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Abstract

Since first introduced by Dorfman in 1943, pooled testing has been widely used as

a cost and time effective testing protocol in the variety of applications. This dis-

sertation consists of three projects that reveal the use of pooling techniques in the

disease prevention from the perspective of regression. For disease monitoring and

control, individual covariates information are often of practical interest and yield

meaningful interpretations. It is natural to model the outcome of interest, which can

be either a disease status (binary) or a biomarker concentration index (continuous),

with individual-specific covariates through a regression analysis. Chapter 2 focuses

on the pooled biomarker assessment, where a pooling procedure is implemented to

measure a continuous outcome of interest. A semi-parametric single-index model is

developed to model the mean trend of biomarker concentration. In spite of pooled

biomarker assessment, this dissertation also focuses on the group testing problems

in infectious disease studies. In Chapter 3, we propose a multivariate logistic regres-

sion model for the multiple-infection group testing data. To facilitate the variable

selection and model interpretation, we further develop a regularized approach which

selects the active risk factors for each infection. Other than significant cost savings,

pooling strategy provides more precise biomarker mean curve estimations (in Chapter

2), and more accurate variable selections (in Chapter 3). With these cheerful benefits

from pooling strategy, for the purpose of promoting group testing to laboratories, in

Chapter 4, we further discuss how to simplify the pooled testing routine realistically

without significant impairments on regression estimation.
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Chapter 1

Introduction

Over the past decade, pooling techniques have been widely used for the purpose of

cost or time reduction when the financial resource is limited or population of screening

is large. The pooled testing (or group testing) was first introduced by Dorfman (1943)

for screening syphilis among War World II US soldiers. The idea is to mix multiple

individual specimens (e.g. blood, urine, swabs, etc.) to form a single pool to perform

the test. The greatest benefit of pooling is cost saving. Beneficial from this economic

efficiency, pooling has been applied to various areas of biometrical studies. The

applications of pooling often result in two types of response interests: continuous and

binary outcomes. Biological marker (biomarker) investigation and infectious disease

screening are two typical applications of pooling methods on continuous and binary

outcomes respectively.

We introduce the development of pooling for both cases in the following sections.

1.1 Pooled testing for biomarker investigation

Biomarkers are valuable biological indicators often used for case identification, early

diagnosis, monitoring or predicting the progress of clinical response to an intervention

during the treatment course. For example, the biomarker of susceptibility is used to

indicate the risk of developing a disease in a patient without any clinically apparent

symptoms; the predictive biomarker is used to identify patients who are more likely

to experience a favorable outcome after medical treatment; the prognostic biomarker

is used to identify the recurrence of a disease (FDA-NIH, 2016). In addition to the
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disease-related biomarkers, there are some other drug-related biomarkers which are

used to indicate the drug effectiveness in a drug development process. With those

positive roles in disease control and prevention as well as medical product develop-

ment, biomarkers have been widely used in the investigation of many diseases. For

instance, cytokines and chemokines are predictive markers of miscarriage (Tong et al.,

2004), MMPs is a diagnostic and prognostic marker for human cancer (Loukopoulos

et al., 2003), and interleukin-6 of inflammation is a diagnostic biomarker for my-

ocardial infarction in coronary heart disease (Faraggi et al., 2003). The benefits of

biomarker have been acknowledged. However, to identify a selective and accurate

testing method of biomarker diagnosis might require large samples, high cost and

long time in laboratory.

As a remedy, the pooling technique (physically combining specimens into pools

prior to performing laboratory assays) has been proposed as a cost and time effec-

tive analytical testing mechanism for biomarker evaluation in disease and medical

research. Apart from the significant cost reduction, pooling has various practical and

analytical advantages, such as preserving irreplaceable specimens, tackling the hin-

drance of detection limits or reducing the impact of potential outliers (Schisterman

et al., 2011).

Along with the development of pooling strategy in practice, methods of analyz-

ing data from such experiments have been investigated to explore further potential

benefits. The statistical literature in biomarker pooling mainly focus on two topics:

diagnostic efficacy evaluation and regression analysis. In the former, methodologies

are proposed to evaluate the diagnostic efficacy of a biomarker by estimating the

receiver-operating characteristic (ROC) curve and the corresponding area under the

curve (AUC) from pooled biomarker measurements. The latter topic is to investigate

the biomarkers measured in pools by the use of regression techniques on subject-

specific characteristics, which is one of particular interest in this dissertation.
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1.1.1 Diagnostic efficacy

In biomarker assessment, one critical qualifying attribute is the discriminatory ability

by evaluating the associated ROC curve. Faraggi et al. (2003) investigated the effect

of pooling on ROC curve analysis without the consideration of a detection limit effect

for normally distributed markers. On account of the instruments’ limit of detection,

Mumford et al. (2006) concluded that pooling could increase the efficiency of estima-

tion of the AUC through analyzing the pooled biomarker data. A generalization of

ROC curve analysis on pooled biomarker was introduced in Vexler et al. (2008) to

allow for the existence of additive measurement errors and a wide family of biomarker

distribution assumptions.

1.1.2 Regression analysis

In many clinical studies, some patient information would be collected before assays,

such as demographics, clinical symptoms, or historical risk factors. It is natural to in-

corporate such information into biomarker pooling study. With the collection of indi-

vidual covariates, researchers are interested in studying the regression inferences such

as estimating the biomarker distribution, modeling the biomarker trend, performing

the hypothesis test, or predicting the biomarker concentration for a future subject.

Ma et al. (2011) initially proposed the use of a linear regression model for the pooled

biomarker data. Under the assumption that the observed pooled biomarker concen-

tration conditional on individual-specific covariates follows the Gaussian distribution,

the authors proposed a simple linear regression method and then discovered an opti-

mal pooling design via the D-efficiency criteria computed from variance estimations.

Malinovsky et al. (2012) proposed a random effects model for the longitudinal data

with repeated measurements, but also assuming the outcomes are conditionally Gaus-

sian. In practice, many biomarkers tend to be right-skew distributed. To generalize

the techniques to allow for right-skewed outcomes, Mitchell et al. (2014) explored the
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regression analysis involving a log transformation and then proposed a Monto Carlo

expectation maximization algorithm to estimate regression coefficients. Although

many regression methods have been developed, the aforementioned methodologies

are all parametric with strict biomarker distribution assumptions. If the restrictions

are violated, estimations under parametric models may be misleading. My disserta-

tion is to relax those restrictions.

1.2 Pooled testing for infectious disease screening

Infectious diseases are the illness that can be spread from person to person generated

by the transmissible pathogenetic microorganisms, such as bacteria, germs, nema-

todes, or prions. The infectious diseases are recognized as one of the top causes of

death globally, particularly for young children in low-income countries. As World

Health Organization (Last accessed 2018) reported, three of the top ten global causes

of death in 2016 belonged to infectious disease, where lower respiratory infection

ranked 4, diarrheal diseases ranked 9, and tuberculosis ranked 10. The situation is

more serious in low-income countries where about 70% of deaths were due to in-

fectious/transmissible diseases, particularly in the young. Infectious diseases have

plagued humans throughout the past decades, such as SARS in 2003, H1N1 in 2009

or HIV/AIDS from 1990 to present. As such severity on human health, many efforts

have been made on infectious disease research. Nevertheless, it is still a challenge

to prevent and control these diseases. For instance, screening the infections among

a large number of individuals one-by-one could be unfeasible when facing the lab-

oratory’s constraints. National Institutes of Health (NIH) and Centers for Disease

Control and Prevention (CDC) have been investing a large amount of funding every

year on infectious disease research, for example, the previous Infertility Prevention

Project and the current ongoing Sexually Transmitted Disease Surveillance Network.

Both of them are working on screening sexually transmitted diseases (STDs) like
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chlamydia, gonorrhea and syphilis across the United States. To address this kind of

large-scale screening problem, pooled testing has been widely used as a rapid and

low-cost testing method.

The pooled testing first applied to infectious disease screening is proposed by

Dorfman (1943) as a solution to test for the presence of syphilitic antigen in the

blood samples of US soldiers in World War II. Rather than performing a test on each

inductee’s blood sample one by one, Dorfman suggested pooling multiple samples

across individuals may be advantageous. Dorfman justified that the pooling blood

specimen by mixing the negative serum would not contain the antigen as well. Thus,

it is rational to diagnose all involved individual specimens as negative for syphilis

when the pool tests negative. In contrast, if at least one of pool segment has the

antigen, then the resultant pool would contain this antigen as well. In this case,

Dorfman proposed that all individual specimens belonging to the positive pool should

be retested separately for final diagnosis. Since Dorfman’s seminal work, pooled

testing has been applied to screen for many other infectious diseases in practice, such

as chlamydia, gonorrhea (Tebbs et al., 2013), HIV, HBV, HCV (Stramer et al., 2013),

West Nile virus (Busch et al., 2005), malaria (Wang et al., 2014a), influenza (Edouard

et al., 2015), and herpes (Hill et al., 2016). Besides disease screening, many other

areas, including genetics (Gastwirth, 2000), veterinary science (Munoz-Zanzi et al.,

2000), medical entomology (Venette et al., 2002), blood safety (Dodd et al., 2002),

and drug discovery (Remlinger et al., 2006), have also used the method of pooling.

Generally speaking, the literature in pooled testing can be divided into two cat-

egories: classification and estimation. For classification problems, many pooling al-

gorithms have been studied, in order to improve case identification accuracy but

meanwhile reduce testing cost. On the other hand, the estimation problems target at

estimating the population-level or individual-level characteristics. This dissertation

falls in the latter category.
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1.2.1 Case identification

Numerous of pooled testing decoding algorithms have been developed for the purpose

of identifying individual-level status as either presence or absence of the characteristic

of interest. The simplest one is Dorfman decoding with two-stage classification. The

procedure is to construct pools of non-overlapping groups of specimens and test the

resultant pools in the first stage. The individual specimens that belonging to positive

pools would be retested in the second stage. Sterrett (1957) generalized Dorfman’s

idea to a multiple-stage decoding strategy whereby repeatedly performing pooled

testing randomly on the individuals from positive pools until all individuals are clas-

sified. Sterrett proved his procedure would increase the testing efficiency by about

6% compared to Dorfman decoding does. Litvak et al. (1994) proposed a halving

decoding procedure, which splits the positive pool to two equally (or closest equally)

sized sub-pools to test. The process begins from testing on the entire collection of

specimens and proceeds until all specimens are declared. Phatarfod and Sudbury

(1994) introduced array testing as a screening method for infectious diseases. Before

performing the assay, all individual specimens are assigned to a grid, and the pools are

formed by pooling the ones that belong to the same row or same column. By having

the pools, the array testing is employed on those pools, then retesting is conducted

for the specimens located at the intersection of a positive row and a positive col-

umn separately. Later on, researchers start to explore how much perception can the

individual-specific covariate information provide on the disease identification. Bilder

et al. (2010) generalized the Sterrett’s (1957) multiple-stage algorithm to involve the

individual covariate information. McMahan et al. (2012a) extended Dorfman decod-

ing to a “greedy” heterogeneous algorithm which finds out the optimal group sizes

by minimizing the expected number of tests. Black et al. (2012) proposed a modified

halving decoding in which a positive pool is evenly divided in the order of individual

risk probabilities. McMahan et al. (2012c) extended the array testing procedures to

6



informative array designs by the use of population heterogeneity. Generally, the goal

of this research path is utmostly improving test efficiency or maximizing diagnostic

accuracy.

1.2.2 Estimation

Another type of problems that are of particular interest is estimating disease risk from

pooled testing data. Thompson (1962) was the first to consider modeling the observed

pooled data to estimate the population prevalence of plant aster-yellow virus trans-

mission by insects. Suppose k insects are caged per test plant and the probability that

a randomly chosen insect being a vector is p. Thompson justified that the test plant

would be non-infected with a probability of (1− p)k. Based on this rational thought,

Thompson (1962) provided a maximum likelihood estimator (MLE) of p and derived

its asymptotic properties under the assumptions of a common p, independence of

infection statuses among insects, and perfect testing. To generalize Thompson’s ap-

proach which simply used the initial pool results, Sobel and Elashoff (1975) proposed

the models that are applicable when the individual retesting information is available.

Swallow (1985) showed that the MLE of p derived by Thompson was positively biased

and the bias was monotone increased as the group size k. Burrows (1987) derived

an alternative estimator which is much superior to the MLE provided in Thompson

(1962) in terms of bias and mean square error. Hughes-Oliver and Swallow (1994)

proposed an adaptive method to estimate the population prevalence, of which a pri-

ori prevalence value was used at the first stage to establish the pools. This type of

adaptive estimator resulted in an improvement over the non-adaptive estimators in

terms of the asymptotic performance. Hung and Swallow (1999) studied the robust-

ness of group testing in two dilution-effect models and a serial correlation model by

considering that both the absence of testing errors and independent individuals were

violated.
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The prevalence estimation in group testing from the Bayesian perspective has also

been studied. Chaubey and Li (1995) proposed two Bayesian estimators of population

prevalence with the consideration of two pre-specified prior distributions, and both

of which were shown to be superior to the MLEs. Bilder and Tebbs (2005) proposed

a new estimator from an empirical Bayesian approach which got rid of specifying

hyperparameters distribution prior, and further formulated newly credible intervals

for population prevalence. Hanson et al. (2006) proposed a Bayesian approach to

estimate the population prevalence on a two-stage screening protocol, and meanwhile,

it allowed for the estimation of the sensitivity and specificity of the testing assay.

