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ABSTRACT 

Chronic low back pain (cLBP) continues to be one of the most common health 

conditions in the United States. Despite an enormous amount of research, there are no 

treatments for this condition that consistently improve outcomes. For decades health 

professionals have incorporated spinal manipulative therapy (SMT) into their practice, 

but the evidence to date has shown that SMT has only small to modest effect sizes when 

treating cLBP. One way to improve the effectiveness of SMT is by getting a better 

understanding of its underlying mechanisms so that the intervention be more 

specifically targeted to the appropriate individual.  

While biomechanical theories exist to help explain how SMT works, they do not 

sufficiently explain all the phenomena associated with this treatment. To better 

understand the mechanisms behind SMT, researchers have begun to study the 

neurophysiological effects of SMT using functional magnetic resonance imaging (fMRI); 

however, to date there have been no published studies assessing the effects of SMT on 

the changes in brain activation during the performance of lumbopelvic motor tasks. 

Therefore, the overall purpose of this body of work was to describe the differences in 

brain activity between individuals with and without cLBP when performing lumbopelvic 

motor tasks, and to assess the effects of SMT on brain activity in these populations.
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 Results from this body of work will help health care professionals implement this 

technique in a more specific and focused manner.  

Key findings from this study demonstrated how individuals with cLBP exhibit a 

broader network of brain activation compared to asymptomatic individuals when 

performing lumbopelvic motor tasks. Specifically, there appears to be two networks that 

are active during the performance of lumbopelvic tasks: a “motor network” that consists 

of the precentral gyrus and the supplemental motor area that is common in both 

groups, and a “motor-pain network” that is only active in individuals with cLBP consist of 

the Insula and Middle Cingulate Cortex. These two networks seem to share a common 

hub, the Putamen, that can assist in translating information between these two 

networks. 

It is the Putamen that is impacted the most with spinal manipulation. Both the 

levels of activation and functional connectivity increases with spinal manipulation in 

individuals with cLBP, but not asymptomatic individuals. This suggests that spinal 

manipulation might affect the cortico-basal-ganglia motor loop in individuals with cLBP.
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CHAPTER 1 

INTRODUCTION 

Low back pain continues to be a debilitating condition that affects a large portion 

of the population [1].  It is estimated that approximately 40% of adults will suffer from 

low back pain at some point, with upwards of half of them meeting the criteria for 

chronic pain [2, 3]. Costs associated with chronic low back pain (cLBP) continue to rise at 

an alarming rate creating an [4] imperative that more effective treatments be 

developed. One barrier to creating better treatments for cLBP is that its underlying 

mechanisms are poorly understood. For example, approximately 85% of people with 

cLBP [5] have no detectable anatomic, endocrine, vascular or peripheral nerve 

abnormalities that are likely to contribute to the development and persistence of pain. 

Therefore, with an absence of a clear pathoanatomical source of dysfunction, 

investigations have started to focus on additional etiologies.  

One promising contribution to the chronicity of symptoms are alterations that 

occur in the central nervous system when individuals experience cLBP[6, 7].Previous 

research using functional magnetic resonance imaging (fMRI) has reported alterations in 

certain regions of the brain that are responsible for the motor control of the low back 

muscles (i.e. cortical representation)[8-12]. For example, individuals with cLBP have 

differences in response to sensory stimuli [13-17] and, when at rest, the communication
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 between different regions of the brain is altered (i.e. the resting state functional 

connectivity) [15, 16, 18-22]. Taken together, there is ample evidence that individuals 

with cLBP experience changes in the central nervous system as measured by fMRI and 

specifically in the brain.  However, most of the evidence to date has focused on the 

appreciation of sensory stimulus and individuals in a resting state. This has provided 

preliminary information; however, it has limited generalizability to clinical setting. There 

exists a need to investigate the changes in cortical function that occur in individuals with 

cLBP during the performance of salient motor tasks.  

To study changes in cortical function during motor tasks, researchers have 

utilized functional magnetic resonance imaging (fMRI) [23-28]. Currently, the research 

into the role of motor systems and pain processing has primarily relied on the 

performance of upper extremity motor tasks [29, 30]. However, investigations into low 

back pain may necessitate utilization of lower extremity motor tasks. Previous research 

has demonstrated that cLBP results in specific cortical changes to the lumbopelvic 

region; during both muscle [10, 11, 31] and cutaneous [8, 9] stimulation. Furthermore, 

biomechanical research has suggested deficits in lumbopelvic motor control in 

individuals with cLBP [32-36]. Therefore, utilizing lumbopelvic systems in a fMRI task 

holds the great promise when studying motor system changes that occur in those with 

cLBP.  

To address changes in motor systems and improve lumbopelvic motor control, 

physical therapists frequently incorporate spinal manipulation (SMT) into their 

treatment plan [37-41]. However, despite its widespread adoption into clinical practice, 
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several systematic reviews have reported small to modest effect sizes [42-44]. One 

potential reason for the small effect sizes is the lack of a clear understanding of its 

mechanisms [39, 40].  

Therefore, the full scope for this body of work was to: 1.) examine the literature 

regarding the cortical changes that occur in individuals with cLBP, with a specific focus 

on changes in somatotopic organization, sensorimotor integration, functional 

connectivity, and cortical density; 2.) validate a series of previously established 

lumbopelvic motor tasks that can be performed in a fMRI scanner and to describe the 

cortical activation in an asymptomatic population (Aim 1); 3.) compare and contrast 

cortical activation during lumbopelvic tasks in individuals with and without cLBP (Aim 2); 

and 3.) assess the effects spinal manipulation on cortical activation in individuals with 

cLBP (Aim 3).  

The first aim was to validate a previously described protocol to perform 

lumbopelvic tasks within the scanner and to more fully describe the cortical activation 

patterns of these tasks. While the previous study was able to describe the EMG 

activation and the concurrent whole brain activation, there was no evaluation of the 

functional connectivity during these exercises. Functional connectivity analysis examines 

the brain networks by correlating brain activity in spatially separated regions [45]. By 

getting a better understanding of the functional connectivity in asymptomatic 

individuals, we were better able to interpret changes that occurred in individuals with 

cLBP.  
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The second aim of this study was to compare and contrast differences in cortical 

activation between individuals with and without cLBP during the performance of 

lumbopelvic tasks. To our knowledge, there have been no reports on the performance 

of lumbopelvic tasks in individuals with cLBP. By addressing this key gap in the reported 

literature, this study will help clinicians better understand the role of pain on movement 

impairments and brain activation in individuals with cLBP. 

Finally, the third aim of this study was to assess the effects of SMT on cortical 

activation during the performance of lumbopelvic tasks. Findings from this study 

contributed to the overall understanding of the mechanisms behind spinal manipulation 

and helped clarify the effects SMT has on cortical function. This in turn will help 

clinicians better incorporate SMT into their clinical decision making.
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CHAPTER 2 

REVIEW OF THE LITERATURE 

2.1. Changes in Cortical Processing of Sensorimotor Activity Associated with Low Back 

Pain 

2.1.a Introduction 

 The inability to link structural abnormalities of the lumbar spine to low back pain 

[1, 2] has led researchers to search elsewhere for primary and secondary sources of low 

back pain. Supraspinal changes, i.e. changes of the structure and function of the central 

nervous system superior to the spinal cord, are receiving increased attention by 

researchers as they are commonly present in individuals with chronic low back pain 

(cLBP) [3-9].  While there are a multitude of central changes that occur in patients with 

cLBP [5, 6, 8, 10], alterations in somatotopic organization (SO), i.e. the brain’s 

topographical processing of sensory and motor information, and mal-adaptive changes 

in the integration of this information, more commonly referred to as sensorimotor 

integration, have received particular interest[11, 12]. The exact impact of these changes 

is unknown, but they may relate to the severity of low back pain [13] and are potentially 

able to be affected by spinal manipulation (SMT)[14-16]. Yet despite the increased 

interested in somatotopic organization and sensorimotor integration, there are some 

key knowledge gaps that need to be addressed.
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2.1.b Somatotopic Organization in the Motor Cortex 

 Plow et. al. defined somatotopic organization (SO) as the way the brain 

represents movements and sensation of different body segments [17].  A generalized 

pattern is present at birth [18] with the pelvic floor[19] and lower limbs being closer to 

the midline and the hands being represented most laterally. This can change depending 

on the individual’s environment and experiences [4, 7, 9, 13, 20]. Initially described by 

Beevor et. al in 1890[21] in a series of excitation experiments, it was historically thought 

that the SO of the motor cortex (M1) maintained a discrete organization between-limbs 

[22], with within-limb organization occupying the same region of the cortex to allow for 

multi-joint coordination [23-25]. However, more recent research suggests that the 

within-limb somatotopy also contains discrete centers of control with overlap between 

regions to allow for coordinated movement [17, 26-28].  

 Evidence for this phenomenon comes from a 2010 study by Plow and colleagues 

[17].  Using fMRI data, they evaluated the activation patterns in 24 adults while 

performing finger, elbow, and ankle motor tasks. The authors reported that in each of 

the participants there were discrete, non-overlapping representations for each task with 

the finger representation occurring more laterally in the cortex than the elbow; also, the 

elbow was more lateral than the ankle. Furthermore, they found that while each task 

had a portion of their total active representation that was unique to the task, the finger 

and elbow did share some overlap. This demonstrated that while there are discrete 

centers of control for the elbow, overlap does exist. Ordered somatotopy has also been 
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described by Kapreli in the lower limb [28] and was subsequently supported by 

Cunningham et. al [27]. 

 Somatotopic organization is thought to undergo changes in individuals with cLBP 

[4, 13, 29-31]. While exploration of this phenomenon has been ongoing [32], it wasn’t 

until 2011 that it was first quantified in the low back. Tsao and colleagues [29] evaluated 

the extent of cortical somatotopical reorganization on individuals with LBP. Twenty (20) 

individuals (recurrent LBP n=9) underwent transcranial magnetic stimulation (TMS) and 

electromyographic (EMG) recordings. First, they inserted EMG wires into the deep 

multifidus and the longissimus muscles. Then, they used single-pulse monophasic TMS 

to map the motor cortex. The authors found that individuals with recurrent LBP had 

overlapping areas of control for the deep multifidus and the longissimus, whereas the 

asymptomatic individuals maintained separate centers. This demonstrated for the first 

time that there was a loss of discrete organization in the motor cortex in individuals 

with LBP, which the authors termed “smudging”.   

 In 2015, Schabrun et. al. [13] built upon this work and demonstrated that the 

degree of smudging in the motor cortex is directly related to the severity of low back 

pain.  The authors recruited 50 individuals (recurrent LBP n=27) to undergo both surface 

EMG and TMS. Surface EMG was used at the L3 and L5 paraspinal muscles to record 

signals generated from a single-pulse TMS.  Additionally, they collected data on pain 

severity (11-point numerical rating scale (NRS)) and duration of pain. The authors found 

that in individuals with recurrent LBP, there were fewer discrete peaks at the L3 level 

when compared to healthy individuals. Fewer discrete peaks indicates that the degree 
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of over-lap and co-representation in the motor cortex is greater, indicating a loss of 

discrete cortical organization. Furthermore, in individuals with moderate-to-severe LBP 

(>5/10 on the NRS) had a single discrete peak whereas this was found in only 53% of 

participants with mild LBP (<5/10 on the NRS). 

 Changes in the cortical organization (i.e. cortical reorganization) of the primary 

motor cortex is not unique to individuals with cLBP. In 2015, Shanahan et. al. [33] used 

fMRI to assess the changes in the location of peak activation in the motor cortex in 

individuals with and without knee osteoarthritis (OA). A total of 18 participants 

(moderate/sever OA n=11) participated in the study and a significant anterior shift in 

the representation of the knee and ankle was discovered. There was also a significant 

difference in the somatotopic organization of knee and ankle movements in individuals 

with knee OA when comparted to asymptomatic controls. Furthermore, the authors 

were able to correlate these findings to poorer performance of the motor task, lending 

evidence to the theory that the poor motor control in individuals with knee OA could be 

cortically driven.  

 Further evidence of motor control being linked to changes in cortical 

organization comes from Tsao in 2008[30]. Tsao et. al. took 22 individuals (recurrent LBP 

n=11) through a similar EMG and TMS mapping sequence as described above; however, 

for this study they inserted the intramuscular fine-wire electrodes into the transverse 

abdominis muscle instead of the deep multifidus and longissimus muscles. The authors 

found that in symptomatic individuals the cortical mapping for the transverse abdominis 

was located posterior and lateral to that of the asymptomatic individuals. Additionally, 
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feed-forward activation of the transverse abdominis during a rapid arm flexion task was 

found to be latent in symptomatic individuals when compared to asymptomatic 

individuals. The authors concluded that the deep abdominal muscles reorganized in the 

motor cortex in individuals with recurrent LBP, and that this reorganization is related to 

the timing of onset of the transverse abdominis. However, it should be noted that they 

simply found both of these phenomena to be present in individuals with recurrent low 

back pain and made no effort to statistically correlate the two measures, making 

definitive conclusions difficult to draw. 

 As stated previously, multiple regions of the brain exhibit somatotopic 

organization. For the motor cortex, this organization manifests as discrete centers of 

control with considerable amount of overlap to allow for coordination of movement [17, 

26-28]. The pelvic floor and lower limbs are organized more medially [19], with the 

upper extremities and specifically the hand being represented most laterally [18]. It has 

been demonstrated that the organization of the motor cortex is altered in individuals 

with low back pain [13, 29, 30, 33], and that the degree of alteration relates to the 

amount of pain and loss of motor control [29, 30]. However, any area associated with 

movement will, to some extent, exhibit somatotopic organization [34]. This includes, but 

is not limited to, the cerebellum [35-37], supplemental motor area [24, 27, 38, 39], 

parietal operculum [40], and importantly the primary and secondary sensory cortices 

[26, 27].  
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2.1.c Somatotopic Organization of the Sensory Cortices 

 The primary (S1) and secondary (S2) somatosensory cortex exhibit both 

organized somatotopic organization [26, 41-43] and functional reorganization in people 

with chronic pain [4, 7, 9, 20].  However, whereas the motor cortex exhibits distinct 

centers of control with areas of overlap to allow for coordinated movements [17, 26-

28], the somatotopic organization in S1 and S2 is believed to be more discrete and 

segregated [26, 27]. Functionally this makes sense – while it would be beneficial for the 

overlap of cortical control for different joints in the coordination of movements, such 

overlap in the cortical control for sensory discrimination would limit the proprioceptive 

processing for different body parts [26].   

 Evidence of the discrete somatotopic organization in the sensory cortices comes 

from Cunningham and colleagues in 2013[27]. The investigators had 24 healthy 

individuals (male = 4) perform finger, ankle and elbow joint tracking tasks during fMRI 

scanning. The authors argued that based on previous research, the complex movements 

of joint tracking compared to simple motor tasks required greater planning and were 

more applicable to motor skills [26, 44-48]. Therefore, the joint tracking allowed the 

authors to more accurately assess a region’s role in motor skill and control. The authors 

confirmed that the motor cortex had distinct areas of representation with significant 

overlap for the elbow and finger task. However, in the sensory cortex there were 

distinct centers of representation for the separate ankle, elbow and finger tracking tasks 

with was minimal to no overlap in the representation.  
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 Additionally, in 2001 Hlustik et. al. used high-resolution fMRIs obtained from 

healthy volunteers to map the somatotopic organization of both M1 and S1 [26]. Eleven 

healthy, right-handed volunteers performed motor tasks involving the first digit, the 

fifth digit and wrist, and the middle three digits. The authors found that orderly 

somatotopy existed in both M1 and S1; however, there were several significant 

differences between the two areas. First, there were significantly more clusters of 

activation in the S1 than the M1, suggesting that there was increased differentiation 

between tasks in S1. Second, there was significantly less overlap in the S1 than the M1, 

suggesting that the cortical representations in S1 is more discrete than M1.  

The findings of Cunningham et. al., and Hlustik et. al., lend evidence to the theory that 

the somatotopic organization of M1 has discrete centers of control with significant 

overlap whereas the S1 remains more segregated in its organization. As previously 

stated, individuals who experience chronic pain are believed to undergo re-organization 

of these areas. For example, Hotz-Boendermaker et. al. in 2016 [4] used fMRI to assess 

the somatotopic organization of the low back in the S1 and S2 cortices of 26 individuals 

(cLBP n=13). The authors found that not only was there a reduction in activation in S2, 

but a blurring of the somatotopic representation. While this research demonstrated that 

in individuals with cLBP there is a reduction in the discrete organization in S2, it is not 

the only maladaptive change that occurs with chronic pain.  
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2.1.d Treatment of Impaired Somatotopic Organization 

 Individuals with cLBP are likely to exhibit a reduction in the discrete organization 

of several key sensorimotor areas. However, there is a paucity of literature describing 

treatments that are designed to restore the normal cortical organization of the 

sensorimotor areas of the cortex.  Schabrun et. al. in 2014 [49] combined transcranial 

direct current stimulation (tDCS) and peripheral electrical stimulation (PES) in the 

treatment of chronic recurrent low back pain. Sixteen individuals were recruited to 

participate in a placebo-controlled crossover study where they received four 

treatments: 1) anodal tDCS/PES; 2) anodal tDCS/sham PES; 3) sham tDCS/PES; or 4) 

sham tDCS/sham PES. The authors sought to measure the post-intervention changes in 

pain, cortical organization of the motor cortex, sensitization and sensory function. To 

assess changes in pain, participants rated their pain on a 11-point numeric rating scale. 

To assess the cortical organization of the motor cortex, the authors utilized a single-pule 

TMS stimulation using the same protocols as described above [13]. In order to assess 

the sensitization, pressure-pain thresholds were recorded over the greatest point of 

pain, and higher sensory function was determined by two-point discrimination testing of 

the lumbar area. 

 Treatment included a 30-minute session of concurrent tDCS and PES. tDCS was 

applied using saline-soaked sponge electrodes over the scalp at the approximate 

location of the motor cortex. Concurrently, PES was applied using electrodes placed 

over the lumbar paraspinals at the location of L3 and L5. The authors reported that 

when the participants received any combination of the four treatments that included an 
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active intervention there was a reduction in pain. However, when the participants 

received the combined active treatment of tDCS and PES they experienced 

improvements in all outcome measures. The authors suggested that the increased 

efficacy of the combined treatments reflected a priming mechanism of the two 

treatments that dually decreased pain sensitivity while normalizing cortical organization. 

This therefore allow the participants to receive greater pain reduction than either 

intervention alone.   

2.2. Sensorimotor Integration 

2.2.a Sensorimotor Integration – Introduction.   

 Baarbe et. al. defined sensorimotor integration (SMI) as the process by which the 

somatosensory information received by the brain during a motor task is integrated with 

the motor output in order to refine and improve the efficiency of the task performed 

[50]. Improper integration, due to abnormalities of the peripheral afferent input or 

following disruption in the processing of the neural networks involved in motor tasks, 

can lead to significant motor disturbances [11]. While disruptions naturally occur with 

aging[51], they have been observed in individuals with Parkinson’s disease[52, 53], 

Huntington’s disease[52], chronic regional pain syndrome[54], dystonia[55, 56], 

fibromyalgia[57, 58] and more consequential to the subject of this review, spinal 

pain[14, 59, 60].  
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2.2.b Sensorimotor Integration and Spinal Pain 

  As previously mentioned, deficits in sensorimotor integration are present in a 

variety of conditions. While sensorimotor integration deficits have not been directly 

observed in neck pain it has been inferred by several other sources. Individuals with 

chronic neck pain exhibit disturbances in cervical joint position sense [61-63], postural 

stability [61, 64-66], and even oculomotor control [62]. However, evidence for a lack of 

sensorimotor integration is more direct in individuals with cLBP.  

In 2015, Pijnenburg et. al. [59] performed resting state fMRI on the sensorimotor 

network in individuals with nonspecific LBP (NSLBP). Seventeen individuals with NSLBP 

and 17 age-matched asymptomatic controls performed 5 sit-to-stand-to-sit (STSTS) 

tasks followed by fMRI resting state scanning. Not only did the NSLBP group have 

significantly slower STSTS times, there was a significant difference in the functional 

connectivity between the different sensorimotor areas. They found that decreased 

functional connectivity between the left motor cortex and lobules IV and V of the 

cerebellum were associated with decreased performance in individuals with non-

specific LBP. Specifically, the researchers found that in individuals with NSLBP there was 

poor integration of the supplementary motor area and S1 cortex when compared to 

healthy controls. The connectivity of the M1 correlated significantly with the STSTS 

times, as well as the cerebellum. Simply stated, poor performance of the STSTS task was 

correlated to decreased functional connectivity of the motor cortex and cerebellum.   
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 It is important to note that in the above study, the resting functional connectivity 

findings were not correlated to pain. Therefore, while deficits in SMI may be linked to 

poor motor control, one cannot use this finding to correlate it to pain [59]. However, in 

2005 McCabe et. al. [58] performed the first of a series of studies to directly link 

sensory-motor incongruences to pain. Forty-one asymptomatic participants performed 

a series of bilateral upper and lower limb movements while viewing a mirror to simulate 

minor sensory-motor conflict. Each individual sat with the mirror placed between their 

limbs and performing alternating shoulder flexion and extension. The participants either 

performed this task in a congruent manner (i.e., both limbs moving into flexion and 

extension at the same time) or in an incongruent manner (i.e., one limb moving into 

flexion while the other moved into extension). However, as they were performing this 

task, the mirror was blocking their view of the contralateral limb. Therefore, when they 

were performing the task in a congruent manner, the visual feedback mirrored the 

motor output. However, when they were performing the task in a incongruent manner, 

they visual feedback contradicted the motor output.  

 When the individuals performed the task in an incongruent manner, 66% of the 

participants reported feeling some sort of anomalous sensory symptom during the task. 

This could include pain, numbness/tingling, aching or changes in temperature, limb 

weight or altered body image.  This was the first study to directly assess the effects of 

differences between motor and predicted somatosensory feedback. These findings help 

to formulate a basis for the cortical component of centrally mediated pain. However, 
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limitations to this study included the fact that only asymptomatic individuals were 

included.  

 In 2007 McCabe et. al. [57] expanded their protocol to include individuals with 

fibromyalgia syndrome (FMS). Twenty-nine adults with FMS and 26 healthy controls 

perform the aforementioned motor-sensory congruency task. The authors found that in 

almost 90% of the individuals with FMS there were reports of some degree of change in 

sensory perceptions, whereas in the asymptomatic control group that percentage was 

on 48%. These findings further support the hypothesis that motor-sensory 

incongruencies, or deficits in SMI, can lead to pain and sensory disturbances.  

2.2.c Retraining of Sensorimotor Integration with Physical Therapy Interventions 

 With the growing body of literature finding sensorimotor integration deficits in 

individuals with chronic pain conditions, researchers have started to develop treatment 

techniques to directly target this condition. Some of the earlier attempts to address SMI 

deficits included graded motor imagery (GMI) and mirror therapy. Moseley in 2006 [12] 

established a protocol whereby individuals first performed limb laterality tasks, followed 

by imagined movements then mirror movements. In a sample of 50 participants with 

chronic reginal pain syndrome (CRPS), 25 participants were randomized to receive GMI 

intervention and 25 to receive standard physical therapy care. Those who received the 

GMI intervention underwent a three-step protocol. First, they established right/left 

discrimination of their limbs as was found beneficial in previous studies [67]. Following 

the discrimination task, the second step was to have the participants imagine 
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performing movements in a pain free manner. Finally, the third step was to have 

participants perform mirror therapy. Moseley reported significantly greater 

improvements in pain and function in the GMI group when compared to the control 

group. He conjectured that these improvements could be contributed to the sequential 

activation of the pre-motor cortex, followed by the coordinated activation of the pre-

motor and M1 cortex (thus improving the integration of information between these two 

areas) [12, 67].   

 While other researches have investigated the mechanisms and potential 

therapeutic effects of graded motor imagery and mirror therapy, there has not been any 

other studies that have investigated these mechanisms in specific context of 

sensorimotor integration. This remains a key knowledge gap and potential area for 

future research.  

2.3 Alterations in Cortical Activity 

2.3.a Mechanical Stimulation 

 Individuals with cLBP pain exhibit changes in cortical activation during 

mechanical stimulation.  In 2009, Kobayashi et. al. recruited 14 individuals (cLBP = 6) to 

undergo fMRI while applying manual pressure to the L4-L5 lumbar spinal interspace 

[68]. They found that in both groups there was activation in the prefrontal, insular, 

posterior cingulate cortex (PCC), supplementary motor area (SMA), and premotor areas. 

However, in individuals with cLBP, there was increased activation in the right insula, 

SMA, and PCC when compared to asymptomatic individuals. Interestingly, there was no 



22 
 

activation in the primary or secondary somatosensory regions (S1/S2). They 

hypothesized that since S1/S2 is primarily activated during superficial pain stimulation, 

that the mechanical compression present in their study induced deep tissue pain and 

thus did not result in activation in these regions. Taken together, they concluded that 

individuals with cLBP exhibit a unique network of activation in response to mechanical 

pain. 

 In 2004 Giesecke et. al. compared activation across individuals with cLBP (n=11), 

fibromyalgia (n=16), and no symptoms (n=11) [69]. They found that wen equal pressure 

was applied to tender locations, individuals with cLBP had activation in the contralateral 

S1, S2, ipsilateral S2, inferior parietal lobule, and the cerebellum. When this same 

stimulus was applied in asymptomatic individuals, only the contralateral S2 was 

activated. This demonstrated that in individuals with cLBP, there was a broader network 

of activation in regions associated with pain processing.  

 Taken together, these two studies demonstrate that individuals with cLBP exhibit 

a broader network of activation in response to mechanical stimulus. While the role of S1 

and S2 is not clear, there seems to be increased activation in regions specifically 

associated with the appraisal of pain.  

2.3.b Thermal Stimulation 

 Individuals with cLBP also exhibit changes in cortical activation in response to 

thermal stimulation. In 2006, Baliki et. al. recruited 22 individuals (cLBP = 11) to undergo 

fMRI while simultaneously receiving thermal stimulation. While both groups 
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demonstrated increased activity in bilateral insula, thermal stimulation in individuals 

with cLBP revealed increases in the dorsolateral (DLPFC) and medial pre-frontal cortex 

(mPFC). During high pain epochs, the activation in these two regions (mPFC and DLPFC) 

were negatively correlated with one another.  

 In a follow up study in 2010[70], Baliki et. al. demonstrated that during thermal 

stimulus, individuals with cLBP and asymptomatic individuals demonstrated similar 

activation patterns. However, the nucleus accumbens activity significantly differed 

between the groups, and was able to differentiate between the groups at a very high 

accuracy. Therefore, these two studies suggest that during thermal stimulus, there is 

abnormal activation in the mPFC and the DLPFC, while the nucleus accumbens is able to 

differentiate activity between the two groups.  

2.3.c Lumbopelvic Tasks  

 As stated before, fMRI is a safe and non-invasive measurement tool that can be 

used to indirectly asses cortical activation. However, one of the limitations of fMRI is 

that you must remain very still in a small, confined space as head movement can easily 

lead to artifact[71]. This has limited the mapping of the motor cortex in the fMRI to 

primarily upper extremity and distal lower extremity tasks. To date, there has only been 

two published studies that have utilized fMRI to assess cortical activation related to 

activation of the lumbopelvic musculature.    

