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Figure 3.27 Flow chart for ViewFactor model 
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3.5 RADIATIVE HEAT TRANSFER MODEL 

 View factor calculations is only the first part of implementing this new radiative 

heat transfer model. When view factors between surfaces are known, then equation (9) 

can be solved. In MOOSE Mesh structure, block sides represent boundaries, and 

boundary conditions should be assigned to them. For radiative heat transfer calculations, 

a new boundary condition model “RadiativeHeatFluxBC” is added to MOOSE. It takes 

view factors from “ViewFactor” user object, calculates black body radiative heat flux and 

applies it as boundary condition for heat transfer calculations. 

 

 

Figure 3.28 Radiative heat exchange between elements 

 Figure 3.28 shows outgoing fluxes from elements i and j. The net flux is 

calculated by subtracting all incoming fluxes from the outgoing fluxes, which is the basis 

of the new boundary condition model “RadiativeHeatFluxBC”. The model loops over all 

elements in specified boundaries and calculates net heat flux for each element by pairing 

with all other elements, which is performed using following equation. The flow chart for 

radiative heat transfer model is shown in Figure 3.29. 

 𝑞𝑖,𝑛𝑒𝑡 = 𝑞𝑖𝑗 − ∑ 𝐹𝑖𝑗𝑞𝑗𝑖

𝑛

𝑗
= ∑ 𝐹𝑖𝑗(𝑞𝑖𝑗 − 𝑞𝑗𝑖)

𝑛

𝑗
 (41) 

𝑞𝑖𝑗 
𝑞𝑗𝑖 

Element i 
Element j 
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Figure 3.29 Flow chart for RadiativeHeatFluxBC model 

 

 

Calculate qnet 

Yes No 

No 

Return Net 

Heat Flux 

i > NE 

j > ME 

Fij and Fji (from View Factor model) 

Calculate qij and qji 

Element j (ej) 

Radiative Heat 

Transfer Model 

Number of Elements in boundary m (ME) 

Number of Elements in boundary n (NE) 

 

Element i (ei) 

Yes 

j = j + 1 

i = i + 1 



 

50 

CHAPTER 4 

 

RESULTS AND DISCUSSION 
 

 The implemented view factor model is tested by using simple geometries. The 

finite element meshes are generated by using Trelis software. Different geometric 

parameters such as height, width, radius and the distance between surfaces, are used to 

generate geometries. Analytical view factor values (Fanalytical) are calculated by using the 

formulas presented in Appendix D in textbook written by Modest [1]. The percentage 

error is calculated by following equation, 

 

 %𝐸𝑟𝑟𝑜𝑟 = 100 ∗
|𝐹𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑|

𝐹𝑎𝑛𝑎𝑙𝑎𝑦𝑡𝑖𝑐𝑎𝑙
 (42) 

 

Since the view factors are calculated between the finite element surfaces, which are 

flat, not curved, the results obtained for flat geometries such as rectangles, disks, provide 

more insight about accuracy of ViewFactor model.  

 

The radiative heat transfer model is tested by a case study which is pellet heating 

experiment. The current GapHeatTransfer model in MOOSE is used for comparison of 

results. 
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4.1 PARALLEL RECTANGLES 

The rectangle surfaces illustrated in Figure 4.1 have h×w dimensions (h-height  

and w-width), separated from each other by distance, 𝑑, using hexahedral (HEX8) 

elements in the mesh. The results of calculations are presented by following table and 

figures. 

 

Figure 4.1 Geometry of parallel rectangles 

Table 4.1 View Factors for h=2, w=2, d=2 
 View Factors (Fcalculated) for different number of sampling (N) 

