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Abstract

Survival analysis is an important branch of statistics that studies time to event data

(or survival data), in which the response variable is time to a certain event of inter-

est. The most prominent feature of survival data is that the response is not exactly

observed due to limits of the study design or nature of the event of interest. Interval-

censored data are a common type of survival data and occur frequently in real life

studies where subjects are examined at periodical follow ups. The response time is

usually not observed, but the status of the event of interest is known at each exam-

ination time. In such cases, the response time for each subject is only known to fall

within an interval formed by two examination times in which the status of the event

has changed. This dissertation proposes new statistical approaches for analyzing real

life interval-censored data with additional complications.

Chapter 1 provides an introduction to this dissertation. Firstly, it gives a de-

scription of interval-censored data and an explanation of how interval-censored data

are obtained with some illustrative examples. Then, a widely used model, the pro-

portional hazards (PH) model, for analyzing interval-censored data is introduced.

Thirdly, some literature for fitting the PH model to interval-censored data is re-

viewed. Fourthly, three additional complications of the analysis of interval-censored

data are presented. Lastly, real data sets are given to explain the motivations for

studying these complications.

Chapter 2 of this dissertation develops an expectation-maximization (EM) al-

gorithm for analyzing arbitrarily-censored data under the PH model. Arbitrarily-

censored data refer to the data sets that include interval-censored observations and
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exactly observed failure times. The method developed in Chapter 2 can be considered

as an extension of the paper, Wang et al. (2016). The proposed method enjoys all

the good properties of Wang’s method, such as flexibility, computational efficiency,

accuracy, robustness to the choice of initial values, quick convergence and closed-form

variance estimation.

Chapter 3 studies current status data, a special case of interval-censored data, with

informative censoring. This study was motivated by the tumor studies conducted by

the National Toxicology Program (NTP). In such studies, the tumor onset time at

a specific important organ of a mice or rat is usually observed but either left- or

right-censored at the sacrifice time depending on whether a tumor is found there,

resulting in current status data for the tumor onset time. However, the sacrifice time

can be correlated to the tumor onset time because some of such animals are killed

when they show symptoms of sickness or serious weight loss potential due to the

exposure of the substance being tested. This leads to informative censoring problem

and ignoring it may cause serious bias and misleading results. In this chapter, a new

estimation approach is proposed based on an EM algorithm and has shown excellent

performance in the simulation study. The new approach has many good merits such as

being robust to initial values, fast to converge, and easy to implement, and providing

variance estimates in closed form. The approach is illustrated by applications to two

real data sets from NTP studies.

Chapter 4 studies an estimation of system reliability when the status of all com-

ponents are also known. Both the system and component data are available in such

situations, and all these failure times are either left-censored or right-censored at the

examination time depending on whether the system and each component has failed.

Different strategies are discussed for estimating system reliability: (1) use system data

only and (2) use component data. When component data are used, two models are

studied under different assumptions on whether component failure times are indepen-

vi



dent or correlated. A new estimation method under the gamma frailty proportional

hazards model is proposed to handle the situation when the component failure times

are correlated. A detailed comparison is conducted among these different strategies.
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Chapter 1

introduction

1.1 Interval-Censored Data

Survival analysis is an important branch of statistics that studies time to event data

(or survival data), in which the response variable is time to a certain event of inter-

est. The most prominent feature of survival data is that the response is not exactly

observed due to limits of the study design or nature of the event of interest.

Interval-censored data are a common type of survival data and occur frequently in

real life studies where subjects are examined at periodical follow ups. The response

time, also known as failure time in survival analysis, is usually not observed, but the

status of the event of interest is known at each examination time. In such cases, the

response time for each subject is only known to fall within an interval formed by two

examination times in which the status of the event has changed. For example, in HIV

studies, the onset time of HIV for a subject cannot be exactly observed but the status

of HIV can be known through laboratory tests, resulting in interval-censored data

for the HIV onset time. Interval-censored data consist of left-, interval-, and right-

censored observations. A left-censored observation refers to an observation whose

failure time is before the first examination time; an interval-censored observation

refers to an observation whose failure time is between two examination times; a

right-censored observation refers to an observation whose failure time is beyond the

last examination time.
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1.2 Current Status Data

A well-known special case of interval-censored data is current status data, where each

subject is examined only once. The failure time of each subject cannot be observed,

but the status of the event of interest is known at the examination time. Therefore,

for each subject, one can only know that the failure time occurs before or after the

examination time. As a result, current status data only contain left- and right-

censored observations. Current status data are commonly seen in epidemiological,

medical or toxicology studies. For example, in an experiment of toxicology, lab rats

are exposed to a substance with different concentrations for a period of time to study

whether the substance was associated with the onset time of tumors in their organs.

The onset time of tumors cannot be observed directly, while the status of whether

a lab rat has a tumor in its organs can be observed after the rat is sacrificed. In

this example, the examination time, or censoring time, is the time when a lab rat is

sacrificed. The data obtained in this experiment are current status data.

1.3 Informative Censoring and Non-Informative Censoring

In many interval-censored data or current status data studies, one of the common

assumptions is that the failure time is independent of the observational process given

covariates, which is known as non-informative censoring. On the contrary, informative

censoring refers to those situations when the failure time is correlated with the obser-

vational process given covariates. Non-informative censoring is a natural assumption

in many interval-censored data studies. For instance, in the HIV study example, it is

natural to think that the HIV onset time is independent of the HIV laboratory test

time given covariates. However, in some of the cases, informative censoring can be a

reasonable assumption. Examples of these cases are given in Section 1.6.

2



1.4 Models

1.4.1 Notations

The notations used to analyze interval-censored data are as follows. Let T denote the

failure time. In interval-censored data, T only can be known to fall into an interval

consisting of two examination times, L and R, which are known as the left censoring

time and the right censoring time. L is assumed to be strictly less than R in most

literature. For the ith subject in a sample with size n, Ti can be observed in three

different forms through Li and Ri: (0, Ri), (Li, Ri) or (Li,+∞), for i = 1, 2, ..., n. For

an observation in the form (0, Ri), Li = 0 and the observation is left censored. For an

observation in the form (Li, Ri), 0 < Li < Ri < +∞ and the observation is interval

censored. For an observation in the form (Li,+∞), Ri = +∞ and the observation is

right censored.

1.4.2 the Proportional Hazards (PH) model

The PH model is a popular and widely used model to analyze interval-censored data

in survival analysis proposed by Cox (1972). The ‘Hazards’ in the PH model refers

to the hazard function denoted as λ(·). It is defined as follows,

λ(t) = lim
∆t→0

P (t 6 T < t+ ∆t|T > t)
∆t ,

where T is the failure time, ∆t is a very small time range, P (·|·) is a conditional

probability. It can be seen that the hazard function is not a density nor a probability.

It can be thought as the likelihood of an observation’s failure time falling between t

and t+ ∆t given that it has survived up to time t. In this sense, the hazard function

is a measure of risk, namely instant death or failure. The greater value the hazard

function takes, the greater risk of a subject has. Additionally, It can be shown that

λ(t) = f(t)
S(t) , where f(·) is a probability density function (pdf) and S(·) is a survival

function. This relation is going to be used in Chapter 3.
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The PH model assumes that the hazard function given a covariate vector x is

proportional to the baseline hazard function, λ0(·). The rate equals to the exponential

of a linear combination of a covariate vector x.

λ(t|x) = λ0(t) exp(x′β),

where β is a vector of regression parameters. In the PH model, the baseline hazard

function λ0(t) and β need to be estimated.

There are several studies which analyze interval-censored data under the PH

model. In the paper of Wang et al. (2016) and McMahan et al. (2013), they fit-

ted the PH model to the interval-censored data and current status data respectively.

The baseline hazard functions were modeled by spline functions. EM algorithms

were developed to find the maximum likelihood estimators (MLE) of the regression

parameters and the spline functions’ parameters jointly. In the paper of Cai et al.

(2011), the PH model is fitted to the current status data. The baseline hazard func-

tion was also modeled by spline functions. A Bayesian method was developed to

find the estimates of the parameters with posterior means. Betensky et al. (2002)

fitted the PH models to right-censored and interval-censored data. They developed

an EM algorithm to find the estimates of the parameters. Devarajan and Ebrahimi

(2011) proposed a generalized version of the PH model by adding a power function to

the baseline hazard function. They argued that it can allow the correlation between

covariates and the baseline hazard function in the PH model. Tian et al. (2005)

added time-varying parameters into the PH model and a kernel-weighted partial like-

lihood approach was applied. Pan (1999) proposed a generalized gradient projection

method by reformulating the iterative convex minorant algorithm as an extension of

the PH model. Murphy and Vaart (1997) studied the confidence interval for the real

parameter presence in finite parameters cases. Even though the nuisance parameters

are not guaranteed to be normal distributed, the likelihood ratio statistics is still

asymptotic chi-squared distributed. Moreover, they provided an example to test the

4



significance of the regression parameters in the PH model with current status data.

Satten (1996) fitted the PH model to interval-censored data and used a marginal

likelihood approach. The method did not need specification of the baseline hazard

function. Goggins et al. (1998) fitted the PH model to interval-censored data and

developed a Monte Carlo EM (MCEM) algorithm to find the parameter estimates.

Huang (1996) studied the PH model’s efficiency with interval-censored data. It was

shown that with finite number of parameters, the MLE for the PH model is asymp-

totically efficient but with infinite-dimensional parameters the MLE converges slower

than
√
n. The regression analysis of fitting the PH model to interval-censored data

was first addressed by Finkelstein (1986) .

1.4.3 The Gamma-frailty Proportional Hazards model

The Gamma-frailty PH model is one type of frailty models to fit correlated survival

data. The Gamma-frailty PH model keeps the structure of the PH model and adds

an extra gamma frailty term to capture the correlation.

Let T1 and T2 be two correlated failure times of interest. Let η be a frailty term

distributed as Gamma(ν, ν), where ν > 0. Under the Gamma-frailty PH model,

given the frailty term η and a covariate vector x, the hazard functions of T1, T2 can

be expressed as follows,

λ1(t|x, η) = λ01(t) exp(x′β1)η,

λ2(t|x, η) = λ02(t) exp(x′β2)η,

where β1 and β2 are regression parameters, λ01(t) is the baseline hazard function for

T1, λ02(t) is the baseline hazard function for T2.

The Gamma-frailty PH model is often used to study multivariate current status

problems. In the paper of Wang et al. (2015), it used the Gamma-frailty PH model

to fit bi-variate current status data. An EM algorithm was developed to find the
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MLE of the parameters. In Chapter 3, the Gamma-frailty PH model is fitted to

the current status data with informative censored observations and non-informative

censored observations.

1.5 Additional Complication I

For the interval-censored data, left censoring time is strictly less than right censor-

ing time, i.e., L < R. The case that L = R is not considered in interval-censored

data. It is because when L = R, it indicates that exact failure time is observed, but

exact failure time cannot be observed due to periodical examinations in most of the

study designs or the nature of the event of interest. However, in some of the situ-

ations, besides censored observations, exact failure times are available for a part of

the observations in the data. These data are called arbitrarily-censored data. It can

be seen that arbitrarily-censored data contain exactly observed failure times, left-,

interval- and right-censored observations. Most methods used to analyze interval-

censored data can deal with exactly observed failure times by an approximation with

an interval. For example, one can use exactly observed failure time as a lower bound

and add a very small number to the lower bound to obtain an upper bound. As a

result, exactly observed failure times can be turned into interval-censored observa-

tions. However, doing that adds uncertainty to the existing data and will cause to

overestimate the variance of the regression parameter estimates. The overestimation

may cause substantial problem when the proportion of exactly observed failure times

is large in a data set. In the following examples, the data include a large proportion

of exactly observed failure times.

1.5.1 Diabetes data

This study was conducted in the Steno Memorial Hospital in Denmark from 1933 to

1984. It studied the onset of diabetic nephronpathy. The survival time was the time
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from onset of diabetes to the onset of diabetic nephronpathy, a major complication of

Type I diabetes. The data can be found in ‘icenReg’ package and ‘glrt’ package in

R. The data set contains 731 patients and one covariate, gender (454 males and 277

females). In this data set, there are 595 exactly observed failure times, 1 left-censored

observations, 135 interval-censored observations and no right-censored observations.

The exactly observed failure times are the greatest proportion in the data.

1.5.2 Childhood morality data

Under 5 mortality rate is a key indicator of the development for the overall child

health for a country, . The childhood morality data, children dying between the 1st

and 5th birthdays, are from Demographic and Health Surveys in Nigeria in 2003. The

study sought for the factors that effect the childhood morality such as the number

of breastfeeding months, a mother’s educational level, body mass index (BMI) and

so on. The death time is the failure time. In the survey, if a mother remembered

the exact time of her children’s death then the failure time was exact observed.

Otherwise a mother provided a time range which her children died from. Therefore,

these observations were interval censored. The children’s death rate of this data set is

0.059. This data set contains 5890 observations with 11 covariates and 2766 compete

cases. The exact failure times are also the largest proportion in this data set.

1.6 Additional Complication II

One of the common assumptions made when one analyzes interval-censored data or

current status data is that the observational process is independent of the failure time

given covariates, which is known as non-informative censoring. While in some of the

cases, it is more reasonable to assume the observational process is correlated with the

failure time given covariates, which is known as informative censoring. A real data

example is as follows.
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1.6.1 The National Toxicology Program (NTP), Study tr-476

The NTP, an inter-agency program whose mission is to evaluate agents of public

health concern by developing and applying tools of modern toxicology and molecular

biology (from NTP website), performed studies about toxicology and carcinogens of

chloroprene and provided a report in September 1998. In the manufacture of neo-

prene, chloroprene, the 2-chloro analogue of 1, 3-butadiene, a potent, multi-species,

multi-organ carcinogen, is only used but with high production and not much infor-

mation about its carcinogenic potential (from the report of NTP). In a 2-years mice

study, groups of 50 male and 50 female mice were exposed to chloroprene at concen-

trations of control (0 ppm), low dose (12.8ppm), medium dose (32ppm), or high dose

(80 ppm) by inhalation, 6 hours per day, 5 days per week, for 2 years. During the

experiment, the mice were removed from the study due to accidentally kill, natural

death, terminal sacrifice or moribund sacrifice to be observed for whether tumors

existed in their organs.

The motivation of the study in Chapter 3 is from the NTP experiments. In

the example above, it is natural to consider that given the level of concentration,

natural death, accidentally kill and terminal sacrifice were not related to tumors in

the organs of mice while moribund sacrifice was. Therefore the correlation between

the observational process and the failure time needs to be taken into consideration in

this case.

1.7 Additional Complication III

Fitting the PH model to current status data is a well-studied problem. In NTP

studies, the PH model can be fitted to the data to analyze whether an experimented

substance is toxic to lab mice. In these analysis, it is worth to notice that a lab

mouse is essentially a system with many components, i.e., its organs such as a liver

or a lung. Therefore, in NTP studies, the PH model is fitted to system data to
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analyze the system reliability. In addition to system data, the current status data

of each component are also available in NTP studies so that one can use component

data to analyze the reliability of the system. In Chapter 4, both methods are used

to analyze the reliability of a system and the risk of fitting the PH model to system

data is discussed.
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Chapter 2

Fitting the Proportional Hazards Model to

Arbitrarily-Censored Data

2.1 Introduction

Arbitrarily-censored data refer to the data sets that contain exactly observed failure

times, left-, interval-, and right-censored observations. In this chapter, an efficient

and flexible algorithm is developed for fitting the PH model to arbitrarily-censored

data.

Although fitting the PH model to interval-censored data is a well-studied problem,

there are only a few studies analyzing arbitrarily-censored data under the PH model.

Clifford Anderson-Bergman (2018) fitted the PH model to arbitrarily-censored data

and developed an algorithm with two steps for the estimation. One step was to

estimate the regression parameters with the conditional Newton Raphson algorithm.

The other step was to estimate the baseline survival parameters with the iterative

convex minorant (ICM) algorithm. When exactly observed failure times existed, a

gradient desccent was used to update the baseline parameters, especially in the case

that the proportion of exactly observed failure times was large. The method can be

applied through the package ‘icenReg’.

In this chapter, the PH model is fitted to arbitrarily-censored data and formu-

lated in a fashion with finite parameters. An EM algorithm is developed to find the

MLE of the parameters. The details of the proposed methodology are provided in

Section 2.2 - Section 2.6. The details include modeling the baseline hazard function
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and the cumulative baseline hazard function with spline functions, a data augmenta-

tion including 2-stage Poisson latent variables and multinomial latent variables, the

development of the EM algorithm, the asymptotic distribution and variance estima-

tion. Several simulation studies and real data applications are performed in Section

2.7 and Section 2.8 to evaluate the performance of the proposed method.

2.2 Models, Notations and Observed Likelihood

Let T and x denote the failure time and the covariate vector respectively. Let F (t|x),

S(t|x) and f(t|x) be the cumulative distribution function (CDF), the survival function

and the probability density function (pdf) for the failure time given the covariate

vector x. λ(t|x) and Λ(t|x) are the hazard function and the cumulative hazard

function for the failure time given the covariate vector x. Under the PH model,

λ(t|x) = λ0(t) exp(x′β),

Λ(t|x) = Λ0(t) exp(x′β),

where β = (β1, β2, ..., βp)′ is a vector of regression parameters. The baseline hazard

function λ0(t) and the cumulative baseline hazard function Λ0(t) only depend on the

failure time T . The relation between λ(t|x) and Λ(t|x) is that Λ(t|x) =
∫ t

0 λ(u|x)du.

Under the PH model, the CDF, the survival function and the pdf for the failure time

given the covariate vector x can be written as

F (t|x) = 1− exp {−Λ0(t) exp(x′β)} ,

S(t|x) = exp {−Λ0(t) exp(x′β)} ,

f(t|x) = λ0(t) exp(x′β) exp {−Λ0(t) exp(x′β)} .

One assumption is made that given the covariate vector x, the failure time is

independent of the observational process. For the ith observation in a sample, Li and

Ri are left censoring time and right censoring time, for i = 1, 2, ..., n. Note that for a
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left-censored (right-censored) observation, Li = 0 (Ri = ∞). For a exactly observed

failure time, it can be considered as its left censoring time and right censoring time

are the same, that is Li = Ri. Let δi0, δi1, δi2 and δi3 be the indicators for the ith

observation to be exact failure time, left-, interval- or right-censored, for i = 1, 2, ..., n.

Note that δi0 + δi1 + δi2 + δi3 = 1. With these notations and the assumption, the

observed likelihood function can be written as

Lobs =
n∏
i=1

f(Ri|xi)δi0F (Ri|xi)δi1 {F (Ri|xi)− F (Li|xi)}δi2 {1− F (Li|xi)}δi3 .

Under the PH model, the observed likelihood function can be further written as

Lobs =
n∏
i=1

[λ0(Ri) exp(x′iβ) exp {−Λ0(Ri) exp(x′iβ)}]δi0 [1− exp {−Λ0(Ri) exp(x′iβ)}]δi1

[exp {−Λ0(Li) exp(x′iβ)} − exp {−Λ0(Ri) exp(x′iβ)}]δi2

[exp {−Λ0(Li) exp(x′iβ)}]δi3 .

In the observed likelihood function, λ0(·), Λ0(·) and the vector of regression parame-

ters β need to be estimated.

2.3 The Hazard Function λ0(·) and the Cumulative Hazard Function

Λ0(·)

Since both λ0(·) and Λ0(·) are of infinite dimensions, they can be difficult to estimate.

The baseline hazard function λ0(·) is proposed to be modeled by widely used spline

functions, M-splines. M-splines are chosen here because that they are usually used to

model a positive function and the baseline hazard function λ0(·) only can take positive

values. The approximation of the cumulative baseline hazard function is proposed to

use the monotone spline functions, I-spline functions, because the I-spline functions

are integration of M-spline functions, which naturally fits the relation between the

baseline hazard function and the baseline cumulative hazard function. This method

was used in several existing literature such as Cai et al. (2011), McMahan et al. (2013)

and Wang et al. (2016).
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With I-spline functions and M-spline functions, the baseline hazard function and

the baseline cumulative hazard function can be expressed as follows,

Λ0(·) =
k∑
l=1

γlIl(·),

λ0(·) =
k∑
l=1

γlMl(·).

In these two functions, Il(·)’s and Ml(·)’s are polynomial functions called basis func-

tions. Ml(·)’s are the derivatives of Il(·)’s. γl’s are non-negative coefficients. To build

these splines, one needs to specify the degree of the basis functions and choose an

increasing sequence of knots within a certain range (Ramsay, 1988). The degree of

the basis functions controls the smoothness of the basis functions and the placement

of knots determines the flexibility of the basis functions. For example, one can put

more knots in the range where more observations fall in to catch the fluctuation of the

target function. For the basis functions, the 2nd and 3rd degrees are most commonly

used to control the smoothness of the basis functions, which stand for quadratic basis

functions and cubic basis functions. For one particular data set, different choices of

knots lead to different models. To determine the number of knots for a single data

set, the Akaike information criterion (AIC) can be used as a model selection criteria.

With splines functions, the observed likelihood function can be finally written as

Lobs =
n∏
i=1

[
k∑
l=1

γlMl(Ri) exp
{

x′iβ −
k∑
l=1

γlIl(Ri) exp(x′iβ)
}]δi0

[
1− exp

{
−

k∑
l=1

γlIl(Ri) exp(x′iβ)
}]δi1

[
exp

{
−

k∑
l=1

γlIl(Ri) exp(x′iβ)
}
− exp

{
−

k∑
l=1

γlIl(Ri) exp(x′iβ)
}]δi2

[
exp

{
−

k∑
l=1

γlIl(Ri) exp(x′iβ)
}]δi3

.

