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Abstract

Survival analysis is an important branch of statistics that analyzes the time to event

data. The events of interest can be death, disease occurrence, the failure of a machine

part, etc.. One important feature of this type of data is censoring: information on

time to event is not observed exactly due to loss to follow-up or non-occurrence

of interested event before the trial ends. Censored data are commonly observed

in clinical trials and epidemiological studies, since monitoring a person’s health over

time after treatment is often required in medical or health studies. In this dissertation

we focus on studying multivariate interval-censored data, a special type of survival

data. By saying multivariate interval-censored data, we mean that there are multiple

failure time events of interest, and these failure times are known only to lie within

certain intervals instead of being observed exactly. These events of interest can be

associated because of sharing some common characteristics. Multivariate interval-

censored data draw more and more attention in epidemiological, social-behavioral

and medical studies, in which subjects are examined multiple times and several events

of interest are tested at the observation times.

There are some existing methods available in literatures for analyzing multivari-

ate interval-censored failure time data. Various models were developed for regression

analysis. However, due to the complicated correlation structure between events, an-

alyzing such type of survival data is much more difficult and new efficient method-

ologies are needed.

Chapter 1 of this dissertation illustrates the important concepts of interval-censored

data with several real data examples. A literature review of existing regression models
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and approaches is included as well. Chapter 2 introduces a new normal-frailty mul-

tivariate probit model for regression analysis of interval-censored failure time data

and proposes an efficient Bayesian approach to get parameter estimates. Simulations

and an analysis on a real data set are conducted to evaluate and illustrate the perfor-

mance of this new method. This new approach is proved efficient and has accurate

estimations on both the regression parameters and the baseline survival function.

Several appealing properties of the model are discussed here. Chapter 3 proposes a

more general multivariate probit model for multivariate interval-censored data. This

new model allows arbitrary correlation among the correlated survival times. A new

Gibbs sampler is proposed for the joint estimation of the regression parameters, the

baseline CDF, and the correlation parameters. Chapter 4 extends the normal frailty

multivariate probit model to allow arbitrary pairwise correlations. Simulation stud-

ies are conducted to explore the underlying relationship between the normal frailty

multivariate probit model and the general multivariate probit model.
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Chapter 1

Introduction

1.1 Data Structure

Survival analysis is a branch of statistics that specifically deal with data with outcome

variable being the time until the occurrence of an event of interest. For example, if the

event of interest is heart attack, then the survival time can be the time in years until a

person experiences a heart attack. In survival analysis, subjects are usually followed

up over a specified time period and the focus is on the time at which the event of

interest occurs. However, it is often not observed directly. Interval censoring occurs

when subjects in the study are examined only at discrete observational times and the

status of event of interest is known at those observational times. Consequently, the

failure time of interest is not observed exactly but is known only to take place within

some time interval. Data of this type usually consist of left-, interval-, and right-

censored observations. In many clinical trails, patients are scheduled several visits

during the study period and they are examined whether a certain event of interests

(e.g. failure) is occurred at the observation time. However, the event may occur before

the first visit, which results in a left-censored observation. Or in between visits, or

we only know that the true event time is greater than last observation time at which

the event hasn’t appeared yet and less than the first observation time at which the

event status has changed, which contributes to interval-censored data. Or the event

after the last visit, which is ended of being a right-censored observation. Unavailable

exact observed time of event caused difficulty in analyzing interval-censored data.

1



1.1.1 Case I interval-Censoring and Case II interval-Censoring

If each subject is observed only once in a study, the failure time of interest is known

only to fall before or after the observation time point. This type of data are referred to

as current status data and only contain left-censored or right-censored observations.

Current status data is a special case of general interval censored data.

This dissertation studies general type of interval-censored data, which contain left-

, interval-, and right-censored observations. Below we provide three real life examples

of general interval-censored data.

1.1.2 Interval-Censored data examples

Breast Cancer Study

A dataset on breast cancer was studied by Finkelstein and Wolfe (1985) from a

study on breast cancer patients at the Joint Center for Radiation in Boston between

1976 and 1980. Two types of treatments were compared in this study: radiotherapy

(RT) alone and radiation therapy plus adjuvant chemotherapy (RCT). Ninety-four

breast cancer patients were involved, with 46 of them treated by radiotherapy only

and the rest of them treated by the combined treatments of radiation and adjuvant

chemotherapy. In this study, patients were scheduled to visit the clinicians every 4

to 6 months. However, actual visit times varied from patient to patient. Some of

the patients missed the scheduled visits. During each visit, physicians recorded the

cosmetic appearance such as breast retraction, a response which was highly correlated

with a negative impact on overall cosmetic appearance. The failure time of interest

was the time until breast retraction.

The data for the interval-censored event time of breast retraction are shown in Ta-

ble 1.1. There are 38 patients with intervals without a right endpoint. These patients

did not experience breast retraction during the study period and they represented

right censored observations. For those with starting point at 0, such as (0, 8], it means

2



Table 1.1: Event intervals for breast cancer patients treated by radiotherapy vs radiother-
apy and chemotherapy

Therapy Event Intervals
RT (45,] (25, 37] (37,] (6,10] (46,] (0,5] (0,7] (26,40] (18,]

(46,] (46, ] (24,] (46, ] (27,34] (36,] (7,16] (36,44] (5,11]
(17, ] (46, ] (19, 35] (7, 14] (36, 48] (17, 25] (37, 44] (37, ] (24, ]
(0, 8] (40, ] (32, ] (4, 11] (17, 25] (33, ] (15, ] (46, ] (19, 26]
(11, 15] (11, 18] (37, ] (22, ] (38, ] (34, ] (46, ] (5, 12] (36, ]
(46, ]

RCT (8, 12] (0, 5] (30, 34] (0, 22] (5, 8] (13, ] (24, 31] (12, 20] (10, 17]
(17, 27] (11, ] (8, 21] (17, 23] (33, 40] (4, 9] (24, 30] (31, ] (11, ]
(16, 24] (13, 39] (14, 19] (13, ] (19, 32] (4, 8] (11, 13] (34, ] (34, ]
(16, 20] (13, ] (30, 36] (18, 25] (16, 24] (18, 24] (17, 26] (35, ] (16, 60]
(32, ] (15, 22] (35, 39] (23, ] (11, 17] (21, ] (44, 48] (22, 32] (11, 20]
(14, 17] (10, 35] (48, ]

that the breast retraction happened before the first time examination and the failure

time is left censored. For the rest of the data, taking the observation (25, 37] as an

example, it represents that the breast retraction did not appear at month 25 but is

shown up by month 37, so the exact breast retraction time lies between 25 and 37

months.

Respiratory Symptoms in Aluminum Potroom Workers Study

A longitudinal study of respiratory symptoms among 1301 aluminum potroom work-

ers was conducted in the Nordic countries between 1986 and 1989. The workers were

scheduled for at least two health examinations and asked to report in questionnaires

about respiratory symptoms. If the workers reported wheezing and dyspnea, then

they were considered symptomatic. Investigators were interested in analyzing the

time from employment to the development of asthmatic symptoms (wheezing and

dyspnoea).

In this study, the workers leaving the potroom or ending the survey without respi-

ratory symptoms have right-censored observations. The workers that developed asth-

matic symptoms between two consecutive health examinations have interval-censored

observations. More details can be found in Samuelsen and Kongerud (1994).

3



Hemophilia Data

The Hemophilia data were collected from 262 patients with Type A or B hemophilia

at the Hospitals Kremlin Bicetres and Coeur des Yvelines in France between 1978

and 1988. Twenty-five of the persons were detected to be infected with HIV on their

first lab test. By August 1988, 197 of the hemophiliacs had become infected and

43 of these showed clinical symptoms (AIDS, lymphadenopathy or leukopenia). All

these individuals in this study were believed to have become infected from infusions of

contaminated blood factor they received periodically to treat their hemophilia. Blood

samples were periodically collected and stored to decide a time interval during which

the infection occurred. The infection times are censored into the interval between the

last negative and first positive lab result. More information about this data can be

found in De Gruttola and Lagakos (1989).

1.2 Motivating Examples

Multivariate failure time data are commonly encountered in biomedical areas when

one is interested in several failure time events. For example, the study subject may

experience multiple events. This type of data can also arise when the failure times

are clustered, such as in family studies. The key feature of this type of data is

that the failure times are related to each other. These multivariate events can be

interval-censored, the exact times of events are not known since the events could have

happened any time during two adjunct visits. This dissertation will focus on analyzing

multivariate interval-censored data. Two real life data examples are presented below

to illustrate multivariate interval censored data.

1.2.1 AIDS Clinical Trail Data

One goal of the ACTG 181 study is to determine the natural history of the oppor-

tunistic infection cytomeglovirus (CMV) in an HIV-infected individual. CMV virus

4



(shedding of the virus), were tested during scheduled clinic visits in the blood and in

the urine. The question of interest in this study is whether the stage of HIV disease

at study entry contributed to an increased risk for CMV shedding in either the blood

or the urine. Samples from urine and blood were collected every 4 weeks and 12

weeks respectively. Since the samples come from the same patient, the outcomes are

correlated. The real sample collection time differed from patient to patient. Some

patients were observed missed their visits and came back with changed CMV shed-

ding status. The failure time was only known to be between the times specified by

the last negative and the first positive assessment, yielding, hence, interval-censored

observations. Left-censored shedding times resulted from those patients who were

already shedding at the time of the study. Right-censored times occured where some

patients had not yet started shedding by the end of the follow-up period. More details

can be referred to Goggins and Finkelstein (2000).

1.2.2 Sexually Transmitted Infection (STI) data

STI data collected on young women as a part of the Young Women’s Project (YWP)

is analyzed as an illustration for the proposed model. The details for study design

and folllow-up protocol were previously described, see Tu et al. (2009) and Tu et al.

(2011). In this study, infections with Chlamydia trachomatis (CT), Neisseria gon-

orrhoeae (GC) and Trichomonas vaginalis (TV) are the three outcomes of interest.

This analysis focuses on the time to first STI infection for each of these three types.

Three hundred and eighty seven adolescent young women aged 14 to 17 years were

observed between 1999 and 2007 in this observational study. At enrollment, partic-

ipants were interviewed and asked to complete a detailed questionnaire about their

sexual behaviors such as the number of sex partners, age of first sex, etc.. Patients

were examined every three months and actual examination times differed from pa-

tient to patient since some of them missed their visits. As a result, the exact times

5



of infections were not directly observable since the infections could have happened at

any time in the interval between the last visit with negative result and the first visit

with a positive diagnosis. In this case, the time to infection was interval-censored.

The failure times were right-censored at the last visit time if no infection was detected

throughout the follow-up, or left-censored at the beginning of the study if a patient

is detected positive at the time of her first testing.

1.3 Commonly Used Models

Let T denotes a non-negative continuous random variable, representing the survival

time until the occurrence of an event. Its probability density function (p.d.f.) is

denoted by f(t) and cumulative distribution function (c.d.f.) is F (t) = Pr{T ≤ t}.

Then the survival function of T is defined as the probability that T exceeds a time t,

given by

S(t) = Pr{T > t} = 1− F (t) =
∫ ∞
t

f(s)ds, 0 < t <∞.

The hazard function, or instantaneous rate of occurrence of the event, is defined as

λ(t) = lim
dt→0

Pr(t ≤ T < t+ dt|T ≥ t)
dt

.

The relationships between the survival function and the hazard function can be writ-

ten as

λ(t) = f(t)
S(t) = −d logS(t)

dt
,

and correspondingly,

S(t) = e−
∫ t

0 λ(s)ds = e−∧(t),

and

f(t) = λ(t)e−∧(t),

with ∧(t) =
∫ t

0 λ(s)ds, 0 < t <∞, as the cumulative hazard function of T .

In survival analysis study, scientists are interested in investigating the association

between the survival time of patients and predictor variables. Below is a short review

6



of a few popular statistical models that are widely known for analyzing failure time

data.

1.3.1 The Proportional Hazards Model

The Cox proportional-hazards (PH) model Cox (1972) specifies the hazard function

h(t), which can be interpreted as the risk of dying at time t. It is defined as below,

h(t|x) = exp(x′β)h0(t),

where x represents the vector of covariates, h0(t) is baseline hazard function and β

measures the impact of covariates.

The quantities exp(β) is called hazard ratio (HR). If the hazard ratio for the ith

covariate is greater than one, then it indicates that as the value of the ith covariate

increases, the event hazard increases and the length of survival decreases. Corre-

spondingly, if the hazard ratio is smaller than 1, then the event hazard decreases

and the length of survival increases with increasing value of ith covariate. And if the

hazard ratio is 1, then there’s no effect in that covariate. In the case of 2-sample

problem, i.e., the ratio of hazards between the treatment group (x = 1) and the

control group (x = 0), the ratio of the hazard functions has the form:

h(t;x = 1)
h(t;x = 0) = eβ.

Thus the ratio indicates that the covariates has multiplicative effects on the hazard

function under the PH model.

The availability of the partial likelihood approach proposed by Cox (1975) made

the proportional hazards model the most popular model for analyzing right-censored

data in survival analysis. The approach is efficient since the estimator of β is asymp-

totically equivalent to the estimator of β from the full likelihood method, and β can

be estimated without specifying the unknown baseline hazard function. The partial
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likelihood is defined as below,

L(β) =
k∏
j=1

(
h0(tj) exp(x′jβ)∑

l∈R(tj) h0(tj) exp(x′lβ)

)δj

=
k∏
j=1

(
exp(x′jβ)∑

l∈R(tj) exp(x′lβ)

)δj
,

where R(t) = {j : tj ≥ t} is the set of individuals who are "at risk" for failure at time

t and δj = 0 if tj is a censoring time, 1 otherwise.

1.3.2 The Accelerated Failure Time model

The Accelerated Failure Time model (AFT model) assumes that the effect of a co-

variate is to accelerate or decelerate the life course of a disease by some constant.

The failure time T can be modeled as follows:

log(T ) = x′β + ε,

where x is covariate vector and ε is the disturbance term. By assuming different

distributions for ε, the failure time T has different parametric distributions. Table

1.2 gives some of these distributions. Maximum likelihood approach can be applied

for estimation purpose.

Table 1.2: Distributions for T with different ε under AFT models

Distribution of ε Distribution of T
extreme values (2 parameters) Weibull
extreme values (1 parameter) exponential
log-gamma gamma
logistic log-logistic
normal log-normal

1.3.3 The Proportional Odds Model

The proportional odds (PO) model was proposed by Bennett (1983). It specifies

F (t;x)
1− F (t;x) = F0(t;x)

1− F0(t;x)e
x′β ,
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or

logitF (t;x) = logitF0(t) + x′β ,

where F0(t) is an unknown baseline cumulative distribution function. Thus, the

PO model assumes that each explanatory variable exerts the same effect on each

cumulative logit. The ratio of the hazards changes with time t under PO model.

1.3.4 The Additive Hazards Model

The additive hazards model is given by

h(t;x) = h0(t) + x′β,

where h0(t) is an arbitrary unspecified baseline hazard function. This model specifies

that the effects of the covariates are additive rather than multiplicative as in the Cox

model. The model was developed first by Aalen (1989).

1.4 Existing Regression Analysis approaches

1.4.1 Regression analysis of Interval-Censored Data

Many methods have been developed for analyzing interval-censored data in the past

two decades. The primary goal in these regression analyses is to estimate the covariate

effects on the failure time. Semiparametric regression models are popular since they

enjoy great flexibility as compared to parametric models by allowing the baseline

survival function to be unspecified.

Finkelstein (1986) proposed a maximum likelihood estimation method under the

proportional hazards model for interval censored data. His method based on a

Newton-Raphson algorithm provides estimates for covariate effects that are com-

patible with those from the Cox PH model, and the score test based on Finkelstein’s

method can be used for hypothesis testing. Among others Satten (1996) proposed
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a marginal likehood approach to fit the proportional hazards model; Betensky et

al. (2002) adopted local likelihood methods for the proportional hazards regression

analysis; Cai and Betensky (2003) developed a new approach for estimating the haz-

ard function for interval censored survival data by applying a piecewise linear spline

and maximizing the penalized likelihood by a mixed model-based approach; Gog-

gins et al. (1998) proposed a Markov Chain Monte Carlo expectation-maximization

(EM) algorithm for fitting the proportional hazards model, Goeteghebeur and Ryan

(2000) developed an EM algorithm estimating the covariate effects and baseline haz-

ard function by maximizing a Cox partial likelihood and using the Breslow estimator.

Shao et al. (2014) incorporated a semiparametric varying-coefficient model for inter-

val censored data with a cured proportion. Wang et al. (2016) presented a novel EM

algorithm relied on a two-stage data augmentation for analyzing interval-censored

data under the PH model.

The proportional odds model were studied by Huang and Rossini (1997) and Shen

(1998), both of which applied sieve estimation procedures. The former took use of a

piecewise linear function, while the latter employed a monotone spline to approximate

the baseline log odds function. Rabinowitz et al. (2000) applied conditional logistic

regression by assuming that all examination times, even after the event, are recorded.

Under the accelerated failure time model framework, Rabinowitz et al. (1995) and

Betensky et al. (2001) explored estimating equation approaches and score statistics.

Li and Pu (2003) applied a U-statistic based on ranks to estimate covariate coefficients

and Xue et al. (2006) adopted the sieve estimation idea. Zeng et al. (2006) proposed

a maximum likelihood approach under the additive hazards model. More recent

research includes Zeng et al. (2016), who devised an EM-type algorithm through

semiparametric transformation models, and Zhang and Zhao (2013) studied rank-

based estimation methods for linear transformation models.
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1.4.2 Regression Analysis of Multivariate Interval-Censored Data

There are some existing methods available in literatures for analysing multivariate

interval-censored data. Wei et al. (1989) proposed a marginal proportional hazards

model. This method adopted the working interdependence assumption among the

multivariate failure times, and it inherits the advantages of Cox model. Kim and

Xue (2002) extended this marginal approach by assuming the marginal distribution

for each event is based on a discrete analogue of the proportional hazards model.

Goggins and Finkelstein (2000) also outlined a method based on the discrete pro-

portional hazards model. Chen et al. (2007) developed the proportional odds model

for multivariate interval censored failure time data. Shen (2015) considered a gen-

eral class of additive transformation model. Another popular approach for handling

correlated failure time data is through frailty models. Models in this class assume

that, conditional on some unobserved quantity, which is called ’frailty’, the lifetimes

are independent. When the unknown random effect is integrated out, the lifetimes

become dependent; the frailty terms are introduced into models for survival data to

represent the dependence. See more details in Hougaard (2000), Ibrahim et al. (2008)

and Wienke (2012). For example, Oakes (1989) considered the class of bivariate sur-

vival distributions by inducing frailties. Komarek and Lessaffre (2007) proposed a

Bayesian accelerated failure time model with frailty. Lin and Wang (2011) developed

a Bayesian proportional odds model with a gamma frailty. Zuma (2007) explored

the Gamma-frailty Weibull model. Wang et al. (2015) studied the gamma-frailty

proportional hazards model by using the EM algorithm for bivariate current status

data. Gamage et al. (2018) generalized this method for correlated bivariate interval-

censored data. Chen et al. (2009). studied the PH model with a normal frailty and

a probit model with normal frailty was proposed by Dunson and Dinse (2002) for

analyzing multivariate case I interval-censored data.
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1.5 Outline of The Dissertation

The remainder of this dissertation contains three main parts about statistical anal-

ysis of multivariate interval censored failure time data. In chapter 2, we discuss the

regression analysis under the normal frailty probit model from Bayesian perspectives.

This new model assumes that there exists a common but unobserved frailty, and the

correlated failure times are independent given the frailty. The frailty term induces

correlations among the multiple survival times. A Bayesian approach is developed

for estimating the covariate effects under this normal frailty probit model for multi-

variate interval censored data. Simulation studies and analysis of a real data set are

conducted to evaluate the performance of the proposed method.