Run 102 103 104 105 106 107 

1 0.197500 0.198000 0.201075 0.199333 0.199678 0.199804 

2 0.217500 0.187750 0.199625 0.200857 0.199034 0.199732 

3 0.187500 0.201000 0.198500 0.198215 0.199734 0.199555 

4 0.237500 0.190750 0.203650 0.198610 0.199910 0.199659 

5 0.180000 0.199000 0.201100 0.199988 0.199708 0.199707 

6 0.220000 0.196500 0.197725 0.198130 0.199606 0.199692 

7 0.190000 0.207500 0.203075 0.200073 0.199661 0.199714 

8 0.172500 0.203000 0.198375 0.199153 0.199683 0.199688 

9 0.195000 0.199750 0.202125 0.199705 0.199738 0.199716 

10 0.212500 0.198250 0.201750 0.200163 0.199603 0.199809 

11 0.222500 0.198000 0.199550 0.201615 0.199968 0.199779 

12 0.215000 0.198500 0.198900 0.200490 0.200102 0.199753 

Mean F 0.203958 0.198167 0.200454 0.199694 0.199702 0.199717 

Std Dev 0.019669 0.005118 0.001951 0.001060 0.000260 0.000069 

Std Error 0.005678 0.001478 0.000563 0.000306 0.000075 0.000020 

Fanalytical 0.199825 0.199825 0.199825 0.199825 0.199825 0.199825 

%Error 2.068530 0.829841 0.314911 0.065338 0.061460 0.053828 

d 
w 

h 
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Figure 4.2 View factor for parallel plates for different sampling number 

 

 
Figure 4.3 Change of average view factor with sampling number 

 

Evidently, as the number of sampling increases, results become more precise (see 

Figure 4.3). Furthermore, the standard deviation of 12 runs, shown by the red bars in 
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converged. Also, the absolute percent error drops below 0.1%, and thus, sampling 

number of N=105 can be used for similar geometries. 

 

 
Figure 4.4 Change of percentage error with sampling number 

 

The distance between rectangles is also an important parameter. In Table 4.2, 

calculated view factors are presented for square plates with different d/h ratios for N=105 

rays. The error increases as d/h ratio is getting larger because as rays are spreading in 

radial direction, following Inverse Square Law (See section 3.4.10). Their probability of 

hitting the target surface decreases due to increased distance, coming from the geometric 

dilution due to point-source radiation into three-dimensional space. The rays used in the 

MC simulations in this study follow the inverse square law, since they are basically 

quantities emitted from a source point. It can be clearly seen from Figure 4.5 that the 

average view factor profile follows the inverse square law. 
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Table 4.2 View Factors for different plate dimensions 
 d/h 

Run 0.5 1.0 2.0 4.0 8.0 16.0 

1 0.416150 0.201075 0.067850 0.019475 0.005200 0.001525 

2 0.409650 0.199625 0.068925 0.018975 0.004325 0.001175 

3 0.413450 0.198500 0.069450 0.019500 0.005425 0.001425 

4 0.414050 0.203650 0.068350 0.019900 0.004975 0.001475 

5 0.414850 0.201100 0.069100 0.019300 0.005150 0.001550 

6 0.417500 0.197725 0.068300 0.019150 0.005275 0.001275 

7 0.412200 0.203075 0.066475 0.018975 0.005050 0.001375 

8 0.414850 0.198375 0.070075 0.019300 0.005000 0.001300 

9 0.409450 0.202125 0.067725 0.019075 0.005300 0.001150 

10 0.412200 0.201750 0.068175 0.019425 0.004425 0.001225 

11 0.414850 0.199550 0.068600 0.019375 0.005125 0.001475 

12 0.411575 0.198900 0.068075 0.018750 0.005025 0.001125 

Mean F 0.413398 0.200454 0.068425 0.019267 0.005023 0.001340 

Std Dev 0.002468 0.001951 0.000921 0.000305 0.000331 0.000151 

Std Error 0.000712 0.000563 0.000266 0.000088 0.000096 0.000044 

Fanalytical 0.415253 0.199825 0.068590 0.019107 0.004922 0.001240 

%Error 0.446804 0.314911 0.239962 0.835866 2.040751 8.016045 
 

 

 

 
Figure 4.5 Change of average view factor with rectangle dimensions 
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Figure 4.6 Change of percentage error with rectangle dimensions 

 

4.2 PERPENDICULAR RECTANGLES 

In the case of perpendicular rectangles, one has a height h, while the other has  

width w, both sharing a common edge with size d (see Figure 4.7), i.e., the rectangles 

have h×d and w×d dimensions. 

 
 

Figure 4.7 Geometry of perpendicular rectangles 
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Table 4.3 View Factors for h=3, w=3, d=4 
 View Factors (F) for different number of sampling (N) 

