)dt (B.6)

+Op(J2ε−2) 1
2πc

∫ ∞
−∞

e−ityq(x, t)1−cM∗(t) log(t)2φK(ht)dt (B.7)

+Op(h̄3) 1
2πc

∫ ∞
−∞

e−ityq(x, t)1−cM∗∗(t) log(t)3φK(ht)dt. (B.8)

Note that to obtain the accurate order of T1, we need to know the order of the

integral in term (B.6). Under Condition TO, there exists a large M > 0 such that

when t > M , ∣∣∣∣∣12q′′(x, t) + c− 1
2

q′(x, t)2

q(x, t)

∣∣∣∣∣ ≤ const.t−ρ0(x) log(t)2.

Thus, ∣∣∣∣∣
∫ ∞
−∞

exp (−ity)
{

1
2q
′′(x, t) + c− 1

2
q′(x, t)2

q(x, t)

}
φK(ht)dt

∣∣∣∣∣
=
∣∣∣∣∣1h
∫ 1

−1
exp(−ity

h
)
{

1
2q
′′(x, t/h) + c− 1

2
q′(x, t/h)2

q(x, t/h)

}
φK(t)dt

∣∣∣∣∣
≤ const.

(∫ Mh

0
+
∫ 1

Mh

) ∣∣∣∣∣1h
{

1
2q
′′(x, t/h) + c− 1

2
q′(x, t/h)2

q(x, t/h)

}∣∣∣∣∣ dt
= O(1) +O{hρ0(x)−1 log(h)2}.

When ρ0(x) > 1, we have the integral in term (B.6) is bounded. Thus, the order of

term (B.6) is h̄2. Following the similar argument, we can see terms (B.7) and (B.8)
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are O(J2ε−2) and O(h̄3), respectively. Note that when J1−εh̄ → ∞, J2−2ε = op(h̄2).

Thus,

T1 = h̄2 b2(x)
2π

∫ ∞
−∞

e−ity
{

1
2q
′′(x, t) + c− 1

2
q′(x, t)2

q(x, t)

}
φK(ht)dt+ op(h̄2). (B.9)

Term T2 is

T2 = 1
2πc

∫ ∞
−∞

e−ityŨ(ct)1/c−1∆3(ct)φK(ht)dt.

Similar to Lemma B.1, when t ∈ BJ , we can expand Ũ(ct)1/c−1 into power series

Ũ(ct)1/c−1 = q(x, t)1−c + λ̃∗1(t)q(x, t)1−2cRŨ(t),

where |λ̃∗1(t)| ≤ 4. Plugging this into T2, we have

T2 = 1
2πc

∫ ∞
−∞

e−ityq(x, t)1−c∆3(ct)φK(ht)dt (B.10)

+ 1
2πc

∫ ∞
−∞

e−ityλ̃∗1(t)q(x, t)1−2cRŨ(t)∆3(ct)φK(ht)dt = T ∗2 + T ∗∗2 . (B.11)

For T ∗2 , letting X̄ = {X̄1, X̄2, . . . , X̄J}, we have E[T ∗22 |X̄ ] is of the same order as∑J
j=1wj(x)2

{∑J
j=1wj(x)}2

1
c2h2E


[

1
2π

∫
exp

(
−ity − cZ̄j

h

)
φK(t)

q(x, t/h)c−1φε(ct/h)dt
]2 ∣∣∣∣∣X̄

 ,
which equals

c2β0−2v2(x)f̄cZ̄|X̄=x(y)
2πJh̄h2(c−1)ρ0(x)+2β0+1

∫ |φK(t)|2t2(c−1)ρ0(x)+2β0

A3(x)2(c−1)A2
2

dt{1 + op(1)},

where f̄cZ̄|X̄=x(y) = limJ→∞
∑J

1 fcZ̄j |X̄j=x(y)/J . Then we have

T ∗2 = Op{c−1+β0J−1/2h̄−1/2h−(c−1)ρ0(x)−β0−1/2}.

Following the similar argument as in T ∗2 , it can be shown that

E[T ∗∗22 |X̄ ] = Op{(h̄4 + 1/J4−4ε) log(h)4J−1h̄−1h−2(c−1)ρ0(x)−2β0−1}.

Thus, when J1−εh̄ → ∞ and h̄ log(h) → 0, T ∗∗2 = op(T ∗2 ). Combing the order of T ∗2

and T ∗∗2 , we have

T2 = Op{c−1+β0J−1/2h̄−1/2h−(c−1)ρ0(x)−β0−1/2}.
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Term T3 is

T3 = 1
2π

∫ ∞
−∞

e−ityλ̃∗2(t) RŨ(t)2

q(x, t)2c−1φK(ht)dt (B.12)

=
∫ ∞
−∞

[{
c

2q
′′(x, t)q(x, t)c−1 + c(c− 1)

2 q′(x, t)2q(x, t)c−2
}
b2(x)h̄2

+M∗∗(t) log(t)3Op(h̄3) +M∗(t) log(t)2Op(J2ε−2)
]2

φK(ht)
q(x, t)2c−1dt,

whereM∗ andM∗∗ are defined in Equations (B.16) and (B.17) in Lemma B.1. Note

that |λ̃∗2(t)| ≤ 4 and order of the term inside integral is t−ρ0(x) log(t)4 with respect

to t. Following the similar argument as in T1, we can show that when ρ0(x) > 1, if

J1−εh̄→∞ and h̄log(h)→ 0, T3 = o(T1).