Moseley in 2005 [72] and Louw et. al. in 2015 [73] reported similar case studies 

where they assessed the effect of therapeutic neuroscience education on activation of 
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the cortex following contraction of the transverse abdominis. The each evaluated a 

young female who experienced multiple years of low back pain. Prior to the 

intervention, both studies found significant activations in the areas related to the 

aforementioned pain matrix; however, in the Moseley case study [72] he found post-

education that the participant has significant reductions in all areas except the S1. 

Comparably, Louw[73] found dramatic reductions in the cerebellum and PAG, with a 

noticeable increase in the motor cortex. 

There are, however, several limitations to these studies. First, neither group 

assessed a control participant or condition. Therefore, it is difficult to determine if the 

changes in activation are due to the condition or simply natural variations in activity to a 

task. Second, both studies were case studies, limiting their external validity. Third, 

neither had the subject more the multiple segments of the lumbopelvic region. A more 

complex task would theoretically require increased coordination between joints and 

greater demands for motor control. Regardless, these two studies suggest a proof of 

concept that lumbopelvic tasks can be performed within the MRI environment without 

causing excess head motion, and also that the BOLD response to an abdominal motor 

task is something that can be quickly and purposely manipulation within an 

experimental design.  
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2.4 Functional Connectivity  

2.4.a Overview 

 Functional connectivity is defined as “statistical dependencies among remote 

neurophysiological events [74].” In resting state functional connectivity studies, brain 

networks are defined by correlating brain activity in spatially separated regions at rest 

[75]. Of particular interest is the default mode network, which has been shown to have 

functional connectivity in a resting state [76-78]. As this is commonly thought of the 

brain’s intrinsic activity, several researchers have sought to elucidate changes in this 

network, as well as attempt to demonstrate different networks that might be affected.     

  

2.4.b Changes in Resting State Functional Connectivity 

Multiple studies have investigated changes associated with resting state 

functional connectivity [79-88]. In general, the results from these studies demonstrate 

that there are reorganizations in the functional connectivity in individuals with cLBP. 

Overall, changes in functional connectivity were found in the insula [85-88], middle 

frontal gyrus [87], mPFC [79-82, 88], S1[84, 88], ACC [86], inferior parietal lobule [86], 

nucleus accumbens [81], and the dorsolateral PFC[85]. 

Of specific interest is the changes in the nucleus accumbens and the mPFC [81]. In 2012, 

Baliki et. al. recruited 39 individuals with acute low back pain, and followed them for a 

duration of one year. They separated the groups into those who had persistent LBP 

(n=19) and those who recovered (n=20). They discovered that at baseline, those who 
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had a higher positive functional connectivity between the nucleus accumbens and the 

mPFC were more likely to develop persisting pain. These results suggest that 

corticostriatal functional connectivity is important in predicting those who will develop 

persistent low back pain.  

2.5 Cortical Changes Resulting from Spinal Manipulative Therapy  

2.5.An Overview 

Spinal manipulation is a key intervention commonly utilized by physical 

therapists to treat painful disorders of the spine [89-93]. While a full review of the 

mechanisms behind spinal manipulative therapy is beyond the scope of this literature 

review (for a detailed report of the mechanisms of SMT see Bialosky et. al. [94]), it is 

important to review its potential impact in changing the cortical processing of 

somatosensory information.  

2.5.b Effects of Spinal Manipulation on Sensorimotor Integration  

In addition to graded motor imagery, spinal manipulative therapy (SMT) has 

been investigated as a potential treatment technique to help restore SMI [14-16, 95, 

96]. In 2007, Haavik-Taylor and Murphy [16] used somatosensory-evoked potentials 

(SEPs) to assess the somatosensory integration in 12 individuals with recurrent neck 

stiffness or pain. The authors found that following a cervical spine manipulation, there 

was a significant decrease in the amplitude of the parietal N20 and frontal N30 SEP 

components. The N20 SEP peak represents the arrival of the afferent information 

coming into the sensory cortex [14]. A decrease in this indicates that there was a 
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general decrease in S1 processing post manipulation [16]. The N30 SEP component is 

more complicated, and is generated by the motor, premotor and prefrontal cortex 

network activity, indicating that it is a marker of neural processing in these regions [14].  

Significant decrease in this region suggest that there is a decrease of activity in these 

cortical loops, indicating a more normalized integration process, e.g. co-evaluation of 

sensory and motor information, and a reduction in physiological noise in the system 

[16]. 

 In 2008, a similar study was reported by Haavik-Taylor and Murphy [97] that 

assessed changes using transcranial magnetic stimulation (TMS). The authors assessed 

the changes in sensorimotor integration following spinal manipulation in individuals 

with sub-clinical neck pain (i.e., individuals who have recurrent neck pain but none at 

the time of testing). Their outcome measures included short interval intracortical 

inhibition (SICI), short interval intracortical facilitation (SICF), and cortical silent periods 

(CSPs). Short interval intracortical inhibition and facilitation is a technique that involves 

subthreshold conditioning of a targeted cortical area followed by a suprathreshold test 

stimulus [98]. At higher frequencies of stimulation (1 to 6 milliseconds between stimuli), 

the test has an inhibitory response on the motor cortex [99], yet at lower frequencies (8 

to 30 milliseconds between stimuli) the test has a faciliatory effect [99]. It is thought 

that the SICI is likely to relate to cortical inhibition of movement [100], whereas SICF is 

directly related to cortical facilitation of movement [101]. Motor evoked potentials 

(MEPs) are the recorded electrical activity in a muscle following activation of central 

motor pathways [102] as a direct result of TMS. CSPs relate to the changes in 
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proprioceptive input and partly by activation of descending inhibitory controls [103]. It 

has been reported CSPs decrease in SMI disorders like dystonia [104, 105].  

 To determine the SICI and the SICFs, Haavik-Taylor et al. measured MEPs in the 

abductor pollicis brevis muscle following the suprathreshold test stimulus of the testing 

paradigm. The authors found that immediately after the cervical spine manipulation, 

there was an increase in the SICF, a decrease in the SICI and a shortening of the CSP in 

the abductor pollicis brevis. However, when the measures were repeated in the 

extensor indices, they found the opposite effect: decreased SICF and lengthening of the 

CSP. Therefore, they concluded that SMT may alter SMI, however it was difficult to 

determine where the beneficial effects were occurring [97].   

 Several other studies have investigated the mechanisms into which SMT might 

help restore disordered SMI [15, 96]. However, it is important to mention the significant 

limitations of these papers [14-16, 95-97]. Each of the aforementioned papers include in 

their design sub-clinical neck pain participants. The authors define sub-clinical neck pain 

as intermittent pain that is absent on the day of testing.  While there may be legitimate 

reasons to bar painful participants in EEG studies [106], there is no reason to exclude 

them from TMS studies. Additionally, these studies claimed to have manipulated a sub-

clinical dysfunctional joint that was painful upon palpation. However, reliability of 

passive assessment of intervertebral motion is poor at best [107]. Furthermore, their 

control condition was a sham manipulation in lieu of an asymptomatic population. Thus, 

while it is fair to claim that spinal manipulation may improve SMI, claims that subluxed 

vertebral joints cause SMI deficits are hard to support. 
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2.5.c Effects of SMT as Assessed by Functional Magnetic Resonance Imaging 

 As illustrated above, the supraspinal effects of SMT have been measured by a 

variety of measurement tools. TMS, EEG, and SEP have all been used to assess changes 

associated with SMT. While fMRI has been used extensively to measure cortical 

organization [19, 28, 33, 37, 40, 42, 44, 46, 108], there has been relatively few studies 

that have utilized it to study the effects of SMT. Functional MRI is a safe and non-

invasive imaging modality that can assess changes in oxidation states. Hemoglobin has 

different magnetic properties depending on the concentration of oxygen [109]. 

Therefore, as different parts of the brain activate, there is an increase in the 

oxyhemoglobin to that area. By measuring this change in the oxyhemoglobin, one can 

have an indirect or proxy measurement of the amount of activation in the area [109].   

 A seminal study that utilized fMRI to assess the central changes associated with 

spinal manipulation was reported in 2013 by Sparks et. al. Ten healthy volunteers 

(female n=5) received noxious stimuli to the cuticle of the index finger while undergoing 

fMRI. Following the baseline fMRI, the individuals then received a thoracic manipulation 

targeting the mid-thoracic spine. After the manipulation, the participants underwent a 

follow-up fMRI after which they rated their perceived pain to the noxious stimulant. The 

authors found that following spinal manipulation there was a decrease in activation as 

measured by BOLD response in the bilateral cerebellum, amygdala, thalami, 

periaqueductal gray (PAG), insular cortex, anterior cingulate cortex (ACC), 

somatosensory cortices, supplementary motor area (SMA) and the premotor area. 
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Overall, there was a 31% reduction in the BOLD response with a significant relationship 

between the insular cortex and pain reduction.  

 While there was no control group to compare the manipulation to and there was 

a limited sample size, this was the first study that assessed the cortical changes 

following SMT utilizing fMRI. Each of the aforementioned locations where a reduction of 

signal was observed is frequently associated with what is known as the “pain matrix.” 

While the pain matrix is thought to be a genetically pre-determined network of neurons 

that activate in response to pain[110, 111], it’s capacity to discriminate pain from salient 

information has been questioned[112, 113]. Regardless, this study demonstrated that 

by performing spinal manipulation to the mid thoracic spine, significant reductions in 

BOLD activation occur. However, a significant limitation to this study was the absence of 

individuals with pain. Sparks et. al. only imaged asymptomatic individuals, making the 

extrapolation of these findings difficult.  

 In 2014, Gay et. al. [114] assessed changes in resting state functional 

connectivity in 24 asymptomatic participants. Put simply, functional connectivity it is the 

level of concurrent activation between two remote regions of the brain [115]. The 24 

participants were divided into three groups: SMT, spinal mobilization, or therapeutic 

touch. The functional connectivity was measured via fMRI between the S1, S2, 

thalamus, ACC, posterior cingulate cortices (PCC), anterior and posterior insula, and 

PAG. The authors found that following spinal manipulation there were system wide 

changes in connectivity, both increased and decreased depending on the regions 
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selected. However, while it was shown that SMT can alter functional connectivity, the 

amount change did not differ between any of the treatment groups. 

 One of the biggest limitations of this study was the lack of a symptomatic 

population. With no marker for improvement, it would be erroneous to conclude that 

the alteration of the resting functional connectivity between different regions or the 

brain indicates any sort of improvement. Also, they made no attempt to determine the 

stability of the functional connectivity measure by a lack of a control group.  

 There are several limitations in these studies that need to be addressed. First, 

neither study used a symptomatic population. Sparks et al. used a completely 

asymptomatic population while Gay et al. used an asymptomatic population with 

induced low back pain. The effects of spinal manipulation may be different in individuals 

with chronic pain and so future studies should address this gap. Second, neither study 

used a true control group; therefore, the effects of their treatment may simply be due 

to test-retest variability inherent in fMRI. Future studies should incorporate a no-

intervention control to assess for the effects unique to the manipulation.  

Taken together, these Sparks et. al., and Gay et. al., provide preliminary proof of 

concept that spinal manipulation has a central effect. These two studies demonstrate 

that spinal manipulation has a potential effect on brain activation in the pain matrix, 

while also altering resting state functional connectivity. However, a key knowledge gap 

is how spinal manipulation might affect cortical activation in during lumbopelvic tasks, 

as it is during these motions that individuals with cLBP commonly report having pain.
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CHAPTER 3 
 

TASK-BASED FUNCTIONAL CONNECTIVITY AND BOLD ACTIVATION DURING WITHIN-SCANNER 

PERFORMANCE OF LUMBOPELVIC MOTOR TASKS: AN FMRI STUDY1

                                                           
1 Jordon MK, Beattie PF, Silfies SP, Bialosky JE and Stewart J. To be submitted to 
Neuroimage. 
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ABSTRACT 

Introduction: Chronic low back pain (cLBP) continues to be one of the most common 

health conditions in the United States. Despite an enormous amount of published 

research, there are no treatments for this condition that consistently improve 

outcomes. To identify more effective interventions, researchers having increasingly 

shifted their focus toward the role of cortical function on the development and 

persistence of cLBP.   

Purpose: The purpose of the current study is to determine the cortical activation 

response and functional connectivity that occurs during performance of lumbopelvic 

tasks in healthy individuals. 

Methods: Seventeen pain-free, right-handed adults participated in this study (10 

female, age 27.8 ± 5.8 years). Participants were trained to perform a modified bridging 

task in which they pushed the back of the left knee, right knee, or both knees into a 22 

cm bolster while undergoing scanning. Whole brain activation and functional 

connectivity of a constrained motor network (bilateral precentral gyrus (PreCG), 

bilateral postcentral gyrus (PostCG), and bilateral supplementary motor area (SMA)) 

were analyzed. 

Results: Whole brain activation during the bilateral bridging task included multiple areas 

in the sensorimotor network (bilateral PreCG, right PostCG, and left SMA). Group-level 

ROI-to-ROI analysis revealed significant correlations between all ROIs within the 

constrained motor network except for the left SMA to left PostCG during the unilateral 
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bridging tasks. The seed-to-voxel analysis demonstrated significant correlations 

between the sensorimotor network of the bilateral SMA, PreCG, and PostCG.  

Conclusion: This is the first study to report in depth assessment of whole brain activity 

and measurement of functional connectivity of a restricted motor network during 

lumbopelvic task performance. Although our results are preliminary, there appears to 

be lower connectivity during lumbopelvic task performance when compared to 

literature of the upper extremity.   

Key words [Back pain, motor control, brain imaging] 

1.0 Introduction 

Chronic low back pain (cLBP) continues to be one of the most common health 

conditions in the United States resulting in increasingly higher economic and social 

burdens on society [1-6]. Interestingly, despite an enormous amount of published 

research, there are no treatments for this condition that consistently improve 

outcomes. To identify more effective interventions, researchers having increasingly 

shifted their focus toward the role of cortical function on the development and 

persistence of cLBP.  For example, alterations in cortical representation [7-11], response 

to sensory stimuli[12-16], and resting state functional connectivity[14, 15, 17-21] have 

been observed.  There is, however, a paucity of research reporting the changes in 

cortical function that occur in individuals with cLBP during the performance of motor 

tasks. 
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Currently, the research into the role of central motor systems and pain 

processing has relied on the performance of upper extremity motor tasks [22, 23]. 

However, investigations into low back pain may necessitate utilization of lumbopelvic 

motor tasks. Previous research has demonstrated that cLBP results in specific cortical 

changes to the lumbopelvic region; during both muscle [9, 10, 24] and cutaneous [7, 8] 

stimulation. Furthermore, biomechanical research has suggested deficits in the 

lumbopelvic motor control in individuals with cLBP [25-29]. Therefore, utilizing 

lumbopelvic systems in a fMRI task holds great promise when studying motor system 

changes directly associated with lumbopelvic movement that occur in those with cLBP.  

In a previous study, we utilized a combination of EMG and fMRI to describe a 

series of motor tasks that recruited lumbopelvic musculature while being performed in 

the MRI scanner [66].  During this previous study, we were able to establish the 

feasibility of measuring BOLD patterns while performing these lumbopelvic tasks in the 

scanner. In the current study we build on these findings by describing in detail the whole 

brain activation and functional connectivity patterns during task performance in a larger 

sample.  Additionally, this research will help address a gap in the literature. Previous 

research has investigated the effective connectivity during an ankle flexion task [30], but 

we are not aware of any studies that have described the relative strengths of functional 

connectivity during lumbopelvic motor tasks. Addressing this deficit in the literature is 

important, as understanding the normative data is imperative before examination of 

changes that may occur in individuals with cLBP.  
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The purpose of the current study is to determine the cortical activation response 

and functional activity that occurs during performance of lumbopelvic tasks in healthy 

individuals. This study tested 3 hypotheses: 1). Pain-free individuals would have strong 

activation in the sensorimotor network that was medially-oriented in the precentral 

gyrus (PreCG) and postcentral gyrus (PostCG); 2). During the bilateral bridging task there 

would be bilateral activation, with the unilateral bridging tasks resulting in unilateral, 

contralateral activation; and 3). The functional connectivity of the sensorimotor network 

would be robust. Confirmation of these hypotheses would allow for future studies to 

better interpret the differences observed in individuals with cLBP.  

2.0 Material and methods 

2.1 Subjects 

Seventeen pain-free participants were recruited to participate in this study (10 

female, age 27.8 ± 5.8 years). Inclusion criteria included: 1) being right-hand dominant; 

2) being between the ages of 18-60; 3) no history of activity limiting low back pain; 4) no 

history inflammatory joint disease or cancer; and 5) no contraindications for undergoing 

MRI. Informed consent was obtained from all participants, and approval for this study 

was given by the University of South Carolina Institutional Review Board. 

2.2 Motor Task 

Participants were trained in the different motor tasks prior to undergoing fMRI. 

The tasks included a modified bridging task where participants pushed the back of the 

left knee (unilateral left), right knee (unilateral right), or both knees (bilateral) into a 
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firm 22 cm bolster to slightly unweight their hips. Instructions to breathe normally were 

given to minimize the potential for physiological noise in the BOLD response. Training 

for the task was also done inside the MRI to familiarize the participant with the scanning 

environment. The bridging tasks were chosen to activate the muscles recruited during 

the performance of functional movements such as ambulation or sit-to-stand 

transitions. Additionally, these tasks resemble exercises that are routinely utilized by 

Physical Therapists to treat individuals with low back pain. In our previous work, we 

demonstrated that participants were able to follow the instructions accurately and that 

the bridging tasks elicited activation in the lumbar multifidus, erector spinae, the 

internal oblique/transverse abdominis, external oblique, rectus abdominis, gluteus 

maximus, and the hamstring muscles[31]. Participants were also trained in a bilateral 

ankle plantarflexion and abdominal tightening task; however, these data were not 

included in the current analysis.  

Participants were trained to minimize head movement during motor task 

performance prior to scanning. Additionally, all participants were scanned with the head 

secured with foam pads within the MRI head coil in order to further reduce head 

movement. 

2.3 fMRI Data Acquisition 

Data were collected using a 3T Siemens MRI. Eight participants completed fMRI 

on a 3T Trio scanner using a 12-channel head coil (447 volumes; 42 axial slices; 2.5 mm 

thick; TR = 1550ms; TE = 34ms; matrix = 64x64 voxels; flip angle = 71˚, 215x215mm FOV) 
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while 9 completed their fMRI on a 3T Prisma scanner using a 20-channel head coil (765 

volumes; 58 axial slices; 2.5 mm thick; TR = 1000ms; TE = 37ms; matrix 64 x 64 voxels; 

flip angle =61˚; 220x220mm FOV). For both scanners, a sagittal T1-weight MPRAGE 

protocol was used to acquire high-resolution structural images (192 slices; 1mm thick; 

TR = 2250ms; TE = 4.11ms; matrix=1 x 1 x 1mm3; 256x256 FOV).  

A block design was utilized where each task was performed in random order for 

12 seconds with a 9.5 second verbal instruction period preceding each task. There were 

at total of six task blocks with a 12 second rest period interleaved between each one 

(Figure 3.1). Participants were visually monitored to ensure they were performing the 

correct task throughout. The task order was recorded and the instructions were 

delivered to the participants using EPrime  (Psychology Software Tools, Inc., Sharpsburg, 

PA).  

2.4 Data Preprocessing 

All data were processed using Statistical Parametric Mapping (SPM 12, Wellcome 

Department of Cognitive Neurology, London, UK), implemented in MATLAB R2017a 

(Mathworks, Natick, MA, USA). Initially, for each run, every volume was realigned to the 

first and unwarped. The mean image for each participant was then normalized to 

standard Montreal Neurological Institute (MNI) space. Once the normalization was 

completed, the parameters were then applied to each volume in the functional run and 

data were resampled to 2 mm x 2 mm x 2 mm voxels. Smoothing was then applied using 

an isotropic Gaussian kernel 8 x 8 x 8 mm3 full width at half maximum. Head motion 
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was then assessed for all analyzed data using the Artifact Detection Tool toolbox 

(http://www.nitric.org/projects/artifact_detect). The first derivative of the head motion 

was used to screen for excessive head motion, and all outliers (defined as a greater than 

2mm difference from the previous volume) were de-weighted during the statistical 

analysis (mean number of outliers per run = 2, ranged from 0 to 8).     

2.5 Statistical Analysis 

2.5.1 Functional Imaging Analysis 

First-level analysis was performed using a general linear model for each 

participant [32, 33]. Contrast maps were calculated for each task period versus rest 

using the first derivative of head motion for all six directions as a regressor of no 

interest. The contrast maps for each of the bridging tasks were then moved to a second-

level random effects analysis. A group analysis using a factorial design was performed 

with a factor for condition (bilateral, unilateral left, and unilateral right). We analyzed 

the main effect for each condition, as well as the combined effect for all bridging tasks. 

Additionally, a t-contrast between the unilateral left and right tasks was created in order 

to determine differences in activation during unilateral bridging. Group-level results 

were thresholded at a p-value less than 0.05 that was corrected for multiple 

comparisons using familywise error (FWE). 

2.5.2 Task-Based Functional Connectivity Analysis 

Functional connectivity during movement was analyzed using the CONN 

toolbox[34]. Each participant’s data was imported into the toolbox along with the task 
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onsets and durations. This allowed for the accounting of each task in the BOLD time-

series. Confounds were then removed via CONN’s CompCor algorithm for physiological 

noise [35] to reduce their effect on the functional connectivity values. We selected six 

seed ROIs we believed represented the motor network likely to be utilized during the 

motor tasks based on previous work[31]. These included the bilateral precentral gyrus 

(PreCG), bilateral postcentral gyrus (PostCG), and bilateral Supplementary Motor Cortex 

(SMA). To create the ROIs, we first created an overall activation map of the mean 

activation of the three bridging tasks against rest. We then used previously defined 

masks of PreCG, PostCG and SMA [36] to extract the peak of activation from within 

these different regions. This resulted in the MNI coordinates: Right PreCG = 8, -34, 60, 

Left PreCG = -14, -30, 64, Right SMA = 6, -18, 62, Left SMA = -6, -20, 62, Right PostCG = 

14, -38, 66, Left PostCG = -20, -36, 60. A 5 mm radius sphere centered on the peak of 

activation was created using MarsBaR, and then used as our seed ROIs.  

We then performed an ROI-to-ROI analysis to determine the functional 

connectivity strength among a priori seed ROIs and target regions in the brain. This 

allowed us to investigate the connectivity within our predefined network. However, as 

this approach limits the scope of inquiry to only the a prior ROIs, we also performed a 

seed-to-voxel analysis between each ROI and every other voxel in the brain in order to 

see if different regions of the brain were functionally connected to our proposed motor 

network during the performance of the lumbopelvic motor tasks. 

We used a weighted GLM approach for the ROI-to-ROI connectivity analysis. A 

bivariate correlation was computed separately on the individual’s BOLD time series for 
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each pair of source and targeted ROIs. Standardized procedures programmed within the 

CONN toolbox performed a Fisher’s Z-transformation to the bivariate correlations to 

improve the assumptions of normality [34]. ROI-to-ROI correlation matrices were 

produced and the Z-transformed correlation values from our ROIs were extracted for 

each participant. The correlation values were then imported into a second-level group 

analysis to determine mean functional connectivity values between our ROIs. A one-way 

ANOVA was performed to assess differences between the tasks. While in our analysis of 

overall activation we chose to correct for multiple comparisons using FWE, we chose to 

use the False Discovery Rate (FDR) method in our ROI-to-ROI analysis. We chose to do 

this because within the CONN toolbox the FWE correction is applied over the entire 

connectivity matrix while FDR correction is applied over just the chosen seed ROIs.  

We also performed a seed-to-voxel analysis to measure the strength between 

each of the a priori ROIs and all the other voxels in the brain. First-level seed-to-voxel 

analysis consisted or performing bivariate temporal correlations among the individuals’ 

time-series data from our generated a priori ROIs and all the other voxels in the brain 

for each of the fMRI runs. We then used the standardized approach within the CONN 

tool box to perform a Fisher’s Z-transformation [34]. These correlations were then 

imported into a second-level group analysis to determine mean levels of connectivity 

within our group and to determine if there were any differences in connectivity patterns 

between tasks. A one-way ANOVA with the within-subject variable of task was used to 

determine if any differences were found between the ROIs in both the ROI-to-ROI and 

the Seed-to-Voxel analysis. Group-level results were thresholded at a p-value less than 
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0.05 that was corrected for multiple comparisons using FDR in order to stay consistent 

with the ROI-to-ROI analysis. 

3.0 Results 

3.1 Brain Activation Patterns 

3.1.1 General Activation Pattern 

A summary of the whole brain activation can be found in (Table 3.1). Activation 

during the bilateral bridging task included multiple areas in the sensorimotor network 

(bilateral PreCGs, right PostCG, and left SMA). Additionally, the peaks of activation (PoA) 

present in the PreCG and PostCG were located medially in the respective gyri.  

Sensorimotor activation was found during the unilateral bridging tasks, with the 

strongest activation found in the contralateral PostCG, PreCG and the SMA. Similar to 

the bilateral bridge task, the location of the POA in the PostCG and PreCG clusters was 

along the medial border. Interestingly, while there was strong activation in the 

contralateral hemisphere during the unilateral bridging tasks (Figure 3.2), when 

comparing the right and left unilateral bridging tasks against each other there were no 

significant differences in activation found using a FWE corrected p-value= 0.05.   

Additional cortical activation during the bridging tasks was found in the left 

Putamen, left Rolandic Operculum, left Inferior Frontal Gyrus, left Midcingulate Cortex, 

and right Supramarginal Gyrus as outlined in Table 3.1.  
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3.2 Functional Connectivity Analysis 

3.2.1 ROI-to-ROI Analysis 

Figure 3.2 summarizes the connectivity values within the motor network that 

was analyzed. Group-level ROI-to-ROI analysis revealed significant correlations between 

all ROIs except for Left SMA to Left PostCG during the unilateral bridging tasks. There 

were consistently stronger correlations in the right hemisphere during performance of 

the left bridging task compared to the right bridge. However, in the left hemisphere 

there was no consistent trend towards a particular pattern. Interestingly, the Left SMA 

to Left PostCG connection was not significant during the unilateral bridging tasks and 

had a very low correlations when compared to the other conditions.  The ANOVA 

revealed that the functional connectivity between the ROIs did not significantly differ 

between the tasks.   

3.2.2 Seed-to-Voxel Analysis 

The seed-to-voxel analysis demonstrated similar findings to that of the whole 

brain analysis (Figure 3.3). As outlined in Tables 3.2-3.19, there were strong connections 

within the sensorimotor network of the bilateral SMA, PreCG, and PostCG. Bilateral 

PostCG had strong connections with the left precuneus during all bridging tasks, while 

the left PostCG had strong connections to the right precuneus during the bilateral and 

left bridging tasks only. Also, the left PreCG had a strong functional connection to the 

left superior frontal gyrus during all three bridging tasks.  
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A one-way ANOVA by task found there to be a significant difference in functional 

connectivity between the right SMA and a cluster of voxels centered in the posterior 

portion of the midcingulate cortex (MNI coordinates -2, -32, 38) when corrected at the 

p-FWE 0.05 level. To further explore this, we created a functional ROI from the 

connectivity results using MarsBar and performed an ROI-to-ROI analysis between the 

functional ROI and the right SMA. We found that during the bilateral bridge there was 

no statistically significant connection between these two regions, while during the 

unilateral bridging tasks they were strongly anti-correlated (Table 3.20). 