The parameters in the likelihood function above are coefficients of the spline func-

tions γl’s and the regression parameter vector β. One can try to estimate them by
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maximizing the observed likelihood function directly. However it can be seen that

there are summations and subtractions inside products, which makes it difficult to

maximize Lobs. It turns out that maximizing the observed likelihood function is not

workable. Therefore an EM algorithm is going to be developed to solve the maxi-

mization problem and find the MLE of the parameters.

2.4 Data Augmentation for the EM Algorithm

The EM algorithm is used to find the MLE of the regression parameter vector β =

(β1, β2, ..., βp)′ and the parameter vector of the splines γ = (γ1, γ2, ..., γk)′. Let θ =

(β′,γ ′).

The derivation of the EM algorithm starts with a 2-stage data augmentation.

This idea was firstly discussed in the paper, Wang et al. (2016). At stage 1, Pois-

son latent variables Zi and Wi are introduced with mean ∑k
l=1 γlIl(ti1) exp(x′iβ)

and ∑k
l=1 γl {Il(ti2)− Il(ti1)} exp(x′iβ) respectively, for i = 1, 2, ..., n, where ti1 =

Ri1(δi1=1) + Li1(δi2=1) + Li1(δi3=1), ti2 = Ri1(δi2=1) + Li1(δi3=1).

Zi ∼ Poisson

{
k∑
l=1

γlIl(ti1) exp(x′iβ)
}
,

Wi ∼ Poisson

[
k∑
l=1

γl {Il(ti2)− Il(ti1)} exp(x′iβ)
]
.

At stage 2, for each i, latent variables Zi and Wi are further decomposed as sum-

mations of k independent Poisson random variables, Zi = ∑k
l=1 Zil andWi = ∑k

l=1Wil,

where the means of Zil andWil are γlIl(ti1) exp(x′iβ) and γl {Il(ti2)− Il(ti1)} exp(x′iβ)

respectively, for l = 1, 2, ..., k.

Zil ∼ Poisson {γlIl(ti1) exp(x′iβ)} ,

Wil ∼ Poisson [γl {Il(ti2)− Il(ti1)} exp(x′iβ)]

with the restriction ∑k
l=1 Zil = Zi,

∑k
l=1Wil = Wi.
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With latent variables Zi’s andWi’s , the augmented likelihood function L1(θ) can

be expressed as

L1(θ) =
n∏
i=1

[
k∑
l=1
{γlMl(Ri)}

]δi0
exp[δi0 {x′iβ − Λ0(Ri) exp(x′iβ)}]

PZi(Zi)(1−δi0)PWi
(Wi)(δi2+δi3),

where PX(·) denotes the probability mass function for the random variable X, Zi > 0

if δi1 = 1, Zi = 0 and Wi > 0 if δi2 = 1 ,Zi = 0 and Wi = 0 if δi3 = 1. By integrating

Zi’s and Wi’s out of L1(θ), one can obtain the observed likelihood function Lobs(θ).

With the stage 2 latent variables Zil’s and Wil’s, the augmented likelihood function

L2(θ) can be expressed as

L2(θ) =
n∏
i=1

[
k∑
l=1
{γlMl(Ri)}

]δi0
exp[δi0 {x′iβ − Λ0(Ri) exp(x′iβ)}]

k∏
l=1

PZil(Zil)(1−δi0)PWil
(Wil)(δi2+δi3),

where Zi > 0 if δi1 = 1, Zi = 0 and Wi > 0 if δi2 = 1 ,Zi = 0 and Wi = 0 if δi3 = 1,∑k
l=1 Zil = Zi,

∑k
l=1 Wil = Wi. By integrating Zil’s and Wil’s out of L2(θ), one can

obtain the augmented likelihood function L1(θ).

It can be noticed that the summation in the first term of L2(θ) makes it difficult to

maximize the augmented likelihood function L2(θ). Therefore latent random vectors

Vi’s are introduced to deal with this problem. Vi = (Vi1, Vi2, ..., Vik) has a multinomial

distribution, for i = 1, 2, ..., n, which can be expressed as

Vi = (Vi1, Vi2, ..., Vik) ∼Multinomial
{

1, (1
k
,

1
k
, ...,

1
k

)
}
.

Note that ∑k
l=1 Vil = 1, for i = 1, 2, ..., n. With the latent variable Vil’s, the complete

likelihood function Lcom(θ) can be obtained as follows,

Lcom(θ) =
n∏
i=1

[
exp[δi0 {x′iβ − Λ0(Ri) exp(x′iβ)}]

{
k∏
l=1

[γlMl(Ri)]δi0VilPZil
(Zil)(1−δi0)PWil

(Wil)(δi2+δi3)

}]
.

15



where Zi > 0 if δi1 = 1, Zi = 0 and Wi > 0 if δi2 = 1 ,Zi = 0 and Wi = 0 if

δi3 = 1, ∑k
l=1 Zil = Zi,

∑k
l=1Wil = Wi. In the complete likelihood function Lcom(θ),

the latent variables Vil’s,Wil’s, Zil’s are treated as missing data. It can be seen that by

integrating out Vij’s in Lcom(θ), one can get the augmented likelihood function L2(θ).

Then, by integrating out Zil’s and Wil’s in L2(θ), one can obtain the augmented

likelihood function L1(θ). Lastly, by integrating out Zi’s, Wi’s in L1(θ), one can

obtain the observed likelihood function Lobs(θ). Consequently, Lcom(θ) is viewed as

the complete data likelihood with all Vil’s, Zi’s, Wi’s, Zil’s and Wil’s missing.

2.5 The EM Algorithm

With the latent variables, the EM algorithm can be developed to find the MLE of θ

with two steps, an expectation step (E-step) and a maximization step (M-step).

2.5.1 E-step

The derivation of E-step starts with taking the logarithm of the complete likelihood

function. Then one needs to find the expectation of the logarithm of the complete

likelihood function with respect to all the latent variables given the covariate vector

x and the current parameter θ(d) = (β(d)′ ,γ(d)′)′.

logLcom(θ) =
n∑
i=1

k∑
l=1
{δi0Vil + (1− δi0)Zil + (δi2 + δi3)Wil} (log γl + x′iβ)

−
n∑
i=1

k∑
l=1
{δi0Il(Ri) + (δi1 + δi2)bl(Ri) + δi3bl(Li)} γl exp(x′iβ) + L(θ(d)),

where L(θ(d)) is a function of θ(d) without θ.

Since the only interested parameter is θ, then L(θ(d)) can be treated as a constant.

Therefore it will not have contributions to the estimate of θ. Hence L(θ(d)) can be

dropped here. Then the Q(θ,θ(d)) function, the expectation of logLcom(θ) with

respect to all the latent variables Zi’s, Zil’s, Wi’s, Wil’s and Vi’s given the covariate
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vector x and the current parameter θ(d) , can be expressed as

Q(θ,θ(d)) = E
{

logLcom(θ)|x,θ(d)
}

=
n∑
i=1

k∑
l=1
{δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)} (log γl + x′iβ)

−
n∑
i=1

k∑
l=1
{δi0Il(Ri) + (δi1 + δi2)bl(Ri) + δi3bl(Li)} γl exp(x′iβ)

To maximize Q(θ,θ(d)), the expectations of the latent variables’ need to be ob-

tained first. Note that all these expectations are posterior expectations given the

covariate vector x and the current parameter θ(d). The complete likelihood function

and the augmented likelihood functions can be used to find the posterior distributions

of the latent variables.

In the complete likelihood function, it can be found that the posterior distribution

of Vi’s are also multinomial distributed given the covariate vector x and the current

parameter θ(d) according to its kernel,

Vi = (Vi1, Vi2, ..., Vik) ∼Multinomial(1, p̃i),

where p̃i = (p̃i1, p̃i2, ..., p̃ik), p̃il = γlMl(ti)∑k

l=1 γlMl(ti)
. Therefore the expectation of Vi’s are

as follows,

E(Vil) = γlMl(ti)∑k
j=1 γjMj(Ri)

,

for l = 1, 2, ..., k and i = 1, 2, ..., n.

The posterior distribution of Zi’s, Zil’s, Wi’s, Wil’s can be found with the com-

plete likelihood function Lcom(θ) and the augmented likelihood function L1(θ). By

observing the augmented likelihood function L1(θ), it can be found that both Zi’s

and Wi’s follow truncated Poisson distributions. Additionally, given Zi’s and Wi’s,

Zil’s andWil’s follow multinomial distributions. Therefore, the posterior expectations
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of Zi’s and Wi’s, Zil’s and Wil’s can be expressed as follows,

E(Zi) = Λ0(Ri) exp(x′iβ)δi1
1− exp {Λ0(Ri) exp(x′iβ)} ,

E(Zil) = γlIl(Ri)
Λ0(Ri)

· Λ0(Ri) exp(x′iβ)δi1
1− exp {Λ0(Ri) exp(x′iβ)} ,

E(Wi) = {Λ0(Ri)− Λ0(Li)} exp(x′iβ)δi2
1− exp[−{Λ0(Ri)− Λ0(Li)} exp(x′iβ)] ,

E(Wil) = γl {Il(Ri)− Il(Ri)}
Λ0(Ri)− Λ0(Li)

· {Λ0(Ri)− Λ0(Li)} exp(x′iβ)δi2
1− exp[−{Λ0(Ri)− Λ0(Li)} exp(x′iβ)] ,

for l = 1, 2, ..., k and i = 1, 2, ..., n.

2.5.2 M-step

The next step, M-step, is to maximize the Q(θ,θ(d)) function respect to the parameter

θ. To maximize Q(θ,θ(d)) with respect to θ, firstly one can take partial derivatives

of Q(θ,θ(d)) respect to θ.

∂Q(θ,θ(d))
∂γl

=
n∑
i=1

γ−1
l {δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)}

−
n∑
i=1
{(1− δi3)Il(Ri) + δi3bl(Li)} exp(x′iβ), (1)

for l = 1, 2, ..., k.

∂Q(θ,θ(d))
∂β

=
n∑
i=1

k∑
l=1
{δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)}xi

−
n∑
i=1

k∑
l=1
{(1− δi3)bl(Ri) + δi3bl(Li)} γl exp(x′iβ)xi. (2)

Then set these partial derivative equations to zeros. θ can be solved with unique

solutions. Firstly, γl’s can be solved in closed forms as functions of β using (1),

γl =
∑n
i=1 {δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)}∑n

i=1 {(1− δi3)Il(Ri) + δi3bl(Li)} exp(x′iβ) , for l = 1, 2, ..., k.

Then plug the obtained γl’s to (2) so that (2) only contains the parameter β.
n∑
i=1

k∑
l=1
{δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)}xi

=
n∑
i=1

k∑
l=1
{(1− δi3)bl(Ri) + δi3bl(Li)} γl(β) exp(x′iβ)xi.
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Numerical methods such as Newton-Raphson method can be used to find the solution

of β from the equation above. Then plug the solution of β back into the close form

solutions of γl’s to obtain the solution of γl’s.

2.5.3 The summary of the EM algorithm

With the results obtained in E-step and M-step, the EM-algorithm can be constructed

by the following steps:

Step 1: Assign initial values to θ(d) = (β(d)′ ,γ(d)′)′ and set d = 0.

Step 2: Obtain β(d+1) by solving the following equation for β,

n∑
i=1

k∑
l=1
{δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)}xi

=
n∑
i=1

k∑
l=1
{(1− δi3)Il(Ri) + δi3Il(Li)} γ(d)

l (β) exp(x′iβ)xi,

where

γ
(d)
l (β) =

∑n
i=1 {δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)}∑n

i=1 {(1− δi3)Il(Ri) + δi3bl(Li)} exp(x′iβ) .

Step 3: Obtain γ(d+1)
l = γ

(d)
l (β(d+1)).

Step 4: Repeat step 2-3 until |θ(d+1) − θ(d)| is smaller than a tolerance value.

The algorithm is robust to initial values of γ(d)
l ’s because the values of γ(d)

l ’s during

the iterations are all positive due to the close form solutions of γ(d)
l ’s so that they

cannot be too far away from the truth such as being negative values. The solutions

obtained by the developed EM algorithm, denoted as θ̂, is the MLE of θ.
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2.6 Asymptotic Properties and Variance Estimation

Under standard regularity conditions, the MLE enjoys the property of the asymptotic

normality. That is, as n→ +∞,

n−1/2(θ̂ − θ) d−→ N
{
0, I−1(θ)

}
,

where I(θ) is the fisher information matrix. To estimate the variance covariance

matrix of θ̂, Louis’s method (Louis, 1982) is adopted to obtain Î(θ̂) which is an

estimation of I(θ).

Î(θ̂) = −∂
2 logLobs(θ)
∂θ∂θ′

|θ = θ̂,

where

−∂
2 logLobs(θ)
∂θ∂θ′

= −∂
2Q(θ, θ̂)
∂θ∂θ′

− var
{
∂ logLcom(θ)

∂θ

}
.

Both ∂2Q(θ,θ̂)
∂θ∂θ′

and var
{
∂ logLcom(θ)

∂θ

}
have close forms. The technical details can be

found in Chapter 2 Supplementary Materials.

2.7 Simulation Study

Simulation studies were conducted to evaluate the performance of the proposed

methodology with different proportion of exactly observed failure times, 0%, 5%,

20% and 50%. The simulations were based on the following true distribution of the

failure time T .

FT (t|x) = 1− exp {−Λ0(t) exp(x1β1 + x2β2)} ,

where Λ0(t) = log(t+ 1) + t2, x1 ∼ Bernoulli(0.5) and x2 ∼ N(0, 0.52). The sample

size n was chosen to be 200 and all possible combinations of β1 = {−1, 1} and

β2 = {−1, 1} were considered, resulting in four parameter configurations.

The simulation process was as follows. For the ith observation, a uniform random

variable with support from 0 to 1, Ui ∼ U(0, 1), was generated to determine that
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an observation was exactly observed failure time or censored. If Ui was smaller than

the proportion of exactly observed failure times in the data then let the observation

be exactly observed failure time, otherwise be censored. For example, in the 5%

proportion of exactly observed failure times case, Ui ∼ U(0, 1) was generated. If

Ui < 0.05, then let the observation be exactly observed failure time otherwise be

censored. If an observation was censored, then the number of examination times

were generated from a 1 +Poisson(3) random variable to guarantee that the subject

has at least one examination time. The time gap between two examination times

was generated from a Exponetial(3) random variable. The observed interval for the

subject was determined by the two consecutive examination times whose interval

contained Ti. If Ti was less (greater) than the smallest (largest) examination time

then the lower (upper) bound of the observed interval was 0 (∞). The inverse CDF

method was used to find Ti by solving FTi(ti|xi) = vi numerically, where vi ∼ U(0, 1),

for i = 1, 2, ..., n. If an observation was exactly observed failure time, then the solution

of Ti was directly used as the observed value. These distributions and their parameters

were chosen in order to obtain similar amount of left-censored, interval-censored and

right-censored observations .

The proposed method and a existing method were applied to the simulated data

sets for comparison. The existing method by Clifford Anderson-Bergman fitted the

PH model to arbitrarily-censored data, which can be applied through the ‘icenReg’

package in R. The output is in Table 2.1. For the proposed method, it can be

seen that firstly, the regression parameter estimates are very close to the true values

of the parameters. Secondly, the sample standard deviations are very close to the

average estimated standard errors, which shows that Louis’s method performs well in

estimating the asymptotic approximation of the variance covariance matrix. Thirdly,

the coverage probabilities of 95%Wald confidence intervals cover around 95 percent of

the true values indicating that 95% Wald confidence interval can be used to evaluate
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the estimates obtained by the developed EM algorithm. The existing method also

performs well in finding regression parameter estimates, estimated standard errors

and 95% coverage probabilities of the true parameters as well. By comparing these

two methods, it can be found that although both methods have good performances,

the bias of the estimates and the average estimated standard errors of the proposed

method are uniformly smaller than the existing method. Moreover, the proposed

method is 10-20 times faster the existing method. The main reason of the existing

method cost more time was that it used bootstrap method to estimate standard

deviations. When sample size became large, it was time consuming. In the simulation

study, as the sample sizes approached 6000, the existing method tended to be much

slower than the proposed method. Consequently, the propose method is more accurate

and more efficient than the compare method.

2.8 Real Data Application

The real data set is from Demographic and Health Surveys in Nigeria in 2003 studying

the childhood morality, children dying between the 1st and 5th birthdays. Under 5

mortality rate is a key indicator of the development for the overall child health for a

country. The study seeks for the factors that effect the childhood morality such as

the number of breastfeeding months, a mother’s educational level, body mass index

(BMI) and so on. The failure time is a child’s death time. If a mother remembered the

exact time of her child’s death then the failure time was exactly observed. Otherwise,

a mother provided a time range which her children died from so the observation was

censored. The children’s death rate of this data set is 0.059. This data set contains

5890 observations with 11 covariates and 2766 compete cases. Exactly observed failure

times take a great proportion in the data set. The output of both methods applied

on this data set is in Table 2.2.

In the output, both methods provided similar estimates for all regression param-
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Table 2.1: The estimation results on the regression parameters for simulation study based
on 500 replications. p denotes the proportion of exactly observed failure times, Bias denotes
the empirical bias, SSD denotes the sample standard deviations of 500 point estimates,
ESE denotes the average of the 500 estimated standard errors, CP95 denotes the coverage
probability with 95% Wald confidence interval.

Proposed Method icenReg

p Parameters Bias SSD ESE CP95 Bias SSD ESE CP95
0% β1 = 1 0.0240 0.1394 0.1379 0.95 0.0481 0.1455 0.1441 0.95

β2 = 1 0.0159 0.1511 0.1450 0.94 0.0409 0.1517 0.1500 0.95

β1 = 1 0.0201 0.1438 0.1401 0.94 0.0506 0.1454 0.1466 0.93
β2 = -1 0.0032 0.1348 0.1320 0.95 0.0477 0.1504 0.1463 0.94

β1 = -1 0.0160 0.1408 0.1413 0.96 0.0331 0.1474 0.1438 0.96
β2 = 1 0.0205 0.1512 0.1452 0.93 0.0366 0.1519 0.1557 0.94

β1 = -1 0.0200 0.1287 0.1260 0.95 0.0363 0.1475 0.1483 0.94
β2 = -1 0.0273 0.1417 0.1395 0.94 0.0366 0.1526 0.1557 0.95

5% β1 = 1 0.0224 0.1347 0.1360 0.95 0.0332 0.1424 0.1378 0.96
β2 = 1 0.0166 0.1473 0.1406 0.94 0.0292 0.1476 0.1500 0.94

β1 = 1 0.0043 0.1310 0.1357 0.96 0.0039 0.1312 0.1295 0.96
β2 = -1 0.0152 0.1317 0.1394 0.96 0.0280 0.1464 0.1489 0.96

β1 = -1 0.0048 0.1382 0.1388 0.96 0.0331 0.1474 0.1438 0.96
β2 = 1 0.0056 0.1477 0.1422 0.94 0.0366 0.1519 0.1557 0.94

β1 = -1 0.0076 0.1463 0.1389 0.92 0.0340 0.1416 0.1428 0.94
β2 = -1 0.0061 0.1422 0.1422 0.95 0.0039 0.1319 0.1264 0.97

20% β1 = 1 0.0102 0.1308 0.1303 0.96 0.0060 0.1290 0.1248 0.94
β2 = 1 0.0198 0.1450 0.1340 0.92 0.0086 0.1303 0.1350 0.94

β1 = 1 0.0006 0.1378 0.1301 0.94 0.0039 0.1312 0.1295 0.96
β2 = -1 0.0216 0.1358 0.1342 0.95 0.0280 0.1464 0.1489 0.96

β1 = -1 0.0146 0.1320 0.1330 0.96 0.0331 0.1474 0.1438 0.96
β2 = 1 0.0273 0.1459 0.1363 0.93 0.0366 0.1519 0.1557 0.94

β1 = -1 0.0117 0.1295 0.1328 0.95 0.0340 0.1416 0.1428 0.94
β2 = -1 0.0038 0.1363 0.1354 0.94 0.0039 0.1319 0.1264 0.97

50% β1 = 1 0.0064 0.1219 0.1240 0.94 0.0183 0.1233 0.1344 0.93
β2 = 1 0.0079 0.1317 0.1250 0.94 0.0138 0.1259 0.1242 0.95

β1 = 1 0.0112 0.1195 0.1218 0.94 0.0128 0.1235 0.1197 0.95
β2 = -1 0.0070 0.1220 0.1234 0.95 0.0086 0.1258 0.1219 0.95

β1 = -1 0.0075 0.1250 0.1229 0.96 0.0099 0.1245 0.1256 0.95
β2 = 1 0.0079 0.1246 0.1249 0.95 0.0104 0.1266 0.1259 0.94

β1 = -1 0.0192 0.1170 0.1231 0.96 0.0213 0.1243 0.1182 0.97
β2 = -1 0.0040 0.1196 0.1245 0.96 0.0063 0.1267 0.1208 0.97
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Table 2.2: Data analysis of childhood morality data: the estimated regression parameters
(PointEst), the standard error (ESE), test statistics (Z-value) and P-value.

Proposed Method icenReg

Covariate PointEst ESE Z-value P-value PointEst ESE Z-value P-value
AgeInterview 0.3379 0.0637 5.3045 0.000 0.2913 0.1082 2.6930 0.007
AgeBirth -0.3157 0.0669 -4.7190 0.000 -0.2693 0.1149 -2.3450 0.019
BMI 0.0298 0.0155 1.9226 0.055 0.0271 0.0257 1.0520 0.293
BreastfeedMonth -0.2895 0.0148 -19.561 0.000 -0.2901 0.0265 -10.950 0.000
PrecedingInterval -0.0045 0.0041 -1.0976 0.272 -0.0043 0.0055 -0.7718 0.440
AntenatalVisits -0.0243 0.0183 -1.3279 0.184 -0.0242 0.0211 -1.1450 0.252
HospitalDelivery -0.9274 0.2347 -3.9514 0.000 -0.9180 0.2753 -3.3350 0.001
Male -0.1169 0.1560 -0.7494 0.454 -0.1174 0.1856 -0.6325 0.527
MotherEducation -0.1220 0.1958 -0.6231 0.533 -0.1197 0.2388 -0.5014 0.616
Urban -0.4305 0.2052 -2.0980 0.036 -0.4106 0.2327 -1.7640 0.078
State -0.0153 0.0071 -2.1549 0.031 -0.0168 0.0099 -1.7020 0.089

eters. Since the proposed method had smaller standard deviation estimates, then

it uniformly provided smaller P-value for each covariate than the existing method.