In chapter 3, a Bayesian estimation approach for regression analysis of multivariate

interval censored data under a semiparametric multivariate probit model is developed.

The association structure between multiple failure times is modeled through the co-

variance matrix of correlated random errors. This model allows arbitrary correlations

among multiple failure times. An efficient Gibbs sampling technique is developed for

the estimations on covariate effects and the correlations. Extensive simulation study

is conducted to assess the performance of the proposed method.

Some future work are discussed in chapter 4.
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Chapter 2

Bayesian regression analysis of multivariate

interval-censored failure time data under the

normal frailty probit model

Summary: Interval-censored data naturally arise in many epidemiological, social- be-

havioral, and medical studies, in which subjects are examined multiple times and

the failure times of interest are not observed exactly, but fall within some intervals.

Correlated survival times arise when the subject experiences several events, and the

events are potentially correlated. Frailty modeling is a popular approach for this

type of data since it acknowledges this data specialty and directly models the corre-

lation structure through frailty terms. In this chapter, a new frailty probit model is

proposed for the regression analysis of multivariate interval-censored data, and this

model allows explicit form of the pairwise statistical associations among the failure

times. Monotone splines are applied for the purpose of approximating the unknown

functions, significantly reducing the number of unknown parameters while retaining

modeling flexibility. An efficient Bayesian estimation approach is proposed under

this model and allows joint estimation of regression parameters and other secondary

parameters. The proposed method is evaluated by extensive simulation studies and

illustrated by a real-life application.
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2.1 Introduction

Interval-censored failure time data are commonly observed when subjects undergo

periodic follow-ups in clinical studies. The failure time of interest is not observed

exactly but is known to fall within some interval. (Kalbfleisch and Prentice, 2002;

Sun, 2006). Multivariate interval-censored data commonly arise when there are mul-

tiple failure time events and only interval-censored data are available for each failure

time. Furthermore, these events of interest are typically correlated because of sharing

some common characteristics. One example of multivariate interval-censored data in

the literature is the AIDS clinical trial data, where the occurrences of bacterial and

viral infections were the correlated interval-censored events of interest (Betensky and

Finkelstein, 1999). Another example is sexually transmitted infection (STI) data,

where the times to first infection with Chlamydia trachomatis (CT), Neisseriagonor-

rhoeae (NG), and Trichomonas vaginalis (TV) are the endpoints of interest (Tu et al.,

2009). These concurrent infections with multiple organisms are correlated, resulting

in multivariate interval-censored data. Ignoring such correlation will lead to biased

estimation. With the correlation structure among multiple failure events, the anal-

ysis for the interval-censored data analysis becomes very complicated. Therefore, a

model that can efficiently estimate the covariate effects under the association struc-

ture for multiple failure times is in need, and method on estimating the correlations

for multivariate interval-censored data is desirable.

There is a substantial literature on the use of frailty for multivariate failure time

data. For multivariate right-censored data, existing work includes Oakes (1989),

Klein (1992), Andersen et al. (1997), Cui and Sun (2004), Rondeau et al. (2003) and

Yin and Ibrahim (2005) among many others. For multivariate interval-censored data,

existing work includes Wen and Chen (2011), Dunson and Dinse (2002), Chen et al.

(2009), Lam et al. (2010), Henschel et al. (2009), Yavuz and Lambert (2016), Wen

and Chen (2013), Lin and Wang (2011), Komarek and Lessaffre (2007), Gamage et al.

14



(2018), Chang et al. (2007), Zuma (2007), Hens et al. (2009), and Wang et al. (2015).

This chapter discusses the fitting of a multivariate probit model with a normal

frailty term to interval censored data. The remaining of this chapter is organized

as follows. Section 2.2 presents the proposed model and its properties. Section 2.3

gives the details of the proposed approach, including the use of monotone splines to

approximate the unknown function, a data augmentation procedure, and the pro-

posed Gibbs sampler for posterior computation. Section 2.4 evaluates the proposed

method via a simulation study, and Section 2.5 provides a real-life application as an

illustration. Discussions are given in section 2.6.

2.2 Models and Properties

Let Fj(·|x) denotes the cumulative distribution function (CDF) of the failure time

of interest Tj given covariate vector x. The new normal-frailty multivariate probit

model specifies the conditional cumulative distribution function in the following form:

Fj(t|x, ζ) = Φ{αj(t) + x′βj + ζ},∀t ∈ (0,∞), (2.1)

where Φ(·) is the CDF of a standard normal random variable, βj is a vector of regres-

sion coefficients, ζ ∼ N(0, σ2) is the frailty term, and αj is an unknown nondecreasing

function with αj(0) = −∞ and αj(∞) =∞. The common frailty induces correlation

among those Tj’s. We can rewrite the model at the subject level as follows, with Tij

denoting the jth failure time for the ith subject, i = 1, ..., n and j = 1, ..., k.

αj(Tij) = −x′iβj − ζi + εij, (2.2)

where εijs are independent standard normal random variables, and ζi’s are frailties

that are normally distributed with mean 0 and variance σ2. These ζi’s show the

heterogeneity among the subjects.

The proposed normal frailty Probit model has a simple form but enjoys several

appealing properties. First, the marginal distribution of Tj is a semiparametric Probit
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model of Lin and Wang (2010), and thus the marginal and conditional distributions

of Tj belong to the same family. Second, the conditional covariate effects given the

frailty are proportional to the marginal covariate effects. Thus, we can estimate the

marginal covariate effects easily through this model and give marginal interpretations

for regression parameters. Third, the association between different failure times of

interest can be explicitly quantified via three nonparametric association measures in

simple form. Details of these properties are presented in section 2.2.2.

2.2.1 Marginal covariate effect

The proposed frailty multivariate probit model (2.1) essentially is an extension to

the semiparametric probit model of Lin and Wang (2010), with an extra frailty term

that adjusts the correlation between the multiple events. Given the frailty term

ζ, the coefficients βj can be interpreted as the conditional covariate effects on the

transformed failure time Tj. However, since the frailty is unknown, the use of marginal

covariate effects are preferred for interpretation purpose.

The marginal CDF of the failure time Tj can be obtained by integrating out ζ

from the conditional CDF (2.1):

F ∗j (t|x) = Pr(Tj ≤ t|x) =
∫

Φ
(
αj(t) + x′βj + ζ

)
π(ζ)dζ

= Φ{α∗j (t) + x′β∗j}, (2.3)

where α∗j (t) = θαj(t), β∗j = θβj and θ = (1+σ2)−1/2. From (2.3), we observe that the

failure time Tj follows a marginal semiparametric probit model. See Lin and Wang

(2010). The regression coefficients βj can be interpreted as the marginal covariate

effects β∗ up to a multiplicative constant θ. This relationship implies that the infer-

ences based on the conditional covariate effects β and the marginal covariate effects

β∗ will lead to the same conclusion. We can easily estimate the marginal covariate

effects through the conditional covariate effects obtained from this multivariate probit

model.
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2.2.2 Multiple Events Association

Measures of association are well studied and often applied to data that are completely

observed. Some methods also applied on right censored data (e.g. Clayton (1978),

Dabrowska (1986), Oakes (1982)). In this section, we applied three most widely

used statistical methods for modeling correlated responses under our proposed model:

Spearman’s rank correlation coefficient ρs, median concordance κ and kendall’s τ

(Kruskal (1958), Hougaard (2000)).

Now suppose we have two correlated failure times T1 and T2, and these two events

of interest have the same set of covariates x. The Spearman’s rank correlation coef-

ficient is defined as

ρs = 12
∫ 1

0

∫ 1

0
S(S−1

1 (u), S−1
2 (v)) du dv − 3,

where S(t1, t2) = P (T1 > t1, T2 > t2) is the joint survival function, S1 and S2 are the

marginal survival functions of T1 and T2 respectively. S−1
1 and S−1

2 are the inverse

functions of S1 and S2.

Median concordance by Kruskal (1958) is a nonparametric measure of association

between correlated random variables and is defined as below:

κ = E
[
sign

{
(T1 −M1)(T2 −M2)

}]
,

where sign(·) is the sign function taking 1 for positive values, 0 for zero and -1 for

negative values. M1 and M2 are the population medians of T1 and T2, respectively.

Kendall’s τ is another rank-based nonparametric measure which is defined as,

τ = E[sign{(Ti1 − Tj1)(Ti2 − Tj2)}],

where (Ti1, Ti2) and (Tj1, Tj2) are two independent and identically distributed copies

of (T1, T2) and sign(·) is the sign function.

Spearman’s rank correlation coefficient, median concordance and Kendall’s τ are

nonparametric methods and do not require specific forms of the distributions for the

17



correlated failure times. And they are invariant to marginal monotone transforma-

tions, which means ρs(T1, T2) = ρs(g1(T1), g2(T2)) for any two increasing (decreas-

ing) transformations g1 and g2. The normal-frailty multivariate probit model pro-

vides closed-form expressions for the statistical association between correlated failure

times in terms of the Spearman’s correlation coefficient ρs, median concordance κ

and kendall’s τ , defined as follows,

ρs = 6π−1 sin−1(ρ/2) = 6
π

arcsin
(

σ2

2(1 + σ2)

)
, (2.4)

κ = 2π−1 sin−1(ρ) = 2
π

arcsin
(

σ2

1 + σ2

)
, (2.5)

τ = 2π−1 sin−1(ρ) = 2
π

arcsin
(

σ2

1 + σ2

)
. (2.6)

The proof is sketched in the Appendix A. The association among the failure

times is explicitly quantified. As seen in (2.4), (2.5) and (2.6), the magnitude of

correlation depends only on the frailty variance, and a large variance will lead to

a strong dependence among these failure times. Another interesting finding is that

ρs, κ and τ are all free of covariates, indicating that the association does not rely

on the covariates. The values for Spearman’s rank correlation coefficient, median

concordance and Kendall’s τ both range from -1 and 1. A positive value indicates a

positive relationship between the responses while a negative value expresses a negative

association. A value of zero indicates that no association exists between the events.

2.3 Estimation Method

2.3.1 Modeling αj’s with monotone splines

From model (2.1), the unknown parameters involve the regression parameters βj , the

function αj’s and the frailty variance parameter σ2. For the jth event, the marginal

baseline CDF is represented by Fj0(t) = Φ(αj(t)) under (2.3), and thus αj can be

regarded as the transformed baseline CDF for the jth failure event with probit link.
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The well established partial likelihood method for Cox PH model allow one to con-

sistently estimate the covariate effects β, without the need of estimating the baseline

hazard function for right-censored data. However, those techniques no longer work

for interval censored data due to its complex data structure, nor those techniques ex-

ist under the probit model. Recall that the unknown function α(·) is a nondecreasing

function with an infinite dimension, the estimation under this model is challenging.

Inspired by Lin and Wang (2010), Wang and Dunson (2011), Wang et al. (2016), and

Cai et al. (2011), we approximate the unknown hazard function αj, j = 1, 2 · · · k,

through the use of monotone splines of Ramsay (1988) as follows,

αj(t) = γj0 +
m∑
l=1

γjlbl(t), j = 1, · · · k (2.7)

where bl’s are monotone integrated spline basis functions, each of which is nonde-

creasing from 0 to 1, γ0 is an unconstrained intercept of a monotone spline, and

γjl’s are the corresponding unknown spline coefficients, which are constrained to be

nonnegative to ensure the monotonicity of αj. The spline basis functions bl(t)’s are

piecewise polynomials, taking 0 at the very beginning stage, increasing from 0 to 1 in

the middle stage and staying plateau at the last stage. Here we adopt the same set

of monotone spline basis function for all events. This is reasonable because the same

observational process is available for all events for each subject. The two key factors

in determining these spline functions include the knot placement and the degree of

the splines. The placement of knots determines the shape of basis splines, with more

knots introducing greater modeling flexibility. The degree controls the smoothness of

the basis functions. For example, the degree of 1, 2, 3 represents linear, quadratic and

cubic basis functions, respectively. The spline basis functions will be fully determined

after the placement of knots and degree are specified, with the number of spline basis

functions equals the number of interior knots plus the degree of the splines. More

details about splines can be referred to Ramsay (1988).

The new presentation (2.7) for αj is very flexible as it can approximate any non-
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decreasing continuous function by using I spline basis functions. The infinite dimen-

sional parameter in αj is reduced to a finite number of parameters γjl’s. The number

of unknown parameters is significantly reduced while retaining modeling flexibility.

In general, even though using more knots leads to greater model flexibility, having

too many basis functions may cause over-fitting problem and increase computation

burden. Following the conclusions from Lin and Wang (2010) and Wang and Dunson

(2011), we adopt a moderate number (10-30) of knots to allow for efficient compu-

tation while maintaining modeling flexibility. A degree of 2 or 3 usually guarantees

adequate smoothness. As discussed in Cai et al. (2011), Lin and Wang (2010), Wang

and Lin (2011), and Wang and Dunson (2011), there are two common ways to design

knot placement: use equally spaced knots or place the knots based on the quantiles

of the observed interval within the data range.

2.3.2 Bayesian method

Let (Lij, Rij) denote the observed interval for Tij, for i = 1, . . . , n, j = 1, . . . , k.

Here, Lij and Rij denote the left and right bounds of the observed interval for

the jth event of the ith subject respecitively, with Lij < Rij. In our study, we

consider a case II interval-censored data, which includes left, interval, and right-

censored observations. To further illustrate, when Lij = 0, the failure time Tij is

left-censored; for those intervals with Rij = ∞, Tij’s are right-censored; the failure

time Tij is interval-censored otherwise. Define δij1, δij2 and δij3 to be the censoring

indicators representing left-, interval-, and right-censoring, respectively, with the con-

straint δij1 + δij2 + δij3 = 1. Then the observed data are ∆ = {(Lij, Rij,xi, δij1, δij2,

δij3); i = 1, 2, ...n; j = 1, 2, ...k}. In this chapter, we adopt non-informative censoring

assumption, which suggests that the failure time and the observation process that

generates the observed interval are independent, given the covariates information.

This assumption is common in survival literatures; see, e.g., Zhang and Sun (2010)
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among others. Therefore, the observed likelihood can be expressed as

Lobs =
n∏
i=1

∫
σ−1φ(σ−1ζi)

k∏
j=1

[Fj(Rij|xi, ζi)− Fj(Lij|xi, ζi)] dζi,

where φ(·) is the density function of a standard normal random variable. We can

further write down the likelihood as

Lobs =
n∏
i=1

∫
σ−1φ(σ−1ζi)

k∏
j=1

[Fj(Rij|xi, ζi)]δij1 [Fj(Rij|xi, ζi)− Fj(Lij|xi, ζi)]δij2

[1− Fj(Lij|xi, ζi)]δij3 dζi,

(2.8)

We observe that for multiple failure times when k > 1, the integrals in the observed

likelihood (2.8) do not have an explicit form, and this makes the observed likelihood

impossible to use directly for estimating the unknown parameters through Bayesian

methods. In order to facilitate the posterior computation, we consider the following

conditional likelihood Lcon by treating all frailties ζi’s as latent variables.

Lcon =
n∏
i=1

σ−1φ(σ−1ζi)
k∏
j=1

[Fj(Rij|xi, ζi)]δij1 [Fj(Rij|xi, ζi)− Fj(Lij|xi, ζi)]δij2

[1− Fj(Lij|xi, ζi)]δij3 .

(2.9)

Notice that by integrating the conditional likelihood (2.9) over ζi, we will obtain the

observed data likelihood (2.8).

In general, Bayesian methods require sampling all the unknown parameters from

their posterior distributions generated by combining the likelihood function and the

prior distributions. From the discussions before, Θ = (β′js, γ′js, σ2) is the set of

unknown parameters, where γj = (γj0, γj1, . . . , γjm)′. However, the conditional likeli-

hood is still too complicated for estimating the unknown parameters with any priors.

Motivated by Lin and Wang (2010), an additional data augmentation layer is added

by introducing normal latent variables,

zij ∼ N(αj(tij) + xiβj + ζi, 1), i = 1, · · ·n, j = 1, · · · k.
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where tij = RijI(δij1=1) +LijI(δij1=0), i.e., tij takes the right end point of the observed

interval when the failure time is left censoring and takes the left end point otherwise

for all i and j. Then the augmented data likelihood function can be written as:

Laug =
n∏
i=1

σ−1
ζ φ(σ−1

ζ ζi)


k∏
j=1

φ(zij − αj(tij)− xiβj − ζi)ICij(zij)

 , (2.10)

where Cij is the constrained space of zij,

Cij =


(0,∞) if δij1 = 1(
αj(Lij)− αj(Rij), 0

)
if δij2 = 1

(−∞, 0) if δij3 = 1

The likelihood (2.9) can be obtained after integrating out all zijs in (2.10). This

augmented data likelihood has a nice form for sampling.

The following priors are assigned in order to promote the posterior computation:

a multivariate normal prior N(β0,Σ0) for regression coefficients β and a normal prior

N(mj0, υ
−1
j0 ) for the unconstrained γj0. Independent exponential priors Exp(ηj) are

adopted for all spline basis coefficients γjl’s for each j, and further a Ga(ajη, bjη)

hyper prior is assigned for ηj. These prior specifications are appealing since it gives

conjugate forms for the conditional posterior distributions of γjl’s and ηj, and they

can shrink those small unnecessary spline coefficients to zero, serving to penalize the

large nonzero spline coefficients, and thus resulting in basis function selection, see Cai

et al. (2011). This nice property can alleviate the overfitting problems. A gamma

prior Ga(aζ , bζ) is given for frailty precision σ−2
ζ .

Gibbs sampling is a popular Markov chain Monte Carlo (MCMC) algorithm for

Bayesian computation (Geman and Geman, 1984). The idea is to generate posterior

samples by sweeping through each variable to sample from its conditional distribution

with the remaining variables fixed to their current values. We adopt Gibbs sampling

for our posterior computation. Based on the above assigned priors and the augmented

likelihood (2.10), the following Gibbs sampler is developed.
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1. Sample latent variables zij for i = 1, ..., n and j = 1, ..., k.

• if δij1 = 1, sample zij from N(αj(tij) + xiβj + ζi, 1)I(zij>0);

• if δij2 = 1, sample zij from N(αj(tij) + xiβj + ζi, 1)I(αj(Lij)−αj(Rij)<zij<0);

• if δij3 = 1, sample zij from N(αj(tij) + xiβj + ζi, 1)I(zij<0).

2. Sample γj0 from N(Ej0,W−1
j0 ) where Wj0 = υj0 + n and

Ej0 = W−1
j0

[
mj0υj0 +

n∑
i=1
{zij −

m∑
l=1

γjlbl(tij)− xiβj − ζi}
]
.

3. Sample all γjl’s for l = 1, 2...,m and j = 1, ..., k. For each l, let Wjl =∑n
i=1 b

2
l (tij).

• If Wjl = 0, sample γjl from Exp(ηj).

• If Wjl > 0, sample γjl from N(Ejl,W−1
jl )1(γjl > d∗jl), where

Ejl = W−1
jl

 n∑
i=1

bl(tij){zij − γj0 −
∑
jl′ 6=jl

γjl′bl′(tij)− xiβj − ζi} − ηj

 ,
d∗l = max(c∗l , 0) and c∗l = max

{(i,j):δij2=1}

[
−zij−

∑
jl′ 6=jl γjl′{bl′ (Rij)−bl′ (Lij)}
bl(Rij)−bl(Lij)

]
.

4. Sample βj from N(β̂j , Σ̂j), where Σ̂j = (Σ−1
j0 +∑n

i=1 xix
′
i)−1 and

β̂j = Σ̂j

[
Σ−1
j0 βj0 +

n∑
i=1
{zij − αj(tij)− ζi}xi

]
.