Other regions that were found to be functionally connected to the restricted 

sensorimotor network were the bilateral anterior cingulate cortex, bilateral superior 

parietal lobule, bilateral superior frontal gyrus, right central opercular cortex, right 

inferior frontal gyrus, right insular cortex, and left thalamus (Tables 3.2-3.19).  

4.0 Discussion 

4.1 Sensorimotor activation during lumbopelvic motor tasks. 

As hypothesized, during the bridging tasks we found strong activation in the 

sensorimotor areas of the brain. While this study is unique in using lumbopelvic motor 

tasks, previous literature investigating the cortical activation during similar lower limb 

tasks supports the general activation patterns we found. During investigations into 

unilateral ankle[37-40], knee[39-42], and toe[39, 40] movements, previous research 

report consistent activation in the SMA, Precentral Gyrus, and Postcentral Gyrus. These 
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findings support our inclusion of these three regions into our motor network during the 

functional connectivity analysis.  

Previous studies have found that the pre- and postcentral gyrus are 

somatotopically organized [37, 39, 43-45]. Specifically, the feet are represented medially 

and the hands are represented laterally. For example, Kapreli et. al. [39] assessed lower 

limb sensorimotor networks during opposition of the fingers and extension-flexion of 

the knee, ankle, and toes. These authors reported that during highly controlled 

extension and flexion movements of the knees, ankles, and toes, the activation was 

located medially in the sensorimotor cortex when compared to the activity observed 

during finger opposition. In our study, during the bridging tasks, the activation also 

occurred medially in both the PreCG and the PostCG. 

Activation during the bilateral bridge occurred nearly equally between the 

hemispheres in the sensorimotor regions, while during the unilateral bridging tasks the 

stronger activation was in the contralateral hemisphere. Our findings are consistent 

with previous investigations reporting the laterality of lower limb movement tasks [40, 

42, 46]. However, activation was present in bilateral hemispheres during the unilateral 

bridging tasks. These results can in part be explained by the findings of Volz et. al. in 

2015[30] who reported that during lower extremity task performance the ipsilateral M1 

was not inhibited by the premotor areas and actually exerted a significant excitatory 

influence on the contralateral M1. Therefore, while task performance is predominately 

represented in the contralateral PreCG, a lack of inhibition and contralateral excitation 

might result in increased activation in the ipsilateral PreCG relevant to task.   
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Furthermore, in our previous work we demonstrated via EMG that these tasks 

require stiffening of the bilateral trunk musculature[31]. During the isometric hold of 

the bridging tasks, the participants are required to stabilize their trunk as they unweight 

their hips from the table. As this stabilization requires bilateral trunk activation, this may 

further explain the bilateral activation in the sensorimotor cortices.  

4.2 Connectivity of sensorimotor regions of the brain during lumbopelvic motor tasks 

To the authors’ knowledge, this is the first time that functional connectivity 

during lumbopelvic task performance has been described. With the exception of the left 

SMA to left PostCG connectivity during unilateral bridging tasks, the sensorimotor 

network we described was significantly connected during the performance of 

lumbopelvic tasks. However, while the ROIs were significantly connected, the relative 

strength of these connections were relatively weak.   

Aside from the weaker connectivity, the results from the ROI-to-ROI analysis 

were largely as hypothesized. The function of the SMA is largely devoted to movement 

planning and early motor preparation[47] facilitated by structural connections with the 

PreCG[48]. These strong structural connections have also been found between the 

PostCG and PreCG[48, 49] which is imperative for translating sensory information into 

action. Considering the strong structural connections and similarities in function, our 

results fit well within the established literature.  

Several areas were functionally connected to ROIs within our constrained motor 

network that are important for execution and performance of motor tasks.  For 
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example, the precuneus was functionally connected with the PostCG during 

performance of all three bridging tasks. In previous studies, the precuneus has been 

found to play an important role in the execution of spatially complex tasks and 

coordinating of movements [50]. Our previous study using EMG revealed that 

participants have to utilize thigh, hip, lumbar, and abdominal musculature in order to 

perform the different motor tasks[31]. The coordination between these four different 

muscle groups along with the ongoing sensory feedback during the isometric 

contractions could help to explain the connectivity between the PostCG and the 

Precuneus. The right inferior frontal gyrus has been has also been implicated in the 

initiation of motor movements[51], while the right superior frontal gyrus helps to 

generate complex movements that involve several muscle groups[52, 53]. Our task was 

deliberately created to involve complex motor patterns that incorporated multiple 

muscles groups, so activation in these areas was expected.  

The superior parietal lobule has strong and reciprocal connections with the 

PreCG which allows for the processing of different types of “sensorimotor 

transformations”. This connection contributes to the superior parietal lobule’s role in 

sensorimotor integration as well as motor control and planning[54], which 

hypothetically would be required during the performance of a sustained bridge. 

Additionally, the anterior cingulate cortex, which plays a key role in spatially complex 

bimanual coordination[50], was only found to be active during the bilateral bridging 

tasks but not the unilateral bridging tasks.  
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Lastly, when we performed a one-way ANOVA to determine if there were any 

differences in functional connectivity between the bridging tasks, we found that during 

the bilateral bridging task the right SMA and midcingulate cortex were not significantly 

correlated, while during the unilateral bridging tasks they were significantly anti-

correlated. While speculative, this may be the result of default coupling that is inherent 

in bilateral limb tasks[50]. Wenderoth et. al. in 2005 [50] performed a study comparing 

bimanual to unimanual hand task performance. These authors reported that areas of 

the cingulate cortex that were associated with the bilateral task were not correlated 

during the unilateral task. They hypothesized that the cingulate cortex exerted a 

modulatory effect on the supplementary motor area to suppress the default coupling, 

or “intrinsically favored coordination tendencies”, of the bilateral task. This may indicate 

that during performance of the unilateral bridging task, the midcingulate cortex was 

decoupled with the SMA to allow for a unilateral motor task. However, it should be 

noted that neither the ACC nor the MCC were active during the whole brain analysis.  

4.3 Limitations 

Unlike previous research using lower extremity tasks, we did not incorporate 

external stabilization devices to reduce motion artifact and control movement. [38-40, 

55]. While stabilizing the joint decreases task-related head movement, this isolation 

may influence the findings. There is an inherent motor variability during movement 

performance[56] and the ability to compensate for this variation is vital for optimal 

feedback control[57]. Supplementing joint support during a task may reduce the ability 

to detect changes in individuals with chronic pain. Stabilizing joint motion appears to 
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improve sensorimotor function[58-60] and may inadvertently diminishes differences 

that may be found between asymptomatic individuals and individuals with cLBP  [9, 10, 

24]. As such, lower extremity motor tasks that are unencumbered by external support 

may be the best method of elucidating the cortical changes associated with cLBP. 

Furthermore, with an average of 2 out of 765 volumes being removed for excessive 

motion, our task did not seem to create excessive artifact. Finally, two separate MRIs 

were used for data collection: a 3T Siemens Trio scanner and a 3T Siemens Prisma 

scanner. While the scanning parameters were slightly different between the two 

different scanners, there did not appear to be large differences in the first level analysis 

between the subjects.  

5.0 Conclusions 

We examined activation and functional connectivity during the performance of 

unsupported bilateral and unilateral lumbopelvic motor tasks. Robust activation 

patterns were observed in the sensorimotor network that demonstrated laterality 

specific to the task. Within our constrained motor network of the PreCG, PostCG, and 

SMA we found extensive connectivity between these regions and among a wider motor 

network. Although our results are preliminary, there appears to be lower connectivity 

during lumbopelvic task performance when compared to literature of the upper 

extremity. This study lays a foundation for future investigations that examine how this 

motor network might be altered in individuals who exhibit low back pain. 
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Figure 3.1 - Outline of fMRI protocol. 
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Table 3.1 – Results from the whole brain analysis during the three different tasks 

Comparison 

Cluster 
p(FWE-

corr) Voxels 

Peak 
p(FWE-

corr) T-Score x,y,z (mm) Location 

BB > Rest 0.0000 267 0.0000 6.99 10,-34,58 

Right 
Postcentral 
Gyrus 

      0.0029 5.82 6,-18,62 

Right 
Supplemental 
Motor Area 

  0.0006 77 0.0014 6.03 -30,-8,8 Left Putamen 

  0.0084 20 0.0051 5.65 64,-22,32 

Right 
Supramarginal 
Gyrus 

  0.0084 20 0.0095 5.47 -44,0,12 
Left Rolandic 
Operculum 

  0.0122 14 0.0165 5.30 -12,-30,64 
Left Precentral 
Gyrus 

  0.0122 14 0.0202 5.24 -6,-18,64 

Left 
Supplemental 
Motor Area 

LB > Rest 0.0000 714 0.0000 8.34 8,-34,60 

Right 
Postcentral 
Gyrus 

      0.0000 7.29 8,-18,62 

Right 
Supplemental 
Motor Area 

      0.0130 5.37 16,-30,78 

Right 
Precentral 
Gyrus 

  0.0034 37 0.0097 5.46 -30,-6,8 Left Putamen 

  0.0084 20 0.0125 5.38 10,-2,50 

Right 
Supplemental 
Motor Area 

  0.0190 8 0.0334 5.08 -16,-28,62 
Left Precentral 
Gyrus 

RB > Rest 0.0001 149 0.0001 6.96 -46,-2,10 
Left Rolandic 
Operculum 

  0.0001 132 0.0001 6.70 -30,-8,8 Left Putamen 

  0.0000 386 0.0003 6.46 -6,-20,62 

Left 
Supplemental 
Motor Area 

      0.0011 6.10 -12,-30,68 
Left Precentral 
Gyrus 

      0.0012 6.08 -4,-30,60 
Left Precentral 
Gyrus 
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  0.0176 9 0.0086 5.50 -34,38,-10 
Left Inferior 
Frontal gyrus 

  0.0101 17 0.0087 5.49 10,-34,58 

Right 
Postcentral 
Gyrus 

  0.0176 9 0.0161 5.31 -6,-8,48 

Left 
Supplemental 
Motor Area 

BB > Rest - Bilateral bridge task compared to rest 
LB >Rest - Left Unilateral Bridge compared to rest 
RB>Rest - Right Unilateral Bridge compared to rest. 
All p-Values are FWE corrected at 0.05. 
 

 

Figure 3.2 – Cortical activation patterns in the Bilateral Bridge, Left Unilateral Bridge, 
and Right Unilateral Bridge tasks. Scale is Z-Scores.  
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Figure 3.3 – Seed-to-Voxel results for the right Precentral Gyrus during the left bridging 
task. Scale is Z-Scores 
 

 

Figure 3.4 - Graphical representation of bivariate correlations between ROIs for the 

three different motor tasks. All correlations are significant at FWE 0.05 unless indicated 

with a * (* - non-significant correlation) 

 

Table 3.2 – Results from Seed-to-Voxel analysis for the right Supplemental Motor Area 
during the bilateral bridging task.  

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR peak T x,y,z (mm) Location 

1 0.000 7133 0.0000 33.65 8,-18,62 Right Precentral Gyrus 

   
0.0080 10.25 10,-14,48 

Righ Supplementary 

Motor Cortex 

   
0.0158 9.12 -26,-8,64 Left Precentral Gyrus 

   
0.0158 8.90 -6,-4,46 

Left Supplementary 

Motor Cortex 

   
0.0158 8.84 -12,-14,60 Left Precentral Gyrus 
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0.0161 8.67 -8,10,40 

Left Anterior Cingulate 

Gyrus 

   
0.0244 8.20 -16,-20,64 Left Precentral Gyrus 

   
0.0280 7.99 -12,-16,46 Left Precentral Gyrus 

   
0.0455 7.47 16,-34,76 Right Postcentral Gyrus 

   
0.0455 7.43 26,-26,60 Right Postcentral Gyrus 

p-FDR indicates that the p-value is False Discovery Rate corrected.  

Table 3.3 – Results from Seed-to-Voxel analysis for the left Supplemental Motor Area 

during the bilateral bridging task.  

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR 

peak 

T x,y,z (mm) Location 

1 0.000 7418 0.0000 38.10 -6,-20,62 Left Precentral Gyrus 

   
0.0008 12.61 6,-22,58 Right Precentral Gyrus 

   
0.0016 11.48 -2,-6,56 

Left Supplemental Motor 

Area 

   
0.0077 9.55 -8,0,44 Left Anterior Cingulate Gyrus 

   
0.0077 9.47 -6,8,44 

Left Supplemental Motor 

Area 

   
0.0077 9.24 -12,2,60 Left Superior Frontal Gyrus 

   
0.0077 9.23 -20,-22,64 Left Precentral Gyrus 

   
0.0103 8.87 -22,-18,58 Left Precentral Gyrus 

   
0.0191 8.16 18,-14,58 Right Precentral Gyrus 

   
0.0191 8.10 -14,-32,64 Left Postcentral Gyrus 

   
0.0417 7.38 -26,-22,54 Left Precentral Gyrus 

   
0.0417 7.35 -22,-10,58 Left Superior Frontal Gyrus 

   
0.0423 7.28 14,-28,46 Right Precentral Gyrus 

   
0.0424 7.23 28,-26,62 Right Postcentral Gyrus 

   
0.0436 7.16 22,-26,64 Right Precentral Gyrus 

p-FDR indicates that the p-value is False Discovery Rate corrected. 
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Table 3.4 – Results from Seed-to-Voxel analysis for the right Precentral Gyrus during the 

bilateral bridging task.  

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR 

peak 

T x,y,z (mm) Location 

1 0.000 7697 0.0000 42.32 8,-32,60 Right Precentral Gyrus 

   
0.0000 20.34 -4,-32,60 Left Precentral Gyrus 

   
0.0001 15.00 18,-44,60 Right Superior Parietal Lobule 

   
0.0004 12.41 -6,-34,50 Left Precentral Gyrus 

   
0.0007 11.47 -8,-22,54 Left Precentral Gyrus 

   
0.0007 11.45 -8,-22,60 Left Precentral Gyrus 

   
0.0026 10.02 24,-34,60 Right Postcentral Gyrus 

   
0.0035 9.62 -18,-28,72 Left Precentral Gyrus 

   
0.0045 9.23 -8,-12,58 Left Supplemental Motor Area 

   
0.0045 9.16 -6,-24,72 Left Precentral Gyrus 

   
0.0045 9.12 -14,-36,54 Left Postcentral Gyrus 

   
0.0056 8.86 24,-26,68 Right Precentral Gyrus 

   
0.0125 8.13 -24,-38,62 Left Postcentral Gyrus 

   
0.0230 7.59 22,-22,58 Right Precentral Gyrus 

   
0.0297 7.34 -2,-12,46 Left Anterior cingulate Gyrus 

   
0.0298 7.24 4,-12,48 Right Supplemental Motor Area 

p-FDR indicates that the p-value is False Discovery Rate corrected.   
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Table 3.5 – Results from Seed-to-Voxel analysis for the left Precentral Gyrus during the 

bilateral bridging task. 

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR peak T x,y,z (mm) Location 

1 0.000 6655 0.0000 42.12 -14,-30,66 Left Precentral Gyrus 

   
0.0000 20.17 -10,-22,62 Left Precentral Gyrus 

   
0.0001 13.91 14,-32,64 Right Precentral Gyrus 

   
0.0004 12.05 20,-26,70 Right Precentral Gyrus 

   
0.0047 9.50 24,-28,64 Right Postcentral Gyrus 

   
0.0055 9.21 2,-4,54 

Right Supplemental Motor 

Area 

   
0.0089 8.68 0,-14,62 

Left Supplemental Motor 

Area 

   
0.0108 8.41 -4,-6,54 

Left Supplemental Motor 

Area 

   
0.0124 8.20 -4,-16,58 Left Precentral Gyrus 

   
0.0213 7.68 -8,-8,60 

Left Supplemental Motor 

Area 

   
0.0432 7.07 -16,0,62 Left Superior Frontal Gyrus 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.6 – Results from Seed-to-Voxel analysis for the left Postcentral Gyrus during the 

bilateral bridging task. 

Cluster 

Number 

cluster 

p-FDR 

cluste

r size 

peak 

p-FDR peak T x,y,z (mm) Location 

1 0.000 875 0.0000 23.73 -20,-36,70 Left Postcentral Gyrus 

   
0.0802 11.717 -4,-34,64 Left Postcentral Gyrus 

   
0.0802 11.517 -4,-38,60 Left Postcentral Gyrus 

   
0.0802 11.149 6,-36,62 Right Postcentral Gyrus 

   
0.0802 10.981 -8,-26,66 Right Precentral Gyrus 

   
0.1761 10.082 -12,-52,60 Left Precuneus 

   
0.1761 10.004 12,-46,68 Right Precuneus 

   
0.3337 9.2467 -24,-22,72 Left Precentral Gyrus 

   
0.6795 8.3975 8,-24,68 Right Precentral Gyrus 

2 0.000 32 0.2192 9.7109 4,0,68 Right Supplemental Motor Area 

   
0.3337 9.182 -4,-4,70 Left Supplemental Motor Area 

   
0.4794 8.8053 -12,-8,72 Left Supplemental Motor Area 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.7 – Results from Seed-to-Voxel analysis for the right Postcentral Gyrus during 

the bilateral bridging task. 

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR peak T x,y,z (mm) Location 

1 0.000 642 0.0000 31.899 14,-38,66 Right Postcentral Gyrus 

   
0.1929 10.967 2,-36,62 Right Postcentral Gyrus 

   
0.1929 10.468 -8,-28,64 Left Precentral Gyrus 

   
0.1929 10.337 -6,-32,64 Left Postcentral Gyrus 

   
0.1929 10.294 -16,-36,68 Left Precuneus 

   
0.1929 10.163 -16,-32,66 Left Postcentral Gyrus 

   
0.8833 8.6438 -14,-26,68 Left Precentral Gyrus 

   
0.8833 8.5833 -10,-24,66 Left Precentral Gyrus 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.8 – Results from Seed-to-Voxel analysis for the right Supplemental Motor Area 

during the left bridging task. 

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR peak T 
x,y,z (mm) 

Location 

1 0.0000 7916 0.00000 32.18 8,-18,62 Right Precentral Gyrus 

   

0.00093 12.56 4,-36,64 Right Postcentral Gyrus 

   

0.00469 10.47 -12,-40,62 Left Postcentral Gyrus 

   

0.02312 8.50 4,-16,74 Right Precentral Gyrus 

   

0.02890 7.94 -14,-26,62 Left Precentral Gyrus 

   

0.02890 7.88 8,6,52 Right Supplemental Motor Area 

   

0.02890 7.78 -18,-18,62 Left Precentral Gyrus 

   

0.02890 7.76 20,-16,62 Right Precentral Gyrus 

   

0.03246 7.49 24,-12,62 Right Superior Frontal Gyrus 

   

0.03554 7.33 12,-30,74 Right Postcentral Gyrus 

   

0.04102 7.17 10,-36,74 Right Postcentral Gyrus 

   

0.04102 7.14 14,-34,74 Right Postcentral Gyrus 

   

0.05020 6.95 -2,6,50 Left Supplemental Motor Area 

2 0.0000 2498 0.00469 10.25 52,12,0 Right Inferior Frontal Gyrus 

   

0.02460 8.32 50,6,6 Right Central Opercular Cortex 

   

0.03193 7.57 32,24,6 Right Insular Cortex 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.9 – Results from Seed-to-Voxel analysis for the left Supplemental Motor Area 

during the left bridging task. 

Cluster 

Number 

Cluster 

p-FDR 

cluster 

size 

peak p-

FDR 
peak T x,y,z (mm) Location 

1 0.0000 6654 0.00000 39.63 -8,-20,62 Left Precentral Gyrus 

   0.00571 10.63 26,-26,58 Right Precentral Gyrus 

   0.00978 9.76 -24,-18,60 Left Precentral Gyrus 

   0.03129 8.52 4,-2,64 Right Supplemental Motor Area 

   0.04740 8.00 -16,-40,62 Left Postcentral Gyrus 

p-FDR indicates that the p-value is False Discovery Rate corrected 

  



71 
 

Table 3.10 – Results from Seed-to-Voxel analysis for the right Precentral Gyrus during 

the left bridging task. 

p-FDR indicates that the p-value is False Discovery Rate corrected 

  

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR peak T x,y,z (mm) Location 

1 0.0000 8869 0.00000 37.48 8,-36,58 Right Postcentral Gyrus 

   

0.00001 17.80 12,-44,68 Right Postcentral Gyrus 

   

0.00002 16.49 -8,-36,66 Left Postcentral Gyru 

   

0.00113 11.45 4,-18,64 Right Precentral Gyrus 

   

0.00173 10.81 0,-24,68 Left Precentral Gyrus 

   

0.00905 8.83 4,-14,70 Right Supplemental Motor Area 

   

0.00905 8.82 -22,-34,70 Left Postcentral Gyrus 

   

0.00905 8.77 14,-2,54 Right Supplemental Motor Area 

   

0.00905 8.70 -12,-36,52 Left Postcentral Gyrus 

   

0.00905 8.63 24,-30,72 Right Postcentral Gyrus 

   

0.00925 8.54 -18,-32,56 Left Precentral Gyrus 

   

0.01516 8.06 -12,-16,70 Left Precentral Gyrus 

   

0.01516 8.01 10,2,52 Right Supplemental Motor Area 

   

0.01516 7.95 4,-4,46 Right Supplemental Motor Area 

   

0.02117 7.64 -2,8,50 Left Supplemental Motor Area 

   

0.02117 7.59 -6,-8,54 Left Supplemental Motor Area 
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Table 3.11 – Results from Seed-to-Voxel analysis for the left Precentral Gyrus during the 

left bridging task. 

Cluster 

Number 

Cluster

p-FDR 

cluster 

size 

peak p-

FDR peak T x,y,z (mm) Location 

1 0.0000 8340 0.00000 40.18 -16,-30,62 Left Precentral Gyrus 

   

0.00049 12.75 16,-34,64 Right Postcentral Gyrus 

   

0.00049 12.74 2,-28,66 Right Precentral Gyrus 

   

0.00053 12.34 0,-12,64 Left Supplemental Motor Area 

   

0.00102 11.39 -8,-24,76 Left Precentral Gyrus 

   

0.00102 11.26 24,-26,60 Right Precentral Gyrus 

   

0.00146 10.75 -18,-44,66 Left Postcentral Gyrus 

   

0.00182 10.42 -8,-14,54 Left Supplemental Motor Area 

   

0.00297 9.86 10,-34,74 Right Postcentral Gyrus 

   

0.00502 9.17 2,-4,52 Right Supplemental Motor Area 

   

0.00502 9.05 6,-16,78 Right Precentral Gyrus 

   

0.00502 9.03 -12,-6,60 Left Superior Frontal Gyrus 

   

0.00685 8.64 -26,-46,64 Left Superior Parietal Lobule 

   

0.00685 8.63 6,-28,74 Right Precentral Gyrus 

   

0.01339 8.04 14,-34,52  Right Postcentral Gyrus 

   

0.02006 7.67 6,-22,52 Right Precentral Gyrus 

1 0.0001 300 0.00502 9.01 52,4,-2  Right Central Opercular Cortex 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.12 – Results from Seed-to-Voxel analysis for the left Postcentral Gyrus during 

the left bridging task. 

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR 

peak 

T x,y,z (mm) Location 

1 0.0000 1178 0.0000 31.44 -20,-34,72 Left Postcentral Gyrus 

   
0.1312 11.91 2,-32,72 Right Postcentral Gyrus 

   
0.1717 10.94 -18,-40,58 Left Precuneus 

   
0.1737 10.50 16,-38,68 Right Postcentral Gyrus 

   
0.1737 10.35 20,-40,72 Right Postcentral Gyrus 

   
0.1737 10.22 -36,-38,58 Left Postcentral Gyrus 

   
0.1737 10.15 20,-24,72 Right Precentral Gyrus 

   
0.1737 9.99 -16,-22,72 Left Precentral Gyrus 

   
0.2269 9.67 6,-36,62 Right Postcentral Gyrus 

   
0.2534 9.50 -14,-16,72 Left Thalamus 

   
0.3364 9.19 -20,-50,66 Left Superior Parietal Lobule 

   
0.4490 8.81 -4,-24,70 Left Precentral Gyrus 

   
0.4490 8.78 10,-44,62 Right Precuneus 

2 0.0000 63 0.1717 10.91 14,-6,72 

Right Supplemental Motor 

Area 

3 0.0000 35 0.1737 9.99 2,-16,56 

Right Supplemental Motor 

Area 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.13 – Results from Seed-to-Voxel analysis for the right Postcentral Gyrus during 

the left bridging task. 

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR peak T x,y,z (mm) Location 

1 0.0000 840 0.0000 31.10 16,-38,66 Right Postcentral Gyrus 

   

0.1347 10.96 32,-32,66 Right Postcentral Gyrus 

   

0.1666 10.43 28,-28,66 Right Postcentral Gyrus 

   

0.1692 10.29 28,-42,68 Right Postcentral Gyrus 

2 0.0000 340 0.0264 13.65 -20,-36,68 Left Postcentral Gyrus 

   

0.1194 11.58 -10,-40,68 Left Precuneus  

   

0.1347 10.96 -24,-24,68 Left Precentral Gyrus 

   

0.1703 10.18 -14,-48,68 Left Precuneus  

3 0.0000 107 0.2244 9.74 8,-16,68 Right Supplemental Motor Area 

   

0.2858 9.38 6,-8,66 Right Supplemental Motor Area 

   

0.5369 8.78 4,-8,60 Right Supplemental Motor Area 

p-FDR indicates that the p-value is False Discovery Rate corrected 

  



75 
 

Table 3.14 – Results from Seed-to-Voxel analysis for the left Supplemental Motor Area 

during the right bridging task. 

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR peak T x,y,z (mm) Location 

1 0.0000 7948 0.0000 47.21 -6,-20,62 Left Precentral Gyrus 

   

0.0012 12.09 10,-16,60 Right Precentral Gyrus 

   

0.0015 11.46 -8,-8,58 Left Supplemental Motor Area 

   

0.0037 10.27 6,12,60 Right Superior Frontal Gyrus 

   

0.0088 9.30 -14,-32,64 Left Postcentral Gyrus 

   

0.0224 8.36 26,-26,62 Right Postcentral Gyrus 

   

0.0265 8.10 -8,-30,76 Left Precentral Gyrus 

   

0.0304 7.88 -8,-32,52 Left Precentral Gyrus 

   

0.0309 7.60 8,-16,74 Right Precentral Gyrus 

   

0.0309 7.52 24,-22,72 Right Precentral Gyrus 

   

0.0309 7.52 18,-20,74 Right Precentral Gyrus 

   

0.0309 7.49 -6,-44,68 Left Postcentral Gyrus 

   

0.0309 7.45 -10,-36,52 Left Postcentral Gyrus 

   

0.0309 7.43 16,-28,64 Right Precentral Gyrus 

   

0.0377 7.23 4,-4,60 Right Supplemental Motor Area 

   

0.0499 6.97 -6,-18,76 Left Precentral Gyrus 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.15 – Results from Seed-to-Voxel analysis for the right Supplemental Motor Area 

during the right bridging task. 