Run 102 103 104 105 106 

1 0.220000 0.221417 0.221892 0.222799 0.222488 

2 0.253333 0.223083 0.219300 0.223012 0.219740 

3 0.254167 0.228417 0.227242 0.220751 0.224597 

4 0.246667 0.227583 0.215125 0.222885 0.225348 

5 0.224167 0.234167 0.222967 0.219128 0.222387 

6 0.247500 0.233833 0.224033 0.221029 0.219920 

7 0.269167 0.219417 0.220642 0.221340 0.223036 

8 0.270000 0.227167 0.218150 0.219530 0.222333 

9 0.230000 0.211250 0.222925 0.223183 0.220520 

10 0.223333 0.226833 0.220450 0.222948 0.217597 

11 0.266667 0.216167 0.225700 0.223361 0.225435 

12 0.245000 0.213333 0.223050 0.223543 0.220199 

Mean F 0.245833 0.223556 0.221790 0.221959 0.221967 

Std Dev 0.018056 0.007473 0.003321 0.001545 0.002441 

Std Error 0.005212 0.002157 0.000959 0.000446 0.000705 

Fanalytical 0.2187 0.2187 0.2187 0.2187 0.2187 

%Error 12.406683 2.220203 1.412742 1.490207 1.493675 

 

 

 
 

Figure 4.8 Change of average view factor with sampling number 
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Figure 4.8 shows the average view factor as a function of the number of rays, 

where the error bars represent their standard deviations. It is noticeable that the average 

view factor values fluctuate less compared to view factor values of the parallel rectangles. 

The percent error has the same profile. The reasonable sampling rate for this case is 104, 

because the view factor average values and their standard deviations, as well as the error 

are converged at this value. 

 

 
Figure 4.9 Change of percentage error with sampling number 

 

The effect of the rectangles’ dimensions on view factor, specifically the h/w ratio, 

is also investigated. The results are detailed in table and figure, showing that the average 
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Table 4.4 View Factors for different rectangle dimensions 
 h/w 

Run 1.0 1.5 2.0 2.5 3.0 3.5 

1 0.221892 0.247080 0.259383 0.268727 0.275050 0.274044 

2 0.219300 0.243660 0.260983 0.270260 0.267558 0.276206 

3 0.227242 0.247080 0.258275 0.270291 0.269942 0.273187 

4 0.215125 0.247080 0.262108 0.260344 0.271200 0.273187 

5 0.222967 0.250358 0.262225 0.267273 0.275717 0.269248 

6 0.224033 0.243667 0.259800 0.267922 0.266842 0.270155 

7 0.220642 0.245670 0.262367 0.266995 0.272658 0.274875 

8 0.218150 0.244012 0.258433 0.266995 0.270058 0.276685 

9 0.222925 0.244012 0.254233 0.270313 0.272642 0.276999 

10 0.220450 0.248107 0.259908 0.270260 0.268792 0.272384 

11 0.225700 0.248107 0.254850 0.263211 0.271467 0.277737 

12 0.223050 0.242250 0.261442 0.268322 0.265950 0.271606 

Mean F 0.221790 0.245924 0.259501 0.267576 0.270656 0.273859 

Std Dev 0.003321 0.002418 0.002708 0.003066 0.003082 0.002740 

Std Error 0.000959 0.000698 0.000782 0.000885 0.000890 0.000791 

Fanalytical 0.2187 0.246 0.2592 0.2664 0.2707 0.2734 

%Error 1.412742 0.031064 0.115966 0.441473 0.016131 0.168038 

 

 

 
 

Figure 4.10 Change of average view factor with different rectangle dimensions 
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4.3 COAXIAL DISKS 

Unlike the previous geometries, a circular geometry with tetrahedral (TET4) 

elements are used in view factor calculations.  

 
Figure 4.11 Geometry of coaxial disks 

Coaxial disk geometries with radii r1 and r2, on a distance, d, are considered (see Figure 

4.11), and the influence of the radii and distance on the view factor is investigated. N=104
 

rays are used in calculations.  

Table 4.5 View factors for r1=2, r2=2, d=2 
 Runs 

F12 
0.371386 0.371386 0.371386 0.371386 0.371386 0.371386 

0.370245 0.370245 0.370245 0.370245 0.370245 0.370245 

Mean F 0.37128125 

Std Dev 0.00058474 

Std Error 0.00016880 

Fanalytical 0.38196601 

%Error 2.79730681 

 

Table 4.6 View factors for different separation distance 

 
 

d/r 

1.0 2.0 3.0 4.0 5.0 6.0 

F12 0.373800 0.164323 0.088396 0.053096 0.036141 0.024605 

Fanalytical 0.381966 0.171573 0.091673 0.055728 0.037088 0.026334 

%Error 2.137890 4.225537 3.575299 4.723991 2.553609 6.567694 

 

d 

r1 

r2 
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Figure 4.12 Change of average view factor with distance to radius ratio 

Table 4.7 View factors for different disk dimensions 

 
r1/r2 

1.0 2.0 3.0 4.0 5.0 6.0 

F12 0.167250 0.108821 0.070338 0.045622 0.030225 0.022339 

Fanalytical 0.171573 0.117218 0.075049 0.049485 0.034315 0.024936 

%Error 2.519565 7.163402 6.278143 7.806354 11.91935 10.41428 

 

 
Figure 4.13 Change of average view factor with disk radius 
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4.4 COAXIAL CYLINDERS 

Radiation surfaces are not necessarily always flat, they might have convex or/and  

concave areas. To study these animalities in the surfaces, coaxial cylinders, are 

considered in the calculations, shown in Figure 4.14. For these calculations N=104 rays 

are used. 

