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ABSTRACT

Addiction to nicotine and the ability to quit smoking are influenced by genetic 

factors. Therefore, it is important to understand how genes and drugs of abuse 

mechanistically impact each other. One well-characterized protein responsible for 

regulating both response to drugs and gene expression is the transcription factor 

cAMP response element-binding protein (CREB). Work from our lab indicates 

that hippocampal specific alterations in CREB signaling and synaptic plasticity 

underlie certain nicotine withdrawal (WD) phenotypes in a region-specific 

manner. We found that CREB deletion in the ventral hippocampus (VH), a region 

known for regulation of mood and emotion, results in amelioration of nicotine 

WD-induced anxiety-like behaviors. High throughput chromatin 

immunoprecipitation sequencing (ChIP-seq) studies determined that WD from 

nicotine differentially modulates CREB binding to the gene Neuregulin-3 

(Nrg3), a neural-enriched epidermal growth-like factor that plays a role in the 

formation and maintenance of mature synapses. Interestingly, genome wide 

association studies (GWAS) in humans have found that single nucleotide 

polymorphisms within the NRG3 gene and that of its cognate receptor, ERBB4, 

are associated with smoking cessation outcomes. In mice, qPCR and Western 

blotting experiments established that NRG3 and ErbB4 are upregulated at 24 

hour after WD in the VH, with expression returning to baseline by 1-week post 

WD. Conditional VH deletion of Erbb4 blocked WD-induced anxiety-like 
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behaviors. This phenotype was accompanied by decreased levels of inhibitory 

GABAergic release and altered network clustering of excitatory pyramidal cells 

within the ventral CA1, an area enriched in Nrg3 and Erbb4 mRNAs and 

sensitive to nicotine WD. This data suggests that disruption of VH NRG3-ErbB4 

signaling attenuates WD-induced anxiety-like phenotypes through altering 

GABAergic modulation of CA1 pyramidal cell activity. Further examination of 

downstream signals of ErbB4 activation may lead to the identification of potential 

targets for treating nicotine withdrawal symptomology. 
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CHAPTER 1 

 

 

TRANSLATIONAL RESEARCH IN NICOTINE ADDICTION
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Introduction 

Worldwide, tobacco use causes more than 7 million deaths each year [1], and 

increases incidences of heart disease, stroke, and cancer in smokers [2]. 

Tobacco contains the chemical nicotine, which is the main culprit of dependency 

in smokers due to its addictive properties [3]. Though the detrimental effects of 

smoking are generally understood and 70% of smokers indicate that they want to 

quit, successful attempts among smokers remain below 5% [4]. Many factors 

contribute to the development and maintenance of nicotine addiction, and these 

processes have been investigated in both human populations and animal models 

to better understand underlying mechanisms. Nicotine, classified as a stimulant 

drug, produces paradoxical effects — acting as both a stimulant and a 

depressant by increasing attention, learning and memory and information 

processing, while also alleviating anxiety and depression [5, 6]. Cessation of 

chronic nicotine produces withdrawal symptoms in both animals [7, 8] and 

humans [9, 10], and avoidance of withdrawal symptoms is one factor that 

contributes to the maintenance of smoking and relapse during quit attempts. 

Additionally, studies have also shown that the severity and duration of nicotine 

withdrawal symptoms strongly predict relapse [11, 12].  

Currently, there are three “first-line” pharmacotherapies for nicotine 

addiction: nicotine replacement therapy (NRT; transdermal patch, nasal spray, 

gum, inhaler, lozenge), bupropion (WellbutrinTM or ZybanTM, a mixed 

norepinephrine/dopamine re-uptake inhibitor), and varenicline (ChantixTM, a 

nicotinic acetylcholine receptor (nAChR) partial agonist). While these drugs do 
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show some efficacy in the maintenance of smoking cessation, there is substantial 

interindividual variability in their therapeutic responses. To combat this, current 

drug development initiatives are directed towards using pharmacogenomics 

research as a platform for identifying new drug targets. Research shows that the 

genetic variants collected from pharmacogenomic screens may predict 

therapeutic response, thus improving treatment outcomes.  With the use of 

genome-wide association studies (GWAS) and candidate gene studies, scientists 

now have access to hundreds of gene lists of potential clinically and 

therapeutically relevant targets. Understanding the function of these genes, 

specifically variants within these genes, and the role they play in addiction 

phenotypes may undercover novel targets to aid in the development of 

efficacious smoking cessation treatments.  

This introduction has been tailored to first discuss nicotine’s biological 

effects in the brain—focusing on the neuronal and molecular adaptations that 

occur from chronic use. And secondly, narrate a collection of the current 

translational studies highlighting the association of specific genetic variants with 

molecular mechanisms believed to underlie behavioral phenotypes common in 

nicotine addiction in both humans and rodent models.   

 

Neurobiology Underlying the Addictive Nature of Nicotine 

Neurochemistry of Nicotine 

Nicotine, the major psychoactive and addictive component in tobacco smoke, is 

thought to mediate both tobacco reinforcement and dependence [13]. Nicotine 
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from a smoked cigarette (the most efficient delivery system into the body) will 

reach the brain in as little as 7 seconds after inhalation [14], delivering, on 

average, 1-2 milligrams of nicotine per cigarette into the blood stream [15]. Once 

in the blood stream, nicotine rapidly crosses the blood brain barrier due to its 

highly lipophilic properties [16] and can be isolated in lipid-rich, slightly basic 

reservoirs, such as glia [17]. This compartmentalization of nicotine can lead to its 

accumulation in the brain during chronic administration [18], potentially producing 

continued effects following termination of nicotine exposure.  Once in the brain, 

nicotine binds to nicotinic acetylcholine receptors (nAChRs).  These receptors 

are pentameric ion channels, which pass Na+, K+, and Ca2+ ions and, thus, have 

the ability to alter cellular activity. Entry of these ions can directly impact cell 

excitability or trigger calcium sensitive molecules, such as protein kinase C 

(PKC) [19], protein kinase A (PKA) [20], Calmodulin-dependent protein kinase II 

(CAMKII) [21], and extracellular signal-regulated kinases (ERKs) [20, 21]. These 

calcium sensitive kinases then have numerous downstream effects, including 

activation of transcription factors such as CREB [22-26] (for review of signaling 

effects of nicotine, see [27]), which will be covered more extensively in Chapter 2 

of this dissertation.  

In vertebrates, there are 12 genes that encode 12 distinct alpha and beta 

subunits of nicotinic receptors, CHRNA2-10 and CHRNAB2-4. They are 

classified as alpha in the presence of a Cys-Cys pair near the start of TM1, or 

beta when the CYS pair is absent [28]. These subunits assemble together to 

form the pentameric ion channel in a variety of homomeric or heteromeric 
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stoichiometries [29]. The most widely expressed subtypes in the brain are the α7 

homomeric receptors and α4β2 heteromeric receptors. In contrast to other 

subtypes, the α4β2 nAChR subtype has been shown to readily upregulate 

following chronic exposure to nicotine, as evidenced by findings in cell culture 

[30], rodents [31, 32], monkeys [33], and humans [34].  The upregulation of 

receptors after agonist activation is a characteristic unique to nicotine, and its full 

importance is not understood.  However, PET imaging in human smokers 

suggest that this upregulation may directly contribute to smoking relapse.  

Cosgrove and colleagues demonstrated that β2-containing nAChRs remain 

significantly upregulated after one month of abstinence, and this increase in 

receptor density is positively correlated to craving [35].  Though correlational, this 

study suggests that nAChR upregulation after chronic use could directly 

contribute to failed smoking cessation. 

 

 

The Addiction Pathway and Hippocampal Influences 

Over the last half-century, scientists have queried the physiological processes 

underlying the transition from casual to habitual and motivated drug use. Olds 

and Milner 1954, were among the first to demonstrate that certain regions act as 

“pleasure” areas of the brain [36-38] – leading to the identification of brain 

regions and their neuronal pathways that make up what is now referred to as the 

mesocorticolimbic pathway or the “reward pathway”.  This pathway consists of 

dopaminergic cell bodies originating in the ventral tegmental area (VTA) that 
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project to and terminate in the nucleus accumbens (NAc), a region recognized for 

its role in translating motivation into action [39]. Natural rewards, such as food or 

sex, as well as all examined drugs of abuse (alcohol, amphetamine, nicotine, 

opiates, cocaine, etc.) lead to activation of this reward pathway via an 

extracellular increase of dopamine (DA) in the nucleus accumbens [40-43]. 

Nicotine-induced release of dopamine into the synapse, and subsequent 

activation of dopaminergic receptors on neighboring cells is believed to modulate 

neural activity, ultimately influencing synaptic transmission and strengthening 

neural networks associated with motivated and goal-directed behaviors (for 

review, see [44]).  

The NAc possesses reciprocal connections with several other cortical and 

limbic regions. This complex interplay between regions is believed to carry 

information about executive and motor plans, behavioral flexibility, learning and 

memory and emotional processing [45]. The limbic system is a group of 

structurally and functionally related areas of the brain that underlie not just 

reward-related events and motivated behaviors, but also learning and memory 

and emotional processing. These regions consist of the hypothalamus, 

amygdala, hippocampus, and several other intimately connected regions, such 

as the prefrontal cortex (PFC), VTA and basal ganglia [45]. Neuroimaging tools 

such as structural and functional Magnetic Resonance Imaging (sMRI, fMRI) and 

Positron Emission Topography (PET) scans have been essential in elucidating 

acute pharmacological, neurocognitive, and long-term neurobiological effects 

smoking can have on these brain regions [46]. For example, functional imaging 
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studies in smokers have highlighted the role of the hippocampus in both cognitive 

and affective withdrawal symptoms [47-50]. Further studies examining the 

hippocampus in humans [51-55] and animal models [56-59] have demonstrated 

its strong association with multiple nicotine withdrawal phenotypes. In humans, 

the hippocampus is a critical brain region for learning and memory [60] as well as 

affect [61]. For example, long periods of chronic stress have been shown to 

significantly shrink the hippocampus, resulting in cognitive impairments and 

increased incidence of depression [62].  Similar to the effects of stress, the 

hippocampus undergoes extensive genomic remodeling and functional rewiring 

during chronic drug use, contributing not only to the development and 

maintenance of addiction, but also the apparent symptomology of nicotine 

withdrawal (i.e., impaired cognition and altered levels of anxiety). Therefore, 

further elucidating the anatomical and neural correlates of hippocampal function 

during nicotine withdrawal may provide insight on novel drug targets for smoking 

cessation. 

Models of Nicotine Addiction – from Humans to Rodents 

Measuring Nicotine Dependence in Smokers 

Emerging pharmacogenetic studies are characterizing how genetic variation can 

provide clinical relevance and potentially predict the degree of dependency or 

response to smoking cessation therapies. There are several traditional methods 

used to measure the level of dependence and to predict the likelihood of relapse.  

Assessments such as the Fagerstrom Tolerance Questionnaire (FTQ, [63]), the 

Heaviness Smoking Index (HIS, [64]), and the Fagerstrom Test of Nicotine 
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Dependence (FTND, [65]), as well as the Diagnostic and Statistical Manual, 4th 

Edition (DSM-IV) criteria are used by researchers to evaluate not only physical 

dependence, but also “cognitive, behavioral, and physiological symptoms” as per 

the DSM-IV definition. In smoking intervention trials, epidemiological studies, and 

genetic studies, the FTND test is the most commonly used to assess 

dependence characteristics such as cigarette consumption and the compulsion 

to use. This assessment consists of a scale of 1-10, with scores 1-2 indicating 

low dependence and 8+ high dependence. A respondent’s score often 

determines what nicotine replacement therapies and doses are recommended for 

smoking cessation. 

Despite its popularity, studies have speculated the FTND test to have low 

reliability and validity, and limited ability to predict biochemical markers of 

dependence [66-68], perhaps due to its “yes or no” forced-answer format. More 

recently developed assessments such as the Nicotine Dependence Syndrome 

scale (NDSS, [69]) and Wisconsin Inventory of Smoking Dependence Motives 

(WISDM, [70]) have been designed based off a more multifactorial perspective of 

dependence—taking into account theories of dependence syndrome [71] and a 

multitude of motivational domains (habitual/automatic, positive affect, negative 

affect, etc.) [72]. Collectively, these measures have been shown to predict 

clinically important dependence criteria such as craving, severity of withdrawal 

symptoms, rate of nicotine metabolism and smoking cessation outcomes [65, 69, 

70, 73-75]. 
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Modeling Nicotine Dependence in Rodents  

With standard assessments in place to measure nicotine dependence and 

nicotine exposure modalities in humans, developing valid and reproducible 

animal models of nicotine dependence is imperative to identify and characterize 

clinically relevant neuronal adaptations that occur with chronic drug use. Animal 

models have become useful tools in advancing our understanding of the 

neurobiological processes underlying initiation, maintenance, withdrawal, and 

relapse to smoking. Since the human condition of nicotine dependence is what 

drives the need for this research, it is important for translational studies to be 

designed with certain factors in mind. Routes of administration, length of 

exposure, dose, drug cues and genetic variability, etc. can have different 

physiological effects between species. Matta et al. (2007), published a set of 

guidelines for nicotine dose and administration selection for in vivo research 

focusing in on individual species used in modeling addiction. Their review 

addresses issues related to acute vs. chronic exposure, nicotine metabolism, 

genetic background, route of administration and behavioral responses [76], a 

great resource when conducting in vivo animal studies.  

 

Routes of Nicotine Administration 

To-date, the majority of research on behavioral and biological effects of nicotine 

in rodent models involves non-contingent exposure of nicotine, typically by either 

injection (subcutaneously or intraperitoneal), subcutaneous implantation of 
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osmotic minipumps engineered to deliver a steady state infusion of nicotine for 

experimentally defined lengths of administration [8] or from inhalation procedures 

[77]. These types of nicotine delivery systems are instrumental in identifying the 

effects of acute and chronic exposure to nicotine on a wide variety of behavioral 

responses such as locomotor activity and anxiety-like behavior. Conversely, a 

contingent form of nicotine administration is self-administration, where animals 

are placed in an operant chamber and have the opportunity to voluntarily 

administer nicotine, typically delivered intravenously, upon emission of an 

operant response (lever-press, nose poke, etc.). This form of nicotine delivery 

assesses an animal’s propensity to self-administer, which is advantageous when 

investigating a drug’s reinforcing effects on behavior [78].   

 

Rodent Behavioral Paradigms  

Reward. Along with nicotine self-administration paradigms, another commonly 

used model of drug reward is conditioned place preference (CPP). This 

behavioral paradigm tests for the development of conditioned preference or 

aversion to an environment associated with drug exposure. Conditioned place 

preference is found if animals spend more time in the drug-paired environment, 

versus vehicle paired showcasing a rewarding effect of the drug. Whereas 

aversion to a drug results in the opposite effect — animals will spend more time 

in the vehicle-paired environment [79]. Collectively, these two models enable 

researchers to investigate the effects that a genetic or pharmacological 

manipulation have on nicotine reward phenotypes. Achieving nicotine-induced 
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CPP in mice has proven challenging compared to other drugs of abuse with 

some studies observing place preference [80-82], while others observe no drug 

effect or aversion to the drug [83-85]. It remains unclear why there are 

inconsistencies with this behavioral model, but some speculate it could be due to 

a very narrow dose-response curve with the difference between the rewarding 

and aversive doses of nicotine being very small [86].  

Withdrawal. Termination of repeated or chronic administration of a drug results 

in physiological states characterized as drug withdrawal (see review, [87]). The 

symptoms of withdrawal reported consist of somatic signs, such as teeth-

chattering, excessive grooming, tremors, arching of the back, etc. [8], as well as 

affective changes and deficits in cognition (see review [88]). When conducting 

rodent studies modeling affective withdrawal symptoms there are a variety of 

behavioral tests, which measure anxiety-like and depressive-like symptoms in 

rodents and are sensitive to nicotine withdrawal-induced behaviors. For example, 

the Open Field Exploration Test consists of placing the animal, singly, in a 

brightly lit, unprotected open area. By doing so, it elicits anxiety-like behavior 

from social isolation, of being separated from cage mates, and the stress of 

being in a novel test environment [89]. A second paradigm, the Elevated Plus-

Maze/Elevated-Zero Maze is also a well-established paradigm for assessing 

anxiety-like behavior in mice [90]. Mice are placed on a maze apparatus about 1 

m from the floor and given the choice of spending time in open, unprotected 

maze arms, or in enclosed, protected arms of a maze. In both of these 

paradigms, mice tend to avoid open, brightly lit areas, preferring darker and more 



12	

enclosed areas. Administration of anxiolytic drugs, such as benzodiazepines, 

result in increased time exploring in the open area or arms of the apparatus, 

indicative of an anxiolytic response (review, [91]). Lastly, the Novelty-Induced 

Hypophagia test is designed to measure the latency of a mouse to feed in a 

novel test environment. Mice naturally avoid exploring novel environments yet 

are motivated to approach and consume highly palatable food. This inhibition in 

feeding behavior, often referred to as hyponeophagia, is a reliable indicator of 

anxiety-like behavior in mouse and rats [92] and is found to be sensitive to 

nicotine [93] and withdrawal [94-97] 

Lastly, the negative effects on cognition during nicotine withdrawal have 

also been successfully modeled in rodents. Behavioral models such as fear 

conditioning, prepulse inhibition, and object discrimination tests assess different 

components of cognition including memory, learning, impulsivity and attention. 

These models are used not only in addiction, but also a myriad of 

neuropsychiatric disorders, such as schizophrenia [98]. Contextual fear 

conditioning is commonly used to assess formation of associative memories to a 

contextual environment and, similar to the NIH test, is found to be hippocampal-

dependent. Studies have successfully shown that nicotine enhances contextual 

fear conditioning [99], while withdrawal from nicotine results in impairment [100-

103]. These tests are beneficial in evaluating the effect of pharmacological or 

genetic manipulation on impaired cognitive functions seen during withdrawal from 

nicotine (for review of all behavioral models see, [104]).  
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Translational Studies Investigating Genetic Correlates of Nicotine 

Dependence  

It is believed that identification and mechanistic understanding of the genetic 

variations underlying nicotine dependence phenotypes will prove valuable in 

developing new smoking cessation therapies. However, this type of coordinated 

understanding between human and animal studies is only attainable through 

increased translational studies and communication between human research and 

animal models of nicotine dependence.  In this next section, we will review how 

twin studies, linkage studies, candidate gene studies and GWAS studies in 

human cohorts have taken great strides in identifying contributors of genetic 

variability associated with nicotine addiction. We will also discuss etiologically 

relevant animal models of addiction and highlight how they have helped expand 

our knowledge of gene function and how genetic variation relates to smoking 

phenotypes.  

 

nAChR Polymorphisms in Smokers  

A number f candidate gene approach and GWAS approach have implicated 

single nucleotide polymorphisms (SNPs) in nicotinic subunit genes in the etiology 

of smoking. The most widely evaluated example of this is the CHRNA5-

CHRNA3-CHRNB4 gene cluster, which has been examined for associations with 

nicotine dependence phenotypes, withdrawal symptoms, and smoking cessation. 