Cluster 

Number 

cluster p-

FDR 

cluster 

size 

peak 

p-FDR peak T 

x,y,z 

(mm) Location 

1 0.0000 6353 0.0000 27.37 8,-18,62 Right Precentral Gyrus 

   

0.0181 9.83 -8,-8,62 Left Supplemental Motor Area 

   

0.0216 9.20 -8,0,64 Left Supplemental Motor Area 

   

0.0216 9.06 2,4,62 Right Supplemental Motor Area 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.16 – Results from Seed-to-Voxel analysis for the left Precentral Gyrus during the 

right bridging task. 

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR peak T x,y,z (mm) Location 

1 0.0000 9444 0.0000 46.44 -14,-30,64 Left Precentral Gyrus 

   

0.0019 11.56 -4,-18,58 Left Precentral Gyrus 

   

0.0019 11.24 18,-28,64 Right Precentral Gyrus 

   

0.0021 10.72 16,-30,72 Right Postcentral Gyrus 

   

0.0021 10.50 -14,-50,70 Left Postcentral Gyrus 

   

0.0021 10.49 -36,-12,58 Left Precentral Gyrus 

   

0.0021 10.33 -32,-36,66 Left Postcentral Gyrus 

   

0.0023 10.07 -6,-44,66 Left Postcentral Gyrus 

   

0.0023 10.05 -2,-2,56  Left Supplemental Motor Area 

   

0.0023 9.95 -8,-12,56 Left Supplemental Motor Area 

   

0.0037 9.43 -32,-28,62 Left Postcentral Gyrus 

   

0.0056 8.92 10,-16,52 Right Supplemental Motor Area 

   

0.0093 8.44 -16,-36,52 Left Postcentral Gyrus 

   

0.0190 7.74 8,-26,58 Right Precentral Gyrus 

   

0.0190 7.72 -10,-6,64  Left Superior Frontal Gyrus 

   

0.0190 7.71 6,4,62 Right Supplemental Motor Area 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.17 – Results from Seed-to-Voxel analysis for the right Precentral Gyrus during 

the right bridging task. 

Cluster 

Number 

cluster p-

FDR 

cluster 

size 

peak p-

FDR peak T x,y,z (mm) Location 

1 0.0000 8094 0.0000 37.64 8,-34,60 Right Postcentral Gyrus 

   

0.0017 11.86 -16,-36,58 Left Postcentral Gyrus 

   

0.0040 10.57 -12,-34,66 Left Postcentral Gyrus 

   

0.0040 10.36 4,-24,66 Right Precentral Gyrus 

   

0.0134 9.04 12,-20,58 Right Precentral Gyrus 

   

0.0134 8.83 18,-22,64 Right Precentral Gyrus 

   

0.0169 8.49 -2,-10,54 Left Supplemental Motor Area 

   

0.0201 8.25 8,-16,72 Right Precentral Gyrus 

   

0.0204 8.15 22,-16,70 Right Precentral Gyrus 

   

0.0255 7.90 -10,-26,56 Left Precentral Gyrus 

   

0.0310 7.68 22,-30,70 Right Postcentral Gyrus 

   

0.0339 7.54 -26,-24,60 Left Precentral Gyrus 

   

0.0339 7.45 -22,-24,62 Left Precentral Gyrus 

   

0.0339 7.43 14,-50,62 Right Superior Parietal Lobule 

   

0.0378 7.30 -12,-22,58 Left Precentral Gyrus 

   

0.0468 7.09 -26,-32,54 Left Postcentral Gyrus 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.18 – Results from Seed-to-Voxel analysis for the left Postcentral Gyrus during 

the right bridging task. 

Cluster 

Number 

cluster 

p-FDR 

cluster 

size 

peak p-

FDR peak T x,y,z (mm) Location 

1 0.0000 1966 0.0000 31.175 -20,-36,72 Left Postcentral Gyrus 

   

0.0047 16.273 24,-26,68 Right Precentral Gyrus 

   

0.0199 13.891 14,-2,70 Right Supplemental Motor Area 

   

0.0199 13.591 6,-28,66 Right Precentral Gyrus 

   

0.0199 13.345 -12,-28,66 Left Precentral Gyrus 

   

0.0199 12.997 -12,-48,66 Left Precuneus 

   

0.0267 12.462 -14,-22,68 Left Precentral Gyrus 

   

0.0267 12.404 4,-2,66 Right Supplemental Motor Area 

   

0.0352 12.002 -2,-36,74 Left Postcentral Gyrus 

   

0.0426 11.668 20,-20,74 Right Precentral Gyrus 

   

0.0426 11.617 16,-46,68 Right Superior Parietal Lobule 

   

0.0509 11.318 20,-38,70 Right Postcentral Gyrus 

   

0.0509 11.284 -4,-12,72 Left Precentral Gyrus 

   

0.0517 11.2 -16,-12,72 Left Precentral Gyrus 

   

0.0526 11.078 16,-36,72 Right Postcentral Gyrus 

   

0.0526 11.061 2,-20,72 Right Supplemental Motor Area 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.19 – Results from Seed-to-Voxel analysis for the right Postcentral Gyrus during 

the right bridging task. 

Cluster 
Number 

cluster 
p-FDR 

cluste
r size 

peak p-
FDR peak T x,y,z (mm) Location 

1 0.0000 1886 0.0000 37.328 16,-40,66 Right Postcentral Gyrus 

   0.0116 14.353 -6,-40,70 Left Precuneus 

   0.0116 14.347 -16,-38,68 Left Precuneus 

   0.0189 13.516 -12,-48,70 Left Precuneus 

   0.0211 12.816 26,-32,64 Right Postcentral Gyrus 

   0.0211 12.777 8,-20,68 
Right Supplemental Motor 
Area 

   0.0211 12.743 -12,-34,72 Left Postcentral Gyrus 

   0.0211 12.734 -2,-34,62 Left Postcentral Gyrus 

   0.0317 12.185 -18,-46,68 Left Precuneus 

   0.0465 11.689 30,-30,66 Rigth Precentral Gyrus 

   0.1622 10.31 -2,-26,68 Left Precentral Gyrus 

   0.2526 9.8361 -22,-22,66 Left Precentral Gyrus 

   0.2960 9.6325 -12,-40,54 Left Precuneus 

   0.3207 9.377 -2,-8,60 
Left Supplemental Motor 
Area 

   0.3207 9.3537 -16,-38,54 Left Midcingulate Cortex 

   0.3437 9.2488 -2,-18,64 Left Precentral Gyrus 

2 0.0000 58 0.1550 10.427 10,2,54 
Right Supplemental Motor 
Area 

   0.3207 9.3682 6,6,60 
Right Supplemental Motor 
Area 

   0.4709 8.9371 12,0,64 
Right Supplemental Motor 
Area 

p-FDR indicates that the p-value is False Discovery Rate corrected 
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Table 3.20 – Results from Seed-to-Voxel One-Way ANOVA with subsequent ROI-to-ROI 

posthoc analysis 

Clusters (x,y,z) Location size size p-FDR peak p-unc 

-2, -32, 38 Midcingulate Cortex 95 0.0489 0.000015 

    
R SMA to MCC 

Task Beta T p-FDR 

Bilateral Bridge -0.04 -1.26 0.3978 

Left Bridge -0.23 -6.34 0.000187 

Right Bridge -0.19 -7.34 0.000056 

R SMA - right supplementary motor area; MCC - Midcingulate Cortex
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CHAPTER 4 

INDIVIDUALS WITH CHRONIC LOW BACK PAIN EXHIBIT ALTERATIONS IN CORTICAL ACTIVITY DURING 

LUMBOPELVIC MOTOR TASKS2

                                                           
2 Jordon MK, Beattie PF, Silfies SP, Bialosky JE, and Stewart J., To be submitted to Journal 
of Pain. 
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ABSTRACT 

Introduction: Chronic low back pain (cLBP) continues to be a major burden on the US 

economy.  Despite enormous amount of research, changes that occur in the central 

nervous system associated with cLBP remain unclear. A better understanding of these 

changes will have a meaningful impact for the targeting of specific systems during the 

rehabilitation of people with cLBP. 

Purpose: The purpose of the current study is to determine the differences in cortical 

activation between individuals with and without cLBP while performing lumbopelvic 

motor tasks during functional magnetic resonance imaging. 

Methods: A total of 19 asymptomatic (12 female, age 29 ± 4.5 years) and 23 

symptomatic individuals (19 female, age 30 ± 11 years) completed the study. 

Participants were trained to perform a bridging task in which they pushed the back of 

their legs unilaterally and bilaterally into a 22 cm firm bolster while undergoing 

scanning. Whole brain activation and functional connectivity of a constrained “motor 

network” (bilateral precentral gyrus (PreCG), supplementary motor area (SMA), and 

putamen) and a “motor-pain network” (bilateral insula, bilateral midcigulate cortex 

(MCC), and putamen) were analyzed. 

Results: The whole brain analysis revealed that individuals with cLBP exhibited a 

broader network of activation (additional activation in the insula, MCC, putamen, 

Rolandic operculum, amygdala, and supramarginal gyrus) when performing lumbopelvic 

tasks when compared to asymptomatic individuals. Those with cLBP had greater 
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activation in the ipsilateral hemisphere when performing unilateral bridging tasks than 

did the asymptomatic individuals.     

Conclusion: Individuals with cLBP exhibited a broader network of activation with 

decreased laterality during unilateral tasks. Our findings suggest a network consisting of 

the Putamen, the MCC, and the Insula that contribute to the appraisal of pain 

perception and its integration with motor performance. Within this network, and a 

truncated motor network, there is a tendency for stronger connectivity in the 

symptomatic group with the exception of the Putamen. 

Key words [fMRI, motor control, brain imaging] 

INTRODUCTION 

Chronic low back pain (cLBP) continues to be a major burden on the US 

economy, affecting up to 14% of the US population [1] and resulting in the largest health 

care costs and lost productivity time of any musculoskeletal disease [2-6].  Surprisingly, 

despite an enormous amount of research, the physiologic reasons for the development 

and persistence of cLBP remain unclear [7, 8]. Historically, researchers and clinicians 

have focused upon events occurring in body wall structures, spinal joints and peripheral 

nociceptive structures as being the key triggers for cLBP.  Recent advances in neural 

imaging however, have revealed that central neural events may also be strongly linked 

to the symptoms and recovery potential for individuals with cLBP [9-12]. For example, 

functional magnetic resonance imaging (fMRI) findings of alterations in cortical 

representation [13-17], sensory perception[18, 19], and resting state functional 
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connectivity[9, 10, 20, 21] have all been shown to be different in people with cLBP when 

compared to asymptomatic individuals.  

One emerging, yet under-reported phenomena is the way in which variations in 

cortical activity during the performance of lumbopelvic motor tasks may be linked to 

cLBP. Functional MRI has been used to describe changes in cortical activation during 

motor performance in individuals with chronic knee pain [22] and jaw pain[23], but to 

the authors’ knowledge not in individuals with cLBP. Furthermore, utilization of 

condition specific motor tasks is important in understanding the role of cLBP in 

movement systems. In previous research assessing experimental painful stimulation, 

different neural networks are activated when the painful stimulus is applied to a 

clinically relevant site compared to a neutral one [12]. Therefore, assessing brain activity 

in individuals with cLBP while performing tasks that involve the affected body region 

may provide key insights into the effects of pain on motor systems. 

 In previous studies we evaluated the feasibility of performing lumbopelvic tasks 

that engage the abdominal, gluteal, and low back musculature during fMRI[24].  These 

muscles were chosen because improving their strength and control are key components 

of intervention during rehabilitation [25], and understanding the cortical impact of pain 

during activation of these regions is of particular importance. We were able to verify 

using EMG that these lumbopelvic motor tasks activated the lumbopelvic 

musculature[24], and with a follow-up fMRI study we observed that asymptomatic 

individuals were able to perform these tasks within a scanner with acceptably low levels 
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of head movement and that performance of these lumbopelvic tasks produced 

anticipated activation within the sensorimotor network[26]. 

It has been shown that individuals with cLBP typically present with abnormal, 

and potentially injurious, spinal movement patterns [27-29]; however, it is unclear if 

these maladapted behaviors are driven by the peripheral or central nervous system. A 

better understanding of the mechanisms will have a meaningful impact for the targeting 

specific systems during the rehabilitation of people with cLBP.    

Therefore, the purpose of the current study is to determine if differences in 

cortical activation exist between individuals who have cLBP and those who do not while 

performing condition specific motor tasks. This study tested two primary hypotheses: 1). 

individuals with cLBP would exhibit increased activation in pain-related cortical regions 

during motor performance; and 2). individuals with cLBP would demonstrate altered 

functional connectivity between cortical regions associated with pain and movement. 

Addressing these hypotheses will help clinicians better understand the role of pain on 

movement impairments in individuals with cLBP.  

METHODS 

Subjects 

Participant demographics are outlined in Table 4.1. A total of twenty-five 

individuals with chronic low back pain (cLBP) and twenty-one asymptomatic individuals 

were recruited to participate in this study. In the symptomatic cohort, one participant 

became claustrophobic and was unable to complete the scan while technical difficulties 
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with the scanner prevented a second participant from completing the study. In the 

asymptomatic cohort, one participant was removed due to low signal while another 

participant exhibited abnormal brain morphology and was unable to participate in the 

study. This left a total of 19 asymptomatic (12 female, age 29 ± 4.5 years) and 23 

symptomatic individuals (19 female, age 30 ± 11 years) who completed the study.   

Study-wide inclusion criteria included that participants: 1) were right-hand 

dominant as determined by the Edinburgh Handedness Inventory [30]; 2) be between 

the ages of 18-60; 3) reported no inflammatory joint disease or cancer within the last 5 

years; and 4) reported no medical or psychological conditions that would contraindicate 

an MRI. To be included in the asymptomatic group individuals had to have no history of 

activity-limiting low back pain.  To be included in the symptomatic group individuals 

must have reported experiencing at least 3/10 pain during the majority of the days of 

the week for each week in the past six months. Study-wide exclusion criteria included: 

1) a confirmed diagnosis of osteopenia/osteoporosis; 2) being pregnant or have been 

pregnant in the last year; 3) weighing more than 280 lbs; 4) currently taking narcotic 

medication regularly for back pain and unable to abstain for 48 hours; 5) having a loose 

metal object in the body; 6) receiving disability payments for a spinal problem or 

currently have a Worker’s Compensation claim; and/or 7) being involved in personal 

litigation for back pain. Informed consent was obtained from all participants, and 

approval for this study was given by the University of South Carolina Institutional 

Review Board. This data was collected from a larger randomized control trial which was 
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registered with ClinicalTrials.gov (ClinicalTrials.gov ID NCT02828501) prior to the 

recruitment of the first participant.  

Motor Task 

Participants were trained in a series of lumbopelvic motor tasks that are based 

on previously established studies. The tasks included a modified bridge where 

participants were instructed to push the back of their right knee (unilateral right), left 

knee (unilateral left), or both knees (bilateral) into a 22 cm firm bolster in order to 

slightly unweight their hips (Figure 4.1). The bridging tasks were chosen to activate the 

muscles recruited during the performance of functional movements such as ambulation 

or sit-to-stand transitions. Additionally, these tasks resemble exercises that are routinely 

utilized by Physical Therapists to treat individuals with low back pain. Prior to each scan 

the participants were instructed to breath normally to minimize the potential for 

physiological noise in the BOLD response and to keep their eyes closed. Additionally, the 

participants were trained in the task both outside of and within the scanner to ensure 

task fidelity and to reduce potential anxiety by familiarizing the participant with the 

scanning environment. A bilateral ankle plantarflexion and abdominal contraction task 

was included in the study but was not included in the current analysis.   

To reduce head motion, participants were extensively trained in the tasks prior 

to the first scan with verbal feedback about performance. Additionally, the participants’ 

head was securely supported within the head coil with foam pads. In between the scans 
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the participants were reminded to keep their head as still as possible and to only move 

as much as the task required.  

fMRI Data Acquisition 

Data were collected on a 3T Seimens Prisma scanner using a 20-channel head 

coil (502 volumes; 58 axial slices; 2.5 mm thick; TR = 1000ms; TE = 37ms; matrix 64 x 64 

voxels; flip angle =61˚; 220x220mm FOV). A sagittal T1-weight MPRAGE protocol was 

used to acquire high-resolution structural images (192 slices; 1mm thick; TR = 2250ms; 

TE = 4.11ms; matrix=1 x 1 x 1mm3; 256x256 FOV).  

A block design was utilized that consisted of alternating blocks of task and rest 

(Figure 4.2). The task block consisted of each task being performed in random order for 

11 seconds with a 4 second relaxation period following each task. After each task block 

there was an 8 second rest block where the participants were instructed to relax. This 

sequence was repeated six time per run, with each participant completing two runs. 

This led to a total of 132 seconds of each task being performed during the study. 

Throughout each run, an investigator monitored the participants to ensure that 

they were performing the correct task. The task order was recorded, and the verbal 

instructions were delivered in a randomized order to the participants using the e-Prime 

system (Psychology Software Tools, Inc., Sharpsburg, PA).  
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Data Preprocessing 

All data were processed using the Statistical Parametric Mapping (SPM 12, Wellcome 

Department of Cognitive Neurology, London, UK), implemented in MATLAB R2017a 

(Mathworks, Natick, MA, USA). For each run every volume was realigned to the first and 

unwarped. The mean image was then normalized to the standard Montreal Neurological 

Institute (MNI) space. The normalization parameters were then applied to each volume 

and the data were resampled to 2mm x 2mm x 2mm voxels. The data was the smoothed 

using an isotropic Gaussian kernel 8x8x8mm3 full width at half maximum. The Artifact 

Detection Tool (http://www.nitric.org/projects/artifact_detect) was then used to assess 

head motion during the scans. The first derivative of the head motion was used to 

screen for excessive motion with outliers being used as covariates of no interest during 

the statistical analysis (mean number of outliers = 0.5, ranging from 0 to 20 of 502 

volumes).     

Statistical Analysis 

Functional Imaging Analysis 

  A general linear model (GLM) was used for the first level analysis for each 

individual[31, 32]. First-level contrast maps were calculated for each task period versus 

rest. To reduce noise, the first derivative of head motion for all six directions were used 

as a regressor of no interest. Following the head motion correction, the contrast maps 

for each of the bridging tasks were then moved to a second-level random effects 

analysis. A group analysis using a factorial design was performed with within-subject 
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factors of each condition and a between-subject factor of group. The main effect for 

each condition was analyzed as well as an overall activation map of the combined 

groups and tasks. This overall activation map served as a guide when choosing our ROIs 

for the connectivity analysis. The group-level results were thresholded at a p-value less 

than 0.05 corrected for multiple comparisons using familywise error (FWE). 

Task-Based Functional Connectivity Analysis 

  We used the CONN toolbox implemented in MATLAB in order to assess the 

functional connectivity during movement. Each participant’s data was imported into the 

toolbox along the task onsets and durations to allow for the BOLD time series to be 

correctly accounted for. Confounds were then removed via CONN’s CompCor algorithm 

[33] in order to reduce the effect of physiological noise on the functional connectivity 

values. We then performed an ROI-to-ROI analysis using seed regions derived from our 

whole brain analysis. 

Based on the results from the whole brain analysis we created nine ROIs: 

bilateral precentral gyrus (PreCG), bilateral insula, bilateral midcingulate cortex (MCC), 

bilateral putamen, and the supplementary motor area (SMA). Using MarsBAR, we 

created a 5 mm radius sphere centered on the maximum peak of activation found 

within these regions (MNI coordinates: SMA = 0, -16, 62; Right PreCG = 10, -30, 72; Left 

PreCG = -8, -30, 70; Right Insula = 46, 4, 8; Left Insula = -44, 2, 8; Right MCC = 10, -4, 44; 

Left MCC = -6, -6, 46; Right Putamen = 30, -10, 6; Left Putamen = -28, -14, 8). These ROIs 

were then imported into the CONN toolbox for our ROI-to-ROI analysis.  
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We used a weighted GLM approach for the ROI-to-ROI connectivity analysis. First 

level bivariate correlations were computed separately based on the individual’s BOLD 

time series between each ROI. In order to improve the assumptions of normality, we 

applied a Fisher’s Z-transformation to the bivariate correlations using a standardized 

procedure programmed within the CONN toolbox [34]. Correlation matrices were then 

produced for each of the ROI-to-ROI values and were then imported into a second-level 

group analysis in order to determine mean functional connectivity values between our 

ROIs.    

RESULTS 

Whole Brain Analysis 

  A summary of the whole brain activation can be found in Tables 2 and 3. In 

general, the asymptomatic group demonstrated activation in the PreCG, PostCG, SMA, 

and cerebellum. While this activation was found in both hemispheres during the 

bilateral bridging task, the unilateral bridging task demonstrated laterality (Figure 4.3). 

Activation was found solely in the contralateral PreCG and SMA and the ipsilateral 

cerebellum during the unilateral bridging tasks.  

The symptomatic group demonstrated a broader network of activation during 

the bridging tasks (Table 4.3). In addition to the locations active in the asymptomatic 

group, the symptomatic group had activation in the insula, MCC, putamen, Rolandic 

operculum, amygdala, and supramarginal gyrus. Of these regions, the putamen, MCC, 

and Insula demonstrated consistency in the location of activation across the three tasks.  
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The symptomatic group showed bilateral activation during the unilateral bridge 

tasks in addition to the bilateral bridge task (Figure 4.3).  During each of the bridging 

tasks, the symptomatic group had bilateral activation of the PreCG and the cerebellum. 

As demonstrated in Figure 4.4, when we extracted parameter estimates for the right 

and left PreCG ROIs, the symptomatic group had larger magnitudes of activation during 

the ipsilateral bridging task. The trend for higher activation was exaggerated across the 

bridging tasks when we did the same for the right insula (Asymptomatic vs 

Symptomatic: Bilateral Bridge beta = -0.096 vs 0.124, Left Bridge beta = -0.042 vs 0.285, 

Right Bridge beta = -0.269 vs -0.004) and left insula (Asymptomatic vs Symptomatic: 

Bilateral Bridge beta = -0.067 vs 0.141, Left Bridge beta = -0.217 vs 0.051, Right Bridge 

beta = 0.049 vs 0.173) ROIs. 

Functional Connectivity Analysis 

  Based on the results from the whole brain analysis, the nine ROIs were 

subdivided into two networks: 1) a Motor Network which consisted of the PreCG, SMA, 

and Putamen, and 2) a Motor-Pain Network which consisted of the Insula, Putamen, and 

MCC[35-39]. We chose the motor regions a priori based on the results of our previous 

work[26]. In that study, we found the PreCG, SMA, Postcentral Gyrus (PostCG) and the 

Putamen to be active across all three bridging tasks. Since our whole brain analysis did 

not show consistent activation in the PostCG, we only used the PreCG, SMA, and 

Putamen in this analysis as our motor network. These regions have previously been 

found to assist with motor production [22, 40-44].   
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Both groups had positive connections between the regions in both networks. For 

the motor network, relative strengths of the correlations between the ROIs were higher 

in the symptomatic group but not statistically different at p-FDR 0.05 (Figures 5-7). 

However, the connection between the Putamen and ipsilateral PreCG was different. 

While the connectivity between the ROIs was generally higher in the symptomatic 

group, the connectivity between the putamen and the ipsilateral PreCG fluctuated 

between being higher for the symptomatic or the asymptomatic group. This 

inconsistency was unique to the Putamen to ipsilateral PreCG connection.  

For the Motor-Pain Network the symptomatic group again had stronger 

connectivity values but were not statistically different at p-FDR 0.05 across all three 

tasks (Figures 8-10). However, only in the symptomatic group was the putamen to insula 

connection significant during the bilateral bridging task (Figure 4.8). With the exception 

of the bilateral Putamen to ipsilateral Insula, all connectivity results were statistically 

different from zero within-group, but not statistically different between the groups.  

DISCUSSION 

This study assessed the differences in brain activation during the performance of 

lumbopelvic tasks between individuals with and without cLBP. We found that 

asymptomatic individuals have largely unilateral activation in the sensorimotor regions 

of the cortex when performing a unilateral bridging task compared to that of individuals 

with cLBP while the overall activation patterns and connectivity levels were generally 

consistent with what we reported in a previous investigation. Furthermore, we found 
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that individuals with cLBP exhibited a larger network of activation during the 

performance of all motor tasks and demonstrated less laterality of activation during 

unilateral bridging tasks.   

The three tasks—bilateral bridge, right bridge, and left bridge—were chosen 

because of the varied amount of difficulty they presented. We propose that the bilateral 

bridge is the easiest of the three tasks as it requires the least amount of coordination 

between the trunk and the lower extremities and it offers the greatest amount of 

stability. The unilateral bridging tasks were considered to be more difficult due to the 

required inhibition of the contralateral lower extremity and the increased demand for 

trunk stability. In addition, the left bridge was considered more challenging than the 

right due to the anticipated right leg dominance. We anticipated right leg dominance 

because inclusion criteria for the study required individuals to be right handed, and 

hand and foot dominance are strongly correlated[45].   

The asymptomatic group demonstrated activation in the SMA, cerebellum, 

PreCG, and the putamen during the performance of lower extremity motor tasks. This 

finding was largely consistent with our previous report in a separate sample using a 

similar task. Upon visual inspection, both studies demonstrated distinctions between 

the activation patterns of the bilateral, right, and left bridging task. Specifically, during 

the unilateral bridging tasks there was more evident activation in the contralateral 

hemisphere while during the bilateral bridging task the activation was seen bilaterally 

across the sensorimotor region.  Additionally, we reported in a previous paper that the 

levels of connectivity between the regions were smaller than what we expected when 
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taking into consideration the literature on upper extremity tasks. In this current study, 

we found that the levels of connectivity between the bilateral PreCG and between the 

PreCG and the SMA was similar, supporting our findings of lower levels of connectivity 

in lower extremity tasks.   

In contrast to the asymptomatic group, the symptomatic group lacked the 

laterality of activation during the unilateral bridging tasks. As is seen in Figure 3, the 

ipsilateral hemisphere had activation during the unilateral task. This can in part be 

explained by the biomechanical literature, which has suggested that individuals with 

cLBP exhibit trunk stiffening that is achieved through co-activation of the trunk 

musculature[46-50]. As Hodges et. al. proposed in 2011[27], individuals in chronic pain 

exhibit altered movement patterns in order to protect a painful part of the body from 

further pain or injury. For individuals with cLBP this alteration of movement patterns 

results in changes in the kinematics of the spine, leading to increased stiffness of the 

trunk musculature[27]. This stiffness leads to loss of movement specificity and results in 

en bloc movements of the trunk. While beneficial in the short term, prolonged 

maladaptive motor patterns may result in abnormal biomechanical stresses that result 

in continued pain[27]. Therefore, we hypothesize that the bilateral activation observed 

during the unilateral bridging tasks may result from the maladaptive trunk stiffening 

motor pattern exhibited by individuals with cLBP.  

Our study contributes to this theory of altered motor control by providing 

evidence of cortical activation changes in individuals with cLBP.  We believe the lack of 

laterality reflects the trunk stiffening strategy employed by individuals with cLBP in 
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order to protect the spine. Our findings together with previous work[15-17, 27, 50, 51] 

contribute to the notion that the altered motor control exhibited by individuals with 

cLBP is reflected both in the brain and the trunk musculature. However, as we did not 

collect concurrent EMG data on the trunk musculature, we cannot conclude from our 

study if the changes in cortical activation we observed resulted directly from the trunk 

stiffening or if from another source.   