Both methods identified that a mother’s age during the interview, the age of birth,

the number of breastfeeding months, hospital delivery or not, and locations were

significant risk factors associated with children’s death.

2.9 Discussion

This chapter proposes a method to analyze arbitrarily-censored data under the PH

model and an EM algorithm was developed to find the MLE of the parameters.

The idea of this study was inspired by the paper, Wang et al. (2016). In Wang’s

paper, it introduced 2-stage homogeneous Poisson random variables and developed

an efficient, flexible EM algorithm to analyze interval-censored data. In this study,

besides censored observations, multinomial random variables were introduced in the

likelihood function to deal with exactly observed failure times in arbitrarily-censored

data. The method proposed in this paper enjoys all the good properties of Wang’s

method and can be viewed as a more general case of Wang’s study.
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Chapter 3

Proportional Hazards Model for Current

Status Data with Informative Censoring

3.1 Introduction

In the NTP experiments, lab rats were exposed to a substance with different levels of

concentrations for a period of time to study the toxicity of the substance. During the

experiments, some rats died of natural causes. Some of them were accidentally killed.

Some of them were sacrificed because they were moribund during the experiments.

The rest of them were sacrificed at the end of the experiments. When a rat died or

was sacrificed, researchers examined the rat’s organs to observe whether a tumor was

found there, resulting in current status data for the tumor onset time. In such data,

the failure time is the onset time of a tumor in a rat’s organs. The censoring time

is the death time of a rat. If a rat died from natural causes, was accidentally killed

or was sacrificed at the end of the study, the censoring time can be considered to be

independent of the failure time given the concentration level. However, if a rat was

sacrificed because it was moribund during the experiment, then it is more reasonable

to consider that the censoring time is correlated with the failure time given the

concentration level. One of the assumptions made when one analyzes current status

data is that the censoring time is independent of the failure time given covariates but

in cases such as the NTP studies, the independent assumption fails and may lead

the analysis severely away from the truth. In this chapter, a method is going to be

developed to take informative censoring into consideration.
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There are several existing methods analyzing current status with informative cen-

soring. For example, Chen et al. (2012) took informative censoring into consideration

in their model. They used the proportional odds model with a log-normal frailty term

to characterize the correlation between the failure time and the informative censoring

time. An EM-algorithm was developed to find the MLE of the parameters. The

method was computationally intensive and involved approximations, such as using

Monte-Carlo simulations to obtain the posterior expectations of the latent variables’.

In this chapter, a new efficient and accurate method is developed to analyze the

current status data with informative censoring under the Gamma-frailty PH model.

3.2 Models, Notations and Observed Likelihood

Let T denote the failure time. Assume that there are two potential censoring times

C and C∗, where C is correlated with the failure time T given the covariate vector x

and C∗ is uncorrelated with the failure time T given the covariate vector x. Under

the Gamma-frailty PH model, given the frailty term η and the covariate vector x, the

hazard functions of T and C are defined as follows,

λT (t|η,x) = λ0T (t) exp(x′βT )η,

λC(c|η,x) = λ0C(c) exp(x′βC)η,

where λ0T (t) is the baseline hazard function for for the failure time, λ0C(c) is the

baseline hazard function for for the informative censoring time, βT is a vector of

parameters for the failure time, βC is a vector of parameters for the informative

censoring time. It can be seen that T and C are correlated due to the existence of

the frailty term η which is assumed to follow a gamma distribution with both the

shape parameter and the rate parameter being τ . It can be seen that given η, T and

C are independent.

Let C̃ be the smaller value between C and C∗, i.e., C̃i = min(C,C∗). Let ξ be
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an indicator of informative censoring time C before (after) non-informative censoring

time C∗, i.e., ξ = I(C ≤ C∗). Let δ be the indicator of a left- (right-) censored

observation, i.e., δ = I(T ≤ C̃). Under these notations, what can be observed is

{(c̃i, δi, ξi,xi), i = 1, ..., n} . These are independent realizations of (C̃, δ, ξ,X).

Let g(η|τ, τ) be the pdf of gamma distribution with both the shape parameter and

the rate parameter being τ so that the mean of η always equals to 1 and the value of

τ only determines the variability of η. The reason of the mean designed to be 1 is to

make the solution of τ identifiable. Let ST (·|η) be the survival function for the failure

time given the frailty term η, SC(·|η) be the survival function for the informative

censoring time given the frailty term η, fC(·|η) be the pdf for the informative censoring

time given the frailty term η. Under these notations, the observed likelihood function

Lobs can be written as,

Lobs =
n∏
i=1

∫
g(ηi|τ, τ) {1− ST (c̃i|ηi)}δi ST (c̃i|ηi)1−δifC(c̃i|ηi)ξiSC(c̃i|ηi)1−ξidηi.

Note that the observed likelihood function does not contain the distribution of C∗.

It is because that C∗ is a non-informative censoring time so that its distribution does

not have any contribution to the parameter estimates. Therefore an assumption is

made that the distribution of C∗ is known without interested parameters.

Under the Gamma-frailty PH model, ST (t|η) = exp {−Λ0T (t) exp(x′βT )η} and

SC(c|η) = exp {−Λ0C(c) exp(x′βC)η}, where Λ0T (t) is the baseline cumulative hazard

function for the failure time and Λ0C(c) is the baseline cumulative hazard function

for the informative censoring time. Additionally, the pdf of the gamma frailty term

is given by g(η|τ, τ) = ττ

Γ(τ)η
τ−1e−τη, where τ > 0.

To model the baseline cumulative hazard functions Λ0T (·), Λ0C(·) and the baseline

hazard functions λ0T (·), λ0C(·) turns out to be a challenging task because they can

be infinite dimensions. According to previous work of Cai et al. (2011), McMahan

et al. (2013) and Wang et al. (2016), the baseline cumulative hazard functions Λ0T (·),
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Λ0C(·) can be modeled by I-splines as,

Λ0T (·) =
k∑
j=1

γTjIj(·),

Λ0C(·) =
k∑
j=1

γCjIj(·).

The first derivatives of I-splines are M-splines then the baseline hazard functions

λ0T (·), λ0C(·) can be modeled by M-splines as follows,

λ0T (·) =
k∑
j=1

γTjMj(·),

λ0C(·) =
k∑
j=1

γCjMj(·).

The advantage of this method is that both Λ0T (·), λ0T (·) and Λ0C(·), λ0C(·) share the

same sets of non-negative coefficients γTj’s and γCj’s. Furthermore, it naturally pro-

vides the relation between the baseline cumulative hazard functions and the baseline

hazard functions. The technical details of applying spline functions involves speci-

fying the degree of the basis functions and choosing an increasing sequence of knots

within a certain range (Ramsay, 1988). The degree of the basis functions controls

the smoothness of the basis functions and the placement of knots determines the

flexibility of the basis functions. With the spline functions, after integrating out the

unobserved frailty term ηi’s, the observed likelihood function can be expressed as

Lobs =
n∏

i∈A1

[
1 + τ−1Λ0T (c̃i) exp(x′iβT ) + τ−1Λ0C(c̃i) exp(x′iβC)

]−τ
n∏

i∈A2

[{
1 + τ−1Λ0C(c̃i) exp(x′iβC)

}−τ
−

{
1 + τ−1Λ0T (c̃i) exp(x′iβT ) + τ−1Λ0C(c̃i) exp(x′iβC)

}−τ]
n∏

i∈A3

τλ0C(c̃i) exp(x′iβC)
{

1 + τ−1Λ0T (c̃i) exp(x′iβT ) + τ−1Λ0C(c̃i) exp(x′iβC)
}−τ

n∏
i∈A4

τλ0C(c̃i) exp(x′iβC)
[{

1 + τ−1Λ0C(c̃i) exp(x′iβC)
}−τ
−

{
1 + τ−1Λ0T (c̃i) exp(x′iβT ) + τ−1Λ0C(c̃i) exp(x′iβC)

}−τ]
,
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where A1 = {δi = 0, ξi = 0}, A2 = {δi = 1, ξi = 0}, A3 = {δi = 0, ξi = 1}, A4 = {δi =

1, ξi = 1}, for i = 1, 2, ..., n.

The parameters in the observed likelihood function is θ = (β′T ,β′C ,γ ′T ,γ ′C , τ),

where γT = (γT1, γT2, ..., γTk)′,γC = (γC1, γC2, ..., γCk)′. In order to find the MLE

of the vector of parameters θ one can try to maximize Lobs(θ) directly but Lobs(θ)

is in a very complicated form, which makes the computation difficult. It can be

noticed that the difficulty of this maximization problem is caused by the summations

and subtractions inside the products. Therefore an EM algorithm is going to be

developed to solve this problem and find the MLE of θ.

3.3 Data Augmentation for the EM Algorithm

Since the gamma frailty term ηi’s cannot be observed, then they are considered as

missing data. The augmented likelihood function L1(θ) with the latent variables ηi’s

can be rewritten as

L1(θ) =
n∏
i=1

[1− exp {−ΛT0(c̃i) exp(x′iβT )ηi}]δi exp {−ΛT0(c̃i) exp(x′iβT )ηi}1−δi

τ τ

Γ(τ)η
τ+ξi−1
i e−τηi {λC0(c̃i)}ξi exp {ξix′iβC − ΛC0(c̃i) exp(x′iβC)ηi} .

By integrating out ηi’s from L1(θ), one can obtain the observed likelihood function

Lobs(θ). Based on the structure of the augmented likelihood function L1(θ), the fur-

ther data augmentations are provided separately in three parts as the following,

I. The first part is [1−exp {−ΛT0(c̃i) exp(x′iβT )ηi}]δi exp {−ΛT0(c̃i) exp(x′iβT )ηi}1−δi .

This part owns all and only the parameters related to failure time Ti, for i = 1, 2, ..., n.

It can be seen that the difficulty of maximization in this part is caused by the term

[1 − exp {−ΛT0(c̃i) exp(x′iβT )ηi}]δi . Due to the previous work by Cai et al (2011),

2-stage Poisson random variables are introduced to deal with this problem. At stage
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1, Poisson latent variables Zi’s are introduced as the following,

Zi|ηi ∼ Poisson {ΛT0(c̃i) exp (x′iβT )ηi} , δi = 1(Zi>0).

With latent variables Zi’s, the augmented likelihood function L2(θ) can be expressed

as

L2(θ) =
n∏
i=1

[
δ

1(Zi>0)
i (1− δi)1(Zi=0)PZi(Zi)

]
{λC0(c̃i)}ξi g(ηi|τ + ξi, τ)

exp {ξix′iβC − ΛC0(c̃i) exp(x′iβC)ηi} ,

where PX(·) denotes probability mass function for the random variable X, g(ηi|τ +

ξi, τ) denotes the pdf of a gamma distribution with the shape parameter τ + ξi and

the rate parameter τ . By integrating Zi’s out of L2(θ), one can obtain L1(θ). At

stage 2, for each i, the latent variable Zi is further decomposed as a summation of

k independent Poisson random variables, Zi = ∑k
j=1 Zij, where the mean of Zij is

γTjIj(c̃i) exp (x′iβT )ηi, for j = 1, 2, ..., k.

Zij|ηi ∼ Poisson {γTjIj(c̃i) exp (x′iβT )ηi} , j = 1, 2, ..., k,

with the restriction ∑n
j=1 Zij = Zi.

With latent variables Zij’s, the augmented likelihood associated with stage 2 latent

variables is given by,

L3(θ) =
n∏
i=1

δ1
(
∑k

j=1 Zij>0)

i (1− δi)
1

(
∑k

j=1 Zij=0)
k∏
j=1

PZij(Zij)
 {λC0(c̃i)}ξi

exp {ξix′iβC − ΛC0(c̃i) exp(x′iβC)ηi} g(ηi|τ + ξi, τ).

By integrating Zij’s out of L3(θ), one can obtain L2(θ).

II. The second part is {λC0(c̃i)}ξi . Note that λC0(c̃i) is modeled by M-spline functions

as ∑k
j=1 γjMj(c̃i). Therefore, this part is presented as

k∑
j=1
γjMj(c̃i)


ξi

.
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When ξi = 0, this term is 1. When ξi = 1, latent multinomial random vectors Vi’s

are introduced as

Vi = (Vi1, Vi2, ..., Vik) ∼Multinomial(1, [ 1
k
,

1
k
, ...,

1
k

]).

Note that ∑k
j=1 Vij = 1 for i = 1, 2, ..., n. With the latent variables Vij’s, the aug-

mented likelihood function L4(θ) can be expressed as

L4(θ) =
n∏
i=1

δ1
(
∑k

j=1 Zij>0)

i (1− δi)
1

(
∑k

j=1 Zij=0)
k∏
j=1

PZij(Zij)
  k∏

j=1
{γCjMj(c̃i)}Vijξi


exp {ξix′iβC − ΛC0(c̃i) exp(x′iβC)ηi} g(ηi|τ + ξi, τ).

By integrating Vij’s out of L4(θ), one can obtain L3(θ).

III. The last part is exp {ξix′iβC − ΛC0(c̃i) exp(x′iβC)ηi} g(ηi|τ + ξi, τ). Once one

takes logarithm with this part, it will be in linear form.

With the latent variables Zi’s, Zij’s, Vij’s and ηi’s, the augmented likelihood

function L4(θ) can be written as the complete likelihood function as follows,

Lcom(θ) =
n∏
i=1

δ
1

(
∑k

j=1 Zij>0)

i (1− δi)
1

(
∑k

j=1 Zij=0) exp {ξix′iβC − ΛC0(c̃i) exp(x′iβC)ηi}

g(ηi|τ + ξi, τ)
k∏
j=1

PZij(Zij) {γCjMj(c̃i)}Vijξi .

By integrating Vij’s out of the complete likelihood function Lcom(θ), one can get the

augmented likelihood function L3(θ). Then, by integrating Zij’s out of L3(θ), one

can get the augmented likelihood function L2(θ). Further, by integrating Zi’s out of

L2(θ), one can get the augmented likelihood function L1(θ). Finally, by integrating

ηi’s out of the augmented likelihood function L1(θ), the observed likelihood function

Lobs(θ) can be obtained. Consequently, to develop the EM-algorithm with the com-

plete likelihood function Lcom(θ), all the latent variables Zij’s, Zi’s, Vij’s and ηi’s are

viewed as missing data.

31



3.4 The EM Algorithm

3.4.1 E-step

It follows the derivation of the EM algorithm. The logarithm of the complete likeli-

hood function is as follows,

log {Lcom(θ)}

=
n∑
i=1

[− log {Γ(τ)}+ τ log {τ}+ (τ − 1) log ηi − τηi − ΛC0(c̃i) exp(x′iβC)ηi + ξix
′
iβC ]

+
n∑
i=1

k∑
j=1

[−λij + Zij log λij − logZij! + Vijξi log γCj + Vijξi logMj(c̃i) + Vijξi log ηi] ,

where λij = γTjIj(c̃i) exp (x′iβT )ηi. The expectation of the logarithm of the complete

likelihood function with respect to the conditional expectations of Zi’s, Zij’s, Vij’s, ηi’s

given the observed data and the current parameter θ(d) = (β(d)′
T ,β

(d)′
C ,γ

(d)′
T ,γ

(d)′
C , τ (d))′,

which yields Q(θ,θ(d)) = E[log {Lcom(θ)} |x,θ(d)], are provided as follows,

Q(θ,θ(d)) = E[log {Lcom(θ)} |x,θ(d)]

= H1(θ,θ(d)) +H2(θ,θ(d)) +H3(θ,θ(d)) +H4(θ,θ(d))

where,

H1(θ,θ(d)) = −n log {Γ(τ)}+ nτ log(τ) + τ
n∑
i=1

[E(log ηi)− E(ηi)],

H2(θ,θ(d)) = −
n∑
i=1

ΛC0(c̃i) exp(x′iβC)E(ηi) +
n∑
i=1

k∑
j=1

E(Vij)ξi log γCj +
n∑
i=1

ξix
′
iβC ,

H3(θ,θ(d)) = −
n∑
i=1

ΛT0(c̃i) exp(x′iβT )E(ηi) +
n∑
i=1

k∑
j=1

E(Zij) log γTj +
n∑
i=1

E(Zi)x′iβT

and

H4(θ,θ(d)) is free of θ.

This completes the E-step of the EM algorithm. The reason Q(θ,θ(d)) is written

in four parts is because it will be more convenient and easier to maximize Q(θ,θ(d))

in M-step.
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3.4.2 M-step

Since H1(θ,θ(d)) has only one the parameter τ and τ only exists in H1(θ,θ(d)), then

it becomes a univariate maximization problem with respect to τ . The maximization

problem can be solved by using constrained maximization routines (optim in R).

To find the maximization of H2(θ,θ(d)) and H3(θ,θ(d)) with respect to βC ,γC

and βT ,γT , the following partial derivatives are given,

∂H2(θ,θ(d))
∂βC

=
n∑
i=1

[−ΛC0(c̃i) exp(x′iβC)E(ηi) + ξi]xi, (1)

∂H2(θ,θ(d))
∂γCj

=
n∑
i=1

[−γCjIj(c̃i) exp(x′iβC)E(ηi) + E(Vij)ξi], (2)

∂H3(θ,θ(d))
∂βT

=
n∑
i=1

[−ΛT0(c̃i) exp(x′iβT )E(ηi) + E(Zi)]xi, (3)

∂H3(θ,θ(d))
∂γTj

=
n∑
i=1

[−Ij(c̃i) exp(x′iβT )E(ηi) + E(Zij)γ−1
Tj ], (4)

for j = 1, 2, ..., k.

By setting all these four partial derivatives to zeros, the four vectors of parameters

βC , βT , γC and γT can be solved with unique solutions. Firstly, solve (2), (4) for

γC and γT as functions of βC and βT in closed forms,

γCj =
∑n
i=1E(Vij)ξi∑n

i=1 Ij(c̃i) exp(x′iβC)E(ηi)
,

γTj =
∑n
i=1E(Zij)∑n

i=1 Ij(c̃i) exp(x′iβT )E(ηi)
,

for j = 1, 2, ..., k. Then plug the solutions of γC and γT into (1), (3) to solve for βC ,

βT . At last, plug the results of βC , βT back into the two equations above to obtain

γC , γT .

Note that the expectations of the latent variables’ are posterior expectations given

the covariate vector x and current parameter θ(d). The posterior expectations can be

found with their posterior distributions. The complete likelihood Lcom(θ) and aug-

mented likelihood functions, L1(θ), L2(θ), L3(θ) can be used to obtain the posterior

distributions of the latent variables’. The details are in Section 3.4.3 - Section 3.4.5.
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3.4.3 The latent variable Vi = (Vi1, Vi2, ..., Vik)

In the complete likelihood function Lcom(θ), only the term {γCjMj(c̃i)}Vijξi contains

the latent variable Vij’s . Hence, the kernel of the posterior probability density

function is {γCjMj(c̃i)}Vijξi . That is,

f(Vi|xi) ∝ {γCjMj(c̃i)}Vijξi .

It is easy to recognize that this is the kernel of a multinomial distribution,

Vi1, Vi2, ..., Vik|xi ∼

Multinomial

[
1,
{

γC1M1(c̃i)∑k
j=1 γCjMj(c̃i)

,
γC2M2(c̃i)∑k
j=1 γCjMj(c̃i)

, ...,
γCkMk(c̃i)∑k
j=1 γCjMj(c̃i)

}]
.

Therefore the posterior expectation of the latent variable Vij is,

E(Vij|xi) = γCjMj(c̃i)∑k
l=1 γClMl(c̃i)

,

for i = 1, 2, ..., n and j = 1, 2, ..., k.

3.4.4 The latent variable ηi

Note that in the augmented likelihood function L1(θ), when δi = 0,

L1(θ) =
n∏
i=1

τ τ

Γ(τ)η
τ−1
i e−τηi exp {−ΛT0(c̃i) exp(x′iβT )ηi}1−δi

{λC0(c̃i) exp(x′iβC)ηi}ξi exp {−ΛC0(c̃i) exp(x′iβC)ηi} .

Therefore,

f(ηi|xi) ∝ ητ+ξi−1
i exp (−biηi),

where bi = τ + ΛT0(c̃i) exp(x′iβT ) + ΛC0(c̃i) exp(x′iβC). This is the kernel of a gamma

distribution. Hence, when δi = 0, the posterior distribution of ηi given x is a gamma

distribution as follows,

ηi|xi ∼ Gamma(ξi + τ, bi),
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Therefore, when δi = 0,

E(ηi|xi) = τ + ξi
bi

, E(log ηi|xi) = ψ(τ + ξi)− log bi,

for i = 1, 2, ..., n, where ψ(x) = Γ′(x)
Γ(x) .

When δi = 1, it is worth to notice that the distribution of ηi given x consists of

summations of two gamma kernel functions.

f(ηi|xi) ∝ ητ+ξi−1
i exp (−biηi) + ητ+ξi−1

i exp (−diηi),

where di = τ + ΛC0(c̃i) exp(x′iβC). Therefore,

E(ηi|xi) = (τ + ξi)
di

1− (di
bi

)τ+1+ξi

1− (di
bi

)τ+ξi
,

E(log ηi|xi) = ψ(τ + ξi)−
bτ+ξi
i log di − dτ+ξi

i log bi
bτ+ξi
i − dτ+ξi

i

,

for i = 1, 2, ..., n. The technical details can be found in Chapter 3 Supplementary

Materials. Combining these two cases δi = 0 and δi = 1 together, the following

expectations can be obtained,

E(ηi|xi) = (1− δi)
τ + ξi
bi

+ δi
(τ + ξi)
di

1− (di
bi

)τ+1+ξi

1− (di
bi

)τ+ξi
,

E(log ηi|xi) = (1− δi) {ψ(τ + ξi)− log bi}+

δi

{
ψ(τ + ξi)−

bτ+ξi
i log di − dτ+ξi

i log bi
bτ+ξi
i − dτ+ξi

i

}
,

for i = 1, 2, ..., n.