Recent GWAS and pathway-based studies have associated SNPs in this gene 

cluster with heaviness of smoking and/or nicotine dependence [105-110]. SNPs 
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within the CHRNA5 gene in particular have been hypothesized to mediate the 

rewarding effects of nicotine. For example, Berrettini et al. 2008 found SNPs 

within the CHRNA5 gene to be associated with an increase in reported cigarettes 

smoked per day (CPD) [105]. Other aspects of nicotine dependence, such as 

nicotine tolerance, smoking initiation, craving, withdrawal severity, and inability to 

stop smoking, have also been associated with CHRNA5-CHRNA3-CHRNB4 

SNPs [111], collectively linking these variants to smoking behavior and a higher 

risk of developing addiction to nicotine.  

 

nAChR Studies in Rodent Models 

Transgenic mice with subunit deletion, mutation or overexpression have been 

useful in defining the contribution of nAChR subtypes to specific functions [112]. 

Studies from nicotinic receptor knockout mice have helped to elucidate the 

relative contributions of specific subunits to discrete behaviors pertinent to 

nicotine dependence and withdrawal (for review, see [29]).  For example, studies 

evaluating the function of the individual subunits encoded from the 

CHRNA5/A3/B4 gene cluster, have found the B4 and A5 KO mice show similar 

phenotypes, such as reduced signs of withdrawal symptoms [58, 113], 

decreased somatic signs, resistance to nicotine-induced seizures, and alterations 

in locomotor activity [114]. Interestingly, Frahm et al. 2011, found that 

overexpression of the B4 subunit results in strong aversion to nicotine [115]. This 

effect was reversed by viral-mediated, site-specific expression of an a5 variant 

(D398N) that has been associated with high risk of nicotine dependence in 
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humans (rs1696998) [116-118]. Furthermore, a recently generated transgenic 

mouse model (tgCHRNA5/A3/B4), overexpressing the human CHRNA5/A3/B4 

cluster, is reported to have increased sensitivity and preference to nicotine [119]. 

Together, data collected from these mouse models suggests a role of the 

CHRNA4/A3/B4 gene cluster in the rewarding and aversive properties of 

nicotine.   

 

DRD2 Polymorphisms in Smokers 

In addition to the cholinergic system, many studies have also shown genetic 

variation within the dopaminergic system is associated with nicotine phenotypes 

and smoking cessation outcomes [120].  Dopamine acts through 5 receptor 

subtypes (D1-D5), with these subtypes are further classified under two broad 

receptor families: D1-like (D1 and D5 receptors) and D2-like (D2-D4 receptors). 

These two families have opposing signal transduction functions, but are believed 

to work concordantly together, modulating dopaminergic signaling [121]. Genome 

wide linkage analyses have shown that the DRD2 region specifically of 

chromosome 11 (11q23) is linked with increased risk for cigarette smoking [122]. 

Located approximately 10 kb downstream from the DRD2 gene is the widely 

published DRD2/ANKK1 Taq1A polymorphism (rs1800497), linked to nicotine 

dependence and smoking cessation outcomes [123-128]. The minor allele 

(rs1800497(T)) is associated with reduced number of dopamine binding sites in 

the brain [129], and increased risk of smoking [130, 131]. Interestingly, a 

neuroimaging study found that individuals carrying this minor allele learned to 
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avoid actions with negative consequences less efficiently [132], which can be 

postulated to influence addictive behaviors. Additionally, variants within the 

dopamine transporter, SLC6A3, (rs28363170) have been linked to smoking 

behaviors and are hypothesized to influence dopamine transmission [133, 134]). 

These polymorphisms collectively are found to underlie individual differences in 

nicotine dependence phenotypes such as smoking risk [133], cigarette craving 

[135, 136], smoking reward and reinforcement [137], and likelihood of relapse 

[134].  

 

DRD2 Studies in Rodent Models 

Many studies have shown behavioral impacts of dopaminergic function in rodent 

models of nicotine dependence as well.  In rodents, voluntary self-administration 

of nicotine leads to increased D2 receptor levels in striatal regions of the brain 

[138]. This observation was also seen in rats after prolonged withdrawal from 

nicotine, suggesting that elevated D2 levels could be participating in the 

hypersensitivity following nicotine exposure [138]. Blocking DA release has been 

shown to alter the rewarding effects of nicotine, as measured by self-

administration [139] and conditioned place preference studies [140]. In rats, site-

specific blockade of DA transmission in the VTA specifically reverses the 

conditioning properties of nicotine from aversive to rewarding [140], while 

systemic and site-specific antagonism of D2 receptors attenuates cue-induced 

reinstatement of nicotine-seeking behaviors [141]. In addition to mediating the 

drug-seeking effects of nicotine, D2 antagonists have also been observed to 
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inhibit nicotine’s improvement of memory retrieval in models of stress [142], 

showcasing D2 receptor function in mediating not just the reinforcing aspects of 

nicotine dependence, but also memory and stress responsivity.  

 

OPRM1 Polymorphisms in Smokers 

A significant neurotransmitter system also relevant to nicotine-induced reward is 

the endogenous opioid system. In smokers, nicotine leads to increase release of 

β-endorphins, an endogenous µ-opioid receptor (MOR) ligand [143]. 

Administration of naloxone, a MOR antagonist, reduces nicotine reward [144]. 

Furthermore, a variant within the coding region of exon 1 of the opioid receptor 

mu 1 gene (OPRM1) (rs1799971) has been identified encoding a non-

synonymous substitution of asparagine (Asn) to aspartic acid (Asp) (Asn40Asp, 

A>G (A118G)) in the extracellular N-terminus of MOR, resulting in loss of a 

glycosylation site [145, 146].  

 Nicotine dependence studies investigating rs1799971 genotypes found 

that females carriers of A/G, G/G alleles are associated with reduced reinforcing 

value of nicotine, while in males there was no association [147]. Additionally, 

carriers of A/G, G/G alleles in a separate study were found to have better 

smoking cessation outcomes when using transdermal nicotine patches, despite 

gender [148]. Brain imaging studies have reported that carriers of the G allele 

have larger magnitudes of DA release in response to nicotine smoking those in 

the right caudate and right ventral pallidum [149], while A allele carriers exhibit 

higher levels of MOR binding potential or receptor availability [150], and 
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significant increases in cerebral spinal fluid in regions associated previous with 

cigarette cravings [151].  

 

OPRM1 Studies in Rodent Models  

Rodent studies have also found the rewarding properties of nicotine to be 

mediated in part by the µ-opioid receptors (MOR) [152, 153]. Binding of β-

endorphin to MORs on GABAergic interneurons within the nucleus accumbens 

decreases inhibitory activity, resulting in disinhibition of dopaminergic neurons 

and subsequent elevations in dopamine release [154]. Both MOR antagonist and 

MOR knockout studies display attenuation of the reinforcing effects of nicotine 

[26, 155-157].  

Great technological advancement has been made in engineering 

humanized mouse models to study the function of polymorphisms within the 

OPRM1 gene. Mague et al. 2009, generated a mutant mouse line that possessed 

the mouse equivalent (A112G, N38D) of the human SNP (rs1799971) [158]. 

Studies using this mouse model were designed to evaluate the mechanism 

underlying the changes associated with the human OPRM1 A118G SNP. Their 

findings demonstrated that mice harboring the A112G SNP display several 

phenotypic similarities to humans, including reduced mRNA expression of MOR 

and morphine-mediated antinociception [158]. Further biochemical experiments 

demonstrated that this SNP results in reduced N-glycosylation, stability [159] and 

expression of MOR protein [160], as well as altered hippocampal function [161]. 

Additionally, Ramchandani et al. (2011), generated a murine model of OPRM1 
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A118G SNP (rs1799971) by replacing the mouse exon 1 with the human exon 1 

carrying the A118, or G118 allele through site-directed mutagenesis [162].  This 

mouse model has been used extensively in modeling addiction of multiple 

substances of abuse including nicotine [163], alcohol [146, 164, 165], cocaine 

[166] and opioids [167, 168]. These humanized mouse models offer a broad 

utility in the evaluation and prediction of impacts genetic variation can have on 

addiction phenotypes.   

 

Future Directions for Translational Pharmacogenetic Research 

Identifying the Genetic and Functional Correlates of Nicotine Withdrawal. 

Commendable strides have been made in identifying genetic variants in smokers 

associated with nicotine dependence phenotypes such as number of cigarettes 

smoked per day, age of onset, withdrawal symptoms and smoking cessation 

outcomes. Furthermore, translational studies investigating SNPs within the 

cholinergic, dopaminergic and opioid systems have found high levels of 

involvement of these neurotransmitter systems in regulating the reinforcing 

aspects of nicotine, as highlighted in this review. And while these studies have 

been beneficial in gaining understanding of nicotine’s biological effects on the 

reward system, very few rodent studies focus in on the genetic and biological 

correlates of withdrawal from nicotine. In humans, withdrawal symptoms are 

often classified as affective, somatic and cognitive. Somatic signs include 

tremors, increased heart rate, and increased appetite. Affective symptoms 

involve increased anxiety, depression, irritability, and sudden changes in mood, 
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while cognitive symptoms manifest as difficulty concentrating and impaired 

memory [169]. Collectively, the severity and duration of these withdrawal 

symptoms in smokers is found to strongly predict relapse and adherence to 

treatment regimens [11, 12, 170, 171]. Therefore, better characterization and 

understanding of how genetic variations within their respective biological systems 

predispose carriers to specific or exacerbated withdrawal symptoms is a 

promising avenue for future drug development initiatives. 
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CHAPTER 2 

 

 

DISTINCT ROLES OF CREB WITHIN THE VENTRAL AND DORSAL 
HIPPOCAMPUS IN MEDIATING NICOTINE WITHDRAWAL PHENOTYPES1

																																																													
1 Fisher ML., LeMalefant RM., Zhou L., Huang G., Turner JR. (2016). Distinct 
Roles of CREB Within the Ventral and Dorsal Hippocampus in Mediating Nicotine 
Withdrawal Phenotypes. Neuropsychopharmacology, 42 (8).  
 Reprinted here with permission of publisher.	



	

33 

Introduction  

Last year marked the 50th Anniversary of the Surgeon General Report on 

Smoking and Health, yet nearly 20% of Americans continue to smoke [1]. 

Nicotine, one of the main addictive psychopharmacological ingredients found in 

tobacco, is believed to mediate dependency on cigarettes. While acute nicotine 

produces modest reinforcing effects [2], chronic nicotine use results in 

neuroadaptive changes, which may underlie many of nicotine’s addictive effects 

[3]. Abstinence from chronic nicotine use results in cognitive and affective 

withdrawal symptoms [4], which are thought to be due to chronic nicotine’s 

neuroadaptive effects. These symptoms are the predominant driving factors to 

relapse to smoking, accounting for why 80% of smokers attempting to quit, fail 

[5]. Therefore, more mechanistic understanding of the neural correlates 

underpinning these symptoms may lead to better treatment options for nicotine 

dependence.  

Previous studies suggest the involvement of cAMP-responsive element 

binding protein (CREB)-dependent transcription in the molecular mechanism of 

dependence of multiple drugs of abuse, including nicotine [6]. In human studies, 

there is an observed correlation between the number of cigarettes smoked per 

day and CREB expression [7]. In adult mice, CREB activation is necessary for 

nicotine reward [8]. These findings suggest a possible role for CREB in mediating 

the neuroplasticity changes that characterize nicotine dependence [9]. 

Furthermore, CREB may be required for behaviors that manifest during 

abstinence as well, since altered CREB phosphorylation (pCREB) [10] as well as 
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changes in CREB-DNA binding [13, 11] have been observed during nicotine 

withdrawal. Previous work from our lab has shown that these effects are region-

specific; in the hippocampus, both CREB phosphorylation and CREB binding to 

target genes can be correlated with nicotine withdrawal phenotypes [11]. 

However, whether CREB activity in the hippocampus is necessary for nicotine 

withdrawal induced behaviors is unknown.  

Supporting data in human [12, 13] and animal models [14, 15] link 

hippocampal function with cognitive and affective nicotine withdrawal 

impairments, both reliable determinants for nicotine withdrawal. Functional 

imaging studies in smokers show that activation of this brain region can be 

correlated with both cognitive and affective withdrawal symptoms [16, 17]. 

Additionally, these studies report a correlation between hippocampal volume and 

successful quit attempts [17]. However, the hippocampus is not a homogenous 

structure, but instead can be divided into dorsal and ventral regions, each 

mediating different behaviors [18]. The dorsal hippocampus mediates spatial 

navigation as well as learning and memory formation [18]. The ventral 

hippocampus contributes to anxiety and affective responses and is known to 

have bidirectional connectivity with the amygdala [18]. This dissociation is also 

important in nicotine- associated phenotypes. For example, Wilkinson et al. 

(2012) demonstrated that following chronic nicotine administration, nicotinic 

acetylcholine receptors in the dorsal, but not ventral, hippocampus, mediate 

nicotine withdrawal deficits observed in contextual fear conditioning [5]. 

Reciprocal studies from Turner et al. (2012) showed that microinjecting nicotinic 
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compounds specifically into the ventral hippocampus could ameliorate anxiety-

like nicotine withdrawal symptoms in mice [19]. Previous studies from our lab 

show that hippocampal CREB signaling and the concurrent synaptic plasticity 

changes may underlie nicotine withdrawal phenotypes in mice [11, 19]. However, 

the hippocampal specificity of these effects is unknown. Therefore, this study 

examines how region-specific CREB deletion in either the dorsal or ventral 

hippocampus impacts 24h withdrawal behavioral phenotypes and what possible 

CREB targets may be responsible.  

Methods and Materials 

Animals  

Male and female CREBloxP/loxP mice bred in house, were 8-10 weeks of age at 

the beginning of microinjection surgeries. These mice were originally generated 

as described in Gundersen et al. (2013) [20]. Mice were maintained on a 12 hour 

light-dark cycle (lights on at 7:00 AM), with ad libitum food and water. All 

behavioral procedures were conducted during the hours of 9:00 AM – 5:00 PM.  

Drugs and Administration  

(-)-Nicotine tartrate (MP Biomedicals, Solon, OH.) was dissolved in 0.9% saline. 

Nicotine was administered subcutaneously via osmotic minipumps (Alzet model 

2002, Cupertino, CA) at a dose of 18 mg/kg/d for 12 days. This dose, reported as 

freebase weight and based off of previous work [11, 19, 21, 22], corresponds to 

plasma levels of ~0.31µM [23], a concentration similar to that observed in human 
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smokers consuming an average of 17 cigarettes a day (plasma levels between 

0.06 and 0.31µM) [23].  

Osmotic Minipump Surgeries  

Pump implantation was performed as previously described [24]. Briefly, mice 

were anesthetized with 5% isofluorane and pumps were implanted 

subcutaneously. Twelve days after pump implantation a second, similar surgery 

was performed to remove pumps and induce spontaneous withdrawal.  

Adeno-associated Virus Production  

The University of Pennsylvania Vector Core generated neuron-selective AAV 

constructs expressing Cre recombinase (AAV-Cre; AAV2/9.CMV.PI.Cre, titer 

2.84 × 1013 genome copies (gc)/ml) and enhanced green fluorescent protein 

(AAV-GFP; AAV2/9.CMV.eGFP, titer 3.74 × 1013 gc/ml). Each expression 

cassette contained AAV2 terminal repeats flanking the cytomegalovirus (CMV) 

promoter-PI-Cre recombinase and CMV promoter- enhanced GFP (eGFP) 

packaged into AAV9. Purification of the vector was performed using CsCl 

sedimentation and vector gc quantification was performed using qPCR.  

Stereotaxic Surgery  

Surgery was performed on adult mice 8-10 weeks old as previously described 

[19]. After anesthesia with isofluorane, mice were secured in a stereotaxic frame 

(Stoelting, IL.). Holes were drilled bilaterally into the skull at the injection sites. 

Stereotaxic coordinates were measured from the skull surface as follows: ventral 
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intrahippocampal injections were AP -2.9, ML ±3.0, DV -3.8; dorsal 

intrahippocampal injections were AP -2.1, ML ±1.4, DV -2.0. After surgeries, mice 

remained in their home cage for an additional 4 weeks until the beginning of NIH 

training (refer to Figure 2.1).  

Novelty-induced Hypophagia (NIH) test  

The NIH test was performed as previously described [22]. Briefly, during training 

mice were exposed daily to a highly palatable food (Reese's peanut butter chips; 

Nestle, Glendale, CA) and latency to consume was measured. NIH testing 

occurred on the last 3 days of treatment, consisting of presentation of food in the 

home environment (Home Day 1,2) or in the novel environment (Novel Day). On 

Novel Test Day, mice were removed from the home cage and placed in an empty 

standard cage with no bedding that had been wiped with Pine Sol (1:10) to emit a 

novel odor and placed in a white box with bright illumination (2150 lux). Latency 

to consume was recorded on all days.  

Fear Conditioning  

Fear conditioning occurred in Plexiglas chambers (26.5×20.4×20.8cm) housed in 

sound attenuating boxes (Med-Associates, VT). The floor of each chamber 

consisted of metal bars connected to a shock generator and scrambler (Med 

Associates, Model ENV-414). Ventilation fans were mounted on the sides of 

each box to provide background noise. Illumination was mounted above each 

box (4W light). Shock administration was controlled using LabView software. All 

chambers were cleaned with 70% ethanol before and after behavioral 
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procedures. A modified delay fear conditioning training procedure that used a 

one 15 s CS (context)-US (foot shock) pairing was performed similar to 

previously described methods [25]. Freezing was sampled for 1s every 10 s [26]. 

On training day, mice were placed into chambers and baseline freezing was 

scored for 120 s. Then, 3 0.57 mA foot shocks were delivered with an inter-shock 

interval of 45 s. Mice remained in the chambers for an additional 30s before 

returning to their home cages. The next day, mice were returned to the chambers 

and contextual freezing was scored for 5 min.  

Experimental Design (Figure 2.1A)  

Previous studies demonstrate that an >80% neuronal knockdown of CREB 

immunoreactivity was accomplished 8 weeks post-injection using these 

procedures [20]. Therefore, all behavioral testing occurs ≥8 weeks post viral 

injections.  

Animals from each group were stereotactically injected with either AAV-

GFP or AAV- CRE virus into the ventral or dorsal hippocampus, followed by a 4-

week recovery period in their home cage. NIH training occurred during weeks 5-

6. After NIH training, osmotic minipumps were implanted for a two-week 

administration period. On week 9, NIH testing began. Following home day 1 

testing, half of the animals had their minipumps removed to initiate WD. 24h 

later, animals were placed in the novel environment and tested. That afternoon, 

the same cohort of animals also underwent fear-conditioning training. The third 

and final day of testing consisted of animals undergoing home day 2 testing in 
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the morning, and then back in their home cage for 3 hours. That afternoon they 

were then tested in fear conditioning. At the end of behavioral testing, animals 

were immediately sacrificed and the dorsal and ventral hippocampal tissues were 

microdissected and utilized for qPCR analysis.  