More recently, research has shifted focus to explore the regression methodologies

that incorporate the individual covariate information collected in the laboratories.

Farrington (1992) first took the covariate information into account while modeling

with group testing data. A generalized linear model with a complementary log-log link

function was proposed in his work under the restrictive assumptions that individuals

within each pool shared the identical covariates and the assay was perfect. Vanstee-

landt et al. (2000) extended Farrington (1992) to a more general framework which

allowed for heterogeneous covariates inside pools, arbitrary link functions and testing

errors. Xie (2001) introduced an expectation-maximization algorithm for the MLE,

which adapted for a more flexible class of regression models and the additional decod-

ing information. Bilder and Tebbs (2009) assessed pooling size and pooling strategy

on the parameter estimation by comparing both non-homogeneous and homogeneous

pooling with the traditional individual testing. Chen et al. (2009) proposed mixed-

effects models for the group testing data with random-effect terms and described the

estimation via a maximum likelihood approach. Huang and Tebbs (2009) examined

the model misspecification for structural measurement error models with group test-

ing responses. The aforementioned methodologies were specifically developed under

parametric regression models, but more recently, Delaigle and Meister (2011) and
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Delaigle and Hall (2012) proposed nonparametric methods for non-homogeneous and

homogeneous pooling data respectively with the initial pool results only. Wang et al.

(2014b) and Delaigle et al. (2014) developed the semi-parametric modeling approaches

based on the single-index model allowing for multiple individual-level covariates. To

take the dilution effect into account, McMahan et al. (2012b) and Delaigle and Hall

(2015) suggested parametric and nonparametric estimators respectively. McMahan

et al. (2017) presented a general Bayesian approach to analyze data arising from any

group testing strategy and can be able to estimate accuracy probabilities along with

the covariate effects.

1.2.3 Multiple infections group testing

Nowadays, multiplex assay, as an assay for multiple target analytes, becomes more

and more popular because of its ability to extract more information than singleplex

assay. For example, Aptima Combo 2 Assay (Gen-Prob, San Diego) is able to test

chlamydia and gonorrhea at once in swab or urine biospecimens, and Procleix Ultrio

Assay (Gen-Prob, San Diego) is an efficient method to detect HIV-1 RNA, HCV RNA,

and HBV RNA simultaneously in individual blood samples. Initially, group testing is

designed for one single infection. However, the use of multiplex assays makes pooled

testing data with multiple infections widely available. Several statistical works have

been proposed for case identification problem with multiple infections under various

group testing strategies. Bilder et al. (2010) provided an informative retesting algo-

rithm with the use of covariate information to structure how retesting was performed

within positive groups. Tebbs et al. (2013) introduced a two-stage Dorfman decoding

algorithm for multiple infections group testing data. Hou et al. (2017) generalized the

two-stage hierarchical algorithm described in Tebbs et al. (2013) to a general S-stage

setting with S ≥ 2. Nevertheless, the research focusing on estimation with multiple-

infection group testing data is scarce. A few works have studied the estimation of
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disease prevalence. Hughes-Oliver and Rosenberger (2000) proposed an approach to

estimate the prevalence of multiple rare traits under the assumption of no classifica-

tion error. Concerned with misclassification of testing assay, Tebbs et al. (2013) and

Warasi et al. (2016) provided a frequentist EM algorithm and a Bayesian approach

to simultaneously estimate population prevalence under the assumption of the homo-

geneous population. Li et al. (2017) found the optimal group size in estimating the

prevalence of two correlated diseases using the D-optimal criterion. Regarding regres-

sion analysis for multiple group testing data, this area remains mostly untapped. To

the best of our knowledge, the only work is Zhang et al. (2013), of which approach was

based on generalized estimating equations to estimate individual-level risk probability

of each infection. Their approach only considered the initial pooled results.

1.3 Outlines

In this dissertation, several models for pooled testing data are investigated and pre-

sented from the perspective of regression estimation. In Chapter 2, a generalized

semi-parametric framework is proposed for the regression analysis of pooled biomarker

assessments. We introduce a dimension reduction model called single-index model

where the continuous pooled biomarker measurement is modeled as the non-linear

function of a linear combination of subject-specific covariates. A sequential estima-

tion procedure is proposed to estimate the covariates coefficients and nonparametric

curve. The proposed methodology not only overcomes the “curse of dimensionality”

issue in nonparametric estimation but also maintains some nonparametric flexibility

allowing us to capture the mean trend curve of the biomarker of interest. In addition,

another desired feature of our model is the accessibility of meaningful interpretation

for each covariate.

In Chapter 3, aiming at the multiple infections group testing data, we develop a

joint multivariate logistic regression model which utilizes both subject-specific covari-
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ates information and the potential individually decoding information. Although the

data is modeled jointly, our proposed methodology can still draw the interpretable

regression inference for each infection simultaneously. In the meantime, we allow the

assay sensitivity and specificity to be unknown and estimate them simultaneously.

Besides, we present a variable selection algorithm to identify relevant risk factors for

each infection. We illustrate the performance of our methodology under two consid-

ered testing protocols through the simulation and real data application.

In Chapter 4, to encourage more laboratories to use pooling strategy, we investi-

gate if the laboratory could simplify the data collection routine, for example, records

only individual final diagnoses (and group memberships), how much regression in-

ference would compromise. To answer this question, we conduct simulation studies

under three considered data collection procedures. 1) Only collect the final diagno-

sis of each individual. 2) Collect both the group memberships and final individual

diagnoses, but the pooled testing outcomes are not recorded. 3) Collect the whole

data, including group constructing information, the pooled testing outcomes, and

the individual diagnoses. We provide the estimation approaches for regression coeffi-

cients and compare the estimation performances across different scenarios under the

two-stage Dorfman decoding algorithm of a single infection.
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Chapter 2

Single-index regression for pooled biomarker

data

Summary: Laboratory assays used to evaluate biomarkers (biological markers) are

often prohibitively expensive. As an efficient data collection mechanism to save on

testing costs, pooling has become more commonly used in epidemiological research.

Useful statistical methods have been proposed to relate pooled biomarker measure-

ments to individual covariate information. However, most of these regression tech-

niques have proceeded under parametric linear assumptions. To relax such assump-

tions, we propose a semiparametric approach that originates from the context of

the single-index model. Unlike with traditional single-index methodologies, we face

a challenge in that the observed data are biomarker measurements on pools rather

than individual specimens. In this chapter, we propose a method that addresses this

challenge. The asymptotic properties of our estimators are derived. We illustrate the

finite sample performance of our estimators through simulation and by applying it to

a diabetes data set and a chemokine data set.

2.1 Literature review of single-index model

In this chapter, we propose a semiparametric method to model pooled data with con-

tinuous responses and individual covariate information, which overcomes the curse

of dimensionality and maintains the important advantage of nonparametric flexibil-

ity. The new methodology is proposed in the context of the single-index model.
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Instead of assuming a linear model, the single-index model assumes the mean of an

individual response is related to a linear combination of the covariates through an

unknown smooth function. It is a popular semiparametric model to accommodate

multi-dimensional covariates while retaining the interpretability of the regression co-

efficients, see, for example, Ichimura (1993), Hardle et al. (1993), Klein and Spady

(1993), Xia et al. (2002), Xia (2006), Zhu and Xue (2006) and Cui et al. (2011), who

consider responses available on the individual level. In pooled testing, of course, the

data are measured on pools. Existing single-index methods in pooled testing were

proposed by Wang et al. (2014b) and Delaigle et al. (2014) for binary responses. This

chapter presents a new single-index technique to analyze continuous pooled outcomes.

We illustrate that when the population size is fixed, pooling could significantly reduce

testing costs with only a minor loss in accuracy. On the other hand, when the num-

ber of assays is limited, testing pooled specimens does not compromise the estimation

when compared to testing individual specimens.

The rest of this chapter is organized as follows. In Section 2.2, we present our

semiparametric regression model to analyze biomarkers measured on pooled spec-

imens, and in Section 2.3, we establish the asymptotic properties of the proposed

estimators. We assess the performance of our methods using simulation in Section

2.4 and apply them to a diabetes data set from the National Health and Nutrition

Examination Survey (NHANES) and a chemokine data set obtained from the Col-

laborative Perinatal Project (CPP) in Section 2.5. A discussion is given in Section

2.6. Proofs, and additional simulation results are provided in the Appendix A.

2.2 Model and methodology

2.2.1 Assumptions

We consider the situation in which J laboratory assays are taken on pools to measure a

continuous biomarker of interest. The jth pool is formed by mixing cj specimens, each
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of which is obtained from an individual. The total number of individuals is denoted

by N = ∑J
j=1 cj. We let Yij and XXX ij = (Xij1, . . . , Xijp)T denote the continuous

biomarker level and the p-dimensional covariate of the ith individual in the jth pool,

respectively, where i = 1, . . . , cj and j = 1, . . . , J . Assume throughout that the

(Yij, XXX ij)’s are independent and identical distributed (iid) versions of (Y,XXX), where

the mean and variance of Y given XXX = xxx are

E(Y | XXX = xxx) = η(xxxTβ) and V (Y | XXX = xxx) = σ2,

respectively, where η(·) is an unknown smooth curve, β = (β1, . . . , βp)T is an unknown

p-dimensional regression parameter, and σ2 > 0. Note that we do not assume the type

of the distribution of Y | XXX = xxx to be known in advance. To ensure identifiability of

a single-index model Lin and Kulasekera (2007), we assume that the support of the

covariates, denoted by X, is a bounded convex set that contains at least one interior

point and the parameter space of β is B = {β = (β1, . . . , βp)T : β1 > 0, ‖β‖ = 1}

where ‖β‖ = (∑p
j=1 β

2
j )1/2. If the (Yij, XXX ij)’s are observed, then traditional single-

index modeling techniques can be applied to estimate η(·) and β; e.g., see Ichimura

(1993), Xia (2006), Wang et al. (2010), and Cui et al. (2011). However, in pooled

testing, because assays are not taken on each individual, the Yij’s are all latent and

the responses available to us are on the pooled level.

Denote the biomarker level of the jth pooled specimen by Zj. In this chapter, we

assume that Zj = c−1
j

∑cj

i=1 Yij; i.e., the observed biomarker response is the arithmetic

average of the individual biomarker levels. This is a common assumption in the

statistical literature on biomarker pooling (Weinberg and Umbach, 1999; Faraggi et

al., 2003; Vexler et al., 2008; Malinovsky et al., 2012; Lyles et al., 2015; McMahan

et al., 2016). We view this to be reasonable as long as each individual contributes the

same amount to the pool and there is no neutralization while pooling. The observed
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data are {(Zj, XXX1j, . . . , XXXcjj) : j = 1, . . . , J}, where

E(Zj | XXX1j = xxx1, . . . , XXXcjj = xxxcj
) = 1

cj

cj∑
i=1

η(xxxT
i β)

and V (Zj | XXX1j = xxx1, . . . , XXXcjj = xxxcj
) = c−1

j σ2. The goal of this work is to estimate

η(·) and β based on the observed data {(Zj, XXX1j, . . . , XXXcjj) : j = 1, . . . , J}.

2.2.2 Estimation

In what follows, we propose a method to consistently estimate η(·) and β. If η(·)

was known, then one could immediately obtain an estimate of β by minimizing the

weighted least squares objective function,

S{β, η(·)} =
J∑
j=1

cj

{
Zj −

1
cj

cj∑
i=1

η(XXXT
ijβ)

}2

,

with respect to β. A primary challenge herein is to account for the dependence

between the infinite-dimensional parameter η(·) and the finite-dimensional parameter

β. To acknowledge this dependence in our notation, we write η(·) as ηβ(·); i.e.,

ηβ(t) = E(Yij | XXXT
ijβ = t) for a given β. If one can find a consistent estimator

η̂β(·) of ηβ(·), then our estimator of β can be obtained as β̂ = argmin
β∈B

S{β, η̂β(·)}.

When each XXXT
ijβ has its own response Yij available, η̂β(·) could be obtained as the

Nadaraya-Watson or the local-polynomial estimator between the Yij’s and the XXX ijβ’s

(see, Ichimura, 1993; Cui et al., 2011). However, in our context, all the Yij’s are latent

and {XXX ij}
cj

i=1 share the same pooled response Zj for each j. Constructing η̂β(·) is not

straightforward.

To circumvent this, we simply treat Zj to be the response for each XXX ij and find

out what is E(Zj | XXXT
ijβ = t). Noting that Zj = c−1

j

∑cj

i=1 Yij.

E(cjZj | XXXT
ijβ = t) = E

( cj∑
i=1

Yij | XXXT
ijβ = t

)
=
∑
l 6=i

E(Ylj) + E(Yij | XXXT
ijβ = t).

Because Yij’s are iid, we denote by µ the marginal expectation of Yij; i.e., µ = E(Yij).