Term T4 is

T4 = 1
2π

∫ ∞
−∞

e−ityλ̃∗∗2 (t)Ũ(ct)1/c−2∆3(ct)2φK(ht)dt.

Similar to Lemma B.1, when t ∈ BJ , we can expand Ũ(ct)1/c−2 to power series

Ũ(ct)1/c−2 =q(x, t)1−2c + λ̃∗∗1 (t)q(x, t)1−3cRŨ(t), (B.13)

where |λ̃∗∗1 (t)| ≤ 4. Then

T4 = 1
2π

∫ ∞
−∞

e−ityλ̃∗∗2 (t)q(x, t)1−2c∆2
3(ct)φK(ht)dt

+ 1
2π

∫ ∞
−∞

e−ityλ̃∗∗2 (t)λ̃∗∗1 (t)q(x, t)1−3cRŨ(t)∆2
3(ct)φK(ht)dt = T ∗4 + T ∗∗4 .

To evaluate T ∗4 , noting that |λ̃∗∗2 (t)| < 4, we have E(|T ∗4 |2|X ) is less than or equal to

16E
{∫ ∞
−∞

∫ ∞
−∞

e−iy(u−v) ∆3(cu)2

q(x, u)2c−1
∆3(−cv)2

q(x,−v)2c−1φK(hu)φK(−hv)dudv
∣∣∣∣∣X
}
,

which is of the same order as∑
j1 6=j2 wj1(x)2wj2(x)2

{∑wj(x)}4

∫ ∫ |φK(hu)||φK(hv)||φ2c
Y |x(u− v)||φ2

ε(cu− cv)|
|φY |x(u)2c−1||φY |x(−v)2c−1||φε(cu)2||φε(−cv)2|

dudv.

Following the similar argument as in Lemma A.3, as (2c− 1)ρ0(x) + 2β0 > 1,

T ∗4 = Op{J−1h̄−1h−(2c−1)ρ0(x)−2β0−1/2}.
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For T ∗∗4 , note that |RŨ(t)/q(x, t)c| < 1/2 in probability when t ∈ BJ . Thus, T ∗∗4 =

Op(T ∗4 ). Combining the order of T ∗4 and T ∗∗4 , we have

T4 = Op{J−1h̄−1h−(2c−1)ρ0(x)−2β0−1/2}.

When Jh̄h2cρ0(x)+2β0 →∞, T4 = op(T2).

Combining the order of T1, T ∗2 , T ∗∗2 , T3, and T4, together with term (B.2), we

finish to show that

f̂HP (y|x)− f(y|x) = 1
2π

∫
e−ityq(x, t) {φK(ht)− 1} dt+ T1 + T ∗2 {1 + op(1)}

= Bh̄,h(x, y) + V
1/2
h̄,h

(x, y),

where

Bh̄,h(x, y) = 1
2π

∫
exp(−ity)q(x, t){φK(ht)− 1}dt+ T1

Vh̄,h(x, y) = T ∗22 {1 + op(1)}.

B.2.1 Lemmas for Theorem 3.1

Lemma B.1 shows the expression of Ũ(ct) and Ũ(ct)1/c which are used in the proof

of Theorem 3.1.

Lemma B.1. Under Conditions OO, H, TO, and (C1)–(C3), for a fixed t, Ũ(ct) =

q(x, t)c +RŨ(ct) where RŨ(ct) = op(1) with respect to J . Furthermore, when t ∈ BJ ,

if J1−εh̄→∞ and h̄log(h)→ 0,

Ũ(ct)1/c =q(x, t) + 1
c
q(x, t)1−cRŨ(t) + λ̃∗2(t)q(x, t)1−2cRŨ(t)2, (B.14)

where |λ̃∗2(t)| ≤ 4.

Proof. For Ũ(ct), first we look into the conditional expectation E[exp(ictȲj)|X ] inside

Ũ(ct). Let Dj denote the maximum of |Xij − X̄j| over i = 1, 2, . . . , c. According to
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Delaigle and Meister (2012), for each ε > 0, Dj = Op(c/N1−ε) uniformly in j such

that |X̄j−x| ≤ C̄h̄ and x ∈ I, where C̄ > 0 and I is a given compact, non-degenerate

interval. Note that

E{exp(ictȲj)|X} =
c∏
i=1

q(Xij, t).

For any given t, Taylor expand q(Xij, t) on X̄j, we have

q(Xij, t) = q(X̄j, t) + q′(X̄j, t)(Xij − X̄j)

+ [Re{q′′(ε∗ij, t)}+ iIm{q′′(η∗ij, t)}](Xij − X̄j)2, (B.15)

where ε∗ij and η∗ij are between Xij and X̄j. Then

c∏
i=1

q(Xij, t) = q(X̄j, t)c + c(c− 1)q(X̄j, t)c−2q′(X̄j, t)2(Xij − X̄j)2/2+

cq(X̄j, t)c−1
c∑
i=1

[Re{q′′(ε∗ij, t)}+ iIm{q′′(η∗ij, t)}](Xij − X̄j)2{1 + o(1)}.