3.4.5 The latent variables Zi and Zij

Since ∑k
j=1 Zij = Zi, then Zij is multinomial distributed given Zi for i = 1, 2, ..., n

and j = 1, 2, ..., k. Therefore one can obtain the following relationship by applying

the law of iterative rule.

E(Zij|xi) = E {E(Zij|xi, Zi)} = E

{
γTjI(c̃i)
ΛT0(c̃i)

Zi|xi
}

= γTjI(c̃i)
ΛT0(c̃i)

E(Zi|xi).
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For the latent variable Zi, it follows a truncated Poisson distribution given ηi with

a support of all positive integers when δi = 1 and degenerates at 0 when δi = 0 for

i = 1, 2, ..., n. By applying the law of iterative rule again,

E(Zi|xi) = E {E(Zi|xi, ηi)} = E

{
ηiδiΛT0(c̃i) exp(x′iβT )

1− exp [−ΛT0(c̃i) exp(x′iβT )ηi]
|xi
}
.

Since the distribution of ηi|xi can be obtained from the previous section, this expec-

tation can be evaluated. It turns out to be,

E(Zi|xi) = δiΛT0(c̃i) exp(x′iβT )τ + ξi
di

bτ+ξi
i

bτ+ξi
i − dτ+ξi

i

.

Additionally,

E(Zij|xi) = γTjI(c̃i)
ΛT0(c̃i)

E(Zi|xi) = γTjI(c̃i)
ΛT0(c̃i)

δiΛT0(c̃i) exp(x′iβT )τ + ξi
di

bτ+ξi
i

bτ+ξi
i − dτ+ξi

i

= δiγTjI(c̃i) exp(x′iβT )τ + ξi
di

bτ+ξi
i

bτ+ξi
i − dτ+ξi

i

,

for i = 1, 2, ..., n and j = 1, 2, ..., k. The technical details can be found in Chapter 3

Supplementary Materials.

3.4.6 A summary of the EM algorithm

With all the results obtained from E-step and M-step, the EM algorithm can be sum-

marized as follows,

Step 1. Set d = 0 and initial values of θ(d) = (β(d)′
T ,β

(d)′
C ,γ

(d)′
T ,γ

(d)′
C , τ (d))′.

Step 2. Obtain τ (d+1) by maximizing

−n log {Γ(τ)}+ nτ log(τ) + τ
n∑
i=1

[E(log ηi)− E(ηi)].

Step 3. Obtain β(d+1)
T by solving the following equation,

n∑
i=1

[−
k∑
j=1
γ

(d)
Tj (βT )Ij(c̃i) exp(x′iβT )E(ηi) + E(Zi)]xi = 0,
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where

γ
(d)
Tj (βT ) =

∑n
i=1E(Zij)∑n

i=1 Ij(c̃i) exp(x′iβT )E(ηi)
.

Obtain

γ
(d+1)
Tj = γ

(d)
Tj (β(d+1)

T ).

Step 4. Obtain β(d+1)
C by solving the following equation,

n∑
i=1

[−
k∑
j=1
γ

(d)
Cj (βC)Ij(c̃i) exp(x′iβC)E(ηi) + ξi]xi = 0,

where

γ
(d)
Cj (βC) =

∑n
i=1E(Vij)ξi∑n

i=1 Ij(c̃i) exp(x′iβC)E(ηi)
.

Obtain

γ
(d+1)
Cj = γ

(d)
Cj (β(d+1)

C ).

Step 5. Repeat step 2- 4 until |θ(d+1) − θ(d)| is smaller than a tolerance value.

The solutions obtained by the developed EM algorithm, denoted as θ̂, is the MLE

of θ.

3.5 Asymptotic Properties and Variance Estimation

Under standard regularity conditions, the MLE enjoys the property of the asymptotic

normality. That is, as n→ +∞,

n−1/2(θ̂ − θ) d−→ N
{
0, I−1(θ)

}
,
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where I(θ) is the fisher information matrix. To estimate the variance covariance

matrix of θ̂, Louis’s method (Louis, 1982) is adopted to obtain Î(θ̂) which is an

estimation of I(θ).

Î(θ̂) = −∂
2 logLobs(θ)
∂θ∂θ′

|θ = θ̂,

where

−∂
2 logLobs(θ)
∂θ∂θ′

= −∂
2Q(θ, θ̂)
∂θ∂θ′

− var
{
∂ logLcom(θ)

∂θ

}
.

Both terms ∂2Q(θ,θ̂)
∂θ∂θ′

and var
{
∂ logLcom(θ)

∂θ

}
have close forms. The technical details of

the calculations can be found in Chapter 3 Supplementary Materials.

3.6 Simulation Study

A series of simulations studies were conducted to evaluate the performance of the

proposed method. Three scenarios were performed based on the different values of

the gamma frailty parameter τ = 0.5, 1, 2. The following models were considered as

the true distributions for failure time T and informative censoring time C,

FT (t|x1, x2, η) = 1− exp {−ΛT0(t) exp(x1βT1 + x2βT2)η} ,

FC(c|x1, x2, η) = 1− exp {−ΛC0(c) exp(x1βC1 + x2βC2)η} ,

where x1 ∼ Bernoulli(0.5), x2 ∼ N(0, 0.52), η ∼ Gamma(τ, τ), ΛT0(t) = log (1+ t)+

t2, ΛC0(c) = log (1 + c). The non-informative censoring time C∗ followed a truncated

exponential distribution with mean 1 and upper bound 10. The regression parameters

were specified as βT1 = βC1 ∈ {−1, 1} and βT2 = βC2 ∈ {−1, 1}. To obtain the

failure time T and informative censoring time C, the inverse CDF method was applied

to solve the following equations numerically, FT (t|x1, x2, η) = u, FC(c|x1, x2, η) = v,

where u ∼ U(0, 1) and v ∼ U(0, 1). For each case of the simulation, 500 data sets

were generated with sample sizes n = 500.
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Table 3.1: Under three different true values of gamma frailty parameter τ = 0.5, 1,
2, the proposed method was applied to estimate the regression parameters of the failure
time, the regression parameters of the informative censoring time and the gamma frailty
parameter. The summary includes the average 500 estimates bias (Bias) and the sample
standard deviation (SSD), the average estimated standard error (ESE) and the empirical
95% Wald confidence interval coverage probabilities (CP95) for all the parameters

τ = 0.5 τ = 1 τ = 2

Bias SSD ESE CP95 Bias SSD ESE CP95 Bias SSD ESE CP95
βT1 = 1 0.033 0.244 0.240 94% 0.021 0.190 0.188 94% 0.011 0.130 0.151 94%
βT2 = 1 0.037 0.259 0.242 93% 0.011 0.189 0.190 96% 0.018 0.165 0.160 95%
βC1 = 1 0.045 0.285 0.277 97% 0.030 0.211 0.222 92% 0.023 0.220 0.211 94%
βC2 = 1 0.063 0.300 0.291 95% 0.035 0.247 0.240 94% 0.030 0.229 0.231 94%
τ̂ 0.003 0.108 0.110 93% 0.013 0.328 0.299 91% 0.235 1.021 0.983 86%

βT1 = −1 0.044 0.265 0.248 94% 0.043 0.257 0.256 95% 0.006 0.179 0.178 94%
βT2 = 1 0.037 0.253 0.251 95% 0.039 0.250 0.249 95% 0.015 0.183 0.180 94%
βC1 = −1 0.055 0.314 0.298 95% 0.063 0.320 0.300 94% 0.016 0.231 0.229 93%
βC2 = 1 0.045 0.315 0.299 96% 0.043 0.315 0.298 95% 0.037 0.248 0.239 94%
τ̂ 0.010 0.145 0.137 91% 0.013 0.148 0.141 91% 0.420 1.973 1.884 87%

βT1 = 1 0.041 0.223 0.220 95% 0.038 0.197 0.181 94% 0.010 0.167 0.160 96%
βT2 = −1 0.031 0.230 0.232 95% 0.008 0.193 0.192 95% 0.020 0.176 0.173 95%
βC1 = 1 0.045 0.258 0.266 94% 0.045 0.266 0.265 95% 0.022 0.225 0.203 92%
βC2 = −1 0.055 0.276 0.280 96% 0.031 0.240 0.238 95% 0.037 0.212 0.211 94%
τ̂ 0.000 0.120 0.104 88% 0.032 0.309 0.281 86% 0.333 2.052 1.521 86%

βT1 = −1 0.037 0.253 0.247 96% 0.001 0.201 0.200 92% 0.011 0.179 0.182 97%
βT2 = −1 0.019 0.261 0.259 96% 0.016 0.200 0.203 96% 0.030 0.189 0.180 94%
βC1 = −1 0.050 0.298 0.293 94% 0.022 0.260 0.254 94% 0.010 0.214 0.218 96%
βC2 = −1 0.037 0.307 0.305 96% 0.025 0.269 0.267 95% 0.041 0.259 0.244 93%
τ̂ 0.002 0.121 0.130 89% 0.058 0.441 0.453 91% 0.918 4.831 2.511 86%

For the spline functions, the degrees of the basis splines were set to be 3 and

5 inner knots were placed with equal space in the interval between the minimum

observed time and maximum observed time. The choice of number of knots for a

single data set can be determined by using criteria such as AIC. In the EM algorithm

the initial values of the parameters in the spline functions were set to be 0.5 and the

initial values of regression parameters were set to be 0.

The simulation study results are in Table 3.1. In the table, it can be found

that firstly, all the regression parameter estimates are very close to the true values

of the regression parameters. Secondly, the averaged standard errors of the 500

estimates agree with the sample standard deviation. It indicates that the Louis’s
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Table 3.2: Results of estimated regression parameters with three different methods, Pro-
posed Method, the PH Model and the marginal GORH model Under three different true
values of gamma frailty parameter τ = 0.5, 1, 2 : The summary includes the average 500
estimates bias (Bias), the sample standard deviation (SSD), the average estimated standard
error (ESE) and the empirical 95% Wald confidence interval coverage probabilities (CP95).

Proposed Method PH Model Marginal GORH

βT Bias SSD ESE CP95 Bias SSD ESE CP95 Bias SSD ESE CP95
τ = 0.5
1 1 0.033 0.244 0.240 94% 0.519 0.172 0.179 16% 0.284 0.256 0.250 78%

0.037 0.259 0.242 93% 0.499 0.170 0.178 20% 0.257 0.266 0.260 83%
-1 1 0.044 0.265 0.248 94% 0.464 0.197 0.201 35% 0.261 0.272 0.264 83%

0.037 0.253 0.251 95% 0.471 0.194 0.200 34% 0.270 0.274 0.268 83%
1 -1 0.041 0.223 0.220 95% 0.515 0.176 0.173 17% 0.278 0.252 0.244 80%

0.031 0.230 0.232 95% 0.516 0.173 0.182 16% 0.279 0.261 0.256 81%
-1 -1 0.037 0.253 0.247 96% 0.484 0.197 0.190 31% 0.283 0.269 0.263 81%

0.025 0.257 0.252 95% 0.478 0.195 0.204 31% 0.273 0.274 0.277 80%

τ = 1
1 1 0.021 0.190 0.188 94% 0.438 0.159 0.160 23% 0.276 0.208 0.205 73%

0.011 0.189 0.190 96% 0.428 0.164 0.170 27% 0.262 0.217 0.214 78%
-1 1 0.043 0.257 0.256 95% 0.381 0.183 0.177 44% 0.213 0.232 0.218 85%

0.039 0.250 0.249 95% 0.381 0.186 0.194 45% 0.211 0.235 0.243 83%
1 -1 0.038 0.197 0.181 94% 0.431 0.159 0.172 26% 0.266 0.208 0.220 72%

0.008 0.193 0.192 95% 0.437 0.166 0.170 24% 0.278 0.217 0.211 77%
-1 -1 0.001 0.201 0.200 92% 0.388 0.187 0.193 45% 0.223 0.233 0.236 81%

0.016 0.200 0.203 96% 0.381 0.185 0.196 48% 0.218 0.234 0.243 81%

τ = 2
1 1 0.011 0.130 0.151 94% 0.320 0.156 0.165 45% 0.196 0.188 0.191 80%

0.018 0.165 0.160 95% 0.309 0.165 0.160 52% 0.184 0.196 0.190 83%
-1 1 0.006 0.179 0.178 94% 0.268 0.182 0.190 64% 0.152 0.210 0.216 88%

0.015 0.183 0.180 94% 0.251 0.184 0.191 71% 0.132 0.213 0.218 91%
1 -1 0.010 0.167 0.160 96% 0.334 0.157 0.164 41% 0.207 0.187 0.196 78%

0.020 0.176 0.173 95% 0.316 0.165 0.172 49% 0.190 0.195 0.203 81%
-1 -1 0.011 0.179 0.182 97% 0.259 0.179 0.178 69% 0.146 0.209 0.201 89%

0.030 0.189 0.180 94% 0.242 0.184 0.202 72% 0.123 0.213 0.230 88%

method performs well in estimating the standard error with a finite sample size,

n = 500. Thirdly, the empirical 95% Wald confidence intervals for all the regression

parameters cover 93% - 97% of the true values, which suggests that Wald confidence

intervals can be used as an inference method to evaluate the performance of the

developed EM algorithm. Lastly, it can be seen that the estimates of the parameter

τ are close to the true values. As τ gets larger, the bias of the estimates becomes

higher. The 95% Wald confidence intervals cover around 90% of the true values. This
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is caused by the lack of information for the parameter τ in the data but it does not

effect the performance of the estimates of the regression parameters which are the

most interested parameters in the study.

For the purpose of comparison, two other commonly used models in literature

for the analysis of current status data, the PH model and the generalized odds rate

hazards (GORH) model, were applied to the same data sets. The PH model is

one of the most widely used model to analyze current status data so that it can

be considered as a benchmark. It assumes the censoring time is independent of the

failure time given covariates. A method developed by McMahan et al. (2013) fitted

the PH model to current status data. The method can be implemented via the R

package by McMahan and Wang. The results are shown in the Table 3.2 called the

PH model. All the regression parameter estimates are far from the true values and

the 95% Wald confidence intervals have low coverage probabilities of the true values.

The coverage probabilities increase as τ gets larger because the correlation between

the informative censoring time and the failure time becomes weaker when τ goes up.

Hence, the ignorance of the correlation between the censoring time and the failure

time can lead to large errors of the parameter estimates.

The other model is the GORH model which is the marginal model of the Gamma-

frailty PH model. The GORH model is an appropriate model here because the true

data were generated from the Gamma-frailty PH model. From the output of the

marginal GORH column in Table 3.2, it can be seen that the bias of regression

parameters is around 20% and the coverage probabilities are near 90%. Although it

performs much better than the PH model, the results are still not satisfactory. This is

because that even though the correct model is applied, it only utilizes the information

from the marginal distribution, the distribution of the failure time T , but lack of the

information from the distribution of the informative censoring time C.
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Table 3.3: Regression parameter estimates with the PH model: The data were generated
from the Gamma-frailty PH model with the parameter τ = 10, 100. The summary includes
the average 500 estimates bias (Bias) and the sample standard deviation (SSD), the average
estimated standard error (ESE) and the empirical 95% Wald confidence interval coverage
probabilities (CP95) for all the parameters.

β̂T

τ βT Bias SSD ESE CP95
10 -1 0.0921 0.1631 0.1700 89%

1 0.0995 0.1645 0.1730 88%

1 0.1155 0.1651 0.1639 90%
1 0.1178 0.1647 0.1654 88%

100 -1 0.0268 0.1699 0.1618 96%
1 0.0166 0.1708 0.1752 95%

1 0.0241 0.1731 0.1760 95%
1 0.0205 0.1727 0.1768 93%

From Table 3.2, in the output of the PH model column, it can be seen that as the

frailty parameter gets larger, the bias of the estimates gets smaller. This is because the

distribution of the frailty random variable has the expectation 1 and the variance τ−1.

As τ increases, the variance goes down and the correlation between the failure time

and the informative censoring time becomes weaker. When τ approaches infinity the

distribution degenerates at 1, leading to no correlation between the failure time and

the informative censoring time. Besides, the Gamma-frailty PH model has a explicit

criteria to quantify the statistical association called Kendall’s τ, τ = (1 + τ)−1.

Consequentially, for a large value of τ , the PH model should be very close to the

Gamma-frailty PH model. In Table 3.3, other two simulations were made with larger

values of τ , τ = 10 and τ = 100, to demonstrate this situation. The true regression

parameters were chosen to be {−1, 1}. The true model was the Gamma-frailty PH

model but the PH model was fitted to the data. The output is in Table 3.3. When

τ = 10, comparing to the output of the PH model in Table 3.2, the bias of the

estimates decreases from around 50% to around 10% and the empirical 95% Wald
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confidence interval coverage probabilities increase from around 10% to around 90%.

Furthermore, as τ = 100, the PH model performs as well as the proposed method.

3.7 Real Data Application

All three methods were applied to two real data sets from the NTP, tr − 486 and

tr− 467.

3.7.1 tr− 467

In the manufacture of neoprene, chloroprene, the 2-chloro analogue of 1,3-butadiene,

a potent, multi-species, multi-organ carcinogen, is only used but with high production

and not much information about its carcinogenic potential (from the report of NTP).

The NTP, an inter-agency program whose mission is to evaluate agents of public

health concern by developing and applying tools of modern toxicology and molecular

biology (from NTP website), performed studies about toxicology and carcinogens of

chloroprene and provided a report in September 1998. In the 2-years mice study,

groups of 50 male and 50 female mice were exposed to chloroprene at concentrations

of control (0 ppm), low dose (12.8ppm), medium dose (32ppm), or high dose (80

ppm) by inhalation, 6 hours per day, 5 days per week, for 2 years. The mice were

removed from the study because of accidentally kill, natural death, terminal sacrifice

or moribund sacrifice after certain amount of days to be observed for whether Alveo-

lar/Bronchiolar Adenoma was in their organs. it is natural to consider that given the

level of concentration, natural death, accidentally kill and terminal sacrifice were not

related to the onset time of Alveolar/Bronchiolar Adenoma in mice’s organs while

moribund sacrifice was. Hence accidentally kill, natural death and terminal sacrifice

are considered as non-informative censoring while moribund sacrifice is considered as

as informative censoring. In this analysis, we focused on whether chloroprene was

associated with the onset time of Alveolar/Bronchiolar Adenoma in mice’s lungs.
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Additionally, the association between chloroprene and the informative censoring time

was another interesting aspect to study. The concentration levels of chloroprene were

treated as factors because it was not tested continuously.

From the output in Table 3.4, there are several things worth to be noticed. Firstly,

all three concentration levels of chloroprene had significant effects on the onset time

of Alveolar/Bronchiolar Adenoma in mice’s lungs. Secondly, for the same concentra-

tion level of chloroprene, gender did not have a significant effect on the onset time of

Alveolar/Bronchiolar Adenoma in mice’s lungs but it did on the mice’s moribundity.

It indicates that if both male and female mice had Alveolar/Bronchiolar Adenoma

in their lungs, female mice had higher probability to be moribund than male mice.

Thirdly, all of the methods provided very close estimates. This is because the corre-

lation between the failure time and the informative censoring time was weak due to

large value of τ . This real data application shows that the proposed method works

as good as the other two methods when the correlation between failure time and the

informative censoring time is weak.

Table 3.4: tr−467 data analysis: The summary includes the estimated regression param-
eters (Est), the estimated standard error (SE) and P-value. The estimated gamma frailty
parameter τ is 13.856 with estimated standard error 24.429.

Proposed Method PH Model Marginal GORH

β̂T β̂C β̂T β̂T

Est SE P-value Est SE P-value Est SE P-value Est SE P-value
Low 1.551 0.243 <0.01 0.664 0.165 <0.01 1.509 0.182 <0.01 1.844 0.260 <0.01
Medium 2.177 0.179 <0.01 1.718 0.115 <0.01 2.071 0.117 <0.01 2.647 0.265 <0.01
High 2.270 0.186 <0.01 1.889 0.103 <0.01 2.168 0.133 <0.01 2.775 0.260 <0.01
Gender -0.192 0.183 0.148 -0.827 0.151 <0.01 -0.125 0.175 0.237 0.033 0.270 0.451

3.7.2 tr− 486

Isoprene was evaluated for toxicity in this study because its structure is similar to

1,3 -butadiene and a large amount of production with potential exposure to human
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in this study. This analysis focused whether Isoprene was associated with the onset

time of Leukemia Mononuclear in livers of female rats after a two-year period study

with four different exposure levels, control (0 ppm), low dose (220 ppm), medium

dose (700 ppm) , high dose (7000 ppm).

Table 3.5: tr − 486 data analysis: The summary includes the estimated regression pa-
rameters (Est), the estimated standard error (SE) and P-value. The estimated τ , gamma
frailty parameter, is 0.572 with standard error 0.382.

Proposed Method PH Model Marginal GORH

β̂T β̂C β̂T β̂T

Est SE P-value Est SE P-value Est SE P-value Est SE P-value
Low -0.022 0.575 0.515 -0.242 0.331 <0.01 0.070 0.382 0.427 0.123 0.159 0.439
Medium 0.744 0.466 0.055 0.164 0.284 <0.01 0.529 0.337 0.058 0.770 0.137 <0.01
High 0.462 0.301 0.063 0.604 0.253 <0.01 0.337 0.201 0.017 0.496 0.205 0.016

In Table 3.5, the results of all methods indicate that the low dose (220 ppm) ex-

posure level of Isoprene did not have significant effects on the onset time of Leukemia

Mononuclear in female rats’ livers. But when the exposure level increased to medium

dose (700 ppm) or high dose (7000 ppm), the effect became significant. Although

all of the methods suggested the same trend, the proposed method and the GORH

model provided higher estimates of the regression parameters than the PH model.