5. Sample ζi from N(µi, σ2
i ) for i = 1, ..., n where σ2

i = (k + σ−2
ζ )−1 and

µi = σ2
i

k∑
j=1
{zij − αj(tij)− x′iβ}.

6. Sample ηj for j = 1, ..., k from Gamma(ajη +m, bjη +∑m
l=1 γjl).

7. Sample σ−2
ζ from Gamma(aζ + 0.5n, bζ + 0.5∑n

i=1 ζ
2
i ).

The above Gibbs sampler is fast and easy to implement since all the parameters

and latent variables can be updated through standard distributions. Based on simu-

lation studies below, we observe that the proposed method enjoys fast convergence.
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2.4 Simulation Studies

In this section, we evaluate the performance of the proposed model through simulation

studies. First we generated 100 data sets with sample size n = 500 under the following

model involving both discrete and continuous covariates,

Fj(t|xi1, xi2, ζi) = Φ{αj(t) + xi1βj1 + xi2βj2 + ζi},

where xi1 is a normal random variable follows N(0, .25) and xi2 is a Bernoulli random

variable with probability of success 0.5, and ζi was generated from N(0, σ2) with

σ = .5, 1 and 2 respectively. We considered three events of interest and took true

α1(t) = 1 + t + log(t), α2(t) = t2 + log(t) and α3(t) = 1 + t + log(t), β1 = (1, 0),

β2 = (0, 1), β3 = (−1, 1). Below is how we obtain the observed interval (Lij, Rij) for

Tij.

• For subject i, we first generate the number ki of observation times from a Poisson

distribution plus 1. This guarantees that ki is at least one and that different

subjects can have different number of observation times.

• Generate ki gap times for subject i independently from an Exponential family

with mean 4. Denote these gap time by gi1, . . . , giki .

• Obtain the observed times by Oid = ∑d
l=1 gil, for d = 1, . . . , ki.

• For each j, we calculate Fj(Oid | xi, δi) for d = 1, . . . ki and generate uij from

U(0, 1).

• The observed interval (Lij, Rij) will be taken as interval (Oic, Oic+1), where

Fj(Oic | xi, δi) ≤ ui < Fj(Oic+1 | xi, δi).

The specification of the observation process was chosen so that none of the censoring

types dominates the others. For example, in the case of σ2 = 4, there are on av-

erage 51.08% left-censored observations, 36.63% interval-censored observations, and
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12.29% right-censored observations for the first event; 28.03% left-censored observa-

tions, 48.39% interval-censored observations, and 23.59% right-censored observations

for the second event; 36.56% left-censored observations, 41.90% interval-censored

observations, and 21.54% right-censored observations for the third event across all

simulated data sets.

In specifying the monotone splines, we chose 2 for the degree to guarantee adequate

smoothness of the splines. For each generated data set, knots were spaced equally

within the minimum and the maximum value of the finite endpoints of the observation

times. The distance between two adjacent knots is equal to 0.3. Consequently, the

number of knots varies from data set to data set and ranges from 12 to 24. For the

Bayesian computation, the following specifications were given: m10 = −3, m20 = −4

and m30 = −3; υ10 = υ20 = υ30 = 0.1, which will results in a normal prior for γj0

with a large variance, a Ga(1, 1) prior for ηj with ajη = bjη = 1, a Ga(1, 1) prior with

aζ = bζ = 1 for σ−2, and β0 = 0 and Σ0 = n(X ′X)−1, where X is the covariate

matrix. For each data set, we implemented the Gibbs sampler and summarized results

based on 4000 iterations of MCMC after discarding first 1000 iterations as a burn-in.

This was observed to be sufficient due to good mixing observed in the sample chains.

Table 2.1 shows the performance of the proposed method in the case of using 100

data sets under three scenarios: true ζ ∼ N(0, .25), ζ ∼ N(0, 1), ζ ∼ N(0, 4). The

Bias is calculated as the difference between the average of the 100 point estimates

(posterior means) and the true value, ESD denotes the average of the estimated stan-

dard deviations of their posterior distributions, SSD is the sample standard deviation

of the 100 point estimates, and the CP95 represents the 95% coverage probability.

From the results in Table 2.1, we can tell the proposed method works very well.

The biases for all point estimates are small, the ESDs are close to corresponding SSDs,

and the 95% coverage probabilities are close to 0.95 for all the regression parameters

and the frailty variance parameter σ2 under all simulation settings. In addition to
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Table 2.1: Simulation results of the proposed method under three scenarios: ζi ∼
N(0, .25), ζi ∼ N(0, 1) and ζi ∼ N(0, 4) based on 100 datasets. Presented results include
the bias, the average of the estimated standard deviations, the sample standard deviation
of the 100 point estimates, and the 95% coverage probability for the conditional covariate
effects.

Scenario I Scenario II Scenario III
True Bias SSD ESD CP95 True Bias SSD ESD CP95 True Bias SSD ESD CP95

β11 1 -0.012 0.134 0.140 0.96 1 0.004 0.162 0.160 0.96 1 -0.020 0.235 0.235 0.93
β12 0 0.022 0.142 0.133 0.94 0 0.014 0.174 0.155 0.93 0 0.034 0.247 0.234 0.92
β21 0 -0.014 0.127 0.118 0.92 0 -0.007 0.140 0.142 0.93 0 -0.039 0.244 0.226 0.95
β22 1 0.045 0.132 0.129 0.94 1 0.056 0.161 0.151 0.93 1 0.010 0.244 0.231 0.97
β31 -1 -0.037 0.122 0.127 0.92 -1 -0.046 0.161 0.148 0.93 -1 -0.010 0.247 0.229 0.94
β32 1 0.012 0.128 0.130 0.96 1 0.031 0.145 0.152 0.95 1 0.001 0.243 0.232 0.96
σ2 .25 -0.020 0.060 0.059 0.92 1 0.080 0.120 0.136 0.94 4 -0.060 0.523 0.491 0.95
ρ .191 -0.009 0.035 0.034 0.92 .483 0.025 0.032 0.036 0.94 .786 -0.001 0.021 0.020 0.95
κ .128 -0.006 0.024 0.023 0.92 .333 0.018 0.023 0.027 0.94 .590 -0.002 0.021 0.020 0.95
τ .128 -0.006 0.024 0.023 0.92 .333 0.018 0.023 0.027 0.94 .590 -0.002 0.021 0.020 0.95

the excellent estimation accuracy in regression coefficients and frailty variance, the

proposed method also provides precise estimation results for the association in terms

of Spearman’s correlation coefficient ρs, median concordance κ and the Kendall’s τ ,

as seen in Table 2.1.

From the discussions in section 2.2, the covariate coefficients β from Table 2.1 can

be interpreted as the conditional covariate effects on the transformed failure time.

Though this interpretation is appealing, it is conditioning on the unknown frailty

term. The marginal covariate effects are preferred since there exits a multiplicative

relationship between the conditional covariate effects β and the marginal covariate

effects β∗ under the proposed multivariate probit model. As a further illustration

and comparison, the semiparametric probit model by Lin and Wang, 2010, which

from henceforth will be referred as the univariate approach was considered. This

competing approach uses the idea of modeling each of failure times separately under

the semiparametric probit model while ignoring the underlying correlated structure.

Table 2.2 presents a summary of the regression parameter estimates obtained by the

univariate approach and the corresponding marginal covariate coefficients from our

proposed methodology for the same simulation configurations as were considered in
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Table 2.1. The estimations for marginal covariate coefficients are given in Table 2.2

with different values of σ2. As seen from Table 2.2, we note that the univariate

approach also performs well (this is not surprising since the probit model is the

true marginal model), but differences are obvious when comparisons are made. In

particular, the bias obtained from univariate approach are bigger than those obtained

from our proposed model. Moreover, the empirical coverage probabilities for the

univariate approach were not at their nominal level around 95%, especially with the

estimates for β2 and β3 tending to under cover. These losses in estimation precision

are likely attributable to the fact that the univariate approach ignores the dependence

between the failure times during estimation. In summary, Table 2.2 shows that the

proposed method is capable of accurately estimating the unknown model parameters

and delivers reliable inference.

2.5 Real Data Analysis

2.5.1 Sexually transmitted infection (STI) data

In this section, we apply our method to STI data, which were collected on young

women as a part of the Young Women’s Project (YWP). The details for study design

and folllow-up protocol can be found in Tu et al., 2009 and Tu et al., 2011. In

this study, infections with Chlamydia trachomatis (CT), Neisseria gonorrhoeae (GC)

and Trichomonas vaginalis (TV) are the three outcomes of interest. This analysis

focuses on the time to initial STI infections for each of these three organisms. Three

hundred and eighty seven adolescent young women aged 14 to 17 years were observed

between 1999 and 2007 in this observational study. At enrollment, participants were

interviewed and asked to complete detailed questionnaire about their sexual behaviors

such as the number of sex partners, age of first sex, infection history, etc.. Patients

were examined every three months and actual examination times differed from patient

to patient since some of them missed their visits. As a result, the precise times of
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Table 2.2: Marginal covariate effects comparison between univariate probit model and
normal-frailty multivariate probit model based on 100 datasets under the scenarios σ2 =
0.25, σ2 = 1 and σ2 = 4. Bias denotes the difference between the average of the 100
point estimates and the true value, SSD the sample standard deviation of the 100 point
estimates, ESD is the average of the estimated standard deviations, and CP95 the 95%
coverage probability

Univariate Probit Model Multivariate Probit Model
True Bias SSD ESD CP95 Bias SSD ESD CP95

σ2 = 0.25

β11 = 1 -0.007 0.119 0.128 0.97 -0.004 0.118 0.123 0.96
β12 = 0 0.014 0.128 0.118 0.95 0.019 0.126 0.118 0.94
β21 = 0 -0.015 0.111 0.105 0.92 -0.013 0.113 0.105 0.92
β22 = 1 0.067 0.111 0.112 0.90 0.047 0.113 0.113 0.93
β31 = −1 -0.061 0.107 0.110 0.90 -0.040 0.108 0.111 0.93
β32 = 1 0.032 0.113 0.113 0.95 0.018 0.111 0.114 0.96

σ2 = 1

β11 = 1 -0.009 0.122 0.115 0.95 -0.013 0.119 0.114 0.95
β12 = 0 0.006 0.130 0.113 0.94 0.010 0.126 0.112 0.93
β21 = 0 -0.010 0.094 0.102 0.97 -0.005 0.101 0.102 0.93
β22 = 1 0.073 0.110 0.107 0.85 0.025 0.114 0.108 0.94
β31 = −1 -0.070 0.106 0.104 0.88 -0.018 0.111 0.106 0.93
β32 = 1 0.049 0.100 0.108 0.94 0.006 0.105 0.108 0.96

σ2 = 4

β11 = 1 0.023 0.103 0.106 0.92 -0.006 0.104 0.104 0.94
β12 = 0 0.009 0.109 0.107 0.93 0.015 0.111 0.103 0.92
β21 = 0 -0.021 0.101 0.099 0.93 -0.017 0.108 0.100 0.95
β22 = 1 0.062 0.101 0.103 0.90 0.008 0.106 0.102 0.93
β31 = −1 -0.063 0.102 0.100 0.89 -0.008 0.108 0.101 0.94
β32 = 1 0.049 0.096 0.104 0.95 0.004 0.107 0.102 0.95

infections were not directly observable since the infections could have happened at

any time during the interval between the last visit with a negative result and the

first visit with a positive result. In other words, the time to each type of infection is

interval-censored. The event times for a subject are right-censored at the last visit

time if no any infection was detected throughout the follow-up. The event times are

left-censored at the beginning of the study if detected positive at the time of first

testing.

Chalamydia, gonorrhea and trichomoniasis are the three most common bacterial

infections for sexually transmitted diseases that often co-exist. Times to the initial

infections within the same individual are correlated due to the same physiological

environment and sexual behavior. This multivariate interval-censored data analy-
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sis jointly model the infection times, studies several participant characteristics and

examines the associations between these infections.

There are five covariates of interest: age when enter the study, the number of

partners, age at first intercourse, race and the infection status at the beginning of

the study. Twenty-seven patients were excluded from study due to missing data or

data discrepancies. After data cleaning, a subset of 360 patients was included in the

analysis. Among these individuals, 10.28%, 44.72%, and 45% were left-, interval-,

and right-censored, respectively for C. trachomatis; 1.67%, 28.89%, and 69.44% were

left-, interval-, and right-censored, respectively for N.gonorrhea and 1.67%, 28.89%,

and 69.44% were left-, interval-, and right-censored, respectively for T.vaginalis.

2.5.2 Data analysis results

We applied our proposed method to this data set with 16 knots for monotone quadratic

splines. The knots are assigned according to the quantiles of the observation intervals.

The same prior specifications as simulation study are used here. A total of 20000 it-

erations were run in our Gibbs sampler and the first 5000 iterations were discarded

as a burn-in. A summary of the posterior mean estimates and the corresponding 95%

credible intervals for the regression parameters on the 15000 iterations of the Markov

chain is presented in Table 2.3. This analysis indicates that the infection status at

the beginning of the study has a big impact on the first infection time in the study

for all the three infections since their 95% credible intervals are all outside 0. Having

an infection history was associated with an increased risk of early infection acquisi-

tion. While the age when entering the study, age at first intercourse and race seems

irrelevant to the time to first infection with N.gonorrhoeae and C. trachomatis, these

characteristics contributes to the time to first infection with T. vaginalis. An earlier

age at first sexual intercourse, older age when entering the study, and being African

American were associated with an increased risk with T. vaginalis. Moreover, the
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Table 2.3: STI data: Conditional covariate effects estimations, posterior mean and 95%
credible interval are provided

CT GC TV

Age when enter the study 0.0275
(-0.1255, 0.1769)

-0.0185
(-0.1778, 0.1442)

0.1774
(0.061, 0.3519)

number of partners -0.0183
(-0.1762, 0.1414)

0.0744
(-0.0864, 0.2327)

0.1269
(-0.0360, 0.2882)

Age at first intercourse -0.0751
(-0.2279, 0.0703)

-0.2136
(-0.1918, 0.1423)

-0.2843
(-0.4639, -0.1130)

Race 0.1139
(-0.0230, 0.2511)

0.0533
(-0.1013, 0.2148)

0.2890
(0.1048, 0.4794)

Infection history 0.2315
(0.0889, 0.3766)

0.3017
(0.1384, 0.4715)

0.1977
(0.0408, 0.3523)

Table 2.4: STI data: Estimation results for posterior mean and 95% credible interval of
ρ, κ and τ are provided

Mean Std. 95%CI
σ2 0.259 0.066 (0.1531, 0.3878)
ρ 0.195 0.039 (0.1269, 0.2677)
κ 0.131 0.027 (0.0848, 0.1803)
τ 0.131 0.027 (0.0848, 0.1803)

proposed method is capable to quantify the statistical association among these first

infection times. An estimate of the posterior means and 95% credible intervals for

Spearman’s correlation coefficient, median concordance and Kendall’s concordance τ

between the three infection times is listed in table 2.4. The estimated ρs = 0.195,

κ = 0.131 and τ = 0.131 suggests that there is a weak association between the three

failure times.

2.6 Discussion

In this chapter, a novel normal-frailty multivariate probit model is proposed for ana-

lyzing multivariate interval-censored survival data. This semiparametric probit model

provides an attractive alternative to the proportional hazards or the proportional odds
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model. The proposed model enjoys several appealing properties. First, this model is

semiparametric since the nondecreasing function α is unspecified. Second, the con-

ditional CDF and the marginal CDF of the failure time belong to the same family.

Third, the conditional covariate effects given frailty are proportional to the marginal

covariate effects. Fourth, the association among multiple correlated failure times can

be summarized by three nonparametric association measures in simple and explicit

form.

We developed a fully Bayesian method for analyzing the multivariate interval-

censored data. Our approach makes use of monotone splines representation to ap-

proximate the unknown conditional cumulative baseline hazard function and allows

one to estimate the regression parameters and spline coefficients jointly. The deriva-

tion of the algorithm is based on data augmentation and all the parameters can be

updated in standard formulas. The proposed Gibbs sampler has great computational

advantages over the existing Bayesian methods in that it does not require imputing

the unobserved failure times or contain complicated Metropolis-Hastings or adaptive

rejection Metropolis sampling steps, and all the sampling steps are straightforward

and enjoys fast convergence. Through simulation studies, it has been shown that the

proposed method can robustly and efficiently estimate all the regression parameters,

spline coefficients and the normal frailty variance parameter.
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Chapter 3

Regression analysis of interval-censored

failure time data under multivariate probit

model with arbitrary correlations

Summary: Multivariate interval-censored data are frequently encountered in many

applications. In medical studies, several infections caused by a certain disease may

co-exist and these infections are correlated. Sometimes multiple diseases are observed

within an individual and the responses are correlated. A joint analysis of this multi-

variate data with the consideration of the association structure is in great demand,

and ignoring such underlying correlated data structure can lead to inaccurate esti-

mations. Multivariate probit model, which was introduced by Ashford and Snowden

(1970), is most widely accepted for studying multivariate binary responses. Inspired

by the applications of this model, we proposed a new semiparametric multivariate

probit model to study correlated failure time data. This new model allows the cor-

relations between different failure times to be arbitrary. One of the challenges with

multivariate probit model is the difficulty on likelihood computation, as it is obtained

by intergrating over a multidimensional constrained space of latent variables. Another

difficulty arises on estimating the covariance matrix efficiently. In this chapter, we

develop a parameter-extended data augmentation Gibbs sampling algorithm under

multivariate probit model, which can be applied for estimating the covariate effects

and correlation matrix jointly.
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3.1 Introduction

3.1.1 Literature Review and Computational Challenges

Motivated by the data gathered in STI study by Tu et al. (2009), we try to build model

on correlated time-to-event data, when the responses are not observed exactly, but

can only be determined to lie in an interval obtained from a sequence of observation

times. Considerable amount of studies has been developed on estimation of regression

coefficients and survival functions for multivariate censored data for the past decade

(See, Hougaard, 2000). In these studies, multiple models such as the proportional

hazards (PH), the proportional odds (PO), additive hazards (AH) and accelerated

failure time (AFT) models (Hanson and Johnson, 2004) have been discussed either

from a marginal approach or a frailty approach.

The probit model has been widely studied in generalized linear models, but it is

rarely seen in the field of survival analysis. Dunson and Dinse (2002) developed a

normal frailty probit model for case I interval-censored data. Lin and Wang (2010)

proposed a semiparametric probit model, which serves as an alternative to the PH,

PO, AH, and AFT models, and developed a novel Bayesian approach for analyzing

univariate interval-censored data. Liu and Qin (2018) studied the maximum like-

lihood estimations for univariate and bivariate current-status data under the semi-

parametric probit models. Chin et al. (2018) applied multivariate probit models with

panel data. Du and Sun (2019) developed a semiparametric probit model for infor-

mative current status data. Wu and Wang (2019) studied clustered interval-censored

data by proposing a semiparametric frailty probit regression model. Shiboski (1998)

pointed out that the PH, PO and probit models are special cases of the generalized

linear models. Motivated by Lin and Wang (2010), we developed a new semipara-

metric multivariate probit model onto the multivariate interval-censored failure time

data. The transformed baseline cumulative distribution function is approximated
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through linear combinations of monotone splines. There are several computational

challenges under this model. As discussed in Chapter 2, the first computational chal-

lenge of estimating the multivariate probit model, given that its likelihood involves

integrating over a multidimensional constrained space of latent variables, significantly

limits its application in practice. Thus, the MVP models are not as popular as the

Cox PH models, the PO mdels and AFT models, etc. in published survival analysis

literatures, and its potentials have not been fully studied yet.