QPCR  

Quantitative PCR was performed as previously described [27] on ventral or 

dorsal hippocampal samples across all treatment groups. Briefly, RNA was 

isolated using the RNeasy Mini kit (Qiagen) and qPCR reactions were assembled 

using Thermo Scientific Maxima SYBR Green master mix along with 100nM 

primers (Eurofins). The mRNA levels were determined using the 2-ΔΔCT 

method[28] and target genes were normalized to the housekeeping genes, 

Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) or Hypoxanthine 

Phosphoribosyltransferase (HPRT). All gene expression values of were 

normalized to their respective AAV-GFP saline-treated controls. Additionally, 

CRE Recombinase activity is shown as both normalized expression (Fig 3Ai, Ci) 

and average raw CT values (Fig 3Aii, Cii).  

Nicotinic Acetylcholine Receptor (nAChR) Binding  

[3H]Epibatidine binding was performed as previously described [21]. Briefly, 

cortical homogenates were incubated with 2nM [3H]Epibatidine (Perkin Elmer, 

USA) for 2h at RT. Bound receptors were separated from free ligand by vacuum 

filtration over GF/C glass-fiber filters (Brandel, MD) and the filters were then 

counted in a liquid scintillation counter. Nonspecific binding was determined in 
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the presence of 300µM nicotine, and specific binding was defined as the 

difference between total binding and nonspecific binding.  

Data Analysis  

Statistical analyses were performed with GraphPad Prism 6.0 software package 

(GraphPad Software, CA). Except where noted, results were analyzed using two-

way repeated measures ANOVA followed by Sidak’s multiple comparison tests. 

Because the group data was collapsed for the CREB and CRE qPCR data and 

the fear conditioning test day data, results were instead analyzed with a 

Student’s t-test. All data are expressed as mean ±SEM.  

Results 

 
CREB Deletion in the Ventral, but not Dorsal, Hippocampus Ablates 
Nicotine Withdrawal Induced Anxiety-like Phenotype in the NIH Test.  

Ventral Hippocampal CREB Deletion  

In humans, nicotine withdrawal is often characterized by an increase in anxiety. 

To model this pre-clinically, we utilized a well-validated model of anxiety-like 

behavior in rodents, the NIH test [29]. Presentation of food in the home 

environment 24h prior to or 24h following testing in the novel environment 

showed no differences between the experimental groups (2.1B, Home Day 1 or 

2). In contrast, the latency to feed in the novel environment (Novel Day) was 

significantly elevated in all animals compared to the home day environment, as 

well as a significant effect of treatment and interaction [main effect of day,   
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Figure 2.1. Experimental design set-up and NIH behavior of animals with 
CREB deleted in either the ventral or dorsal hippocampus.  

(A) Day 1 AAV-GFP or AAV-CRE injections into the ventral or dorsal 
hippocampus. Day 28 beginning of NIH training. Day 42 implantation of osmotic 
minipumps (saline or nicotine). Day 56 removal of osmotic minipumps in WD 
animals only. Day 57-59 NIH testing (AM). Day 58 Fear Conditioning training. 
Day 59 Fear Conditioning testing (PM). (B) Nicotine treatment attenuates latency 
to feed in both the AAV-GFP and AAV-CRE groups within the ventral 
hippocampus. AAV-GFP animals undergoing 24h withdrawal display increased 
latency to feed compared to both saline and nicotine counterparts, while AAV-
CRE animals undergoing 24h withdrawal display a reduction in latency to feed. 
(C) Nicotine treatment attenuates latency to feed in both the AAV-GFP and AAV-
CRE groups within the dorsal hippocampus. Both AAV-GFP and AAV-CRE 
groups undergoing 24h withdrawal result in an increase in latency to feed 
compared to both saline and nicotine treatment groups. N=6-8/group (*p<0.05, 
***p<0.0005 viral effect; #p<0.05 treatment effect)  
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F(2,106)=44.38, p<0.0001; main effect of treatment F(6,53)=6.973, p<0.0001; 

interaction F(12,106)=7.486, p<0.0001)] (Figure 2.1B). In GFP injected animals 

(AAV-GFP), chronic treatment with nicotine significantly attenuated the latency to 

feed in the novel environment compared to saline-treated controls (p<0.01). AAV-

GFP injected animals undergoing 24h WD displayed increased latency to feed 

compared to both their saline (p<0.01) and nicotine-treated (p<0.01) 

counterparts. In animals with ventral hippocampal CREB deletion (AAV-CRE), 

nicotine treatment also resulted in an anxiolytic response compared to saline 

controls (p<0.01). However, unlike the GFP-injected animals, the 24h WD AAV-

CRE group did not result in an anxiogenic response on Novel Test Day and 

maintained a significant anxiolytic response compared to saline (p<0.01), 

suggesting that nicotine withdrawal-related anxiety involves a ventral 

hippocampal CREB mediated mechanism.  

Dorsal Hippocampal CREB Deletion  

Data collected from animals with dorsal hippocampal injections with either the 

AAV-GFP or AAV-CRE across all treatments, again showed no differences in 

behavior during Home day testing between the experimental groups (Fig 2.1C, 

Home Day 1 or 2). Latency to feed in the novel environment (Novel Day) was 

significantly higher in all animals compared to the home day environment, 

accompanied by a significant effect of treatment and interaction between groups 

[main effect of day, F(2,120)=72.99, p<0.0001); main effect of treatment, 

F(6,60)=6.257; p<0.0001; interaction, F(12,120)=7.217, p<0.0001] (Figure 2.1C). 
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On Novel Day, chronic nicotine treatment in the AAV-GFP injected control 

animals again showed a reduced latency to feed compared to the saline-treated 

AAV-GFP controls (p<0.05), while the 24h WD animals displaying an increased 

latency to feed compared to both the saline (p<0.01) and nicotine-treated 

(p<0.01) animals within the GFP group. In AAV-CRE injected animals, nicotine 

treatment resulted in an anxiolytic response compared to saline controls 

(p<0.05), similar to ventral AAV-CRE mice. However, in contrast to those 

animals, mice undergoing 24hWD with dorsal CREB deletion displayed a 

significant increase in latency to feed compared to their saline (p<0.01) and 

nicotine (p<0.01) AAV-CRE counterparts, demonstrating an anxiogenic-like 

response typical of what is observed during nicotine withdrawal in control 

animals. These effects were not attributable to alterations in appetitive behavior 

as there are no differences in the latency to feed in the home environment on 

home day 1 or 2 (p>0.05) (Figure 2.1B,C). No sex effects were observed 

between viral or treatment groups in the NIH test.  

CREB Deletion in the Dorsal Hippocampus Impairs Fear Conditioning, 
while Ventral Hippocampal CREB Deletion Enhances Fear Conditioning.  

Fear conditioning is a well-established cognitive behavioral paradigm that is a 

validated test of learning and memory in rodents [30]. Animals learn to associate 

the attributes of the context with an aversive foot shock, leading to the formation 

of a specific memory and resulting in a freezing response. Figure 2.2 shows the 

effects of ventral or dorsal CREB deletion on animals treated with saline, 

nicotine, or 24hWD on fear conditioning. There were no differences between any 
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Figure 2.2. The effects of CREB deletion in either the ventral or dorsal 
hippocampus in animals subjected to fear conditioning.  

(A) (i-ii.)Training of animals during saline, nicotine or withdrawal treatment that 
were injected with AAV-GFP or AAV-CRE into the ventral or dorsal hippocampus 
had no deficits during training of fear conditioning, n=6-8/treatment group. (B) 
Animals injected with CRE in the dorsal hippocampus show an impairment in fear 
conditioning with a reduced percent time freezing compared to GFP control 
animals, while animals injected with CRE in the ventral hippocampus show an 
enhancement in fear conditioning with an increased percent time freezing 
compared to GFP control animals, n=14-16/region group (C) (i-ii.) [3H]-
Epibatidine radioligand binding using cortical tissue from ventral or dorsal 
hippocampal CREB deleted shows nAChR upregulation during chronic nicotine 
and withdrawal compared to saline controls, n=6-8/treatment group. (*p<0.05 
viral and/or treatment effect)
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of the groups during training (Figure 2.2A). On testing day, our data showed no 

drug treatment effects (saline/nicotine/24hWD) within any of the groups, 

therefore all drug treatment groups were combined for analysis and a t-test was 

performed comparing the effects of virus in each sub-region. Dorsal hippocampal 

CREB deletion significantly reduces percent time freezing (p<0.05), suggesting 

impairment in cognition (Figure 2.2B). In contrast, ventral hippocampal CREB 

deletion significantly increases percent time freezing (p>0.01) suggesting an 

enhancement of fear conditioning (Figure 2.2B). No sex effects were observed 

between viral or treatment groups in fear conditioning. To confirm treatment 

efficacy, [3H]Epibatidine cortical radioligand-binding was performed in these 

animals (n=6- 8/group). Chronic nicotine treatment results in upregulation of 

nAChRs in both ventral CREB deleted animals [F(2,38)=7.092, p=0.0244]  

(Figure 2.2Ci) and dorsal CREB deleted animals [F(2,31)=21.71, p<0.0001] 

(Figure 2.2Cii), a canonical response to chronic nicotine treatment [21].  

Increased CRE Recombinase Expression Decreases CREB Levels within 
the Ventral and Dorsal Hippocampus  

Administration of AAV-CRE disrupts Creb1 expression by excising exon10/11 via 

flanking loxP sites [20]. This excision occurs predominantly in neurons due to the 

selective infection of these cells by the AAV2/9 serotype [31]. QPCR data 

indicate a significant increase in mRNA expression levels of Cre Recombinase 

(p<0.01, p<0.01) when normalizing to saline GFP controls (Figure 2.3Ai,Ci) and a 

significant decrease in mean CT value (p<0.01, p<0.01) (Figure 2.3Aii,Cii). This 

corresponds with a significant reduction in the expression of CREB (p<0.01,
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Figure 2.3. CRE Recombinase and CREB mRNA expression levels in the 
ventral and dorsal hippocampus via qPCR analysis.  

(A) (i) CRE expression is significantly increased in animals following AAV-CRE 
injections into the ventral hippocampus compared to GFP control animals. (ii) 
Mean CT values for CRE expression are significantly lower in CRE injected 
animals than that of GFP controls (B) (i.) Animals receiving CRE injections into 
the ventral hippocampus have significantly decreased CREB expression in the 
ventral hippocampus. (ii.) There is no significant change in CREB expression in 
the dorsal hippocampus of ventral CREB deleted animals compared to GFP 
controls.,(C) (i.) CRE expression is significantly increased in animals following 
AAV-CRE injections into the dorsal hippocampus compared to GFP control 
animals. (ii) Mean CT values for CRE expression are significantly lower in CRE 
injected animals than that of GFP controls (D) (i.) Animals receiving CRE 
injections into the dorsal hippocampus have significantly decreased CREB 
expression in the dorsal hippocampus. (ii.) There is no significant change in 
CREB expression in the ventral hippocampus of dorsal CREB deleted animals 
compared to GFP control animals. N=14-16/viral group. (*p<0.05, ***p<0.0005, 
****p<0.0001)
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p<0.05) (Figure 2.3Bi,Di) in the target region. Additionally, this reduction was 

restricted to the injection site, as CREB levels were not significantly different from 

GFP controls in the uninjected portion of the hippocampus (p=0.8530; p=0.17) 

(Figure 2.3Bii,Dii).  

Decreased CREB Levels Modulate the Expression of CREB Target Genes 

during Saline, Nicotine and 24hWD  

Ventral CREB Deletion  

To evaluate how CREB signaling may result in these behavioral effects, we 

examined mRNA expression of five well-documented CREB target genes in the 

ventral and dorsal hippocampus using qPCR. Figure 2.4 shows alterations in 

mRNA expression levels of CREB target genes specifically in the ventral 

hippocampus of animals that received viral injections of either AAV-GFP or AAV-

CRE within that structure. No significant changes were observed from CREB 

deletion within the ventral hippocampus in activity-related cytoskeleton protein 

(ARC) (Figure 2.4A, p>0.05) or NMDA receptor NR1 subunit (Figure 2.4B, 

p>0.05) mRNA expression levels. However, Jun-N terminal kinase 1 (JNK1) 

expression within the ventral hippocampus displayed a significant interaction and 

main effect of treatment [main effect of treatment F(2,23)=3.743, p=0.0391; 

interaction F(2,23)=5.077, p=0.0149] (Figure 2.4C). Saline treated AAV-CRE 

animals had a significant increase in expression compared to the saline (p<0.05) 

and nicotine (p<0.01) AAV-GFP animals, as well as compared to nicotine 

(p<0.05) and 24hWD (p<0.05) treated AAV-CRE groups, suggesting that at  
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Figure 2.4. qPCR analysis of alterations in mRNA expression of CREB 
target genes after injection of AAV-GFP or AAV-CRE into the ventral 
hippocampus.  

(A) ARC mRNA expression shows no significant changes across treatment or 
virus conditions within the ventral hippocampus. (B) NR1 mRNA expression 
shows no significant changes across treatment or virus within the ventral 
hippocampus. (C) JNK1 expression within the AAV-CRE saline treated group 
shows a significant increase when compared to both saline and nicotine treated 
AAV-GFP groups, as well as nicotine and 24h withdrawal treated AAV-CRE 
groups. (D) BDNFtotal expression levels within the AAV-CRE saline treated 
animals are significantly increased compared to their GFP saline controls and 
AAV-CRE nicotine and 24h withdrawal treatment counterparts. (E) BDNFexon4 
mRNA expression within the AAV-GFP group is significantly reduced during 24h 
withdrawal when compared to nicotine treated animals. AAV-CRE saline animals 
have significantly reduced expression compared to saline and nicotine AAV-GFP 
controls, as well as to their nicotine and 24h withdrawal AAV-CRE counterparts. 
N=6-8/treatment group. *p<0.05 viral effect; #p<0.05 treatment effect).  

0

50

100

150

200

%
 s

al
in

e 
eG

FP

Treatment

0

50

100

150

200
%

 s
al

in
e 

eG
FP

**
# #

Treatment

0

50

100

150

200

%
 s

al
in

e 
eG

FP

Treatment

*

# #

0

50

100

150

200

%
 s

al
in

e 
eG

FP

Treatment

0

50

100

150

200

%
 s

al
in

e 
eG

FP *
# #

Treatment

SAL GFP

Ventral CREB Deletion

A. B. 

C. D. 

E. 

ARC NR1

JNK1 BDNFtotal

BDNFexonIV NIC GFP
WD GFP

SAL CRE
NIC CRE
WD CRE



	

49 

baseline CREB occupancy at this promoter site may impede activation of the 

gene by other transcription factors. A similar trend was observed in mRNA levels 

of total brain derived neurotropic factor (BDNFtotal), which had a significant 

interaction effect [F(2,24)=6.161, p=0.0069] (Figure 2.4D). The AAV-CRE saline 

treated group had a significant increase in expression compared to GFP saline 

control (p<0.01) and the AAV-CRE nicotine (p<0.05) and 24hWD (p<0.05) 

treatment groups. While these effects may be due to inhibitory CREB occupancy, 

these effects could also be due to other BDNF variants being expressed. For 

example, BDNFexon4, contains a well-described CRE site [32]. Expression of 

the BDNFexon4 shows a significant interaction [F(2,22)=7.271, p=0.0038] 

(Figure 2.4E) between viral and treatment groups. Viral knockdown of CREB in 

saline animals results in a reduction of BDNFexon4 expression (p<0.05). 

Furthermore, while 24hWD resulted in a significant decrease in exon 4 

expression in AAV-GFP mice (p<0.05), chronic nicotine and 24hWD increased 

BDNFexon4 expression in AAV-CRE mice relative to their saline controls 

(p<0.05, p<0.01, respectively). Saline treated animals within the AAV-CRE group 

had significantly reduced expression compared to both saline (p<0.05) and 

nicotine (p<0.05) GFP controls (Figure 2.4E).  

Dorsal CREB Deletion  

Figure 2.5 shows mRNA expression of the same CREB target genes, but in 

animals that received dorsal viral injections. ARC expression showed a 

significant main effect of CREB deletion [F(1,2)=9.795, p<0.0053] (Figure 2.5A). 

Expression levels of NR1 displayed no significant effects of CREB deletion within
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Figure 2.5. RT-qPCR analysis of alterations in mRNA expression of CREB 
target genes after injection of AAV-GFP or AAV-CRE into the dorsal 
hippocampus.  

(A) ARC expression shows a significant main effect of viral CREB deletion 
across all treatments. (B) NR1 mRNA expression shows no significant 
differences in expression between AAV-GFP and AAV-CRE groups. (C) JNK1 
expression shows an increase in expression within the AAV-GFP group during 
nicotine treatment, compared to saline and 24h WD. (D) BDNFtotal expression 
levels show a significant main effect of viral CREB deletion during all treatments. 
(E) BDNFexon4 expression shows a significant main effect of viral CREB deletion 
during all treatments. N=6-8/treatment group. (*p<0.05,**p<0.01,****p<0.0001 
viral effect)  
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the dorsal hippocampus (Figure 2.5B). JNK1 mRNA expression analysis showed 

a significant main effect of treatment [F(2,20)=5.625, p=0.0115] (Figure 2.5C). 

Nicotine significantly increased JNK1 expression compared to both saline 

(p<0.01) and 24hWD (p<0.05) (Figure 2.5C). QPCR analysis further showed a 

main effect of virus when observing expression patterns of both BDNFtotal 

(F(1,26)=29.93, p<0.0001) and BDNFexon4 (F(1,21)=7.667, p<0.0115) (Figure 

2.5D-E), with a significant increase across all treatments within the AAV-CRE 

animals, compared to their GFP controls.  

Discussion  

Despite over half a century of research investigating the basic general function of 

the hippocampus, there is still much debate over how this once thought to be 

unitary structure is now divided into separate sub-regions, each with differing 

molecular and functional domains. The present study builds upon this idea of 

differing functional output by identifying CREB’s region-specific roles in mediating 

distinct nicotine withdrawal related behaviors. Our results demonstrate a double 

dissociation between viral and regional effects in mediating functional CREB-

dependent behaviors during nicotine withdrawal. In addition, gene expression 

analysis showed a differential regulation of CREB target genes between the viral 

and hippocampal region groups, suggesting differences in molecular organization 

and function underlying the observed phenotypes. Therefore, we show here the 

first evidence that CREB regulation of nicotine withdrawal phenotypes is 

differentially modulated within the dorsal and ventral hippocampus separately 

through transcriptionally driven adaptations.  
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Early studies by Swanson and Cowan (1977) found the ventral and dorsal 

hippocampus to have distinct input and output connections [33]. In the dorsal 

hippocampus, the CA1 region contains the greatest density of place cells, which 

code for spatial location by sending projections to the dorsal parts of the 

subiculum and other subcortical regions [33]. Behavioral studies underscore this: 

spatial memory depends on the dorsal, not the ventral, hippocampus in a variety 

of spatial navigation tasks, including the Morris water maze and radial arm maze 

[34, 35]. Our findings in contextual fear conditioning demonstrate that dorsal 

hippocampal CREB is essential for the encoding of long-term memory, which is 

often enhanced during nicotine treatment and impaired during withdrawal [26]. 