Individuals with chronic pain also exhibited a wider network of activation 

compared to asymptomatic individuals. In addition to the PreCG, SMA and Putamen, 

those in the cLBP group had activation in the insula, MCC, Rolandic operculum, 

amygdala, and supramarginal gyrus.  Of this wider network, the activation in the MCC, 

insula and putamen were of particular interest because not only were they active across 

the three tasks, but the coordinates of peak activity were within a few voxels. Therefore, 

we divided our areas of activation across two networks based on our data: a motor-pain 

network that consisted of the insula, MCC, and Putamen; and a motor network that 

consisted of the PreCG, SMA, and Putamen.  

In a review and meta-analysis of insular function, Kurth et.al. [39] described the 

role of the insula in pain appraisal. While they found that painful stimuli resulted in 

extended activation on virtually the entire insula, the central and posterior insula 

demonstrated extended activation. In this region, the peak coordinates that they report 

(-44,2,7) are almost identical to the ones we found in our study (-44,2,8). This region of 

the insula also has strong structural connections to the MCC and the PreCG [52], further 

supporting our theory of a pain-motor network. 
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The left middle cingulate gyrus had the same region activated across all three bridging 

tasks (-6, -6, 46) and the right middle cingulate gyrus was active during the left bridging 

task (10, -4, 44). There is previous evidence that activity in this region relates to the 

integration of motor function and pain processing[35, 36].  While previous reports[35] 

indicate that the region of the MCC that is related to integration of motor function and 

pain processing is further rostral (0,9,48) compared to our location, this may be due to 

the MCC being organized somatotopically [53]. Misra et. al. utilized grip force while we 

utilized lower extremity movement. This could help to explain the discrepancy in the y-

axis. 

The putamen was another region that was consistently active in the 

symptomatic group at approximately the same location. There is evidence to support 

that the putamen, along with the insula, assists in the processing of both motor and 

pain signals[37]. Furthermore, it has a role in coordinating multiple inputs of 

information, ranging from nociceptive, sensory, and cognitive-emotional pain 

processing[38]. This region is not typically associate with the pain neuromatrix[54, 55] 

and may be unique during the performance of a motor task.  

Additionally, for the motor-pain network, there was a tendency for stronger 

connectivity between the ROIs in the symptomatic group. This was especially true 

during the bilateral bridging task where the connection between the Putamen to Insula 

was only statistically significant in the symptomatic group. As previously stated, we are 

proposing that the insula is assisting in the evaluation of painful stimulus while the 

putamen is processing information required for both motor control and pain processing. 
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The integration of these two regions during a motor performance would be important 

for those in pain as this would allow for the concurrent evaluation of painful stimulus 

and motor adaptation to avoid harm. 

Limitations 

There were several limitations to this study. First, the symptomatic group had a 

disproportionate number of females compared to the asymptomatic group. This study 

used a sample of convenience and did not actively balance the two groups. While there 

are no statistical differences between the baseline characteristics for any of the other 

demographics, there was for the number of females. However, we believe that this 

represents the chronic pain population as a whole. Several studies have shown that 

cLBP has a higher prevalence in women compared to men[1, 56-59], indicating that our 

sample may be indicative of the chronic pain population as a whole.  

 Our symptomatic population also exhibited relatively low levels of pain and 

disability. The average NPRS was a 4/10, with the majority of the symptomatic 

individuals still participating in either school or work activities. However, most had 

sought medical attention for their cLBP and had undergone some form of treatment. 

Therefore, we believe that our sample represents a clinical population albeit one that is 

still relatively able bodied.  

Another limitation was that we did not collect EMG data concurrently with our 

fMRI data. This would have allowed us to make firmer conclusions regarding the true 

nature of the biomechanical differences during the lumbopelvic tasks.  
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CONCLUSION 

  This paper contrasted whole brain activation and functional connectivity during 

lumbopelvic motor tasks between individuals with and without cLBP. We demonstrated 

that individuals with cLBP exhibit a broader network of activation with decreased 

laterality during unilateral tasks. Within our sample there appears to be a network 

consisting of the Putamen, the MCC, and the Insula that contribute to the appraisal of 

pain perception and it’s integration with motor performance. Within this network, and a 

truncated motor network, there is a tendency for stronger connectivity in the 

symptomatic group. Consistent with prior literature, this tendency is especially 

noticeable in the right insula. This study offers critical insights into the cortical 

differences during a lumbopelvic task between individuals with and without cLBP.  
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Figure 4.1 - Participant in the scanner performing the lumbopelvic exercises. 

Table 4.1 – Participant Demographics 

 

N 
(Female) Age 

Weight 
(kg) 

Height 
(cm) Pain RMDQ FABQ CES-D PCS 

Asymptomatics 20 (12) 
29 
(4.5) 

71.7 
(18) 

172 
(13) 0 0 1.9 4.7 1.4 

Symptomatics 23 (19) 
30 
(11) 

78.9 
(22) 

167 
(9) 4 5.96 29.2 14.8 

13.
3 

 

N = number of individuals in group with the number of females in parentheses. Age displayed in 

years. Weight displayed in kilograms. Height displayed in centimeters. Pain scores as reflected 

on 0-10 numeric pain rating scale. RMDQ – Roland Morris Disability Questionnaire. FABQ – Fear 

Avoidance Belief Questionnaire. CES-D – Center for Epidemiologic Studies Depression Scale. PCS 

– Pain Catastrophizing Scale. All standard deviations in parentheses. 
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Rest Rest Rest Rest Rest

Relax Relax Relax Relax Relax

Task Block Task Block Task Block Task Block Task Block

4 Seconds 4 Seconds 4 Seconds 4 Seconds

Task Task Task Task Task

11 Seconds 11 Seconds 11 Seconds 11 Seconds 11 Seconds
4 Seconds

8 Seconds 8 Seconds 8 Seconds 8 Seconds 8 Seconds
75 Seconds 75 Seconds 75 Seconds 75 Seconds 75 Seconds

Figure 4.2 - Task Paradigm. Eight second “rest blocks” were interwoven between 75 
second “task blocks”. The bilateral bridge, unilateral bridge, abdominal tightening, and 
ankle plantarflexion were randomized throughout the task blocks 
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Table 4.2 – Summary of Whole Brain Analysis for the asymptomatic group across the 

three tasks. 

Asymptomatic Bilateral Bridge 

Cluster 
p-FWE 

Cluster 
Size 

Peak p-
FWE 

Peak Z-
Score 

X,Y,Z 
Coordinates Location 

0.0006 142 0.0000 5.88 0,-16,66 
Right Supplemental Motor Area (BA 
6) 

0.0003 171 0.0001 5.78 -10,-40,-16 Left Cerebelum (BA 30) 

   0.0010 5.30 8,-42,-16 Right Cerebelum (BA 30) 

   0.0084 4.84 16,-38,-20 Right Cerebelum (4 5) 

0.0052 52 0.0014 5.23 -12,-30,68 Left Precentral Gyrus (BA4) 

0.0135 23 0.0066 4.89 14,-30,66 Right Precentral Gyrus (BA 4) 

      

Asymptomatic Left Bridge 

Cluster 
p-FWE 

Cluster 
Size 

Peak p-
FWE 

Peak Z-
Score 

X,Y,Z 
Coordinates Location 

0.0002 187 0.0000 6.37 -8,-42,-14 Left Cerebelum (BA 30) 

0.0000 406 0.0000 6.16 2,-16,66 
Right Supplemental Motor Area (BA 
6) 

    0.0001 5.81 12,-30,68 Right Precentral Gyrus (BA 4) 

      

Asymptomatic Right Bridge 

Cluster 
p-FWE 

Cluster 
Size 

Peak p-
FWE 

Peak Z-
Score 

X,Y,Z 
Coordinates Location 

0.0000 279 0.0000 6.73 8,-42,-18 Right Cerebelum (BA 30) 

    0.0003 5.56 20,-36,-24 Right Cerebelum (BA 30) 

0.0000 500 0.0000 6.70 -12,-28,70 Left Precentral Gyrus (BA 4) 

   0.0001 5.68 -2,-16,66 
Left Supplemental Motor Area (BA 
6) 

   0.0002 5.65 -2,-18,62 
Left Supplemental Motor Area (BA 
6) 

    0.0033 5.05 -6,-34,58 Left Precentral Gyrus (BA 4) 

0.0014 102 0.0000 6.43 -30,-12,8 Left Putamen (BA 48) 

Cluster p-FWE – Cluster p-value after FWE correction. Peak p-FWE – Peak p-value after 

FWE correction.  
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Table 4.3 – Summary of the Whole Brain Analysis for the symptomatic group across the 

three tasks.  

Symptomatic Bilateral 

Cluster 
p-FWE 

Cluster 
Size 

Peak p-
FWE Peak Z-Score 

X,Y,Z 
Coordinates Location 

0.0000 1264 0.0000 65535.00 4,-44,-16 Vermis 3 

   0.0000 7.81 14,-38,-20 
Right Cerebellum 
(BA 30) 

   0.0000 7.63 -12,-40,-18 
Left Cerebellum (BA 
30) 

    0.0000 6.73 -22,-34,-26 
Left Cerebellum (BA 
30) 

0.0000 1402 0.0000 7.24 2,-16,60 
Right Supplemental 
Motor Area (BA 6) 

  0.0000 7.05 -14,-28,64 
Left Precentral Gyrus 
(BA 4) 

  0.0000 6.98 14,-28,64 
Right Precentral 
Gyrus (BA 4) 

  0.0000 6.71 6,-32,58 
Right Precentral 
Gyrus (BA 4) 

  0.0050 4.95 -6,-6,46 

Left Middle 
Cingulate Gyrus (BA 
24) 

0.0008 129 0.0000 6.49 46,4,8 Right Insula (BA 44) 

0.0001 273 0.0000 6.19 -30,-14,6 
Left Putamen (BA 
48) 

   0.0000 5.97 -44,2,8 Left Insula (BA 44) 

    0.0048 4.96 -30,0,12 
Left Putamen (BA 
48) 

0.0007 135 0.0000 5.93 30,-10,6 
Right Putamen (BA 
48) 

       

Symptomatic Left 

Cluster p-
FWE 

Cluster 
Size 

Peak p-
FWE Peak Z-Score 

X,Y,Z 
Coordinates Location 

0.0000 2318 0.0000 65535.00 4,-16,60 
Right Supplemental 
Motor Area (BA 6) 

   0.0000 65535.00 14,-28,66 
Right Precentral Gyrus 
(BA 4) 

   0.0000 7.42 8,-32,60 
Right Precentral Gyrus 
(BA 4) 

   0.0000 6.62 10,-4,44 
Right Middle Cingulate 
Gyrus (BA 23) 

   0.0000 6.43 -16,-26,62 
Left Precentral Gyrus 
(BA 4) 
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   0.0000 6.14 14,-28,78 
Right Precentral Gyrus 
(BA 4) 

   0.0001 5.83 10,-12,78 
Right Supplemental 
Motor Area (BA 6) 

    0.0020 5.15 -4,-4,46 
Left Middle Cingulate 
Gyrus (BA 24) 

0.0000 969 0.0000 65535.00 -10,-40,-18 Left Cerebelum (BA 30) 

   0.0000 65535.00 -6,-42,-16 Left Cerebelum (BA 30) 

   0.0000 7.36 -22,-34,-26 Left Cerebelum (BA 30) 

    0.0003 5.57 16,-38,-20 
Right Cerebelum (BA 
30) 

0.0000 803 0.0000 7.46 46,4,8 Right Insula (BA 48) 

   0.0000 7.25 30,-10,6 Right Putamen (BA 48) 

   0.0006 5.38 22,-10,-2 Right Amygdala 

    0.0054 4.93 34,-22,18 Right Insula (BA 48) 

0.0003 167 0.0001 5.82 -44,2,8 Left Insula (BA 48) 

   0.0032 5.05 -28,-14,8 Left Putamen (BA 48) 

    0.0040 5.00 -30,0,10 Left Putamen (BA 48) 

0.0018 92 0.0005 5.45 54,-28,28 
Right Supramarginal 
(BA 48) 

      

Symptomatic Right 

Cluster p-
FWE 

Cluster 
Size 

Peak p-
FWE 

Peak Z-
Score 

X,Y,Z 
Coordinates Location 

0.0000 778 0.0000 
65535.
00 8,-40,-18 Right Cerebelum (BA 30) 

   0.0000 6.59 20,-34,-26 Right Cerebelum (BA 30) 

    0.0001 5.76 -12,-40,-16 Left Cerebelum (BA 30) 

0.0000 1188 0.0000 7.26 -12,-28,64 Left Precentral Gyrus (BA 4) 

   0.0000 7.14 -2,-18,62 
Left Supplemental Motor 
Area (BA 6) 

   0.0014 5.23 -6,-6,46 
Left Middle Cingulate Gyrus 
(BA 23) 

   0.0016 5.19 16,-28,64 Right Precentral Gyrus (BA 4) 

    0.0239 4.59 -12,-34,78 Left Precentral Gyrus (BA 4) 

0.0000 338 0.0000 6.25 -44,2,8 Left Insula (BA 48) 

    0.0000 6.22 -28,-14,8 Left Putamen (BA 48) 

0.0112 28 0.0019 5.17 46,4,8 Right Insula 

Cluster p-FWE - Cluster p-value after FWE correction. Peak p-FWE - Peak p-value after 

FWE correction 
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Figure 4.3 – Statistical parameter maps of mean areas of cerebral blood oxygenation 
level-dependent activation during the bilateral, left unilateral, and right unilateral 
bridging tasks in the asymptomatic (left) and symptomatic (right) groups. 

 

Figure 4.4 - Beta values for the bilateral, left, and right bridging tasks in the Right PreCG, 
Left PreCG, Right Insula, Left Insula in the asymptomatic and symptomatic groups. 

SymptomaticsAsymptomatics

Bilateral

Left

Right

3

6

Z score 
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Figure 4.5 - Functional connectivity during the bilateral bridge in the proposed motor 
network. Asymp - Asymptomatic group. Symp - Symptomatic group. All correlations are 
significant at p-FDR < 0.05 when compared to rest. 
 

 

Figure 4.6 - Functional connectivity during the left bridge in the proposed motor 
network. Asymp - Asymptomatic group. Symp - Symptomatic group. All correlations are 
significant at p-FDR < 0.05 when compared to rest.  
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Figure 4.7 - Functional connectivity during the right bridge in the proposed motor 

network. Asymp - Asymptomatic group. Symp - Symptomatic group. All correlations are 

significant at p-FDR < 0.05 when compared to rest.  

 

 

Figure 4.8 - Functional connectivity during the bilateral bridge in the proposed motor-

pain network. Asymp - Asymptomatic group. Symp - Symptomatic group. All correlations 

are significant at p-FDR < 0.05 when compared to rest. 
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Figure 4.9 - Functional connectivity during the left bridge in the proposed motor-pain 
network. Asymp - Asymptomatic group. Symp - Symptomatic group. All correlations are 
significant at p-FDR < 0.05 when compared to rest. 

 

Figure 4.10 - Functional connectivity during the right bridge in the proposed motor-pain 

network. Asymp - Asymptomatic group. Symp - Symptomatic group. All correlations are 

significant at p-FDR < 0.05 when compared to rest. 
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CHAPTER 5 

SPINAL MANIPULATION ALTERS ACTIVATION AND CONNECTIVITY OF THE PUTAMEN DURING PERFORMANCE 

OF LUMBOPELVIC TASKS IN INDIVIDUALS WITH CHRONIC LOW BACK PAIN – AN FMRI STUDY.3

                                                           
3 Jordon MK, Beattie PF, Silfies SP, Bialosky JE, and Stewart J. To be submitted to Journal 
of Orthopedic and Sports Physical Therapy 



121 
 

ABSTRACT 

STUDY DESIGN: Prospective randomized controlled trial. 

OBJECTIVES: The purpose of this study was to investigate the effects of spinal 

manipulation on brain activation during lumbopelvic exercises in individuals with and 

without chronic low back pain (cLBP). 

BACKGROUND: Despite frequent uses, the effect sizes of spinal manipulation remains 

disappointingly low. This may be in part due to a lack of understanding of the 

mechanisms behind this intervention.  

METHODS: 19 individuals without cLBP and 22 individuals with cLBP performed 

lumbopelvic motor tasks while undergoing functional magnetic resonance imaging of 

the brain before and after spinal manipulation or control condition sidelying rest. 

RESULTS: Following spinal manipulation individuals with cLBP experienced a within-

group increase in activation in the Putamen, Insula, and Midcingulate Cortex (MCC) 

during the performance of a modified right bridging task. This corresponded with an 

increase in the connectivity between the Putamen and the MCC, Precentral Gyrus 

(PreCG), and the Supplemental Motor Area (SMA). The asymptomatic individuals 

experienced an increase in activation in the PreCG and the MCC during the left bridging 

task.  

CONCLUSION: The increases in activation and functional connectivity in individuals with 

cLBP is consistent with a “motor-pain” network of which the Putamen may play a 
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central role. The clinical implications of these findings are uncertain; however, they may 

suggest at least one of the effects of the stimuli generated by spinal manipulation is an 

improvement in the cortico-basal-ganglia motor loop. 

KEY WORDS: [Motor Control – Brain Imaging – Manual Therapy] 

 

INTRODUCTION 

Spinal manipulation therapy (SMT) is routinely used by physical therapist to treat 

low back pain[1, 2]. However, despite its widespread adoption into clinical practice, 

several systematic reviews have reported small to modest effect sizes[3-5]. One 

potential reason for the small effect sizes is the lack of a clear understanding of the 

mechanisms by which SMT influences the nervous system [6, 7]. Previous research has 

suggested that SMT is associated with reductions in global pain sensitivity[8-12] and 

improvements in pain modulation[13], supporting the hypothesis that SMT has a 

modulatory effect on the central nervous system[1, 6, 7, 14]. However, direct evidence 

of SMT’s effects on brain activity is limited, resulting in a need for more conclusive 

evidence.  

Functional magnetic resonance imaging (fMRI) is an established technique to 

measure changes in brain activity[15]. As brain activity increases there is a concurrent 

increase in the demand for oxygenated blood. fMRI can measure the perfusion to a 

given area which gives an indication of changes in blood oxygenation levels, resulting in 

what is known as a blood oxygenation level dependent (BOLD) measure. The BOLD 

response is then used as a proxy measurement for neural activity[16]. By correlating 
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brain activity in spatially separated regions one can start to understand “brain 

networks” or regions that work together during specific circumstances.  These networks 

can be described by determining functional connectivity[16].  

In previous work we described a protocol in which asymptomatic individuals 

performed lumbopelvic exercises while undergoing fMRI[17].  We then refined this 

protocol and compared the differences in brain activity between individuals with and 

without cLBP [18]. We found that in those study participants who had cLBP there was a 

tendency to exhibit bilateral activation in the sensorimotor regions of the cortex. 

Additionally, there appeared to be a unique motor-pain network that consisted of the 

Insula, Putamen, and the Middle Cingulate Cortex (MCC). However, the effects of SMT 

on brain activity during exercise has yet to been reported. In fact, to the authors’ 

knowledge, there have only been two published reports on the effects of SMT on 

supraspinal function using fMRI. Sparks et. al. used fMRI to study the effects of thoracic 

SMT on thermal pain sensitivity in asymptomatic individuals[19]. The investigators had 

pain-free participants undergo thermal stimulation before and after thoracic SMT and 

noted a reduction in peak BOLD response in multiple sensorimotor and pain regions of 

the brain. Gay et. al. assessed changes in functional connectivity following spinal 

manipulation[20] in healthy individuals with induced low back pain. The authors 

reported a shift in connectivity values within several of the same regions that were 

explored by Sparks et al. In the present study, we build on their work by incorporating a 

symptomatic population, and transitioning from a resting[20] or sensory[19] task, to one 
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that involves activation of both the sensory and motor pathway during voluntary 

lumbopelvic movements.    

The purpose of the present study was to investigate the effects of spinal 

manipulation on brain activation during lumbopelvic motor tasks in individuals with and 

without chronic low back pain (cLBP). Findings from this study will contribute to the 

overall understanding of the mechanisms behind spinal manipulation and help clarify 

the effects SMT has on brain function. We tested three primary hypotheses: during 

performance of motor tasks 1) individuals with cLBP would experience a reduction in 

activation in key pain and sensorimotor regions following thrust manipulation compared 

to baseline; 2) functional connectivity between the insular cortex and somatosensory 

cortices would decrease after manipulation compared to baseline; and 3) individuals 

without cLBP would exhibit changes in brain activity following SMT different than that 

observed in individuals with cLBP. 

METHODS 

Participants 

Participant demographics are outlined in (Table 5.1). A total of twenty-five 

individuals with cLBP and twenty-one asymptomatic individuals enrolled in this study. In 

the asymptomatic group one participant was removed due to low signal while another 

demonstrated benign abnormal brain morphology that prevented participation in this 

study. In the symptomatic cohort, one participant became claustrophobic and two more 

were unable to complete the scan due to technical difficulties with the scanner. This 
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resulted in a total of 19 asymptomatic (12 female, age 29 ± 4.5 years) and 22 

symptomatic (18 female, age 30 ± 11.5 years) individuals completing the study. Both the 

asymptomatic and symptomatic groups were then further subdivided into those who 

would receive spinal manipulation (asymptomatic manipulation – AM, symptomatic 

manipulation – SM) and those who would receive the control condition of side-lying rest 

(asymptomatic side-lying rest – AC, symptomatic side-lying rest – SC). 

To be included in the asymptomatic group participants had to have had no 

history of activity limiting low back pain. Inclusion criteria for the symptomatic group 

were perceiving 3/10 back pain the majority days of the week for the past six months. 

Informed consent was obtained from all participants, and approval for this study was 

given by the University of South Carolina Institutional Review Board. This randomized 

control trial was registered with ClinicalTrials.gov (ClinicalTrials.gov ID NCT02828501) 

prior to the recruitment of the first participant. 

Motor Task 

Participants were trained in an established protocol [17, 18, 21] to activate the 

lumbopelvic musculature. The task involved the participants slightly unweighted their 

hips by pushing the back of their right knee (right bridge) and left knee (left bridge) into 

a 22cm bolster (Figure 1). Participants were instructed to keep their eyes closed and to 

breath normally in order to reduce the potential of physiological noise[22]. In order to 

ensure task fidelity, the participants were trained in the tasks both inside and outside of 

the scanner and were visually monitored during the duration of the scan. A bilateral 
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ankle plantarflexion and abdominal contraction task was included in the study but was 

not included in the current analysis. The participants also performed a bilateral bridging 

task that was not include. Based on our previous work, we found that the unilateral 

bridging tasks were better able to differentiate between individuals with and without 

cLBP than the bilateral bridging task[18]. While individuals with cLBP exhibited a 

broader network of activation during all three bridging tasks, only during the unilateral 

bridging tasks did activation in the sensorimotor regions differ. Specifically, individuals 

with cLBP demonstrated bilateral activation in the sensorimotor regions where 

individuals without pain only demonstrated contralateral hemisphere activation. 

The participants underwent thorough training prior to the first scan served not 

only to ensure task fidelity but also to reduce the potential of head motion. Additionally, 

the participants’ head were securely supported within the head coil with foam pads. In 

between the scans the participants were reminded to keep their head as still as possible 

and to only move as much as the task required.  

After thoroughly training the participants in the motor tasks, we collected 

pressure-pain threshold (PPT) measurements from the left and right upper trapezius, 

lumbar paraspinals at L4, and tibialis anterior. Methods used to acquire the PPT 

measurements are described in previous studies[23].  

fMRI Data Acquisition 

Data were collected on a 3T Seimens Prisma scanner using a 20-channel head 

coil (502 volumes; 58 axial slices; 2.5 mm thick; TR = 1000ms; TE = 37ms; matrix 64 x 64 
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voxels; flip angle =61˚; 220x220mm FOV). A sagittal T1-weight MPRAGE protocol was 

used to acquire high-resolution structural images (192 slices; 1mm thick; TR = 

2250ms;TE = 4.11ms; matrix=1 x 1 x 1mm3; 256x256 FOV).  

A block-design with alternating blocks of task and rest (Figure 5.2) was utilized 

for this study. The task block consisted of each task being performed in random order 

for 11 seconds with a 4 second relaxation period following each task. After each task 

block there was an 8 second rest block where the participants were instructed to relax. 

This sequence was repeated six times per run, with each participant completing two 

runs prior to the intervention. After completion of the two runs (Baseline), participants 

were removed from the bore and either received manipulation or a control 

intervention.   

For those participants in the manipulation group, a side-lying lumbar 

manipulation targeting the L4-5 motion segment was applied first in right side-lying and 

then left, as described in previous studies[23, 24]. The manipulation was provided by a 

licensed physical therapist with over 7 years of experience in manipulation. For those in 

the side-lying rest group, the participants first laid on their right side in a comfortable 

position. After 60 seconds the participants rotated to their left side for an additional 60 

seconds. This was to simulate the length of time it would take to perform a lumbar 

manipulation. Following the intervention, the participants repeated the two fMRI runs 

(Figure 3). Visual monitoring of the participants ensured that they were performing the 

correct task at the correct time. The instructions were delivered in a randomized order 
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to the participants using the e-Prime system (Psychology Software Tools, Inc., 

Sharpsburg, PA).  

The fMRI data were the preprocessed using Statistical Parametric Mapping (SPM 

12, Wellcome Department of Cognitive Neurology, London, UK), implemented in 

MATLAB R2017a (Mathworks, Natick, MA, SUA). Every volume was realigned to the first 

and unwarped. The mean image was normalized to Montreal Neurological Institute 

(MNI) space and the normalization parameters were then applied to each volume. The 

data were resampled to 2mm x 2mm x 2mm voxels smoothed using an isotropic 

Gaussian kernel 8x8x8mm3 full width at half maximum. The Artifact Detection Tool was 

then used to assess head motion during the scans. The first derivative of the head 

motion was used to screen for excessive motion with outliers being used as covariates 

of no interest during the statistical analysis (mean number of outliers = 0.4, ranging 

from 0 to 20 of 502 volumes).   

Data Analysis 

Baseline Characteristics, NPRS, and PPT 

Baseline characteristics were compared across groups. A one-way ANOVA was 

used to assess if there were differences in the age, weight, height, the Roland Morris 

Disability Questionnaire (RMDQ), the Fear Avoidance Belief Questionnaire (FABQ), the 

Center for Epidemiologic Studies Depression Scale (CES-D), and the Pain Catastrophizing 

Scale (PCS). Since the requirements for the asymptomatic groups were such that they 

had to have had no pain, an independent-sample t-test was used to assess for 
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differences in baseline pain. A Chi-Squared tested was used to determine if there was a 

difference in gender by group. To assess if there was a change in pain following 

intervention, a repeated measures ANOVA (rm-ANOVA) with a between-subject factor 

of time and within-subject factor of group was performed on the NPRS. We only 

included the symptomatic manipulation and symptomatic control groups in the rm-

ANOVA.  

Pressure-pain threshold (PPT) ratings were collected as a behavioral measure of 

perceived pain sensitivity. As previous research has demonstrated that individuals with 

cLBP exhibit PPT measures that are lower than in individuals without cLBP [25-29], we 

were interested to see if our pain population followed this trend. Therefore, we 

performed a multifactorial ANOVA to assess differences in PPT between individuals with 

and with pain across the six regions.   