In many medical studies, scientists are not only interested in estimating the co-

variate effects on the correlated outcomes, but would also like to explore and study

the association structure between the correlated responses. In our multivariate pro-

bit model, this association is modeled through the correlation matrix of ε. However,

sampling the correlation matrix is an another challenge under the multivaraite probit

model, because the scale parameters, i.e., the diagonal elements of the matrix, are

fixed. From the Bayesian respective, a prior needs to be placed on correlation matrix

R directly to calculate the posterior distributions. However, there does not exist a

conjugate prior for the correlation matrix. Therefore, the posterior computation is

very challenging.

There are some existing literature on studying how to sample from the correla-

tion matrix under multivariate probit model for binary data. Barnard et al. (2000)

adopted the Griddy Gibbs sampler (Ritter and Tanner, 1992) under a hierarchical

shrinkage model to sample the components of the correlation matrix one by one at

each time. This approach is time consuming, especially when the dimension is high.

Chib and Greenberg (1998) developed a more efficient Metropolis-Hastings Random

Walk algorithm to sample the correlation matrix by drawing the correlation coeffi-

cients in blocks. However, this algorithm has the problem of slow mixing in high

dimensions and it cannot guarantee the resulting correlation matrix to be positive

definite.
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The method of parameter expansion together with data augmentation (PX-DA)

enjoys a high popularity in recent years in the MVP model literature. As discussed

by Liu and Wu (1999), PX-DA can be selected as an alternative approach when esti-

mating the correlation matrix. This type of parameter expanded data augmentation

algorithm is proved to be useful for accelerating Gibbs sampling algorithms and is

closely related to reparameterization techniques. The idea behind this approach is to

expand R into a less constrained covariance matrix, say Σ = DRD, and then update

this covariance matrix before projecting it back to a correlation matrix. Liu (2001)

discussed simulation of correlation matrix through PX-DA under the multivariate

probit model by relaxing the correlation matrix R back to an unconstrained covari-

ance matrix and borrowing the scales from the latent variables. One restriction for his

method is the prior for R has to be Jeffrey’s prior. Instead of using a marginal prior

for R, Zhang et al. (2006) demonstrated a parameter-extended Metropolis-Hastings

algorithm for sampling from the posterior distribution of a correlation matrix by ap-

plying a joint prior derived from an inverse Wishart distribuion of Σ = DRD. Liu and

Daniels (2006) extended this approach by adopting a two-stage parameter expanded

re-parameterization and Metropolis-Hastings algorithm. Under their algorithm, they

first draw all elements of R simultaneously by drawing a covariance matrix from an

inverse Wishart distribution, and then translating it back to a correlation matrix

through a reduction function and accepting it based on a Metropolis-Hastings accep-

tance probability. Talhouk et al. (2012) proposed an efficient Markov Chain Monte

Carlo algorithm relying on a parameter expansion scheme to sample from the result-

ing posterior distributions. Their method allows one to update the correlation matrix

within a simple Gibbs sampling framework and make inference in the multivariate

probit model. Knowing that the inverse Wishart distribution on Σ is a conjugate

prior in the parameter expanded model, posterior sampling of Σ can be accomplished

by Gibbs sampling from the full conditional easily. A realisation of R is then achieved
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by normalizing Σ. Similar discussions by using different priors on R can also be found

in Lawrence et al. (2008). Chin et al. (2018) proposed an efficient data augmentation

for multivariate probit models with panel data. A comprehensive discussion about

data augmentation methods can be found in Dyk and Meng (2001).

In this chapter, we propose a new multivariate probit model for analyzing corre-

lated interval censored failure time data. Our proposed model is better than those

shared frailty proportional hazard or proportional odds models, and also the normal

frailty multivariate probit model in chapter 2. The new multivariate probit model

here can provide marginal covariate effect estimates directly, and it enjoys the advan-

tage of allowing different pairs of failure times to have different correlations. Under

this model, the pairwise statistical associations can be quantified by three nonpara-

metric measures in explicit simple forms. An efficient Bayesian approach is developed

to estimate the regression parameters, the baseline survival function and the pairwise

Pearson’s correlation matrix jointly.

3.1.2 Outline

In this chapter, we will provide details for the proposed Bayesian approach under the

new multivariate probit model. The research goal is to find a general framework that

can estimate the covariate effects, the baseline survival function and the correlations

jointly.

This chapter will be structured as follows:

Section 3.2 introduces the notations, the proposed model and its properties. Sec-

tion 3.3 presents the details of the proposed approach, including the application of

monotone splines to approximate the unknown function, a parameter expansion data

augmentation procedure, and a fully developed Gibbs sampler for posterior compu-

tation. A summary of the algorithm is included at the end of this section. Section

3.4 evaluates the performance of the proposed approach through extensive simula-
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tion studies. Two illustrative real life examples are provided in section 3.5. Some

discussions and concluding remarks are made in section 3.6.

3.2 Model and Properties

The multivariate probit model (MVP) in generalized linear models is a generalization

of the probit model for studying multiple correlated binary outcomes jointly. Suppose

we have n subjects. For each subject i, i = 1, . . . , n, let xi = (xi1xi2 . . . xip)′ denotes

the p × 1 vector of covariates. And the covariate matrix can be represented by X.

Define βj = (βj1 . . . βjp)′ as the corresponding unknown covariate coefficient vector for

the jth event of interest, j = 1, 2, . . . , J . The covariate coefficient matrix is denoted

by β.

X
n×p

=


x11 . . . x1p

... . . . ...

xn1 . . . xnp

 =


x′1
...

x′n

 and β
p×J

=


β11 . . . β1J

... . . . ...

βp1 . . . βpJ

 =


β′1
...

β′J

 .

Usually in the multivariate probit model, the response variables are binary. Let

Yi = (Yi1, . . . YiJ)′ denotes the collection of observed binary 0/1 responses on the

ith subject. The MVP model assumes that given a set of explanatory variables, the

multivariate response is an observed indicator of some underlying Gaussian latent

variables fall within certain intervals. And the Gaussian latent variables are correlated

with a covariance matrix Σ. Then the probability that Yi = yi, is given by

P (Yi = yi|β,Σ) =
∫
AiJ
· · ·

∫
Ai1

φJ(t|0,Σ) dt,

where φJ(t|0,Σ) is the density of a J-variate normal distribution with mean vector 0

and covariance matrix Σ, and Aij is the interval taking the following form:

Aij =


(−∞, x′iβj) if yij = 1

(x′iβj,∞) if yij = 0
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Thus, the marginal model for Yij for i = 1, . . . n, j = 1, . . . J has the following form,

P (Yij = yij) =


Φ(x′iβj) if yij = 1

Φ(−x′iβj) if yij = 0

where Φ(·) is the cumulative distribution function of standard normal distribution.

3.2.1 The proposed model

In the multivariate time to event analysis, the binary response vector Yi can be

interpreted as whether the set of events of interest happened or not on the ith subject,

and the time to the events of interest is our response outcome. The new proposed

model has the following form:

α(Ti)
J×1

=



α1(Ti1)

α2(Ti2)
...

αJ(TiJ)


= −β′xi + εi , (3.1)

where αj(·) is an unknown nondecreasing function with αj(0) = −∞ and αj(∞) =∞,

for j = 1, . . . J . It indicates that our proposed model is a semiparametric model. To

further illustrate the correlated structure under this model, the error terms εi =

(εi1 . . . εiJ)′ ∼ NJ(0,Σ). The distribution NJ(0,Σ) is a J-variate normal distribution

with mean vector 0 and J × J covariance matrix Σ.

εi
J×1

=



εi1

εi2
...

εiJ


∼ NJ(0,Σ), where Σ

J×J
=



σ2
1 ρ12σ1σ2 . . . ρ1Jσ1σJ

ρ21σ2σ1 σ2
2 . . . ρ2Jσ2σJ

... ... . . . ...

ρJ1σJσ1 ρJ2σJσ2 . . . σ2
J


,

with ρjl, j, l = 1 . . . J as the Pearson’s correlation coefficient between different pairs

of failure time, σj is the standard deviation of transformed failure time j.
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As specified by Chib and Greenberg (1998), it is important to restrict the covari-

ance matrix Σ to be a correlation matrix for identifiability purpose. In the multi-

variate probit model, the unknown parameters (β,Σ) are not identifiable. Let’s say,

we have an alternative parameterisation as (θ,Ω), then it could be easily seen that

the likelihood of Y|X,β,Σ is the same as Y|X,θ,Ω, with βj = c
−1/2
jj θj, Σ = CΩC ′

and C = diag{c−1/2
11 , . . . , c

−1/2
JJ }. Therefore, to avoid the problem of identifiability, we

followed the idea of Chib and Greenberg (1998) by imposing the restriction of using

correlation matrix instead of covariance matrix. The correlation matrix R is shown

below:

R
J×J

=



1 ρ12 . . . ρ1J

ρ21 1 . . . ρ2J

... ... . . . ...

ρJ1 ρJ2 . . . 1


.

Therefore, we have εi ∼ NJ(0, R) instead. ρjl in R for j, l = 1 . . . J is the Pearson’s

correlation coefficients between different pairs of failure time. Our proposed model

allows the Pearson’s correlations to be different from each other and it can take both

positive and negative values. However, this correlation matrix also introduces more

constraints since it requires that the diagonal elements to be fixed and can only take

the value 1, and the off-diagonal elements are between −1 and 1.

3.2.2 Model Properties

Marginal distribution and marginal effect

Now let Fj(·|xi) denotes the marginal cumulative distribution function (CDF) of the

failure time of interest for the jth event given the covariate vector xi. The multivariate

probit model specifies the marginal cumulative distribution function of Tij, where Tij

is the jth failure time for the ith subject, in the following form:

Fj(t|xi) = Φ{αj(t) + x′iβj}, ∀t ∈ (0,∞). (3.2)
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where Φ(·) is the CDF of a standard normal random variable, αj(·) is an unknown

nondecreasing function with αj(0) = −∞ and αj(∞) = ∞, j = 1, . . . J . This result

implies that the failure time Tij follows a marginal semiparametric Probit model (Lin

and Wang, 2010). We can rewrite the model at the subject level as follows,

αj(Tij) = −x′iβj + εij, with εij ∼ N(0, 1). (3.3)

To see the equivalence between (3.2) and (3.3), we have P (Tij ≤ t|xi) = P{αj(Tij) ≤

αj(t)|xi} = P (εij ≤ αj(t) + x′iβj|xi) = Φ{αj(t) + x′iβj}. Based on equation (3.2),

one can write αj(t) + x′iβj = Φ−1(Fj(t|xi)), with the right side being the inverse-

probit transformed probability of the failure of interest, where Φ−1 is the inverse

function of Φ. Thus the interpretation of βjp, the pth element of βj corresponding

to the pth covariate xp, can be given as the change in the inverse-probit transformed

probability of the failure of interest due to one unit increase in xp, while keeping all

other covariates at the fixed levels.

Multiple Events Association

The dependence among multiple events of interest is modeled by the Pearson’s corre-

lation matrix R in model (3.1). As discussed in section 2.2.2, the three nonparametric

measures for quantifying the statistical association between multiple events: Spear-

man’s rank correlation coefficient ρs, median concordance κ and kendall’s τ (Kruskal,

1958 and Hougaard, 2000) can also be applied under our proposed model (3.1). The

multivariate probit model provides closed-form expressions for the pairwise statistical

associations between correlated failure times in terms of these three measures in the

following theorem,

Theorem 3.2.1. The pairwise correlations for multivariate survival data under the

general MVP model (3.1) is characterized by Spearman’s correlation coefficient ρs,

median concordance κ and Kendall’s τ as follows, with the Pearson’s correlation
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denoted by ρjl, for j, l = 1, . . . J .

ρsjl = 6π−1sin−1(ρjl/2), (3.4)

κjl = 2π−1sin−1(ρjl), (3.5)

τjl = 2π−1sin−1(ρjl). (3.6)

The proof is similar as the one in the Appendix A, mainly based on the rela-

tionship among Pearson’s correlation coefficient, Spearman’s correlation coefficient,

median concordance and Kendall’s τ for multivariate normal distribution (Kruskal,

1958). This theorem is promising as it provides explicit expression of measures to

quantify the pairwise correlations. They are nonparametric measures so that no spe-

cific forms of the correlated failure time distributions are required. The values for

these three measures all ranging between −1 and 1, with positive (negative) values

representing a positive (negative) relationship. Their magnitude measures the degree

of the correlation, a larger magnitude indicating a stronger correlation. A value of

zero indicates that no association exists between the failure events.

3.3 The Proposed Method

3.3.1 Data and likelihood

Suppose there are n subjects in our study. It is assumed that conditional on the

covariates, the failure times is independent of the observation process. This assump-

tion is quite common in survival analysis literature studying interval-censored data.

We consider case II interval-censored data in our model, with the observed data

D = {(Lij, Rij],xi}, where (Lij, Rij] is the observed time interval for Tij. To be spe-

cific, Lij = 0 indicates that the jth failure time for the ith subject is left censored

and Rij =∞ indicates the case of right-censoring. We use the indicators δij1, δij2 and

δij3 to denote left-, interval-, and right-censored data respectively. Note that these

41



censoring indicators subject to the constraint δij1 + δij2 + δij3 = 1. From model (3.1),

we have α(Ti) ∼ NJ(−β′xi, R). It is the same as follows,

εi
J×1

=



εi1

εi2
...

εiJ


= β′xi +α(Ti) ∼ NJ(0, R).

Then the likelihood can be written as

P
(
Tij ∈ (Lij, Rij) | xi

)
︸ ︷︷ ︸

i=1,...,n j=1,...J

=
n∏
i=1

∫
· · ·

∫
εi∈Ai

φJ(εi|0, R) dεi. (3.7)

where Ai = [α1(Li1) + xT
i β1, α1(Ri1) + xT

i β1] × · · · × [αJ(LiJ) + xT
i βJ , αJ(RiJ) +

xT
i βJ ] and φJ(·) is the probability distribution function (pdf) for J-variate normal

distribution.

From (3.7), let ε∗ij = εij − xT
i βj − αj(tij) with tij = Rij1(δij1 = 1) + Lij1(δij1 =

0) (See, Lin and Wang, 2010). Therefore, when the failure time is left-censored,

tij equals to the right observation time point and when it is interval-censored or

right-censored, tij equals to its left point of observation interval. Note that ε∗ij ∈(
αj(Lij)− αj(tij), αj(Rij)− αj(tij)

)
and ε∗i = (ε∗i1, · · · , ε∗iJ)′ ∼ N(−βTxi −α(ti), R),

with ti = (ti1 . . . tiJ)′. Thus, equation (3.7) is equvilent to

Lobs =
n∏
i=1

∫
· · ·

∫
ε∗i∈A

∗
i

φJ(ε∗i | − βTxi −α(ti), R) dε∗i , (3.8)

where A∗i = [αJ(LiJ)−αJ(tiJ), αJ(RiJ)−αJ(tiJ)]×· · ·× [α1(Li1)−α1(ti1), α1(Ri1)−

α1(ti1)].

To facilitate Bayesian computation, we consider a data augmentation by defining

latent variables,

Zi = −ε∗i ∼ NJ(α(ti) + βTxi, R).
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Then the augmented likelihood function can be written as

Laug =
n∏
i=1

φJ

(
zi|α(ti) + βTxi, R

)
×

J∏
j=1

{
δij11(zij > 0) + δij21

(
αj(Lij)− αj(Rij) < zij < 0

)
+ δij31(zij < 0)

}
.

(3.9)

By intergrating out all zij from (3.9), one obtains the likelihood function (3.7).

3.3.2 Modeling α(·) with monotone splines

The unknown nondecreasing function αj, j = 1, · · · , J is difficult to estimate since αj

is infinite-dimensional. As introduced by chapter 2, using splines to model unknown

functions is very common in statistics studies and it provides modeling flexibility.

By applying monotone splines of Ramsay (1988) for modeling αj, we only need to

estimate a finite number of parameters. Followed by the idea in Lin and Wang (2010),

Cai et al. (2011) and Gamage et al. (2018), αj can be modeled in the following way:

αj(t) = γj0 +
m∑
l=1

γjlbl(t), for j = 1, · · · , J (3.10)

where {bl}ml=1 are monotone I (integrated) spline basis functions, each of which is

nondecreasing from 0 to 1. The basis functions do not depend on j, see my argument

in chapter 2.3. Here, γj0 is an unconstrained intercept of a monotone spline. {γjl}ml=1

are spline basis coefficients, the values are all taken nonnegative such that αj is

nondecreasing. To specify the I spline basis functions, knots and degree need to be

identified first. Even though more knots introduces greater flexibility, Ramsay (1988)

recommended that a small number of knots should be chosen as large number of

knots is unnecessary and takes more computation time. As claimed by Lin and Wang

(2010), a moderate number (10 to 30) of equally spaced knots guarantees modeling

flexibility and saves computation time for analyzing interval-censored data. As for

the degree of I spline basis, we used quadratic splines.
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3.3.3 Bayesian Inference in Multivariate Probit model

Inspired by the work on PX-DA method, we extended this idea to multivariate

probit model on time to event data analysis. We propose a parameter expanded

data augmentation Gibbs sampling algorithm to sample the unknown parameters

and the correlation matrix for multivariate interval-censored data jointly. Let Ω =

(β, R,γ0,γ) be the full parameter set, with γ0 = (γ10 . . . γJ0)′ and γ = (γjl)J×m,

j = 1, . . . J and l = 1, . . .m. The first step of the algorithm involves sampling

Z = (z1, · · · , zn)′. For simpler notations later, let x∗i =
(
1 b1(tij) · · · bm(tij) x′i

)
and

β∗j = (γj0 γj1 · · · , γjm βj)′, then α(t) +Xβ = (X∗β∗)n×J , with

X∗ =


1 b1(t11) . . . bm(t11) x′1
... ... . . . ... ...

1 b1(tnJ) . . . bm(tnJ) x′n


n×(1+m+p)

and β∗ =



γ10 . . . γJ0

... . . . ...

γ1m . . . γJm

β1 . . . βJ


(1+m+p)×J

.

From section 3.3.1, the latent variable zi has the distribution:

π(zi|β∗, R) ∼ NJ(zi|(X∗β∗)′i, R)1Ci , (3.11)

where (X∗β∗)′i is the ith row of the matrix (X∗β∗)′ and Ci = ∏J
j=1 Cij, with Cij as

the constrained space of zij,

Cij =


(0,∞) if δij1 = 1

(αj(Lij)− αj(Rij), 0) if δij2 = 1

(−∞, 0) if δij3 = 1

Therefore, we can draw Z from a truncated multivariate Gaussian distribution as

in equation (3.11). To sample from this distribution, one can use the method by

Geweke (1991) by composing a cycle of Gibbs steps through univariate truncated

normal distributions. In each step of this cycle, zij is drawn from zij|{zi,−j,Ω}, which

is a univariate normal distribution truncated to (0,∞) if δij1 = 1, (αj(Lij)−αj(Rij), 0)

if δij2 = 1 and (−∞, 0) if δij3 = 1. The details are given in Appendix B (B.1).
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Parameter Expansion and Data Augmentation

Given the latent variables Z sampled from the truncated multivariate Gaussian dis-

tribution, we would like to study how to sample the correlation matrix next. Unfor-

tunately, sampling the correlation matrix in MCMC algorithms can be problematic.

First, the correlation matrix has to be positive definite and it has the restriction that

the diagonal elements need to be fixed at 1. In addition, the number of unknown ele-

ments in the correlation matrix increases quadratically with the dimension J . These

facts make simulating a correlation matrix difficult.

An instinctive way to solve this problem is to relax R into a less constrained

space, say Σ = DRD and update Σ instead. We will adopt the method of data

augmentation parameter expansion and follow the idea by Talhouk et al. (2012) to

propose a new approach for sampling correlation matrix under multivariate probit

model.