The absence of nicotine treatment effects during contextual fear conditioning in 

our study was not unexpected, since previous studies have shown that nicotine 

withdrawal impairs hippocampal-dependent contextual learning in C57BL6 mice, 

but not in 129SvEv;C57Bl/6J F1 hybrid mice [36], which are the parent strain of 

the CREBloxP/loxP mice used in this study. However, to confirm treatment 

efficacy, we also used [3H]-Epibatidine to quantify cortical nicotinic acetylcholine 

receptor (nAChR) density in all treatment groups. Upregulation of nAChRs, a 

hallmark of nicotine treatment [37], was observed in all nicotine treated and 24h 

withdrawal animals. In contrast to the necessary role of dorsal CREB expression 

in fear conditioning, our findings also suggest that CREB expression in the 

ventral hippocampus can actively impede spatial memory encoding, as deletion 

of CREB selectively in the ventral hippocampus results in enhanced recall. Other 

studies have observed similar trends in the dissociation between these two 
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regions using a water maze performance task [38], as well as a conditioned 

place preference task [39], both demonstrating that lesions to the dorsal 

hippocampus results in an impairment of the task, while lesions to the ventral 

hippocampus enhance it.  

In contrast to the fear conditioning studies, we see that CREB deletion in 

ventral, but not dorsal, hippocampus alters affective symptoms associated with 

nicotine withdrawal. Lesions within the ventral hippocampus have been shown to 

specifically impact anxiety behaviors in conflict and hyponeophagia paradigms 

like the NIH test [40]. Our data showing disrupting CREB activity in the ventral 

hippocampus prevents expression of nicotine withdrawal anxiety-like behavior in 

the NIH supports these previous findings, but also provides persuasive evidence 

that CREB activity in this region is integral to nicotine withdrawal-induced anxiety. 

In contrast, mice with dorsal hippocampal CREB deletion displayed normal 

anxiogenic responses during withdrawal, further demonstrating this dichotomy 

between dorsal and ventral hippocampal regions.  

While CREB is generally regarded as a transcriptional activator, multiple 

studies have demonstrated that CREB can also act as a transcriptional 

repressor, due to competition for cofactors, such as CBP, or due to dimerization 

with other members of the ATF/CREB family [41, 42]. This perhaps explains the 

apparent induction of certain genes as a function of CREB deletion. CREB 

targets many genes within the brain, but five well- described CREB targets with 

known roles in neuroplasticity are ARC, NR1, JNK1, and BDNF and our analysis 
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of these genes suggests that CREB may mediate nicotine withdrawal-induced 

anxiety and cognitive impairments by altering their transcription. For example, 

changes in ARC and JNK1 are correlated with contextual fear conditioning and 

consolidation of memories [43] [44] [45], and our own findings support the roles 

of these genes in memory formation (Figure 2.5A).  

We additionally examined changes in total BDNF as well as in the exon 4 

variant, which possesses a well-documented CRE site that is highly responsive 

to neuronal activity [32]. BDNF is the most common neurotrophin within the brain 

and is involved in activity- dependent synaptic plasticity [46]. Studies with acute 

nicotine, which reduces BDNF expression [5], have been shown to enhance fear 

conditioning [5]. Here we show the inverse, where an increase in BDNFtotal and 

BDNFexon4 as a result of dorsal CREB knock- down corresponds with impairment 

in fear conditioning. In addition to its role in cognition, impairments in BDNF 

signaling have also been associated with numerous neuropsychiatric disorders 

[47]. Decreased expression of BDNFexon4 within the ventral hippocampus in 

24hWD control animals compared to their chronic nicotine cage mates 

correspond with the increased anxiogenic effects of nicotine withdrawal in the 

NIH task. Both this reduction in BDNFexon4 and the concordant anxiogenic 

behavior is absent in 24hWD animals with ventral CREB deletion (Figure 2.5E), 

suggesting BDNF mRNA levels may decrease during negative affective states. A 

similar observation has previously been found in human studies, where BDNF 

expression is lower in patients diagnosed with anxiety disorders compared to 

control patients with no diagnosis [48]. Therefore, CREB-mediated differential 
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regulation of BDNFexon4 may be a mechanism for both the expression of 

anxiety-like behavior during nicotine withdrawal and the consolidation of 

contextual memories.  

Withdrawal phenotypes, such as impaired cognition and affect, directly 

impact relapse to smoking. While both of these withdrawal phenotypes rely upon 

hippocampal function, our results demonstrate a dichotomy between nicotine’s 

transcriptionally driven neuroplasticity effects in the ventral or dorsal 

hippocampus, which differentially mediate the nicotine withdrawal symptoms. 

This highlights how region-specific CREB-mediated plasticity can impact discrete 

nicotine withdrawal behavioral responses. This has major implications in 

understanding the basic mechanisms whereby gene expression governs distinct 

behavioral domains, depending upon the specific region in which it occurs. 

Furthermore, these mechanisms may open opportunities for more targeted 

therapeutics. For example, activation of BDNF may be a potential target for 

individuals suffering from withdrawal-related cognitive impairments, while 

reduction of BDNF signaling may be a viable option for smokers presenting with 

primarily affective symptoms. Therefore, these aspects emphasize the 

importance for smoking cessation drug discovery efforts to be cognizant of such 

complexities, but also show how these same complexities may offer opportunities 

for more personalized approaches.  
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CHAPTER 3 

 

 

ROLE OF THE NEUREGULIN SIGNALING PATHWAY IN NICOTINE 
DEPENDENCE AND CO-MORBID DISORDERS1 

																																																													
1  Fisher ML., Loukola A., Kaprio J., Turner JR. (2015). Role of the Neuregulin 
Signaling Pathway in Nicotine Dependence and Co-morbid Disorders. 
International Review of Neurobiology. Elsevier. Vol. 124, Pages 113-131.  
 Reprinted here with permission of publisher.		
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Introduction 

Tobacco smoking is still the leading cause of preventable death in the United 

States even years after the discovery of multiple smoking cessation therapies. 

The main addictive component in cigarette smoke is nicotine [1], which drives the 

reinforcement behind smoking behavior. With global smoking related mortality 

reaching nearly six million deaths annually [2], there is a high demand for 

targeted therapeutics that successfully aid smokers to quit. Several smoking 

cessation pharmacotherapies are available, including nicotine replacement 

therapy, prescription medication such as bupropion (originally designed as an 

anti-depressant), and the nicotinic acetylcholine receptor partial agonist 

varenicline [3, 4]; however, the success rate of such therapies after one year is at 

best only 20-25% [5]. In comparison, approximately 3% of individuals trying to 

quit without any pharmacotherapies are still abstinent after 6 months [6]. The 

majority of smokers would like to quit and are aware of the risks of smoking, but 

are unable to do so. The positive reinforcing effect of nicotine is an important 

determinant of cessation failure; however, it is not the only factor that should be 

taken into account. The significant aversive withdrawal symptoms that occur 

during abstinence are also considered a major determinant of high relapse rates 

[7].  

Withdrawal symptoms are relatively well characterized and include both 

cognitive and affective symptoms. These symptoms primarily include depressed 

mood states, anxiety, irritability, concentration difficulties, and craving [8]. It is 
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suggested that withdrawal symptom severity is a more valid indicator of smoking 

cessation outcome than nicotine intake or dependence [9].  Of these aversive 

withdrawal symptoms, a common affective symptom is depression. Interestingly, 

depressed mood is also associated with nicotine dependence, but it is not known 

whether depression predisposes an individual to begin smoking or whether 

depression develops during the course of nicotine dependence.  

Broadly, nicotine dependence is highly co-morbid with several psychiatric 

illnesses and other substance use disorders, which further complicates smoking 

cessation. However, the relationship between nicotine use and mental disorders 

is still elusive and debatable [10]. It has been suggested that nicotine is used in 

an effort to self-medicate symptoms occurring in psychiatric illnesses such as 

schizophrenia[11], i.e. smoking would primarily be a consequence of the 

psychiatric disease.  The second possible explanation for the co-morbidity is that 

smoking is itself a cause of psychiatric illness; the evidence for this is variable 

and depends on conditions being examined.  For example, growing evidence 

supports the causal role of smoking in the etiology of depression [12-14]. 

However, evidence must come from well-conducted prospective epidemiological 

studies, within-family studies, or Mendelian randomization studies using genetic 

markers to test causality, as randomized clinical trials cannot be used to test this 

hypothesis. The third potential reason for the co-morbidity may be that there are 

underlying genetic factors in common to specific mental disorders and smoking-

related phenotypes, including nicotine dependence and withdrawal.  A prime 

candidate for this third explanation is the co-morbidity observed between nicotine 
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dependence and schizophrenia. 

Within the co-morbid population, overall prevalence of smoking in 

schizophrenia patients is higher than in patients with other psychiatric 

conditions[15]. Strikingly high smoking prevalences, 60-90%, have been reported 

in schizophrenia patients[15-17], compared to the approximately 18% prevalence 

rate in the general US population[18]. In addition to being more frequently current 

smokers, schizophrenia patients typically smoke more, are more likely nicotine 

dependent, and are less likely to succeed in quitting[19-21]. However, the 

association of smoking with schizophrenia is not universal. For example, among 

Chinese women with schizophrenia, the prevalence of smoking was only slightly 

higher than in the general Chinese population[22, 23]. However, this finding 

could reasonably be due to a greater percentage of smokers in the Chinese 

population (28.1%)[24] as compared to the ~20% of Americans. Nonetheless the 

strength and consistency of the association over the Western world suggests that 

there may also be an underlying biological basis for it. Furthermore, given the 

differences in genetic architecture between major human ancestry groups, the 

findings in Chinese patients do not exclude a genetic contribution in European 

ancestry populations. 

The neurodevelopmental theory of schizophrenia suggests that genetic 

and/or environmental factors negatively affect brain development during critical 

neural development milestones [25]. These in turn are responsible for the 

biochemical alterations observed in people diagnosed with the disease[26]. 

Breaking down the symptom profile of schizophrenia into several disease-
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relevant endophenotypes has enabled investigation of the role of specific risk 

genes that impact behavioral and biological components of this disease 

phenotype [27-29]. For example, linkage and association studies have resulted in 

several candidate genes such as DTNBP1, DISC1, NRG1, and NRG3. One of 

the most promising susceptibility genes for schizophrenia is NRG3 due to the 

observation that structural and polymorphic variations of this gene are associated 

with a wide spectrum of neurodevelopmental disorders with phenotypes 

encompassing developmental delay, impairment of cognition, and autism [30]. 

This genetic variation is due to recurrent microdeletions of chromosome 10q22-

q23 that involve the NRG3 gene and also shows linkage to schizophrenia in 

Ashkenazi Jewish and Han Chinese populations [31, 32]. A noncoding genetic 

variation in NRG3 has also been observed as a putative risk factor for 

schizophrenia [33-36]. Additionally, genetic association studies show multiple 

genes and epistatic locus interactions [37] within the NRG-ErbB signaling 

pathway that increases the risk for schizophrenia. These multiple genes encode 

for NRG3, NRG1, ERBB4, and AKT1, suggesting this signaling cascade may 

represent a pathogenic network occurring in schizophrenia.  

While it is difficult to evaluate the possible therapeutic effects of nicotine in 

mental disorders, it may be more approachable to view these co-morbidities 

through the lens of genetics.  For example, genes encoding for the neuregulin 

signaling pathway have been consistently implicated in the etiology of 

schizophrenia [38-40] and these same genes have recently also been implicated 

in smoking behavior [41, 42]. Therefore, examining this pathway for possible 
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alterations in both psychiatric illness as well as in nicotine dependence and 

cessation outcomes may aid in identifying a common link for these co-morbid 

disorders. 

Known Mechanisms of Neuregulin-ErbB Signaling 

Overview 

Recently, neuregulins (NRGs) have been studied as molecular links between 

several co-morbid disorders such as nicotine dependence, schizophrenia, 

attention deficit hyperactivity disorder (ADHD), and depression. This family of 

epidermal growth factor (EGF)-like proteins is widely expressed within the central 

nervous system (CNS) and has been implicated in a variety of processes, 

including neural development and brain activity homeostasis (for review, see Mei 

and Nave 2014, [43]). While this review focuses on their effects in the CNS, 

NRGs signal through receptor tyrosine kinases of the ErbB family to achieve cell-

to-cell interactions throughout the body, including breast and heart tissue [44], 

where they have broad impact on cellular function and signaling. The NRG gene 

family encodes for NRG1-6, and each gene gives rise to multiple splice variants. 

NRG1 was the first ligand to be discovered in the brain for its function in 

biological processes such as activation of ErbB receptors, stimulation of 

Schwann cell growth, and induction of acetylcholine receptor expression [45, 46]. 

NRG1 was also found to be a key regulator in neurotransmitter function, 

myelination and synaptic plasticity related to drugs of abuse and schizophrenia 
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[47]. However, since then other members of the NRG family have been identified 

for various functions in the CNS [48-56].  

Neuregulin binding and ErbB dimerization 

Neuregulins are produced as transmembrane bound precursors [57] (Figure 

3.1.1). The intracellular domain of NRG1 is released after proteolytic cleavage 

and is translocated to the nucleus of the pre-synaptic neuron, where it influences 

processes such as apoptosis [58]; this cascade of events is called “back 

signaling”.  NRGs also interact with and activate ErbB receptors (ErbB1-4), 

resulting in activation of intracellular signaling pathways (such as ERK, PI3K, Akt 

mediated signaling) within the post-synaptic cell; this cascade of events is called 

“canonical forward signaling,” which has been shown to modulate neuronal 

migration and differentiation [45], as well as to play a role in the stimulation or 

inhibition of processes such as apoptosis, adhesion, proliferation, differentiation, 

and migration[44] (Figure 3.1.2). The extracelluar EGF domain of NRG binds to 

the ErbB receptor and initiates conformational changes in the receptor molecule, 

thereby increasing the affinity for another ErbB molecule and leading to homo- or 

heterodimerization (i.e. ErbB1-ErbB1, or Erb1-ErbB4) [59]. This recruitment of 

specific ErbB molecules seems to be driven in part by the activating NRG. For 

example, NRG3 binds exclusively to ErbB4 receptors, but this can either be 

ErbB4 homodimers or ErbB4:ErbB2 heterodimers [56]. Unlike recruitment of the 

dimer, however, the recruited phosphorylated ErbB partner determines the 

functional nature of signaling, irrespective of the ErbB ligand. The receptor 

dimerization activates the tyrosine kinase domain and allows it to phosphorylate 
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Figure 3.1 Modulation of NRG3 Signaling by Nicotine 

1. Nicotine binds to the nicotinic acetylcholine receptor, causing a conformational 
change that opens the receptor’s ion channel and allowing entry of Ca2+ and 
Na+. The influx of these cations further activates voltage-dependent calcium 
channels, allowing more Ca2+ to enter, increasing the production of second 
messenger cyclic AMP (cAMP). These increases in cAMP lead to the activation 
of the transcription factor CREB, inducing increased expression of NRG3. 2. The 
NRG3 EGF-like domain is then proteolytically cleaved by BACE1 and binds to 
the ErbB4 receptor. Upon binding of NRG3, conformational changes increase the 
affinity for another ErbB molecule, thus leading to homo- or heterodimerization. 
This dimerization results in activation of ErbB receptor tyrosine kinases and other 
intracellular signaling pathways referred to as “canonical forward signaling”. 3. An 
alternative pathway results from the cleavage of the intracellular domain of ErbB4 
by a gamma-secretase complex and subsequent translocation to the nucleus to 
regulate gene transcription, also known as “non-canonical forward signaling”. 4. 
NRG-ErbB4 signaling can also directly suppress Src-mediated enhancement of 
synaptic NMDAR function.
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tyrosine residues in the cytoplasmic region of the ErbB partner. The 

phosphorylated tyrosine residues then recruit various adaptors/effectors that 

induce specific intracellular signaling cascades, which appear to be subtype 

dependent. For example, ErbB4 mainly links to the Ras-MAPK and PI3k-Akt 

pathways [60, 61], and this signaling is considered to be important in many 

neural developmental processes, including circuitry generation, 

neurotransmission, and synaptic plasticity [43]. A third mechanism of action for 

ErbB is the “non-canonical forward signaling”, where upon binding of NRG to the 

ErbB receptor, the C-terminal intracellular domain of ErbB is released by 

proteolytic cleavage and translocated to the nucleus where it can regulate gene 

transcription [62, 63] (Figure 3.1.3). 

Effects of alternative splicing of the ErbB4 receptor 

In addition to dimerization of ErbB receptors, alternative splicing of the various 

ErbB receptors increases the system complexity by selectively shunting 

activation of intracellular signaling cascades.  For example, in the human 

genome, alternative splicing of the ERBB4 gene at exon 15/16 and exon 26 

produces multiple ERBB4 variants (JM-a/b/c/d and CYT-1/2) [64, 65]. These 

splice variants can have distinct effects.  For example, the CYT-1 variant can 

recruit the p85 regulatory adapter to preferentially activate PI3k signaling.  

Additionally, this same splice variant is susceptible to proteolytic cleavage by 

TNF-alpha converting enzyme (TACE) and gamma secretase [66, 67], producing 

an 80 kD intracellular fragment (ERBB4-ICD), which interacts with the 
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transcription factor STAT4 and migrates to the nucleus, acting as a molecular 

chaperone [66, 67].  

Neuregulin-ErbB4 effects on NMDA receptors 

ErbB4 also contains a PDZ-binding motif at the carboxyl terminal and is 

anchored to the postsynaptic density protein 95 (PSD95) in neurons [68]. Even 

when ErbB4 is phosphorylated by another partner, or proteolytically cleaved to 

produce ErbB4-ICD, the signal is only minimally transported to the soma or 

translocated to the nucleus[62, 63]. Instead, the interaction with the scaffolding 

protein PSD95 allows ErbB4 receptors to closely interact with ionotropic 

glutamate receptors (NMDARs), thereby enhancing this signaling within the 

postsynaptic compartments [69]. A recent study from Pitcher and colleagues [70] 

demonstrated a new mechanism by which NRG-ErbB4 activation results in 

NMDA hypofunction (Figure 3.1.4). This constrained activity allowed ErbB4 

activation to trigger dephosphorylation of the NMDAR, resulting in reduced 

function of the NMDAR. Dysregulation of glutamatergic transmission has been 

implicated in schizophrenia, mainly because of psychotomimetic effects of NMDA 

receptor antagonists [71]. Therefore, these findings represent a new pathway by 

which NMDAR and ErbB4 interaction could underlie schizophrenic 

pathophysiology.  However, whether and how this mechanism is altered in 

nicotine dependence is currently unknown.  
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ARIA: modulation of nicotinic acetylcholine receptor (nAChR) expression  

One potential way that NRG-ErbB signaling and nicotine dependence may 

overlap is through modulation of nAChR expression. Some members of the NRG 

family are shown to stimulate nAChR synthesis and clustering in cultured chick 

and rat myotubes [72], and thus are called “acetylcholine receptor inducing 

activity” (ARIA) proteins.  This observation has now been extended to the CNS, 

where studies have demonstrated that NRG1 activity results in an increase in 

synaptic expression of α7-containing nAChRs [73, 74].  Thus, a direct association 

between NRG and cholinergic signaling exists at the level of nAChR expression. 