Consequently, we have

E(cjZj | XXXT
ijβ = t) = (cj − 1)µ+ ηβ(t). (2.1)
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Comparing to the case where Yij’s are available, viewing Zj as the response of XXX ij

adds one extra intercept term in the form of (cj − 1)µ. Equation (2.1) inspires the

construction of η̂β(·).

We first estimate µ. Marginally, one could easily recognize that the Zj’s are

independent variables with mean µ, so a natural estimator of µ is µ̂ = N−1∑J
j=1 cjZj.

Then, for a given β and t, we obtain the local linear kernel estimator η̂β(t) through

minimizing the local least squares objective function,
J∑
j=1

cj∑
i=1
{cjZj − (cj − 1)µ̂− ηβ(t)− η′β(t)(XXXT

ijβ − t)}2Kh(XXXT
ijβ − t), (2.2)

with respect to ηβ(t) and η′β(t), where η′β(t) denotes the derivative of ηβ(t), K(·) is a

kernel function, h is a user-selected bandwidth, and Kh(·) = h−1K(·/h). The objec-

tive function in (2.2) utilizes a local linear approximation that approximates η(XXXT
ijβ)

by η(t)+(XXXT
ijβ− t)η′(t) at a given t. Because the accuracy of such an approximation

depends on the distance between XXXT
ijβ and t, the kernel term Kh(XXXT

ijβ − t) weights

XXXT
ijβ more (less) if XXXT

ijβ is close to (far away from) t. The local linear approximation

became a well-accepted nonparametric regression technique due to the seminal work

Fan (1993) where the optimality of local linear smoothers was demonstrated for the

nonparametric regression. One could easily extend our method to incorporate a local

polynomial (with a higher order) approximation (Fan and Gijbels, 1996) if ηβ(·) is

smooth enough.

It is worthwhile to point out that the minimizer η̂β(t) can be expressed explicitly

as

η̂β(t) = SN2(t,β)T̂N0(t,β)− SN1(t,β)T̂N1(t,β)
SN0(t,β)SN2(t,β)− S2

N1(t,β) , (2.3)

where

SNl(t,β) = N−1h−l
J∑
j=1

cj∑
i=1

Kh(XXXT
ijβ − t)

(
XXXT

ijβ − t
)l
,

and

T̂Nl(t,β) = N−1h−l
J∑
j=1

cj∑
i=1
{cjZj − (cj − 1)µ̂}Kh(XXXT

ijβ − t)
(
XXXT

ijβ − t
)l
,
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for l ∈ {0, 1, 2}. Our final estimators are

β̂ = argmin
β∈B

S{β, η̂β(·)} and η̂(·) = η̂β̂(·). (2.4)

Directly minimizing S{β, η̂β(·)} in B = {β = (β1, . . . , βp)T : β1 > 0, ‖β‖ = 1}

might be numerically difficult, because B is a part of the surface of the unit ball. To

reduce such a computational burden, we rewrite β to be β = (
√

1− ‖β(1)‖2,β(1)T)T

where β(1) = (β2, . . . , βp)T. Consequently, the parameter space is transformed from

B to be B(1) = {β(1) = (β2, . . . , βp)T : ‖β(1)‖ < 1}; i.e., the interior of the unit ball

in R(p−1). A numerical search inside a ball of a lower dimension is easier than on the

surface of a ball of a higher dimension, even though theoretically they are the same.

2.3 Asymptotic properties

In this section, we present the asymptotic properties of our proposed estimators. To

derive these properties, we assume that the group sizes remain finite as N →∞. We

view this assumption to be reasonable because, in practice, the characteristics of the

assay used often bound the pool size; i.e., larger pool sizes, at a point, could adversely

affect an assay’s accuracy and therefore would not be employed. For example, in a

study on the relationship between chemokine levels and miscarriage, the levels of

monocyte chemotactic protein-1 (MCP1) were measured using pools of size 2 (Whit-

comb et al., 2007). In a BioCycle study, the F2-isoprostane level (a biomarker that

measures oxidative stress) was measured in pools of size 3 (Malinovsky et al., 2012).

To examine whether the pro-inflammatory cytokine interleukin-6 is a good predictor

of myocardial infarction, pools of sizes 2 and 4 were used (McMahan et al., 2016). Be-

sides practical concerns, diverging group sizes could also lead to theoretical issues. For

instance, if cj → ∞ as N → ∞, we have E(Zj | XXX1j, . . . , XXXcjj) = c−1
j

∑cj

i=1 η(XXXT
ijβ)

converges in probability to µ and V (Zj | XXX1j, . . . , XXXcjj) = c−1
j σ2 converges to zero.

In other words, when cj’s are large, all the Zj’s become nearly the same which makes
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the estimation of η(·) and β very challenging. Hence, in this chapter, we focus on

the scenario where cj’s are all finite.

Because Yij’s are latent as long as cj > 1, using the method of pooling increases the

theoretical complexity when comparing to traditional single-index models. Equation

(2.1) provides an idea to consistently estimate the dependence between η(·) and β

using pooled responses. It treats Zj as the response for each covariate XXX ij in the

jth group. As a result, (Zj, XXX ij)’s are not iid observations as (Yij, XXX ij)’s. Further,

one needs to estimate the extra intercept term (cj − 1)µ in advance. Despite these

theoretical complications caused by pooling, we obtained the asymptotic properties

of our estimators η̂(·) and β̂. Before presenting the results, we need to introduce

some notation. Because the group sizes (all positive integers) does not change with

N , we denote the collection of the values of cj by {c(m) : m = 1, . . . ,M}, where

M is also a fixed value. More explicitly, for each j, there exists an m such that

cj = c(m). For each m, we let Jm denote the number of pools having size c(m). The

ratio Jmc(m)/N represents the proportion of individuals that were involved in pools

of size c(m). When N →∞, we assume that this proportion converges to γm ∈ [0, 1]

where ∑M
m=1 γm = 1. Further, we denote the true parameters by η0(·) and β0 =

(β01,β
(1)T
0 )T, where β(1)

0 = (β02, . . . , β0p)T. Let J 0 be the value of ∂B(β(1))/∂β(1)

evaluated at β(1) = β
(1)
0 where B(β(1)) = (

√
1− ‖β(1)‖2,β(1)T)T. Moreover, denote by

Ω0(XXX) = E[XXXXXXT|XXXTβ0]− E[XXX|XXXTβ0]E[XXXT|XXXTβ0] and Ω = E[η′20(XXXTβ0)Ω0(XXX)].

Before we present the asymptotic properties, we first provide some regularity

conditions. These conditions are common in the single-index literature.

C1 : The curves dβ(t) = E(XXX|XXXTβ = t) and ηβ(t) have bounded and continuous

second order derivatives.

C2 : The probability density function of XXXTβ is bounded away from zero and

satisfies the Lipschitz condition of order 1 on {t = xTβ,x ∈ X}.

C3 : As N →∞, h→ 0, Nh4 →∞, and Nh/ logN →∞.
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C4 : K(·) is a bounded and symmetric kernel function with bounded first derivative.

C5 : Conditional on XXX, Y has a finite fourth moment.

C6 : The equation uTΩu = 0 has the unique root u = β0 in B.

Conditions C1-C4 are common smoothness assumptions (see Xia, 2006; Wang et

al., 2010; Cui et al., 2011). The Lipschitz condition in C2 allows for the discrete

components in the covariates. Condition C5 is similar to the one used in Wang et al.

(2010). Condition C6 assures that the matrix J T
0ΩaJ 0 is positive definite.

Under the mild regularity conditions provided above, we present the asymptotic

properties of β̂ and η̂(·) in Theorem 2.1. The proofs are provided in the Appendix

A.1.

Theorem 2.1. Under conditions C1-C6 stated above, as N →∞,

√
N(β̂ − β0) d−→ N(0,Σ),

where Σ = σ2(∑M
m=1 γm/c

(m))−1J 0(J T
0ΩJ 0)−1J T

0 and d−→ means convergence in

distribution. Furthermore,

sup
x∈X
|η̂(xTβ̂)− η0(xTβ0)| = Op{(Nh/ logN)−1/2}.

Theorem 2.1 reveals the asymptotic normality of β̂ and the consistency of η̂(·). We

would like to point out that, When cj’s are all 1, our pooled biomarker data Zj’s

are exactly the individual-level responses Yij’s. Thus, the proposed estimator is the

same as the classical single-index estimator based on all individual-level data; i.e.,

the asymptotic normality includes cj = 1 as a special case. From the asymptotic

variance, we could see some patterns that might help us understand the theoretical

impact of pooling. For simplicity, let us consider all the pools to be of the same

size; i.e., c(m) = c, γm = 1 and N = cJ . We see that the asymptotic variance

of β̂ is cσ2J 0(J T
0ΩJ 0)−1J T

0/N . Consequently, if the number of individuals (N)

19



is fixed in applications, pooling more individuals in a group would lead to a loss

of information and yield a larger variability in the resulting estimates of β. If the

number of individuals is not limited but the budge is limited up to J assays, we could

rewrite the asymptotic variance to be σ2J 0(J T
0ΩJ 0)−1J T

0/J which does not depend

on the pool sizes. Thus, pooling does not compromise the asymptotic efficiency of β̂.

One must note that Theorem 2.1 holds when Condition C4 is satisfied; i.e., asN →

∞, h→ 0, Nh4 →∞, and Nh/ logN →∞. Thus, it is important to select a suitable

value for the bandwidth h. One could use the traditional cross-validation method.

That is leaving one group of data out and fitting the model using the remaining

data to predict the response that was left out. After predicting all responses, the

bandwidth is chosen to be the one that minimizes the sum of the squares of all the

prediction errors. In other words, this traditional approach has to numerically search

for an estimator of β when leaving each group out. When the number of groups J is

large, the traditional cross-validation could cause a huge computational burden. In

order to make our method more applicable in real applications, we suggest using a

revised version of the traditional cross-validation method. This method was originally

proposed by Hardle et al. (1993). Denote by η̂(−j)
β (u) the leave-one-out estimator of

ηβ(u) obtained via the explicit formula (3.5) without using the data pertaining to the

jth pool. Our proposed bandwidth h̃ is chosen so that (β̃, h̃) minimizes

Scv(β, h) =
J∑
j=1

cj

{
Zj −

1
cj

cj∑
i=1

η̂
(−j)
β (XT

ijβ)
}2

.

Further, we use the value of β̃ as a sensible starting point to compute β̂.

2.4 Simulation studies

In this section, we illustrate the finite sample performance of our proposed method

through simulation. Before presenting our results, we note that, to the best of our

knowledge, the literature does not contain any competing methods for simultaneously
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estimating both β and η(·) based on continuous pooled assessments. McMahan et

al. (2016) proposed a parametric approach to estimate β by assuming η(·) is linear.

Therefore, besides the main goal of illustrating of the performance of our proposed

procedures under a variety of different settings, we have also compare our method

with the one proposed by McMahan et al. (2016).

To illustrate that our estimation procedure does not rely on the distribution of

biomarker levels; i.e., the distribution of Yij | XXX ij, we consider the following examples:

(D1) : Y | XXX = xxx ∼ N{η0(xxxTβ0), σ2}

(D2) : Y | XXX = xxx ∼ Gamma{shape = η2
0(xxxTβ0)/σ2, rate = η0(xxxTβ0)/σ2}

(D3) : Y | XXX = xxx ∼ Log-Normal{µ0(xxxTβ0), g0(xxxTβ0)}, where

µ0(xxxTβ0) = log{η0(xxxTβ0)}−g0(xxxTβ0)/2, and g0(xxxTβ0) = log{σ2/η2
0(xxxTβ0)+1}.

The normal distribution is used to simulate symmetric biomarker data, while the

other two cases are used to emulate right skewed distributions. These distributions

are used in simulating biomarker levels, but are not used in the part of estimation.

Parameters in these distributions are chosen to satisfy our model assumption that

E(Y |XXX = xxx) = η0(xxxTβ0), and V (Y |XXX = xxx) = σ2. We set β0 = (0.5, 0.5,
√

2/2)T and

σ = 0.5. For η0(·), we consider the following four models:

(M1) : η0(xTβ0) = xTβ + 2

(M2) : η0(xTβ0) = (xTβ0)2

(M3) : η0(xTβ0) = (xTβ0)2 exp(xTβ0)

(M4) : η0(xTβ0) = sin(aπxTβ0) + 1, where a = 1 or 2.

One of the most attractive features of a single-index approach is that it does not

force any shapes on the regression curve while being able to consistently estimate the

regression coefficients. Model (M1) is chosen to be linear purposely. Through this
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setting, we would like to see the consequences of using our method if ignoring the

truly linearity. The regression curves in (M2)–(M4) are nonlinear. They are similar

to those discussed in Cui et al. (2011). Models (M2) and (M3) offer smooth curves;

in contrast, Model (M4) results in an oscillating curve with the frequency being

controlled by a; i.e., larger values of a result in a larger degree of oscillatory behavior of

the curve over the range of xTβ0. These nonlinear curves could illustrate the benefits

of using our method if the regression curve is not linear. The vector of covariates

XXX = (X1, X2, X3)T contains continuous X1 and X2 following Uniform(−1, 1) and

N(0, 0.32) distributions, respectively, and discrete X3 with P (X3 = ±0.5) = 0.5.