Therefore, if the correlation between the informative censoring time and the failure

time was ignored (in the PH model), then the estimated effect might be lower than

the truth.

3.7.3 Data application summary

In these two data applications, the proposed method provided similar estimates of

regression parameters as the other two methods in tr−467 study but gave different

ones in tr−486 study. That is because the correlation between the failure time and

the informative censoring time was strong in tr− 486 study but weak in tr− 467
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study, which can be seen from the gamma frailty parameter estimates of these two

data sets with the proposed method. Therefore, when the failure time and the in-

formative censoring time are independent or the correlation is weak given covariates,

the proposed method can provide almost the same parameter estimates as the other

methods. When the failure time and the informative censoring time are not inde-

pendent given covariates, it can capture the correlation and make better estimations.

Moreover, the proposed method also provides the estimates of informative censored

parameters, which shows the relation between the covariates and the informative

censoring time.

3.8 Discussion

In previous literature, for the analysis of current status data, either all the censored

observations are considered to be non-informative or the developed methods involve

approximations. This chapter develops a new method to analyze the current status

data with informative censoring under the Gamma-frailty PH model. The proposed

method is efficient, accurate and easy to apply.
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Chapter 4

Statistical Analysis of System Reliability for

Current Status Data with the PH Model

4.1 Introduction

In NTP studies, the data obtained are current status data. The analysis for current

status data in Chapter 3 focused on whether an experimented substance was harmful

to one specific organ of a lab mouse, such as a liver or a lung. However, the mission

of the NTP is to evaluate whether a substance is harmful to a lab mouse, not just to

one specific organ. One can consider that as long as a substance is harmful to one

organ of a lab mouse, then it is harmful to the mouse. In this situation, a lab mouse

can be considered as a system, where its organs are components of the system. As

long as one of the components fails, the system fails. The analysis needs to focus on

the reliability of the system.

To perform statistical analysis of system reliability, one way is to estimate the

survival function of a system. The survival function of a system can be estimated by

using system data or component data. One can fit the PH model to system data to

estimate the system survival function directly or fit the PH model to component data

to estimate the system survival function under certain assumptions. The advantage

of the first strategy is that it needs less data, less assumptions and fewer estimations.

The advantage of the second strategy is that the analysis uses more information which

may increase the accuracy of estimations, and it can provide more information about

how each component effects the reliability of a system. In a system, some of the
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components may be more important to the system than the others. For example, in

NTP studies, a tumor in the heart of a lab mouse is much more lethal than a tumor

in the liver of a lab mouse. Therefore, to analyze the reliability of a system through

each component can help us understand the reliability of a system more deeply. In

this chapter, several methods are developed to estimate the survival function of a

system with system data and component data. The methods are compared with each

other and the best strategy for analyzing system reliability is discussed.

The structure of this chapter is as follows. In Section 4.2, the notations are

introduced. In Section 4.3, the PH model is fitted to system data and a method

is developed by McMahan et al. (2013) is used to estimate the survival function of

the system. In Section 4.4, the PH model is fitted to the data of each component.

Under the assumption that all components of a system are independent from each

other, the survival function of a system is estimated. In Section 4.5, all components

of a system are assumed to be correlated with each other. The Gamma-frailty PH

model is fitted to the data of all components. A method is developed to estimate

the survival function of the system. In Section 4.6, several simulations are made to

evaluate the performance of the three methods. In Section 4.7, these methods are

applied to a real data set form the NTP. Since most data sets from the NTP are in

the same structure, then these methods can be widely applied to them.

4.2 Notations and Assumptions

Let T and C denote the failure time and the censoring time of a system. Let δ

be an indicator of left (right) censored observation, i.e., δ = I(T < C). Assume

that the system consists of k components. For the jth component of the system, let

Tj, Cj and δj denote the failure time, the censoring time and the indicator of left

(right) censored observation, i.e., δj = I(Tj < Cj), for j = 1, 2, ..., k. Let S(t|x) be

the survival function of a system given the covariate x and Sj(t|x) be the survival
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function of each component given the covariate x. Let Λ(t|x) be the cumulative

hazard function of a system given the covariate x and Λj(t|x) be the cumulative

hazard function of each component given the covariate x. Let Λ0(t|x) be the baseline

cumulative hazard function of a system given the covariate x and Λ0j(t|x) be the

baseline cumulative hazard function of each component given the covariate x.

We consider the following situations. Firstly, all the components are censored

at the same time so that C1 = C2 = ... = Ck = C. It is because in NTP stud-

ies, once a mouse was censored then all its organs were censored at the same time.

More generally, if a system fails down, then one will check all its components for

the problems. Secondly, as long as one component fails, the system fails. That is,

T = min {T1, T2, ..., Tk}. It is because in NTP studies, it is reasonable to think that

as long as a substance is harmful to one organ of a mouse, the substance is harmful

to the mouse.

4.3 The PH Model with System Data

Under the notations in Section 4.2, what can be observed for system data in a sample

with n observations is {(ci, δi,xi), i = 1, ..., n} . These are independent realizations of

{(C, δ,X)} .

4.3.1 The observed likelihood function, the augmented likelihood

function and the complete likelihood function

Under the PH model, the survival function of the system failure time T can be written

as

S(t|x) = exp {−Λ0(t) exp(x′β)}.

49



With the observed data, the observed likelihood function can be written as

Lobs =
n∏
i=1
{1− S(ci)}δi S(ci)1−δi

=
n∏
i=1

[1− exp {−Λ0(ci) exp(x′iβ)}]δi exp {−Λ0(ci) exp(x′iβ)}1−δi .

The cumulative baseline function Λ0(·) is modelled with I-splines as

Λ0(·) =
m∑
l=1

γlIl(·),

where γl’s are non-negative coefficients and Il(·)’s are basis functions. With the

splines, the observed likelihood function can be further written as

Lobs =
n∏
i=1

[
1− exp

{
−

m∑
l=1

γlIl(ci) exp(x′iβ)
}]δi

exp
{
−

m∑
l=1

γlIl(ci) exp(x′iβ)
}1−δi

.

The parameters in the observed likelihood function are coefficients of the spline func-

tions γl’s and the regression parameter vector β. Let θ = (γ1, γ2, ..., γm,β). An EM

algorithm, first developed by McMahan et al. (2013), is used find the MLE of the

parameters.

4.3.2 Data Augmentation and the EM Algorithm

The data argumentation starts with 2-stage latent variables. At stage 1, Poisson

latent variables Zi’s are introduced as the following,

Zi ∼ Poisson

{
m∑
l=1

γlIl(ci) exp(x′iβ)
}
, δi = 1(Zi>0).

With latent variables Zi’s, the augmented likelihood function L2(θ) can be expressed

as

L1(θ) =
n∏
i=1

δ
1(Zi>0)
i (1− δi)1(Zi=0)PZi(Zi),

where PX(·) denotes probability mass function for the random variable X. By inte-

grating Zi’s out of L1(θ), one can obtain Lobs(θ). At stage 2, for each i, the latent
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variable Zi is further decomposed as a summation of m independent Poisson random

variables, Zi = ∑m
l=1 Zil, where the mean of Zil is γlIl(ci) exp(x′iβ), for l = 1, 2, ...,m.

Zil ∼ Poisson {γlIl(ci) exp(x′iβ)} , l = 1, 2, ...,m,

with the restriction ∑m
l=1 Zil = Zi.

With latent variables Zil’s, the complete likelihood associated with stage 2 latent

variables is given by,

Lcom(θ) =
n∏
i=1

δ
1(
∑m

l=1 Zil>0)

i (1− δi)
1(
∑m

l=1 Zil=0)
m∏
l=1

PZil(Zil).

In the complete likelihood function Lcom(θ), the latent variables Zi’s, Zil’s are treated

as missing data. It can be seen that by integrating out Zij’s in Lcom(θ), one can get

the augmented likelihood function L1(θ). Then, by integrating out Zi’s in L1(θ), one

can obtain the observed likelihood function Lobs(θ). Consequently, Lcom(θ) is viewed

as the complete data likelihood with Zi’s and Zil’s missing.

4.3.3 The EM Algorithm

The derivation of the EM algorithm starts with E-step. In E-step, one needs to take

the expectation of Lcom(θ) with respect to all the latent variables Zi’s, Zil’s given the

observed data and the current parameter θ(d) = (γ(d)
1 , γ

(d)
2 , ..., γ(d)

m ,β(d)), which yields

the Q function.

log [Lcom(θ)] =
n∑
i=1

m∑
l=1

log exp (−λil)λZilil

Zil!
=

n∑
i=1

m∑
l=1

[(−λil) + Zil log λil − logZil!] ,

where λil = γlIl(ci) exp(x′iβ), for i = 1, 2, ...n, l = 1, 2, ...,m.

Q(θ,θ(d)) = E[log {Lcom(θ)} |x,θ(d)] =
n∑
i=1

q∑
l=1

[−λil + E(Zil) log λil − E(logZil!)]

=
n∑
i=1

m∑
l=1

[−γlIl(ci) exp(x′iβ) + E(Zil) {log γl + x′iβ}+ log {Il(ci)} − E(logZi!)] ,

where E(Zi) = δi
∑m

l=1 γ
(d)
l
Il(ci) exp(x′

iβ
(d))

1−exp
{
−
∑m

l=1 γ
(d)
l
Il(ci) exp(x′

i
β(d))

} , E(Zil) = γ
(d)
l
Il(ci)E(Zi)∑m

l′=1 γ
(d)
l′ Il′ (ci)

. Note that all

expectations of the latent variables’ are conditional expectations given the observed

51



data and current parameters. They can be obtain with the augmented function and

complete likelihood function.

In the next step, M-step, one needs solve for the parameter θ by maximizing

Q(θ,θ(d)). Firstly, take partial derivatives of Q(θ,θ(d)) with respect to θ.

∂Q(θ,θ(d))
∂β

=
n∑
i=1

m∑
l=1

[−γlIl(ci) exp(x′iβ) + E(Zil)]xi,

∂Q(θ,θ(d))
∂γl

=
n∑
i=1

[
−Il(ci) exp(x′iβ) + E(Zil)γ−1

l

]
,

for l = 1, 2, ...,m. Then, set these partial derivatives to zeros. For the 2nd equation,

γl’s can be solved as a function of β in close forms as follows,

γl =
∑n
i=1E(Zil)∑n

i=1 Il(ti) exp(x′iβ) , for l = 1, 2, ...,m.

Thirdly, plug the solution of γl’s back into the 1st equation so that the 1st equation

only has the parameter β. Numerical methods can be used to solve for β. Lastly, by

plugging the solution of β into the equation above, γl’s can be obtained.

With the results from E-step and M-step, the EM algorithm can be summarized

as follows,

Step 1. Set d = 0 and initial values of θ(d).

Step 2. Obtain β(d+1) by solving the following equations,
n∑
i=1

[
−

m∑
l=1

γ
(d)
l (β)Il(ci) exp(x′iβj) + E(Zij)

]
xi = 0,

where

γ
(d)
l =

∑n
i=1E(Zijl)∑n

i=1 Il(ci) exp(x′iβ) .

Step 3. Obtain

γ
(d+1)
l = γ

(d)
l (β(d+1)).
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Step 4. Repeat steps 2- 3 until convergence.

The solutions obtained by the developed EM algorithm, denoted as θ̂, is the MLE

of θ. Therefore, the estimated survival function of the system Ŝsys(t|x) is as follows,

Ŝsys(t|x) = exp
{
−

m∑
l=1

γ̂lIl(t) exp(x′β̂)
}
.

4.4 The PH Models with Component Data

Under the notations in Section 4.2, what can be observed for component data in a

sample with n observations is {(ci, δij,xi), j = 1, 2, ...k, i = 1, ..., n} . These are inde-

pendent realizations of {(C, δj,X), j = 1, 2, ...k} . With an assumption that all com-

ponents of a system are independent from each other, the survival function of the

system failure time T can be written as

S(t|x) =
k∏
j=1

Sj(t|x).

Under the PH model, the survival function of each component time Tj can be ex-

pressed as

Sj(t|x) = exp {−Λ0j(t) exp(x′βj)}, for j = 1, 2, ..., k.

The survival function of the system can be expressed as

S(t|x) = exp

−
k∑
j=1

Λ0j(t) exp(x′βj)

,
where βj’s are the regression parameters for each component. The baseline cumulative

hazard function Λ0j(·) is modelled by I-splines for j = 1, 2, ..., k as follows,

Λ0j(·) =
m∑
l=1

γjlIjl(·),
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where γjl’s are non-negative parameters and Ijl(·)’s are basis functions. Then the

observed likelihood function can be written as

Lobs =
n∏
i=1

k∏
j=1
{1− Sj(ci|x)}δij Sj(ci|x)1−δij

=
k∏
j=1
Ljobs,

where Ljobs = ∏n
i=1 {1− Sj(ci|x)}δij Sj(ci|x)1−δij , for j = 1, 2, ..., k. Since all compo-

nents are independent from each other, then maximizing Lobs is the same as maximiz-

ing all Ljobs’s separately. It can be seen that each Ljobs is the same as the observed like-

lihood function of the PH model with system data. Therefore same method, the EM

algorithm, can be used to find the MLE of the parameter θ = (β′,γ ′1,γ ′2, ...,γ ′k), where

β = (β′1,β′2, ...,β′k), γj = (γ ′j1,γ ′j2, ...,γ ′jm) for j = 1, 2, ..., k. The current parame-

ter in the EM algorithm is denoted as θ(d), where θ(d) = (β(d)′,γ
(d)
1
′,γ

(d)
2
′, ...,γ

(d)
k
′),

β(d) = (β(d)
1
′,β

(d)
2
′, ...,β

(d)
k
′), γ(d)

j = (γ(d)
j1
′,γ

(d)
j2
′, ...,γ

(d)
jm
′) for j = 1, 2, ..., k.

4.4.1 A summary of the EM algorithm

The EM algorithm can be summarized as follows,

Step 1. Set d = 0 and initial values of θ(d).

Step 2. Obtain β(d+1)
j by solving the following equations,

n∑
i=1

[
−

p∑
l=1

γ
(d)
jl (βj)Ijl(ti) exp(x′iβj) + E(Zij)

]
xi = 0, for j = 1, 2, ..., k,

where

γ
(d)
jl =

∑n
i=1 E(Zijl)∑n

i=1 Ijl(ti) exp(x′iβj)
.

Step 3. Obtain

γ
(d+1)
jl = γ

(d)
jl (β(d+1)

j ), for j = 1, 2, ..., k, l = 1, 2, ...,m.
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Step 4. Repeat steps 2- 3 until convergence.

The solutions obtained by the developed EM algorithm, denoted as θ̂, is the MLE

of θ. Therefore, the estimated survival function of the system Ŝind(t|x) is as follows,

Ŝind(t|x) = exp

−
k∑
j=1

m∑
l=1

γ̂jlIjl(t) exp(x′β̂j)

.
4.5 The Gamma-frailty PH Model with Component Data

Under the notations Section 4.2, what can be observed for component data in a sample

with n observations is {(ci, δij,xi), j = 1, 2, ...k, i = 1, ..., n} . These are independent

realizations of {(C, δj,X), j = 1, 2, ...k} . Under the Gamma-frailty PH model, the

survival function of the failure time for the j the component Tj given the frailty term

η and the covariate x can be written as

Sj(t|x, η) = exp {−ηΛ0j(t) exp(x′βj)} , for j = 1, 2, ..., k,

where η ∼ Ga(τ, τ), τ > 0. The cumulative baseline function Λ0(·) is modelled with

I-splines as follows,

Λ0j(·) =
m∑
l=1

γjlIjl(·),

where γjl’s are non-negative coefficients and Ijl(·)’s are basis functions. The survival

function of the system failure time T can be written as

S(t|x) = P (T > t)

= P (T1 > t, T2 > t, ..., Tk > t|x)

=
∫
P (T1 > t, T2 > t, ..., Tk > t|x, η)g(η|τ, τ)dη

=
∫
P (T1 > t|x, η)P (T2 > t|x, η)...P (Tk > t|x, η)g(η|τ, τ)dη

=
∫
g(η|τ, τ)

k∏
j=1

Sj(t|x, η)dη.

55



By integrating η out, the survival function of the system can be obtained as follows,

S(t|x) =
∫ τ τ

Γ(τ)η
τ−1e−τη

k∏
j=1

exp {−ηΛ0j(t) exp(x′βj)} dη

=

τ−1
k∑
j=1

m∑
l=1

γjlIjl(t) exp(x′βj) + 1


−τ

.

The parameters are τ,β1,β2, ...,βk, γ11, γ12, ..., γkm.

4.5.1 The Conditional Likelihood and the Observed Likelihood

For the ith observation, the conditional likelihood given ηi is as follows,

Li(γ,β, τ |ηi) =
∏
j∈LCi

Sj(ci|xi, ηi)
∏
j∈Li
{1− Sj(ci|xi, ηi)}

= exp(−ηi
∑
j∈LCi

Hij)
∏
j∈Li
{1− Sj(ci|xi, ηi)} ,

where Hij = Λ0j(ci) exp(x′iβj), Li = {j ∈ {1, 2, ..., k} : δij = 1}, LCi is the comple-

ment of Li and the complete set is {1, 2, ..., k}.

To write the conditional likelihood in a general form, let B(Li) be the set con-

taining all subsets of Li and Aip be the pth element in B(Li), for p = 1, 2, ..., 2di ,

where di is the number of elements in Li, i.e, B(Li) = {Ai1, Ai2, ..., Ai2di}. Then, the

conditional likelihood function can be written as

Li(γ,β, τ |ηi) =
2di∑
p=1

(−1)|Li|−|Aip| exp(−ηi
∑
j∈ACip

Hij),

where ACip ’s are the complement sets of Aip’s with the complete set being {1, 2, ..., k}.

If ACip = ∅, define ∑j∈ACip
Hij = 0.

For example, assume that there is a system with 5 components. The ith obser-

vation is {ci,xi, δi1 = 1, δi2 = 1, δi3 = 1, δi4 = 0, δi5 = 0}. For this observation, Li =

{1, 2, 3}, LCi = {4, 5}, di = 3 and 2di = 8. The set, B(Li), containing all subsets of

Li can be presented as follows,

B(Li) = B({1, 2, 3}) = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} .
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The elements in B(Li) are as follows,

Ai1 = ∅, Ai2 = {1} , Ai3 = {2} , Ai4 = {3} , Ai5 = {1, 2} ,

Ai6 = {1, 3} , Ai7 = {2, 3} , Ai8 = {1, 2, 3} .

Since the complete set is {1, 2, 3, 4, 5}, then the complement sets of Aip’s are as follows,

ACi1 = {1, 2, 3, 4, 5} , ACi2 = {2, 3, 4, 5} , ACi3 = {1, 3, 4, 5} , ACi4 = {1, 2, 4, 5} ,

ACi5 = {3, 4, 5} , ACi6 = {2, 4, 5} , ACi7 = {1, 4, 5} , ACi8 = {4, 5} .

Additionally,

|Li| − |Ai1| = 3, |Li| − |Ai2| = 2, |Li| − |Ai3| = 2, |Li| − |Ai4| = 2,

|Li| − |Ai5| = 1, |Li| − |Ai6| = 1, |Li| − |Ai7| = 1, |Li| − |Ai8| = 0.

Then, the conditionally likelihood for this observation can be written as

Li(γ,β, τ |ηi) =
2di∑
p=1

(−1)|Li|−|Aip| exp(−ηi
∑
j∈ACip

Hij)

= (−1)3 exp(−ηi
∑

j∈{1,2,3,4,5}
Hij) + (−1)2 exp(−ηi

∑
j∈{2,3,4,5}

Hij)+

(−1)2 exp(−ηi
∑

j∈{1,3,4,5}
Hij) + (−1)2 exp(−ηi

∑
j∈{1,2,4,5}

Hij)+

(−1)1 exp(−ηi
∑

j∈{3,4,5}
Hij) + (−1)1 exp(−ηi

∑
j∈{2,4,5}

Hij)+

(−1)1 exp(−ηi
∑

j∈{1,4,5}
Hij) + (−1)0 exp(−ηi

∑
j∈{4,5}

Hij)

= − exp(−ηi
∑

j∈{1,2,3,4,5}
Hij) + exp(−ηi

∑
j∈{2,3,4,5}

Hij)+

exp(−ηi
∑

j∈{1,3,4,5}
Hij) + exp(−ηi

∑
j∈{1,2,4,5}

Hij)−

exp(−ηi
∑

j∈{3,4,5}
Hij)− exp(−ηi

∑
j∈{2,4,5}

Hij)−

exp(−ηi
∑

j∈{1,4,5}
Hij) + exp(−ηi

∑
j∈{4,5}

Hij),
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where Hij = Λ0j(ci) exp(x′iβj). The distribution of ηi is g(ηi|τ) = ττ

Γ(τ)η
τ−1
i e−τηi .

Therefore, the observed likelihood for the ith observation can be written as

Li(γ,β, τ) =
∫ τ τ

Γ(τ)η
τ−1
i e−τηi

2di∑
p=1

(−1)|Li|−|Aip| exp(−ηi
∑
j∈ACip

Hij)dηi

=
2di∑
p=1

(−1)|Li|−|Aip|
∫ τ τ

Γ(τ)η
τ−1
i exp

−(τ +
∑
j∈ACip

Hij)ηi

 dηi
=

2di∑
p=1

(−1)|Li|−|Aip|τ τ
(τ +∑

j∈ACip
Hij)τ

=
2di∑
p=1

(−1)|Li|−|Aip|(1 + τ−1 ∑
j∈ACip

Hij)−τ .