These studies are particularly intriguing in light of reported deficits in α7-

homopentameric nAChRs in schizophrenia patients [75, 76].  However, these 

phenomena have only been recently evaluated in nicotine dependence and 

cessation phenotypes. 

NRG3: Relevance in Smoking Behavior and Co-morbid Disorders 

Potential role of NRG3 in nicotine withdrawal and smoking cessation outcomes 

Recent research showcasing the translational utility of cross-species models 

identified potential mechanisms and functional outcomes associated with NRG3-

ErbB4 signaling during nicotine withdrawal [41, 42]. Turner and colleagues 

(2014) [38] evaluated molecular adaptations to nicotine withdrawal in discrete 

brain regions implicated in both cognitive and affective withdrawal symptoms. 

These studies investigated chromatin alterations and transcriptional control of 

CREB target genes following chronic nicotine exposure and 24 hour withdrawal 
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using next generation sequencing. This coupling of CREB chromatin 

immunoprecipitation and high-throughput sequencing (ChIP-seq) resulted in the 

identification of a novel molecular target for nicotine dependence, NRG3, with 

increased expression detected in response to chronic nicotine exposure and 

withdrawal. To directly evaluate whether NRG3-ErbB4 signaling could impact 

smoking cessation behaviors, the authors utilized both genetic and 

pharmacological tools to block NRG3-ErbB4 signaling during chronic nicotine 

treatment and withdrawal.  They observed that a co-occurring induction of NRG3 

during early withdrawal is associated with increased anxiety-like behavior in 

mice. However, if this increased NRG3 signaling is blunted, either in NRG3 

hypomorphic mice (NRG3ska) or in wildtype mice treated with an ErbB4 inhibitor 

(afatinib), the anxiety behaviors observed during withdrawal were also blunted, 

suggesting a relationship between changes in NRG3 signaling and behavior. 

While the precise mechanism by which NRG3 impacts these withdrawal 

behaviors is unknown, these studies encouraged further scrutiny of NRG3’s role 

in smoking cessation outcomes.  Therefore, in order to evaluate the clinical 

relevance of this finding in human smokers, Turner and colleagues (2014) [38] 

examined genetic polymorphisms in NRG3 and identified single nucleotide 

polymorphisms (SNPs) that significantly associated with reduced smoking 

cessation rates at both 6-weeks and 6-months.   

NRG3 in schizophrenia 

Structural and polymorphic variation of NRG3 is associated with not only 

schizophrenia, but a broad spectrum of neurodevelopmental disorders. Previous 
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fine mapping of the 10q22-23 schizophrenia locus identified significant 

association between delusion severity and polymorphisms on intron 1 of NRG3 

[34]. Following these findings, Kao and colleagues [77] examined NRG3 in 400 

postmortem prefrontal cortical tissue samples from schizophrenia patients and 

controls, evaluating the association between disease state, genetic risk variants, 

and NRG3 expression levels. Alternative splicing enables one gene to encode 

multiple proteins and is often regulated in a tissue-specific and developmental 

manner [78, 79]. Using RNA expression profiling, Kao and colleagues revealed 

that NRG3 expression is developmentally regulated and increased in 

schizophrenia [77]. Furthermore, NRG3 undergoes complex splicing, leading to 

many distinct isoforms, all of which have an EGF-like bioactive domain, a 

transmembrane domain, as well as a complete cytoplasmic tail[77]. Hatzimanolis 

and colleagues [80] hypothesized that more than one damaging variant in the 

NRG signaling pathway genes may be needed to cause schizophrenia. They 

scrutinized all known genes within the NRG signaling pathway and detected an 

aggregation of predicted damaging variants in a subset of individuals showing 

unique phenotypic properties. Further, their data supports the notion that 

damaging variants in the NRG signaling pathway may underlie the heterogeneity 

of schizophrenia, which is observed in both as phenotypic variability and genetic 

complexity [80].  

NRG3 – possible mechanisms underlying co-morbidity 

While evaluation of SNPs common to both nicotine dependence as well as 

schizophrenia is unfortunately lacking to date, one potential way NRG3 may be 
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contributing to smoking behavior as well as to comorbid disorders, such as 

schizophrenia, is via its role in impulsivity. One shared distinct deficit among co-

morbid disorders such as addiction, ADHD and schizophrenia is impulse control. 

Impulsivity is suggested to be a prominent, heritable symptom among psychiatric 

disorders[81] and can manifest in a variety of impulsive behaviors, which can be 

observed for example in computerized response tasks[82]. A facet of impulsivity 

is impulsive action, which can be broadly defined as the inability to withhold from 

making a response. Genetic mapping of impulsive action in mice has revealed a 

locus on chromosome 14, which is homologous to the human 10q22-q23 

schizophrenia-susceptibility locus encompassing NRG3 [82]. To confirm its 

influence on impulsive action, congenic mice carrying the impulsivity locus 

(lmpu1) showed that increased impulsivity was associated with increased Nrg3 

expression in the medial prefrontal cortex (mPFC), a region known for its role in 

drug abuse-related behaviors. Loos and colleagues [82] also showed that viral 

overexpression of Nrg3 in the mPFC increased impulsivity, whereas loss-of-

function mutant mice showed decreased impulsivity [82].  Although the level of 

NRG3 expression appears to influence levels of inhibitory control, the specific 

mechanism how NRG3 signaling impacts impulsivity and how this relates to 

nicotine dependence and schizophrenia is unknown. 

ERBB4: Relevance in Smoking Behavior and Co-morbid Disorders 

Association between ERBB4 and nicotine dependence  

Recently, ERBB4 was shown to be associated with nicotine dependence. 
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Loukola and colleagues [42] performed a genome-wide association study on 

1,114 adult twins ascertained for heavy smoking from a population-based Finnish 

Twin Cohort study. With 17 smoking related phenotypes available, the authors 

were able to comprehensively portray the multiple dimensions of smoking 

behavior, such as smoking initiation, amount smoked, and nicotine dependence. 

By employing a convergent approach the authors gathered multiple independent 

lines of evidence supporting the association between ERBB4 and nicotine 

dependence defined by DSM-IV[83].  The initial association detected in the 

Finnish twin sample was replicated in an independent Australian twin family 

sample of 4,425 individuals. Further, ERBB4 is located within a regular smoking 

linkage locus previously identified in the Finnish twin families [84] and within a 

smoking quantity locus highlighted in a linkage meta-analysis [85]. These results 

provided novel evidence for the involvement of ErbB4 in nicotine dependence 

[42]. 

ErbB4-NMDA receptor interactions in schizophrenia and possible relevance for 

co-morbidity with nicotine dependence 

While a valid animal model of schizophrenia has been difficult to construct due to 

the polygenetic nature of the disease, genetic mouse models resulting in 

increased activation of NRG-ErbB4 signaling have aided understanding of the 

disease. For example, Paterson and Law (2014) recently investigated the effects 

of Nrg3 overexpression with regards to activation of the ErbB4-Akt signaling 

pathway. They found that excessive ErbB4 activation during development had 

life-long consequences on discrete behavioral phenotypes, and posited that this 
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enhanced signaling impacts early neonatal brain development and influences 

circuitry that is involved in behaviors related to anxiety and sociability [86]. 

Further studies by Pino and colleagues [87] examined schizophrenia-like 

phenotypes in ErbB4-floxed mutant mice. They found that deletion of ErbB4 from 

two main types of fast-spiking neurons (chandelier and basket cells) caused 

disruption in the synchrony of cortical regions. This functional deficit was found to 

be associated with increased locomotor activity, abnormal emotional and social 

responses, and impaired cognitive function, thus leading to the conclusion that 

dysfunction of cortical fast-spiking interneurons might be central to the etiology of 

schizophrenia [87]. However, these dual observations may be due to the close 

proximity of and interaction between NMDA receptors and ErbB4 receptors [69]. 

As discussed earlier, ErbB4 activation can result in reduced NMDA receptor 

function. However, the effects of chronic ErbB4 inhibition on NMDA receptors are 

unknown, especially during development, but NMDA receptor hypofunction has 

been suggested to underlie some schizophrenic traits. In line with this, 

phencyclidine and ketamine, two anesthetics that induce schizophrenia-like 

symptoms, are in fact NMDAR channel blockers [88, 89]. Additionally, current 

animal models of NMDAR hypofunction via genetic down-regulation of NMDARs 

result in traits resembling schizophrenia [90, 91]. Therefore, these findings 

represent a new pathway by which NMDAR and ErbB4 receptor interaction could 

underlie schizophrenic pathophysiology.  However, whether and how this 

mechanism is altered in nicotine dependence is currently unknown, but may hold 
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relevance both for understanding co-morbidity as well as developing new 

treatments.  

Summary 

With continual technological advancements, genetic studies have helped 

scientists identify common genetic variation within the human population that 

may underlie nicotine dependence and co-morbid disorders, such as 

schizophrenia. For example, SNPs on genes encoding the NRG-ErbB signaling 

pathway have been shown to influence nicotine dependence and withdrawal [41], 

as well as the pathophysiology of schizophrenia [92, 93] providing researchers 

new insight into the potential benefits of examining the NRG-ErbB4 pathway for 

novel therapeutic targets not only for smoking cessation but also for treating 

symptoms seen in schizophrenia as well.  Furthermore, due to such high demand 

for novel therapeutics targeted at treating co-morbid disorders such as tobacco 

smoking and schizophrenia, understanding common cellular processes that link 

these disorders is worth investigating and the NRG-ErbB pathway may represent 

a promising place to start.  
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CHAPTER 4 

 

 

INFLUENCES OF VENTRAL HIPPOCAMPAL ERBB4 SIGNALING ON 
ANXIETY-LIKE BEHAVIORS DURING NICOTINE WITHDRAWAL  
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Introduction 

Nicotine addiction affects an estimated 1.2 billion people worldwide, with more 

people addicted to nicotine than any other drug [1]. Abstinence from chronic 

nicotine use results in both cognitive and affective withdrawal (WD) symptoms, 

which can be observed just a few hours after discontinuation of nicotine use [2] 

and are suggested to be the predominate factors in driving relapse to smoking 

[3]. Supporting data link hippocampal function with nicotine withdrawal induced 

phenotypes in both humans [4-8] and rodents [9-12]. However, mounting 

evidence suggests that the hippocampus is not a homogenous structure, but 

instead can be divided into dorsal and ventral regions, each mediating different 

behaviors [13]. Our lab has previously reported that these subregional, functional 

differences correspond with distinct withdrawal phenotypes. We found that 

cAMP-responsive element binding protein (CREB) activity, specifically in the 

ventral hippocampus (VH), mediates anxiety-like behaviors in mice undergoing 

24h withdrawal, whereas dorsal hippocampal CREB mediates cognitive effects 

[14]. Furthermore, to elucidate potential CREB target genes underlying these 

phenotypes, we evaluated CREB binding genome-wide following chronic nicotine 

exposure and withdrawal using chromatin immunoprecipitation and whole-

genome sequencing. Results from this study showed that CREB is highly 

enriched at the promoter for the Neuregulin-3 (Nrg3) gene following chronic 

nicotine and withdrawal in the hippocampus [15]. NRG3 is a neuronal-enriched 

member of the epidermal growth factor-like (EGF-like) family of Neuregulins 1-6. 
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NRG3’s expression is limited to the CNS where it’s EGF-like domain binds 

exclusively to ErbB4 receptors [16] enriched in neuronal post-synaptic densities 

(PSD) of inhibitory interneurons [17-19]. In situ hybridization studies show that 

Nrg3 and Erbb4 have highest expression in cortical and hippocampal regions 

[16], where their interactions play pleiotropic roles in brain development and 

plasticity. During development, studies have identified NRG3 as a 

chemoattractive factor regulating the allocation of GABAergic interneurons 

through its interaction with ErbB4 [20]. NRG3-ErbB4’s involvement in the 

assembly and maturation of inhibitory circuitries is particularly noteworthy due to 

its association with a wide variety of neurodevelopmental and neuropsychiatric 

disorders [21]. Less is known about this pathway’s function in the adult brain, but 

it is speculated to remain involved in synaptic formation and maintenance in an 

activity-dependent manner.  Addictive drugs are known to cause persistent 

restructuring of several different neuronal subtypes resulting in long-term 

changes in synaptic plasticity. We have previously demonstrated that ErbB4 

activation is necessary for nicotine-induced plasticity in the orbitofrontal cortex, a 

region associated with impulse control [22].  

Genetic association studies have identified SNPs within both NRG3 and 

ERBB4 genes with increased risk for schizophrenia (SCZ) [23], a developmental 

disorder highly co-morbid with tobacco smoking. Additionally, studies from our 

lab and that of our collaborators have recently published results showing 

significant association of multiple NRG3 and ERBB4 SNPs with smoking 

cessation outcomes [15, 24]. While there is persuasive evidence for the role of 
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NRG3-ErbB4 signaling in nicotine dependence, the precise activity of these 

signaling molecules and the neural adaptations they regulate during withdrawal 

from nicotine is unknown. Therefore, the overall goal of this study is to 

systematically investigate the functional role of VH ErbB4 signaling during 

chronic nicotine and withdrawal. We found that deletion of Erbb4 attenuates 

anxiety-like behavior induced during nicotine withdrawal through reductions in 

inhibitory synaptic transmission and alterations in network activity of ventral CA1 

pyramidal neurons.  

 

Methods and Materials  

Animals 

Male and female ErbB4loxP/loxP mice (strain B6;129-Erbb4tm1Fej/Mmucd, stock 

number 010439-UCD) were cryo-recovered by the Mutant Mouse Resource and 

Research Centers (MMRRC), University of California, Davis. Live animals bred in 

house, were 6-8 weeks of age at the beginning of microinjection surgeries. Mice 

were maintained on a 12 hour light-dark cycle (lights on at 7:00 AM), with ad 

libitum food and water. All behavioral procedures were conducted during the 

hours of 9:00 AM – 5:00 PM.  

Stereotaxic surgery and ventral hippocampal microinjections 

Surgery was performed on adult mice 6-8 weeks old. After induction of 

anesthesia with isofluorane, mice were secured in a stereotaxic frame (Stoelting, 
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IL.). Holes were drilled bilaterally into the skull at the injection sites. Ventral 

intrahippocampal stereotaxic coordinates were measured from the skull surface 

as follows: AP -2.9, ML ±3.0, DV -3.8. A 33-gauge needle attached to a 5ul 

Hamilton syringe was mounted to the stereotaxic frame and, under control of a 

KDS310 Nano Pump (KD Scientific), was used to inject .5 ul of 1 x 109 gc/ul AAV 

at each site. Injections occurred at a rate of 0.1 ul/minute, after which the needle 

was left in place for an additional 4 minutes. After injections were completed, the 

skin was sutured, and animals were given an IP injection of 5mg/kg meloxicam 

(Metacam, Boehringer, MO) and allowed to recover for up to 1 hour on a heating 

pad before being returned to their home cage. Mice remained in their home cage 

for an additional 4 weeks until the beginning of NIH training.   

Drugs and administration 

(-)-Nicotine tartrate (MP Biomedicals, Solon, OH.) was dissolved in 0.9% saline. 

Nicotine was administered subcutaneously via osmotic minipumps (Alzet model 

2002, Cupertino, CA) at a dose of 12 mg/kg/d for 14 days, calculated based on 

daily pump rate of pulsatile delivery system (see “pulsatile delivery” below).  This 

dose, reported as freebase weight and based off of previous work [15, 25-27], 

corresponds to plasma levels of ~0.2 µM [28], a concentration similar to that 

observed in human smokers consuming an average of 12 cigarettes a day 

(plasma levels between 0.04 and 0.21 µM) [28].  
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Osmotic minipumps surgeries 

Pulsatile delivery. A pulsatile nicotine delivery system was achieved by attaching 

osmotic minipumps to polyethylene (PE60) tubing. The PE60 tubing was 

prepared using a coiling technique, which consisted of coiling the tubing around a 

cylinder with a similar circumference to the minipump, and dipping the 

thermoformable tubing in hot water, followed by immersion in ice-cold water. This 

process is necessary to shape the tubing into a coil for easy subcutaneous 

implantation. Once formed, the PE60 tubing was filled with alternating .5ul 

volumes of nicotine tartrate (or saline for controls) and mineral oil. The model 

2002 osmotic minipumps used for experimentation have a delivery rate of 

.5ul/hr., therefore we developed a 1hr. “on”, 1hr. “off” pulsatile nicotine delivery 

system. The attached PE60 tubing was intermittently filled to a volume that 

ensured a 14-day treatment time course.  

Minipump treatment groups. In all experiments, animals were implanted with 

osmotic minipumps to deliver pulsatile administration of either nicotine (12 

mg/kg/day) or saline. Following 2 weeks of chronic administration, mice were 

anesthetized with an isoflurane/oxygen vapor mixture (1–3%), an incision was 

made above the pump at shoulder level and the pump was either removed (to 

initiate spontaneous withdrawal from either nicotine or saline) or left in place (to 

serve as sham surgical controls in the nicotine and saline groups). The incision 

was then closed with 7 mm stainless steel wound clips.  
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Adeno-associated virus production 

The University of Pennsylvania Vector Core generated neuron-selective AAV 

constructs expressing: Cre recombinase (AAV-CRE; AAV9.CMV.PI.Cre.rBG, titer 

1.644 × 1013 genome copies (gc)/ml), red fluorescent protein (AAV-RFP; 

AAV9.CMV.TurboRFP.WPRE.rBG, titer 32.87 × 1013 gc/ml), and GCaMP6f Ca2+ 

indicator (AV-9-PV2822 AAV9.Syn.GCaMP6f.WPRE.SV40). Purification of the 

vectors was performed using CsCl sedimentation and vector gc quantification 

was performed using qPCR. AAVs were diluted in sterile PBS for microinjections 

directly into the VH. 