Let W = ZD, where D is the expansion parameter and it is a J × J diagonal

matrix with djj > 0. Then π(W |β∗, R,D) ∼ Nn,J(W ;X∗β∗D,DRD). Now define a

latent parameter θ = (θ1, · · · , θJ) with θj = rjj

2d2
j
, where rjj is the jth diagonal element

of R−1 and dj is the jth diagonal element of D. The latent parameter θ is defined

in such a way that the resulting posterior distribution will be easily to sample from.

More details will be discussed later.

The basic procedure of PX-DA algorithm for sampling can be described as in

algorithm 3.1. Here |J : Z→W | is the Jacobian transformation from Z to W . Let

Wi and (X∗β∗D)i represent the ith row of W and (X∗β∗D) respectively. Then,

p(Z|β∗, R)|J : Z→W | ∼ Nn,J(W ;X∗β∗D,DRD)

∝ |DRD|−
n
2 exp

[
− 1

2

n∑
i=1

(
Wi − (X∗β∗D)i

)T

(DRD)−1
(
Wi − (X∗β∗D)i

)]
.
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Algorithm 3.1 PX-DA Algorithm
At iteration i,

1: Draw Z from the truncated multivariate normal distribution (3.11) and compute
W ;

2: Draw (β∗, R, θ) jointly conditional on the latent data Z,

β∗, R, θ|W ∼ p(Z|β∗, R)|J : Z→W |︸ ︷︷ ︸
p(W |β∗,R,θ)

p(θ|β∗, R)π(R,β∗)︸ ︷︷ ︸
prior

.

Now define

Σ = DRD, (3.12)

E = (Z−X∗β∗)D. (3.13)

Therefore, the transformed likelihood under the parameter expansion can be written

as:

p(Z|β∗, R)|J : Z→W | ∝ |Σ|−n/2 exp{tr(Σ−1ETE)}. (3.14)

This transformed likelihood 3.14 enjoys the convenience of deriving posterior dis-

tributions that are easily sampled from.

Prior Specifications

Assume that the priors for R and β∗ are independent, i.e., π(R,β∗) = π(R)π(β∗). It

is not easy and strightforward to find a joint prior on β∗, which is a combination of

γ0, γ and β. However, it is equivalent to consider π(β)π(γ0)π(γ) since γ0, γ and β

are independent. Hence, we introduce the priors for Ω = (β, R,γ0,γ) one by one.

1. Prior for β

We adopt a multivariate Gaussian distribution prior for β as

π(β) ∝ exp
[
− 1

2(β − β0)TΨ−1
0 (β − β0)

]
. (3.15)
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We would like to choose large values for the diagonal elements of Ψ0 such that

the prior on β is uninformative. In addition, let ~β = vec(β), representing the

pJ × 1 vector that stacks the columns of the J × p regression coefficient matrix

β, then we have

π(~β) ∼ NpJ( ~β0,Ψ0 ⊗ IJ). (3.16)

2. Prior for R

Since there’s no conjugate prior available for sampling R, the Bayesian inference

on correlation matrix can be difficult. There are some discussions on the choices

of prior for the correlation matrix R:

• (P1) Multivariate truncated normal distribution prior.

• (P2) Jeffrey’s prior: π(R) ∝ |R|− p+1
2 .

• (P3) Jointly uniform prior.

• (P4) Marginally uniform prior.

• (P5) Hierarchical prior on the partial correlation matrix.

The application of (P1) was studied by Chib and Greenberg (1998), and they

proposed a random walk Metropolis-Hastings algorithm with a multivariate t

proposal density to sample each rij of R in blocks. The resulting proposal

cannot be guaranteed to be a correlation matrix. Moreover, as with random

walk algorithms in general, this approach has slow exploration of parameter

space, and tuning the parameters of proposal distribution requires finding a

mode of the posterior distribution and the observed Fisher information for each

iteration, leading to high computation burden. Barnard et al. (2000) used

the Griddy Gibbs approach based on this prior, and by solving an equation to

decide the support for rij first, this approach guarantees the resulting correlation

matrix to be valid. However, the authors also pointed out that this prior is
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inefficient due to its tendency to push marginal correlations to zero in high

dimensions. Liu and Daniels (2006) developed an MH accept-reject algorithm

for the proposed correlation matrix by using this prior as well. The posterior

analysis resulting from this multivariate truncated normal prior is difficult to

conduct.

Liu (2001) and Lawrence et al. (2008) avoided this sampling difficulty by using

(P2). However, this prior has the problem of being improper. The posterior

distribution may not be well-defined and it has been proved that improper priors

on covariance matrices is informative and tends to push marginal correlations

towards the bounds (-1 and 1). See, Rossi et al., 2005.

Barnard et al. (2000) suggested a uniform prior (P3) over all correlation matrices

in RJ , where RJ is the correlation matrix space. The uniform prior on RJ is:

p(R) ∝ 1, R ∈ RJ .

This prior is also a special case of the LKJ prior of Lewandowski et al. (2009)

with unit shape parameter. It has a greater density around zero for each rjl in

high dimensions and thus is highly informative.

(P4) was also proposed by Barnard et al. (2000), by decomposing a covariance

matrix into diagonal matrices of standard deviations and correlation matrix to

obtain a prior distribution on R as

π(R) ∝ |R|
J(J−1)

2 −1
(
Πj|Rjj|

)− (J+1)
2 . (3.17)

where J is the number of events and Rjj denotes the j-th principal submatrix

of R. Even though (3.17) is not easy to sample from directly, when combined

with PX-DA strategy, it can be proved that it is equivalently to sample from

a standard inverse Wishart distribution and project it back to a correlation

matrix. The proof can be found in Appendix B.2. This marginally uniform
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prior enjoys several nice properties: First, it is a proper prior and we can get

the normalizing constant. Second, The marginal densities for each rjl follows a

uniform distribution on [−1, 1]. Despite a jointly uniform prior tends to favor

correlations to 0, the marginally uniform prior is uninformative. Third, further

studies on model selections can be conducted.

Wong and Kohn (2003) proposed a prior for the covariance matrix of Gaussian

data that allows the off-diagonal elements of its inverse to be identically zero.

A hierarchical prior (P5) was built for the partial correlation matrix. Pitt

et al. (2006) used this prior to conduct Bayesian inference for Gaussian copula

regression models. This prior is more complicated to conduct posterior analysis.

Due to the nice properties of marginally uniform prior and the possibility of

sampling the correlation matrix by applying parameter expansion data aug-

mentation strategy, we will use (P4) as our prior for the correlation matrix

R.

3. Prior for γ’s

A normal prior N(mj0, υ
−1
j0 ) is assigned for the unconstrained γj0’s. Indepe-

dent exponential priors Exp(ηj) are assigned for all the nonnegative {γjl}ml=1.

A further prior Ga(ajη, bjη) is given for the hyper parameter ηj. These prior as-

signments for basis coefficients have the advantage of selecting basis functions

by shrinking small spline coefficients towards zero and punishing large spline

coefficients. In this way, it can help prevent overfitting problems. See, Lin and

Wang (2010), Wang and Dunson (2011), Cai et al. (2011).

Data Transformation and Posterior Sampling

With all the above prior distributions and the expanded likelihood specified, an ef-

ficient Gibbs sampling is developed. For the joint prior π(β, R, θ,γ0,γ), it is equal
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to π(θ|R)π(R)π(β)π(γ0)π(γ). Barnard et al. (2000) proved that sampling Σ from a

standard inverse Wishart distribution with the degree of freedom d = J + 1 is equiv-

alent to sampling from the prior π(θ|R)π(R). There are several ways of writing the

probability distribution function for inverse Wishart distribution, we adopt the one

used by Barnard et al. (2000). Let Σ ∼ IW (d, IJ), where d is the degree of freedom,

then:

fJ(Σ|d) ∝ |Σ|− 1
2 (d+J+1) exp

(
− 1

2tr(Σ
−1)

)
, (3.18)

which is the probability distribution function for inverse Wishart distribution used in

our approach. By the transformation (3.12) and Jacobian transformation formulas,

we have the following:

π(Σ) = π(θ, R)× |J : Σ→ (D,R)| = π(θ|R)π(R), (3.19)

where π(R) is taken as the marginally uniform prior (3.17), and

π(θ|R) ∼ Ga(J + 1
2 , 1). (3.20)

The pdf of Ga
(
J+1

2 , 1
)
is given as:

fθ
(
θ | J + 1

2 , 1
)

= 1
Γ(J+1

2 )
θ
J+1

2 −1 exp(−θ).

Based on the above discussions, we give the following theorem:

Theorem 3.3.1. By specifying the prior for R as (3.17) and a gamma prior (3.20)

for θ, under the transformation (3.12), simulating R is equivalent to sample Σ first

from a standard inverse Wishart distribution with degree of freedom d = J + 1 and

project it back to the correlation matrix R through R = D−1ΣD−1.

The proof of this theorem can be found in the Appendix B.2.

From step 2 of algorithm 3.1, by assuming that β, R, γ0 and γ are independent,

we combine the transformed likelihood (3.14), the marginally uniform prior on R in
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(3.17), the gamma prior on θ, the prior on β in (3.16), the normal prior on γ0 and

the exponential prior on γ, we have the joint posterior distribution:

π(R, θ,β,γ0,γ|W ) ∝ |Σ|−n2 exp tr(Σ−1ETE)

× |R|
J(J−1)

2 −1
(∏

j

|Rjj|
)− (J+1)

2

× Ga(J + 1
2 , 1)

×NpJ( ~β0,Ψ0 ⊗ IJ)

× π(γ0,γ). (3.21)

In order to sample from the joint posterior distribution in (3.21), a Gibbs sampling

framework is conducted. To sample R, from (3.21) we have

π(R, θ|W ,β,γ0,γ) ∝ |Σ|−n2 exp tr(Σ−1ETE)

× |R|
J(J−1)

2 −1
(∏

j

|Rjj|
)− (J+1)

2

× Ga(J + 1
2 , 1). (3.22)

By the transformation Σ = DRD, (3.22) is equivalent to:

π(Σ|W ,β,γ0,γ) ∝ π(R, θ|W ,β,γ0,γ)× |J : (D,R)→ Σ|

= |Σ|−n2 exp tr(Σ−1ETE)× |Σ|− 1
2 2(J+1) × exp

(
− 1

2tr(Σ
−1)

)
= |Σ|− 1

2 (d+J+1) exp
(
− 1

2tr(Σ
−1S)

)
. (3.23)

It’s clearly to see that Σ comes from an inverse Wishart distribution with d = n+J+1

and S = ETE. Therefore, the Gibbs steps to sample R can be summarized as below:

• Draw θj from gamma distribution Ga(J+1
2 , 1).

• Compute diagonal matrix D, with the jth element of D as dj =
√

rjj

2θj , where

rjj is the jth diagonal element of R−1.

• Compute E = (Z −X∗β∗)D.
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• Draw Σ from an inverse Wishart distribution, with Σ ∼ IW (V, S) where V =

n+ J + 1 and S = E ′E .

• Compute R = D−1ΣD−1.

Next, we want to derive the posterior distribution for β. Let ~Z = vec(Z′), ~α(t) =

vec
(
α′(t)

)
by stacking the columns of Z′ and α′(t) respectively,

~Z = vec(Z′) =



z11

...

z1J

z21

...

z2J

...

zn1

...

znJ


nJ×1

and

~α(t) = vec
(
α′(t)

)
=



α1(t11)
...

αJ(t1J)

α1(t21)
...

αJ(t2J)
...

α1(tn1)
...

αJ(tnJ)


nJ×1

.
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Then the computation for the posterior distribution of β can be derived as below:

π(~β | ~Z, R) ∝ π(~Z | ~β,R)× π(~β)

∝ NnJ

(
~Z | (X ⊗ IJ)~β + ~α(t), In ⊗R

)
×NpJ(~β | ~β0,Ψ0 ⊗ IJ)

∝ exp
{
− 1

2
[
~Z− ~α(t)− (X ⊗ IJ)~β

]′
(In ⊗R)−1

[
~Z− ~α(t)− (X ⊗ IJ)~β

]}
× exp

{
− 1

2(~β − ~β0)′(Ψ0 ⊗ IJ)−1(~β − ~β0)
}

∝ exp
{
− 1

2
[(
~Z− ~α(t)

)′
(In ⊗R)−1

(
~Z− ~α(t)

)
+ ~β′0(Ψ0 ⊗ IJ)−1 ~β0

+ ~β′(X ⊗ IJ)′(In ⊗R)−1(X ⊗ IJ)~β + ~β′(Ψ0 ⊗ IJ)−1~β

− ~β′(X ⊗ IJ)′(In ⊗R)−1
(
~Z− ~α(t)

)
− ~β′(Ψ0 ⊗ IJ)−1 ~β0

−
(
~Z− ~α(t)

)′
(In ⊗R)−1(X ⊗ IJ)~β − ~β′0(Ψ0 ⊗ IJ)−1~β

]}
∝ exp

{
− 1

2
[
~β′
(
(X ⊗ IJ)′(In ⊗R)−1(X ⊗ IJ) + (Ψ0 ⊗ IJ)−1

)
~β

− ~β′
(
(X ⊗ IJ)′(In ⊗R)−1(~Z− ~α(t)) + (Ψ0 ⊗ IJ)−1 ~β0

)
−
(
(~Z− ~α(t))′(In ⊗R)−1(X ⊗ IJ)− ~β′0(Ψ0 ⊗ IJ)−1

)
~β
]}
. (3.24)

From Kronecker product algebra, we have:

(X ⊗ IJ)′(In ⊗R−1) = X ′ ⊗R−1. (3.25)

and

(X ⊗ IJ)′(In ⊗R−1)(X ⊗ IJ) = X ′X ⊗R−1. (3.26)

By applying (3.25) and (3.26), we have

π(~β | ~Z, R, ~α) ∝ NpJ(~β | β̃, ψ̃). (3.27)

where

β̃ = ψ̃
[
(X ′ ⊗R−1)

(
~Z− ~α(t)

)
+ (ψ0 ⊗ IJ)−1β0

]
and

ψ̃ =
[
(X ′X ⊗R−1) + (ψ0 ⊗ IJ)−1

]−1
.
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Next we will derive the posterior distributions for the spline coefficients. The Gibbs

sampling steps for γjl and γj0 can be summarized from their posterior distributions

easily.

3.3.4 Algorithm Summary

From the discussions above, the full algorithm is summarized in Algorithm 3.2. The

Gibbs sampler is very appealing in that all of the full conditional distributions are

standard distributions and are easy to sample from. This property is rarely seen in

existing Bayesian methods for analyzing multivariate survival data in the literature.

The proposed Gibbs sampler is observed good mixing and fast convergence from our

observation.

3.4 Simulation Studies

In this section, we use simulation studies to evaluate the performance of our proposed

multivariate probit model. We assume that the covariate xi1 is a normal variable

with mean 0 and variance 0.25, and covariate xi2 is a Bernoulli random variable with

the success probability of 0.5. We considered three events of interest and take true

α1(t) = 1 + t + log(t), α2(t) = t2 + log(t) and α3(t) = 1 + t + log(t), respectively.

The ture covariate coefficients are β1 = (1, 0), β2 = (0, 1), β3 = (−1, 1). The true

correlation matrix is set as

R =


1 0.3 0.6

0.3 1 0

0.6 0 1

 .

The procedure about how we obtain the observed interval (Lij, Rij) for each Tij is

the same as the one in section 2.4. The specification of the observation process was

chosen so that none of the censoring types dominates the others. Quadratic splines

were applied to ensure adequate smoothness of the splines. Equally spaced knots
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Algorithm 3.2 Full PX-DA Sampling Scheme in Multivariate Probit for interval-
censored data
At iteration i,
1: Sample latent variables zi for i = 1, ..., n from a truncated multivariate normal

distribution π(zi|β∗, R) ∼ NJ(zi|(x∗β∗)′i, R)ICij , where

X∗ =


1 b1(t11) . . . bm(t11) XT

1
... ... . . . ... ...
1 b1(tnJ) . . . bm(tnJ) XT

n


and

β∗ =


γ10 γ20 . . . γJ0
... ... . . . ...
γ1m γ2m . . . γJm
β1 β2 . . . βJ


with tij = RijI(δij1=1) + LijI(δij1=0). And (x∗β∗)′i is the ith row of the matrix
(x∗β∗)′.

2: Sample R,
• Draw θj from gamma distribution Ga(J+1

2 , 1).

• Compute diagonal matrix D, with the jth element of D as dj =
√

rjj

2θj , where
rjj is the jth diagonal element of R−1.
• Compute E = (Z −X∗β∗)D.
• Draw Σ from an inverse Wishart distribution, with Σ ∼ IW (V, S) where
V = n+ J + 1 and S = E ′E.
• Compute R = D−1ΣD−1.

3: Sample γj0 from N(Mj0,W
−1
j0 ), where Wj0 = υj0 + nrjj and

Mj0 =W−1
j0

[
mj0υj0 +

n∑
i=1

[
(zij −

m∑
l=1

γjlbl(tij)− xiβj) ∗ rjj−

∑
j′ 6=j

rj′j
(
γj′0 − (zij′ − x′iβj′ −

m∑
l=1

γj′lbl(tij′))
)]]

.

Here rjj is the jth diagonal element of the correlation matrix R.
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4: Sample all γjl’s for l = 1, 2...,m and j = 1, ..., k. For each l, let Wjl =∑n
i=1 rjjb

2
l (tij), where rjj is the j-th diagonal element of R.

• If Wjl = 0, sample γjl from Exp(ηj).
• If Wjl > 0, sample γjl from N(Hjl,W

−1
jl )1(γjl > d∗jl), where

Hjl =W−1
jl

[
n∑
i=1

bl(tij)
{
rjj[zij − γj0 −

∑
l′ 6=l

γjl′bl′(tij)− x′iβj ]+

∑
j′ 6=j

rj′j[zij′ − x′iβj′ − γj′0 −
m∑
l=1

γj′lbl(tij′)]
}
− ηj

]

with d∗jl = max(c∗jl, 0) and c∗jl = max
{(i,j):δij2=1}

[
−zij−

∑
jl′ 6=jl γjl′{bl′ (Rij)−bl′ (Lij)}
bl(Rij)−bl(Lij)

]
.

5: Sample ηj for j = 1, ..., J from Ga(ajη +m, bjη +∑m
l=1 γjl).

6: Sample ~β from NpJ(β̃, Ψ̃), where Ψ̃ = [(X ′X ⊗R−1) + (Ψ0 ⊗ IJ)−1]−1 and

β̃ = Ψ̃
[
(Ψ0 ⊗ IJ)−1β0 + (X ′X ⊗R−1)(~Z − ~α(t))

]
with

~β = vec(β′) = (β11 . . . βJ1 β12 . . . βJ2 . . . β1p . . . βJp)′

~Z = vec(Z ′) = (z11 . . . z1J z21 . . . z2J . . . , zn1 . . . znJ)′

and

~α(t) = vec(α′(t)) = (α1(t11) . . . αJ(t1J)α1(t21) . . . αJ(t2J) . . . α1(tn1) . . . αJ(tnJ))′

Repeat until convergence.

were assigned within the range of the finite endpoints of the observation times for

each generated data set. The gap distance between two adjacent knots is set to 0.3.

The number of knots is different from data set to data set and takes values from 12

to 26.

We adopted the following prior specifications for the unknown parameters. m10 =

−3, m20 = −4, m30 = −3 and υ10 = υ20 = υ30 = 0.1, resulting in a normal prior

for γj0 with a large variance; a Ga(1, 1) prior for ηj with ajη = bjη = 1; β0 = 0

and Ψ0 = n(X ′X)−1, where X is the covariate matrix. Fast convergence of the

proposed Gibbs sampler was observed in the simulation study as the fact that all the
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Table 3.1: Performance of the proposed method in the case of using 100 datasets. BIAS
denotes the difference between the average of the 100 point estimates and the true value,
ESD the average of the estimated standard deviations, SSD the sample standard deviation
of the 100 point estimates, and the CP95 the 95% coverage probability.