 

Figure 4.14 Geometry of coaxial cylinders 

 

Table 4.8 View factors for r1=1, r2=2.5, h=6 

 F12 F21 

Runs 

0.829912 0.829912 0.829912 0.322021 0.323177 0.322091 

0.827846 0.827846 0.827846 0.323519 0.322761 0.323082 

0.829912 0.829912 0.829912 0.322639 0.322345 0.322516 

0.827846 0.827846 0.827846 0.321702 0.322905 0.323154 

Mean F 0.8278304 0.3226572 

Std Dev 0.0012667 0.0005473 

Std Error 0.0003656 0.0001581 

Fanalytical 0.8296384 0.3318552 

%Error 0.2179272 2.7719262 
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4.5 CONCENTRIC SPHERES 

 The suggested model is also tested for concentric spheres, shown in Figure 4.15. 

Since inner sphere is within the outer sphere, it is expected that view factor between 

exterior of the inner sphere and interior of the outer sphere is equal to 1. Calculations 

were performed using N=104 rays, and the results are presented in Table 4.9. 

 
Figure 4.15 Geometry of concentric spheres 

 

Table 4.9 View factors for r1=1, r2=3  
Runs 

F12 
1.00361 1.00466 1.00016 1.00353 1.00163 1.0063 

1.00175 1.00025 1.00451 1.00438 1.00264 1.00344 

Mean F 1.003071667 

Std Dev 0.001854041 

Std Error 0.000535216 

Fanalytical 1.0 

%Error 0.307166667 
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4.6 CASE STUDY: MODELING OF PELLET HEATING EXPERIMENT 

 To test the performance of view factor model and radiative heat transfer model, 

ongoing pellet heating experiment at USC is modeled in MOOSE. The pellet is heated by 

joule heating via electrodes touching the pellet on opposite sides. Shown in Figure 4.16 is 

the half geometry of the experimental setup. 

 
 

Figure 4.16 Geometry representation of experimental setup 

 

 

There are three layers of materials around the pellet in purpose of insulation and 

stability. The dimensions and materials used in layers is given in Table 4.10. 

Table 4.10 Geometrical parameters for experimental setup  
Material Inner Radius(m) Outer Radius (m) Height (m) 

Pellet UO2 - 0.005461 0.01 

Tube 1 BN 0.005588 0.007747 0.01 

Susceptor Mo 0.007874 0.009652 0.01 

Tube 2 BN 0.009906 0.011760 0.01 
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Temperature dependent thermal properties of UO2 are used in calculations. A 

material model, using the equations given in Table 4.11, is implemented in MOOSE for 

UO2. For other materials constant thermal properties given in Table 4.12 are used. 

 

Table 4.11 Temperature Dependent UO2 Thermal properties [13] 

Thermal 
Conductivity 

(W/mK) 

100

7.5408 + 1.7692 ∗ 10−2 𝑇 + 3.6142 ∗ 10−6 𝑇2

+ 2.0239
exp (−16350/𝑇 ) 

𝑇2.5
 

Density 
(kg/m3) 

11049 − 0.334 ∗ 𝑇 + 3.9913 ∗ 10−5 𝑇2 − 2.7649 ∗ 10−8 𝑇3 

Specific Heat 
(J/kgK) 

193.218 − 2.6438 ∗ 106 𝑇−1 + 0.325711 𝑇 − 3.11971 ∗ 10−4 𝑇2

+ 1.1681 ∗ 10−7 𝑇3 − 9.7523 ∗ 10−12 𝑇4 

 

Table 4.12 Thermal properties of materials [14,15]  
Thermal Conductivity 

(W/mK) 
Density  
(kg/m3) 

Specific Heat 
(J/kgK) 

BN 80 1900 810 

Mo 138 10220 250 

 

In the MOOSE model, the geometry is surrounded by a hemisphere surface to 

define ambient temperature (320 K) as boundary condition, see Figure 4.17. 