Novelty-induced hypophagia test 

The NIH test was performed as previously described [26]. Briefly, NIH training 

and testing consisted of exposing mice to a highly palatable food (Reese's 

peanut butter chips (Nestle, Glendale, CA. (ingredients: partially defatted 

peanuts, sugar partially hydrogenated vegetable oil, corn syrup solids, dextrose, 

reduced minerals whey, salt vanillin, artificial flavor, soy lecithin)) and latency to 

consume was measured. One week before NIH training and for the duration of 

the experiment, mice were housed in groups of two. Training consisted of daily 

sessions in which mice were exposed to Reese's peanut butter chips in a clear 

plastic dish. Plastic dividers (dividing the standard mouse cage lengthwise) were 

placed inside each cage to separate the mice during the training and home cage 

testing periods. Mice were acclimated to the barriers for 1 h before placement of 
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food. Food was placed in the cage for 15 min and latency to consume was 

measured. By the 10th day, a baseline latency to approach and consume the 

food was reached such that there was <20% variability between mice. After the 

last training session, the amount consumed was recorded as grams peanut 

butter chips to ensure there were no appetitive treatment effects. Following 

training, mice were implanted with 14-day osmotic minipumps filled with pulsatile 

nicotine (12 mg/kg/day) or 0.9% saline. Testing in the home cage (Home Test 

Day) and novel environment (Novel Test Day) occurred on the last 2 days of 

minipump viability. On Home Day Test, following testing, minipumps were 

surgically removed for the withdrawal groups and sham surgeries were 

performed on the chronic nicotine group as well as saline animals. Twenty-four 

hours later on Novel Test Day, mice were removed from the home cage and 

placed in an empty standard cage with no bedding that had been wiped with a 

cleanser (Pine Sol, 1:10 dilution) to emit a novel odor and placed in a white box 

with bright light illumination (2150 lux). Latency to consume the palatable food 

was recorded. On both home test days, On Novel Test Day, mice were removed 

from the home cage and placed in an empty standard cage with no bedding that 

had been wiped with Pine Sol (1:10) to emit a novel odor and placed in a white 

box with bright illumination (2150 lux). Latency to consume was recorded on both 

days. 

Open field exploratory test  

The Open Field Exploratory Test is an anxiety-related behavioral model, which 

also allows simultaneous assay of overall locomotor activity levels in mice. All 
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mice were tested 24hours after nicotine minipumps were removed from the 24h 

WD groups and sham surgeries performed for the nicotine and saline groups. 

Test chambers were wiped with 70% ethanol in between tests to remove any 

scent cues left by the previous mouse. The ethanol was allowed to dry 

completely before each testing, and every testing session lasted for 10 minutes. 

For the analysis, Top Scan (Clever Sys Inc., Reston, Virginia, USA) software was 

utilized to track and evaluate mouse movement. Prior to tracking analysis for 

each mouse, a background profile was generated, and the testing chamber was 

calibrated in arena design mode according to manufacturer’s instructions. 

Software output for each individual test includes total distance moved (in mm) 

and the time spent in the center (in %). These data were then normalized to the 

AAV-RFP saline control group. 

Quantitative PCR 

Quantitative reverse transcriptase PCR was performed as previously described 

[29] on ventral or dorsal hippocampal samples across all treatment groups. 

Briefly, RNA was isolated using the RNeasy Mini kit (Qiagen) and qPCR 

reactions were assembled using Thermo Scientific Maxima SYBR Green master 

mix along with 100nM primers (Eurofins). The mRNA levels were determined 

using the 2-ΔΔCT method [30] and target genes were normalized to the 

housekeeping genes, Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) or 

Hypoxanthine Phosphoribosyltransferase (HPRT). All gene expression values of 

were normalized to their respective AAV-RFP saline-treated controls.  
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Synaptosomal preparation 

To obtain synaptosomes, frozen VH tissue was weighed and dounced in a glass 

homogenizer in 10 vol (1:10, wt/vol) of Syn-PER synaptic protein extraction 

reagent (Thermo, Rockford, USA) supplemented with a protease and 

phosphatase inhibitor cocktail. Following manufacturer’s instructions, the 

homogenate was centrifuged at 1200g for 10 min at 4C, and then the 

supernatant was centrifuged for a further 20 min at 1500g at 4C. The supernatant 

(cytosolic fraction) was removed, and the synaptosome pellets were 

resuspended in Syn-PER reagent. The protein concentrations of synaptosomal 

and cytosolic fractions were determined by the BCA method.  

Western blotting 

Protein analysis was performed as described previously [31] on VH samples of 

all treatment groups. Briefly, 20µg of protein were resolved in AnyKDTM precast 

polyacrylamide gel (Bio-Rad Laboratories Inc., Hercules, CA, USA) and 

transferred to nitrocellulose membranes. Membranes were incubated with LI-

COR blocking buffer (LI-COR, Lincoln, NE, USA) for 1h at room temperature 

before reacting overnight at 4oC with primary antibodies: Neuregulin-3 

(NRG3)(1:500, sc-67002, N-terminal extracellular domain, Santa Cruz 

Biotechnology, Santa Cruz, CA.), ErbB4 (1:500, sc-283, Santa Cruz 

Biotechnology, Santa Cruz, CA.), and Beta-tubulin (1:2000, 2128L, Cell Signaling 

Technology, Danvers, MA.). After washing in phosphate buffered saline-Tween-
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20, the blots were incubated in fluorescent secondary antibodies (1:20000, LI-

COR) in LI-COR blocking buffer for 1 h at room temperature. Membranes were 

then washed, and immunolabeling detection and densitometry measurements 

were performed using the LICOR Odyssey System (LI-COR). Ratios of the 

proteins of interest (NRG3 and ErbB4) to the housekeeping protein (β-tubulin) 

densities were calculated for each sample and normalized to AAV-RFP saline-

treated controls.  

Stellaris single molecule fluorescent in situ hybridizations 

Forty-eight antisense ‘Stellaris probes’ oligonucleotide probes for mouse NRG3 

and ErbB4 were designed using Biosearch custom design algorithmsand 

synthesized with a 5’ Quasar 570 and 670 label, respectively.  

One brain hemisphere from each mouse was collected and fixed overnight 

(4 degree Celsius) in sterile 2% paraformaldehyde solution prepared in PBS. 

Fixed brains were cryoprotected in 15% sucrose overnight, followed by 30% 

sucrose overnight incubation (4 degree Celsius). Cryoprotected brain 

hemispheres were horizontally sectioned through the VH at 30 µm and 

processed for FISH experiments. FISH was performed as described previously 

[32] with few modifications as follows. Slides were brought to room temperature 

and all steps were performed at room temperature unless indicated otherwise. 

Warmed tissue sections were washed three times with 20mM Glycine in 1X PBS 

5 min each, followed by 3 washes in freshly prepared 25mM NaBH4 in 1X PBS, 5 

min each. After a quick rinse with 0.1M TEA, slices were washed in a 0.1M TEA 
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+ 0.25% acetic anhydride solution for 10 min, followed by a 3 min wash in 2x 

SSC. Slices were then dehydrated in 70% EtOH (3 min), 95% EtOH (3 min), and 

100% EtOH (3 min), and immediately de-lipidized in chloroform for 5 mins and 

rehydrated. Next, sections were washed 2 times in 2x SSC, followed by a quick 

wash in 0.3% triton x-100, before hybridization buffer was applied.  NRG3 

probes, ErbB4 probes, and scrambled control probes were resuspended in TE 

buffer to a final concentration of 25 µM and added to hybridization buffer at 1:100 

dilution. Hybridization was performed for 12-16 h at 37 degrees Celsius. Samples 

were then coverslipped the following day using Prolong Gold mounting medium 

with DAPI stain (Invitrogen) and analyzed by epifluorescent microscopy. Leica 

DMI6000 epifluorescent microscope with ORCA Flash ER CCD camera 

(Hamamatsu) was used for imaging unless specified otherwise.  For quantitation 

between samples, imaging parameters were matched for exposure, gain, offset 

and post-processing. NRG3 and ERbB4 mRNA particle numbers were quantified 

using ImageJ and normalized to number of nuclei. For each subregion (DG, CA3, 

CA1) of the VH, three images were taken, quantified and averaged to represent 

an n of 1.   

Whole cell patch clamp electrophysiology 

Mice were decapitated following isoflurane anesthesia immediately after the last 

behavioral session. Brains were rapidly removed and horizontal slices (300 µm-

thick) containing the hippocampus were cut using a Vibratome (VT1200S; Leica 

Microsystems) in an ice-cold aCSF solution in which NaCl was replaced with an 

equiosmolar concentration of sucrose. ACSF contained the following (in mM): 
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130 NaCl, 3 KCl, 1.25 NaH2PO4, 26 NaHCO3, 10 glucose, 1 MgCl2, and 2 

CaCl2, pH 7.2–7.4, when saturated with 95% O2 and 5% CO2. Slices were 

incubated in aCSF at 32–34°C for 45 min and kept at 22–25°C thereafter, until 

transfer to the recording chamber. All solutions had osmolarity between 305 and 

315 mOsm.  

 

 For electrophysiology recordings, recording pipettes were pulled from 

borosilicate glass capillaries (World Precision Instruments) to a resistance of 4–7 

MΩ when filled with the intracellular solution. The intracellular solution contained 

the following (in mM): 145 potassium gluconate, 2 MgCl2, 2.5 KCl, 2.5 NaCl, 0.1 

BAPTA, 10 HEPES, 2 Mg-ATP, and 0.5 GTP-Tris, pH 7.2–7.3, with KOH, 

osmolarity 280–290 mOsm. CA1 pyramidal neurons were identified by their 

morphology and region. To evaluate spontaneous inhibitory postsynaptic 

currents (sIPSCs) cells were voltage clamped at 0 mV; to evaluate spontaneous 

excitatory postsynaptic currents (sEPSCs) the cells were voltage-clamped at -70 

mV. Currents were low-pass filtered at 2 kHz and digitized at 20 kHz using a 

Digidata 1440A acquisition board (Molecular Devices) and pClamp10 software 

(Molecular Devices). Access resistance (10–30 MΩ) was monitored during 

recordings by injection of 10 mV hyperpolarizing pulses; data were discarded if 

access resistance changed >25% over the course of data collection. All analyses 

were completed using Clampfit 10 (Molecular Devices). 
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Ca2+ imaging  

For Ca2+ imaging, slices were transferred to the recording chamber and 

continuously perfused at a rate of 1–2 ml/min with oxygenated aCSF heated to 

32±1°C using an automated temperature controller (Warner Instruments). Two-

minute videos of the CA1 region of the hippocampus were acquired with ORCA-

Flash 4.0 (V2) digital camera mounted on an Olympus BX51WI upright 

microscope equipped with an LED light source (X-Cite XLED1, 

ExcelitasTechnologies). Videos were binned at 2048 x 2048 pixels and collected 

at 25 frames/second. The CA1 was stimulated by a 100 µs constant-current 

pulse generated by an A310 Accupulser (World Precision Instruments) and 

delivered at 0.2 Hz via a bipolar tungsten stimulation electrode positioned in the 

stratum radiatum for local interneuron stimulation. Videos were analyzed offline 

with ImageJ and MatLab (Mathworks) based on manual isolation of individual 

cells as regions of interests (ROIs). Relative fluorescence intensity within each 

ROI was calculated as dF/F0, where F0 is average fluorescence intensity a 

defined area surrounding each ROI identified in a background-subtracted image. 

Network clustering coefficients of calcium transients were analyzed with custom-

made scripts and algorithms developed on MatLab. 

Data analysis 

Statistical analyses were performed with GraphPad Prism 6.0 software package 

(GraphPad Software, CA). Except where noted, results were analyzed using two-
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way repeated measures ANOVA followed by Sidak’s multiple comparison tests. 

All data are expressed as mean ±SEM. 

Results 

Withdrawal from Nicotine Induces Nrg3 Transcription in the Ventral 

Hippocampus 

Previous studies from our lab have shown that hippocampal specific expression 

of the transcription factor CREB and CREB target gene, NRG3, are increased 

during chronic nicotine and withdrawal [15], although expression specifically in 

the VH has not been characterized. Quantitative PCR analysis of wild type 

ErbB4-floxed mice revealed that in the VH Nrg3 expression is increased 

specifically during the 24 h WD time point, compared chronic nicotine treated 

mice, suggesting alterations in Nrg3 synthesis occur within 24 h of nicotine 

abstinence and returning to baseline within 1 week (F(3,33) = 3.653, p=0.0223, 

one-way ANOVA; NIC versus 24 h WD: p=0.0117; NIC versus 1 wk WD: 

p=0.3933, Post-hoc analyses) (Fig 4.1A).  Conversely, there were no differences 

in Erbb4 mRNA levels during saline, nicotine, or either WD time point (F(3,33) = 

0.8802, p=0.4614, one-way ANOVA) (Fig. 4.1B).  

Synaptosomal Expression of NRG3 and ErbB4 is Increased During 

Withdrawal from Nicotine in the Ventral Hippocampus. We next chose to 

investigate whether increases in Nrg3 mRNA during 24 h WD are accompanied
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 Figure 4.1. 24 h Withdrawal from Nicotine Increases Nrg3 Transcripts in 
the Ventral Hippocampus  

Mice were treated in vivo with saline, nicotine (12 mg/kg/day), or undergoing 
withdrawal at 24 hour and 1 week time points. Ventral hippocampal tissues from 
treated animals were used in qPCR analysis to evaluate mRNA levels. (A) qPCR 
quantification of ventral hippocampal mRNA expression of NRG3 in treated mice. 
(B) Quantification of ventral hippocampal mRNA expression of ErbB4 in treated 
mice.  n= 8-10 per group (*p<0.05). 
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by changes in NRG3 and ErbB4 protein. Studies have shown NRG3 and ErbB4 

receptors are enriched specifically at excitatory-inhibitory synapses within the 

hippocampus [33]. Synaptosomal fractionation techniques enabled us to isolate 

synaptosomal fractions from VH tissue of treated wild type ErbB4-floxed mice 

(see schematic, Figure 4.2A). Densitometry of the 75 kDa band detected using 

the anti-NRG3 antibody revealed an increase in synaptosomal NRG3 protein 

during 24 h WD, compared to saline control mice (F(2,22) = 4.923, p<0.05, one-

way ANOVA; SAL versus 24h WD: p=0.0128, Post-hoc analyses) (Fig. 4.2B). 

Furthermore, synaptosomal fractions immunoblotted with the affinity purified anti-

ErbB4 antibody yielded major bands at 180, 120, and 80 kDa (Fig. 4.2C), as 

seen previously [34]. The full-length 180 kDa band (F(2,22) = 6.974, p<0.001, 

one-way ANOVA; NIC vs. 24 h WD: p=0.0036) and the 120 kDa band (F(2,21) = 

7.566 p<0.001, one-way ANOVA; NIC verses 24 h WD: p=0.0024) of ErbB4 are 

significantly upregulated during 24h WD, compared to their chronic nicotine 

treated counterparts (Fig. 4.2C i/ii). A similar effect was observed at the 80 kDa 

band, but was not significant (Fig. 4.2C iii) (F(2,21) = 3.123, p>0.05).  

Increased CRE Recombinase Expression Decreases ErbB4 Transcripts 

Within the Ventral Hippocampus and Attenuates Withdrawal-induced 

Transcription of NRG3 mRNA.  

We have previously shown that systemic disruption of NRG3-ErbB4 signaling in 

mice alters withdrawal-induced behaviors [15], suggesting aberrant NRG3-ErbB4 

signaling may underlie these phenotypes. However, it is unknown whether these
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Figure 4.2. Synaptosomal levels of NRG3 and ErbB4 is Increased During 24 
h Withdrawal from Nicotine in the Ventral Hippocampus. 

Synaptosomal fractions of ventral hippocampal tissues from mice treated with 
saline, nicotine (12 mg/kg/day) or 24 h WD were processed and used in Western 
blot experiments to evaluate protein levels. (A) Schematic of synaptosomal 
isolation. (B) Densitometry analysis of synaptosomal levels of the 75 kDa band of 
NRG3 protein normalized to housekeeping protein β-tubulin (55 kDA). (C) 
Densitometry analysis of synaptosomal levels of full-length ErbB4 (180 kDa, C i) 
and cleavage products (120 kDa, C ii) and (80 kDa, C iii), normalized to 
housekeeping protein β-tubulin (55 kDa). n=8-9 per group (*p<0.05, **p<0.01).
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changes are specific to ErbB4 signaling in the VH, a key region believed to 

mediate affective symptoms of withdrawal [14]. To address this, we performed 

stereotaxic microinjections of AAV-CRE, or AAV-RFP control virus, into the VH of 

the transgenic ErbB4-floxed mouse line. Delivery of AAV-CRE resulted in 

temporal and spatial excision of exon 2 of the Erbb4 gene. After 4 weeks of 

recovery, NIH training began on Day 28 post-injections and lasted for 2 weeks. 

After NIH training on day 42, mice received chronic treatment of either pulsatile 

saline or nicotine (12 mg/kg/day) via osmotic minipumps and were returned to 

home cages for two weeks.  24 hours prior to behavioral testing, on day 55, MPs 

were removed from the 24 h withdrawal group to induce withdrawal and sham 

surgeries were performed on chronic nicotine and saline treated mice to mask 

any surgery effects.  The following day, day 56, mice were subjected to NIH 

testing in the AM, followed by Open Field testing in the PM. Tissue was collected 

immediately after (Figure 4.3A). A 10x confocal image taken of the VH shows 

expression of the AAV-RFP virus 8 weeks post microinjection (Figure 4.3B), 

demonstrating spatial transduction of virus into the region of interest. Starting 

with Figure 4.3C, qPCR analyses of VH mRNA revealed an increase in CRE 

recombinase expression, which was restricted to animals receiving AAV-CRE 

injections, compared to their RFP-injected controls (t(70)=6.059 p<0.0001, 

unpaired t-test) (Fig. 4.3C). This increase in CRE recombinase expression 

resulted in a significant interaction and main effect of genotype, and reduced 

Erbb4 mRNA levels to around 60% of that of RFP SAL mice (main effect of 

genotype F(2,66) = 121.0, p<0.0001 two-way ANOVA; RFP SAL verses CRE  
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Figure 4.3. Increased CRE Recombinase Expression Decreases Erbb4 
Levels Within the Ventral Hippocampus and Prevents 24 h Withdrawal-
induced Increase of Nrg3 mRNA.  

(A) Experimental design. (B) Representative 10x image of ventral hippocampal-
specific expression of AAV-RFP virus 8 weeks post-viral delivery in ErbB4-/- mice 
(scale bar 50 µm). (C) Quantification via qPCR analysis of CRE recombinase 
levels in RFP and CRE-injected mice. (D) Quantification of ErbB4 mRNA in CRE-
injected treated mice compared to RFP-injected controls. (E) Quantification of 
NRG3 mRNA in CRE-injected treated mice compared to RFP-injected controls. 
n=11-14 per group (*p<0.05, treatment effect; ##p<0.01, ####p<0.0001, viral 
effect).  
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SAL: p=<0.0001, CRE NIC: p<0.0001, CRE 24 h WD: p<0.0001, Post-hoc 

analyses) (Fig. 4.3D). Furthermore, Nrg3 mRNA expression analyses showed an 

interaction and main effect of genotype, with increased Nrg3 expression in RFP 

24hWD mice compared to their NIC treated counterparts (main effect of 

genotype F(1,66) = 12.37, p<0.005; interaction F(2,66) = 10.90, p<0.0001, two-

way ANOVA; RFP SAL verses RFP 24 h WD: p=0.018, Post-hoc analyses) 

(Fig.4.3E). This 24 h WD induced increase in Nrg3 transcripts is not observed in 

CRE animals (no treatment effect, F(2,31 = 1.982, p>0.04, one way ANOVA) 

(Fig. 4.3E). NOTE: Mice were excluded from all experiments if less than a 20% 

KO of ErbB4 was observed in the VH.  