Region of Interest (ROI) Analysis 

For the first level analysis, a general linear model (GLM) was used for each 

individual[30, 31].  Contrast maps were calculated for each task period versus rest using 

the first derivative of head motion for all six directions as a regressor of no interest. 

Then, we performed a ROI analysis based on previous work that described a motor-pain 

network[18]. The motor-pain network included the bilateral precentral gyrus (PreCG), 

bilateral insula, bilateral midcingulate cortex (MCC), bilateral putamen, and the 

supplementary motor area (SMA). In order to create the ROIs, we used MarsBAR to  

generated a 5mm radius sphere centered on these regions (MNI coordinates: SMA = 0, -
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16, 62; Right PreCG = 10, -30, 72; Left PreCG = -8, -30, 70; Right Insula = 46, 4, 8; Left 

Insula = -44, 2, 8; Right MCC = 10, -4, 44; Left MCC = -6, -6, 46; Right Putamen = 30, -10, 

6; Left Putamen = -28, -14, 8) (Figures 5.4). 

We then extracted the mean parameter estimates from the ROIs for each 

individual’s first-level analysis using MarsBar. Parameter estimates are an estimation of 

the magnitude of the BOLD signal, often conceptualized as the strength of brain 

activation[16]. Next, we imported the parameter estimates into SPSS in order to 

determine differences in activation between the groups. After dividing the groups based 

on pain, we performed a repeated measures ANOVA with a between-subject factor of 

intervention (manipulation vs sidelying rest), and a within-subject factor of time for 

each task and region. For ROI that was significantly different between the groups, we 

calculated the effect size to better interpret the data[32]. 

Functional Connectivity Analysis 

To assess functional connectivity during our tasks we used the CONN toolbox[33] 

implemented in MATLAB. Each participant’s data was imported into CONN to correctly 

account for the BOLD time series. CONN’s CompCor algorithm[34] was used to remove 

confounds in order to reduce the effect of physiological noise on the functional 

connectivity values. Next, we imported the ROIs into CONN in order to perform an ROI-

to-ROI analysis of the motor-pain network. 

For the ROI-to-ROI analysis we used a weighted GLM approach. First level 

bivariate correlations were computed separately based on the individual’s BOLD time 
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series between each ROI. In order to improve the assumptions of normality, we applied 

a Fisher’s Z-transformation to the bivariate correlations using a standardized procedure 

programmed within the CONN toolbox[33]. Correlation matrices were then produced 

for each of the ROI-to-ROI values and were then imported into a second-level group 

analysis in order to determine mean functional connectivity values between our ROIs.  

A baseline comparison between the tasks was completed by performing a group 

x task MANOVA. We then performed a repeated measures ANOVA (rmANOVA) with 

within-subject factors of time and task to assess changes in connectivity between the 

ROIs. This was completed separately for each of the four groups. The results were then 

thresholded at p-FWE of 0.05. To calculate effect sizes, we first transformed all r-values 

to z-scores using a Fisher Z transformation. Next, we used Cohen’s d to calculate the 

effect sizes using the transformed Z-scores [32].   

To better interpret our data, we calculated the MDC90 in the control groups using 

the change from the pre to post intervention scanning runs. We used this as a measure 

of the amount of variation that normally occurs between scans. Then, we looked at the 

pre to post intervention change scores for each individual in the manipulation groups 

and calculated how many exceeded the MDC90.   

Responder Analysis 

For any significant changes found in the ROI or the functional connectivity 

analysis, we followed up with a responder analysis based on changes in pain rating. We 

used a reduction in 2/10 pain as the definition of positive responder and plotted each 
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individual’s change from pre- to post-intervention on a graph. As the number of 

individuals who received a manipulation was small, we decided to visually inspect the 

graphs as opposed to running statistical tests.  

RESULTS 

Baseline Characteristics and NPRS 

There was no significant difference in the baseline characteristics of age, weight 

and height between the groups (Table 5.2). Furthermore, there was no significant 

difference in pain between the SM and SC groups. The Chi-Squared test demonstrated 

an imbalance in the distribution of females between the groups, with the SM having the 

largest number of females. For the change in the NPRS score, the SM group reported a 

significant decrease in the NPRS of 1.08 where the SC group remained the same. The 

PPT measures indicated that the chronic low back pain group exhibited lower pain 

thresholds in the right low back, left upper trapezius, and right upper trap, with a trend 

towards lower pain thresholds in the left low back (Table 5.3). 

Region of Interest Analysis 

  The ROI analysis demonstrated significant changes in the magnitude of 

activation for both sets of groups. Between the asymptomatic groups (AC and AM) 

during the left bridge, there was an increase in activation for the right PreCG with four 

of the individuals in the AM group exceeding the MDC90 (Figure 5.5). The rmANOVA 

revealed a decrease in activation in the SMA; however, no one in the AM group 

exceeded the MDC90 for the SMA (Figure 5.6). While the group activation increased in 
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the right PreCG during the left bridging task, following the SMT three individuals 

experienced a reduction in magnitude of activation.  

For the symptomatic groups (SC and SM) the rmANOVA revealed an increase in 

activation of the left insula with 7 of 12 individuals in the SM group exceeding the 

MDC90 (Figure 5.7). There was an increase in activation of the left MCC with 2 individuals 

exceeding the MDC90 (Figure 5.8). There was an increase in activation of the left 

putamen with 4 individuals exceeding the MDC90 (Figure 5.9). For the right insula there 

was an increase in activation with 4 individuals exceeding the MDC90 (Figure 5.10), and 

finally for the right putamen there was an increase in activation with 7 individuals 

exceeding the MDC90 (Figure 5.11) (Table 5.2). The responder analysis did not 

demonstrate a consistent relationship between changes in brain activation and 

reduction of pain in the SM and SC groups (Figure 5.12 – 5.16).  

While the mean activation in these ROIs increased following SMT, several 

individuals did experience a decrease greater than the MDC90. In the left Insula, left 

MCC, and right Putamen four individuals, one individual, and one individual respectively 

experienced a reduction in activation.  

Functional Connectivity 

At baseline there were no differences between the groups in the connectivity 

between the ROIs. Following the manipulation, neither of the control groups 

experienced a significant change in connectivity. However, during the left bridging task 

the AM group had an increase in the Left MCC to SMA connection. Furthermore, the SM 
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had significant increases in the connectivity between the Right Putamen and the Right 

MCC, the Right PreCG, the SMA, and between the SMA and the Left PreCG during the 

right bridging task (Table 5.4). The responder analysis did not reveal a pattern regarding 

who improved and who did not (Figure 5.17 – 5.20). 

DISCUSSION 

This study assessed the effects of a single spinal manipulation on the brain 

response to the performance of lumbopelvic motor tasks. Individuals with cLBP 

experienced increases in both the BOLD response and functional connectivity in a select 

motor-pain network following spinal manipulation. Interestingly, these changes were 

largely unique to individuals with cLBP while asymptomatic individuals demonstrated 

little change following manipulation.  

Individuals with cLBP had increased activation following SMT in the putamen, 

insula, and MCC. Together, these three regions represent a network that has the 

potential to assess the presence and intensity of pain and integrate that information 

with motor performance[35-38]. Of specific interest is the role that the putamen might 

play; the left and right putamen demonstrated the greatest consistency in increased 

activation, as well as greater functional connectivity between regions, following SMT. 

The putamen is one of five major nuclei within the basal ganglia (BG) which can both 

excite and inhibit regions of the brain to regulate motor processes[39]. As outlined by 

Da Cunha and colleagues in 2015[40], the literature suggests a model whereby different 

pathways between the portions of the basal ganglia, such as the internal segment of the 



135 
 

globus pallidus (GPi), can directly disinhibit thalamic neurons projecting to the motor 

areas of the cortex; while other areas of the BG inhibit different thalamocortical 

neurons. This balance between disinhibition and inhibition facilitates desired 

movements while preventing unwanted motor patterns[41, 42]. Additionally, the 

putamen receives projections from sensory, motor, and limbic regions of the cortex[43], 

including premotor areas like the SMA[44]. It has been implicated in both pain 

processing and motor production[36], making it key region of interest for individuals 

with pain performing a salient motor task. Within the context of motor processing, 

bilateral activation of the putamen has been specifically implicated in the modulation of 

force[45] which is required by our task. 

In our study we found that individuals with cLBP who received a spinal 

manipulation exhibited an increased in the functional connectivity between the 

putamen and the ipsilateral PreCG, MCC, and the SMA during a right bridging task. 

Therefore, one mechanism by which spinal manipulation might affect motor 

performance is through the alterations in the cortico-basal-ganglia (e.g. putamen to 

cortex) motor loop. While speculative, the alterations in the cortico-basal-ganglia motor 

loop may be due to changes in proprioceptive input.  

Spinal manipulation results in the rapid stretch of the paraspinal muscles[46]. 

Muscle spindles are densely found within these muscles[47] and are the primary 

proprioceptive sensory organ in the musculoskeletal system[48]. They continuously 

inform the CNS about muscle length and joint positioning[48]. Following SMT, there is 

an increased rate of discharge in the muscle spindles[49-51]. This proprioceptive 
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information is then carried from the muscle spindles to the thalamus vial the dorsal 

column-medial laminiscal tract in the spinal cord[52, 53]. Multiple neuroimaging studies 

have shown that once proprioceptive information reaches the brain it is processed in 

the motor cortex (located within the PreCG), premotor cortex, SMA, and cingulate 

motor areas (MCC) [54-57]. An additional region of the brain that has been found to 

process proprioceptive information is the putamen[58]. This is of key interest because in 

2012 Goble et. al. found that structural changes within the right putamen were related 

to reduced activation following proprioceptive stimulus in older adults compared to 

younger adults[59]. In our study, we found that it was the right putamen that was most 

affected by spinal manipulation. Therefore, one hypothesis as to why there was 

increased activation in the right putamen and improved connectivity following spinal 

manipulation may be the increased rate of discharge from the muscle spindles located 

within the paraspinal muscles. This then leads to increased proprioceptive information 

being evaluated at the right Putamen.  

For both the functional connectivity analysis and the whole brain analysis, the 

symptomatic group experienced within-group changes in brain activity following spinal 

manipulation during the right bridging task whereas those without cLBP experienced 

changes while performing the left bridging task. While speculative, this may be due to 

the differences in the difficulty of the tasks. During the training of the limb tasks, most 

participants had a more difficult time learning to isolate the use of the proximal leg 

musculature during the left bridging task compared to the right primarily manifesting as 

difficulty relaxing the side not involved in the task. While this is anecdotal, it concurs 
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with the reported limb dominance. With the exception of two individuals, all the 

participants reported being right limb dominate. We hypothesize that the reason why 

individuals had this difficulty with left unilateral task isolation was due, in part, to 

difficulty inhibiting contralateral muscle activation or coordinating inter-hemisphere 

activity during a less familiar task. Coactivation of lumbopelvic musculature has been 

reported in individuals with cLBP[60], presumably secondary to protection of injured 

structures. Those participants without LBP were potentially able to adapt performance 

more quickly and with less variability during task switching than those with cLBP.  

However, in those with cLBP the result of changes in brain control of movement may 

take away some movement flexibility. Thus, the challenge associated with unilateral 

task performance was not equal between sides or groups. The small sample size in 

conjunction with the within and between subject variance during the unilateral bridging 

tasks made it difficult to find statically significant differences pre to post manipulation 

within these tasks and between groups.  

However, in those tasks where change was found the effect sizes were medium 

to large. This indicates that the observed change was not only statistically significant but 

also meaningful. One potential mechanism to explain the change in observed signal in 

the Putamen has been described above; however, following SMT the asymptomatic 

group experienced changes in the PreCG and the SMA. As discussed above, both the 

PreCG and the SMA evaluate proprioceptive information [54-57]. As both of these 

regions are important in the production and monitoring of movement[61] the ongoing 

proprioceptive information would be necessary for their functions. Additionally, SMT 
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has been linked with changes in maximal volitional contractions[62], electromygraphical 

activity[63-65], and alterations in motor neuron firing[66] which potentially could reflect 

the changes in PreCG and SMA function.  

The effects of spinal manipulation on brain function seemed to be independent 

of pain reduction. When we reviewed the responder analysis to look for a relationship 

between pain reduction and changes in activation, there was no clear pattern of change 

between those who had a 2/10 or greater reduction in pain compared to those who did 

not. Overall, both the magnitude of activation in the ROI analysis and the correlations in 

the functional connectivity analysis increased following the spinal manipulation 

regardless of the reduction in pain.  

Limitations 

While our total study size was large (n=41), after randomizing the sample we 

ended up with rather small group sizes (between 9 and 12 per group). This limited our 

ability to detect changes and increases the risk of a Type 2 error. Gender was not evenly 

distributed between the groups. In the symptomatic groups we had a disproportionate 

number of females compared to the asymptomatic group. However, we believe that this 

may better represent a symptomatic population as several studies have demonstrated 

that females exhibit greater prevalence of chronic pain[67-70]. Our groups were 

relatively young, with mean ages varying between 28 and 34 and with relatively low 

amounts of pain (NPRS = 4 of 10). However, as assessed by PPT, there was a reported 

increase in subjective sensitivity in our symptomatic group. This suggests that while our 
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population was relatively young and on the lower end of the NPRS scale, our population 

demonstrated increases in subjective sensitivity to mechanical stimuli that has been 

previously reported in other cLBP populations [25, 27, 71-75].  

Another potential limitation to our study was the decision to utilize a single 

session of SMT as an intervention for individuals with cLBP. Current guidelines 

recommend SMT for acute LBP and had the duration of symptoms for our population 

been less than three months we might have found more significant findings. However, 

as stated above we did observe changes in the brain activation independent of pain 

reduction which is the basis for the current guidelines. This might suggest that there 

could be some benefit by including SMT in chronic populations. 

Clinical Applications 

The effects of spinal manipulation are likely to go beyond pain reduction. Many 

clinicians do not incorporate spinal manipulation into their treatment of individuals with 

cLBP due to current guidelines recommending against it. However, these guidelines are 

based solely on pain response. This study suggests that SMT might have a transient 

effect on an individual’s motor control and might be used as an adjunct to motor 

control-based interventions in addition to its current use of pain control.   

CONCLUSION 

In individuals with cLBP, there were increases in both the functional connectivity 

and activation within a motor-pain network that consisted of the insula, putamen, and 

the MCC. Of particular note was the putamen, as it demonstrated the largest increase in 
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activation as well as increases in functional connectivity. This suggests that some of the 

effects of spinal manipulation may result from the increases in activation and 

connectivity of the Putamen as it is a key component of the cortico-basal-ganglia motor 

loop.   
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Table 5.1 - Participant Characteristics 

 Asymp Control Asymp Manip Symp Control Symp Manip 

n (female) 8 (4) 10 (8) 10 (8) 12 (10)* 

Age (sd) 29 (4.98) 28 (4.29) 34 (13.17) 28 (9.56) 

Weight (sd) 79 (23.7) 63.9 (6.4) 90.3 (16.07) 69.3 (16.41) 

Height (sd) 174.24 (11.18) 168.91 (16) 173.23 (9.63) 166.12 (8.2) 

Baseline Pain 0 0 4.2 4.1 

Follow-up Pain 0 0 3.83 2.75** 

RMDQ 0 0 5.3 6.8 

FABQ 4.75 0 26 33.2 

CES-D 7.4 2.7 10.8 17.25 

PCS 2.2 0.8 9.9 16.6 

Age displayed in years. Weight displayed in kilograms. Height displayed in centimeters. 
Pain scores as reflected on 0-10 numeric pain rating scale. RMDQ – Roland Morris 
Disability Questionnaire. FABQ – Fear Avoidance Belief Questionnaire. CES-D – Center 
for Epidemiologic Studies Depression Scale. PCS – Pain Catastrophizing Scale. * - 
Indicates more females based on Chi Squared test. ** - Indicates significant decrease in 
pain at p < 0.05. All standard deviations in parentheses. 
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Figure 5.11 - A individual in the testing position within the scanner. 

 

 

Figure 5.2 - Graphical representation of the block design. Each “Task Block” on the first 
row was subdivided as descripted in the second row. 

Rest Rest Rest Rest Rest

Relax Relax Relax Relax Relax

Task Block Task Block Task Block Task Block Task Block

4 Seconds 4 Seconds 4 Seconds 4 Seconds

Task Task Task Task Task
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4 Seconds
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75 Seconds 75 Seconds 75 Seconds 75 Seconds 75 Seconds
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Figure 5.3 - Flow of study. 

 

Figure 5.4 - Location of ROIs. L - Left; R - Right; PreCG - Precentral Gyrus; SMA - 
Supplementary Motor Area; MCC - Midcingulate Cortex; Put - Putamen; In - Insula 
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Table 5.2 - Parameter estimates for each of the regions that changed from pre to post 

intervention based on the results from the rmANOVAs. 

 ROI Results 

 Asymptomatic Group 

Region 
Control 

Pre 

Control 

Post 

Manip 

Pre 

Manip 

Post 
F 

p-

Value 

# Exceeding 

MDC90 in 

Manipulation 

group 

Effect 

Size 

LB R PreCG 1.421 1.985 1.213 1.243 4.492 0.049 4 -.62 

LB SMA 0.779 1.34 1.374 1.321 7.289 0.015 0 -.85 

 Symptomatic Group 

RB L In 0.394 0.181 0.418 0.604 5.21 0.034 7 .839 

RB L MCC 0.58 0.311 0.698 1.037 5.466 0.03 2 1.014 

RB L Put 0.394 0.328 0.266 0.552 5.875 0.025 4 1.427 

RB R In 0.3 0.112 0.318 0.557 7.731 0.012 4 1.279 

RB R Put 0.322 0.22 0.203 0.413 8.054 0.01 7 1.113 

LB – Left Bridge; RB – Right Bridge; L – Left; R – Right; PreCG – Precentral Gyrus; In – 
Insula; MCC – Midcingulate Cortex; Put – Putamen; SMA – Supplementary Motor Area; 
Pre – Pre-intervention; Post – Post-intervention. 
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Table 5.3 – Baseline Pressure-Pain Threshold testing results from ANOVA. 

Pressure-Pain Threshold  

  Mean 

Std. 

Deviation F Sig. 

Left Low Back Pre Average Asymptomatic 62.2050 23.25 2.861 0.099 

Symptomatic 51.3818 18.11     

    
 

    

Right Low Back Pre Average Asymptomatic 66.1700 29.75 4.456 0.041 

Symptomatic 49.5614 20.84     

    
 

    

Left Upper Trap Pre Average Asymptomatic 52.4215 25.24 4.234 0.046 

Symptomatic 39.8886 12.81     

    
 

    

Right Upper Trap Pre Average Asymptomatic 49.5400 20.681 4.575 0.039 

Symptomatic 37.7182 14.92     

    
 

    

 

 

Figure 5.12 - Change in parameter estimates for asymptomatic individuals performing 
left bridging task in the right precentral gyrus ROI. PreCG - Precentral Gyrus 
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Figure 5.13 - Change in parameter estimates for asymptomatic individuals performing 
left bridging task in the supplemental motor area ROI.  

 

Figure 5.14 - Change in parameter estimates for symptomatic individuals performing 
right bridging task in the left insula ROI.  
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Figure 5.15 - Change in parameter estimates for symptomatic individuals performing 
right bridging task in the left midcingulate cortex ROI. 

 

Figure 5.16 - Change in parameter estimates for symptomatic individuals performing 
right bridging task in the left putamen ROI. 
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Figure 5.17 - Change in parameter estimates for symptomatic individuals performing 
right bridging task in the right insula ROI. 

 

Figure 5.18 - Change in parameter estimates for symptomatic individuals performing 
right bridging task in the right Putamen ROI. 
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Table 5.4 – ROI-to-ROI connectivity levels for those connections that changed following 
SMT.  

Asymptomatic Manipulation Group 

Task Connection Pre Post Change p-FWE Effect Size 

Left Bridge Left MCC to SMA 0.31 0.43 0.12 0.033 0.98 

         

Symptomatic Manipulation Group 

Task Connection Pre Post Change p-FWE Effect Size 

Right Bridge Right Put to Right MCC 0.09 0.17 0.08 0.041 1.09 

  Right Put to Right PreCG 0.04 0.16 0.12 0.041 1.04 

  Right Put to SMA 0.03 0.17 0.14 0.005 1.86 

  SMA to Left PreCG 0.28 0.38 0.10 0.027 0.91 

MCC – Midcingulate Cortex. SMA – Supplemental Motor Area. Put – Putamen. PreCG – 
Precentral Gyrus. FWE – Family-Wise Error. Pre and Post values are r-values. 
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Figure 5.19 - Change in the parameter estimates during the right bridging task in the left 
insula ROI in symptomatic individuals who improved in the NPRS (responders) compared 
to those who did not (non-responders). 
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Figure 5.20 - Change in the parameter estimates during the right bridging task in the left 
Midcingulate Cortex ROI in symptomatic individuals who improved in the NPRS 
(responders) compared to those who did not (non-responders). 
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Figure 5.21 - Change in the parameter estimates during the right bridging task in the left 
Putamen ROI in symptomatic individuals who improved in the NPRS (responders) 
compared to those who did not (non-responders). 
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Figure 5.22 - Change in the parameter estimates during the right bridging task in the 
right Insula ROI in symptomatic individuals who improved in the NPRS (responders) 
compared to those who did not (non-responders). 



154 
 

 

Figure 5.23 - Change in the parameter estimates during the right bridging task in the 
right putamen ROI in symptomatic individuals who improved in the NPRS (responders) 
compared to those who did not (non-responders). 
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Figure 5.24 - Change in correlation in activity between the right putamen and the right 
midcingulate cortex from pre- to post-intervention in individuals with chronic low back 
pain during the right bridging task. 
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Figure 5.25 - Change in correlation in activity between the right putamen and the right 
Supplemental Motor Area from pre- to post-intervention in individuals with chronic low 
back pain during the right bridging task. 
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Figure 5.26 - Change in correlation in activity between the right putamen and the right 
Precentral Gyrus from pre- to post-intervention in individuals with chronic low back pain 
during the right bridging task. 
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Figure 5.27 - Change in correlation in activity between the Supplemental Motor Area to 
the Left Precentral Gyrus from pre- to post-intervention in individuals with chronic low 
back pain during the right bridging task. 



159 
 

REFERENCES 

1. Coronado, R.A. and J.E. Bialosky, Manual physical therapy for chronic pain: the 
complex whole is greater than the sum of its parts. J Man Manip Ther, 2017. 
25(3): p. 115-117. 

2. Hancock, M., C. Maher, and J. Latimer, Spinal Manipulative Therapy for Acute 
Low Back Pain: A Clinical Perspective. Journal of Manual and Manipulative 
Therapy, 2008. 16(4): p. 198-203. 

3. Goertz, C.M., et al., Patient-centered outcomes of high-velocity, low-amplitude 
spinal manipulation for low back pain: a systematic review. J Electromyogr 
Kinesiol, 2012. 22(5): p. 670-91. 

4. Paige, N.M., et al., Association of Spinal Manipulative Therapy With Clinical 
Benefit and Harm for Acute Low Back Pain: Systematic Review and Meta-
analysis. Jama, 2017. 317(14): p. 1451-1460. 

5. Bronfort, G., et al., Efficacy of spinal manipulation and mobilization for low back 
pain and neck pain: a systematic review and best evidence synthesis. Spine J, 
2004. 4(3): p. 335-56. 

6. Bialosky, J., et al., The Mechanisms of Manual Therapy in the Treatment of 
Musculoskeletal Pain: A Comprehensive Model. Manual Therapy, 2009. 14(5): p. 
531-538. 

7. Bialosky, J.E., et al., Basis for spinal manipulative therapy: a physical therapist 
perspective. J Electromyogr Kinesiol, 2012. 22(5): p. 643-7. 

8. Bialosky, J.E., et al., Spinal manipulative therapy-specific changes in pain 
sensitivity in individuals with low back pain (NCT01168999). J Pain, 2014. 15(2): 
p. 136-48. 

9. Bialosky, J., et al., Spinal Manipulative Therapy Has an Immediate Effect of 
Thermal Pain Sensitivity in People With Low Back Pain: A Randomized Controlled 
Trial. Physical Therapy Journal, 2009. 89(12): p. 1292-1303. 

10. Coronado, R., et al., Changes in pain sensitivity following spinal manipulation: A 
systematic review and meta-analysis. Journal of Electromyography and 
Kinesiology, 2012. 22: p. 752-67. 

11. Fernandez-Carnero, J., C. Fernandez-de-las-Penas, and J. Cleland, Immediate 
Hypoalgesic and Motor Effects After a Single Cervical Spine Manipulation in 

Subjects with Lateral Epicondylalgia. Journal of Manipulative and Physiological 
Therapeutics, 2008. 31(9): p. 675-681. 

12. Martinez-Segura, R., et al., Immediate Changes in Widespread Pressure Pain 
Sensitivity, Neck Pain, and Cervical Range of Motion After Cervical or THoracic 



160 
 

Thrust Manipulation in Patients with Bilateral Chronic Mechanical Neck Pain: A 
Randomized Clinical Trial. JOSPT, 2014. 42(9): p. 806-814. 

13. Savva, C., G. Giakas, and M. Efstathiou, The role of the descending inhibitory pain 
mechanism in musculoskeletal pain following high-velocity, low ampulitude 
thrust manipulation. A review of the literature. Journal of Back and 
Musculoskeletal Rehabilitation, 2014. 27: p. 377-382. 

14. Bialosky, J.E., et al., Unraveling the Mechanisms of Manual Therapy: Modeling an 
Approach. J Orthop Sports Phys Ther, 2018. 48(1): p. 8-18. 

15. Buchbinder, B.R., Functional magnetic resonance imaging. Handb Clin Neurol, 
2016. 135: p. 61-92. 

16. Stroman, P., Essentials of Functional MRI. 2011, Boca Raton, FL: Taylor & Francis 
Group. 

17. Silfies, S., et al., Assessing Sensorimotor Control of the Lumbopelvic-Hip Region 
using Task-based Functional MRI. Journal of Neurophysiology, 2019. Under 
review. 

18. Jordon, M., et al., Individuals with Chronic Low Back Pain Exhibgit Alterations in 
Cortical Activity During Lumbopelvic Motor Tasks. Pain, 2019. To Be Submitted. 

19. Sparks, C., et al., Using functional magnetic resonance imaging to determine if 
cerebral hemodynamic response to pain changes following thoracic spine thrust 
manipulation in healthy individuals. Journal of Orthopeadic and Sports Physical 
Therapy, 2013: p. 340-348. 

20. Gay, C.W., et al., Immediate changes after manual therapy in resting-state 
functional connectivity as measured by functional magnetic resonance imaging 
in participants with induced low back pain. J Manipulative Physiol Ther, 2014. 
37(9): p. 614-27. 

21. Jordon, M., et al., Task-Based Functional Connectivity and BOLD Activation 
During Within-Scanner Performance of Lumbopelvic Motor Tasks: An fMRI Study. 
Neuroimage, 2019. To Be Submitted. 

22. Li, T.Q., et al., Functional MRI of human brain during breath holding by BOLD and 
FAIR techniques. Neuroimage, 1999. 9(2): p. 243-9. 

23. Jordon, M.K., et al., Spinal manipulation does not affect pressure pain thresholds 
in the absence of neuromodulators: a randomized controlled trial. J Man Manip 
Ther, 2017. 25(4): p. 172-181. 