Noting that |Xij − X̄j| ≤ Dj, under Condition TO, we write the equation above as

c∏
i=1

q(Xij, t) = q(X̄j, t)c +M∗(t) log(t)2Op(D2
j ), (B.16)

whereM∗(t) is of order t−cρ0(x) with respect to t. Further Taylor expanding q(X̄j, t)

on x, for any given t, we have

q(X̄j, t) = q(x, t) + q′(x, t)(X̄j − x) + q′′(x, t)(X̄j − x)2/2

+ [Re{q′′′(ε∗∗ij , t)}+ iIm{q′′′(η∗∗ij , t)}](Xij − X̄j)3/6,

where ε∗∗ij and η∗∗ij are between X̄j and x. Then

q(X̄j, t)c = q(x, t)c + cq(x, t)c−1q′(x, t)(X̄j − x) + c

2q
′′(x, t)q(x, t)c−1(X̄j − x)2

+ c(c− 1)
2 q′(x, t)2q(x, t)c−2(X̄j − x)2 +M∗∗(t) log(t)3Op(|X̄j − x|3),

(B.17)
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whereM∗∗(t) is of order t−cρ0(x) with respect to t, according to Condition TO. Plug-

ging (B.17) into (B.16), we have
c∏
j=1

q(Xij, t) = q(x, t)c + cq(x, t)c−1q′(x, t)(X̄j − x)

+ c

2q
′′(x, t)q(x, t)c−1(X̄j − x)2

+ c(c− 1)
2 q′(x, t)2q(x, t)c−2(X̄j − x)2

+M∗∗(t) log(t)3Op(|X̄j − x|3) +M∗(t)log(t)2Op(D2
j ). (B.18)

Noting that E[exp(ictȲj)|X ] = ∏c
j=1 q(Xij, t), we plug Equation (B.18) into Equation

(B.3) and have

Ũ(ct) = q(x, t)c + cq(x, t)c−1q′(x, t)
∑J
j=1wj(x)(X̄j − x)∑J

j=1wj(x)

+
{
c

2q
′′(x, t)q(x, t)c−1 + c(c− 1)

2 q′(x, t)2q(x, t)c−2
} ∑J

j=1wj(x)(X̄j − x)2∑J
j=1wj(x)

+
∑J
j=1wj(x)[M∗∗(t) log(t)3Op(|X̄j − x|3) +M∗(t) log(t)2Op(D2

j )]∑J
j=1wj(x)

.

(B.19)

According to Condition H, Equation (B.19) can be written as

Ũ(ct) = q(x, t)c +
{
c

2q
′′(x, t)q(x, t)c−1 + c(c− 1)

2 q′(x, t)2q(x, t)c−2
}
b2(x)h̄2

+M∗∗(t) log(t)3Op(h̄3) +M∗(t) log(t)2Op(J2ε−2) (B.20)

= q(x, t)c +RŨ(t),

where RŨ(t) is the rest part in the right-hand side of the first equation except

q(x, t)c. We can see for any fixed t, RŨ(t) = Op(h̄2 + J2ε−2). Further, under Con-

dition TO, letting t = 1/h, we can see |RŨ(1/h)/q(x, 1/h)c| is of the same order as

(h̄2 + 1/J2−2ε) log(1/h)2 with respect to J . Thus, when t ∈ BJ , if J1−εh̄ → ∞ and

h̄ log(h)→ 0, we have |RŨ(t)/q(x, t)c| < 1/2 uniformly with probability 1. Therefore,

when t ∈ BJ , we can further expand Ũ(ct)1/c to be

Ũ(ct)1/c =q(x, t) + 1
c
q(x, t)1−cRŨ(t) + λ̃∗2(t)q(x, t)1−2cRŨ(t)2, (B.21)
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where |λ̃∗2(t)| ≤ 4.

B.3 Proof of Theorem 3.2

Proof of Theorem 3.2. The proof of Theorem 3.2 is similar to that of Theorem 3.1,

where we rely on Equation (B.5) to decompose f̂HP (y|x)− f(y|x) into 4 terms. The

technical argument to deal with CFs of super smooth distributions is similar to that

of Theorem 2.2. We only show the key steps. There are two assumptions that are

frequently used throughout the proof. Assumption 1 is

Jh̄hd1 exp{−2c%(x)−1h−ρ2(x) − 2cβ2ζ−1h−β2} → ∞,

for any d1. Assumption 2 is J1−εh̄→∞ and h̄hd2 → 0, for any d2.

First, it can be shown that when t ∈ BJ and Assumption 1 holds, we can establish

the expansion of power series of Û(ct)1/c to obtain Equation (B.5). Then we plug

Equation (B.5) into (B.1) and obtain 4 terms, T1, . . . , T4. Same as in Theorem 3.1,

term T1, together with (B.2), makes up the bias for f̂HP (y|x); the square of term T2

makes up the variance; terms T3 and T4 are negligible to T1 and T2, respectively.