Ventral Hippocampal ErbB4 KO Blocks Anxiogenic Behavior Measured in 

the Novelty-induced Hypophagia Test. 

We next performed multiple behavioral analyses to evaluate the influences of VH 

ErbB4 KO on anxiety-like behaviors. The Novelty-Induced Hypophagia test is a 

well-validated measure for VH dependent anxiety-related behaviors that is 

sensitive to acute anxiolytics and chronic antidepressants [35]. Prior to treating 

mice with saline or nicotine, no genotype effects were observed during training in 

latency to consume (t(5)=2.162 p>0.05, paired t-test) (Fig. 4.4A i) or amount 

consumed (t(70)=0.02770 p>0.05, unpaired t-test) (Fig. 4.4A ii). Mice then 

underwent two weeks of chronic treatment of saline or nicotine via osmotic 

minipumps. To confirm there were no malaise effects of chronic nicotine 

treatment, mice were presented with PB chips in their home cage and latency 

was measured (Home Test Day). No significant difference between groups was  
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Figure 4.4. Ventral Hippocampal Erbb4 KO Blocks Anxiogenic Behavior 
Measured in the Novelty-induced Hypophagia Test. 

(A) NIH Training. (A i) Latency to feed in home cage during training session days 
5-10 in untreated, RFP or CRE-injected mice.  (A ii) Amount of peanut butter 
chips consumed in grams on last day of training (d10) in untreated, RFP or CRE-
injected mice. (B) NIH Testing. Latency to feed in home cage (Home Test Day) 
and novel environment (Novel Test Day) of treated mice with RFP or CRE-
injections. n=11-14 per group (*p<0.05, treatment effect; ###p<0.001, viral effect). 
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observed (F(5,66) = 1.072, p=0.3940; one way ANOVA) (Fig.  4.4B). After Home 

Test Day, osmotic minipump removal and sham surgeries were performed to 

induce withdrawal, 24 h prior to Novel Test Day. The following day, mice were 

placed in a novel environment (Novel Test Day) and again latency to feed was 

measured, displaying an interaction and main effect of treatment and day (main 

effect of day, F(1, 131) = 152.0, p<0.0001; main effect of treatment F(5, 131) = 

7.564; p<0.0001; interaction F(5, 131) = 7.747 p<0.0001) (Fig. 4.4B). RFP mice 

undergoing 24 h WD displayed a significant increase in latency to feed on novel 

test day compared to controls (RFP SAL versus RFP 24 h WD: p=0.0236; Post-

hock analyses), while CRE-injected animals showed a significant reduction in 

latency to feed across all treatment groups, compared to RFP SAL control mice 

(RFP SAL verses CRE SAL: p=0.0008; CRE NIC: p=0.0005; CRE 24 h WD: 

p=0.0004; Post-hoc analyses) (Fig. 4.4B).  

Ventral Hippocampal Erbb4 KO Attenuates 24 h Withdrawal-induced 

Anxiety-like Behavior in the Open Field Exploratory Test. 

After NIH testing was conducted, mice were placed in their home cages for a 1-

hour recovery period before the Open Field Exploration Test was ran that 

afternoon. As one of the most commonly used platforms to measure anxiety-like 

phenotypes in mice, Open Field paradigms are often used to investigate the 

anxiogenic or anxiolytic properties of pharmacological drugs [36]. A number of 

variables can be measured using this test such as motor activity, body responses 

and thigmotaxic behavior [36]. Representative traces of activity in the Open Field 

arena of RFP- and CRE-injected 24 h WD groups (Fig. 4.5A i). Results from this 
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Figure 4.5. Ventral Hippocampal Erbb4 KO Attenuates 24 h Withdrawal-
induced Anxiety-like Behavior in the Open Field Exploratory Test. 

(A) Open Field Test. (A i) Representative traces of activity of RFP 24 h WD and 
CRE 24h WD treatment groups. (A ii) Quantification of percent time spent in the 
center area of treated RFP- and CRE-injected mice. (B) Locomotor activity of 
treated RFP- and CRE-injected animals. n=11-14 per group (*p<0.05, treatment 
effect).  
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test showed a significant treatment effect (main effect of treatment F(1,66) = 

5.148, p<0.05; two-way ANOVA) (Fig. 4.5A ii). Control mice undergoing 24 h WD 

(RFP 24h WD) displayed a significant decrease in time spent in the center arena, 

compared to SAL controls (p=0.0290; Post-hoc analyses) indicative of an 

anxiogenic response to a novel environment during withdrawal (Fig. 4.5A ii). 

Interestingly, in CRE-injected ErbB4 KO mice this treatment effect was 

undetectable, with no significant differences between SAL and 24h WD groups 

(RFP SAL verses RFP 24 h WD: p=.9994; Post-hoc analyses) (Fig. 4.5A ii). No 

locomotor deficits were observed between genotypes or treatments (no 

interaction F(2,64) = 0.4727, p>0.05; two way ANOVA) (Fig. 4.5B). Collectively, 

findings from both behavioral tests suggest that disruption of NRG3-ErbB4 

activity in the VH attenuates prominent anxiogenic effects induced during 24 h 

WD. 

Nrg3 and Erbb4 mRNA Have Highest Expression in the CA1 Region of the 

Ventral Hippocampus  

The hippocampus has a very well-defined architecture consisting of populations 

of excitatory principle neurons (i.e. pyramidal cells) assembled into distinct 

regions: the dentate gyrus (DG), the CA3 and CA1 regions. These areas form 

what is known as the trisynaptic circuit, an information flow beginning with 

cortical inputs from the entorhinal cortex (EC) which carry higher-order spatial 

and contextual information, synapsing onto DG granule cells via perforant path 

fibers. Mossy fibers from DG granule cells project to the CA3 area, followed by 

CA3 axons projecting onto CA1 pyramidal neurons via Schaffer collaterals. It is 
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through CA1 pyramidal neurons that extra-hippocampal projections are sent to 

other brain regions. It is currently still believed that the different circuit 

components along this pathway (DG, CA3, CA1) contribute to unique aspects of 

memory and emotional processing [37]. Thus, elucidating circuit specific 

expression patterns of NRG3 and ErbB4 will give insight onto how this signaling 

pathway is modulating circuit-level events underlying anxiety-like behavior during 

withdrawal. To do this we used single-molecule fluorescent in situ hybridization 

techniques to visualize and quantify individual Nrg3 and Erbb4 mRNA puncta 

within the VH subregions. In Figure 4.6A, a representative 10x tiled image of the 

VH shows expression patterns of a nuclear stain, DAPI (blue), Nrg3 (green) and 

Erbb4 (red) mRNA, and yellow boxes mark areas of the DG, CA3 and CA1 in 

which images were taken (Fig. 4.6A ii). Images of subregions were taken using a 

63x oil objective to observe expression patterns of Nrg3 (Fig. 4.6B) and Erbb4 

(Fig. 4.6D). Quantification analysis using ImageJ showed consistent expression 

of Nrg3 mRNA within the DG, CA3 and CA1 areas of the VH, with no significant 

differences between regions (F(2,6) = 1.659, p>0.05, one way ANOVA) (Fig. 

4.6C). Conversely, quantification of Erbb4 mRNA showed a significant difference 

in levels between the CA1 and DG (F(2,6) = 8.977, P<0.05, one way ANOVA), 

with highest expression of Erbb4 mRNA present in the CA1 area of the VH (DG 

versus CA1: p=0.0138) (Fig. 4.6E). Additionally, preliminary data reveal a 

potential treatment effect on NRG3 expression in the CA1 area, with a trending 

increase in mRNA signal during nicotine and 24 h WD (Fig. 4.7C) (ns; 

F(2,4)=2.556, P>0.05; one way ANOVA). No treatment effects are seen in the  
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Figure 4.6. Nrg3 and Erbb4 mRNA Have Highest Expression in the CA1 
Region of the Ventral Hippocampus 

30 µm VH sections from untreated mice were used in smFISH experiments. 
Background subtractions are based off of scrambled control images. (A) 
Representative 10x tiled image of NRG3 (green) and ErbB4 (red) mRNA and 
DAPI (blue) expression in the ventral hippocampus (A i. scale bar 300 µm), and 
subareas DG, CA3, and CA1 (A ii. scale bar 50 µm). (B) Representative 63x oil 
immersion images NRG3 puncta (green) and DAPI (blue) in the DG, CA3, CA1 of 
ventral hippocampus (scale bar 20 µm). (C) Quantification of NRG3 mRNA 
normalized to nuclei number. (D) Representative 63x oil immersion images 
ErbB4 puncta (green) and DAPI (blue) in the DG, CA3 and CA1 of ventral 
hippocampus. (E) Quantification of ErbB4 mRNA normalized to nuclei number 
(scale bar 20 µm). N=3 per group. (*p<0.05).  
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Figure 4.7. Nicotine and 24 h WD Treatment Reveal a Trending Increase in 
Nrg3 mRNA in the CA1 Region of the Ventral Hippocampus   

30 µm sections from mice treated in vivo with either saline, nicotine (12 
mg/kg/day) or 24 h WD were used in smFISH experiments. Background 
subtractions are based off of scrambled control images. Quantification of NRG3 
mRNA signal was normalized to nuclei number in the Dentate gyrus (A), CA3 
area (B), and CA1 area (C) of the ventral hippocampus. N=1-3 per group. 
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DG (F(2,4) = 0.2937, P>0.05) or CA3 (F(2,4) = 0.09683, P>0.05, one way 

ANOVA) areas (Fig. 4.7A/B). 

Ventral Hippocampal Erbb4 KO Reduces Spontaneous IPSC Frequency in 

the Ventral CA1.  

We next wanted to further investigate circuit and cell-level alterations in the CA1 

region of the VH, an area our smFISH experiments demonstrated as enriched in 

NRG3 and ErbB4-positive cells. To do this, a separate cohort of ErbB4-floxed 

animals underwent stereotaxic microinjections of either AAV-RFP+GCaMP 

(control) or AAV-CRE+GCaMP (ErbB4 KO) in the VH. By combining our GCaMP 

Ca2+ indicator with our AAVs this allowed for simultaneous collection of 

electrophysiological and Ca2+ imaging recordings of CA1 pyramidal neurons from 

the same mice to reduce the number of animals needed for experimentation. 

Both groups were undergoing 24 h WD at the time of recordings. Using whole 

cell patch clamp electrophysiology, we first evaluated the effect of ErbB4 KO on 

spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and 

sIPSCs) in CA1 pyramidal cells (Figure 4.8). ErbB4 KO significantly reduces 

sIPSC frequency in CA1 pyramidal neurons (t(17)=3.228 p<0.01, unpaired t-test) 

(Fig. 4.8A ii), with no significant changes in sIPSC amplitude (t(17)=0.4036 

p>0.05, unpaired t-test) (Fig. 4.8A iii). No differences in sEPSC frequency 

(t(16)=0.6112 p>0.05, unpaired t-test) (Fig. 4.B ii) or amplitude (t(17)=1.195 p>0.05, 

unpaired t-test) (Fig. 4.8B iii) were observed in the KO mice undergoing 24 h WD 

compared to controls. These findings show that in mice undergoing 24 h  
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Figure 4.8. Ventral hippocampal Erbb4 KO Reduces Spontaneous IPSC 
Frequency During 24h Withdrawal. 

Bilateral ventral hippocampal microinjections of AAV-RFP + GCaMP6f, or AAV-
CRE + GCaMP6f were performed, followed by a 6 week recovery period. 
Animals were then treated in vivo with chronic nicotine (12mg/kg/day) and MPs 
were removed to induced withdrawal 24 hours prior electrophysiology and Ca2+ 
imaging experiments. (A) Representative sIPSC traces (A i). Quanification of 
sIPSC frequency (A ii) and amplitude (A iii) in RFP- and CRE-injected mice 
undergoing 24h WD. (B) Representative sEPSC traces (B i). Quantification of 
sIPSC frequency (B ii) and amplitude (B iii)  in RFP- and CRE-injected mice 
undergoing 24h WD. n=4 animals (2-3 cells per animal) (**p<0.01). 
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WD ErbB4 deletion reduces basal inhibitory synaptic input to CA1 pyramidal 

neurons in the VH.   

Ventral Hippocampal ErbB4 KO Reduces Ca2+-dependent Network 

Clustering during 24h WD. 

After observing alterations in inhibitory input onto individual CA1 pyramidal cells, 

we next queried the presence of network activity differences between genotypes 

using Ca2+ imaging techniques on the same sections. We monitored 

fluorescence of the hSYN-driven Ca2+ sensor, GCamp6f [38] in the ventral CA1 

of RFP and ErbB4 KO mice undergoing 24 h WD. Analysis of the spatial 

distribution and patterning of fluorescent Ca2+ transients, reveals the existence of 

communities of strongly connected, synchronous pyramidal cells (regions of 

interest, ROIs, Fig. 4.9A). Quantification revealed no difference in number of 

communities between RFP and CRE-injected mice across stimulation intensities 

(no interaction, F(3,39) = 0.04595, p>0.05; RM two way ANOVA) (Fig. 4.9B). 

Furthermore, using a Matlab-based network clustering analysis, which identifies 

sub-populations of cells with correlated activity dynamics, we found no 

differences in the network-clustering coefficient across increasing stimulation 

intensities in wild type RPF 24 h WD mice (F(2.364, 14.18) = 0.04814, p>0.05, 

RM one way ANOVA) (Fig. 4.9C). In contrast, CRE 24 h WD mice displayed a 

significant reduction in network clustering (F(1.996, 13.97) = 5.123, p<0.05, RM 

one way ANOVA) at the minimum (BASELINE verses MIN. STIM: p=0.0419, 

Post-hoc analyses) and 2x (BASELINE verses 2x STIM: p=0.0497, Post-hoc  
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Figure 4.9. Ventral Hippocampal Erbb4 KO Reduces Ca2+-dependent 
Network Clustering during 24 h Withdrawal. 

(A) Representative 40x image of fluorescently GCaMP6f-labelled pyramidal cells 
outlined as numbered ROIs (scale bar 30 µm). (B) Quantification of VH CA1 
pyramidal cell communities across increasing stimulation intensities in RFP- and 
CRE-injected mice undergoing 24 h WD. (C) Quantification of network clustering 
coefficient across increasing stimulation intensities in RFP- and CRE-injected 
mice undergoing 24 h WD. N=4 animals (2-3 sections per animal) (*p<0.05) 
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analyses) stimulation intensities compared to baseline (Fig. 4.9C). This data 

suggests that while number of communities is unaltered, the dynamic activity 

(engagement and disengagement) of these neuronal assemblies is reduced in 

ErbB4 KO mice during 24 h WD upon increased stimulation.  

 

Discussion 

Accumulating literature implicates that while the positive reinforcing effects of 

nicotine play a crucial role in the development of nicotine dependence, negative 

reinforcers (e.g., withdrawal symptoms) drive the maintenance of nicotine 

dependence. Specifically, the ability of nicotine to alleviate the negative affective 

states or cognitive impairments occurring during withdrawal can directly lead to 

relapse. Therefore, gaining a more mechanistic understanding the genetic and 

neural correlates of withdrawal is imperative for identifying novel drug targets and 

developing more efficacious treatment options. Here we identified ErbB4 as an 

essential player in the manifestation of anxiety-like behavior during nicotine 

withdrawal, a hallmark symptom seen in mice [39, 40] and humans [4, 41, 42] 

Attenuation of anxiety-like phenotypes during 24 h WD in VH ErbB4 KO mice 

were accompanied by alterations in inhibitory transmission and overall network 

activity in the CA1 area, a subregion of the VH enriched in NRG3 and ErbB4 

mRNAs.  
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Increased Synaptic Expression of Ventral Hippocampal NRG3 and ErbB4 

are Induced During 24h Withdrawal 

Active gene transcription is necessary for addiction processes. However, 

divergent gene networks may underlie various addiction phenotypes. As 

mentioned previously, CREB is a very well-established transcription factor in the 

field of addiction [43-45] and is crucial for stimulus-transcription coupling, in 

which events occurring at the cell surface lead to alterations in gene expression, 

and ultimately regulate the fate of neuronal protein synthesis. Our lab has 

previously demonstrated that increases in total and phosphorylated levels of 

CREB are present during chronic nicotine and 24 h withdrawal in the 

hippocampus leading to increased transcription of the CREB target gene, NRG3 

[15]. In our current study we observe induction of Nrg3 transcription specifically 

at the 24 h withdrawal time point within the VH, with 1-week post withdrawal 

mRNA levels of Nrg3 returning to baseline (Fig. 4.1A). Interestingly, this increase 

in Nrg3 transcription falls within the timeline of observable nicotine withdrawal 

signs in rodents — being the most severe 24-48 hours post withdrawal and 

tapering off there after [46]. Additionally, studies in smokers show that withdrawal 

symptoms set in between 4 and 24 hours after a person smokes their last 

cigarette, with the symptoms peaking at around day 3 [47]. 

Withdrawal-induced molecular changes were also seen at the protein 

level, with increased NRG3 and ErbB4 protein levels in synaptic fractions. 

Previous studies have demonstrated synaptic enrichment of these proteins, 

where they play a role in the formation and maintenance of synapses [21, 33, 48, 
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49]. Western blotting of VH synaptosomal fractions showed the presence of the 

full-length NRG3 (75-kDa) [50] and full-length ErbB4 (180-kDA) along with 

cleavage products (120-kDA and 80-kDA bands) [34, 51], all of which were 

upregulated at 24h withdrawal (Fig. 4.2B/C). Studies have shown that NRG 

binding triggers the shedding of a 120-kDa ectodomain fragment via cleavage by 

the metalloprotease TNF-α-converting enzyme (TACE) [34]. Subsequent 

cleavage by presenlin/gamma secretases releases an 80kDa intracellular 

domain, which has an active tyrosine kinase domain and can translocate to the 

nucleus and promote nuclear transcription of various transcription factors [52, 

53]. ErbB4 appears to be the only ErbB that harbors a nuclear localization 

signaling in its intracellular domain [54]. Our data suggests that 24 h WD not only 

induces translation of the precursor full length ErbB4 further but provokes 

proteolytic cleavage as well. Further experimentation is necessary to determine 

the precise role of nuclear ErbB4 signaling during withdrawal.  