24. Beattie, P., et al., The Within-Session Change in Low Back Pain Intensity 
Following Spinal Manipulative Therapy Is Related to Differences in Diffusion of 
Water in the Intervertebral Discs of the Upper Lumbar Spine and L5-S1. JOSPT, 
2014. 44(1): p. 19-29. 



161 
 

25. Correa, J.B., et al., Central sensitization and changes in conditioned pain 
modulation in people with chronic nonspecific low back pain: a case-control 
study. Exp Brain Res, 2015. 233(8): p. 2391-9. 

26. Coutaux, A., et al., Hyperalgesia and allodynia: peripheral mechanisms. Joint 
Bone Spine, 2005. 72(5): p. 359-71. 

27. Farasyn, A. and R. Meeusen, The influence of non-specific low back pain on 
pressure pain thresholds and disability. Eur J Pain, 2005. 9(4): p. 375-81. 

28. Giesecke, T., et al., Evidence of Augmented Central Pain Processing in Idiopathic 
Chronic Low Back Pain. Arthritis & Rheumatism, 2004. 50(2): p. 613-623. 

29. Imamura, M., et al., Changes in pressure pain threshold in patients with chronic 
nonspecific low back pain. Spine (Phila Pa 1976), 2013. 38(24): p. 2098-107. 

30. Friston, K.J., et al., Statistical Parametric Maps in Functional Imaging: A General 
Linear Approach. Hum Brain Mapp, 1995. 2: p. 189-210. 

31. Worsley, K.J. and K.J. Friston, Analysis of fMRI time-series revisited--again. 
Neuroimage, 1995. 2(3): p. 173-81. 

32. Lenhard, W. and A. Lenhard. Calculation of Effect Sizes. 2016; Retrieved from: 
https://www.psychometrica.de/effect_size.html. Dettelbach (Germany): 
Psychometrica. DOI: 10.13140/RG.2.1.3478.4245 

33. Whitfield-Gabrieli, S. and A. Nieto-Castanon, Conn: a functional connectivity 
toolbox for correlated and anticorrelated brain networks. Brain Connect, 2012. 
2(3): p. 125-41. 

34. Behzadi, Y., et al., A component based noise correction method (CompCor) for 
BOLD and perfusion based fMRI. Neuroimage, 2007. 37(1): p. 90-101. 

35. Kurth, F., et al., A link between the systems: functional differentiation and 
integration within the human insula revealed by meta-analysis. Brain Struct 
Funct, 2010. 214(5-6): p. 519-34. 

36. Misra, G. and S.A. Coombes, Neuroimaging Evidence of Motor Control and Pain 
Processing in the Human Midcingulate Cortex. Cereb Cortex, 2015. 25(7): p. 
1906-19. 

37. Peyron, R., et al., Motor cortex stimulation in neuropathic pain. Correlations 
between analgesic effect and hemodynamic changes in the brain. A PET study. 
Neuroimage, 2007. 34(1): p. 310-21. 

38. Favilla, S., et al., Ranking brain areas encoding the perceived level of pain from 
fMRI data. Neuroimage, 2014. 90: p. 153-62. 

https://www.psychometrica.de/effect_size.html


162 
 

39. Prodoehl, J., D.M. Corcos, and D.E. Vaillancourt, Basal ganglia mechanisms 
underlying precision grip force control. Neurosci Biobehav Rev, 2009. 33(6): p. 
900-8. 

40. Da Cunha, C., et al., Toward sophisticated basal ganglia neuromodulation: 
Review on basal ganglia deep brain stimulation. Neurosci Biobehav Rev, 2015. 
58: p. 186-210. 

41. Nambu, A., Somatotopic organization of the primate Basal Ganglia. Front 
Neuroanat, 2011. 5: p. 26. 

42. Obeso, J.A., et al., Motor manifestations and basal ganglia output activity: the 
paradox continues. Mov Disord, 2013. 28(4): p. 416-8. 

43. Groenewegen, H.J., The basal ganglia and motor control. Neural Plast, 2003. 
10(1-2): p. 107-20. 

44. Kunzle, H., Bilateral projections from precentral motor cortex to the putamen 
and other parts of the basal ganglia. An autoradiographic study in Macaca 
fascicularis. Brain Res, 1975. 88(2): p. 195-209. 

45. Pope, P., et al., Force related activations in rhythmic sequence production. 
Neuroimage, 2005. 27(4): p. 909-18. 

46. Pickar, J.G. and P.S. Bolton, Spinal manipulative therapy and somatosensory 
activation. J Electromyogr Kinesiol, 2012. 22(5): p. 785-94. 

47. Amonoo-Kuofi, H.S., The density of muscle spindles in the medial, intermediate 
and lateral columns of human intrinsic postvertebral muscles. J Anat, 1983. 
136(Pt 3): p. 509-19. 

48. Proske, U. and S.C. Gandevia, The proprioceptive senses: their roles in signaling 
body shape, body position and movement, and muscle force. Physiol Rev, 2012. 
92(4): p. 1651-97. 

49. Pickar, J.G. and Y.M. Kang, Paraspinal muscle spindle responses to the duration 
of a spinal manipulation under force control. J Manipulative Physiol Ther, 2006. 
29(1): p. 22-31. 

50. Pickar, J.G., et al., Response of lumbar paraspinal muscles spindles is greater to 
spinal manipulative loading compared with slower loading under length control. 
Spine J, 2007. 7(5): p. 583-95. 

51. Pickar, J.G. and J.D. Wheeler, Response of muscle proprioceptors to spinal 
manipulative-like loads in the anesthetized cat. J Manipulative Physiol Ther, 
2001. 24(1): p. 2-11. 

52. Eidelberg, E., et al., Role of the dorsal funiculi in movement control. Brain Res, 
1976. 114(3): p. 427-38. 



163 
 

53. Berkley, K.J., Spatial relationships between the terminations of somatic sensory 
and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending 
somatic sensory inputs to lateral diencephalon. J Comp Neurol, 1980. 193(1): p. 
283-317. 

54. Naito, E., et al., Illusory arm movements activate cortical motor areas: a positron 
emission tomography study. J Neurosci, 1999. 19(14): p. 6134-44. 

55. Naito, E., et al., Internally simulated movement sensations during motor imagery 
activate cortical motor areas and the cerebellum. J Neurosci, 2002. 22(9): p. 
3683-91. 

56. Naito, E., P.E. Roland, and H.H. Ehrsson, I feel my hand moving: a new role of the 
primary motor cortex in somatic perception of limb movement. Neuron, 2002. 
36(5): p. 979-88. 

57. Naito, E., et al., Dominance of the right hemisphere and role of area 2 in human 
kinesthesia. J Neurophysiol, 2005. 93(2): p. 1020-34. 

58. Naito, E., et al., Human limb-specific and non-limb-specific brain representations 
during kinesthetic illusory movements of the upper and lower extremities. Eur J 
Neurosci, 2007. 25(11): p. 3476-87. 

59. Goble, D.J., et al., The neural basis of central proprioceptive processing in older 
versus younger adults: an important sensory role for right putamen. Hum Brain 
Mapp, 2012. 33(4): p. 895-908. 

60. Jones, S.L., et al., Individuals with non-specific low back pain use a trunk 
stiffening strategy to maintain upright posture. J Electromyogr Kinesiol, 2012. 
22(1): p. 13-20. 

61. Bonini, F., et al., Action monitoring and medial frontal cortex: leading role of 
supplementary motor area. Science, 2014. 343(6173): p. 888-91. 

62. Christiansen, T.L., et al., The effects of a single session of spinal manipulation on 
strength and cortical drive in athletes. Eur J Appl Physiol, 2018. 118(4): p. 737-
749. 

63. de Camargo, V.M., et al., Immediate effects on electromyographic activity and 
pressure pain thresholds after a cervical manipulation in mechanical neck pain: a 
randomized controlled trial. J Manipulative Physiol Ther, 2011. 34(4): p. 211-20. 

64. Herzog, W., D. Scheele, and P.J. Conway, Electromyographic responses of back 
and limb muscles associated with spinal manipulative therapy. Spine (Phila Pa 
1976), 1999. 24(2): p. 146-52; discussion 153. 

65. Herzog, W., et al., Reflex responses associated with manipulative treatments on 
the thoracic spine: a pilot study. J Manipulative Physiol Ther, 1995. 18(4): p. 233-
6. 



164 
 

66. Niazi, I.K., et al., Changes in H-reflex and V-waves following spinal manipulation. 
Exp Brain Res, 2015. 233(4): p. 1165-73. 

67. Shiri, R., et al., The association between obesity and the prevalence of low back 
pain in young adults: the Cardiovascular Risk in Young Finns Study. Am J 
Epidemiol, 2008. 167(9): p. 1110-9. 

68. Schneider, S., S. Lipinski, and M. Schiltenwolf, Occupations associated with a high 
risk of self-reported back pain: representative outcomes of a back pain 
prevalence study in the Federal Republic of Germany. Eur Spine J, 2006. 15(6): p. 
821-33. 

69. Schneider, S., D. Randoll, and M. Buchner, Why do women have back pain more 
than men? A representative prevalence study in the federal republic of Germany. 
Clin J Pain, 2006. 22(8): p. 738-47. 

70. Johannes, C.B., et al., The prevalence of chronic pain in United States adults: 
results of an Internet-based survey. J Pain, 2010. 11(11): p. 1230-9. 

71. Imamura, M., et al., Changes in Pressure Pain Threshold in Patients With Chronic 
Nonspecific Low Back Pain. SPINE, 2013. 38(24): p. 2098-2107. 

72. Bennett, R.M., Emerging concepts in the neurobiology of chronic pain: evidence 
of abnormal sensory processing in fibromyalgia. Mayo Clin Proc, 1999. 74(4): p. 
385-98. 

73. Giesbrecht, J. and M. Battie, A Comparison of Pressure Pain Detection 
Thresholds in People With Chronic Low Back Pain and Volunteers Without Pain. 
Physical Therapy Journal, 2005. 85: p. 1085-1092. 

74. Sandkuhler, J., Models and mechanisms of hyperalgesia and allodynia. Physiol 
Rev, 2009. 89(2): p. 707-58. 

75. Woolf, C.J., Central sensitization: implications for the diagnosis and treatment of 
pain. Pain, 2011. 152(3 Suppl): p. S2-15. 



165 
 

CHAPTER 6 

SUMMARY OF FINDINGS 

6.1 Asymptomatic Individuals Demonstrate Robust Functional Connectivity Within 

Sensorimotor Networks During Lumbopelvic Motor Tasks 

 Asymptomatic individuals exhibited a broad, robust network of functionally 

connected regions during the performance of lumbopelvic motor tasks. Within our ROI-

to-ROI analysis of the restricted sensorimotor network, we found significant correlations 

between the supplemental motor area (SMA), the precentral gyrus (PreCG), and the 

postcentral gyrus (PostCG). However, while these connections were significant, there 

appeared to be lower connectivity values when compared to literature of the upper 

extremity, suggesting that other structures (i.e., the spinal cord) may mediate some of 

the control of the lower extremity[1, 2].  

 The results of the seed-to-voxel analysis yielded results similar to the whole 

brain activation in that there were significant correlations between our sensorimotor 

network and the precuneus, superior frontal gyrus, anterior cingulate cortex, superior 

parietal lobule, central opercular cortex, inferior frontal gyrus, right insular cortex, and 

the thalamus. Interestingly, during the performance of the bilateral bridge there was no 

significant correlation between the SMA and the midcingulate cortex (MCC), while 

during the unilateral bridging tasks they were significantly anti-correlated. We 
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hypothesize that this may be the result of default coupling that is inherent in bilateral 

limb tasks[3].  

6.2 Individuals with Chronic Low Back Pain Demonstrate a Broader Network of 

Activation During Lumbopelvic Exercises 

 Both individuals with and without chronic low back pain (cLBP) demonstrate 

activation in the PreCG, putamen, cerebellum, and the SMA. However, only the 

individuals with cLBP had activation in the MCC, insula, and supramarginal gyrus. 

Furthermore, the location of activation in the MCC, insula, and putamen was consistent 

across the tasks in individuals with cLBP. Due to the consistency and the function of 

these regions, we decided to define two networks. First, we designated the SMA, PreCG, 

and the Putamen as the motor pathway, which was present in both populations. These 

regions are involved in the planning, execution, and modulation of motor tasks which 

make then very salient to our task [4, 5].  

Next, we designated the insula, MCC, and putamen as part of the motor-pain 

network.  Both the insula and the MCC have strong structural connections to the 

sensorimotor regions of the cortex. The insula has been found to be active in response 

to pain and integrate the emotional aspect with the sensory component [6]. The MCC, 

on the other hand, has been demonstrated to integrate both motor function and pain 

processing [7, 8].  
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6.3 Individuals with Chronic Low Back Pain Lack Distinct Hemispheric Laterality When 

Performing Unilateral Bridging Tasks. 

 Asymptomatic individuals demonstrated unilateral activation in the 

sensorimotor regions of the cortex when performing a unilateral bridging task compared 

to individuals with cLBP. When individuals with cLBP perform unilateral bridging tasks, 

upon visual inspection of the data bilateral hemispheres are activated. This can in part 

be explained by the biomechanical literature, which has suggested that individuals with 

cLBP exhibit trunk stiffening that is achieved through co-activation of the trunk 

musculature [9-13]. As Hodges et. al. proposed in 2011 [14], individuals in chronic pain 

exhibit altered movement patterns in order to protect a painful part of the body from 

further pain or injury. For individuals with cLBP this alteration of movement patterns 

results in changes in the kinematics of the spine, leading to increased stiffness of the 

trunk musculature. This stiffness leads to loss of movement specificity and results in en 

bloc movements of the trunk. While beneficial in the short term, prolonged maladaptive 

motor patterns may result in abnormal biomechanical stresses that result in continued 

pain [14].   

6.4 Individuals with Chronic Low Back Pain Generally Demonstrate Higher Levels of 

Functional Connectivity During Lumbopelvic Exercises. 

In our designated motor-pain network of the insula, MCC, and putamen, those 

with cLBP exhibited higher levels of connectivity. While the levels of connectivity were 

not statistically different between the groups, across the tasks those with cLBP had 
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higher levels. This was especially true during the bilateral bridging task where the 

connection between the Putamen and Insula was only statistically significant in the 

symptomatic group.  

This trend for greater connectivity in those with cLBP remained consistent in the 

motor network (PreCG, SMA, and Putamen) with one exception: The Putamen to PreCG 

connection. The two groups exhibited closer relative strengths in the connectivity 

between these regions with neither group consistently demonstrating greater 

connectivity. This is of interest because in those who received spinal manipulation it was 

the connectivity between the Putamen and other key regions of the cortex that 

statistically increased. 

6.5 Spinal Manipulation Alters Cortical Activation Differently Between Those With and 

Without Chronic Low Back Pain. 

In individuals with cLBP, we found a significant increase in the activation of the 

putamen and the insula whereas in asymptomatic individuals there was a significant 

decrease in the activation of the PreCG. The increase in activation in those with cLBP 

may reflect changes in the cortico-basal-ganglia motor loop. The putamen is one of five 

major nuclei within the basal ganglia (BG) which can both excite and inhibit regions of 

the brain to regulate motor processes[15]. As outlined by Da Cunha and colleagues in 

2015 [16], the literature suggests a model whereby different pathways between the 

portions of the basal ganglia, such as the internal segment of the globus pallidus (GPi), 

can directly disinhibit thalamic neurons projecting to the motor areas of the cortex; 
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while other areas of the BG inhibit different thalamocortical neurons. This balance 

between disinhibition and inhibition facilitates desired movements while preventing 

unwanted motor patterns [17, 18]. 

Additionally, the putamen receives projections from sensory, motor, and limbic 

regions of the cortex[19], including premotor areas like the SMA [20]. It has been 

implicated in the both pain processing and motor production [7], making it key region of 

interest for individuals with pain performing a salient motor task. Furthermore, within 

the context of motor processing, bilateral activation of the putamen has been 

specifically implicated in the modulation of force [21] which is required by our task. 

In asymptomatic individuals the right PreCG demonstrated a general decrease in 

activation following spinal manipulation in the left bridging task. In a separate, 

unpublished data set we found similar findings where following spinal manipulation 

those without cLBP exhibited a general decrease in activity in bilateral PreCG, with the 

right PreCG having a greater amount of decrease compared to the left. It is unclear why 

the right PreCG would exhibit greater decreases following spinal manipulation, but one 

possibility is that it is related to an effect of the non-dominate LE. In our current dataset 

only one individual without cLBP was left lower-limb dominate, and that individual was 

in the control group. Therefore, there may be a greater effect on cortical activation 

levels in the non-dominate hemisphere. Additionally, this decrease was not found in 

individuals with cLBP, suggesting that spinal manipulation might alter cortical activation 

differentially based on the presence of pain.  
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6.6 Spinal Manipulation Increases Functional Connectivity Between the Putamen and 

the Precentral Gyrus, Midcingulate Cortex, and the Supplemental Motor Area in 

Individuals with Chronic Low Back Pain. 

In our study we found that individuals with cLBP who received a spinal 

manipulation exhibited an increased in the functional connectivity between the 

putamen and the ipsilateral PreCG, MCC, and the SMA during a right bridging task. 

Therefore, one mechanism by which spinal manipulation might affect motor 

performance is through the alterations in the cortico-basal-ganglia (e.g. putamen to 

cortex) motor loop. However, as we did not have a direct measure of motor 

performance this conclusion is speculative. 

6.7 Limitations for the Overall Study. 

One of the largest limitations to this study was the small sample size. While 

there were an original 41 individuals recruited for this study each of the subgroups only 

had anywhere from 9 to 12 people per group. Unfortunately, this limited the overall 

power of the study and the inferences we could make on the potential changes 

following spinal manipulation. A larger sample size would have allowed us to gain a 

better understanding of the effects of spinal manipulation both in the symptomatic and 

asymptomatic populations.  

Another limitation to the overall study was that gender was not evenly 

distributed between the groups. In the symptomatic groups we had a disproportionate 

number of females compared to the asymptomatic group. However, we believe that this 



171 
 

may better represent a symptomatic population as several studies have demonstrated 

that females exhibit greater prevalence of chronic pain [22-25]. 

Our groups were relatively young, with mean ages varying between 28 and 34 

and with relatively low amounts of pain (NPRS = 4). However, as assessed by PPT, there 

did seem to be centralized sensitivity in our symptomatic group. This suggests that while 

our population was relatively young and on the lower end of the NPRS scale, there was 

evidence of central nervous system alterations within our group [26-32].  

An additional limitation to our study was that we did not measure the 

movement while in the scanner. First, we did not collect EMG data concurrently with 

our fMRI data. This would have allowed us to make firmer conclusions regarding the 

linkage between the changes in cortical activation and muscular activation. Also, unlike 

previous research using lower extremity tasks, we did not incorporate external 

stabilization devices to reduce motion artifact and control movement. [33-36]. While 

stabilizing the joint decreases task-related head movement, this isolation may influence 

the findings. There is an inherent motor variability during movement performance [37] 

and the ability to compensate for this variation is vital for optimal feedback control[38]. 

Supplementing joint support during a task may reduce the ability to detect changes in 

individuals with chronic pain.  

6.8 Future Directions 

Future studies should focus on increasing sample sizes and including EMG 

recordings of the lumbopelvic musculature. In a previous study we found that when 
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individuals performed the modified bridging tasks they activated relative trunk 

musculature. Being able to measure changes in the EMG activity and correlate that with 

the changes in the BOLD response would give a much better understanding of the 

relationship between the two and how changes in cortical activity reflect changes in 

motor control.  

Additionally, future studies should consider removing the bilateral and left 

bridging tasks. For symptomatic individuals, the right bridging task was the one most 

responsive to the changes elicited by spinal manipulation. By removing the other tasks, 

one could add an ankle plantarflexion and hand grasping task. The inclusion of these 

different tasks would contribute to our understanding in several ways.  

First, by adding the ankle plantarflexion task we would be able to see if low back 

pain modulates the laterality of all lower extremity tasks or just the ones that are 

relevant to the lumbopelvic musculature. Also, by adding a hand grasping task we would 

be able to see if changes in cortical activation were present during the performance of 

all motor tasks or just those relevant to the pain. This would inform us if the changes in 

the central nervous system were specific to the task or the pain.  

Additionally, by adding these two tasks we could start to get a better 

understanding of the changes in somatotopic organization that occur in individuals with 

cLBP. Previous research has reported that individuals with cLBP exhibit changes in the 

organization of the motor cortex[39-42]. However, these previous studies have been 

limited by the fact that they only assessed the changes in a single muscle[41-43]. By 
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including both ankle and hand tasks, we could see if the overall somatotopic 

organization changes (i.e., the distance between the representations of the feet and 

hands) or if it is just a change in the representation of the low back (i.e., the distance 

between the representation of the low back and the feet or hands).  

Diffusion tensor images (DTI) would also be a useful addition to this study. DTI 

data would allow us to determine if the differences between individuals with and 

without cLBP result not only in changes in brain function but structure as well. Lastly, in 

lieu of a physical intervention (i.e. spinal manipulation) a psychosocial intervention 

could be used in its place. Previous research has examined the effects of therapeutic 

neuroscience education, but additional interventions like mindfulness-based stress 

reduction or cognitive behavior therapy could easily be used in lieu of spinal 

manipulation. As both approaches have been shown to be beneficial for those with 

cLBP, it would be interesting to see if their mechanism of improvement is similar to that 

of SMT. 
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APPENDIX A 

PARTICIPANT OUTCOME MEASURES 

 

Name _____________________________________________   Date _______________ 
 
Daytime Phone_________________________ email ____________________________ 
 
Occupation ____________________________________________________ 
 
1. Which statement best describes your lifetime history of back pain? (Check only one): 

 Prior to my current problem, I never had back pain that had caused me to 
change or avoid any of my daily activities or recreational pursuits.  

 Prior to my current problem, there were times when back pain caused me to 
change or avoid my daily activities or recreational pursuits 

2.  On the pain drawing below please fill the area that corresponds to your current pain: 

 
2. 3. Do you have any of the following symptoms? 

 Numbness or tingling     If yes, circle side(s):  R leg,   Left leg 
 

 Weakness in the legs    If yes, circle side(s):  R leg,   Left leg 
 

 Pain in the legs     If yes, circle side(s):  R leg,   Left leg 
 

 Change in bowel or bladder function 
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3. To your knowledge, do you now or have you ever had any of the following 
conditions? 

Yes No 

  Osteoporosis?  

  Spondylolisthesis (a permanently slipped bone in the back)?  

  Inflammatory joint disease such as Rheumatoid arthritis?  

  Cancer?  

  Infection or inflammation of the lumbar disc? 

  Too many or too few vertebrae (lumbarization or sacralization)?  

  Broken bone in the back? 

  Lumbar stenosis (narrowing of nerve canals in the back)?  

  Leg numbness caused by diabetes or blood vessel disease? 

  Stomach or bowel problems such as inflammatory bowel disease? 

  Aortic aneurysms (a bulging of an artery in the chest or stomach) 

5. Please list any other health conditions that have. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________ 

 

6. Please list any medications that you are taking. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________  

 

7. If you are taking pain medication, how long ago was your last dose? ____________(hours) 
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RMDQ 

When your back hurts, you may find it difficult to do some of the things you normally do. 
This list contains some sentences that people have used to describe themselves when they have 
back pain. When read them, you may find that some stand out because they describe you today. 
As you read the list, think of yourself over the last 24-hours. When you read a sentence that 
describes you within the last 24-hours, fill the box to the left of the sentence. If the sentence 
does not describe you, then leave the box blank and go on to the next one.  Remember; only 
mark the sentence if you are sure it describes you in the last 24-hours.  

 1. I stay at home most of the time because of my back. 

 2.  I change positions frequently to try and get my back comfortable. 

 3.  I walk more slowly than usual because of my back. 

 4.  Because of my back, I am not doing any of the jobs that I usually do around the house. 

 5. Because of my back, I use a handrail to get upstairs. 

 6.  Because of my back, I lie down to rest more often. 

 7.  Because of my back, I have to hold on to something to get out of an easy chair. 

 8.  Because of my back, I try to get other people to do things for me. 

 9. I get dressed more slowly than usual because of my back. 

 10.  I only stand up for short periods of time because of my back. 

 11. Because of my back, I try not to bend or kneel down. 

 12. I find it difficult to get out of a chair because of my back 

 13.  My back is painful almost all the time. 

 14.  I find it difficult to turn over in bed because of my back 

 15.  My appetite is not very good because of my back pain. 

 16.  I have trouble putting on my socks (or stockings) because of pain in my back. 

 17. I only walk short distances because of my back pain. 

 18. I sleep less well because of my back 

 19. Because of my back pain, I get dressed with help from someone else. 

 20. I sit down for most of the day because of my back pain. 

 21. I avoid heavy jobs around the house because of my back. 

 22.  Because of my back pain, I am more irritable and bad tempered with people than usual. 

 23. Because of my back, I go upstairs more slowly than usual. 

 24. I stay in bed most of the time because of my back.  
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PCS 
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FABQ 
Here are some of the things other patients have told us about their pain. For each statement 

please mark the number from 0-6 to indicate how much physical activities such as bending, 

lifting, walking or driving affect or would affect your back pain. 

Completely   Unsure Completely 

Disagree         Agree 

 

1) My pain was caused by physical activity  ............. 0    1    2    3    4     5      6 
2) Physical activity makes my pain worse  ............... 0    1    2    3    4     5      6 
3) Physical activity might harm my back  . . . . . . . .  0    1    2    3    4     5      6 
4) I should not do physical activities  

which (might) make my pain worse  . . . . . . . . .  0    1    2    3    4     5      6 
5) I cannot do physical activities  

which (might) make my pain worse  . . . . . . . . .  0    1    2    3    4     5      6 

 
The following statements are about how your normal work affects or would affect 
your back. 