For term T1, under Condition TS, we can show the integrals in the terms (B.6),

(B.7), and (B.8) are bounded. Thus, when J1−εh → ∞, we have T1 the same as

Equation (B.9). For term T2, similar to Equation (B.10), we decompose T2 = T ∗2 +T ∗∗2 .

Following the similar argument as in Lemma A.4, we have

T ∗22 = Op[c−2−2β1J−1h̄−1hd3 exp{2(c− 1)%(x)−1h−ρ2(x) + 2cβ2ζ−1h−β2}],

for some constant d3. We also have when Assumption 2 holds, T ∗∗2 = op(T ∗2 ), and

term T3 = op(T1). For term T4, it can be shown that under Assumption 2,

T4 = Op[J−1h̄−1hd4 exp{(2c− 1)%(x)−1h−ρ2(x) + 2cβ2ζ−1h−β2}],

for some constant d4. In addition, when Assumption 1 holds, T4 = op(T ∗2 ).
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Combining the order of T1, T ∗2 , T ∗∗2 , T3, and T4, together with term (B.2), we

finish to show that

f̂HP (y|x)− f(y|x) = 1
2π

∫
e−ityq(x, t) {φK(ht)− 1} dt+ T1 + T ∗2 {1 + op(1)}

= Bh̄,h(x, y) + V
1/2
h̄,h

(x, y),

where

Bh̄,h(x, y) = 1
2π

∫
exp(−ity)q(x, t){φK(ht)− 1}dt+ T1

Vh̄,h(x, y) = T ∗22 {1 + op(1)}.
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Appendix C

Appendix for Chapter 4

C.1 Derivation of the Log-likelihood Function

In this section, we derive the log-likelihood function under the Dorfman testing pro-

tocol. Let x denote the pool size and G denote the pool diagnosis. The true status

of the ith individual in the pool is Ãi, and the corresponding diagnosis is Ai, where

i = 1, . . . , x. Let g, ai, and ãi denote the outcome of G, Ai, and Ãi, respectively,

where g, ai, ãi ∈ {0, 1}. Lastly, denote by z = ∑x
i=1 ai. We first introduce Lemma

C.1, and the log-likelihood function follows by direct calculation.

Lemma C.1. Assume that the test results are independent conditional on the true

statuses of the individuals and there is no dilution effect. Then

P (G = 1, A1 = a1, . . . , Ax = ax)

=[π(x|θ)− Se](1− Sp)zSx−zp + π(1|θ)z[1− π(1|θ)]x−zSe,

where π(x|θ) is defined in Section 4.2.1.
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Proof. Under the two assumptions stated in the lemma,

P (G = 1, A1 = a1, . . . , Ax = ax)

=
∑

ãi∈{0,1}
P (G = 1, A1 = a1, . . . , Ax = ax|Ã1 = ã1, . . . , Ãx = ãx)

× P (Ã1 = ã1, . . . , Ãx = ãx)

=
∑

ãi∈{0,1}
P (G = 1|Ã1 = ã1, . . . , Ãx = ãx)

× P (A1 = a1, Ã1 = ã1) . . . P (Ax = ax, Ãx = ãx)

= P (G = 1|Ã1 = 0, . . . , Ãx = 0)P (A1 = a1, Ã1 = 0) . . . P (Ax = ax, Ãx = 0)

+
∑

{ã1,...,ãx}6={0,...,0}
P (G = 1|Ã1 = ã1, . . . , Ãx = ãx)

× P (A1 = a1, Ã1 = ã1) . . . P (Ax = ax, Ãx = ãx).

The first term equals

(1− Sp)z+1Sx−zp (1− p)x.

The second term equals

Se[pSe + (1− p)(1− Sp)]z[(1− p)Sp + p(1− Se)]x−z − Se(1− Sp)zSx−zp (1− p)x.

We finish the proof by adding up the two terms.

The log-likelihood function of DT directly follows Lemma C.1.

91



C.2 Additional Simulation Evidence

Table C.1: Point estimation for DT with a fixed number of individuals N = 5000. Two
settings are considered: pool size x = 5 with n = 1000 pools and pool size x = 10 with
n = 500 pools. In each setting, B = 1000 simulations are implemented. BIAS denotes the
average bias over the 1000 Monte Carlo data sets. SD denotes the sample standard deviation
of the 1000 estimates, and SE denotes the averaged standard error. The Mean-squared error
(MSE) is also shown. All values are multiplied by 103.