To generate pooled observations, we consider two scenarios. In the first, the num-

ber of individual specimens to be tested is fixed. Testing the specimens individually

is ideal providing full information; however, this may be impractical due to the finan-

cial limitations and thus pooling is used. We choose N ∈ {2500, 5000} and specify a

common pool size cj = c for all j = 1, . . . , J , where c ∈ {1, 2, 5, 10}. Different values

of c indicate different levels of savings. For example, (N, c) = (2500, 5) means an 80%

reduction in testing cost when compared to (N, c) = (2500, 1) where each individual

is tested separately. In this scenario, we are able to evaluate how the reduction of

the number of tests would affect the accuracy of estimating β0 and η0(·). For each

combination of (D1)–(D3), (M1)–(M4), and N ∈ {2500, 5000}, we randomly gener-

ate N samples of (Y,XXX) according to the covariate setting, the selected conditional

distribution of Y | XXX, and η0(·). Then for each c ∈ {1, 2, 5, 10}, we randomly assign

the N samples into J = N/c pools, and label them by (Yij, XXX ij) where i = 1, . . . , c,

j = 1, . . . , N/c. The testing response of the jth pooled specimen is determined by

Zj = c−1∑c
i=1 Yij.

In the second scenario, the investigator may have only J assays available due to

the limitation of financial resources. The choice is between testing J specimens one-

by-one or testing cJ specimens using pools of size c. We consider J ∈ {250, 500} and
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cj = c ∈ {1, 2, 5, 10}. For example, (J, c) = (250, 10) implies that even though there

are only 250 assays, pooling could involve 10 times the number of specimens than

testing individual specimens; i.e., (J, c) = (250, 1). Through these settings, we are

able to see whether the extra number of individuals could provide more information

and thus improve the estimation accuracy. For each combination of (D1)–(D3), (M1)–

(M4), and J ∈ {250, 500}, we randomly generate 10 × J copies of (Y,XXX) to form

the specimen bank. Then for each c ∈ {1, 2, 5, 10}, we randomly sample N = cJ

individuals from the specimen bank and assign them to J pools. After labeling them

by (Yij, XXX ij) where i = 1, . . . , c, j = 1, . . . , J , we generate the testing response of the

jth pool by Zj = c−1∑c
i=1 Yij.

Within each configuration in both scenarios, we repeat the data generating process

500 times for all considered pool sizes and apply our methodology to estimate β0 and

η0(·). We specify the kernel function K(·) in (2.2) to be the probability density

function of the standard normal distribution. The bandwidth h is selected via the

leave-one-out cross-validation method described at the end of Section 2.3. In order

to reveal the robustness of our method to the shape of a regression curve, we also fit

each data under the parametric linear assumption. The applied parametric method

is from McMahan et al. (2016).

Tables 2.1 and 2.2 summarize the results for Model (M1) under all the considered

distributions (D1)–(D3) when N ∈ {2500, 5000} and when J ∈ {250, 500}, respec-

tively. These summary statistics include the sample mean and the standard deviation

of the 500 estimates of β0. In order to illustrate what role the pool size c plays, we

use the average estimation error (AEE), defined by AEE = ∑p
k=1 |β̂0k − β0k|, as an

overall measure of the estimation accuracy for β0 and the empirical mean squared er-

ror (MSE), calculated by MSE = N−1∑J
j=1

∑c
i=1{η̂(XXXT

ijβ̂)−η0(XXXT
ijβ0)}2, to evaluate

the accuracy of estimating the entire regression curve η0(xxxTβ0). The sample mean of

the 500 AEE’s and MSE×10’s are also included in the tables.

23



Table 2.1: Simulation results of the estimators for (M1) using our proposed method and the parametric method proposed in McMahan
et al. (2016). Presented results include the sample mean and sample standard deviation (provided within the parenthesis) of the 500
estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s (provided in parenthesis)
across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.

Proposed Method Parametric Method

N c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

2500
β01 0.498(0.028) 0.497(0.039) 0.497(0.044) 0.497(0.065) 0.500(0.018) 0.500(0.026) 0.500(0.042) 0.500(0.056)
β02 0.498(0.033) 0.494(0.050) 0.498(0.061) 0.494(0.088) 0.499(0.035) 0.498(0.047) 0.500(0.072) 0.499(0.096)
β03 0.708(0.025) 0.710(0.035) 0.705(0.039) 0.702(0.058) 0.706(0.021) 0.707(0.029) 0.708(0.045) 0.710(0.064)

AEE(MSE×10) 0.308(0.011) 0.324(0.019) 0.340(0.009) 0.372(0.017) 0.058(0.004) 0.080(0.007) 0.128(0.017) 0.172(0.030)

5000
β01 0.501(0.012) 0.498(0.031) 0.502(0.029) 0.499(0.050) 0.500(0.012) 0.500(0.018) 0.499(0.027) 0.498(0.040)
β02 0.501(0.019) 0.499(0.036) 0.498(0.042) 0.497(0.064) 0.500(0.025) 0.501(0.033) 0.503(0.052) 0.503(0.077)
β03 0.706(0.013) 0.707(0.027) 0.705(0.026) 0.704(0.043) 0.707(0.014) 0.708(0.020) 0.708(0.031) 0.707(0.043)

AEE(MSE×10) 0.294(0.002) 0.305(0.007) 0.317(0.003) 0.336(0.008) 0.041(0.002) 0.056(0.004) 0.089(0.008) 0.128(0.016)

(D2)

2500
β01 0.495(0.040) 0.500(0.025) 0.496(0.046) 0.492(0.069) 0.499(0.018) 0.497(0.024) 0.497(0.039) 0.498(0.056)
β02 0.498(0.044) 0.500(0.038) 0.496(0.065) 0.485(0.099) 0.501(0.034) 0.502(0.049) 0.498(0.074) 0.500(0.111)
β03 0.709(0.033) 0.706(0.022) 0.707(0.043) 0.710(0.054) 0.708(0.021) 0.708(0.028) 0.709(0.043) 0.711(0.062)

AEE(MSE×10) 0.309(0.022) 0.315(0.005) 0.347(0.008) 0.386(0.020) 0.058(0.004) 0.080(0.007) 0.125(0.016) 0.182(0.032)

5000
β01 0.500(0.013) 0.497(0.032) 0.500(0.029) 0.497(0.046) 0.501(0.013) 0.500(0.017) 0.499(0.027) 0.498(0.037)
β02 0.500(0.020) 0.498(0.038) 0.499(0.046) 0.501(0.066) 0.499(0.023) 0.499(0.035) 0.497(0.052) 0.499(0.074)
β03 0.707(0.012) 0.708(0.027) 0.705(0.029) 0.703(0.042) 0.707(0.015) 0.708(0.020) 0.705(0.032) 0.703(0.044)

AEE(MSE×10) 0.296(0.002) 0.308(0.012) 0.320(0.004) 0.339(0.006) 0.041(0.002) 0.057(0.004) 0.090(0.008) 0.123(0.015)

(D3)

2500
β01 0.498(0.029) 0.500(0.033) 0.497(0.048) 0.496(0.065) 0.499(0.016) 0.499(0.024) 0.499(0.039) 0.501(0.053)
β02 0.498(0.034) 0.498(0.042) 0.496(0.069) 0.492(0.099) 0.499(0.032) 0.499(0.046) 0.504(0.074) 0.509(0.110)
β03 0.708(0.024) 0.707(0.027) 0.706(0.047) 0.702(0.064) 0.706(0.020) 0.706(0.029) 0.706(0.046) 0.702(0.065)

AEE(MSE×10) 0.306(0.009) 0.316(0.005) 0.344(0.015) 0.372(0.019) 0.056(0.004) 0.079(0.007) 0.127(0.016) 0.181(0.032)

5000
β01 0.500(0.012) 0.499(0.023) 0.500(0.028) 0.496(0.053) 0.500(0.012) 0.500(0.018) 0.500(0.028) 0.500(0.040)
β02 0.499(0.018) 0.500(0.030) 0.498(0.045) 0.495(0.071) 0.499(0.023) 0.501(0.034) 0.502(0.053) 0.502(0.075)
β03 0.707(0.012) 0.707(0.021) 0.706(0.029) 0.706(0.047) 0.707(0.014) 0.706(0.019) 0.707(0.031) 0.707(0.046)

AEE(MSE×10) 0.293(0.002) 0.303(0.007) 0.323(0.004) 0.341(0.006) 0.039(0.002) 0.056(0.004) 0.090(0.008) 0.129(0.016)
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Table 2.2: Simulation results of the estimators for (M1) using our proposed method and the parametric method proposed in McMahan
et al. (2016). Presented results include the sample mean and sample standard deviation (provided within the parenthesis) of the 500
estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s (provided in parenthesis)
across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.

Proposed Method Parametric Method

J c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

250
β01 0.497(0.064) 0.497(0.064) 0.497(0.062) 0.499(0.069) 0.499(0.054) 0.501(0.056) 0.501(0.057) 0.501(0.054)
β02 0.490(0.091) 0.497(0.087) 0.498(0.090) 0.490(0.099) 0.501(0.111) 0.504(0.105) 0.501(0.110) 0.503(0.110)
β03 0.705(0.059) 0.700(0.058) 0.699(0.059) 0.701(0.063) 0.709(0.065) 0.710(0.063) 0.711(0.062) 0.712(0.063)

AEE(MSE×10) 0.372(0.085) 0.362(0.033) 0.366(0.018) 0.365(0.017) 0.184(0.041) 0.179(0.070) 0.181(0.166) 0.182(0.316)

500
β01 0.495(0.055) 0.495(0.050) 0.494(0.049) 0.496(0.045) 0.501(0.037) 0.501(0.037) 0.501(0.039) 0.501(0.038)
β02 0.497(0.069) 0.496(0.067) 0.497(0.069) 0.498(0.068) 0.500(0.076) 0.498(0.079) 0.504(0.073) 0.498(0.077)
β03 0.706(0.052) 0.707(0.046) 0.706(0.046) 0.705(0.042) 0.707(0.044) 0.705(0.044) 0.705(0.043) 0.710(0.044)

AEE(MSE×10) 0.349(0.039) 0.347(0.029) 0.345(0.011) 0.340(0.005) 0.126(0.019) 0.128(0.035) 0.124(0.077) 0.127(0.156)

(D2)

250
β01 0.496(0.066) 0.498(0.063) 0.496(0.063) 0.497(0.065) 0.495(0.054) 0.504(0.056) 0.501(0.056) 0.502(0.054)
β02 0.492(0.096) 0.498(0.089) 0.497(0.095) 0.491(0.092) 0.495(0.106) 0.493(0.110) 0.492(0.111) 0.505(0.113)
β03 0.703(0.060) 0.699(0.059) 0.700(0.060) 0.704(0.061) 0.710(0.066) 0.710(0.064) 0.704(0.063) 0.708(0.064)

AEE(MSE×10) 0.367(0.075) 0.365(0.028) 0.376(0.019) 0.370(0.015) 0.181(0.040) 0.182(0.072) 0.183(0.166) 0.185(0.325)

500
β01 0.499(0.048) 0.495(0.053) 0.497(0.047) 0.498(0.048) 0.499(0.040) 0.502(0.038) 0.496(0.039) 0.502(0.038)
β02 0.491(0.067) 0.492(0.067) 0.496(0.071) 0.494(0.069) 0.500(0.075) 0.504(0.077) 0.503(0.076) 0.501(0.075)
β03 0.708(0.047) 0.710(0.048) 0.706(0.046) 0.707(0.043) 0.706(0.044) 0.707(0.047) 0.706(0.046) 0.706(0.043)

AEE(MSE×10) 0.347(0.042) 0.351(0.041) 0.350(0.041) 0.347(0.033) 0.127(0.020) 0.129(0.036) 0.127(0.084) 0.124(0.150)

(D3)

250
β01 0.502(0.062) 0.500(0.061) 0.493(0.065) 0.492(0.064) 0.500(0.054) 0.499(0.057) 0.500(0.054) 0.505(0.054)
β02 0.494(0.092) 0.491(0.095) 0.488(0.095) 0.490(0.095) 0.500(0.102) 0.502(0.111) 0.507(0.106) 0.498(0.105)
β03 0.699(0.056) 0.702(0.059) 0.709(0.061) 0.708(0.061) 0.706(0.064) 0.706(0.062) 0.713(0.059) 0.707(0.065)

AEE(MSE×10) 0.367(0.072) 0.374(0.029) 0.377(0.020) 0.376(0.015) 0.174(0.040) 0.183(0.074) 0.175(0.152) 0.181(0.313)

500
β01 0.497(0.052) 0.499(0.042) 0.500(0.041) 0.498(0.049) 0.499(0.040) 0.501(0.038) 0.498(0.040) 0.500(0.038)
β02 0.491(0.066) 0.501(0.062) 0.503(0.062) 0.495(0.068) 0.499(0.077) 0.495(0.076) 0.500(0.071) 0.501(0.073)
β03 0.709(0.047) 0.702(0.041) 0.699(0.039) 0.706(0.044) 0.706(0.046) 0.707(0.046) 0.708(0.045) 0.706(0.044)

AEE(MSE×10) 0.348(0.041) 0.335(0.012) 0.330(0.005) 0.342(0.008) 0.131(0.021) 0.128(0.035) 0.124(0.079) 0.123(0.148)
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Table 2.3: Simulation results of the estimators for (M2) using our proposed method and the parametric method proposed in McMahan
et al. (2016). Presented results include the sample mean and sample standard deviation (provided within the parenthesis) of the 500
estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s (provided in parenthesis)
across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.