Hence the observed likelihood function for all observations can be written as

Lobs(γ,β, τ) =
n∏
i=1
Li(γ,β, τ)

=
n∏
i=1


2di∑
p=1

(−1)|Li|−|Aip|(1 + τ−1 ∑
j∈ACip

Hij)−τ
 .

Since the observed likelihood function is in a complex form, an EM algorithm

is developed to find the MLE of the parameter θ, where θ = (τ,β′,γ ′), β =

(β1,β2, ...,βk)′, γ = (γ11, γ12, ..., γkm)′. The derivation of the algorithm is based

on the following data augmentation.

4.5.2 Data Augmentation for the EM Algorithm

Since the gamma frailty term ηi’s can not be observed, then they are considered as

missing data. The augmented likelihood function L1(θ) with the latent variables ηi’s

can be rewritten as

L1(θ) =
n∏
i=1

g(ηi|τ, τ)
k∏
j=1
{1− Sj(ci|x)}δij Sj(ci|x)1−δijdηi

=
n∏
i=1

g(ηi|τ, τ)
k∏
j=1

[1− exp {−ηiΛ0j(ci) exp(x′βj)}]δij

[exp {−ηiΛ0j(ci) exp(x′βj)}]1−δij ,
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where g(ηi|τ, τ) is the pdf of the gamma distribution with both shape and rate pa-

rameters being τ . By integrating out ηi’s from L1(θ), one can obtain the observed

likelihood function Lobs(θ). To maximize L1(θ), due to the previous works by Cai

et al. (2011) and McMahan et al. (2013), 2-stage Poisson random variables can be

introduced to facilitate the computation. At stage 1, Poisson latent variables Zij’s

are introduced as the following,

Zij ∼ Poisson {Λ0j(ci) exp(x′βj)ηi} , δi = 1(Zij>0).

With the latent variables Zij’s, the augmented likelihood functions can be written as

L2(θ) =
n∏
i=1

g(ηi|τ, τ)
k∏
j=1

δ
1(Zij>0)
i (1− δi)1(Zij=0)PZij(Zij),

where PX(·) denotes probability mass function for the random variable X. By inte-

grating Zij’s out of L2(θ), one can obtain L1(θ). At stage 2, for each latent variable

Zij, it can be further decomposed as a summation of m independent Poisson ran-

dom variables, Zij = ∑m
l=1 Zijl, where the mean of Zijl is γjlIjl(ci) exp(x′βj)ηi, for

l = 1, 2, ...,m.

Zijl ∼ Poisson {γjlIjl(ci) exp(x′βj)ηi} , l = 1, 2, ...,m,

with restriction Zij = ∑m
l=1 Zijl. With the latent variables Zijl’s, the complete likeli-

hood function can be written as

Lcom(θ) =
n∏
i=1

g(ηi|τ, τ)
k∏
j=1

δ
1(Zij>0)
i (1− δi)1(Zij=0)1(

∑m

l=1 Zijl=Zij)

m∏
l=1

PZijl(Zijl).

By integrating Zijl’s out of Lcom(θ), one can obtain L2(θ). Then, integrating Zij’s

out of L2(θ), one can obtain L1(θ). Then, integrating ηi’s out of L1(θ), one can

obtain the observed likelihood function Lobs(θ). Consequently, Lcom(θ) is viewed as

the complete likelihood function and ηi’s, Zij’s, Zijl’s are missing data.
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4.5.3 The EM Algorithm

It follows the E-step of the EM algorithm. The E-step is to find the Q(θ,θ(d))

function, the expectation of the logarithm of the complete likelihood function with

respect to all the latent variables given the covariate X and the current parameters

θ(d).

Q(θ,θ(d)) = E[log {Lcom(θ)} |x,θ(d)] = H1(θ,θ(d)) +H2(θ,θ(d)) +H3(θ(d)),

where

H1(θ,θ(d)) =
n∑
i=1

[− log {Γ(τ)}+ τ log {τ}+ (τ − 1)E(log ηi)− τE(ηi)]

H2(θ,θ(d)) =
n∑
i=1

k∑
j=1

m∑
l=1

[−E(ηi) exp(x′iβj)γjlIjl(ci) + E(Zijl)x′iβj + E(Zijl) log (γjl)] .

and H3(θ(d)) is free of θ.

In the next step, M-step, one needs solve for the parameter θ by maximizing

Q(θ,θ(d)). Since H1(θ,θ(d)) has only one the parameter τ and τ only exists in

H1(θ,θ(d)), it becomes a univariate maximization problem with respect to τ . The

maximization problem can be solved by using constrained maximization routines

(optim in R).

To maximize H2(θ,θ(d)) with respect to βj’s, γjl’s , the following partial deriva-

tives are given,

∂Q(θ,θ(d))
∂βj

=
n∑
i=1

[−E(ηi)Λ0j(ci) exp(x′iβj) + E(Zij)]x′i, (1)

∂Q(θ,θ(d))
∂γjl

=
n∑
i=1

[
−E(ηi)Ijl(ci) exp(x′iβj) + E(Zijl)γ−1

jl

]
. (2)

Set these partial derivatives to zeros and solve (2) for γjl,

γjl =
∑n
i=1E(Zijl)∑n

i=1E(ηi)Ijl(ci) exp(x′iβj)
, (3)
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for j = 1, 2, ..., k and l = 1, 2, ...,m. Then plug the solution of γjl’s into (1) and solve

the following equation numerically for βj’s,

n∑
i=1

[
−

p∑
l=1

γjl(βj)E(ηi)Ijl(ci) exp(x′iβj) + E(Zij)
]
x′i = 0.

Finally, plug the solution of βj’s to (3) to calculate γjl’s. The solution of θ can be

obtained.

Note that all the expectations of the latent variables are conditional expectation

given data and the current parameter θ(d). Using the augmented likelihood function

and the complete likelihood function the expectations can be obtain as the following,

E(Zij|x) = δijHij

∑2di−1

q=1 (−1)|Li|−|Biq |−1(1 + τ−1∑
r∈BCiq

Hir)−τ−1∑2di
p=1(−1)|Li|−|Aip|(1 + τ−1∑

r∈ACip
Hir)−τ

,

Aip is the pth element of the set containing all subsets of Li, ACip is the complement of

Aip with the complete set being {1, 2, .., k}, for p = 1, 2, ..., 2di and di is the number

of elements in Li. Biq is the qth element of the set containing all subsets of Li\ {j},

BC
iq is the complement of Biq with the complete set being {1, 2, .., k} \ {j}, for q =

1, 2, ..., 2di−1.

E(Zijl|x) = γjlIjl(ci)
Λ0j(ci)

E(Zij|x),

for j = 1, 2, ..., k and l = 1, 2, ...,m.

E(ηi|x) =
∑2di
p=1(−1)|Li|−|Aip|(1 + τ−1∑

j∈ACip
Hij)−τ−1∑2di

p=1(−1)|Li|−|Aip|(1 + τ−1∑
j∈ACip

Hij)−τ
,

E(log ηi|x) =
∑2di
p=1(−1)|Li|−|Aip|(1 + τ−1∑

j∈ACip
Hij)−τ

[
ψ(τ)− log(τ +∑

j∈ACip
Hij)

]
∑2di
p=1(−1)|Li|−|Aip|(1 + τ−1∑

j∈ACip
Hij)−τ

,

where ψ(τ) = Γ′(τ)
Γ(τ) .
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4.5.4 A summary of the EM algorithm

With all conditional expectations of the latent variables and the results from E-step

and M-step, the EM algorithm can be summarized as follows,

Step 1. Set d = 0 and initial values of θ(d).

Step 2. Obtain τ (d+1) by maximizing,

−n log {Γ(τ)}+ nτ log(τ) + τ
n∑
i=1

[E(log ηi)− E(ηi)].

Step 3. Obtain β(d+1)
j by solving the following equations,

n∑
i=1

[
−

p∑
l=1

γ
(d)
jl (βj)Ijl(ci) exp(x′iβj) + E(Zij)

]
xi = 0, for j = 1, 2, ..., k,

where

γ
(d)
jl (βj) =

∑n
i=1E(Zijl)∑n

i=1 Ijl(ci) exp(x′iβj)
.

Step 4. Obtain

γ
(d+1)
jl = γ

(d)
jl (β(d+1)

j ), for j = 1, 2, ..., k, l = 1, 2, ...,m.

Step 5. Repeat step 2- 4 until convergence.

The solutions obtained by the developed EM algorithm, denoted as θ̂, is the MLE

of θ. Therefore, the estimated survival function of the system Ŝdep(t|x) is as follows,

Ŝdep(t|x) =

τ̂−1
k∑
j=1

m∑
l=1

γ̂jlIjl(t) exp(x′β̂j) + 1


−τ̂

.
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This section essentially develops a method for fitting the Gamma-frailty PH model

to multivariate current status data. In previous literature, there was a method devel-

oped by Wang et al. (2015) fitting the Gamma-frailty PH model to bivariate current

status data, which could only analyze bivariate current status data. Both methods

used the EM algorithm to find the MLE of the parameters in the model. For the EM

algorithm method developed by Wang et al. (2015), when the dimension of data is

higher than two, the conditional expectations in the EM algorithm becomes difficult

to calculate due to its complex form. The method developed in this section finds a

way to write the conditional expectations in a general form so that one can still use

the EM algorithm to find the MLE of the parameters in the model in multidimen-

sional cases.

4.6 Simulation Study

A series of simulation studies were conducted to evaluate the three performance of

the methods under two scenarios. In Scenario I, the failure times of all components

in a system were considered to be independent from each other. In Scenario II, all

components of a system were considered to be correlated with each other. For both

scenarios, all three methods were applied to simulated data to estimate the survival

function of a system.

4.6.1 Scenario I

The simulation is based on the following true distributions of the component failure

times Tj’s in a system and Tj’s are independent from each other,

FTj(t|x) = 1− exp {−Λ0j(t) exp(x1βj1 + x2βj2)} , for j = 1, 2, 3, 4,
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where x = (x1, x2)′, Λ01(t) = log(t + 1) + t1/2, Λ02(t) = log(t + 1) + t, Λ03(t) =

log(t+ 1) + t3/2, Λ04(t) = log(t+ 1) + t5/2, x1 ∼ Bernoulli(0.5) and x2 ∼ N(0, 0.52).

The sample size n was chosen to be 200 with 500 replications and β11 = β12 = 0.5,

β21 = β22 = 0.7, β31 = β32 = 1, β41 = β42 = 1 were considered. The inverse

CDF method was used to compute Tj’s by solving FTj(t|xi) = uj numerically, where

uj ∼ U(0, 1), for j = 1, 2, 3, 4. The censoring time C followed a truncated exponential

distribution with mean 0.1 and upper bound 2. The true distribution of the system

failure time T is min {Tj : j = 1, .., 4}.

For the plots of the estimated survival functions in Figure 4.1 and Figure 4.2, the

survival function of the system estimated by the independent PH model with com-

ponent data and the Gamma-frailty PH model with component data were very close

to each other so that they were plotted as one dotted line marked as ‘Component

models’. The survival function of the system estimated by the PH model with system

data was marked as ‘System model’. It can be seen that the survival functions esti-

mated by the PH model with system data were farther from the truth than other two

methods and had the largest MSE in all cases. Especially, when the covariates took

negative values. Therefore, the simulation study shows that in some cases, directly

fitting the PH model to system data may lead to biased estimation of the system

reliability function.

4.6.2 Scenario II

The simulation is based on the following true distributions of the component failure

times Tj’s in a system,

FTj(t|x, η) = 1− exp {−Λ0j(t) exp(x1βj1 + x2βj2)η} , for j = 1, 2, 3, 4,

where x = (x1, x2)′, Λ01(t) = log(t + 1) + t1/2, Λ02(t) = log(t + 1) + t, Λ03(t) =

log(t+ 1) + t3/2, Λ04(t) = log(t+ 1) + t5/2, x1 ∼ Bernoulli(0.5) and x2 ∼ N(0, 0.52).

The sample size n was chosen to be 250 with 500 replications and βj1 = 0.7,βj2 = 1
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Figure 4.1: The estimated survival functions for a system using the PH model with
system data (System model), the independent PH model with component data (Component
models) and the Gamma-frailty PH model with component data (Component models) with
the covariate (x1, x2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} in Scenario I.
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Figure 4.2: The estimated survival functions for a system using the PH model with
system data (System model), the independent PH model with component data (Component
models) and the Gamma-frailty PH model with component data (Component models) with
the covariate (x1, x2) ∈ {(−1, 0), (0,−1), (1,−1), (−1,−1)} in Scenario I.
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were considered, for j = 1, 2, 3, 4. The parameter of the frailty term τ was set to be

1. The inverse CDF method was used to compute Tj’s by solving FTj(t|xi, η) = uj

numerically, where uj ∼ U(0, 1), for j = 1, 2, 3, 4. The censoring time C followed

a truncated exponential distribution with mean 0.1 and upper bound 3. The true

distribution of the system failure time T is min {Tj : j = 1, 2, 3, 4}.

According to the plots of the estimated survival functions in Figure 4.3 and Fig-

ure 4.4, it can be seen that the independent PH model with component data had

the worst performance, thought it used all component data. Therefore, the indepen-

dent assumption had a great effect on the performance of this method. When the

assumption was violated, the method was worse than only using system data. Hence,

it is important to verify the independent assumption before this method is applied.

The PH model with system data performed better than the independent PH model

but it was still not satisfactory in most of the cases. The system survival function

estimated by the Gamma-frailty model with component data performed the best and

it was very close to the true model. In this scenario, the simulation study shows that

the independent assumption had a great effect on the performance of estimating the

system survival function using the independent PH model with component, but it did

not effect the performance of the Gamma-frailty PH model with component data.

Estimating the system survival function using the Gamma-frailty PH model with

component data had the best performance in both Scenario I and II, which was the

best choice among the three.

4.7 Real Data Application

The real data set is tr−467 from the NTP, the same data set used in Chapter 3 real

data application. The analysis of tr − 467 in Chapter 3 focused on whether there

was an association between chloroprene and the onset time of Alveolar/Bronchiolar

Adenoma in a mouse’s lung. In this Chapter, a lab mouse’s liver, pituitary gland
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Figure 4.3: The estimated survival functions for a system using the PH model with
system data (System model), the independent PH model with component data (Independent
model) and the Gamma-frailty PH model with component data (Dependent model) with
the covariate (x1, x2) ∈ {(−1, 0), (0,−1), (1,−1), (−1,−1)} in Scenario II.
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Figure 4.4: The estimated survival functions for a system using the PH model with
system data (System model), the independent PH model with component data (Independent
model) and the Gamma-frailty PH model with component data (Dependent model) with
the covariate (x1, x2) ∈ {(−1, 0), (0,−1), (1,−1), (−1,−1)} in Scenario II.
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Figure 4.5: Statistical analysis of system reliability of tr − 467: estimated survival
functions using the PH model with system data (System model), the independent PH
model with component data (Independent model) and the Gamma-frailty PH model with
component data (Dependent model) in four dose levels, control group, low dose, medium
dose, high dose.
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Figure 4.6: Statistical analysis of system reliability of tr− 467: estimated survival func-
tions using the PH model with system data (System model), the independent PH model
with component data (Independent model), the Gamma-frailty PH model with component
data (Dependent model) and Kaplan-Meier estimator with system data (Kaplan-Meier Es-
timator) in four dose levels, control group, low dose, medium dose, high dose.
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Table 4.1: Mean square error (MSE) of the estimated system survival functions with the
three methods in Scenario I and II.

Mean square error
Method (x1, x2) Scenario I Scenario II

System model (0, 0) 0.0066 0.0019
(1, 0) 0.0010 0.0036
(1, 1) 0.0131 0.0061
(-1, -1) 0.0196 0.0044

Independent component model (0, 0) 0.0052 0.0057
(1, 0) 0.0062 0.0045
(1, 1) 0.0127 0.0052
(-1, -1) 0.0013 0.0132

Dependent component model (0, 0) 0.0052 0.0015
(1, 0) 0.0062 0.0026
(1, 1) 0.0127 0.0047
(-1, -1) 0.0012 0.0003

(a) Control Group (b) Low Dose

(c) Medium Dose (d) High Dose

Figure 4.7: System data of tr− 467.

and lung were considered as a system. The analysis focuses on whether there was an

association between chloroprene and the minimum onset time of Alveolar/Bronchiolar

Adenoma in a mouse’s lung, Adenoma in a mouse’s pituitary gland, Hepatocellular

Carcinoma in a mouse’s liver and Hepatocellular Adenoma in a mouse’s liver.

Figure 4.5 provides the estimated system survival functions in four dose levels. It

can be seen that the system survival functions estimated by the three methods were

different for all four dose level groups. Especially, between 0 - 300 hundred days, the

system survival functions estimated by the Gamma-frailty model with component
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data were almost 1, which were much higher than the ones estimated by the other

two methods. From the real system data shown in Figure 4.7, it can be seen that

for all the observations in four groups, no tumors were observed within 300 days (no

left-censored observations within 300 days). The smallest left-censored observation

was 493 days for control group, 440 days for low dose group, 346 days for medium

dose group and 383 days for high dose group. Moreover, it is more reasonable to

consider that it will take a period of time to develop a tumor in a mouse. Therefore,

the system survival function estimated by the Gamma-frailty model with component

data is closest to the truth than the other two methods.

The analysis in this study sought for whether the system survival functions were

different among the four groups. In Figure 4.6, besides the three methods, the Kaplan-

Meier estimator was also applied to estimate the survival functions of the system using

system data for the four groups. The advantage of Kaplan-Meier estimator is that it is

a non-parametric estimator so that it is not limited to model structures. The Kaplan-

Meier estimator showed that there was no difference of the survival functions between

medium and high dose group, which agreed with the Gamma-frailty method, but the

PH model using system data suggested that there existed a difference. All models

suggested that there existed a difference of the survival functions among control, low

dose and medium dose group.

4.8 Discussion

From the angle of real application, firstly, three methods are developed to analyze

system reliability for current status data. All these methods can be widely applied to

NTP data. Secondly, in some cases, analyze system reliability for current status data

using system data may lead to biased estimation of the system reliability function.

In these cases, using component data to analyze system reliability can be a better

strategy. Thirdly, the method developed using component data to analyze system
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reliability can also be used as an optional method to confirm the analysis result.

Lastly, this project considers a simple system. More complex systems are going to be

considered in future work.

From the angle of methodology, a new method is developed for fitting the Gamma-

frailty PH model to multivariate current status data. In previous literature, Wang et

al. (2015) developed a similar method for analyzing bi-variate current status data.

The method can not handle complex likelihood functions in higher dimensional situ-

ations because they involved too many terms. This study develops an EM-algorithm

and finds a way to write the the conditional expectations in a general form and make

the computation feasible. The method is not restricted to the situations discussed in

this project. It can be used to analyze general multivariate current status data.
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Appendix A

Chapter 2 Supplementary Materials

A.1 Variance Estimation with Louis’s Method

Louis (1982) gives a formula as follows,

Î(θ̂) = −∂
2 logLobs(θ)
∂θ∂θ′

|θ = θ̂,

where

−∂
2 logLobs(θ)
∂θ∂θ′

= −∂
2Q(θ, θ̂)
∂θ∂θ′

− V ar
{
∂ logLcom(θ)

∂θ

}
.

To evaluate the first term ∂2Q(θ,θ̂)
∂θ∂θ′

, the Q(θ,θ(d)) function is as follows,

Q(θ,θ(d)) =
n∑
i=1

k∑
l=1
{δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)} (log γl + x′iβ)

−
n∑
i=1

k∑
l=1
{δi0Il(Ri) + (δi1 + δi2)Il(Ri) + δi3Il(Li)} γl exp(x′iβ).

The first derivative of Q(θ,θ(d)) with respect to θ is as follows,

∂Q(θ,θ(d))
∂β

=
n∑
i=1

k∑
l=1
{δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)}xi

−
n∑
i=1
{(1− δi3)Λ0(Ri) + δi3Λ0(Li)} exp(x′iβ)xi,

∂Q(θ,θ(d))
∂γl

=
n∑
i=1

γ−1
l {δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)}

−
n∑
i=1
{(1− δi3)Il(Ri) + δi3Il(Li)} exp(x′iβ).

The second derivative of Q(θ,θ(d)) with respect to θ is as follows,

∂2Q(θ,θ(d))
∂β∂β′

= −
n∑
i=1
{(1− δi3)Λ0(Ri) + δi3Λ0(Li)} exp(x′iβ)xix′i,
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∂2Q(θ,θ(d))
∂β∂γl

= −
n∑
i=1
{(1− δi3)Il(Ri) + δi3Il(Li)} exp(x′iβ)xi,

∂2Q(θ,θ(d))
∂γl∂γl′

= −
n∑
i=1

γ−2
l {δi0E(Vil) + (1− δi0)E(Zil) + (δi2 + δi3)E(Wil)} I(l = l′).

To evaluate the second term V ar
{
∂ logLcom(θ)

∂θ

}
, the logLcom(θ) is as follows,

logLcom(θ) =
n∑
i=1

k∑
l=1
{Vilδi0 + (1− δi0)Zil + (δi2 + δi3)Wil} log γl

+
n∑
i=1
{δi0 + (1− δi0)Zi + (δi2 + δi3)Wi}x′iβ

−
n∑
i=1

k∑
l=1
{δi0Il(Ri) + (δi1 + δi2)bl(Ri) + δi3bl(Li)} γl exp(x′iβ).