x = 5 x = 10
p Se Sp p Se Sp

Sp = 0.90

Se = 0.90
BIAS 0.83 -0.15 -1.09 2.68 -10.38 -0.67

SD 9.74 67.87 16.59 12.44 86.94 11.51
SE 9.96 75.85 16.78 16.76 96.88 12.79

MSE 0.10 4.61 0.28 0.16 7.67 0.13

Se = 0.95
BIAS 1.55 -6.47 0.94 2.27 -14.59 -0.58

SD 8.01 52.57 15.18 8.77 67.22 10.86
SE 9.14 69.20 15.36 9.12 80.52 10.80

MSE 0.07 2.81 0.23 0.08 4.73 0.12

Se = 0.99
BIAS 2.66 -21.28 1.37 2.65 -22.67 -0.44

SD 6.69 38.67 14.69 6.67 46.24 10.48
SE 8.73 65.18 14.60 8.11 74.56 10.45

MSE 0.05 1.95 0.22 0.05 2.65 0.11

Sp = 0.95

Se = 0.90
BIAS 0.88 -2.54 0.37 0.82 -2.00 0.02

SD 7.55 53.27 11.57 6.63 51.39 8.15
SE 7.92 56.07 12.05 6.62 50.27 8.41

MSE 0.06 2.84 0.13 0.05 2.65 0.07

Se = 0.95
BIAS 1.30 -6.57 1.01 0.71 -2.48 0.01

SD 6.90 43.36 10.74 5.66 39.47 8.24
SE 7.36 52.27 11.32 5.93 42.75 7.99

MSE 0.05 1.92 0.12 0.03 1.56 0.07

Se = 0.99
BIAS 2.27 -15.20 2.54 1.34 -9.31 0.51

SD 5.40 29.81 9.37 4.74 24.50 7.32
SE 6.92 48.18 10.67 5.56 38.29 7.69

MSE 0.03 1.12 0.09 0.02 0.69 0.05

Sp = 0.99

Se = 0.90
BIAS -0.20 4.89 -0.74 0.20 0.59 -0.18

SD 5.92 39.26 7.58 5.07 30.59 5.86
SE 5.96 39.81 8.23 5.08 30.54 5.88

MSE 0.04 1.57 0.06 0.03 0.94 0.03

Se = 0.95
BIAS 0.18 0.85 -0.11 0.19 0.29 0.05

SD 5.16 31.34 6.93 4.66 24.07 5.67
SE 5.57 35.80 7.83 4.67 24.04 5.69

MSE 0.03 0.98 0.05 0.02 0.58 0.03

Se = 0.99
BIAS 1.06 -6.47 1.46 0.83 -3.02 0.89

SD 4.00 18.94 5.20 4.05 13.57 5.29
SE 5.25 31.36 7.38 4.48 20.11 5.50

MSE 0.02 0.40 0.03 0.02 0.19 0.03
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Table C.2: Operating characteristics estimation for DT with a fixed number of individuals
N = 5000. Two settings are considered: pool size x = 5 with n = 1000 pools and pool
size x = 10 with n = 500 pools. In each setting, B = 1000 simulations are implemented.
Summarized results include: true value (TRUE), coverage probability (CP95), and average
length (LEN) of 95% Wald confidence intervals for E(T ), E(C), PPV , NPV .

x = 5 x = 10
TRUE CP95 LEN TRUE CP95 LEN

Sp = 0.90

Se = 0.90
E(T ) 0.481 0.944 0.056 0.520 0.950 0.086
E(C) 0.967 0.969 0.034 0.952 0.962 0.056
P P V 0.632 0.964 0.239 0.518 0.958 0.176
NP V 0.990 0.995 0.035 0.989 0.993 0.052

Se = 0.95
E(T ) 0.492 0.961 0.056 0.541 0.938 0.087
E(C) 0.971 0.988 0.029 0.956 0.991 0.043
P P V 0.648 0.948 0.206 0.534 0.964 0.155
NP V 0.995 0.994 0.032 0.995 1.000 0.039

Se = 0.99
E(T ) 0.501 0.966 0.057 0.557 0.932 0.087
E(C) 0.974 0.988 0.027 0.958 0.999 0.037
P P V 0.661 0.941 0.189 0.546 0.960 0.143
NP V 0.999 0.991 0.030 0.999 1.000 0.032

Sp = 0.95

Se = 0.90
E(T ) 0.442 0.944 0.053 0.491 0.948 0.085
E(C) 0.981 0.966 0.022 0.973 0.939 0.025
P P V 0.804 0.959 0.179 0.701 0.958 0.166
NP V 0.990 0.984 0.026 0.990 0.939 0.024

Se = 0.95
E(T ) 0.454 0.949 0.054 0.511 0.953 0.086
E(C) 0.985 0.979 0.019 0.977 0.959 0.020
P P V 0.814 0.960 0.159 0.713 0.946 0.150
NP V 0.995 0.970 0.024 0.995 0.997 0.019

Se = 0.99
E(T ) 0.463 0.953 0.055 0.527 0.954 0.087
E(C) 0.988 0.988 0.017 0.980 0.982 0.017
P P V 0.821 0.954 0.146 0.722 0.956 0.140
NP V 0.999 0.989 0.022 0.999 0.998 0.016

Sp = 0.99

Se = 0.90
E(T ) 0.411 0.941 0.051 0.467 0.954 0.084
E(C) 0.989 0.932 0.014 0.987 0.935 0.013
P P V 0.961 0.984 0.125 0.926 0.973 0.162
NP V 0.990 0.940 0.018 0.990 0.943 0.014

Se = 0.95
E(T ) 0.423 0.946 0.052 0.487 0.949 0.085
E(C) 0.993 0.985 0.011 0.992 0.934 0.010
P P V 0.963 0.997 0.113 0.930 0.971 0.149
NP V 0.995 0.993 0.016 0.995 0.937 0.011

Se = 0.99
E(T ) 0.432 0.963 0.052 0.503 0.958 0.086
E(C) 0.997 0.993 0.009 0.995 0.921 0.007
P P V 0.964 1.000 0.105 0.933 0.983 0.140
NP V 0.999 0.993 0.014 0.999 0.991 0.008
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Table C.3: Point estimation for DT with a fixed number of tests m = 3000. BIAS
denotes the average bias over B = 1000 Monte Carlo data sets. SD denotes the sample
standard deviation of the 1000 estimates, and SE denotes the averaged standard error. The
Mean-squared error (MSE) is also shown. All values are multiplied by 103.