True Bias SSD ESD CP95
β11 = 1 0.033 0.155 0.220 0.99
β12 = 0 0.022 0.151 0.159 0.98
β21 = 0 0.006 0.145 0.162 0.97
β22 = 1 0.056 0.164 0.157 0.92
β31 = −1 -0.104 0.162 0.172 0.90
β32 = 1 0.099 0.132 0.155 0.92
ρ12 = .3 0.022 0.070 0.091 0.97
ρ13 = .6 -0.072 0.053 0.075 0.93
ρ23 = 0 -0.011 0.074 0.085 0.98

parameters can be updated by their full conditional distributions in standard forms.

A total number of 4000 iterations of MCMC were ran, and the first 1000 iterations

were discarded as a burn-in period. The estimation results include the estimated

bias (Bias) given by the average of the estimates minus the true value, the sample

standard deviation (SSD) of the estimates, the average of the estimated standard

deviation (ESD), and the 95% empirical coverage probability (CP). The estimation

results for regression coefficients and correlation coefficients are presented in Table

3.1. The estimations for the three nonparametric measures are shown in Table 3.2.

The results in these two tables are based on 100 datasets, each with a sample size

300. Table 3.3 and Table 3.4 using the same simulation set ups as above give the

results based on 500 datasets, each with a sample size n = 100.

The results in Table 3.1 and Table 3.3 indicate that the estimates for the covariate

effects from our proposed method are accurate since the bias is small. It is observed

that the sample standard deviation and the estimated standard error are quite close.

The 95% coverage probability are close to the nominal level 0.95 in all parameter

configurations. Beyond the precise estimations in covariate effects, the estimations for

pairwise correlations are also accurate, which suggests that our model performs very
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Table 3.2: Estimates of associations in the case of using 100 datasets. BIAS denotes
the difference between the average of the 100 point estimates and the true value, ESD the
average of the estimated standard deviations, SSD the sample standard deviation of the
100 point estimates, and the CP95 the 95% coverage probability.

True Bias SSD ESD CP95
ρs12 = 0.288 0.020 0.068 0.088 0.97
ρs13 = 0.582 0.072 0.053 0.075 0.93
ρs23 = 0 -0.010 0.071 0.082 0.98
κ12 = 0.194 0.013 0.047 0.061 0.97
κ13 = 0.410 0.054 0.041 0.056 0.93
κ23 = 0 -0.007 0.048 0.054 0.98
τ12 = 0.194 0.013 0.047 0.061 0.97
τ13 = 0.410 0.054 0.041 0.056 0.93
τ23 = 0 -0.007 0.048 0.054 0.98

Table 3.3: Performance of the proposed method in the case of using 500 datasets. BIAS
denotes the difference between the average of the 500 point estimates and the true value,
ESD the average of the estimated standard deviations, SSD the sample standard deviation
of the 500 point estimates, and the CP95 the 95% coverage probability.

True Bias SSD ESD CP95
β11 = 1 -0.042 0.370 0.385 0.960
β12 = 0 -0.060 0.472 0.296 0.932
β21 = 0 -0.015 0.261 0.275 0.956
β22 = 1 -0.036 0.386 0.284 0.918
β31 = −1 -0.010 0.452 0.314 0.954
β32 = 1 -0.019 0.325 0.282 0.932
ρ12 = .3 -0.007 0.166 0.152 0.94
ρ13 = .6 0.085 0.127 0.126 0.91
ρ23 = 0 -0.022 0.152 0.142 0.95

well in estimations with arbitrary correlations between different events of interest.

Table 3.2 and Table 3.4 proved that the model has a good performance in estimating

the three nonparametric measures for statistical associations as well.

3.5 Real Data Analysis

3.5.1 STI Data

In this section, we apply the proposed methodology to the Sexually Transmitted In-

fection (STI) data set. STIs are prevalent in the US population, especially among
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Table 3.4: Estimates of associations in the case of using 500 datasets. BIAS denotes
the difference between the average of the 500 point estimates and the true value, ESD the
average of the estimated standard deviations, SSD the sample standard deviation of the
500 point estimates, and the CP95 the 95% coverage probability.

True Bias SSD ESD CP95
ρs12 = 0.288 0.046 0.288 0.218 0.94
ρs13 = 0.582 0.092 0.355 0.371 0.91
ρs23 = 0 -0.034 0.277 0.321 0.96
κ12 = 0.194 0.056 0.329 0.356 0.94
κ13 = 0.410 -0.088 0.441 0.410 0.91
κ23 = 0 0.027 0.244 0.214 0.96
τ12 = 0.194 0.056 0.329 0.356 0.94
τ13 = 0.410 0.088 0.441 0.410 0.91
τ23 = 0 0.027 0.244 0.214 0.96

young people aged 15-24. STIs can cause many serious problems such as pelvic in-

flammatory disease, ectopic pregnancy, tubal infertility, preterm birth, and increased

susceptibility to human immunodeficiency virus infection (HIV). As introduced in

section 2.5.1, three types of infections, Chlamydia trachomatis (CT), Neisseria gon-

orrhoeae (GC) and Trichomonas vaginalis (TV) are of interest. The data structure

for this data set is shown in Table 3.5.

Table 3.5: STI data structure for infection times: sample size n=360.

CT NG TV
left-censored 10.28% 1.67% 1.67%

interval-censored 44.72% 28.89% 28.89%
right-censored 45% 69.44% 69.44%

Monotone quadratic splines with 16 knots were adopted for this data set. The

same prior specifications as the ones in section 2.5 were applied. A total of 20000

iterations were run in our Gibbs sampler and the first 5000 iterations were discarded

as a burn-in. A summary of the posterior mean estimates and the corresponding 95%

credible intervals for the regression parameters on the 15000 iterations of the Markov

chain is presented in Table 3.6.

As demonstrated in Table 3.6, one can see that there was a generally positive

59



Table 3.6: Covariate effects estimations for STI data: posterior mean and 95% credible
interval are provided.

CT GC TV

age when enter the study 0.0372
(-0.0740 0.1515)

-0.0033
(-0.1417 0.1456)

0.0838
(-0.0655 0.2261)

number of partners -0.0072
(-0.0468 0.0320)

0.0147
(-0.0254 0.0549)

0.0288
(-0.0120 0.0693)

age at first intercourse -0.0316
(-0.1071 0.0454)

-0.0075
(-0.0966 0.0811)

-0.1584
(-0.2515 -0.0661)

race 0.1746
(-0.0903 0.4371 )

0.0834
(-0.2096 0.3896)

0.6256
(0.2471 1.0531)

initial infection status 0.3726
(0.1022 0.6479)

0.5345
(0.2422 0.8294)

0.3731
(0.0762 0.6636)

association between infection history and STI acquisition. Being infected before the

study contributes to a higher risk of early infection acquisition. The STI infection

risk with Trichomonas vaginalis for subjects with a younger age at first intercourse

was higher than those with an older age. African American adolescents tended to

have a higher STI risk with T.vaginalis than white Amercians. The infections with C.

trachomatis and T. vaginalis are not related to the age when enter the study, number

of partners, age at first intercourse or race. The findings here proved the complexity

of the STI risk in adolescents and a more careful evaluation of the behavioral markers

for STI screening is needed.

Table 3.7 provides the statistical association estimations between these initial

infection times. The estimates of the posterior means and 95% credible intervals for

the piecewise Pearson’s correlations ρ, Spearman’s correlation coefficients ρs, median

concordances κ and Kendall’s concordances τ are listed. This analysis points to a

generally positive association between these three infections. The small numbers

observed from ρ, ρs, κ and τ in Table 3.7 indicate that the associations between CT,

GC and TV infections are weak. However, one can see that the correlation between

CT infection and GC infection is the strongest among all the pairwise correlations, and

CT infection is less correlated with TV infection compared with the correlation with
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Table 3.7: STI data: Estimation results for posterior mean and 95% credible interval of
ρ, ρs, κ and τ are provided

Mean Std. 95%CI
ρ12 0.2841 0.0733 (0.1387 0.4253)
ρ13 0.2058 0.0773 (0.0531 0.3559)
ρ23 0.2581 0.0832 (0.0904 0.4188)
ρs12 0.2724 0.0707 (0.1325 0.4093)
ρs13 0.1971 0.0743 (0.0507 0.3417)
ρs23 0.2473 0.0802 (0.0864 0.4029)
κ12 0.1839 0.0488 (0.0886 0.2797)
κ13 0.1324 0.0505 (0.0338 0.2317)
κ23 0.1668 0.0550 (0.0576 0.2751)
τ12 0.1839 0.0488 (0.0886 0.2797)
τ13 0.1324 0.0505 (0.0338 0.2317)
τ23 0.1668 0.0550 (0.0576 0.2751)

GC infection. In comparison, it is impossible to estimate the dependence between the

infection times of chlamydia, gonorrhea and trichomonas through the use of univariate

modeling techniques, or to see the pairwise correlation relationships between these

infections by the use of normal frailty multivariate probit model in Chapter 2.

3.5.2 AIDs Clinical Trail Data

Now we apply the proposed method to the bivariate interval-censored AIDS data dis-

cussed before in section 1.2.1. The data comes from an observational study usually

referred as ACTG 181, collected from an AIDS clinical trial on human immunodefi-

ciency virus (HIV)-infected individuals. In this study, 204 patients provided urine and

blood samples at their clinical visits every 4 weeks and every 12 weeks, respectively.

At each visit, the presence of the opportunistic infection cytomegalovirus (CMV) was

tested. Two questions are of interest in this study: What is the covariate effect? The

covariate is CD4 cell counts at study entry, which is an indicator of disease stage. If

the CD4 cells/µl < 75, then the patient was in late stage. The CD4 cell counts effect

is important, since physicians want to know the optimum timing for initiating pro-

phylaxis for CMV disease. Another question of interest is the correlation between the
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two shedding times in blood and urine. The reason behind this question is that the

correlation provides an estimate of the two infection processes. If they are perfectly

correlated, then the scientists only need to collect sample from one of them in the

future. It will save resources and money. If the two are independent, then it indicates

that the infection processes in urine and blood are different. The data stucture for

AIDS clinical trail data is shown in Table 3.8.

Table 3.8: AIDS data structure for infection times: sample size n=204

Blood Urine
left-censored 3.43% 24.02%

interval-censored 11.28% 32.84%
right-censored 85.29% 43.14%

We adopted 19 knots for the monotone quadratic splines to guarantee the flexibil-

ity of the model. The knots are assigned according to the quantiles of the observation

intervals. The same prior specifications as the ones in simulation study are used here.

A total of 20000 iterations were ran in our Gibbs sampler and the first 5000 itera-

tions were discarded as a burn-in. A summary of the posterior mean estimates and

the corresponding 95% credible intervals for the regression parameters on the 15000

iterations of the Markov chain is presented in Table 3.9.

Table 3.9: The covariate effect estimation for the AIDs Data: posterior mean and 95%
credible interval.

Blood Urine

cd4ind 0.6479
(0.0122, 1.3869)

0.5104
(0.1071, 0.9132)

The results in Table 3.9 indicate that patients with baseline CD4 cell counts lower

than 75/µl are at a considerable increased risk of CMV shedding in the urine and

blood, since the 95% credible intervals are all beyond 0. To evaluate the statistical

association that exists between these two CMV shedding times in blood and urine, we

can obtain estimates from the Pearson’s correlation ρ, Spearman’s rank correlation
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coefficient ρs, median concordance κ and kendall’s τ between the two times from our

joint analysis. The results are shown in Table 3.10, which suggest that there is a

moderate positive association between the two failure times.

Table 3.10: AIDS data: Estimation results for posterior mean and 95% credible interval
of ρ, κ and τ are provided.

Mean Std. 95%CI
ρ 0.5257 0.1025 (0.3130, 0.7087)
ρs 0.5087 0.1015 (0.3001, 0.6918)
κ 0.3553 0.0773 (0.2027, 0.5015)
τ 0.3553 0.0773 (0.2027, 0.5015)

3.6 Discussion

We presented a Bayesian approach for regression analysis of arbitrarily correlated

failure time data under the semiparametric multivariate probit model. Monotone

splines are adopted for approximating the unspecified nonparametric transformation

functions. Maximum likelihood based methods are not feasible in closed form in the

multivariate probit models, due to the intractability of the high dimensional integral

in the likelihood function. As a comparison, Bayesian approach is preferred as it pro-

vides a full posterior distribution on all unknown parameters. The Gibbs sampler in

section 3.3.4 is based on the idea of parameter expansion data augmentation, which

gives full conditional posterior distributions in closed form. The proposed approach

has many nice properties: It avoids the identifiability problem in the multivariate

probit model by constraining the covariance to be a correlation matrix, and conju-

gate prior for the covariance matrix is applicable in deriving the posterior distribution

through parameter expansion. The marginally uniform prior for the correlation ma-

trix R is a proper prior and is uninformative, not favoring marginal correlations close

to 0 or the bounds even in high dimensions. Based on this, a straightforward Gibbs

sampler was proposed and the simulation study proved that our approach allows one

to estimate the regression coefficients and pairwise correlations jointly. This new pro-
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posed model enjoys the advantage of allowing different pairs of failure times to have

different correlations, which is more flexible compared with the shared frailty models.

Our application looked at the STI data from Tu et al., 2009 and the AIDS data

from Goggins and Finkelstein, 2000. An examination of the correlation matrix for

the STI data revealed a complex dependence structure between the infections with

Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis, hence in-

dicating the plausibility of our formulation to model these infection times in a mul-

tivariate setting. Compared with the normal frailty multivariate probit model in

chapter 2, the multivariate probit model in chapter 3 is a more general model, it

allows the correlations between different events of interest to be arbitrary.
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Chapter 4

Semiparametric regression analysis of

multivariate interval-censored failure time

data under frailty probit model allowing for

arbitrary pairwise correlations

Summary: Correlated data arise when pairs or clusters of observations are related

and thus are more similar to each other than to other observations in the dataset.

In multivariate interval-censored data set, the multiple events are correlated. When

more than two events of interest are investigated, the strength of association between

different pairs of events can be different. For example, for the study of a disease’s

impact to multiple body parts, the infections with arms and legs can be more related

compared with the eyes infection. Observations from different subjects can also be

related differently. For example, when study family disease, the disease impact on

twin pairs can be more correlated compared with the other members within this

family. Therefore, models that allow arbitrary correlations are preferred. In this

chapter, we extended the normal frailty multivariate probit model (normal frailty

MVP) in chapter 2 to allow arbitrary pairwise correlations. This extended study

makes the new normal frailty MVP model comparable to the MVP model in chapter

3. The underlying relationship between the two models is explored. Simulation

results suggest that both models have good performance for estimating the regression

parameters and the correlation coefficients. Our analysis suggests that the extended
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normal frailty multivariate probit model is equivalent to the general multivariate

probit model, and it enjoys simpler Gibbs algorithm formulas and fast computation.

4.1 Motivation

Recall that in chapter 2, we introduced the normal frailty multivariate probit model

for estimating the covariate effects and statistical associations jointly. We refer to

this model as normal frailty MVP model. The magnitude of association between

multiple events depends on the shared frailty variance σ2. A more general multivariate

probit model is proposed in chapter 3, which is referred to as MVP model. Under

this model, the association structure is evaluated by the correlation matrix. As a

comparison, we notice that one limitation of normal frailty MVP model is that it

assumes the correlations among multiple events of interest are the same. However,

it may not be realistic, considering that, for example, the results in 3.5.1 indicate

that the infection with Chalamydia trachomatis is more related to the infection with

Neisseria gonorrhoeae compared with Trichomonas vaginalis in the STI data. In this

case, the normal frailty MVP model in Chapter 2 failed to capture the difference

in strength between different pairs of correlations. The MVP model in chapter 3,

however, enjoys the advantage of allowing arbitrary correlations. Motivated by this

observation, we want to explore the relationship between this two MVP models.

Furthermore, an extension work is conducted on the normal frailty MVP model,

which allows one to estimate arbitrary correlations.

4.2 Extended Normal Frailty MVP Model

Back to section 2.2, we know that the correlation among Tj’s in model (2.1) is in-

duced by the common frailty ζ. In order to allow model (2.1) to cooperate arbitrary

correlations, an adjustment parameter cj is introduced. The extended Normal Frailty
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MVP model has the following form:

Fj(t | x, ξ) = Φ{αj(t) + x′βj + cjζ}, j = 1, . . . J. (4.1)

The parameters cj’s are unknown constants, except c1 = 1 for identifiability purpose.

Having cj’s in the model allows different pairs of event to have different correlations.

We can rewrite the model (4.1) at the subject level:

αj(Tij) = −x′iβj − cjζi + εij, i = 1, ...n, j = 1, ..., J. (4.2)

The frailty term ζi follows normal distribution N(0, σ2), and the random variable εij

follows N(0, 1). Now let T ∗ij = αj(Tij) for j = 1, 2, ...J . Then T ∗ij ∼ N(−x′iβj ,Σ),

where Σ is the covariance matrix of T ∗ij,

Σ =
(
ajl

)
with ajl =


ajj = 1 + c2

jσ
2

ajl = cjclσ
2

j = 1, . . . J and l = 1, . . . J.

Under the multivarite probit model (4.2), the unknown parameters (β,Σ) are not

identifiable. The reasons are discussed in Chapter 3. Therefore, marginal covariate

coefficients β∗ are estimated instead. By intergrating out the frailty term ζ from (4.1),

we have the marginal coefficient β∗j = βj√
1+c2

jσ
2 . Now we decompose the covariance

matrix into correlation matrix to avoid the identifiability problem when estimating

the associations.

Let Σ
k×k

=



1 + c2
1σ

2 c1c2σ
2 . . . c1cJσ

2

c2c1σ
2 1 + c2

2σ
2 . . . c2cJσ

2

... ... . . . ...

cJc1σ
2 cJc2σ

2 . . . 1 + c2
Jσ

2


= DRD,

where

D =



(1 + c2
1σ

2) 1
2 0 . . . 0

0 (1 + c2
2σ

2) 1
2 . . . 0

... ... . . . ...

0 0 . . . (1 + c2
Jσ

2) 1
2
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and

R =



1 c1c2σ2√
(1+c2

1σ
2)(1+c2

2σ
2)

. . . c1cJσ
2√

(1+c2
1σ

2)(1+c2
Jσ

2)

c2c1σ2√
(1+c2

2σ
2)(1+c2

1σ
2)

1 . . . c2cJσ
2√

(1+c2
2σ

2)(1+c2
Jσ

2)
... ... . . . ...

cJc1σ2√
(1+c2

Jσ
2)(1+c2

1σ
2)

cJc2σ2√
(1+c2

Jσ
2)(1+c2

2σ
2)

. . . 1


.

With this decomposition, We see that (4.1) is essentially equivalent to the MVP

model in Chapter 3, with the Pearson’s correlation ρjl = ρ(T ∗ij, T ∗il) = cjclσ
2√

1+c2
jσ

2
√

1+c2
l
σ2 ,

for j, l = 1, . . . J . From this relationship, we conclude that the extended Normal

Frailty MVP model is a special case of the general MVP model. The good properties

discussed in Chapter 2 of model (2.1) remain in the extended model (4.1). The new

expressions for the pairwise statistical associations between correlated failure times

in terms of the Spearman’s rank correlation coefficient ρs, median concordance κ and

kendall’s τ are updated in the following theorem:

Theorem 4.2.1. The pairwise statistical associations for multivariate survival data

under the extended normal frailty MVP model is characterized by Spearman’s cor-

relation coefficient ρs, median concordance κ and Kendall’s τ as follows, with the

Pearson’s correlation ρjl = ρ(T ∗ij, T ∗il) = cjclσ
2√

1+c2
jσ

2
√

1+c2
l
σ2 , for j, l = 1, . . . J .