 

Figure 4.17 Computation model of experimental setup 

 

 

Wall 
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Heat is generated in the pellet region by joule heating as a result of the voltage 

difference between electrodes. 

Electrical Fourier Equation, 

 𝐽𝑥 = 𝜎𝑥

𝛥𝑉

𝛥𝑥
 (43) 

where  𝐽𝑥 :  current flux [𝐴𝑚𝑝/𝑚2] 

           𝜎𝑥 :  electrical conductivity, 1/𝜌𝑥 , [1/𝛺𝑚] 

           𝜌𝑥 :  electrical resistivity, 1/𝜎𝑥 , [𝛺𝑚] 

           𝛥𝑥 :  spatial coordinate in the direction of current flow [𝑚] 

           𝛥𝑉 :  voltage difference [𝑣𝑜𝑙𝑡]  

Joule Heating, 

 𝑄 = 𝐽2𝜌 (44) 

where  𝑄 :  joule heating power [𝑊/𝑚3] 

 

Then heat conduction equation with joule heating source term becomes, 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
− 𝛥 ∙ 𝑘𝛥𝑇 − 𝑄 = 0 (45) 

 

Electrical conductivity of UO2 is found from literature and assumed as constant. [16] 

𝜎𝑥 = 1 𝛺𝑚−1 

 

The applied voltage on electrodes is equal to 10V and constant during experiment. 

The volumetric heat generation is calculated as 82 MW/m3 by equations (43) and (44) 

according to constant. 
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MOOSE currently has a gap heat transfer model, which is used to calculate heat 

transfer between fuel pellet surface and cladding inner surface. It is known that 

MOOSE’s GapHeatTransfer can calculate heat transfer in small gaps accurately, so It can 

be used to verify RadiativeHeatFluxBC results.  

For verification, the wall is removed from the geometry shown in Figure 4.17. 

Only concentric cylinders are used in simulations. A constant volumetric heat generation 

is defined in pellet. According to the results shown in Figure 4.18, the centerline 

temperature profiles are overlapping well. It can be concluded that RadiativeHeatFluxBC 

model is able to calculate accurately the radiative heat transfer between surfaces. 

 

 

 

Figure 4.18 Pellet centerline temperature for only concentric cylinders 
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Next, calculations are repeated for the actual geometry shown in Figure 4.17. 

Constant voltage of 10V is used for this calculations. The centerline temperature change, 

radial and axial temperature profiles are shown in following figures. 

 

 
 

Figure 4.19 Pellet centerline temperature for computational geometry 

 

 

 

Figure 4.20 Axial temperature profile in pellet 
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Figure 4.21 Radial temperature profile in pellet 

 

All surfaces shown in Figure 4.17 are considered as radiating. The lines labeled 

by “Mixed” in figures represent the results obtained from using GapHeatTransfer model 

in concentric cylinders and RadiativeHeatFluxBC model for top surfaces in the same 

simulation. Mixed results overleap well with the RadiativeHeatFluxBC results. 

 GapHeatTransfer model makes assumptions for radiation heat transfer 

calculations. These are diffusion approximation and infinite parallel planes. These 

assumptions are reasonable for small gap geometries which view factor is almost unity. 

For larger gap geometries, view factor is smaller than 1, and thus GapHeatTransfer model 

might not provide accurate results. RadiativeHeatFluxBC model is more flexible and can 

provide more accurate results because it counts view factors.  

In figures, RadiativeHeatFluxBC results are higher compared to GapHeatTransfer 

model results. The difference purely results from view factors. If the view factor is 

smaller than 1, less heat will be removed from surface. This causes an increase in 

temperature levels.
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CHAPTER 5 

 

CONCLUSION 
 

Two new model have been implemented to MOOSE for view factor and radiative 

heat transfer calculations. In view factor model, the MC method is used and the user 

object “ViewFactor” is created. In radiative heat transfer model, calculations are done by 

assuming surfaces are black, and a boundary condition model “RadiativeHeatFluxBC” is 

added to MOOSE. 

The MC method provides flexibility to calculate view factors for any kind of 

geometry. Although there are some drawbacks of MC method such as statistical error and 

computing time, by using high performance computers they could be minimized. 

There is still work that can be done to improve implemented models. The view 

factor model is currently based on MC method. Other methods can be added as future 

work to give user option. The radiative heat flux model is calculating heat transfer by 

assuming surfaces are black. As a future work, it can be modified in order to use for 

radiative heat exchange between gray or diffuse surfaces, considering absorption, 

transmission and reflection. 
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