NRG3 is the most highly expressed NRG isoform in the adult 

hippocampus [33] and is the only family member of NRGs sensitive to 24 h 

withdrawal [15], suggesting that ErbB4 upregulation during 24 h WD may be 

specific to NRG3 interactions. Yet, the existence of multiple ligands for ErbB4 

raises the issue of whether these ligands provoke different biological responses 

or utilize different signaling transduction pathways in response to nicotine or 24 h 

WD. Furthermore, the process by which upregulation of ErbB4 in synaptic 

fractions during withdrawal occurs is unclear. Studies have shown upregulated 

levels of ErbB4 to be neuroprotective in models of brain pathologies such as: 
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cerebral ischemia [55], Alzheimer’s disease [56-58] and Parkinson’s disease [59-

61]. Due to its role in neuronal survival and neurogenesis, it is possible that 

ErbB4 mRNA is preferentially translated when the brain is in an impaired state 

(i.e., stress, injury, disease, etc.).  

Ventral Hippocampal ErbB4 Signaling Mediates Withdrawal-Induced 

Anxiety-like Behaviors  

In post-mortem brain tissue from schizophrenic patients, a SNP within the NRG3 

gene (rs10748842) is associated with delusion severity [62] and isoform-specific 

increases in NRG3 [50]. The authors of this study suggest that inhibition of NRG3 

signaling may be a potential target for psychiatric treatment developmental [63]. 

In our animal model of nicotine dependence, we find that increased expression 

NRG3-ErbB4 signaling corresponds with anxiety-like behaviors, with genetic 

disruption of this pathway eliminating these phenotypes induced during 24 h WD. 

The NIH test and the Open Field exploratory tests model situational anxiety-like 

behaviors in rodents by integrating an approach-avoidance conflict paradigm 

[36]. Mice naturally have the tendency to engage in exploratory activity (OF test) 

and consume highly palatable food (NIH test), but show aversion to open, 

brightly-lit novel environments. Our behavioral data is in accordance with our 

previous studies [15, 25-27, 64], revealing anxiety-like responses are increased 

during 24 h WD. This suggests that abstinence from nicotine is an additional 

stressor that promotes anxiety-related behaviors when placed in an unfamiliar 

environment, a phenotype detected in both the NIH and OF tests. 
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The OF test revealed that VH ErbB4 deletion has an anxiolytic effect on 

24hWD-dependent exploratory behavior in an unfamiliar environment (Fig. 4.5A). 

The NIH test, however, demonstrated a significant baseline difference in the 

latency to feed in VH ErbB4 KO mice across all treatments on Novel Test day 

(Fig. 4.4B). This suggests that ErbB4 deletion produces a floor effect in this 

paradigm, where anxiety-like responses are at such a low threshold that no 

treatment effects are detectable. Several factors have been found to influence 

baseline levels of hyponeophagia in mice, including genetic background, isolated 

housing, and specific genetic mutations that affect anxiety-related behaviors. For 

example, Santarelli et al. [65] demonstrated that both genetic and 

pharmacological inactivation of the substance P receptor (NK1) attenuated 

hyponeophagia-specific behaviors. They found this was due to the receptors 

influence on serotonergic signaling [65, 66], with many serotonergic drugs having 

both anxiolytic and antidepressant properties in animals.  Moreover, it is well 

established that ErbB4 is enriched on GABAergic interneurons, the same cell 

type that widely used class of anxiolytic drugs, benzodiazepines (GABAA 

agonists), target. Therefore, it is probable that ErbB4 deletion exerts its anxiolytic 

effects through alterations in GABAergic transmission. The amount of food 

consumed was measured to ensure there were no signs of malaise or anorexia-

like behavior.  

Previous studies have shown that pharmacological and genetic 

manipulations of NRG3 and ErbB4 signaling in the brain result in a similar display 

of abnormal affective behaviors in mice. In adult mice, neonatal overexpression 
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of Nrg3 results in increased impulsive action, heightened anxiety and reduced 

social function [67]. ErbB4 KO models report that deletion of ErbB4 from 

interneurons in the cortex and hippocampus result in decreased anxiety [68-70]. 

Conversely, it seems this signaling pathway may mediate opposing behaviors in 

other brain regions. For example, in the amygdala, deletion of ErbB4 from SOM+ 

neurons increases anxiety [71] and administration of NRG1 alleviates anxiety 

and enhances GABAergic transmission [72]. Additionally, blocking NRG1-ErbB4 

signaling in the bed nucleus of the stria terminalis (BNST) region had anxiogenic 

effects on behavior as well [73]. This provides evidence of brain region and 

circuitry-specific modulation of NRG-ErbB4 signaling on select phenotypes. 

Recent studies have shown that ventral CA1 cell projections, the major output of 

the hippocampal formation, mediate anxiety-like behavior via reciprocal 

communication with the medial prefrontal cortex (mPFC) [74-78], hypothalamus 

[79], and amygdala [80, 81]. Therefore, deletion of ErbB4 could attenuate the 

effects 24h WD has on VH function and its interactions with other brain regions.  

Ventral Hippocampal ErbB4 KO Mice have Decreased sIPSC Frequency and 

Altered Network Clustering Activity in the CA1 area during 24h WD 

The impact of VH ErbB4 deletion on pyramidal cell dynamics during 24h WD is 

unknown. Our smFISH experiment demonstrated highest expression of ErbB4 

mRNA granules in the CA1 area (Fig. 4.6E), a region where we see NRG3 

mRNAs may be sensitive to nicotine and withdrawal (Fig. 4.7C). In addition to 

pyramidal cells, which make up the defined cell layer of these circuits, there are 

over 20 types of GABAergic inhibitory interneurons in the CA1 subregion alone 
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[82]. This cell type is demonstrated to modulate excitatory transmission through 

release of GABA to inhibit the target pyramidal cells they innervate. With ErbB4 

receptors being located on approximately 50% of parvalbumin (PV+) and 

cholecystokinin (CCK+) expressing interneurons within the hippocampus [83], we 

were interested in determining what role they played in withdrawal-induced 

synaptic activity. In our study, GABAergic synaptic transmission was weakened 

in VH ErbB4 KO mice, characterized by a significant reduction in the frequency of 

sIPSCs recorded from pyramidal neurons (Fig. 4.8Aii). These changes in sIPSC 

frequency are postulated to be due to reduced presynaptic release of the 

inhibitory neurotransmitter GABA onto presynaptic pyramidal cells. Furthermore, 

the attenuation of GABA release was accompanied by altered network clustering 

activity (Fig. 4.9C); suggesting ErbB4 receptors mediate pyramidal cell ensemble 

activity through GABAergic transmission. Previous studies have demonstrated 

that ErbB4 promotes GABA release, through its interaction with NRG1 [84, 85]. 

Treatment with a neutralizing peptide or deletion of the Erbb4 gene has been 

shown to reduce GABAergic transmission, increase the firing of pyramidal 

neurons, and enhance long-term potentiation (LTP) in brain slices [84-87]. 

Interestingly, in the hippocampus, studies have demonstrated that nicotine 

increases pyramidal cell activity and induces LTP in the CA1 as well [88]. LTP is 

described as an activity-dependent strengthening of synaptic transmission and is 

attributed to learning and memory. It is postulated that nicotine exerts these 

effects on synaptic function through differentially modulating GABAergic 

transmission through nAChRs located on inhibitory interneurons [89, 90]. 
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Furthermore, previous VH functional studies conducted in our lab 

demonstrate that CA1 functionality is sensitive to chronic nicotine and 

withdrawal, as well as nAChR partial agonists [27]. Using voltage sensitive dye 

imaging (VSDi), a technique used to visualize electrical activity of neurons, 

Turner et al. found that increased evoked responses of ventral CA1 pyramidal 

cells during chronic nicotine treatment were correlated with reduced anxiety-like 

behaviors in the NIH test. In contrast, reductions in evoked responses observed 

during 24h WD were correlated with increased anxiety [27]. Therefore, it is 

plausible that NRG3-induced activation of ErbB4 receptors on GABAergic 

interneurons increases GABA release onto CA1 excitatory pyramidal cells, thus 

dampening evoked responses and increasing anxiety-like behavior. Furthermore, 

our E-phys data demonstrates that VH ErbB4 KO reduces spontaneous IPSC 

frequency onto CA1 pyramidal cells, potentially increasing evoked responses, 

and reducing anxiety-like behavior. Additional experimentation with saline and 

nicotine treated RFP animals is necessary to fully interpret how ErbB4 KO alters 

hippocampal activity and if these effects are specific to WD. It is expected that 

we would see decreased sIPSC frequency and increased sEPSC frequency in 

chronic nicotine treated mice, compared to both saline and 24h WD mice. 

Furthermore, it would be interesting to determine if nicotine’s effects on 

GABAergic activity are mediated through ErbB4 receptors as well, by recording 

from saline and nicotine treated ErbB4 KO animals. 

Lastly, in our ErbB4 KO model we did not observe any changes in EPSC 

frequency or amplitude during 24h WD, suggesting no changes in overall 
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synaptic strength in our ErbB4 KO mice. This could be due to the temporal and 

spatial design of our KO model in the VH, the magnitude of ErbB4 mRNA KO we 

achieved, or the location of the pyramidal cells recorded. VH CA1 projections are 

highly biased to limbic structures that directly alter mood-related behaviors; 

therefore, it is plausible that alterations in plasticity are present in regions

receiving inputs from the CA1.  For example, optogenetic activation of VH CA1 

terminals in the lateral hypothalamic area increased anxiety, whereas activation 

of CA1 terminals in the basolateral amygdala impaired memory [79]. This 

showcases the functional influences VH CA1 projections have outside of the 

hippocampus.
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Conclusory Remarks 

I hope the wide variety of data summarized and collected within this dissertation 

validates the importance of translational studies, and how different 

methodologies used in human and animal research can ultimately support the 

same conclusion. Furthermore, these studies demonstrate the importance of 

understanding how transcription events occurring during abstinence from nicotine 

provokes biochemical and functional changes within the brains of smokers. And 

more importantly, how these underlying neural adaptations are governing an 

individual’s chances of successfully reaching cessation.  When looking back at 

the functional role of CREB as a transcription factor, it is described as playing a 

crucial role in neurodevelopment (cell proliferation, differentiation, and survival), 

as well as participating in neuronal plasticity and learning and memory in the 

adult brain [1]. CREB is essential for life, and the thousands of individual genes 

and gene networks it regulates play an integral role in overall homeostasis of the 

mammalian brain. I believe in the adult nervous system, activity-dependent 

stimulation of NRG3-ErbB4 signaling by CREB is a homeostatic mechanism in 

which the brain tries to alleviate the negative consequences of removing a drug 

from the system. I specifically use the term drug, not specifying nicotine, because 

I hypothesize that ErbB4 induction during withdrawal is not just specific to 

nicotine, but many drugs of abuse. The extensive genomic remodeling that 

occurs during drug use leads to not only physiological changes in response to 

artificially introduced chemicals, but long-term neural adaptations that keep the 

brain content, as well as dependent on that drug. These effects can also dictate 
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the specificity of CREB activity in different brain regions and treatment conditions 

(i.e. nicotine verses withdrawal). I believe abrupt abstinence from nicotine is what 

kicks in homeostatic, “survival” mechanisms—such as NRG3-ErbB4 signaling. 

And in the ventral hippocampus the functional output of these molecular changes 

is anxiety-like behavior.  

Moreover, I deduce that the negative consequences of NRG3-ErbB4 

signaling to be very much developmentally dependent, with aberrant NRG3-

ErbB4 signaling during neurodevelopment being the most detrimental. 

Interactions between NRG3-ErbB4 mediate laminar allocation of GABAergic cells 

into mid- and forebrain regions, as well as play a role in synaptogenesis of these 

cells [2-4]. It’s hypothesized that irregular signaling of these molecules during 

development result in abnormal lamination and altered synaptic integrity of vital 

circuits correlated with neuropsychiatric diseases such as schizophrenia, and 

perhaps addiction.  The fact that NRG3 and ERBB4 variants are associated with 

schizophrenia and nicotine dependence, make it unlikely that the high 

comorbidity between these two conditions is coincidental.  

Identification of precise genetic variants and their contributions to aberrant 

NRG3-ERBB4 signaling in relation to nicotine dependence are not yet known. 

Twin linkage studies have identified several ERBB4 variants associated with 

nicotine dependence diagnosis, smoking initiation and nicotine withdrawal 

symptom count [5]. As mentioned in Chapter 3, alternative splicing of ERBB4 

leads to functionally distinct isoforms that alter downstream signaling [6]. Gupta 

et al identified an ERBB4 SNP (rs13385826) associated with nicotine 
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dependence and predicted to be a splicing disruption variant [5]. Further 

functional analysis of this SNP is necessary to examine downstream 

consequences but highlights the potential translational value of these studies. 

Several of the downstream targets of ErbB4 signaling are currently being 

evaluated as drug targets in schizophrenia [7], and may have potential as 

smoking cessation drugs as well. Therefore, translational studies focused on 

identifying the functional consequences these NRG3 and ERBB4 variants have 

on the smoking and co-morbid populations will be advantageous in determining 

how this knowledge can help with improve smoking cessation outcomes. 

Future Studies 

There are dozens of avenues and questions that can, and I hope will be 

investigated regarding NRG3-ErbB4 signaling during withdrawal. I divided my 

future directions section into short- and long-term plans. The short-term studies I 

would like to complete before submission of chapter 4 for publication. Long-term 

studies are perhaps future projects for prospective students and post-docs in 

Turner lab. 

Short-term Studies 

Region-specific treatment affects on NRG3 an ErbB4 mRNA via smFISH. The 

current FISH data I have collected shows enrichment of NRG3 and ErbB4 mRNA 

puncta in the CA1 region of the ventral hippocampus. Very preliminary data also 

suggests the mRNAs in this area may be sensitive to chronic nicotine and 24h 

WD treatment. But due to insufficient N’s (1 for 24hWD), conclusions can’t be 
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definitively made. As well, it might be advantageous to start using confocal 

microscopy instead of wide field when collecting these images. Majority of the 

papers I have read claim that NRG3 and ErbB4 are on separate cell-types and 

signal through canonical signaling. Interestingly, while collecting my images I 

have found a few cells in which it appears NRG3 and ErbB4 mRNA are 

coexpressed within the same cell.  Confocal imaging will give us better resolution 

and detection of the colocalization patterns of NRG3-ErbB4, not only within the 

cell body, but also at synapses.  Additionally, I would also like to perform dual 

immunofluorescence / FISH, which will give us insight on what cell types NRG3 

and ErbB4 mRNA are expressed in within the ventral hippocampus.   

Protein Expression of ErbB4 and Downstream Targets. We confirmed KO of 

ErbB4 via qPCR analysis and saw reductions in ErbB4 mRNA, but we do not 

know the extent of KO that was achieved in protein expression. Furthermore, 

total and phosphorylated protein levels of downstream targets of ErbB4 (i.e., 

pPI3K, total PI3K) in our wild type vs. KO animals may determine what 

downstream signaling cascades underlie physiological and behavioral 

phenotypes.   

Proper controls for E-phys and Ca2+ imaging studies. While we see a genotype 

effect in our E-phys and Ca2+ imaging studies during 24h WD, full interpretation 

without proper RFP saline and nicotine controls is difficult. Based on readings of 

other functional studies in the hippocampus, I expect RFP nicotine treated 

animals to have reduced sIPSC frequencies compared to 24h WD, similar to 

what we observed in VH ErbB4 KO mice.  
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Long-term Studies 

Future studies designed to achieve cell-type specific KO of ErbB4 and NRG3 will 

further elucidate: A. If the effects of ErbB4 signaling during 24h WD is specific to 

NRG3 stimulation, and B. what ErbB4+ interneuronal cell-type is the most 

responsive to nicotine and withdrawal. Erbb4 is found to be expressed mainly on 

fast-spiking, parvalbumin-expressing (PV+), and regular spiking cholecystokinin-

expressing (CCK+) interneurons within the hippocampus and cortex [8]. These 

cell types not only differ in their morphological, biochemical and 

electrophysiological properties, but also have been shown to form distinct 

inhibitory ensembles [9]. In chapter 4 it was mentioned that nicotine reduces 

inhibitory drive onto excitatory pyramidal cells within the hippocampus through 

nAChRs on GABAergic interneurons. Theories speculate nicotine reduces 

GABAergic transmission either through a disinhibitory effect (interneurons 

inhibiting one another) [10] or through rapid desensitization of a7 homomeric 

receptors on interneurons [11]. Interestingly, PV+ interneurons, ~50% of which 

are ErbB4+ [8], have been found to project onto each other and other 

interneurons, and actively participate in disinhibition [12]. Furthermore, a7 KO 

mice have reduced PV+ cortical activity, suggesting a7 as a primary nAChR 

subtype modulating their activity [13]. Therefore, ErbB4-PV+ cells may an 

integral class of interneurons that modulate pyramidal cell activity in the 

hippocampus during nicotine and withdrawal. Cell-type and region-specific KO of 

NRG3 and ErbB4 can be achieved with the use of a CRISPR Cas9 knockin 

mouse, bred to a PV+ CRE-driver mouse. Mice then undergo stereotaxic 
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injections of a small guide RNA (sgRNA) into the ventral hippocampus for 

temporal and spatial control of KO.  

In conjunction with CRISPR KO studies, in vivo Ca2+ imaging of these 

animals will allow investigation of network activity of pyramidal, as well as 

interneuronal cell types simultaneously during our behavioral paradigms. While 

our ex vivo slice Ca2+ imaging experiments demonstrated alterations in network 

activity in VH ErbB4 KO animals, we are limited to our interpretation on how this 

effects activity-dependent network synchrony in an awake animal. Our lab has 

recently implemented the use of Inscopix technologies (Palo Alto, CA)—a brain 

mapping platform which has miniaturized a fluorescence microscope into a 2 gm 

device that can be mounted onto the skull of a live mouse and provide real-time 

detection of Ca2+-dependent activity. The ability to observe the effect NRG3 or 

ErbB4 KO has on network activity in a mouse freely exploring a novel 

environment or approaching a highly palatable food will provide further insight on 

direct circuit modulation.  

Lastly, I think an experiment investigating the exact mechanism in which 

NRG3-ErbB4 mediates withdrawal phenotypes is imperative.  Studies have 

reported that ErbB4 interacts with several synaptic proteins such as: PSD95 [14], 

NMDARs [15], and TrkB receptors [16]—all key regulators of synaptic plasticity. 

This indicates that intracellular signaling transduction triggered through the 

activation of ErbB4 receptors may impact the regulation of other synaptic 

proteins. Total RNA sequencing of both coding and non-coding RNA in the 

ventral hippocampus, followed by differential gene expression analysis will help 
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guide the direction of future experiments. Identification of gene networks active 

during nicotine and withdrawal in the ventral hippocampus and altered in ErbB4 

KO animals will provide a better mechanistic understanding of what molecular 

changes underlie withdrawal symptoms in mice.
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CHAPTER 3. ROLE OF THE NEUREGULIN SIGNALING PATHWAY IN 
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