Sp = 0.90 Sp = 0.95 Sp = 0.99
p Se Sp p Se Sp p Se Sp

Se = 0.90

p = 0.05
BIAS 1.10 -4.21 -0.51 0.32 1.91 -0.27 -0.06 1.88 -0.47

SD 8.05 67.79 12.84 6.13 44.27 8.82 4.47 27.73 5.87
SE 8.38 72.28 12.98 6.01 43.76 9.04 4.57 27.97 6.01

MSE 0.07 4.61 0.17 0.04 1.96 0.08 0.02 0.77 0.04

p = 0.10
BIAS 1.63 -2.67 0.14 0.67 -0.34 0.13 0.13 0.68 -0.18

SD 12.64 46.80 14.86 10.10 33.30 11.59 7.84 23.37 7.66
SE 13.01 47.58 14.73 10.27 33.96 11.64 8.35 24.73 9.08

MSE 0.16 2.20 0.22 0.10 1.11 0.13 0.06 0.55 0.06

p = 0.15
BIAS 0.44 1.78 -0.72 1.07 -0.62 0.22 -0.92 2.43 -1.46

SD 17.73 40.71 18.13 14.76 30.56 14.69 11.36 23.71 10.50
SE 17.77 40.35 17.74 14.70 30.96 14.90 12.29 24.41 12.52

MSE 0.32 1.66 0.33 0.22 0.93 0.22 0.13 0.57 0.11

Se = 0.95

p = 0.05
BIAS 1.37 -6.38 0.67 0.73 -2.87 0.02 0.23 -1.38 -0.03

SD 6.99 53.19 11.95 5.48 37.37 8.49 4.25 23.92 5.85
SE 7.59 64.35 12.14 5.71 40.07 8.71 4.37 24.29 5.89

MSE 0.05 2.87 0.14 0.03 1.40 0.07 0.02 0.57 0.03

p = 0.10
BIAS 0.85 -0.81 -0.90 0.44 0.43 -0.32 0.05 0.40 -0.58

SD 10.70 36.52 12.94 9.32 29.51 11.11 7.42 20.72 7.81
SE 11.95 43.60 14.11 9.64 31.07 11.32 7.92 21.85 8.99

MSE 0.12 1.34 0.17 0.09 0.87 0.12 0.06 0.43 0.06

p = 0.15
BIAS 1.66 -1.62 0.21 1.17 -0.78 0.95 -0.38 1.45 -0.64

SD 15.79 34.35 16.67 13.57 27.88 14.13 10.13 18.77 9.69
SE 16.54 36.92 17.10 13.73 28.27 14.51 11.59 21.73 12.34

MSE 0.25 1.18 0.28 0.19 0.78 0.20 0.10 0.35 0.09

Se = 0.99

p = 0.05
BIAS 2.18 -19.29 -0.24 1.16 -8.97 0.41 0.66 -3.35 0.74

SD 6.18 39.85 12.26 4.56 23.48 7.88 3.68 13.49 4.91
SE 7.31 61.90 11.90 5.39 36.70 8.07 4.18 19.30 5.53

MSE 0.04 1.96 0.15 0.02 0.63 0.06 0.01 0.19 0.03

p = 0.10
BIAS 3.03 -10.64 0.67 2.10 -5.98 1.39 1.13 -2.45 0.96

SD 8.94 26.62 12.24 8.12 19.08 9.48 6.27 12.16 6.45
SE 11.41 41.39 12.75 9.05 26.83 10.42 7.56 18.54 8.80

MSE 0.09 0.82 0.15 0.07 0.40 0.09 0.04 0.15 0.04

p = 0.15
BIAS 3.85 -8.87 1.75 2.55 -4.74 2.29 1.17 -1.63 0.62

SD 12.63 23.08 15.57 10.37 16.04 12.10 7.84 11.17 7.50
SE 15.69 34.26 16.63 12.69 23.51 13.33 11.04 19.03 12.13

MSE 0.17 0.61 0.25 0.11 0.28 0.15 0.06 0.13 0.06
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Table C.4: Point estimation for MPT with a fixed number of tests m = 3000. BIAS
denotes the average bias over B = 1000 Monte Carlo data sets. SD denotes the sample
standard deviation of the 1000 estimates, and SE denotes the averaged standard error. The
Mean-squared error (MSE) is also shown. All values are multiplied by 103.