Proposed Method Parametric Method

N c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

2500
β01 0.500(0.041) 0.502(0.056) 0.523(0.080) 0.535(0.107) 0.000(0.022) 0.000(0.029) −0.001(0.046) 0.000(0.062)
β02 0.496(0.045) 0.496(0.063) 0.504(0.085) 0.502(0.119) −0.001(0.041) −0.002(0.057) 0.001(0.085) 0.000(0.115)
β03 0.706(0.049) 0.701(0.063) 0.673(0.079) 0.653(0.096) 0.001(0.022) 0.002(0.030) 0.005(0.052) 0.007(0.071)

AEE(MSE×10) 0.331(0.017) 0.356(0.021) 0.363(0.026) 0.386(0.045) 1.707(0.672) 1.707(0.676) 1.702(0.688) 1.700(0.705)

5000
β01 0.501(0.026) 0.503(0.039) 0.506(0.059) 0.525(0.077) 0.001(0.016) 0.000(0.020) −0.001(0.032) −0.002(0.043)
β02 0.501(0.030) 0.501(0.043) 0.507(0.065) 0.506(0.088) 0.000(0.029) 0.001(0.039) 0.001(0.059) −0.003(0.085)
β03 0.704(0.032) 0.700(0.045) 0.689(0.066) 0.669(0.080) 0.000(0.017) −0.001(0.023) −0.001(0.036) −0.001(0.050)

AEE(MSE×10) 0.310(0.008) 0.325(0.010) 0.343(0.015) 0.366(0.020) 1.706(0.671) 1.707(0.673) 1.709(0.679) 1.713(0.688)

(D2)

2500
β01 0.503(0.031) 0.504(0.046) 0.512(0.074) 0.524(0.097) −0.001(0.021) −0.001(0.028) −0.002(0.044) −0.002(0.063)
β02 0.503(0.036) 0.506(0.054) 0.508(0.083) 0.517(0.107) −0.003(0.037) 0.001(0.050) 0.000(0.079) 0.003(0.114)
β03 0.700(0.035) 0.695(0.053) 0.679(0.080) 0.654(0.097) 0.001(0.024) 0.000(0.032) −0.001(0.046) −0.002(0.071)

AEE(MSE×10) 0.314(0.014) 0.332(0.017) 0.359(0.023) 0.382(0.032) 1.703(0.671) 1.708(0.674) 1.710(0.684) 1.709(0.704)

5000
β01 0.502(0.025) 0.503(0.036) 0.511(0.054) 0.521(0.075) 0.001(0.019) 0.002(0.033) 0.000(0.052) 0.000(0.054)
β02 0.503(0.028) 0.502(0.041) 0.505(0.060) 0.512(0.084) 0.001(0.028) 0.002(0.041) 0.001(0.062) 0.004(0.085)
β03 0.702(0.029) 0.700(0.044) 0.689(0.057) 0.669(0.076) −0.001(0.018) −0.002(0.022) 0.000(0.048) 0.000(0.065)

AEE(MSE×10) 0.308(0.007) 0.322(0.009) 0.336(0.013) 0.347(0.019) 1.706(0.672) 1.705(0.676) 1.708(0.687) 1.705(0.696)

(D3)

2500
β01 0.501(0.040) 0.504(0.054) 0.518(0.077) 0.542(0.103) 0.001(0.020) 0.000(0.028) 0.001(0.045) 0.000(0.062)
β02 0.498(0.046) 0.499(0.061) 0.506(0.087) 0.507(0.121) −0.003(0.041) −0.007(0.055) −0.005(0.085) −0.004(0.115)
β03 0.703(0.047) 0.698(0.061) 0.675(0.079) 0.645(0.093) 0.000(0.022) 0.000(0.032) 0.000(0.050) 0.000(0.070)

AEE(MSE×10) 0.331(0.016) 0.352(0.019) 0.360(0.026) 0.372(0.036) 1.708(0.673) 1.713(0.677) 1.711(0.689) 1.711(0.707)

5000
β01 0.501(0.028) 0.503(0.041) 0.507(0.060) 0.522(0.083) 0.001(0.015) 0.001(0.021) 0.000(0.031) 0.001(0.044)
β02 0.500(0.032) 0.500(0.043) 0.498(0.064) 0.503(0.089) 0.001(0.029) 0.001(0.039) 0.001(0.059) −0.001(0.082)
β03 0.704(0.034) 0.701(0.047) 0.695(0.066) 0.673(0.079) 0.001(0.016) 0.000(0.022) 0.002(0.035) 0.003(0.051)

AEE(MSE×10) 0.314(0.008) 0.326(0.010) 0.347(0.015) 0.365(0.024) 1.705(0.671) 1.705(0.673) 1.704(0.678) 1.705(0.688)
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Table 2.4: Simulation results of the estimators for (M2) using our proposed method and the parametric method proposed in McMahan
et al. (2016). Presented results include the sample mean and sample standard deviation (provided within the parenthesis) of the 500
estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s (provided in parenthesis)
across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.

Proposed Method Parametric Method

J c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

250
β01 0.509(0.069) 0.508(0.080) 0.517(0.079) 0.512(0.077) −0.001(0.067) −0.001(0.066) −0.001(0.065) −0.002(0.062)
β02 0.500(0.081) 0.503(0.083) 0.502(0.085) 0.510(0.084) −0.006(0.127) −0.003(0.125) 0.007(0.122) −0.004(0.121)
β03 0.689(0.073) 0.685(0.080) 0.679(0.081) 0.678(0.078) −0.002(0.069) −0.004(0.070) 0.001(0.075) −0.001(0.071)

AEE(MSE×10) 0.456(0.067) 0.468(0.045) 0.442(0.027) 0.441(0.021) 1.716(0.695) 1.716(1.399) 1.701(3.535) 1.714(7.057)

500
β01 0.513(0.058) 0.511(0.072) 0.511(0.076) 0.512(0.069) −0.002(0.047) 0.000(0.045) −0.003(0.043) −0.001(0.041)
β02 0.505(0.074) 0.497(0.077) 0.500(0.078) 0.509(0.081) −0.005(0.087) 0.000(0.086) −0.008(0.081) −0.005(0.088)
β03 0.685(0.056) 0.690(0.067) 0.687(0.074) 0.680(0.071) 0.002(0.051) 0.000(0.052) 0.004(0.050) −0.002(0.051)

AEE(MSE×10) 0.401(0.059) 0.422(0.037) 0.404(0.024) 0.402(0.017) 1.712(0.688) 1.707(1.376) 1.713(3.436) 1.716(6.887)

(D2)

250
β01 0.517(0.112) 0.510(0.122) 0.524(0.126) 0.518(0.122) 0.004(0.058) 0.004(0.061) 0.000(0.061) 0.000(0.060)
β02 0.489(0.127) 0.482(0.128) 0.498(0.128) 0.507(0.129) −0.002(0.129) −0.007(0.114) 0.006(0.132) −0.015(0.113)
β03 0.673(0.109) 0.680(0.115) 0.657(0.117) 0.657(0.111) −0.004(0.069) 0.003(0.072) −0.003(0.071) 0.001(0.068)

AEE(MSE×10) 0.600(0.187) 0.490(0.136) 0.448(0.103) 0.422(0.098) 1.719(0.698) 1.709(1.414) 1.712(3.542) 1.704(7.097)

500
β01 0.505(0.076) 0.507(0.084) 0.515(0.082) 0.528(0.080) 0.003(0.041) −0.002(0.044) 0.000(0.043) −0.001(0.041)
β02 0.497(0.093) 0.499(0.087) 0.500(0.092) 0.501(0.089) 0.000(0.084) −0.006(0.093) −0.001(0.077) 0.000(0.084)
β03 0.690(0.085) 0.687(0.082) 0.680(0.084) 0.671(0.079) −0.001(0.046) 0.001(0.050) 0.003(0.052) 0.001(0.048)

AEE(MSE×10) 0.546(0.088) 0.548(0.048) 0.409(0.040) 0.400(0.022) 1.705(0.679) 1.714(1.372) 1.705(3.432) 1.707(6.861)

(D3)

250
β01 0.524(0.114) 0.512(0.119) 0.515(0.118) 0.526(0.121) 0.000(0.065) 0.001(0.063) 0.000(0.061) 0.004(0.063)
β02 0.500(0.120) 0.497(0.116) 0.488(0.124) 0.500(0.130) −0.008(0.129) −0.005(0.127) −0.010(0.122) 0.000(0.124)
β03 0.660(0.108) 0.672(0.106) 0.675(0.109) 0.656(0.107) −0.004(0.070) 0.003(0.075) 0.005(0.070) −0.001(0.072)

AEE(MSE×10) 0.436(0.160) 0.447(0.120) 0.455(0.097) 0.436(0.095) 1.719(0.698) 1.709(1.414) 1.712(3.542) 1.704(7.097)

500
β01 0.529(0.084) 0.508(0.094) 0.515(0.101) 0.520(0.103) 0.000(0.047) −0.002(0.046) −0.002(0.045) 0.000(0.043)
β02 0.501(0.099) 0.504(0.103) 0.494(0.114) 0.507(0.114) 0.003(0.092) 0.005(0.087) −0.003(0.091) 0.002(0.086)
β03 0.669(0.061) 0.679(0.084) 0.678(0.091) 0.664(0.095) 0.003(0.051) −0.001(0.054) −0.002(0.051) 0.002(0.051)

AEE(MSE×10) 0.405(0.134) 0.414(0.074) 0.406(0.068) 0.389(0.065) 1.702(0.681) 1.705(1.380) 1.714(3.448) 1.704(6.891)
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Tables 2.3 and 2.4 summarize the same results for estimating Model (M2) under all

considered distributions (D1)–(D3) when N ∈ {2500, 5000} and when J ∈ {250, 500},

respectively. Results for Models (M3) and (M4) are similar. Hence, we include them

in the Appendix A.2.

From all the tables, one could see that our estimates of β0 are generally on target

across all models and exhibit little bias. As N or J increases, both the bias and

the sample standard deviation of the estimates of β0 decrease, so do the AEE and

MSE. These patterns reinforce the consistency of β̂ and η̂(·) shown in Theorem 2.1.

Further, the overall measures (AEE and MSE) are seldom affected by (D1)–(D3).

By comparing our results with the ones of McMahan et al. (2016), one could see

that from Tables 2.1 and 2.2 when the curve is truly linear, both methods yield

reasonable estimates of β0. The variability of their estimates is smaller than the one

of ours. This is expected because our procedure has to estimate the curve η0 which

is given as known to their method. However, when the curve is not linear (Tables 2.3

and 2.4), their estimates suffer from a huge bias while ours are still on target. For

example, in Tables 2.3 and 2.4, almost all estimates of β from the parametric method

are centered around 0. If inferences are made based on these estimates, one would

incorrectly conclude that all the covariates are insignificant; i.e., a misspecified curve

would greatly compromise statistical inferences. However, such concerns do not exist

if using our method. To sum up, all the above observations demonstrate that our

estimators are robust to the biomarker distribution and the shape of regression curve.

Now we look at the impact of pool sizes. When the number of individual N is fixed

(Tables 2.1 and 2.3), as one might expect, all the standard deviations increase with

the pool size c. The loss in estimation efficiency is the price paid for the significant

cost reduction realized by pooling. In terms of estimating the entire mean curve

η0(xxxTβ0), one could see that the MSE’s only increase a little when c increases. For

example, in Table 2.3 for (D1) and N = 2500, the MSE changes from 0.0017 to
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0.0021 when cj increases from 1 to 2. Note that, c = 2 represents a 50% saving in

cost when comparing to c = 1. These results suggest that pooling could provide

estimates similar to or not much worse than those obtained from individual testing

while conferring a significant cost reduction.

Tables 2.2 and 2.4 correspond to the second scenario where the number of assays

J is fixed. The results reinforce our findings from Theorem 2.1 which are that the

pool size c does not affect the efficiency of estimating β0 across different pool sizes

when J is fixed. For example, in Table 2.4 for (D2) and J = 500, when c = 1,

the standard deviations of estimates of (β01, β02, β03) are (0.076, 0.094, 0.085) which

change to (0.080, 0.089, 0.079) when c = 10, respectively. As an overall measure, AEE

actually decreases from 0.600 (when c = 1) to 0.422 (when c = 10). Further, the MSE

strictly decreases with c. These patterns indicate that measuring biomarkers on pools

will provide nearly the same or even more precise estimates on both β0 and η0(xxxTβ0)

when compared to individually testing.

Lastly, we consider the case where V (Yij | XXXT
ijβ) depends on covariates. We

set V (Yij | XXXT
ijβ) = (0.5XXXT

ijβ)2 and repeated the whole simulation study described

above. Because the patterns of these results are similar, we present them in the

Appendix A.2. One conclusion is that our method also performs well if V (Yij | XXXT
ijβ)

changes with covariates.