Completely   Unsure Completely 

Disagree         Agree 

 

6)My pain was caused by my work or by  
an accident at work . . . . . . . . . . . . . . . . . . . . . .  0    1    2    3    4     5      6 

7)My work aggravated my pain  . . . . . . . . . . . . . .  0    1    2    3    4     5      6 
8)I have a claim for compensation for my pain  . . .  0    1    2    3    4     5      6 

  9) My work is too heavy for me   . . . . . . . . . . . . . .  0    1    2    3    4     5      6 
10)My work makes or would make my pain  

worse  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0    1    2    3    4     5      6 
11)My work might harm my back  . . . . . . . . . . . . . .  0    1    2    3    4     5      6 
12) I should not do my regular work with my  

present pain  . . . . . . . . . . . . . . . . . . . . . . . . . .  0    1    2    3    4     5      6 
13) I cannot do my normal work with my  

present pain  . . . . . . . . . . . . . . . . . . . . . . . . . .  0    1    2    3    4     5      6 
14) I cannot do my normal work until my  

pain is treated  . . . . . . . . . . . . . . . . . . . . . . . . .  0    1    2    3    4     5      6 
15) I do not think that I will be back to  

my normal work within 3 months  . . . . . . . . . .  0    1    2    3    4     5      6 
16) I do not think that I will ever be able to go  

back to work  . . . . . . . . . . . . . . . . . . . . . . . . . .  0    1    2    3    4     5      6 
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TKS 
1 = strongly disagree  

2 = disagree 

3 = agree 

4 = strongly agree 

1.   I’m afraid that I might injury myself if I exercise 1 2 3 4 

2. If I were to try to overcome it, my pain would 

increase 

1 2 3 4 

3. My body is telling me I have something 

dangerously wrong 

1 2 3 4 

4. My pain would probably be relieved if I were to 

exercise 

1 2 3 4 

5. People aren’t taking my medical condition 

seriously enough 

1 2 3 4 

6. My accident has put my body at risk for the rest 

of my life 

1 2 3 4 

7.   Pain always means I have injured my body 1 2 3 4 

8. Just because something aggravates my pain does 

not mean it is dangerous 

1 2 3 4 

9. I am afraid that I might injure myself 

accidentally 

1 2 3 4 

10. Simply being careful that I do not make any 

unnecessary movements is the safest thing I can 

do to prevent my pain from worsening 

1 2 3 4 

11. I wouldn’t have this much pain if there weren’t 

something potentially dangerous going on in my 

body 

1 2 3 4 

12. Although my condition is painful, I would be 

better off if I were physically active 

1 2 3 4 

13. Pain lets me know when to stop exercising so 

that I don’t injure myself 

1 2 3 4 

14. It’s really not safe for a person with a condition 

like mine to be physically active 

1 2 3 4 

15. I can’t do all the things normal people do 

because it’s too easy for me to get injured 

1 2 3 4 

16. Even though something is causing me a lot of 

pain, I don’t think it’s actually dangerous 

1 2 3 4 

17. No one should have to exercise when he/she is in 

pain 

1 2 3 4 

Reprinted from:Pain, Fear of movement/(re) injury in chronic low back pain and its relation to behavioral 

performance, 62, Vlaeyen, J., Kole-Snijders A., Boeren R., van Eek H., 371. 

Copyright (1995) with permission from International Association for the Study of Pain. 

A total score is calculated after inversion of the individual scores of items 4, 8, 12 and 16
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CES-D, NIMH 
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HANDEDNESS INVENTORY 

Edinburgh Handedness Inventory (revised) 
 

Please mark the box that best describes which hand you use for the following 
activities. 
 

 ALWAYS 
LEFT 

USUALLY 
LEFT 

NO 
PERFERENCE 

USUALLY 
RIGHT 

ALWAYS 
RIGHT 

WRITING 

 

     

THROWING 

 

     

SCISSORS 

 

     

TOOTHBRUSH 

 

     

KNIFE (WITHOUT 
FORK) 

 

     

SPOON 

 

     

MATCH (WHEN 
STRIKING) 

 

     

COMPUTER MOUSE      

      

Which foot do you 
prefer to kick with? 

 

     

Which eye do you use 
when using only one? 
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Patient Specific Functional Score (0= no limitation /pain; 10= unable to perform) 

 
Task           Score 
 
1. _______________________________________________________________________________ ______________ 
 
 
2. _______________________________________________________________________________ ______________ 
 
 
3. _______________________________________________________________________________ ______________ 
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Minimal Dataset 

(PROMIS items marked with 
1
; STarT Back or nearly identical items marked with 

2
; RTF Impact 

Classification items marked with *) 

 

1. How long has low-back pain been an ongoing problem for you? 

 Less than 1 month 

 1–3 months 

 3–6 months 

 6 months–1 year 

 1–5 years 

 More than 5 years 
 

2. How often has low-back pain been an ongoing problem for you over the past 6 months? 

 Every day or nearly every day in the past 6 months 

 At least half the days in the past 6 months 

 Less than half the days in the past 6 months 

 

3. In the past 7 days, how would you rate your low-back pain on average?*1,2
 

 
          

1 2 3 4 5 6 7 8 9 10 
No pain         Worst 

         Imaginable 

pain 

4. Has back pain spread down your leg(s) during the past 2 weeks?2
 

 Yes 

 No 

 Not sure 

 
5. During the past 4 weeks, how much 

have you been bothered by … 

Not bothered 

at all 
Bothered a little Bothered a lot 

• Stomach pain    

• Pain in your arms, legs, or 
joints other than your spine 
or back 

 
 

 
 

 
 

• Headaches    

• Widespread pain or pain in 
most of your body 

   

 
6. Have you ever had a low-back operation? 

 Yes, one operation 

 Yes, more than one operation 

 No 
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7. If yes, when was your last back operation? 

 Less than 6 months ago 

 More than 6 months but less than 1 year ago 

 Between 1 and 2 years ago 

 More than 2 years ago 

 
8. Did any of your back operations involve a spinal fusion? (also called an arthrodesis) 

 Yes 

 No 

 Not sure 

In the past 7 days… Not at all A little 

bit 

Somewhat Quite a 

bit 

Very 

much 

9. How much did pain interfere with 

your day-to-day activities?*1
 

 

 

 

 

 

 

 

  

 

 

10. How much did pain interfere with 

work around the home?*1
 

 
 

 
 

 
 

 
  

 
 

11. How much did pain interfere with 

your ability to participate in social 

activities?*1
 

 

 

 

 

 

 

 

  

 

 

12. How much did pain interfere with 

your household chores?*1
 

 
 

 
 

 
 

 
  

 
 

 

13. Have you used any of the following treatments for your back pain? (Check all that apply) 
 

 
• 

 

 

 

 
• 

• 

 

 Yes No 
Not 

sure 

Opioid painkillers (prescription medications such as Vicodin, Lortab, Norco, 

hydrocodone, codeine, Tylenol #3 or #4, Fentanyl, Duragesic, MS Contin, 

Percocet, Tylox, OxyContin, oxycodone, methadone, tramadol, Ultram, 

Dilaudid) 

 
 

 
 

 
 

If you checked yes, are you currently using this medication?………….    
Injections (such as epidural steroid injections, facet injections) ……………..    

Exercise    therapy…………………………………………………………………………………..    

Psychological counseling, such as cognitive-behavioral therapy…………… 
   

 

The next two questions are for people who normally work outside the home. 

 
14. I have been off work or unemployed for 1 month or more due to low-back pain. 

 Agree 

 Disagree 

 Does not apply 
15. I receive or have applied for disability or workers’ compensation benefits because I am 

unable to work due to low-back pain. 

 Agree 

 Disagree 

 Does not apply 
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Physical Function Without 

any 

difficulty 

With a 

little difficulty 

With 

some 

difficulty 

With 

much difficulty 

Unable 

to do 

16. Are you able to 

do chores such as 
vacuuming or yard 

work?*1
 

 
 

 
   

 
  

 
   

 
 

17. Are you able to 

go up and down stairs 

at a normal pace?*1
 

 
 

 
   

 
  

 
   

 
 

18. Are you able to 

go for a walk of at 
least 15 

minutes?*1,2
 

 
 

 
   

 
  

 
   

 
 

19. Are you able to 

run errands and 

shop?*1
 

 
 

 
   

 
  

 
   

 
 

 
In the past 7 days... Never Rarely Sometimes Often Always 

20. I felt worthless1
      

21. I felt helpless1
      

22. I felt depressed1
      

23. I felt hopeless1
      

 
In the past 7 days… Very poor Poor Fair Good Very good 

24. My sleep quality 

was1
 

     

 
 

In the past 7 days… Not at all A little bit Somewhat Quite a bit Very much 

25. My sleep was 

refreshing1
 

     

26. I had a problem 

with my sleep1
 

     

27. I had difficulty 

falling asleep1
 

     

 

28. It’s not really safe for a person with my back problem to be physically active.2 

 Agree 

 Disagree 

 

29. I feel that my back pain is terrible and it’s never going to get any better.2
 

 Agree 

 Disagree 

 
30. Are you involved in a lawsuit or legal claim related to your back problem? 

 Yes 

 No 

 Not sure 
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37. Employment Status: 

 Working now 

 Looking for work, unemployed 

 Sick leave or maternity leave 

 Disabled due to back pain, permanently or temporarily 

 Disabled for reasons other than back pain 

 Student 

 Temporarily laid off 

 Retired 

 Keeping house 

 Other, Specify:   

 Unknown 
  

In the past year: 
Never Rarely Sometimes Often 

 31. Have you drunk or used drugs more than                                                        
       you meant to?  

 32. Have you felt you wanted or need to cut                                                         
       Down on your drinking or drug use? 

33. Age:  years  

 
34. Gender: 

 Female 

 Male 

 Unknown 

 Unspecified 

 
35. Ethnicity: (“X” ONLY one with which you MOST CLOSELY identify) 

 Hispanic or Latino 

 Not Hispanic or Latino 

 Unknown 

 Not Reported 

 
36. Race: (“X” those with which you identify) 

 American Indian or Alaska Native 

 Asian 

 Black or African-American 

 Native Hawaiian or Other Pacific Islander 

 White 

 Unknown 

 Not Reported 
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38. Education Level: (select the highest level attained) 

 No high school diploma 

 High school graduate or GED 

 Some college, no degree 

 Occupational/technical/vocational program 

 Associate degree: academic program 

 Bachelor’s degree 

 Master’s degree (e.g., M.A., M.S., M.Eng., M.Ed., M.B.A.) 

 Professional school degree (e.g., M.D., D.D.S., D.V.M., J.D.) 

 Doctoral degree (e.g., Ph.D., Ed.D.) 

 Unknown 

 

39. How would you describe your cigarette smoking? 

 Never smoked 

 Current smoker 

 Used to smoke, but have now quit 

40. Height:   Weight:   ____ 

 Inches  pounds                        

 centimeters  kilograms 

 measured  measured 

 self-reported  self-reported 
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APPENDIX B 

DATA COLLECTION FORM 

fMRI DATA COLLECTION FORM = MASTER 

 

Consent & Confirm Eligibility 

DOB ___/___/____ Weight ________ 

 

Task Instructions (outside MRI) 

Clinical Examination 

Administer MRI Screen                    YES            NO  
 
Review Completed Self Reports    YES            NO 
(if not completed do intake now, rest after MRI protocol) 
 
Tasks (BB, LB, RB, AC, PF)               YES            NO 
 
Physical Examination                       YES            NO 
 
Safe to Manipulate                             YES            NO 
 

Initial Pain Assessment Pain Intensity, Stiffness, Pain Pressure Threshold 

Review the Exercises 

 

fMRI e Prime 

Practice Task on MRI Scanner Table 
Complete Task Accuracy & Symptom Sheet (pre) 
Review Instructions and Flow of Scans 
 
Ready to run e-prime: program files  
Lumbar_muscle_move_R4 
 

 

Pre-Intervention Imaging 

Start time ________ 

 
Localizer 
fMRI of the Brain with Pneumatic Tactor  
fMRI Performance of Back Exercises (accuracy check) 
Complete Task Accuracy Sheet (during 2/10 blocks) 
T1-Weighted Imaging of the Brain (if L tactor only) 

Intervention  
Lumbar Joint Manipulation            YES            NO 
Cavitation Left side lying                 YES            NO 
Cavitation Right side lying              YES            NO 
 

Post-Intervention Imaging 

Start time ________ 

 

Localizer 
fMRI of the Brain with Pneumatic Tactor  
fMRI Performance of Back Exercises  
T1-Weighted Imaging of the Brain (if all tactors used) 
 
 

Post-Intervention Pain Assessment 
 
Move Images from System to 
Disc/Server 

Pain Intensity; Stiffness, Pain Pressure Threshold  

File name:  __________________________________________ 



192 
 

Current pain intensity:    / 10    Range of last week:      /10 -     /10) 
 
Age    ________ 
 
Observation    
 
Lateral shift   Y         N    
 
Lumbar Movement  Pain    ROM 
 
 Single flexion  Y        N  ______ 
 
 Repeated flexion Y        N  ______ 
 
 Single extension Y        N   ______ 
 
 Waiters bow   Positive Negative 
 
 Pelvic tilt   Positive  Negative 
 
 One leg stance  R  Positive Negative 
 
    L  Positive  Negative 
 
Seated Tests   Pain   ROM 
 
 Sitting Knee Extension  R  Positive  Negative  
 
     L Positive  Negative 
Quadruped Tests 
  
 Rocking backwards  Positive Negative 
 
 Rocking forward  Positive  Negative 
  
Prone Tests    Pain   ROM   
 

Hip extension  Y        N  ______ 
 

L Internal rotation Y        N  ______ 
 

R Internal rotation Y        N  ______ 
  

L External rotation Y        N  ______ 
 

R External rotation Y        N  ______ 
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Prone Lying Knee Flexion R  Positive  Negative 
 
     L  Positive  Negative 
 
Segmental Hypomobility    L1   L2    L3    L4    L5    Sacrum 
 
Most painful level in prong      L1   L2    L3    L4    L5    Sacrum    No Pain   
 
 
Start    0    1   2   3   4   5   6   7   8   9   10          During Leg Lift    0    1   2   3   4   5   6   7   8   9   10 
 
Supine Test   Pain     ROM 
 
Hip flexion   Y        N   _______ 
 
L Straight leg raise  Y        N   _______ 
 
R Straight leg raise  Y        N   _______  
 
NOTES: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
------------------------------------------------------------------------------------------------------------------ 
 
Subject cleared for Participation in Study:  Yes  No 
 
Subject cleared for Manipulation:   Yes  No 
 
Score on Motor Control Tests:   /6 points 
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PAIN REPORTS AND PAIN PRESSURE THRESHOLD PRE AND POST INTERVENTION 

   

Pre-scan pain intensity   / 10    Range of last week:      /10 -     /10) 

Pre-scan spinal stiffness    / 10    Range of last week:      /10 -     /10) 

 

Pre-scan   

Pain Pressure Threshold LEFT RIGHT 

Low Back 
 

  

Upper Trapezius 
 

  

Anterior Tibia 
 

  

 

____________________________ 

 

POST SCAN 

Post-scan pain intensity    / 10     

Post-scan spinal stiffness / 10     

Post-scan: 

Pain Pressure Threshold LEFT RIGHT 

Low Back 
 

  

Upper Trapezius 
 

  

Anterior Tibia 
 

  

NOTES: 
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TASK TRAINING AND ACCURACY SHEET 
Training Protocol:  Follow the full instructions on the protocol instruction sheet.  

When reviewing on once positioned on the MRI table use these brief commands. 
 

You will first hear the task command, then a START command, complete 
the task and hold the position until you hear the RELAX command.  

 
Push the back of both knees into the roll. START, wait 10 seconds, then tell 
subject to RELAX.  
Push the right knee into the roll. START, wait 10 seconds, then tell subject 
to RELAX. 
Push the left knee into the roll.  START, wait 10 seconds, then tell subject to 
RELAX. 
Tighten your stomach muscles. START, wait 10 seconds, then tell subject to 
RELAX. 
Point feet and toes down. START, wait 10 seconds, then tell subject to 
RELAX. 
Accuracy PRE     

Verbal Instruction Match 
 Task (circle all that match):     BB       RB        LB        AC      PF     

 
Q: Which task is most challenge or the one you have to think about the most to be 

able to complete? 
 
Most challenging task for subject (circle):     BB RB LB AC PF 
Do you have increased pain with any of the tasks? (circle all that apply):    

BB     RB    LB     AC PF 
 
What intensity of pain does it cause?  (circle):     

1      2     3    4      5      6     7      8 9    10 
 
How long does it stay increased? (circle):   goes away after relax          remains 

increased 
 
Accuracy DURING Scan  Task match e-Prime random instruction 
 

Bout # ________  Task      1        2        3        4       5       
 
 

Bout # ________   Task      1        2        3        4       5      
 
Comments:  
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APPENDIX C 

INFORMED CONSENT 

UNIVERSITY OF SOUTH CAROLINA - RESEARCH INFORMED CONSENT FORM 

 

 

Subject Name:  _____________________________________    

 

Title of Study: Changes in Cortical Activation following Spinal Manipulation  

 

Principal Investigator: Max Jordon, PT, DPT 

 

INTRODUCTION 

You are invited to participate in a research study performed by the members of the Doctorial 

Program in Physical Therapy and Department of Psychology at the University of South Carolina. 

We request that you read this form completely and ask the researchers or the person obtaining 

the consent any questions you may have regarding this study and your participation.  

In this study, we will be using magnetic resonance imaging (MRI) to investigate the relationship 

between your reported intensity of back pain and the areas to which blood travels within your 

brain during exercises. MRI is a procedure using a magnetic field and radio frequency pulses 

(instead of X-rays) by which a picture of the inside of the human body can be obtained. This 

procedure does not use harmful radiation, and if you are screened properly, the procedure is 

completely safe. In addition, we are interested in determining how changes in blood flow to the 

brain correlates to reported intensity of back pain following a single session of spinal 

manipulation. This procedure will be performed gently and will not be strong enough to cause 

pain.  

Forty adults (20 with and 20 without low back pain) will be recruited for this study to determine 

the relationship between changes in pain intensity and regions to which blood travels in your 

brain. This information will be of great value to us as we do more studies to help understand the 

causes of back pain. 
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 ELIGIBILITY FOR PARTICIPATION IN THIS STUDY 

People between the ages of 18 and 60 years may be eligible for this study. You will be excluded 

from this study if you have had a more serious problem with your back such as: 

• A recent broken bone 

• A back bone that has slipped forward (known as spondylolisthesis) 

• An infection involving the spine 

• A history of surgery to your spine 

• Severe Arthritis.  
In addition, you will not be eligible for this study if: 

• You have a substantial loss of bone mass in your spine (known as osteopenia) 

• You are pregnant or have been pregnant in the last year 

• You weigh more than 280 lbs. 

• You are taking narcotic medication regularly for your back pain and are unable to 
abstain for 48 hours 

• You have loose metal objects in your body 

• You are receiving disability payments for a spinal problem or currently have a Worker’s 
Compensation claim 

• You are involved in personal litigation for your back problem.  
 

To determine if you are eligible for this study, we will ask you a series of questions, and then ask 

you to complete a questionnaire that addresses other questions about your current back 

problem and general health.   

 

DESCRIPTION OF STUDY PROCEDURES  

If you are eligible and willing to enroll in this study, you will be assigned to one of two groups. 

Group One:  

• We will start by performing a physical examination to ensure the safety of your inclusion 
into the study.  

• We will perform pressure-pain threshold (PPT) testing. This will be done by applying 
gentle, but increasing pressure to different areas of your body. You will be asked to tell 
the examiner when the pressure first becomes mildly unpleasant, at which point the 
examiner will stop the pressure and record the reading. The muscles tested will include 
those at your right and left shoulder blade, low back, and leg, a total of 6 sites.  

• Following the PPT, you will undergo the first series of scans. During one of the scans, 
you will be asked to perform light exercise, while during the other two scans you will be 
asked to rest. The total time will be about 25 minutes in the scanner.   

• Next, you will be removed from the scanner, but will be asked to turn onto your right 
side. The examiner will gently twist your low back until resistance is felt. If there is no 
increase in pain, the examiner will perform a gentle thrust to your low back. You will be 
asked to roll to your left side where this procedure will be performed again. You may or 
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may not hear and audible pop. The pop is not indicative of anything wrong and will not 
cause you any pain.  

• After the manipulation, you will be placed in the scanner once more for the second 
series of scans. The second series of scans is identical to the first.  

 

Group Two:  

 Subjects assigned to group two will undergo the exact procedures as subjects in group 

one; however, in lieu of receiving the spinal manipulation, you will be asked to rest on your side. 

If at the conclusion of the study, you decide you want a spinal manipulation one will be 

provided.  

MRI ENVIRONMENT 

Before you have your scan, we will ask you to remove all metal from your person, such as 

jewelry and rings. We will ask you to lie on your back on a small bed called a gantry. Then we 

will ask you to rest your head in a small cage called a “coil” that goes around your head. The bed 

will be moved into a large tube where you will undergo the scanning series. While you are in the 

scanner, you will periodically hear a banging sound. While the sound generated by the scanner 

is not loud enough to cause permanent damage to your hearing, you will be provided with 

earplugs, and headphones, that you will be required to wear to protect your hearing.  

RISKS OF PARTICIPATION  

Risks of MRI: 

Because the MRI machine acts like a large magnet, it could move metallic objects in the room 

during your examination, which could harm you. To prevent such an event from happening; 

loose metal objects, like pocket knives or key chains, are not allowed in the MRI room. If you 

have a piece of metal in your body, such as a fragment in your eye, aneurysm clips, ear implants, 

spinal nerve stimulators, or a pacemaker, you will not be allowed into the MRI room and cannot 

have a MRI. 

Having a MRI may mean some added discomfort to you. In particular, you may be bothered by 

feelings of claustrophobia and by the loud banging noise during the study. You will be asked to 

wear earplugs to avoid possible hearing impairment. 

Risks of Spinal Manipulation:  

Spinal manipulation treatments are safe if you have no medical problems such as osteoporosis 

or a recent fracture that may weaken your spine. As mentioned above, we will ask you questions 

to determine if you are at risk for the presence of those conditions. We will immediately stop 

treatment and/or testing during the study if you have pain or discomfort. There is a chance that 

you might have worse pain following the joint manipulation.   

BENEFIT OF PARTICIPATION 

Other studies that have used this same type of treatment have found participants often report 

improvement in pain levels and function; however, we are unable to know if you personally will 
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perceive an improvement following participation in this study. We do not know which of our 

treatments will provide the best result, but the information gained in this study will help our 

understanding of the application of treatment to people with back pain.  

INCIDENTAL FINDINGS  

MRI scans can detect medical conditions, such as cancer, brain injury, and abnormal blood 

vessels; however, this functional MRI is carried out purely for experimental purposes, and we 

will not be looking for brain disorders. Furthermore, we are not trained in diagnosing brain 

disorders; therefore, we are not qualified to offer any diagnostic opinions concerning your scan. 

It is possible that we will notice something in your scan that appears unusual and/or abnormal. 

If this occurs, we will inform you of the finding and provide you with a copy of your scan, which 

you may take to a medical expert for further review and diagnosis. Being told of such a finding 

may cause anxiety as well as the suggested need for additional tests and financial costs. Any 

costs associated with a clinical follow-up opinion will be your responsibility. If you do not wish 

to be informed of this type of finding, you should not participate in the study. 

COSTS AND PAYMENTS 

There are no costs to you for participating in this research study. You will be compensated for 

your time with $50.00 cash after both scans have been completed.  

COMPENSATION FOR INJURY 

In the unlikely event that you sustain an injury, the research team will assist you in obtaining 

appropriate medical care. All costs associated with such medical care are your responsibility. 

CONFIDENTIALITY OF RECORDS 

Your identity will be protected throughout this study. An ID number will be assigned to you to 

ensure that personal information is not disclosed to unauthorized individuals. All records will be 

kept in a locked file cabinet in the principal investigator's office. Every effort will be made to 

limit your personal research information to people who have a need to review this information; 

however, we cannot promise complete confidentiality. There are regulatory agencies (i.e., 

OHRP, NSF, NIJ, etc.) that have a legal right to inspect and copy research records. In addition, 

the University of South Carolina’s Institutional Review Board can inspect research records for 

purposes of ensuring that the research study is being, or has been, conducted properly. Any 

information that is obtained in connection with this study and that could identify you will 

remain confidential and will not be released or disclosed without your further consent, except 

as specifically required by law. The results of this study may be presented at meetings, or in 

publications; however, your identity will not be disclosed. 

CONTACT INFORMATION 

For information concerning this research study, or if you believe, you have suffered a research-

related injury contact, Dr. Max Jordon, at (803) 777-5028 for further instructions.  

Questions about your rights as a research subject are to be directed to, Lisa Marie Johnson, IRB 

Manager, Office of Research Compliance, University of South Carolina, 1600 Hampton Street, 

Suite 414D, Columbia, SC 29208, phone: (803) 777-7095 or email: LisaJ@mailbox.sc.edu. The 

mailto:LisaJ@mailbox.sc.edu
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Office of Research Compliance is an administrative office that supports the University of South 

Carolina Institutional Review Board (USC IRB). The Institutional Review Board consists of 

representatives from a variety of scientific disciplines, non-scientists, and community members 

for the primary purpose of protecting the rights and welfare of human subjects enrolled in 

research studies. 

 

VOLUNTARY PARTICIPATION 

Participation in this study is voluntary. You are free not to participate or to withdraw at any time 

for whatever reason without negative consequence. In the event that you do withdraw from this 

study, the information that you have provided will be kept in a confidential manner.  

 

SIGNATURES/DATES  

I have read the contents of this consent form and have been encouraged to ask questions. I 

have received answers to my questions. I give my consent to participate in this study.  

I have received (or will receive) a copy of this consent form for my records and future reference.  

 

Subject (print name) ___________________Signature ________________Date_______ 

 

 

Person obtaining consent_______________ Signature ________________ Date_______ 
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APPENDIX D 

BLAND ALTMANN PLOTS 

Provided below is a series of supplemental Bland Altmann Plots that were generated to further 

describe individual responses to spinal manipulation. They represent the change in the 

magnitude of activation for each individual in the Regions of Interest where the manipulation 

groups experienced a significant change in mean activation. Red bars represent the 90% 

confidence intervals for the mean of the control groups.  
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APPENDIX E 

GLOSSARY OF TERMS 

Blood Oxygen Level Dependent (BOLD) – The BOLD signal is a measure of the difference 

between the magnetic properties of oxygenated and deoxygenated blood during 

different conditions. Hemoglobin, the protein molecule found within blood that 

transports oxygen, demonstrates different magnetic properties depending on the 

presence of oxygen. When carrying oxygen, hemoglobin has no unpaired electrons 

making it diamagnetic (meaning it has little effect on the surrounding magnetic field). 

However, once depleted of oxygen, deoxygenated hemoglobin can have up to four 

unpaired electrons making it paramagnetic (meaning it can exert an effect on the 

surrounding magnetic field). This change in the magnetism of the hemoglobin results in 

a measurable change in the magnetic resonance signal that is quantified as the BOLD 

change. It is not a direct measure of neuronal activity, but instead a measure of 

metabolic demand (a.k.a. oxygen consumption). 

 

Parameter Estimate (PE) – The PE is an estimation of the amplitude of activation. A 

common analysis approach to detect the BOLD response to a task is through the use of 

the general linear model (GLM). The equation used for GLM in fMRI data is:  

y = Xβ + 𝑒
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Where Y is the observed time series of data points, X is the design matrix of our study 

(signal changes that we expect to observe based on our study design), e is the residual 

error, and β (or parameter estimate) is the magnitude of X as a fit to the measured data, 

y. 

False Discovery Rate – A method of correcting data that controls for the fraction of 

detected voxels or clusters that are false positives.   

Family Wise Error – Probability of one or more false positive voxels in the entire image. 

A generally more conservative method to correct for false positives than FDR and results 

in low power. Assumes that the activation is zero everywhere, therefore when you 

reject the null hypothesis (state that a voxel is active) you are rejecting the family-wise 

null hypothesis. It controls the probability of any false positives.  

Functional Connectivity – Functional connectivity is the correlation of the observed 

BOLD signal over time in separate regions of the brain. Task-based functional 

connectivity is the correlation of the observed BOLD signal during the performance of a 

task. The correlation of the BOLD signal between the different regions is calculated into 

an r value.  

Z-Score – The z-score is the number of standard deviations from the mean an observed 

data point is. SPM converts the parameter estimates into a t-statistic then into a z-score. 

Following this, SPM then creates colored maps to represent where the signal is the 

highest in the brain. The brighter color is given to the higher z-score, allowing for better 

interpretation of the signal. The CONN toolbox correlates the signal between two 
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regions, creating an r value. In seed-to-voxel analysis, this r-value undergoes a Fisher’s Z 

transformation to create the z-map.  
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