Sp = 0.90 Sp = 0.95 Sp = 0.99
p Se Sp p Se Sp p Se Sp

Se = 0.90

p = 0.05
BIAS 2.49 -1.43 1.58 2.22 -1.92 1.36 1.41 0.77 0.44

SD 11.58 94.77 13.54 10.77 94.96 11.47 9.02 89.81 7.73
SE 15.09 148.91 14.30 13.92 146.97 12.23 12.93 145.07 10.04

MSE 0.14 8.98 0.19 0.12 9.02 0.13 0.08 8.07 0.06

p = 0.10
BIAS -0.08 5.24 0.20 0.03 4.57 0.29 -0.98 6.48 -1.63

SD 12.35 37.77 17.12 11.62 37.63 15.33 9.86 36.10 10.94
SE 12.62 39.78 17.30 11.84 39.63 15.74 11.22 39.97 14.23

MSE 0.15 1.45 0.29 0.14 1.44 0.24 0.10 1.35 0.12

p = 0.15
BIAS -0.78 2.71 -0.43 -0.68 2.61 -0.21 -2.04 3.62 -3.40

SD 12.59 17.22 20.68 11.82 17.36 19.44 9.68 16.68 13.79
SE 12.74 17.47 20.49 12.02 17.52 19.27 11.42 17.67 18.13

MSE 0.16 0.30 0.43 0.14 0.31 0.38 0.10 0.29 0.20

Se = 0.95

p = 0.05
BIAS 4.43 -25.33 2.33 3.38 -20.45 2.05 2.40 -15.81 0.90

SD 10.72 81.67 12.71 9.37 78.98 11.49 7.71 73.98 7.60
SE 14.33 135.95 14.26 13.09 135.40 12.33 12.23 135.75 10.20

MSE 0.13 7.31 0.17 0.10 6.66 0.14 0.07 5.72 0.06

p = 0.10
BIAS 0.34 2.76 0.57 0.39 2.36 0.60 -0.60 4.35 -1.45

SD 10.80 31.74 17.05 10.27 32.35 15.27 8.62 30.90 10.73
SE 11.55 36.78 17.38 10.92 36.95 15.86 10.39 37.44 14.42

MSE 0.12 1.02 0.29 0.11 1.05 0.23 0.08 0.97 0.12

p = 0.15
BIAS -0.63 2.12 -0.60 -0.54 2.03 -0.37 -1.70 2.90 -3.46

SD 11.27 14.77 20.67 10.67 14.97 19.55 8.98 14.54 14.12
SE 11.45 14.97 20.55 10.87 15.07 19.38 10.40 15.25 18.31

MSE 0.13 0.22 0.43 0.11 0.23 0.38 0.08 0.22 0.21

Se = 0.99

p = 0.05
BIAS 5.66 -43.78 3.05 4.51 -37.55 2.75 3.55 -33.22 1.45

SD 9.12 67.46 12.58 8.10 65.23 11.41 6.51 59.96 7.42
SE 13.54 124.85 14.29 12.38 125.30 12.36 11.64 126.44 10.31

MSE 0.12 6.47 0.17 0.09 5.66 0.14 0.06 4.70 0.06

p = 0.10
BIAS 2.46 -6.12 2.38 2.42 -6.57 2.32 1.46 -4.98 -0.08

SD 7.94 20.17 16.20 7.66 20.83 14.67 6.24 19.32 10.16
SE 10.60 32.40 17.35 10.08 32.82 15.88 9.63 33.41 14.49

MSE 0.07 0.44 0.27 0.06 0.48 0.22 0.04 0.40 0.10

p = 0.15
BIAS 1.00 -0.66 1.54 0.93 -0.71 1.38 -0.25 0.14 -1.94

SD 9.01 9.53 19.18 8.58 9.70 17.95 7.26 9.23 12.64
SE 10.32 12.24 20.20 9.89 12.46 19.11 9.52 12.72 18.11

MSE 0.08 0.09 0.37 0.07 0.10 0.32 0.05 0.09 0.16
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Table C.5: Test characteristics using DT with a fixed number of tests m = 3000. MNT
and SDNT denote the mean and standard deviation of the number of tests using DT
over B = 1000 Monte Carlo data sets. W-CP, S-CP, and LR-CP denote the coverage
probability of joint 95% Wald, score, and likelihood ratio confidence regions of θ over the
1000 estimates. W-VOL denotes the average volume of joint 95% Wald confidence region.
The value of W-VOL is multiplied by 105.

Sp = 0.90 Sp = 0.95 Sp = 0.99
p = 0.01 p = 0.05 p = 0.10 p = 0.01 p = 0.05 p = 0.10 p = 0.01 p = 0.05 p = 0.10

Se = 0.90

MNT 2717 2781 2813 2718 2777 2813 2714 2775 2807
SDNT 94 72 60 97 71 64 94 77 63
W-CP 0.948 0.945 0.937 0.932 0.951 0.948 0.959 0.957 0.96
S-CP 0.954 0.938 0.948 0.944 0.953 0.947 0.952 0.956 0.945