2.5 Real data analysis

2.5.1 NHANES diabetes data

We first illustrate our proposed methodology by applying it to a diabetes data set

obtained from NHANES available at https://wwwn.cdc.gov/nchs/nhanes/search/

nhanes09_10.aspx. The data consists of a continuous response variable for each in-

dividual, Y , which denotes a patient’s two-hour plasma glucose level concentration

(mg/dL), which has been identified as a viable biomarker for detecting diabetes mel-
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litus. In addition, a set of explanatory variables are considered; namely, X1 gender,

X2 age in month, X3 the log body mass index (kg/m2), X4 systolic blood pressure

(mm Hg), X5 diastolic blood pressure (mm Hg), X6 the log fasting plasma glucose

level (mg/dL), X7 the log triglycerides level (mg/dL), and X8 the log HDL-cholesterol

level (mg/dL), so that the covariate vector XXX = (X1, . . . , X8)T for each individual.

This data set contains N = 2574 individual observations with 2318 of them having

all of the explanatory variables listed above. In this section, we analyze the diabetes

data set of N = 2318 individuals with full covariates information. It is important to

notice that instead of analyzing actual pooled testing data, it is more advantageous

to artificially construct pooled responses using individual level data, because it allows

us to investigate the effect that pool size and composition (in terms of the covariates)

has on parameter estimation.

The first focus of our analysis is to compare our pool response model to the

analogous model in which the individual level data is fully observed. To accomplish

this, we randomly assigned individuals to pools of size c, where c ∈ {2, . . . , 10}. Note

that the sample size N = 2318 cannot be divided by some values of c; in such cases,

we pool the remainders as the last group (e.g., when c = 10, the pool response data

consists of 231 pools of size 10 and 1 of size 8). Pooling responses for the pools were

then determined according to Zj = c−1∑c
i=1 Yij. We repeated the above procedure

500 times and applied our proposed model to each of the resulting pooled data sets.

We standardized the continuous covariates so that they had mean 0 and variance 1,

while the discrete binary covariates were recoded to be -0.5 or 0.5, respectively.
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Figure 2.1: Left: Box-plots of the 500 estimates of β = (β01, . . . , β08)T across c ∈
{2, . . . , 10}. Right: the points in the top figure denote the patient’s two-hour plasma
glucose level. The remaining three figures depict the estimate curve of η(t) and the quantile
plots of the estimates of η(t) for c ∈ {2, 5, 10}. Specifically, at every value of t we plot the
2.5th, 50th, and 97.5th percentiles of the 500 estimates of η(t). The solid lines in the figures
denote the estimates of η(t), when N = 2318 and c = 1.
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Figure 2.2: Left: Box-plots of the 500 estimates of β = (β01, . . . , β08)T across c ∈
{1, 2, . . . , 10} when J is fixed to be 232. Right: the fourth figures depict the estimate
curve of η(t) and the quantile plots of the estimates of η(t) for c ∈ {1, 2, 5, 10} when J
is fixed to be 232. Specifically, at every value of t we plot the 2.5th, 50th, and 97.5th
percentiles of the 500 estimates of η(t). The solid lines in the figures denote the estimates
of η(t), when N = 2318 and c = 1.
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Figure 2.1 presents box-plots of the 500 estimates of β obtained from our method

across c ∈ {2, 3, . . . , 10}. Also included in the figure are quantile plots of the estimates

of η0(t) for pool sizes of c = 1, 2, 5, 10. For purpose of comparison we use the c = 1

case as a reference by which our estimates can be compared. Note that the reference

estimates suggest a nonlinear shape of η0(·) which supports the use of our single-

index model. From these results, it is apparent that the estimates of β0 are largely

in agreement with the estimates based on the individual-level data. This can also

be said for our estimates of η0(t) across all considered pool sizes. We again observe

that the variability in our parameter estimates tends to increase with the pool size,

which is expected due to the significant cost reduction. Additionally, one will note

that our estimates of η0(t) exhibit evidence of instability toward the upper bound

of XXXTβ̂ for larger pool size (e.g., c = 10). Again this is an expected phenomenon,

since the number of observations that occur in that region is relatively small. The

second primary focus is to assess the effect of pooling when the number of assays J

is fixed. For this purpose, we set J = 232 and consider c ∈ {1, 2, . . . , 10}. The pool

response data for each c was constructed by randomly sampling cJ specimens from

the 2318 individuals and assigning them to pools of size c. Once the pools have been

established, we determine the testing response for the jth pool by Zj = c−1∑c
i=1 Yij.

Again, we repeated the procedure 500 times and applied our proposed method to

those data sets. Figure 2.2 presents box-plots of the 500 estimates of β0’s across

c ∈ {1, 2, . . . , 10} and quantile plots of the estimates of η0(t) for c = 1, 2, 5, 10. It

can be seen that the estimates of β0 and η0(·) generally agree with the reference

estimates (obtained when N = 2318 and c = 1). Further, the box-plots are nearly

the same across all pool sizes. The variability of estimates of η0(t) when c > 2 is

smaller than the one when c = 1; e.g., the width of the 95% quantile bands when

c = 10 is apparently smaller than the one when c = 1. These results reinforce the

main findings of the second scenario in Section 2.4.
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2.5.2 CPP pooled chemokine data

We now illustrate the proposed methodology using a pooled data. This data was

collected from the CPP, a study conducted from 1957 to 1974 to assess various aspects

of maternal and child health (e.g., see Whitcomb et al., 2007). In 2007, stored serum

samples from CPP participants were measured for levels of many chemokines to study

whether these biomarkers are related to miscarriage risk. In this chapter, we focus

on the biomarker macrophage inhibitory protein (MIP)-1α which was measured in

pools of size c = 2. We consider only the pools with participants whose full covariate

information were available. Considered covariates include age (standardized; x1), race

(1=Afriance-American/0=otherwise; x2), and miscarriage status (1=yes/0=no; x3).

After removing missing values, the number of pools is J = 330. Our goal is to apply

our single-index technique to the pooled measurements so that one can estimate the

individual-level mean trend of the MIP-1α given the covariate information.

−1 0 1 2 3

0.00

0.05

0.10

0.15

t

η̂(
t)

Estimate
Median
95% bands

Figure 2.3: CPP pooled MIP-1α data: this figure includes the estimate curve of η(t)
and the quantile plots of the 500 bootstrap estimates of η(t) based on bootstrap samples.
Specifically, at every value of t we plot the 2.5th, 50th, and 97.5th percentiles of the 500
bootstrap estimates of η(t).
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Applying our methodology yields a bandwidth h = 0.692 and estimates of the

regression coefficients β̂ = (β̂1, β̂2, β̂3)T = (0.703, 0.700, 0.127)T. The estimated mean

curve η̂(t) is plotted (the black line) in Figure 2.3. In order to obtain valid inference,

we adopted a bootstrapping method. A general description of this bootstrapping

method is presented in the Appendix A.3, where a simulation studied is also included

to illustrate its performance. We bootstrapped the pooled data for 500 times. On

each bootstrap sample, we applied our methodology and obtained 500 bootstrap

estimates of (β, η(·)). The standard deviation of these bootstrap estimates of β

can be used to estimate the standard error of our point estimates. The resulting

estimated standard errors are SE(β̂1) = 0.178, SE(β̂2) = 0.480, and SE(β̂1) = 0.368,

which suggest that at least age has a significant impact on the individual’s MIP-1α

mean level. Pointwise quantile plots (the 2.5th, 50th, and 97.5th percentiles) of the

500 bootstrap estimates of η(·) are also included in Figure 2.3. Clearly, one can see

a nonlinear mean relationship between the linear predictor (t = xxxTβ̂) and the MIP-

1α level. This nonlinear relationship further demonstrates the contribution and the

flexibility of our proposed single-index methodology.

2.6 Discussion

In spite of the wide and lasting interest in pooling strategy under restrictive para-

metric assumptions, nonparametric or semiparametric estimation based on continuous

pooled biomarker data received relatively less attention. In this chapter, we proposed

a general semiparametric framework for modeling pooled biomarker data allowing for

the incorporation of individual covariates. Compared to existing works (Ma et al.,

2011; Malinovsky et al., 2012; McMahan et al., 2016), our approach does not force the

regression function to be linear nor the type of biomarker distribution to be known.

We have shown that our estimates enjoy nice asymptotic properties. To illustrate

the performance of our methodology, we have considered two scenarios. In the first,
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the population size is fixed. Our numerical studies suggest that pooling could re-

duce the cost substantially with only a minor loss of estimation accuracy. In the

second, the number of assays is fixed. We found out that the pooling strategy could

be superior providing more information than testing specimens separately. Our esti-

mates performed well under either symmetric or right-skewed biomarker distribution

settings.

Because pooling biomarker is now more common in practical applications (see

Lyles et al., 2015; Mitchell et al., 2015; Perrier et al., 2016), we believe it would be

very beneficial to develop more statistical methods that are flexible to model such

data. In this work, we assumed that pools are constructed by randomly mixing in-

dividual specimens. One interesting future work is to consider the situation where

pooling is performed within stratification of population on the basis of some demo-

graphic variables, such as age or gender, which might potentially improve the estima-

tion performance. Caudill (2010) and Mitchell et al. (2014) adopted such grouping

criteria to characterize population and analyze biomarker data, respectively. Another

interesting extension of our work is to incorporate pooled exposures as a part of the

covariate information, which is a more complex problem and received many attention

recently (Linton and Whang, 2002; Whitcomb et al., 2012; Delaigle and Zhou, 2015).
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Chapter 3

Regression analysis and variable selection for

two-stage multiple-infection group testing data

Summary: Group testing, as a cost-effective strategy, has been widely used to per-

form large-scale screening for rare infections. Recently, the use of multiplex assays

has transformed the goal of group testing from detecting a single disease to diagnos-

ing multiple infections simultaneously. Existing research on multiple-infection group

testing data either exclude individual covariate information or ignore possible retests

on suspicious individuals. To incorporate both, we propose a new regression model.

This new model allows us to perform regression analysis for each infection using

multiple-infection group testing data. Furthermore, we introduce an efficient variable

selection method to reveal truly relevant risk factors for each disease. Our method-

ology also allows for the estimation of the assay sensitivity and specificity when they

are unknown. We examine the finite sample performance of our method through ex-

tensive simulation studies and apply it to a chlamydia and gonorrhea screening data

set to illustrate its practical usefulness.

3.1 Motivation

This article is motivated by the annual chlamydia trachomatis (CT) and neisseria

gonorrhoeae (NG) screening practice conducted by the State Hygienic Laboratory

(SHL) in Iowa. The CT and NG are two of the most common notifiable STDs in

the United States. Over two million cases were reported to the CDC in 2016 (Dis-

37



ease Control and Prevention, Last accessed 2018(a)). Both infections are commonly

asymptomatic in women. If left untreated, they could cause pelvic inflammatory dis-

ease and further lead to tubal infertility, ectopic pregnancy, or chronic pelvic pain

(Lewis et al., 2012). In addition, both diseases could facilitate the transmission of

HIV and human papillomavirus infection (Samoff et al., 2005). Concerned by these

severe sequelae, CDC continually supports nationwide CT/NG screening and recom-

mends annual CT/NG screening for all sexually active women under 25 years old

(Disease Control and Prevention, Last accessed 2018(b)).

In this nationwide screening practice, specimens (swab or urine) are collected

across each state and shipped to major state laboratories to be tested. Due to different

budgets, laboratories conduct the screening differently. For example, the Nebraska

Public Health Laboratory (NPHL) uses a traditional individual testing protocol which

tests individual specimens one-by-one. The SHL tests male specimens and female

urine specimens individually, but tests female swab specimens according to a two-

stage pooling protocol:

The SHL Pooling Protocol

• Individual swab specimens are randomly assigned to non-overlapping groups of

size four. A pool is constructed by mixing individual specimens in the same

group.

• Stage 1: Each pool is tested for CT and NG simultaneously using a multiplex

assay. If a pool tests negative for both infections, all the involved individuals

are diagnosed as negative for each infection with no additional tests; otherwise,

the protocol proceeds to the next stage.

• Stage 2: Swabs of individuals in pools that test positive for either infection are

retested separately using the same multiplex assay for final diagnosis.

The most practical reason for using pooling is cost reduction. When a pool tests

negative for both infections, four individuals are diagnosed at the expense of one
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assay. Since switching from individual testing to pooling in 1999, Iowa has saved over

$2.2 million in the CT/NG screening (Jirsa, 2008).

As per the screening guidelines, many risk factors are collected as well, such as

age, number of partners, any symptoms of the infections, etc. A motivating question

is how to incorporate these covariate information so that one can identify truly rel-

evant risk factors for each infection and understand their effects. Challenges to this

question arise from the use of the multiplex Aptima Combo 2 Assay (Gen-Prob, San

Diego), an imperfect discriminatory test that produces diagnoses for both diseases

simultaneously. Due to the imperfectness of the assay, it is possible to observe some

discrepancies between testing outcomes of the two stages, as shown in Figure 3.1.