ρs = 6π−1sin−1(ρjl/2), (4.3)

κ = 2π−1sin−1(ρjl), (4.4)

τ = 2π−1sin−1(ρjl). (4.5)

In order to facilitate the Bayesian approach for estimating covariate effects and

correlations, we notice that cj is an additional unknown parameter based on the

Gibbs sampler in section 2.3.2 and need to be updated. A normal prior N(0, σ2
c ) is

assigned to cj and one more step (step 8) is added to the proposed Gibbs sampler.
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The new Gibbs sampler under the extended normal frailty MVP model is summarized

in Algorithm 4.2.

Algorithm 4.2 Gibbs Sampler for extended normal frailty MVP model
At iteration i,
1: Sample latent variables zij for i = 1, ..., n and j = 1, ..., J .

• if δij1 = 1, sample zij from N(αj(tij) + xiβj + cjζi, 1)I(zij>0),
• if δij2 = 1, sample zij from N(αj(tij) + xiβj + cjζi, 1)I(αj(Lij)−αj(Rij)<zij<0),
• if δij3 = 1, sample zij from N(αj(tij) + xiβj + cjζi, 1)I(zij<0),

with tij = RijI(δij1=1) + LijI(δij1=0).

2: Sample γj0, from N(Ej0,W−1
j0 ), where Wj0 = υj0 + n and

Ej0 = W−1
j0

[
mj0υj0 +

n∑
i=1
{zij −

m∑
l=1

γjlbl(tij)− xiβj − cjζi}
]
.

3: Sample all γjl’s for l = 1, 2...,m and j = 1, ..., J . For each l, let Wjl =∑n
i=1 b

2
l (tij).

• If Wjl = 0, sample γjl from Exp(ηj),
• If Wjl > 0, sample γjl from N(Ejl,W−1

jl )1(γjl > d∗jl), where

Ejl = W−1
jl

 n∑
i=1

bl(tij){zij − γj0 −
∑
jl′ 6=jl

γjl′bl′(tij)− xiβj − cjζi} − ηj

 ,
d∗l = max(c∗l , 0) and c∗l = max

{(i,j):δij2=1}

[
−zij−

∑
jl′ 6=jl γjl′{bl′ (Rij)−bl′ (Lij)}
bl(Rij)−bl(Lij)

]
.

4: Sample βj from N(β̂j , Σ̂j), where Σ̂j = (Σ−1
j0 +∑n

i=1 xix
′
i)−1 and

β̂j = Σ̂j

[
Σ−1
j0 βj0 +

n∑
i=1
{zij − αj(tij)− cjζi}xi

]
.

5: Sample ζi from N(µi, σ2
i ) for i = 1, ..., n where σ2

i = (∑J
j=1 c

2
j + σ−2

ζ )−1 and

µi = σ2
i

J∑
j=1

cj{zij − αj(tij)− x′iβ}.

6: Sample ηj for j = 1, ..., J from Ga(ajη +m, bjη +∑m
l=1 γjl).

7: Sample σ−2
ζ from Ga(aζ + 0.5n, bζ + 0.5∑n

i=1 ζ
2
i ).

8: Sample cj from N(Mj0, V
−1
j0 ), where Vj0 = σ−2

c + ∑n
i=1 ζ

2
i and Mj0 =

V −1
j0

[∑n
i=1 ζi

(
zij − αj(tij)− x′iβj

)]
, j = 2, . . . , J .
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4.3 Simulation Studies

In this section, the extended normal frailty MVP model is evaluated through simu-

lation study. The results are summarized on the marginal covariate effects β∗j . Same

simulation settings as the ones used to generate Table 2.1 are applied. In addiction,

the true values for c are set to be c1 = 1, c2 = 1 and c3 = 2. The prior for c is

N(0, 10). The results for marginal covariates effects and Pearson’s correlation coef-

ficients from the extend normal frailty MVP model are given in Table 4.1, based on

the results from 100 data sets, each with a sample size 200. Table 4.2 provides the

pairwise results for the three nonparametric measures: Spearman’s rank correlation

coefficient ρs, median concordance κ and Kendall’s τ .

Table 4.1: Simulation results of the Extended Normal Frailty MVP model with pairwise
correlations. Presented results include the bias, the average of the estimated standard
deviations, the sample standard deviation of the 100 point estimates, and the 95% coverage
probability for the marginal covariate effects and Pearson’s correlation coefficients.

ξi ∼ N(0, .25) ξi ∼ N(0, 1) ξi ∼ N(0, 4)
True Bias SSD ESD CP95 True Bias SSD ESD CP95 True Bias SSD ESD CP95

β∗11 0.894 0.019 0.172 0.194 0.94 0.707 0.017 0.171 0.178 0.97 0.447 0.004 0.163 0.160 0.94
β∗12 0 -0.041 0.186 0.187 0.96 0 -0.041 0.159 0.175 0.98 0 -0.004 0.142 0.160 0.98
β∗21 0 -0.019 0.178 0.169 0.94 0 -0.009 0.156 0.163 0.97 0 0.006 0.144 0.152 0.97
β∗22 0.894 -0.012 0.173 0.181 0.95 0.707 -0.022 0.174 0.171 0.92 0.447 -0.005 0.146 0.157 0.96
β∗31 -0.707 0.023 0.174 0.171 0.93 -0.447 0.030 0.164 0.160 0.91 -0.243 0.010 0.164 0.151 0.91
β∗32 0.707 -0.029 0.191 0.174 0.90 0.447 -0.005 0.167 0.163 0.93 0.243 0.007 0.139 0.155 0.98
ρ12 0.200 -0.038 0.087 0.075 0.94 0.500 0.015 0.067 0.063 0.98 0.800 0.000 0.039 0.035 0.94
ρ13 0.316 -0.041 0.100 0.079 0.90 0.632 -0.002 0.066 0.060 0.97 0.868 -0.001 0.032 0.029 0.93
ρ23 0.316 0.009 0.090 0.088 0.93 0.632 -0.008 0.062 0.058 0.95 0.868 -0.013 0.026 0.025 0.93

As seen from Table 4.1 and Table 4.2, the extended method works very well in

estimating the regression parameters, with small bias in the point estimates, ESDs

being close to SSDs, and the 95% coverage probabilities being close to 0.95 for all of

the parameters. Table 4.2 also provides the estimation results of the association in

terms of Spearman’s correlation coefficient ρs, median concordance κ and Kendall’s

τ using Theorem 4.2.1. These results suggest that our extended method can estimate

the pairwise association very accurately.

To further illustrate the relationship between the MVP model in chapter 3 and
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Table 4.2: Simulation results of the extended normal frailty MVP model with pairwise
correlations. Presented results include the bias, the average of the estimated standard
deviations, the sample standard deviation of the 100 point estimates, and the 95% cover-
age probability for the Spearman’s rank correlation coefficients, Median concordance and
Kendall’s τ .

ξi ∼ N(0, .25) ξi ∼ N(0, 1) ξi ∼ N(0, 4)
True Bias SSD ESD CP95 True Bias SSD ESD CP95 True Bias SSD ESD CP95

ρs12 .191 -0.036 0.084 0.072 0.94 .483 0.014 0.066 0.062 0.93 .786 0.000 0.041 0.036 0.94
ρs13 .303 -0.040 0.097 0.077 0.90 .614 -0.003 0.067 0.060 0.97 .857 -0.001 0.032 0.031 0.91
ρs23 .303 0.008 0.089 0.086 0.92 .614 -0.008 0.062 0.058 0.94 .857 -0.014 0.027 0.027 0.93
κ12 .128 -0.026 0.057 0.050 0.94 .333 0.009 0.049 0.046 0.93 .590 -0.003 0.044 0.037 0.94
κ13 .205 -0.030 0.067 0.054 0.90 .436 -0.005 0.055 0.049 0.97 .669 -0.005 0.040 0.037 0.91
κ23 .205 0.004 0.062 0.060 0.92 .436 -0.009 0.051 0.048 0.94 .669 -0.020 0.037 0.034 0.93
τ12 .128 -0.026 0.057 0.050 0.94 .333 0.009 0.049 0.046 0.93 .590 -0.003 0.044 0.037 0.94
τ13 .205 -0.030 0.067 0.054 0.90 .436 -0.005 0.055 0.049 0.97 .669 -0.005 0.040 0.037 0.91
τ23 .205 0.004 0.062 0.060 0.92 .436 -0.009 0.051 0.048 0.94 .669 -0.020 0.037 0.034 0.93

the extended normal frailty MVP model, a comparison simulation study on the MVP

model is conducted. In this simulation study, the true values of the correlation

coefficients for MVP model are set to be the ones got from the extended normal

frailty MVP model in Table 4.1. Table 4.3 presents the results from MVP model

with the same simulation settings as the one used by Table 4.1. Scenario I, II and III

in this table are in correspondence with the extended normal frailty MVP model when

the frailty variance σ2 = 0.25, 1 and 2, respectively. The estimates for Spearman’s

correlation coefficient, median concordance and Kendall’s τ are given in Table 4.4.

R =


1 0.200 0.316

0.200 1 0.316

0.316 0.316 1


︸ ︷︷ ︸

Scenario I

R =


1 0.500 0.632

0.500 1 0.632

0.632 0.632 1


︸ ︷︷ ︸

Scenario II

R =


1 0.800 0.868

0.800 1 0.868

0.868 0.868 1


︸ ︷︷ ︸

Scenario III

The results in Table 4.3 and 4.4 demonstrate that the MVP model performs

well. The mean estimates are very close to the true value of the parameters, and the

averaged standard errors are in close agreement to the standard deviations. Estimated

coverage probabilities for 95% confidence intervals are at nominal level. Through

Table 4.1 to Table 4.4, it is proved that the extended normal frailty MVP model
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Table 4.3: Simulation results of the MVP model by using the true pairwise Pearson’s
correlation coefficients from the extended normal frailty MVP model. Presented results
include the bias, the average of the estimated standard deviations, the sample standard
deviation of the 100 point estimates, and the 95% coverage probability for the marginal
covariate effects and Pearson’s correlation coefficients.

Scenario I Scenario II Scenario III
True Bias SSD ESD CP95 True Bias SSD ESD CP95 True Bias SSD ESD CP95

β∗11 0.894 0.024 0.241 0.198 0.95 0.707 0.032 0.208 0.183 0.98 0.447 0.013 0.212 0.198 0.96
β∗12 0 -0.036 0.203 0.184 0.93 0 -0.027 0.178 0.169 0.94 0 -0.012 0.172 0.164 0.92
β∗21 0 -0.013 0.184 0.176 0.93 0 -0.012 0.166 0.161 0.97 0 0.010 0.152 0.144 0.95
β∗22 0.894 -0.008 0.182 0.174 0.91 0.707 -0.012 0.167 0.159 0.92 0.447 -0.009 0.150 0.152 0.97
β∗31 -0.707 0.013 0.184 0.176 0.97 -0.447 0.023 0.172 0.176 0.91 -0.243 0.008 0.144 0.150 0.95
β∗32 0.707 -0.032 0.242 0.235 0.92 0.447 -0.010 0.189 0.177 0.92 0.243 0.006 0.162 0.156 0.94
ρ12 0.200 0.006 0.111 0.107 0.93 0.500 0.060 0.129 0.115 0.96 0.800 0.008 0.129 0.104 0.94
ρ13 0.316 0.035 0.097 0.104 0.95 0.632 0.082 0.168 0.102 0.94 0.868 -0.009 0.118 0.094 0.96
ρ23 0.316 0.010 0.086 0.093 0.98 0.632 0.090 0.171 0.145 0.97 0.868 -0.019 0.128 0.102 0.91

Table 4.4: Simulation results of the MVP model by using the true pairwise Pearson’s
correlation coefficients from the extended normal frailty MVP model. Presented results
include the bias, the average of the estimated standard deviations, the sample standard
deviation of the 100 point estimates, and the 95% coverage probability for the Spearman’s
rank correlation coefficients, Median concordance and Kendall’s τ .

Scenario I Scenario II Scenario III
True Bias SSD ESD CP95 True Bias SSD ESD CP95 True Bias SSD ESD CP95

ρs12 .191 0.007 0.115 0.111 0.98 .483 0.051 0.128 0.113 0.96 .786 0.006 0.127 0.095 0.94
ρs13 .303 0.037 0.099 0.107 0.95 .614 0.083 0.168 0.101 0.94 .857 -0.008 0.116 0.104 0.92
ρs23 .303 0.011 0.088 0.096 0.98 .614 0.080 0.171 0.144 0.97 .857 -0.016 0.127 0.100 0.92
κ12 .128 0.002 0.078 0.073 0.98 .333 0.019 0.099 0.082 0.96 .590 -0.006 0.104 0.098 0.94
κ13 .205 0.022 0.069 0.072 0.95 .436 -0.008 0.074 0.090 0.94 .669 -0.009 0.092 0.087 0.92
κ23 .205 0.005 0.064 0.065 0.98 .436 -0.114 0.168 0.048 0.97 .669 -0.008 0.110 0.134 0.92
τ12 .128 0.002 0.078 0.073 0.98 .333 0.019 0.099 0.082 0.96 .590 -0.006 0.104 0.098 0.94
τ13 .205 0.022 0.069 0.072 0.95 .436 -0.008 0.074 0.090 0.94 .669 -0.009 0.092 0.087 0.92
τ23 .205 0.005 0.064 0.065 0.98 .436 -0.114 0.168 0.048 0.97 .669 -0.008 0.110 0.134 0.92

is essentially a special case of MVP model. We also noticed that by introducing

the unknown constant cj in the normal frailty MVP model, the extended model can

further handle negative correlations, as the value of cj, j = 2 . . . J can be negative.

The general MVP model in Chapter 3 enjoys this property as well since the values of

Pearson’s correlation in the correlation matrix can be negative.

Table 4.5 and 4.6 presents the results for marginal covariate effects and pairwise

statistics associations from the extended normal frailty MVP model. In these two

tables, the same simulation settings are adopted, except c1 = 1, c2 = −1 and c3 = 2.

By taking c2 = −1, the pairwise correlations between event 1 and event 2, the pairwise
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Table 4.5: Simulation results of the Extended Normal Frailty MVP model with negative
pairwise correlations. Presented results include the bias, the average of the estimated
standard deviations, the sample standard deviation of the 100 point estimates, and the 95%
coverage probability for the marginal covariate effects and Pearson’s correlation coefficients.

ξi ∼ N(0, .25) ξi ∼ N(0, 1) ξi ∼ N(0, 4)
True Bias SSD ESD CP95 True Bias SSD ESD CP95 True Bias SSD ESD CP95

β∗11 0.894 0.017 0.170 0.194 0.96 0.707 0.011 0.172 0.179 0.96 0.447 0.002 0.162 0.159 0.94
β∗12 0 -0.042 0.185 0.187 0.96 0 -0.043 0.158 0.175 0.98 0 -0.008 0.136 0.159 1.00
β∗21 0 -0.015 0.170 0.169 0.92 0 -0.022 0.160 0.162 0.96 0 -0.012 0.146 0.150 0.93
β∗22 0.894 0.000 0.173 0.180 0.96 0.707 0.004 0.167 0.169 0.94 0.447 0.010 0.144 0.156 0.96
β∗31 -0.707 0.021 0.174 0.170 0.93 -0.447 0.026 0.165 0.160 0.90 -0.243 0.010 0.156 0.149 0.91
β∗32 0.707 -0.029 0.189 0.173 0.92 0.447 -0.010 0.168 0.163 0.94 0.243 0.004 0.134 0.153 0.97
ρ12 -0.200 0.048 0.073 0.076 0.91 -0.500 -0.009 0.070 0.064 0.93 -0.800 -0.004 0.037 0.036 0.92
ρ13 0.316 -0.040 0.082 0.078 0.89 0.632 -0.002 0.066 0.060 0.94 0.868 -0.000 0.033 0.029 0.90
ρ23 -0.316 -0.012 0.093 0.089 0.90 -0.632 0.018 0.067 0.058 0.92 -0.868 -0.010 0.031 0.027 0.91

correlations between event 2 and 3 are negative. As a comparison, the true values of

the correlation matrix for MVP model are set to be the ones got from the extended

normal frailty MVP model in Table 4.5. Table 4.7 and Table 4.8 give the results

for the covariate effects and statistics associations under the general MVP model.

Scenario I, II and III in these two tables are in correspondence with the extended

normal frailty MVP model in Table 4.5 when the frailty variance σ2 = 0.25, 1 and 2,

respectively.

R =


1 −0.200 0.316

−0.200 1 −0.316

0.316 −0.316 1


︸ ︷︷ ︸

Scenario I

R =


1 −0.500 0.632

−0.500 1 −0.632

0.632 −0.632 1


︸ ︷︷ ︸

Scenario II

R =


1 −0.800 0.868

−0.800 1 −0.868

0.868 −0.868 1


︸ ︷︷ ︸

Scenario III

We observe that both models performed equally well in terms of the regression

parameter and statistics association estimates. The point estimates of the covariate

coefficients are close to the ture values. ESD is the average of the estimated standard

deviations of the posterior distribution of the parameter across the 100 data sets.

SSD is the sample standard deviation of the point estimates from the 100 data sets.

SSD and ESD are very close in all the setups for all the parameters. 95% coverage

probability are also close to 0.95. The results from Table 4.5 to Table 4.8 provide

strong evidence that both the models perform very well in estimating the regression
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Table 4.6: Simulation results of the extended normal frailty MVP model with negative
pairwise correlations. Presented results include the bias, the average of the estimated
standard deviations, the sample standard deviation of the 100 point estimates, and the 95%
coverage probability for the Spearman’s rank correlation coefficients, Median concordance
and Kendall’s τ .

ξi ∼ N(0, .25) ξi ∼ N(0, 1) ξi ∼ N(0, 4)
True Bias SSD ESD CP95 True Bias SSD ESD CP95 True Bias SSD ESD CP95

ρs12 - .191 0.047 0.076 0.074 0.92 -.483 -0.009 0.069 0.063 0.95 -.786 -0.004 0.038 0.037 0.95
ρs13 .303 -0.040 0.085 0.078 0.90 .614 -0.003 0.066 0.060 0.93 .857 -0.000 0.035 0.031 0.90
ρs23 -.303 -0.011 0.090 0.086 0.93 -.614 0.019 0.068 0.059 0.90 -.857 0.011 0.032 0.029 0.90
κ12 -.128 0.033 0.053 0.051 0.92 -.333 -0.005 0.052 0.047 0.95 -.590 -0.001 0.040 0.038 0.95
κ13 .205 -0.032 0.060 0.055 0.90 .436 -0.005 0.054 0.049 0.93 .669 -0.004 0.044 0.037 0.90
κ23 -.205 -0.004 0.063 0.060 0.93 -.436 0.019 0.056 0.049 0.90 -.669 0.018 0.041 0.036 0.90
τ12 -.128 0.033 0.053 0.051 0.92 -.333 -0.005 0.052 0.047 0.95 -.590 -0.001 0.040 0.038 0.95
τ13 .205 -0.032 0.060 0.055 0.90 .436 -0.005 0.054 0.049 0.93 .669 -0.004 0.044 0.037 0.90
τ23 -.205 -0.004 0.063 0.060 0.93 -.436 0.019 0.056 0.049 0.90 -.669 0.018 0.041 0.036 0.90

Table 4.7: Simulation results of the MVP model by using the true pairwise Pearson’s
correlation coefficients from the extended normal frailty MVP model. Presented results
include the bias, the average of the estimated standard deviations, the sample standard
deviation of the 100 point estimates, and the 95% coverage probability for the marginal
covariate effects and Pearson’s correlation coefficients.