LR-CP 0.958 0.94 0.949 0.942 0.958 0.949 0.963 0.961 0.954
W-VOL 42.37 30.10. 75.03 13.60 21.47 28.60 5.19 8.45 11.32

Se = 0.95

MNT 2723 2783 2819 2721 2779 2815 2714 2778 2813
SDNT 94 74 60 94 74 64 93 75 63
W-CP 0.959 0.965 0.958 0.963 0.945 0.946 0.956 0.962 0.96
S-CP 0.949 0.949 0.951 0.96 0.941 0.942 0.948 0.952 0.955

LR-CP 0.961 0.955 0.959 0.962 0.945 0.943 0.954 0.957 0.961
W-VOL 33.55 31.05 42.94 9.43 19.13 15.98 3.06 6.40 10.20

Se = 0.99

MNT 2724 2769 2817 2698 2763 2798 2695 2780 2816
SDNT 96 77 61 102 83 65 101 76 61
W-CP 0.963 0.967 0.959 0.965 0.958 0.972 0.946 0.951 0.952
S-CP 0.931 0.951 0.934 0.944 0.947 0.961 0.935 0.957 0.95

LR-CP 0.948 0.958 0.947 0.962 0.955 0.973 0.954 0.968 0.967
W-VOL 21.86 24.50 32.51 8.15 10.95 13.55 2.08 4.05 6.19
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Table C.6: Test characteristics using MPT with a fixed number of tests m = 3000. MNT
and SDNT denote the mean and standard deviation of the number of tests using MPT
over B = 1000 Monte Carlo data sets. W-CP, S-CP, and LR-CP denote the coverage
probability of joint 95% Wald, score, and likelihood ratio confidence regions of θ over the
1000 estimates. W-VOL denotes the average volume of joint 95% Wald confidence region.
The value of W-VOL is multiplied by 105.

Sp = 0.90 Sp = 0.95 Sp = 0.99
p = 0.01 p = 0.05 p = 0.10 p = 0.01 p = 0.05 p = 0.10 p = 0.01 p = 0.05 p = 0.10

Se = 0.90

MNT 3000 3000 3000 3000 3000 3000 3000 3000 3000
SDNT 0 0 0 0 0 0 0 0 0
W-CP 0.844 0.916 0.942 0.851 0.924 0.934 0.894 0.946 0.955
S-CP 0.962 0.95 0.939 0.958 0.953 0.938 0.954 0.952 0.942

LR-CP 0.971 0.952 0.937 0.968 0.952 0.94 0.976 0.963 0.953
W-VOL 35.38 19.78 17.58 27.38 16.79 15.49 20.23 14.22 13.75

Se = 0.95

MNT 3000 3000 3000 3000 3000 3000 3000 3000 3000
SDNT 0 0 0 0 0 0 0 0 0
W-CP 0.846 0.937 0.935 0.869 0.94 0.94 0.913 0.968 0.959
S-CP 0.953 0.946 0.934 0.951 0.956 0.944 0.962 0.95 0.949

LR-CP 0.964 0.955 0.936 0.967 0.956 0.945 0.98 0.968 0.958
W-VOL 32.51 16.86 13.35 25.59 14.54 11.94 19.30 12.50 10.75

Se = 0.99

MNT 3000 3000 3000 3000 3000 3000 3000 3000 3000
SDNT 0 0 0 0 0 0 0 0 0
W-CP 0.861 0.961 0.96 0.884 0.961 0.969 0.919 0.98 0.984
S-CP 0.952 0.957 0.957 0.947 0.953 0.958 0.953 0.958 0.96

LR-CP 0.968 0.972 0.962 0.964 0.97 0.963 0.977 0.979 0.976
W-VOL 30.32 14.42 9.42 24.17 12.62 8.60 18.49 11.01 7.87
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C.3 Comparison of Ds-Optimal Designs

We investigate the comparison between MPT and DT under D-optimality in Section

4.4.1. This section presents the comparison under Ds-optimality. Assume the budget

is m assays. We denote x∗M = (1, x∗M , 20) the corresponding Ds-optimal design,

where x∗M is the best middle pool size calculated based on xL, xU , m, p, Se, and Sp

according to Huang et al. (2017). In the Ds-optimal design, the number of pools is

not evenly divided. Denote by n∗M the Ds-optimal number of pools corresponding

to x∗M following Huang et al. (2017). In DT, similar to Section 4.4.1, we use the

following steps to determine the optimal design:

• Step 1: For each x from 2 to xU , calculate the largest integer n that satisfies

Equation (4.3).

• Step 2: Go through each pair of (n, x) identified by Step 1. Find (n∗D, x∗D) =

argmin
(n,x)

I−D(θ|n, x)[1,1], where I−D(θ|n, x) is the generalized inverse of ID(θ|n, x)

and [1, 1] means the first element in I−D(θ|n, x).

Define

g(θ,m, xL, xU) = log I−M(θ|n∗M ,x∗M)[1,1] − log I−D(θ|n∗D, x∗D)[1,1].

We take logarithm to make the value of g(θ,m, xL, xU) in an appropriate scale.

If g(θ,m, xL, xU) > 0, DT achieves higher estimation efficiency in terms of Ds-

optimality than MPT and vice versa. We can draw the similar conclusion as in

Section 4.4.1 from figure C.1.
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Figure C.1: g(θ, 3000, 1, 20) of different p, Se, and Sp. The horizontal red line indicates
the position of 0.
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