Whenever a discrepancy occurs, the SHL ignores pooled-level results from Stage 1

and makes the diagnosis solely based on individual testing from Stage 2. However,

when the objective is probing the impact of risk factors rather than case identifica-

tion, disregarding testing outcomes from any stage could impair the estimation. It is

important to seamlessly incorporate outcomes from both stages. Towards this goal,

we need to account for how likely the retests were triggered by either infection.

Most of existing literature in modeling multiple-infection pooled testing data (see

Hughes-Oliver and Rosenberger, 2000, Tebbs et al., 2013, Zhang et al., 2013, Warasi et

al., 2016, Li et al., 2017) assumed that there were some preliminary studies to provide

those misclassification parameters. However, this assumption could be impractical

because the preliminary study might have used unrepresentative samples (Huang

et al., 2017). If inaccurate values of assay sensitivity and specificity were used for

estimation, it could compromise inference. In this chapter, we keep the testing error

rates as unknown and estimate them from the data along with the regression.

Existing literature has not considered the combination of incorporating retesting

results into regression and estimating misclassification parameters in the context of

multiple-infection group testing. Only one Bayesian work has provided inference for

39



1

2

3

4

5

3

2

1

4

5

Stage 1 Stage 2

CT = 0,NG = 1

CT = 0,NG = 0

CT = 0,NG = 1

CT = 0,NG = 0

CT = 0,NG = 0

CT = 1,NG = 1

Figure 3.1: An example of the SHL pooling data when the group size is 5: the rect-
angle with rounded corners represents the pooled specimen that is constructed by mixing
5 individual specimens (in circles) together. Though the pool tests negative for CT (i.e.,
CT= 0), positivity is shown for NG (i.e., NG= 1). As per the SHL pooling protocol, this
NG positivity triggers the second stage of screening for both CT and NG.

disease prevalence and estimates of assay sensitivity and specificity without consid-

eration of individual covariates (Warasi et al., 2016). In this chapter, we propose a

copula-based multivariate binary regression model to incorporate the covariates. We

introduce a generalized expectation-maximization (GEM) algorithm to facilitate the

numerical computation of the maximum likelihood estimates (MLEs) of the regres-

sion coefficients and misclassification parameters. When compared to the traditional

EM algorithm, the GEM only requires the maximization step to search for an increase

in the objective function rather than achieving the maximum (Wu, 1983, Neal and

Hinton, 1998). This feature greatly accelerates the computation of the MLE.

In addition, we provide a variable selection technique that can identify truly rel-

evant risk factors for each infection. A recent work has introduced a regularized

regression technique for group testing (Gregory et al., in print). But it is for a single

infection. Our work is designed to allow for multiple infections. We believe a package

of regression, estimation of misclassification parameters, and variable selection can

provide a useful toolbox for the epidemiology study of CT and NG based on group
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testing data.

The rest of the chapter is organized as follows. In Section 3.2, we propose a new

copula-based regression model for multiple-infection group testing data. In Section

3.3, we introduce the GEM algorithm that accelerates the computation of the MLE.

Section 3.4 presents a variable selection method that can identify important risk

factors for each infection. In Section 3.5, we use simulation to illustrate that, with

the use of a fewer number of tests, the SHL pooling protocol can lead to more efficient

regression estimates, better prediction of infection probabilities, and more accurate

variable selection than traditional individual testing. These advantages are further

demonstrated by analyzing a CT/NG screening data set in Section 3.6. We conclude

the chapter with a discussion in Section 3.7. All technical details and additional

numerical results are relegated to Appendix B.

3.2 Model

Suppose N individuals are to be tested. We randomly assign each individual to one

of J groups, each of size cj; i.e., N = ∑J
j=1 cj. For generality, we allow group size cj to

vary across groups. Motivated by the CT/NG screening practice, we mainly consider

two infections. Section 3.7 discusses an extension of more than two diseases. The

true infection statuses of the ith individual in the jth group are denoted by a binary

vector ỸYY ij = (Ỹij1, Ỹij2)T, where Ỹijk = 1 if the individual is positive for the kth

infection, Ỹijk = 0 otherwise, for i = 1, . . . , cj, j = 1, . . . , J , and k = 1, 2. Denote the

covariates (risk factors and an intercept term) of the ith individual in the jth group

by a (p + 1)-dimensional vector xij = (1, xij1, . . . , xijp)T. We assume that ỸYY ij|xij’s

are independent across ij and Ỹijk is related to a linear predictor xT
ijβk via

pr(Ỹijk = 1|xij) = gk(xT
ijβk), for k = 1, 2, (3.1)
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where βk = (βk0, βk1, . . . , βkp)T is a vector of (p + 1) regression coefficients that will

be estimated and gk is a user-chosen known link function (e.g., the inverse of the logit

or probit link). One could use different links for different infections. Equation (3.1)

builds marginal probability models of the random vector ỸYY ij|xij.

In pooled testing, the true infection statuses are often latent due to pooling and

potential misclassification. In each group, individual specimens are mixed together

to form a pool. We denote the true status of the jth pool by Z̃j = (Z̃j1, Z̃j2)T where

Z̃jk = max{Ỹijk : i = 1, . . . , cj}; i.e., Z̃jk = 1 if the pool involves at least one individual

who is positive for the kth infection, Z̃jk = 0 otherwise. With the use of an imperfect

assay, both ỸYY ij’s and Z̃j’s are latent. Observed data are the testing outcomes from

the imperfect multiplex assay. Pools are tested in Stage 1. We denote the testing

outcomes of the jth pool by ZZZj = (Zj1, Zj2)T, where Zjk = 1(0) if the pool tests

positive (negative) for the kth infection. If ZZZj = (0, 0)T, then ZZZj is the only observed

test response for the jth group of individuals. Otherwise, those individuals are tested

separately in Stage 2. We denote by YYY ij = (Yij1, Yij2)T the retesting outcome of

the ith individual in the jth group; i.e., Yijk = 1(0) if the individual is retested as

positive (negative) for the kth infection. Note that, the YYY ij’s can only be observed if

ZZZj 6= (0, 0)T. In summary, observed testing outcomes from the jth group, denoted by

Pj, take one of the two forms, either ZZZj = (0, 0)T, or ZZZj ∈ {(1, 0)T, (0, 1)T, (1, 1)T}

and YYY 1j, . . . , YYY cjj.

The discrepancy between true statuses and testing outcomes is often measured

by assay sensitivity and specificity. Denote by Se:k and Sp:k the assay sensitivity and

specificity, respectively, for the kth infection. In practice, an assay used for large-scale

screening is often imperfect. We let Se:k’s and Sp:k’s be in (0, 1). Our methodology

posits three assumptions on these misclassification parameters. Assumption 1 is that

Se:k’s and Sp:k’s do not depend on the group size; e.g., Se:k = pr(Zjk = 1|Z̃jk = 1) =

pr(Yijk = 1|Ỹijk = 1) and Sp:k = pr(Zjk = 0|Z̃jk = 0) = pr(Yijk = 0|Ỹijk = 0) hold for
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all i, j, and k. Assumption 2 assumes that conditioning on the true statuses of the

specimens being tested, testing responses are independent across each other and also

across infections. Assumption 3 further assumes that given the true statuses, testing

responses are independent of the covariates; e.g., pr(Zj1 = 0, Zj2 = 1, Yij1 = 1, Yij2 =

0|Z̃j1 = 0, Z̃j1 = 0, Ỹij1 = 1, Ỹij2 = 1, xxxij) = pr(Zj1 = 0|Z̃j1 = 0)pr(Zj2 = 1|Z̃j2 =

0)pr(Yij1 = 1|Ỹij1 = 1)pr(Yij2 = 0|Ỹij2 = 1) = Sp:1(1 − Sp:2)Se:1(1 − Se:2). All these

assumptions are standard in group testing literature (see most references in Section

1.2). In practice, one may need to conduct proper assay calibration to ensure the

applicability of these assumptions.

Our primary goal is to estimate βk’s, Se:k’s and Sp:k’s. Towards this goal, we want

to incorporate the retesting outcomes for two main reasons: 1) ignoring the retesting

outcomes could severely inflate the variance of the estimators of βk’s (see Appendix

B.1 for a numerical illustration). 2) Including the retesting outcomes gives us repeated

measurements (i.e., many specimens are tested in pools and also individually) which

provide valuable information to estimate misclassification parameters. To seamlessly

incorporate all retesting outcomes, we propose a copula-based multivariate binary

regression model. We assume that there exists a vector of standard uniform random

variables, UUU ij = (Uij1, Uij2)T, such that the event {Ỹijk = 1|xij} is equivalent to the

event {Uijk ≤ gk(xT
ijβk)}, where UUU ij’s are independent and follow a bivariate copula

(Nelsen, 2007). Denote the chosen copula by C{u1, u2|δ}, where u1, u2 ∈ (0, 1) and C

is known up to a parameter δ (which could be a vector). Then the marginal regression

models in (3.1) naturally hold, and the co-infection probability is

pr(Ỹij1 = 1, Ỹij2 = 1|xij) = C{g1(xT
ijβ1), g2(xT

ijβ2)|δ}. (3.2)

Combining (3.1) and (3.2) together defines our joint probability model of ỸYY ij|xij.
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3.3 Estimation

We maximize the likelihood function to obtain our estimators of βk’s, Se:k’s, Sp:k’s,

and δ. For notation simplicity, we write θ1 = (βT
1 ,β

T
2 , δ)T, θ2 = (Se:1, Se:2, Sp:1, Sp:2)T,

and θ = (θT
1 ,θ

T
2 )T. Furthermore, we denote by pijy1y2(θ1) the cell probability pr(Ỹij1 =

y1, Ỹij2 = y2|xij) defined by (3.1) and (3.2) under θ1 for y1, y2 ∈ {0, 1}, i = 1, . . . , cj,

and j = 1, . . . , J . Then pij11(θ1) = C{g1(xT
ijβ1), g2(xT

ijβ2)|δ}, pij10(θ1) = g1(xT
ijβ1)−

pij11(θ1), pij01(θ1) = g2(xT
ijβ2)− pij11(θ1), and pij00(θ1) = 1− pij11(θ1)− pij10(θ1)−

pij01(θ1). In Appendix B.2, we derive an expression of the log-likelihood function

`(θ|P ,X) where P and X denote the collections of Pj’s and xij’s, respectively.

However, due to the complexity of `(θ|P ,X), a direct maximization could be time-

consuming. Appendix B.3 includes a numerical illustration of this disadvantage.

We propose a GEM algorithm to accelerate the computation. The algorithm

incorporates ỸYY = {ỸYY 11, . . . , ỸYY cJJ} as latent variables. The complete log-likelihood

function of θ, derived from the conditional distribution of P and ỸYY given X, can be

written by `c(θ|P , ỸYY ,X) = `c1(θ1|ỸYY ,X) + `c2(θ2|P , ỸYY ), where

`c1(θ1|ỸYY ,X) =
J∑
j=1

cj∑
i=1

(1− Ỹij1)(1− Ỹij2) log pij00(θ1) + Ỹij1(1− Ỹij2) log pij10(θ1)

+ (1− Ỹij1)Ỹij2 log pij01(θ1) + Ỹij1Ỹij2 log pij11(θ1)
 (3.3)

and

`c2(θ2|P , ỸYY ) =
J∑
j=1

2∑
k=1

Z̃jkZjk + I(ZZZj 6= (0, 0)T)
cj∑
i=1

ỸijkYijk

 logSe:k

+

Z̃jk(1− Zjk) + I(ZZZj 6= (0, 0)T)
cj∑
i=1

Ỹijk(1− Yijk)

 log(1− Se:k)

+

(1− Z̃jk)(1− Zjk) + I(ZZZj 6= (0, 0)T)
cj∑
i=1

(1− Ỹijk)(1− Yijk)

 logSp:k

+

(1− Z̃jk)Zjk + I(ZZZj 6= (0, 0)T)
cj∑
i=1

(1− Ỹijk)Yijk

 log(1− Sp:k)
,
(3.4)
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in which Z̃jk = max{Ỹijk : i = 1, . . . , cj} and I(·) is the indicator function.

Our GEM algorithm starts at an initial value, and then iterates between an E-

step and an M-step to update the value until reaching a numerical convergence. At a

current value θ(d), the E-step calculates Q(θ|θ(d)) = Q1(θ1|θ(d)) +Q2(θ2|θ(d)), where

Q1(θ1|θ(d)) = E{`c1(θ1|ỸYY ,X)|P ,X,θ(d)}

and

Q2(θ2|θ(d)) = E{`c2(θ2|P , ỸYY )|P ,X,θ(d)}.

After an inspection of (3.3) and (3.4), it suffices to calculate η(d)
ij00, η

(d)
ij10, η

(d)
ij01, η

(d)
ij11

(for Q1) and η(d)
P,jk (for Q2), where

η
(d)
ijy1y2 = pr(Ỹij1 = y1, Ỹij2 = y2|P ,X,θ(d)) and η

(d)
P,jk = pr(Z̃jk = 1|P ,X,θ(d)),

(3.5)

for i = 1, . . . , cj, j = 1, . . . , J , y1, y2 ∈ {0, 1}, and k = 1, 2. Though η(d)
ijy1y2 ’s have been

studied without the consideration of X (Tebbs et al., 2013), they were not updated in

closed forms and thus a Gibbs sampler was employed to approximate these quantities.