The first derivative of logLcom(θ) with respect to θ is,

∂ logLcom(θ)
∂β

=
n∑
i=1
{δi0 + (1− δi0)Zi + (δi2 + δi3)Wi)}xi

−
n∑
i=1

k∑
l=1
{δi0Il(Ri) + (δi1 + δi2)Il(Ri) + δi3Il(Li)} γl exp(x′iβ)xi,

∂ logLcom(θ)
∂γl

=
n∑
i=1
{δi0Vil + (1− δi0)Zil + (δi2 + δi3)Wil} γ−1

l

−
n∑
i=1
{δi0Il(Ri) + (δi1 + δi2)bl(Ri) + δi3bl(Li)} exp(x′iβ).

Therefore the covariance can be obtained as follows,

cov
{
∂ logLcom(θ)

∂β
,
∂ logLcom(θ)

∂β

}

=
n∑
i=1
{(1− δi0)var(Zi) + (δi2 + δi3)var(Wi)}xix′i,

cov
{
∂ logLcom(θ)

∂β
,
∂ logLcom(θ)

∂γl

}

=
n∑
i=1

γ−1
l {(1− δi0)cov(Zi, Zil) + (δi2 + δi3)cov(Wi,Wil)}xi,

cov
{
∂ logLcom(θ)

∂γl
,
∂ logLcom(θ)

∂γl′

}

=
n∑
i=1

(γl, γl′)−1 {δi0cov(Vil, Vil′) + (1− δi0)cov(Zil, Zil′) + (δi2 + δi3)cov(Wil,Wil′)}xi.
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Appendix B

Chapter 3 Supplementary Materials

B.1 The Conditional Distribution of Vi

In the complete likelihood function, only the last term contains the latent variable

Vi. Hence the conditional probability density function, f(Vi|xi) is proportional to it

which can be expressed as follows,

f(Vi|xi) ∝
k∏
j=1
{γCjMj(c̃i)}Vijξi .

It is easy to recegnize that this is the kernel of multinomial distribution, that is

Vi|xi ∼Multinomial[1, ( γC1M1(c̃i)∑k

j=1 γCjMj(c̃i)
, γC2M2(c̃i)∑k

j=1 γCjMj(c̃i)
, ..., γCkMk(c̃i)∑k

j=1 γCjMj(c̃i)
)].

Therefore the conditional expectation, variance and covariance can be found as fol-

lows,

E(Vij|xi) = γCjMj(c̃i)∑k
j=1 γCjMj(c̃i)

,

var(Vij|xi) = γCjMj(c̃i)∑k
j=1 γCjMj(c̃i)

{
1− γCjMj(c̃i)∑k

j=1 γCjMj(c̃i)

}
,

cov(Vij, Vij′|xi) = − γCjMj(c̃i)∑k
j=1 γCjMj(c̃i)

γCj′Mj′(c̃i)∑k
j=1 γCj′Mj′(c̃i)

+ γCjMj(c̃i)∑k
j=1 γCjMj(c̃i)

I(j = j′).
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B.2 The Conditional Distribution of ηi

To find the posterior distribution of ηi, the following augmented Likelihood function

is used,

L1(θ) =
n∏
i=1

[1− exp {−ΛT0(c̃i) exp(x′βT )ηi}]δi exp {−ΛT0(c̃i) exp(x′βT )ηi}1−δi

τ τ

Γ(τ)η
τ+ξi−1
i e−τηi {λC0(c̃i)}ξi exp {ξix′βC − ΛC0(c̃i) exp(x′βC)ηi} .

Hence

f(η|x) ∝
n∏
i=1

[1− exp {−ΛT0(c̃i) exp(x′iβT )ηi}]δi exp {−ΛT0(c̃i) exp(x′iβT )ηi}1−δi

ηξi+τ−1
i exp {−[τ + ΛC0(c̃i) exp(x′iβC)]ηi} .

When δi = 0,

f(η|x) ∝
n∏
i=1

ηξi+τ−1
i exp {−[τ + ΛT0(c̃i) exp(x′iβT ) + ΛC0(c̃i) exp(x′iβC)]ηi} ,

ηi|xi ∼ Gamma(ξi + τ, τ + ΛT0(c̃i) exp(x′iβT ) + ΛC0(c̃i) exp(x′iβC))

∼ Gamma(ξi + τ, bi),

where bi = τ + ΛT0(c̃i) exp(x′iβT ) + ΛC0(c̃i) exp(x′iβC).

When δi = 1,

f(η|x) ∝
n∏
i=1

ηξi+τ−1
i [1− exp {−ΛT0(c̃i) exp(x′iβT )ηi}]

exp {−[τ + ΛC0(c̃i) exp(x′iβC)]ηi}

∝
n∏
i=1

(ηξi+τ−1
i exp {−[τ + ΛC0(c̃i) exp(x′iβC)]ηi}

− ηξi+τ−1
i exp {−[τ + ΛT0(c̃i) exp(x′iβT ) + ΛC0(c̃i) exp(x′iβC)]ηi}),

f(ηi|xi) ∝ ηξi+τ−1
i exp(−diηi)− ηξi+τ−1

i exp(−biηi),

where di = τ + ΛC0(c̃i) exp(x′iβC).
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The following proofs are needed to find the posterior expectations and covariance

related to log ηi.

Assume X follows a gamma distribution with parameters (a, 1). With the fact

Γ(n)(x) =
∫

(log t)ntx−1e−tdt, the following results can be obtained.

X ∼ Gamma(a, 1),

E(logX) =
∫

(logX) 1
Γ(a)t

a−1e−XdX = Γ′(a)
Γ(a) = ψ(a),

E(X logX) =
∫

(logX) 1
Γ(a)X

a+1−1e−XdX = Γ′(a+ 1)
Γ(a) = aψ(a) + 1,

E(log2X) =
∫

(logX)2 1
Γ(a)X

a−1e−XdX = Γ(2)(x)
Γ(x) = ψ1(a) + ψ2(a).

Assume Y follows a gamma distribution with parameters (a, b) then,

Y ∼ Gamma(a, b),

Y = X · b−1,

E[log(Y )] = E[log(Xb−1)] = E(logX) + E(log b−1) = ψ(a)− log b,

E[log2(Y )] = E[log2(Xb−1)] = E[(logX − log b)2]

= E(log2X)− 2 log (b)E(logX) + log2 b

= ψ1(a) + ψ2(a)− 2 log (b)ψ(a) + log2 b

= ψ1(a) + [ψ(a)− log (b)]2,

E[Y log(Y )] = E[b−1X log(b−1X)] = b−1E(X logX)− b−1 log bE(X)

= b−1[aψ(a) + 1]− b−1(log b)a = b−1a[ψ(a+ 1)− log b].

These results are going to be used to to find the posterior expectations and covariance

related to log ηi.

With the results obtained above, when δi = 0,
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ηi|xi ∼ Gamma(ξi + τ, bi), therefore

E(ηi|xi) = τ + ξi
bi

,

E(log ηi|xi) = ψ(τ + ξi)− log bi,

var(ηi|xi) = τ + ξi
b2
i

,

var(log ηi|xi) = E(log 2ηi|xi)− [E(log ηi|xi)]2

= ψ1(τ + ξi) + [ψ(τ + ξi)− log bi]2 − [ψ(τ + ξi)− log bi]2

= ψ1(τ + ξi),

cov(log ηi, ηi|xi) = E(ηi log ηi|xi)− E(log ηi|xi)E(ηi|xi)

= b−1
i [(τ + ξi)ψ(τ + ξi) + 1]− b−1

i (log bi)(τ + ξi)

− (τ + ξi)b−1
i [ψ(τ + ξi)− log bi]

= b−1
i .

When δi = 1,

f(ηi|xi) ∝ ηξi+τ−1
i exp(−diηi)− ηξi+τ−1

i exp(−biηi)

∝ Γ(τ + ξi)
dτ+ξi
i

dτ+ξi
i

Γ(τ + ξi)
ηξi+τ−1
i exp(−diηi)−

Γ(τ + ξi)
bτ+ξi
i

bτ+ξi
i

Γ(τ + ξi)
ηξi+τ−1
i exp(−biηi)

∝ Γ(τ + ξi)
dτ+ξi
i

g(ηi|τ + ξi, di)−
Γ(τ + ξi)
bτ+ξi
i

g(ηi|τ + ξi, bi).
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Therefore when δi = 1,

∫
f(ηi|xi)dηi ∝

Γ(τ + ξi)
dτ+ξi
i

− Γ(τ + ξi)
bτ+ξi
i

. (B.1)
∫
ηif(ηi|xi)dηi

∝ Γ(τ + ξi)
dτ+ξi
i

τ + ξi
di
− Γ(τ + ξi)

bτ+ξi
i

τ + ξi
bi

∝ Γ(τ + ξi + 1)
dτ+ξi+1
i

− Γ(τ + ξi + 1)
bτ+ξi+1
i

. (B.2)
∫

log ηif(ηi|xi)dηi

∝ Γ(τ + ξi)
dτ+ξi
i

[ψ(τ + ξi)− log di]−
Γ(τ + ξi)
bτ+ξi
i

[ψ(τ + ξi)− log bi]. (B.3)
∫
η2
i f(ηi|xi)dηi

∝
∫ Γ(τ + ξi + 2)

dτ+ξi+2
i

dτ+ξi+2
i

Γ(τ + ξi + 2)η
ξi+τ+2−1
i exp(−diηi)

− Γ(τ + ξi + 2)
bτ+ξi+2
i

bτ+ξi+2
i

Γ(τ + ξi + 2)η
ξi+τ+2−1
i exp(−biηi)dηi

∝ Γ(τ + ξi + 2)
dτ+ξi+2
i

− Γ(τ + ξi + 2)
bτ+ξi+2
i

. (B.4)
∫

log2 ηif(ηi|xi)dηi

∝ Γ(τ + ξi)
dτ+ξi
i

∫
log ηig(ηi|τ + ξ + 1, di)dηi −

Γ(τ + ξi)
bτ+ξi
i

∫
log2 ηig(ηi|τ + ξi, bi)dηi

∝ Γ(τ + ξi)
dτ+ξi
i

{
ψ1(τ + ξi) + [ψ(τ + ξi)− log di]2

}
− Γ(τ + ξi)

bτ+ξi
i

{
ψ1(τ + ξi) + [ψ(τ + ξi)− log bi]2

}
. (B.5)

∫
ηi log ηif(ηi|xi)dηi

∝ Γ(τ + ξi + 1)
dτ+ξi+1
i

∫
log ηig(ηi|τ + ξi + 1, di)dηi

− Γ(τ + ξi + 1)
bτ+ξi+1
i

∫
log ηig(ηi|τ + ξi + 1, bi)dηi

∝ Γ(τ + ξi + 1)
dτ+ξi+1
i

[ψ(τ + ξi + 1)− log di]−
Γ(τ + ξi + 1)

bτ+ξi+1
i

[ψ(τ + ξi + 1)− log bi].

(B.6)
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Hence when δi = 1,

E(ηi|xi) =
∫
ηif(ηi|xi)dηi∫
f(ηi|xi)dηi

= (B.2)
(B.1)

= (τ + ξi)
1

d
τ+ξi+1
i

− 1
b
τ+ξi+1
i

1
d
τ+ξi
i

− 1
b
τ+ξi
i

= (τ + ξi)
di

1− (di
bi

)τ+ξi+1

1− (di
bi

)τ+ξi
,

E(η2
i |xi) =

∫
η2
i f(ηi|xi)dηi∫
f(ηi|xi)dηi

= (B.4)
(B.1)

=
Γ(τ+ξi+2)
d
τ+ξi+2
i

− Γ(τ+ξi+2)
b
τ+ξi+2
i

Γ(τ+ξi)
d
τ+ξi
i

− Γ(τ+ξi)
b
τ+ξi
i

= (τ + ξi)(τ + ξi + 1)
1

d
τ+ξi+2
i

− 1
b
τ+ξi+2
i

1
d
τ+ξi
i

− 1
b
τ+ξi
i

= (τ + ξi)(τ + ξi + 1)
d2
i

1− (di
bi

)τ+ξi+2

1− (di
bi

)τ+ξi
,

E(log ηi|xi) =
∫

log ηif(ηi|xi)dηi∫
f(ηi|xi)dηi

= (B.3)
(B.1)

=
{
ψ(τ + ξi)− log di

dτ+ξi
i

− ψ(τ + ξi)− log bi
bτ+ξi
i

}
/

{
1

dτ+ξi
i

− 1
bτ+ξi
i

}

= bτ+ξi
i (ψ(τ + ξi)− log di)− dτ+ξi

i (ψ(τ + ξi)− log bi)
bτ+ξi
i − dτ+ξi

i

= ψ(τ + ξi)−
bτ+ξi
i log di − dτ+ξi

i log bi
bτ+ξi
i − dτ+ξi

i

= ψ(τ + ξi)−
log di − (di

bi
)τ+ξi log bi

1− (di
bi

)τ+ξi
,
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E(log η2
i |xi) =

∫
log2 ηif(ηi|xi)dηi∫

f(ηi|xi)dηi
= (B.5)

(B.1)

=
{

Γ(τ + ξi)
dτ+ξi
i

{
ψ1(τ + ξi) + [ψ(τ + ξi)− log di]2

}
−Γ(τ + ξi)

bτ+ξi
i

{
ψ1(τ + ξi) + [ψ(τ + ξi)− log bi]2

}}
/

{
Γ(τ + ξi)
dτ+ξi
i

− Γ(τ + ξi)
bτ+ξi
i

}

= (bτ+ξi
i

{
ψ1(τ + ξi) + [ψ(τ + ξi)− log di]2

}
− dτ+ξi

i

{
ψ1(τ + ξi) + [ψ(τ + ξi)− log bi]2

}
)(bτ+ξi

i − dτ+ξi
i )−1

=
{ψ1(τ + ξi) + [ψ(τ + ξi)− log di]2} − (di

bi
)τ+ξi {ψ1(τ + ξi) + [ψ(τ + ξi)− log bi]2}

1− (di
bi

)τ+ξi
,

E(ηi log ηi|xi) =
∫
ηi log ηif(ηi|xi)dηi∫

f(ηi|xi)dηi
= (B.6)

(B.1)

=
Γ(τ+ξi+1)
d
τ+ξi+1
i

[ψ(τ + ξi + 1)− log di]− Γ(τ+ξi+1)
b
τ+ξi+1
i

[ψ(τ + ξi + 1)− log bi]
Γ(τ+ξi)
d
τ+ξi
i

− Γ(τ+ξi)
b
τ+ξi
i

=
(τ+ξi)
d
τ+ξi+1
i

[ψ(τ + ξi + 1)− log di]− (τ+ξi)
b
τ+ξi+1
i

[ψ(τ + ξi + 1)− log bi]
1

d
τ+ξi
i

− 1
b
τ+ξi
i

= (τ + ξi)
di

[ψ(τ + ξi + 1)− log di]− (di
bi

)τ+ξi+1[ψ(τ + ξi + 1)− log bi]
1− (di

bi
)τ+ξi

,

var(ηi|xi) = E(η2
i |xi)− [E(ηi|xi)]2

= (τ + ξi)(τ + ξi + 1)
d2
i

1− (di
bi

)τ+ξi+2

1− (di
bi

)τ+ξi
− [ (τ + ξi)

di

1− (di
bi

)τ+ξi+1

1− (di
bi

)τ+ξi
]2,

var(log ηi|xi) = E(log2 ηi|xi)− [E(log ηi|xi)]2

=
{ψ1(τ + ξi) + [ψ(τ + ξi)− log di]2} − (di

bi
)τ+ξi {ψ1(τ + ξi) + [ψ(τ + ξi)− log bi]2}

1− (di
bi

)τ+ξi

− [ψ(τ + ξi)−
log di − (di

bi
)τ+ξi log bi

1− (di
bi

)τ+ξi
]2,
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cov(ηi, log ηi|xi) = E(ηi log ηi|xi)− E(ηi|xi)E(log ηi|xi)

= (τ + ξi)
di

[ψ(τ + ξi + 1)− log di]− (di
bi

)τ+ξi+1[ψ(τ + ξi + 1)− log bi]
1− (di

bi
)τ+ξi

−[ (τ + ξi)
di

1− (di
bi

)τ+ξi+1

1− (di
bi

)τ+ξi
][ψ(τ + ξi)−

log di − (di
bi

)τ+ξi log bi
1− (di

bi
)τ+ξi

].

Combining the cases δi = 0 and δi = 1 together, the following results can be obtained,

E(ηi|xi) = (1− δi)
τ + ξi
bi

+ δi
(τ + ξi)
di

1− (di
bi

)τ+1+ξi

1− (di
bi

)τ+ξi
,

E(log ηi|xi) = (1− δi) {ψ(τ + ξi)− log bi}+

δi

{
ψ(τ + ξi)−

bτ+ξi
i log di − dτ+ξi

i log bi
bτ+ξi
i − dτ+ξi

i

}
,

var(ηi|xi) = (1− δi)
τ + ξi
b2
i

+

δi

(τ + ξi)(τ + ξi + 1)
d2
i

1− (di
bi

)τ+ξi+2

1− (di
bi

)τ+ξi
− [ (τ + ξi)

di

1− (di
bi

)τ+ξi+1

1− (di
bi

)τ+ξi
]2
 ,

var(log ηi|xi) = (1− δi)ψ1(τ + ξi)+

δi
{ψ1(τ + ξi) + [ψ(τ + ξi)− log di]2} − (di

bi
)τ+ξi {ψ1(τ + ξi) + [ψ(τ + ξi)− log bi]2}

1− (di
bi

)τ+ξi

− δi[ψ(τ + ξi)−
log di − (di

bi
)τ+ξi log bi

1− (di
bi

)τ+ξi
]2,

cov(ηi, log ηi|xi) = (1− δi)b−1
i +

δi

(τ + ξi)
di

[ψ(τ + ξi + 1)− log di]− (di
bi

)τ+ξi+1[ψ(τ + ξi + 1)− log bi]
1− (di

bi
)τ+ξi

−[ (τ + ξi)
di

1− (di
bi

)τ+ξi+1

1− (di
bi

)τ+ξi
][ψ(τ + ξi)−

log di − (di
bi

)τ+ξi log bi
1− (di

bi
)τ+ξi

]

 ,
where

bi = τ + ΛT0(c̃i) exp(x′iβT ) + ΛC0(c̃i) exp(x′iβC),

di = τ + ΛC0(c̃i) exp(x′iβC).
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B.3 The Conditional Distributions of Zi and Zij

Since ∑k
j=1 Zij = Zi then given Zi, Zij is multinomial distributed for i = 1, 2, ..., n

and j = 1, 2, ..., k then

E(Zij|xi) = E {E(Zij|xi, Zi)} = E(γTjI(c̃i)
ΛT0(c̃i)

Zi|xi) = γTjI(c̃i)
ΛT0(c̃i)

E(Zi|xi).

For Zi, given ηi it follows a truncated Poisson distribution with a support of all

positive integers when δi = 1 and degenerates at 0 when δi = 0 for i = 1, 2, ..., n. By

applying the law of iterative rule again and let λi = ΛT0(c̃i) exp(x′iβT ),

E(Zi|xi) = E {E(Zi|xi, ηi)} = E

{
ηiδiΛT0(c̃i) exp(x′iβT )

1− exp [−ΛT0(c̃i) exp(x′iβT )ηi]
|xi
}
,

E(Zi|xi) = E {E(Zi|xi, ηi)} = E

{
ηiδiλi

1− exp (−λiηi)
|xi
}
,

E(Z2
i |xi) = E

{
E(Z2

i |xi, ηi)
}

= E

{
δi(ηiλi + η2

i λ
2
i )

1− exp (−λiηi)
|xi
}
.

Then

cov(Zij, Zij′ |xi) = E(ZijZij′|xi)− E(Zij|xi)E(Zij′ |xi)

= E {E(ZijZij′|xi, zi)} − E {E(Zij|xi, zi)}E {E(Zij′ |xi, zi)}

= E {cov(Zij, Zij′|xi, zi) + E(Zij|xi, zi)E(Zij′ |xi, zi)}

− E {E(Zij|xi, zi)}E {E(Zij′ |xi, zi)}

= E[−γTjI(c̃i)
ΛT0(c̃i)

γTj′I(c̃i)
ΛT0(c̃i)

Zi + γTjI(c̃i)
ΛT0(c̃i)

γTj′I(c̃i)
ΛT0(c̃i)

Z2
i ]

− γTjI(c̃i)
ΛT0(c̃i)

γTj′I(c̃i)
ΛT0(c̃i)

[E(Zi|xi)]2

= −γTjI(c̃i)
ΛT0(c̃i)

γTj′I(c̃i)
ΛT0(c̃i)

E(Zi|xi) + γTjI(c̃i)
ΛT0(c̃i)

γTj′I(c̃i)
ΛT0(c̃i)

E(Z2
i |xi)

− γTjI(c̃i)
ΛT0(c̃i)

γTj′I(c̃i)
ΛT0(c̃i)

[E(Zi|xi)]2

= γTjI(c̃i)
ΛT0(c̃i)

γTj′I(c̃i)
ΛT0(c̃i)

[−E(Zi|xi) + E(Z2
i |xi)− E(Zi|xi)2]

= γTjI(c̃i)
ΛT0(c̃i)

γTj′I(c̃i)
ΛT0(c̃i)

[−E(Zi|xi) + var(Zi|xi)],
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var(Zij|xi) = γTjI(c̃i)
ΛT0(c̃i)

E(Zi|xi) + [γTjI(c̃i)
ΛT0(c̃i)

]2[−E(Zi|xi) + var(Zi|xi)],

cov(Zij, Zi|xi) = E(ZijZi|xi)− E(Zij|xi)E(Zi|xi)

= E {ziE(Zij|x, zi)} −
γTjI(c̃i)
ΛT0(c̃i)

E(Zi|xi)E(Zi|xi)

= E

{
zi
γTjI(c̃i)
ΛT0(c̃i)

zi

}
− γTjI(c̃i)

ΛT0(c̃i)
[E(Zi|xi)]2

= γTjI(c̃i)
ΛT0(c̃i)

var(Zi|xi).

If δi = 0, then E(Zi|xi) is zero.