Scenario I Scenario II Scenario III
True Bias SSD ESD CP95 True Bias SSD ESD CP95 True Bias SSD ESD CP95

β∗11 0.894 -0.031 0.282 0.238 0.92 0.707 0.042 0.178 0.184 0.96 0.447 0.033 0.191 0.208 0.90
β∗12 0 -0.011 0.246 0.196 0.92 0 -0.035 0.204 0.214 0.92 0 -0.012 0.199 0.182 0.97
β∗21 0 0.014 0.192 0.187 0.96 0 -0.082 0.209 0.231 0.93 0 0.024 0.187 0.152 0.92
β∗22 0.894 0.065 0.209 0.186 0.88 0.707 -0.032 0.198 0.187 0.93 0.447 -0.014 0.203 0.187 0.91
β∗31 -0.707 -0.042 0.366 0.197 0.90 -0.447 0.032 0.198 0.176 0.92 -0.243 0.038 0.167 0.152 0.92
β∗32 0.707 0.043 0.285 0.191 0.92 0.447 -0.041 0.198 0.179 0.94 0.243 0.034 0.152 0.172 0.91
ρ12 -0.200 -0.002 0.142 0.108 0.95 -0.500 0.07 0.147 0.134 0.92 -0.800 0.023 0.16 0.154 0.93
ρ13 0.316 0.064 0.127 0.107 0.94 0.632 0.079 0.121 0.112 0.94 0.868 -0.023 0.176 0.054 0.98
ρ23 -0.316 -0.045 0.126 0.097 0.96 -0.632 0.079 0.177 0.162 0.90 -0.868 -0.034 0.182 0.179 0.92

Table 4.8: Simulation results of the MVP model by using the true pairwise Pearson’s
correlation coefficients from the extended normal frailty MVP model. Presented results
include the bias, the average of the estimated standard deviations, the sample standard
deviation of the 100 point estimates, and the 95% coverage probability for the Spearman’s
rank correlation coefficients, Median concordance and Kendall’s τ .

Scenario I Scenario II Scenario III
True Bias SSD ESD CP95 True Bias SSD ESD CP95 True Bias SSD ESD CP95

ρs12 -.191 -0.001 0.139 0.104 0.95 -.483 0.062 0.134 0.123 0.93 -.786 0.023 0.141 0.124 0.93
ρs13 .303 0.061 0.124 0.104 0.94 .614 0.079 0.187 0.169 0.94 .857 -0.092 0.166 0.183 0.97
ρs23 -.303 -0.043 0.123 0.094 0.96 -.614 0.087 0.168 0.144 0.91 -.857 -0.056 0.165 0.178 0.91
κ12 -.128 0.002 0.107 0.071 0.95 -.333 0.034 0.127 0.145 0.93 -.590 -0.046 0.166 0.188 0.93
κ13 .205 0.041 0.087 0.072 0.94 .436 -0.048 0.174 0.189 0.94 .669 -0.049 0.191 0.183 0.97
κ23 -.205 -0.029 0.087 0.065 0.96 -.436 -0.098 0.145 0.132 0.91 -.669 -0.067 0.162 0.151 0.91
τ12 -.128 0.002 0.107 0.071 0.95 -.333 0.034 0.127 0.145 0.93 -.590 -0.046 0.166 0.188 0.93
τ13 .205 0.041 0.087 0.072 0.94 .436 -0.048 0.174 0.189 0.94 .669 -0.049 0.191 0.183 0.97
τ23 -.205 -0.029 0.087 0.065 0.96 -.436 -0.098 0.145 0.132 0.91 -.669 -0.067 0.162 0.151 0.91
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parameters and pairwise statistics associations, and enjoy the flexibility of allowing

the correlation to be negative.

The extended normal frailty MVPmodel estimates the correlations from the frailty

variance σ2 and the constant c, resulting in significant gains in efficiency. For the gen-

eral MVP model, the correlation is estimated through correlation matrix directly and

the number of unknown parameters grows rapidly as the number of dimensions for

T increases. It usually takes more time for the general MVP model to get results,

especially for high dimension. From simulation studies, we observed that though

both models give accurate estimations, the normal frailty MVP model enjoys faster

computation, and thus is more efficient than the general MVP model. The computa-

tion difficulties for general MVP model arise mainly from the sampling of univariate

truncated Normal distribution for latent variable Z (Tabet, 2007). The method of

Robert (1995) was adopted (See Appendix B), which is based on an accept and reject

algorithm. It may happen that under certain simulations, the accepting values is

small and significantly slow down the method.

4.4 Real Data Analysis

In this section, we applied the extended normal frailty MVP model on STI data

and ACTG181 data, to re-evaluate the marginal covariate effects and the statistical

associations.

4.4.1 STI Data

As introduced in section 3.5.1, STI data is a complicated multivariate interval-

censored data set. The extended normal frailty MVP model is applied on this data

set. The same specifications for the parameters are adopted as discussed before.

The marginal covariate effects estimates are given in Table 4.9. The results for the

statistical associations are given in Table 4.10.
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Table 4.9: Marginal covariate effects for STI data based on extended normal frailty MVP
model

CT GC TV

age when enter the study 0.0281
(-0.1041 0.1604)

-0.0086
(-0.1511 0.1315)

0.1548
(0.0044 0.3047)

number of partners -0.0158
(-0.1572 0.1215)

0.0705
(-0.0688 0.2121)

0.1089
(-0.0349 0.2530)

age at first intercourse -0.0640
(-0.1974 0.0704)

-0.0179
(-0.1662 0.1234)

-0.2455
(-0.4010 -0.0885 )

race 0.3042
(-0.1107 0.6958)

0.0958
(-0.3440 0.5054)

0.7199
(0.2191 1.2298)

initial infection status 0.4111
(0.1427 0.6744)

0.5386
(0.2442 0.8118)

0.3615
(0.0638 0.6568)

Table 4.10: Statistics associations for STI data based on extended normal frailty MVP
model: posterior mean and 95% credible interval are provided

Mean Std. 95%CI
σ2 0.2431 0.0619 (0.1453 0.3817)
ρs12 0.4072 0.0441 (0.3248 0.4964)
ρs13 0.1117 0.0357 (0.0429 0.1829))
ρs23 0.2468 0.0737 (0.0981 0.3861)
κ12 0.2785 0.0318 (0.2198 0.3436)
κ13 0.0746 0.0239 (0.0286 0.1225)
κ23 0.1664 0.0505 (0.0655 0.2631)
τ12 0.2785 0.0318 (0.2198 0.3436)
τ13 0.0746 0.0239 (0.0286 0.1225)
τ23 0.1664 0.0505 (0.0655 0.2631)

From the results in Table 4.9 and Table 4.10, we see that being older when enter

the study, at a younger age at first intercourse, being African American and has

infection history before the study will lead to an increasing risk of early TV infection

acquisition. For CT and GC infection, only the infection history has an impact for

the early acquisition. We also see the complex correlation structure behind this data

set. As observed in Table 4.10, the correlation between CT and GC infection is the

strongest among all the three pairwise correlations.. TV infection is less correlated

with CT infection as compared with GC infection. The conclusions form Table 4.9

and Table 4.10 are the same as the ones got from 3.6 and 3.7 in chapter 3.
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Table 4.11: AIDS data: marginal covariate effects estimations from normal frailty MVP
model, posterior mean and 95% credible interval are provided

Blood Urine

cd4ind 0.6259
(0.1787 1.0852)

0.6011
(0.2647 0.9308)

Table 4.12: AIDS data: Estimation results under normal frailty MVP model for posterior
mean and 95% credible interval of ρ, κ and τ are provided

Mean Std. 95%CI
ρs 0.7098 0.0923 (0.4738 0.8446)
κ 0.5222 0.0813 (0.3268 0.6541)
τ 0.5222 0.0813 (0.3268 0.6541)

4.4.2 AIDS Data

Now we apply the frailty MVP model on the AIDS data. The covariate of interest

is CD4 cell counts. The same prior specifications as discussed in section 3.5.2 are

adopted. A total of 20000 iterations were ran in the Gibbs sampler and the first 5000

iterations were discarded as burn-in. A summary of the posterior mean estimates

and the corresponding 95% credible intervals for the regression parameters on the

15000 iterations of the Markov chain is shown in Table 4.11. The marginal covariate

effects estimates are given in Table 4.11. The results for the statistical associations

are given in Table 4.12. The estimates for the Pearson’s correlation ρ, Spearman’s

rank correlation coefficient ρs, median concordance κ and Kendall’s τ between the

infection times in urine and blood are shown in Table 4.12.

We can see that patients in the late disease stage (with CD4 cell counts lower

than 75/µl has higher risk of CMV shedding in the urine and blood. A moderate to

strong association exists between the failure times in urine and blood. The marginal

covariate effect estimations from the normal frailty MVP model are close to the

ones got from the general MVP model, indicating that both models can analyze the

multivariate interval-censored data well.
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4.5 Conclusion

In this project, we developed two semi-parametric models under the multivariate pro-

bit model framework to estimate covariate effects and statistical association jointly.

Both the extended normal frailty MVP model and the general MVP model can al-

low arbitrary pairwise correlations between different failure times. Efficient Bayesian

approaches for regression analysis of multivariate interval-censored data under the

two models were presented. Monotone splines are adopted for approximating the un-

specified function, which provides computational efficiency and model flexibility. By

incorporating a normal frailty in the MVP model, the correlation structure in our joint

modeling approach is simplified and the computation is more efficient. Simulations

and real data applications showed that both the proposed models work reasonably

well.
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Appendix A

Chapter 2 Supplementary Materials

A.1 Proofs from Section 2.2

Let Ti1, Ti2...Tik denote the k failure times of a subject i, with covariate xi. Under

the proposed normal frailty multivariate probit model (3.2), it is equivalent to write

as

αj(Tij) = −x′iβj − ζi + εij, i = 1, ...n, j = 1, ..., k

where ζi ∼ N(0, σ2) is the frailty, and εijs are independent standard normal random

variables. Define Yj = α(Tij) for j = 1, 2, ...k. Obviously, Yj has a marginallly normal

distribution with variance 1 +σ2 and their joint distribution is a multivariate normal

distribution. Pearson’s correlation coefficient between each two of Yjs can be derived

as

ρ = cov(Y1, Y2)√
var(Y1)var(Y2)

= σ2

1 + σ2 .

By applying the relationships among Pearson’s correlation coefficient, Spearman’s

correlation coefficient, median concordance κ and Kendall’s concordance τ under

multivariate normal distribution, ρs = 6π−1 sin−1(ρ2), κ = 2π−1 sin−1(ρ) and τ =

2π−1 sin−1(ρ) (See Kruskal, 1958, Hougaard, 2000 among others), (2.4) and (2.5) and

(2.6) are proved.
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Appendix B

Chapter 3 Supplementary Materials

B.1 Sampling from Multivariate truncated normal distribution

Under the multivariate probit model, we are interested in drawing samples from a

truncated multivariate normal distribution. In this chapter, we provide a detailed

algorithm from Geweke (1991). (Referenced in Section 3.3 of Chapter 3).

The construction of samples from a J-dimensional normal distribution subject to

linear inequality restrictions,

x ∼ N(µ,Σ), a ≤ x ≤ b (B.1)

where µ is a J × 1 mean vector and Σ is a J × J covariance matrix. The elements

of a and b can take −∞ and ∞ respectively. Sampling x from (B.1) is the same as

sampling from

z ∼ N(0,Σ), α ≤ x ≤ β (B.2)

where α = a−µ and β = b−µ. We take x = µ+z. Based on Geweke (1991), a Gibbs

sampler is adopted. From the conditional multivariate normal distribution theory, in

the non-truncated distributional N(0,Σ),

E(zi | z1, . . . zi−1, zi+1, . . . , zJ) =
∑
j 6=i

cijzj . (B.3)

Then the truncated distribution can be represented by

zi =
∑
j 6=i

cijzj + hiεi, (B.4)

with εi ∼ TN
(αi −∑j 6=i cijzj

hi
,
βi −

∑
j 6=i cijzj
hi

)
. (B.5)
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where (B.5) is the univariate truncated normal distribution and the vector of coeffi-

cients in the conditional mean is denoted by:

ci = (ci1, . . . , ci,i−1, ci,i+1, . . . , ciJ), i = 1, . . . , J (B.6)

From the conventional theory for the conditional multivariate normal distribution

and based on the inverse of a partitioned symmetric matrix (Rao (1965)),

ci = −(Σii)−1Σi,<i, and h2
i = (Σii)−1, (B.7)

where Σii is the diagonal element of Σ−1 and Σi,<i is row i of Σ−1 with Σii deleted.

These computations need only be performed once, before the sampling begins. Start-

ing by assigning initial values for z and sweep through Gibbs cycles, we compute

x = µ + z at the end of each pass. Therefore, the Gibbs steps are summarized as

follows:

• Assign initial values z0 = 0.

• Generate J successive variables from

z
(1)
i | (z

(1)
1 , . . . , z

(1)
i−1, z

(0)
i+1, . . . , z

(0)
J ) ∼ fi(z(1)

1 , . . . , z
(1)
i−1, z

(0)
i+1, . . . , z

(0)
J ), i = 1, . . . , J.

• Repeat at the jth pass,

z
(j)
i | (z

(j)
1 , . . . , z

(j)
i−1, z

(j−1)
i+1 , . . . , z

(j−1)
J ) ∼ fi(z(j)

1 , . . . , z
(j)
i−1, z

(j−1)
i+1 , . . . , z

(j−1)
J ),

i = 1, . . . , J.

• Compute x(j) = µ+ z(j) at the end of each pass.

To sample the univariate truncated normal, we adopt the algorithm from Robert

(1995). For the one-sided truncation,

x ∼ N(µ, µ−, σ2),
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where N(µ, µ−, σ2) is the truncated normal distribution with left truncation point

µ−, i.e. the distribution is as below:

f(x|µ, µ−, σ2) = exp(−(x− µ)2/2σ2)√
2πσ(1− Φ((µ− − µ)/σ))

1{x≥µ−}.

Robert (1995) adopts an optimal exponential accept-reject algorithm sampling scheme.

Without loss of generality, assume that µ = 0 and σ2 = 1.

1. Generate z ∼ Exp(α∗, µ−);

2. Compute ρ(z) = exp(− (z−α∗)2

2 );

3. Generate u ∼ U(0, 1) and take x = z if u ≤ ρ(z), otherwise go back to step 1.

Exp(α∗, µ−) is the translated exponential distribution with density

f(z | α∗, µ−) = α∗e−α
∗(z−µ−)1{z≥µ−},

and the optimal value of α∗ = µ−+
√

(µ−)2+4
2 . For two-sided truncated normal distri-

bution,

x ∼ N(µ, µ−, µ+, σ2),

where N(µ, µ−, µ+, σ2) is the truncated normal distribution with left truncation point

µ− and right truncation point µ+, i.e. the distribution is as below:

f(x|µ, µ−, µ+, σ2) = exp(−(x− µ)2/2σ2)√
2πσ[Φ((µ+ − µ)/σ)− Φ(µ− − µ)/σ)]

1{µ−≤x≤µ+}.

Without loss of generality, µ = 0 and σ2 = 1. The accept-reject algorithm based on

U(µ−, µ+) is as follows:

1. Generate z ∼ U(µ−, µ+);

2. Compute

ρ(z) =


exp{− z2

2 } if 0 ∈ (µ−, µ+)

exp{ (µ+)2−z2

2 } if µ+ < 0

exp({µ
−)2−z2

2 } if 0 < µ−
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3. Generate u ∼ U(0, 1) and take x = z if u ≤ ρ(z), otherwise go back to step 1.

This accept-reject algorithm is proved more efficient than rejection sampling or the

inverse cdf method (Robert, 1995).

B.2 Marginal uniform prior proof from Barnard et al. (2000)

This part serves as proof of Theorem 4.2.1. Under the construction Σ = (σij) = DRD,

for i = 1, . . . , J and j = 1, . . . , J .

(σij) =


σij = didjrij if i 6= j

σii = d2
i if i = j

Then,

|J : Σ→ (D,R)| = ∂σij
∂rij

.

The Jacobian is given as:

|J : Σ→ (D,R)| = ∂σij
∂rij

= 2J(
∏
i

di)J . (B.8)

Take Σ as a 3× 3 covariance matrix as an example,

Σ
3×3

=


d2

1 d1d2 d1d3

d1d2 d2
2 d2d3

d1d3 d2d3 d2
3

 .
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Then the Jacobian is:

|J : Σ→ (D,R)| =
∣∣∣∣∣∂(σ11, σ22, σ33, σ12, σ13, σ23)
∂(d1, d2, d3, r12, r13, r23)

∣∣∣∣∣ (B.9)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2d1 0 0 d2r12 d3r13 0

0 2d2 0 d1r12 0 d3r23

0 0 2d3 0 d1r13 d2r23

0 0 0 d1d2 0 0

0 0 0 0 d1d3 0

0 0 0 0 0 d2d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.10)

= 23d3
1d

3
2d

3
3 . (B.11)

From Barnard et al. (2000), Σ(υ, IJ) and the inverse Wishart distribution is defined

as in (3.18): fJ(Σ|υ) ∝ |Σ|− 1
2 (υ+J+1) exp

(
− 1

2tr(Σ
−1)

)
.

π(R,D | υ) ∝ |DRD|− 1
2 (υ+J+1) exp

(
− 1

2tr(DRD)−1
)
× |J |

∝ |R|−
1
2 (υ+J+1)(

∏
i

di)−(υ+J+1)(
∏
i

di)J exp
(
− 1

2tr(DRD)−1
)

∝ |R|−
1
2 (υ+J+1)∏

i

(
d
−(υ+1)
i exp

(
− rii

2d2
i

))
. (B.12)

where rii is the ith diagonal element of R−1, and the distribution of R is:

f(R | υ) =
∫ ∞

0
π(R,D|ε)dD

∝
∫ ∞

0
|R|−

1
2 (υ+J+1)∏

i

(
d
−(υ+1)
i exp

(
− rii

2d2
i

))
dD. (B.13)

Now letθi = rii

2d2
i
, then

f(R | υ) ∝
∫ ∞

0
|R|−

1
2 (υ+J+1)∏

i

(
d
−(υ+1)
i exp

(
− rii

2d2
i

))
dD

∝ |R|−
1
2 (υ+J+1)∏

i

∫ ∞
0

(di)−(υ+1) exp(−θi)
d3
i

rii
dθi

∝ |R|−
1
2 (υ+J+1)∏

i

∫ ∞
0

(
d2
i

rii

)(−υ+2)/2

exp(−θi)
(rii)(−υ+2)/2

rii
dθi

∝ |R|−
1
2 (υ+J+1)

(∏
i

rii
)−υ2 ∏

i

∫ ∞
0

(θi)(υ−2)/2 exp(−θi)dθi . (B.14)
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From (B.14), we could see that

π(R,D) = π(R, θ) = π(θ | R)π(R), (B.15)

where

π(θi | R) ∼ Ga
(J + 1

2 , 1
)
, (B.16)

π(R) ∝ |R|
J(J−1)

2 −2
(∏

i

|Rii|
)− (J+1)

2 . (B.17)

(B.17) comes from rii = |Rii|
|R| , where Rii is the principal submatrix of R.

There’s a nice property of the inverse Wishart distribution, which is that the

principal submatrix of an inverse Wishart distribution is also an inverse Wishart

distribution. This property can be used to get the marginal distribution of rij for

i = 1, . . . , J and j = 1, . . . , J . Note that in the special case when choose a 2 × 2

sub-covariance matrix, the marginal density is

f(rij | υ) = (1− rij)
(υ−J−1)

2 . (B.18)

And this is Beta(υ−J+1
2 , υ−J+1

2 ) on [−1, 1], and is uniform distribution if µ = J + 1.

Therefore, we can see that by given the joint distribution of R as (B.17), the marginal

distribution for each element of R follows a uniform distribution on [−1, 1].
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