If δi = 1, then

E(Zi|xi) = E

{
ηiδiλi

1− exp (−λiηi)
|xi
}

=
∫ ηiδiΛT0(c̃i) exp(x′

iβT )
1−exp [−ΛT0(c̃i) exp(x′

i
βT )ηi]L1(ηi|xi)dηi∫

L1(ηi|xi)dηi

=
∫ ηiΛT0(c̃i) exp(x′

iβT )
1−exp [−ΛT0(c̃i) exp(x′

i
βT )ηi]g(ηi|τ)(1− ST (c̃i|ηi))λC(c̃i|ηi)ξiSC(c̃i|ηi)dηi∫

g(ηi|τ)(1− ST (c̃i|ηi))λC(c̃i|ηi)ξiSC(c̃i|ηi)dηi

=
∫
ηiη

τ−1
i e−ηiτΛT0(c̃i) exp(x′iβT ) {λC0(c̃i) exp(x′iβC)ηi}ξi SC(c̃i|ηi)dηi∫
ητ−1
i e−ηiτ (1− ST (c̃i|ηi)) {λC0(c̃i) exp(x′iβC)ηi}ξi SC(c̃i|ηi)dηi

= ΛT0(c̃i) exp(x′iβT )
∫
ητ+1+ξi−1
i e−ηiτSC(c̃i|ηi)dηi∫

ητ+ξi−1
i e−ηiτ (1− ST (c̃i|ηi))SC(c̃i|ηi)dηi

= ΛT0(c̃i) exp(x′iβT )
∫
ητ+1+ξi−1
i e−diηidηi∫

ητ+ξi−1
i e−diηidηi −

∫
ητ+ξi−1
i e−biηidηi

= ΛT0(c̃i) exp(x′iβT ) Γ(τ + 1 + ξi)/dτ+1+ξi
i

Γ(τ + ξi)/dτ+ξi
i − Γ(τ + ξi)/bτ+ξi

i

= ΛT0(c̃i) exp(x′iβT )(τ + ξi)
1/dτ+1+ξi

i

1/dτ+ξi
i − 1/bτ+ξi

i

= ΛT0(c̃i) exp(x′iβT )τ + ξi
di

1/dτ+ξi
i

1/dτ+ξi
i − 1/bτ+ξi

i

= ΛT0(c̃i) exp(x′iβT )τ + ξi
di

bτ+ξi
i

bτ+ξi
i − dτ+ξi

i

,
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E(Z2
i |xi) = E

{
δi(ηiλi + η2

i λ
2
i )

1− exp (−λiηi)
|xi
}

= E

{
δiηiλi

1− exp (−λiηi)
|xi
}

+ E

{
δiη

2
i λ

2
i

1− exp (−λiηi)
|xi
}
,

E

{
δiη

2
i λ

2
i

1− exp (−λiηi)
|xi
}

= λ2
i

∫
ητ+2+ξi−1
i e−ηiτSC(c̃i|ηi)dηi∫

ητ+ξi−1
i e−ηiτ (1− ST (c̃i|ηi))SC(c̃i|ηi)dηi

= λ2
i

∫
ητ+2+ξi−1
i e−diηidηi∫

ητ+ξi−1
i e−diηidηi −

∫
ητ+ξi−1
i e−biηidηi

= λ2
i

Γ(τ + 2 + ξi)/dτ+2+ξi
i

Γ(τ + ξi)/dτ+ξi
i − Γ(τ + ξi)/bτ+ξi

i

= λ2
i (τ + ξi + 1)(τ + ξi)

1/dτ+2+ξi
i

1/dτ+ξi
i − 1/bτ+ξi

i

= λ2
i

(τ + ξi + 1)(τ + ξi)
d2
i

1/dτ+ξi
i

1/dτ+ξi
i − 1/bτ+ξi

i

= λ2
i

(τ + ξi + 1)(τ + ξi)
d2
i

bτ+ξi
i

bτ+ξi
i − dτ+ξi

i

.

Hence,

E(Zi|xi) = δiΛT0(c̃i) exp(x′iβT )τ + ξi
di

bτ+ξi
i

bτ+ξi
i − dτ+ξi

i

,

E(Z2
i |xi) = δi[ΛT0(c̃i) exp(x′iβT )]2 (τ + ξi + 1)(τ + ξi)

d2
i

bτ+ξi
i

bτ+ξi
i − dτ+ξi

i

+ E(Zi|xi),

var(Zi|xi) = E(Z2
i |xi)− [E(Zi|xi)]2,

cov(Zij, Zi|xi) = γTjI(c̃i)
ΛT0(c̃i)

var(Zi|xi),

cov(Zij, Zij′|xi) = γTjI(c̃i)
ΛT0(c̃i)

γTj′I(c̃i)
ΛT0(c̃i)

[−E(Zi|xi) + var(Zi|xi)],

var(Zij|xi) = γTjI(c̃i)
ΛT0(c̃i)

E(Zi|xi) + [γTjI(c̃i)
ΛT0(c̃i)

]2[−E(Zi|xi) + var(Zi|xi)],

cov(Zij, Zij′|xi) =
γTjI(c̃i)
ΛT0(c̃i)

γTj′I(c̃i)
ΛT0(c̃i)

[−E(Zi|xi) + var(Zi|xi)] + γTjI(c̃i)
ΛT0(c̃i)

E(Zi|xi)I(j = j′),
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where bi = τ + ΛT0(c̃i) exp(x′iβT ) + ΛC0(c̃i) exp(x′iβC), di = τ + ΛC0(c̃i) exp(x′iβC).

The expectation, covariance between Zi and ηi, Zij and ηi are as follows,

cov(Zi, ηi|xi) = E(Ziηi|xi)− E(Zi|xi)E(ηi|xi),

E(Ziηi|xi) = E[E(Ziηi|xi, ηi)] = E[ηiE(Zi|xi, ηi)]

= E[ηi
ηiδiλi

1− exp (−λiηi)
|xi] = δiλi

(τ + ξi + 1)(τ + ξi)
d2
i

bτ+ξi
i

bτ+ξi
i − dτ+ξi

i

,

cov(Zij, ηi|xi) = E(Zijηi|xi)− E(Zij|xi)E(ηi|xi),

E(Zijηi|xi) = E[ηiE(Zij|xi, ηi)] = E {ηiE[E(Zij|xi, ηi, Zi)]}

= E

{
ηiE[γTjI(c̃i)

ΛT0(c̃i)
Zi|xi, ηi]

}
= γTjI(c̃i)

ΛT0(c̃i)
E {ηiE[Zi|xi, ηi]}

= γTjI(c̃i)
ΛT0(c̃i)

E(Zijηi|xi),

cov(Zij, ηi|xi) = γTjI(c̃i)
ΛT0(c̃i)

E(Zijηi|xi)−
γTjI(c̃i)
ΛT0(c̃i)

E(Zi|xi)E(ηi|xi)

= γTjI(c̃i)
ΛT0(c̃i)

cov(Zi, ηi|xi),

cov(Zi, log ηi|xi) = E(Zi log ηi|xi)− E(Zi|xi)E(log ηi|xi),

E(Zi log ηi|xi) = E[E(Zi log ηi|xi, ηi)] = E[log ηiE(Zi|xi, ηi)]

= E[log ηi
ηiδiλi

1− exp (−λiηi)
|xi]

= δiλi

∫
log ηiητ+1+ξi−1

i e−diηidηi∫
ητ+ξi−1
i e−diηidηi −

∫
ητ+ξi−1
i e−biηidηi

= δiλi
(τ + ξi)[ψ(τ + ξ + 1)− log di]

di

bτ+ξi
i

bτ+ξi
i − dτ+ξi

i

,
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cov(Zij, log ηi|xi) = E(Zij log ηi|xi)− E(Zij|xi)E(log ηi|xi),

E(Zij log ηi|xi) = E[log ηiE(Zij|xi, ηi)] = E {log ηiE[E(Zij|xi, ηi, Zi)]}

= E

{
log ηiE[γTjI(c̃i)

ΛT0(c̃i)
Zi|xi, ηi]

}
= γTjI(c̃i)

ΛT0(c̃i)
E {log ηiE[Zi|xi, ηi]}

= γTjI(c̃i)
ΛT0(c̃i)

E(Zij log ηi|xi),

cov(Zij, log ηi|xi) = γTjI(c̃i)
ΛT0(c̃i)

cov(Zi, log ηi|xi).

B.4 Variance Estimation with Louis’s Method

Louis (1982) gives a formula as follows,

Î(θ̂) = −∂
2 logLobs(θ)
∂θ∂θ′

|θ = θ̂,

where

−∂
2 logLobs(θ)
∂θ∂θ′

= −∂
2Q(θ, θ̂)
∂θ∂θ′

− var
{
∂ logLcom(θ)

∂θ

}
.

To evaluate the first term ∂2Q(θ,θ̂)
∂θ∂θ′

, the Q(θ,θ(d)) function is as follows,

Q(θ,θ(d)) = H1(θ,θ(d)) +H2(θ,θ(d)) +H3(θ,θ(d)) +H4(θ,θ(d)).

The term ∂2Q(θ,θ̂)
∂θ∂θ′

can be obtained as follows,

H1(θ,θ(d)) = −n log {Γ(τ)}+ nτ log(τ) + τ
n∑
i=1

[E(log ηi)− E(ηi)],

∂H1(θ,θ(d))
∂τ

= −nψ(τ) + n log(τ) + n+
n∑
i=1

[E(log ηi)− E(ηi)],

∂2Q(θ,θ(d))
∂τ∂τ

= ∂2H1(θ,θ(d))
∂τ∂τ

= −nψ1(τ) + nτ−1.

∂Q(θ,θ(d))
∂βC

= ∂H2(θ,θ(d))
∂βC

=
n∑
i=1

[−ΛC0(c̃i) exp(x′iβC)E(ηi) + ξi]xi,

∂2Q(θ,θ(d))
∂βC∂β′C

= ∂2H2(θ,θ(d))
∂βC∂β′C

=
n∑
i=1
−ΛC0(c̃i) exp(x′iβC)E(ηi)xix′ii,

∂2Q(θ,θ(d))
∂βC∂γCj

= ∂2H2(θ,θ(d))
∂βC∂γCj

=
n∑
i=1
−Ij(c̃i) exp(x′iβC)E(ηi)xi.
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∂Q(θ,θ(d))
∂γCj

= ∂H2(θ,θ(d))
∂γCj

=
n∑
i=1

[−Ij(c̃i) exp(x′iβC)E(ηi) + E(Vij)ξiγ−1
Cj ],

∂2Q(θ,θ(d))
∂γCj∂γCj′

= ∂2H2(θ,θ(d))
∂γCj∂γCj′

=
n∑
i=1
−γ−2

Cj ξiE(Vij)I(j = j′).

∂Q(θ,θ(d))
∂βT

= ∂H3(θ,θ(d))
∂βT

=
n∑
i=1

[−ΛT0(c̃i) exp(x′iβT )E(ηi) + E(Zi)]xi,

∂2Q(θ,θ(d))
∂βT∂β′T

= ∂2H3(θ,θ(d))
∂βT∂β′T

=
n∑
i=1
−ΛT0(c̃i) exp(x′iβT )E(ηi)xix′ii,

∂2Q(θ,θ(d))
∂βT∂γTj

= ∂2H3(θ,θ(d))
∂βT∂γTj

=
n∑
i=1
−Ij(c̃i) exp(x′iβT )E(ηi)xi.

∂2Q(θ,θ(d))
∂γTj

= ∂H3(θ,θ(d))
∂γTj

=
n∑
i=1

[−Ij(c̃i) exp(x′iβT )E(ηi) + E(Zij)γ−1
Tj ],

∂2Q(θ,θ(d))
∂γTj∂γTj′

= ∂2H3(θ,θ(d))
∂γTj∂γTj′

=
n∑
i=1
−γ−2

TjE(Zij)I(j = j′).

The term var
{
∂ logLcom(θ)

∂θ

}
can be obtained as follows,

∂ log(Lcom)
∂τ

= −nψ(τ) + n+ n log(τ) +
n∑
i=1

[log ηi − ηi],

∂ log(Lcom)
∂βC

=
n∑
i=1

[−ΛC0(c̃i) exp(x′iβC)ηixi + ξixi]

=
n∑
i=1

[−ΛC0(c̃i) exp(x′iβC)ηi + ξi]xi,

∂ log(Lcom)
∂γCj

=
n∑
i=1

[−Ij(c̃i) exp(x′iβC)ηi + Vijξiγ
−1
Cj ],

∂ log(Lcom)
∂βT

=
n∑
i=1

k∑
j=1

[−γTjIj(c̃i) exp(x′iβT )ηi + Zij]xi

=
n∑
i=1

[−ΛT0(c̃i) exp(x′iβT )ηi + Zi]xi,
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∂ log(Lcom)
∂γTj

=
n∑
i=1

[−Ij(c̃i) exp(x′iβT )ηi + Zijγ
−1
Tj ].

var
{
∂ log(Lcom)

∂τ

}
= var

{
n∑
i=1

(log ηi − ηi)
}

=
n∑
i=1

var(log ηi − ηi)

=
n∑
i=1
{var(log ηi) + var(ηi)− 2cov(log ηi, ηi)} ,

cov
{
∂ log(Lcom)

∂τ
,
∂ log(Lcom)

∂βC

}
=

n∑
i=1
−ΛC0(c̃i) exp(x′iβC)xi[cov(log ηi, ηi)− var(ηi)],

cov
{
∂ log(Lcom)

∂τ
,
∂ log(Lcom)

∂βT

}
=

n∑
i=1
−ΛC0(c̃i) exp(x′iβT )xi[cov(log ηi, ηi)− var(ηi)]

+
n∑
i=1
xi[cov(log ηi, Zi)− cov(ηi, Zi)],

cov
{
∂ log(Lcom)

∂τ
,
∂ log(Lcom)

∂γCj

}
=

n∑
i=1
−Ij(c̃i) exp(x′iβC)[cov(log ηi, ηi)− var(ηi)],

cov
{
∂ log(Lcom)

∂τ
,
∂ log(Lcom)

∂γTj

}
=

n∑
i=1
−Ij(c̃i) exp(x′iβT )[cov(log ηi, ηi)− var(ηi)]

+
n∑
i=1

γ−1
Tj [cov(log ηi, Zij)− cov(ηi, Zij)].

var
{
∂ log(Lcom)

∂βC

}
=

n∑
i=1

[ΛC0(c̃i) exp(x′iβC)xi]2var(ηi),

cov
{
∂ log(Lcom)

∂βC
,
∂ log(Lcom)

∂γCj

}
=

n∑
i=1

ΛC0(c̃i) exp(x′iβC)xiIj(c̃i) exp(x′iβC)var(ηi),

cov
{
∂ log(Lcom)

∂γCj
,
∂ log(Lcom)

∂γCj′

}
=

n∑
i=1

{
(γCjγCj′)−1 ξicov(Vij, Vij′) + Ij(c̃i)Ij′(c̃i)[exp(x′iβC)]2var(ηi).

93



Appendix C

Chapter 4 Supplementary Materials

Since ∑p
l=1 Zijl = Zij, then the conditional distribution of Zijl is multinomial dis-

tributed given Zij. Therefore one can obtain the following relationship by applying

the law of iterative rule.

E(Zijl|x) = E {E(Zijl|x, Zij)} = E

{
γjlIjl(ci)
Λ0j(ci)

Zij|x
}

= γjlIjl(ci)
Λ0j(ci)

E(Zij|x).

For the latent variable Zij, given ηi it follows a truncated Poisson distribution

with when δi = 1 it takes all positive integers, when δi = 0 it is 0. By applying the

law of iterative rule again,

E(Zij|x) = E {E(Zij|x, ηi)} = E

{
ηiδijΛ0j(ci) exp(x′βj)

1− exp [−Λ0j(ci) exp(x′βj)ηi]
|x
}
.

Let Hij = Λ0j(ci) exp(x′βj). When δij = 1,

E

{
ηiHij

1− exp (−Hijηi)
|x
}

=
∫ ηiHij

1−exp (−Hijηi)L1(θ)dηi∫
L1(θ)dηi

,

where

L1(θ) = g(ηi|τ, τ)
k∏
j=1
{1− Sj(ci|x)}δij Sj(ci|x)1−δij .
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The numerator is,∫ ηiHij

1− exp (−Hijηi)
L1(θ)dηi

=
∫ ηiHij

1− exp (−Hijηi)
g(ηi|τ, τ)

k∏
r=1
{1− Sr(ci|x)}δir Sr(ci|x)1−δirdηi

=
∫ g(ηi|τ + 1, τ)Hij

1− exp (−Hijηi)

k∏
r=1
{1− exp (−Hirηi)}δir exp (−Hirηi)1−δirdηi

=Hij

∫
g(ηi|τ + 1, τ)

k∏
r=1
r 6=j

{1− exp (−Hirηi)}δir exp (−Hirηi)1−δirdηi

=Hij

∫
g(ηi|τ + 1, τ)

2di−1∑
q=1

(−1)|Li|−|Biq |−1 exp(−ηi
∑
j∈BCiq

Hij)dηi

=Hij

2di−1∑
q=1

(−1)|Li|−|Biq |−1(1 + τ−1 ∑
j∈BCiq

Hij)−τ−1,

where Biq is the qth element of the set containing all subsets of Li\ {j}, BC
iq is the

complement of Biq with the complete set being {1, 2, .., k} \ {j}, for q = 1, 2, ..., 2di−1.

The denominator is,∫
L1(θ)dηi =

∫ τ τ

Γ(τ)η
τ−1
i e−τηi

2di∑
p=1

(−1)|Li|−|Aip| exp(−ηi
∑
j∈ACip

Hij)dηi

=
2di∑
p=1

(−1)|Li|−|Aip|
∫ τ τ

Γ(τ)η
τ−1
i exp

−(τ +
∑
j∈ACip

Hij)ηi

 dηi
=

2di∑
p=1

(−1)|Li|−|Aip|τ τ
(τ +∑

j∈ACip
Hij)τ

=
2di∑
p=1

(−1)|Li|−|Aip|(1 + τ−1 ∑
j∈ACip

Hij)−τ ,

where Aip is the pth element of the set containing all subsets of Li, ACip is the com-

plement of Aip, for p = 1, 2, ..., 2di and the complete set is {1, 2, .., k}.

Therefore,

E(Zij|x) = δij

∫ ηiHij
1−exp (−Hijηi)L1(θ)dηi∫

L1(θ)dηi

= δijHij

∑2di−1

p=1 (−1)|Li|−|Biq |−1(1 + τ−1∑
r∈BCiq

Hir)−τ−1∑2di
p=1(−1)|Li|−|Aip|(1 + τ−1∑

r∈ACip
Hir)−τ

.
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The conditional expectation of ηi and log ηi given data, E(ηi|x) and E(log ηi|x),

can be expressed as follows,

E(ηi|x) =
∫
ηiL1(θ)dηi∫
L1(θ)dηi

, E(log ηi|x) =
∫

log ηiL1(θ)dηi∫
L1(θ)dηi

.

∫
ηiL1(θ)dηi =

∫
ηig(ηi|τ, τ)

k∏
j=1
{1− Sj(ci|xi, ηi)}δij Sj(ci|xi, ηi)1−δijdηi

=
∫ τ τ

Γ(τ)η
τ
i e
−τηi

2di∑
p=1

(−1)|Li|−|Aip| exp(−ηi
∑
j∈ACip

Hij)dηi

= τ τ

Γ(τ)

2di∑
p=1

(−1)|Li|−|Aip|
∫
ητi exp

−(τ +
∑
j∈ACip

Hij)ηi

 dηi
= τ τ+1

2di∑
p=1

∫ (−1)|Li|−|Aip|
Γ(τ + 1) ητi exp

−(τ +
∑
j∈ACip

Hij)ηi

 dηi
=

2di∑
p=1

(−1)|Li|−|Aip|(1 + τ−1 ∑
j∈ACip

Hij)−τ−1.

∫
log ηiL1(θ)dηi

=
∫

log ηig(ηi|τ, τ)
k∏
j=1
{1− Sj(ci|xi, ηi)}δij Sj(ci|xi, ηi)1−δijdηi

=
∫ τ τ

Γ(τ)(log ηi)ητ−1
i e−τηi

2di∑
p=1

(−1)|Li|−|Aip| exp(−ηi
∑
j∈ACip

Hij)dηi

=
2di∑
p=1

(−1)|Li|−|Aip|
∫ τ τ

Γ(τ)(log ηi)ητ−1
i exp

−(τ +
∑
j∈ACip

Hij)ηi

 dηi
= τ τ

2di∑
p=1

∫
log ηi

1
Γ(τ)η

τ−1
i exp

−(τ +
∑
j∈ACip

Hij)ηi

 dηi
=

2di∑
p=1

(−1)|Li|−|Aip|(1 + τ−1 ∑
j∈ACip

Hij)−τ
ψ(τ)− log

(τ +
∑
j∈ACip

Hij)ηi


 .

Therefore,

E(ηi|x) =
∫
ηiL1(θ)dηi∫
L1(θ)dηi

=
∑2di
p=1(−1)|Li|−|Aip|(1 + τ−1∑

j∈ACip
Hij)−τ−1∑2di

p=1(−1)|Li|−|Aip|(1 + τ−1∑
j∈ACip

Hij)−τ
,
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E(log ηi|x) =
∫
ηiL1(θ)dηi∫
L1(θ)dηi

=
∑2di
p=1(−1)|Li|−|Aip|(1 + τ−1∑

j∈ACip
Hij)−τ

[
ψ(τ)− log(τ +∑

j∈ACip
Hij)

]
∑2di
p=1(−1)|Li|−|Aip|(1 + τ−1∑

j∈ACip
Hij)−τ

.

97


	Statistical Analysis of Interval-Censored Data Subject to Additional Complications
	Recommended Citation

	tmp.1572378995.pdf.Qt8MU