However, in the regression context, using such approximations requires enlarging the

tolerance of the numerical convergence and hence might induce bias. To improve

the computational accuracy, we calculate all the probabilities in (3.5) exactly (see

Appendix B.4 for details).

With the probabilities in (3.5) calculated, we rewrite Q1(θ1|θ(d)) by

Q1(β1,β2, δ|θ(d)) =
J∑
j=1

cj∑
i=1

1∑
y1=0

1∑
y2=0

η
(d)
ijy1y2 log pijy1y2(θ1),

and Q2(θ2|θ(d)) by

2∑
k=1

{
W

(d)
1k logSe:k +W

(d)
2k log(1− Se:k) +W

(d)
3k logSp:k +W

(d)
4k log(1− Sp:k)

}
, (3.6)
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where

W
(d)
1k =

J∑
j=1

η(d)
P,jkZjk + I(ZZZj 6= (0, 0)T)

cj∑
i=1

η
(d)
ij,kYijk

,
W

(d)
2k =

J∑
j=1

η(d)
P,jk(1− Zjk) + I(ZZZj 6= (0, 0)T)

cj∑
i=1

η
(d)
ij,k(1− Yijk)

,
W

(d)
3k =

J∑
j=1

(1− η(d)
P,jk)(1− Zjk) + I(ZZZj 6= (0, 0)T)

cj∑
i=1

(1− η(d)
ij,k)(1− Yijk)

,
W

(d)
4k =

J∑
j=1

(1− η(d)
P,jk)Zjk + I(ZZZj 6= (0, 0)T)

cj∑
i=1

(1− η(d)
ij,k)Yijk

,
in which, η(d)

ij,1 = η
(d)
ij11+η(d)

ij10 and η
(d)
ij,2 = η

(d)
ij11+η(d)

ij01. The M-step in our GEM algorithm

updates θ(d)
1 by θ(d+1)

1 = (β(d+1)
1

T
,β

(d+1)
2

T
, δ(d+1))T where

β
(d+1)
1 = argmaxβ1 Q1(β1,β

(d)
2 , δ(d)|θ(d)),

β
(d+1)
2 = argmaxβ2 Q1(β(d+1)

1 ,β2, δ
(d)|θ(d)),

δ(d+1) = argmaxδ Q1(β(d+1)
1 ,β

(d+1)
2 , δ|θ(d)).

The value of θ(d+1)
2 is obtained by maximizing (3.6) and can be written as

θ
(d+1)
2 = (S(d+1)

e:1 , S
(d+1)
e:2 , S

(d+1)
p:1 , S

(d+1)
p:2 )T

where S(d+1)
e:k = W

(d)
1k /(W

(d)
1k + W

(d)
2k ) and S(d+1)

p:k = W
(d)
3k /(W

(d)
3k + W

(d)
4k ), for k = 1, 2.

Combining θ(d+1)
1 and θ(d+1)

2 provides θ(d+1). Because Q(θ(d+1)|θ(d)) ≥ Q(θ(d)|θ(d)),

the convergence of {θ(d)}∞d=1 is guaranteed (Wu, 1983). We denote by θ̂ the limit of

θ(d)’s.

Denote by I(θ) the observed data information matrix. Following the standard

arguments of the MLE (Lehmann, 1983), we have I(θ̂)1/2(θ̂ − θ) converges in dis-

tribution to N (0, III2p+7) as N → ∞, where IIIm denotes the m-dimensional identity

matrix. Applying Louis’ method (Louis, 1982) provides

I(θ) = −E
{
∂2`c(θ|P , ỸYY ,X)

∂θ∂θT

∣∣∣∣P ,X,θ
}
− cov

{
∂`c(θ|P , ỸYY ,X)

∂θ

∣∣∣∣P ,X,θ
}
.
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Again, instead of approximating I(θ) via the Gibbs sampling approach (Tebbs et al.,

2013), we are able to calculate it exactly. The calculations are included in Appendix

B.5. With I(θ̂), one can make large sample Wald-type inferences. For example, let

θl, θ̂l and σ̂2
ll be the lth component of θ, the lth component of θ̂ and the lth diagonal

entry of I(θ̂)−1, respectively, for l = 1, . . . , 2p+7. The estimated standard error (SE)

of θ̂l is σ̂ll and an approximated 100(1− α)% confidence interval of θl is θ̂l ± zα/2σ̂ll,

where zα is the αth upper quantile of N (0, 1).

3.4 Variable selection for each infection

With θ̂ and I(θ̂) computed, we further identify which risk factors are truly relevant

for each infection. Denote by β∗1 and β∗2 the values of β1 and β2 that generate the true

individual statuses ỸYY , respectively, where β∗k = (β∗k0, β
∗
k1, . . . , β

∗
kp)T for k = 1, 2. One

can index the significant risk factors to the kth infection byMk = {j ∈M : β∗kj 6= 0},

where we take M = {1, 2, . . . , p} by defaulting that an intercept term is always

included in the model. One must note thatM1 andM2 might be different.

We apply a shrinkage method to simultaneously selectMk’s and estimate nonzero

β∗kj’s. To unify notation, we write θT and Σ̂T T as the sub-vector and the sub-

matrix of θ and Σ̂ according to an index set T ⊂ {1, . . . , 2p + 7}, respectively. Let

A = {2, . . . , p+ 1, p+ 3, . . . , 2p+ 2}. Our shrinkage estimator of θA is defined by

θ̃A,λ = argmin
θA

1
2(θ̂A − θA)TΣ̂AA(θ̂A − θA) +

2∑
k=1

λk

p∑
j=1

ωkj|βkj|

 , (3.7)

where λk
∑p
j=1 ωkj|βkj| is an adaptive LASSO penalty (Zou, 2006), λk ≥ 0 is a tuning

parameter that controls the shrinkage level, and ωkj = |β̂kj|−1 is an adaptive weight.

When λk’s are 0, θ̃A,λ = θ̂A. When λk’s increase, due to the singularity of the

absolute value function at the origin, components of θ̃A,λ are penalized to zero one-

by-one. Writing θ̃A,λ = (β̃11,λ, . . . , β̃1p,λ, β̃21,λ, . . . , β̃2p,λ)T, we estimate M1 and M2

by M̃1,λ = {j ∈M : β̃1j,λ 6= 0} and M̃2,λ = {j ∈M : β̃2j,λ 6= 0}, respectively.
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Computing θ̃A,λ is fast. The objective function in (3.7) is simply a summation of

a quadratic function and a weighted l1-norm of θA and therefore can be quickly

minimized by slightly modifying the seminal least angle regression (Efron et al.,

2004). Let Ac = {1, 2, . . . , 2p + 7} \ A and `(θA|P ,X, θ̂Ac) be the log-likelihood

function `(θ|P ,X) with θAc fixed to be θ̂Ac . One could also construct a shrink-

age estimator by the traditional penalized MLE (Fan and Li, 2001) which minimizes

−`(θA|P ,X, θ̂Ac) +∑2
k=1 λk

∑p
j=1 ωkj|βkj|. As the quadratic term in (3.7) is the lead-

ing component of the Taylor’s expansion of −`(θA|P ,X, θ̂Ac) at θA = θ̂A, it can be

easily shown that θ̃A and the penalized MLE are asymptotically equivalent. How-

ever, the computation cost of obtaining penalized MLE will be a lot higher due to

the complexity of the log-likelihood function.

The use of adaptive weights ωkj’s is critical to achieve the oracle properties (Zou,

2006). It assigns sufficiently large penalties to insignificant covariates so that they

would be excluded from the model; on the other hand, it imposes mild penalties to

significant ones in order that they would be retained in the model. The oracle proper-

ties are stated as follows. As N →∞, if max(λ1, λ2)/
√
N → 0 and min(λ1, λ2)→∞,

we have both the selection consistency, pr(M̃1,λ = M1,M̃2,λ = M2) → 1, and the

estimation consistency, supk,j ‖β̃kj,λ − β∗kj‖ = Op(N−1/2). The proof follows similar

arguments in the proofs of Theorems 1 and 2 in Wang and Leng (2007) and thus is

omitted.

To select λ1 and λ2, we propose to minimize a BIC-type criterion (Schwarz, 1978),

BIC(λ1, λ2) = (θ̂A − θ̃A,λ)TΣ̂AA(θ̂A − θ̃A,λ) + {df1,λ + df2,λ} logN, (3.8)

where dfk,λ = |M̃k,λ| for k = 1, 2. Following the proof of Theorem 3 in Wang

et al. (2009), one can show that with the optimal (λ1, λ2) from (3.8), pr(M̃1,λ =

M1,M̃2,λ = M2) → 1 as N → ∞. In other words, any (λ1, λ2) that does not

lead to the correct variable selection cannot be selected by (3.8) when the number of

individuals is large.
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The purpose of this subsection is to provide a shrinkage estimator of the regres-

sion coefficients, of which the sparsity pattern can help us identify the truly relevant

risk factor for each infection. Inference procedures, such as constructing a confidence

interval or conducting hypothesis testing, based on this shrinkage estimator are be-

yond the scope of this work. There are numerous studies demonstrating that even

in classical linear regression, finite-sample inference procedures based on asymptotic

properties of the adaptive LASSO estimator perform poorly (Minnier et al., 2011).

Developing valid inferential methods for shrinkage estimators in group testing, even

with a single infection, could be an interesting but challenging future research topic.

In this article, it is the variable selection of primary interest.

3.5 Numerical studies

We consider three different settings for the joint distribution of ỸYY ij|xij. In all

of them, we keep both g1 and g2 in the marginal regression model (3.1) being

the inverse of the logit link function, and use a Gumbel copula (Gumbel, 1960),

C(u1, u2|δ) = exp{−[(− log u1)1/δ + (− log u2)1/δ]δ} with δ = 0.3, to generate the co-

infection probability (3.2). The difference across the three settings comes from the

choices of (β1,β2,x), where x is a generic notation of xij’s:

• (S1) β1 = (−5,−3, 2, 0, 0, 0)T,β2 = (−5,−3, 0, 3, 0, 0)T and x = (1, x1, · · · , x5)T,

where we independently simulate x1 fromN (0, 1), x2 and x3 from Bernoulli(0.4),

x4 from Uniform(−0.5, 0.5), and x5 from N (0, 0.752)

• (S2) β1 = (−4,−2, 2, 0, 0, 0)T,β2 = (−5,−2, 0,−2, 0, 0)T and x = (1, x1, · · · , x5)T,

where x is simulated from N (0,Ω) with [Ω]st = 1 if s = t and [Ω]st = 0.5 if

s 6= t.

• (S3) β1 = (−5, (−2,−2,−2, 2, 2)⊗ (1, 0))T, β2 = (−6, (−3,−3, 2, 3, 0)⊗ (1, 0))T

and x = (1, x1, · · · , x10)T, where ⊗ is the Kronecker product, x is simulated
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from N (0,Ω) with [Ω]st = 1 if s = t and [Ω]st = 0.5 if s 6= t.

Note that β1 and β2 have different sparsity patterns (e.g., in S1, x2 is significant

to the first infection but not to the second infection). This is used to emulate the

situation where two infections have different sets of significant risk factors. The values

of β1 and β2 are chosen in a way such that the prevalence of each infection is about

7%–10%.

Under each setting, we simulate two types of data: individual testing data and the

SHL pooled testing data. To do so, we first generate N = 3000 individual covariates.

Given a set of covariates, we calculate the individual’s cell probabilities (pijy1y2 ’s)

using the specified copula-based multivariate binary regression model, and then gen-

erate the true infection statuses for both infections from a multinomial distribution

with those cell probabilities. We denote the covariates and the true infection statuses

of the nth individual by xn and ỸYY n = (Ỹn1, Ỹn2)T, respectively, for n = 1, . . . , 3000.

Herein, because groups have not been created yet, we use the subscript n instead of

the ij (in ỸYY ij and xij). Given (ỸYY n,xn)’s, we simulate individual testing data and the

SHL pooled testing data. We let Se:k = Sp:k = 0.95 for k = 1, 2. Values other than

0.95 are considered in Appendix B.6.

Based on ỸYY n’s, we generate individual testing outcomes of the nth specimen by

TTT n = (Tn1, Tn2)T where Tnk ∼ Bernoulli{Se:kỸnk + (1 − Sp:k)(1 − Ỹnk)}. Then we

estimate (β1,β2, δ)T from (TTT n,xn)’s. This estimation procedure is similar to the one

outlined in Section 3.3. We also use a GEM-algorithm to compute the MLEs and

Louis’ method to calculate the observed data information matrix for making large

sample Wald-type inferences. Furthermore, we slightly modify our variable selection

method (in Section 4) to accommodate individual testing data. All the details are

provided in Appendix B.7. It is worthwhile to note that Se:k’s and Sp:k’s are not

estimable in individual testing data. Hence, with individual testing data (TTT n,xn)’s,

we have to assume the true values of Se:k’s and Sp:k’s as known to estimate (β1,β2, δ).
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We generate the SHL pooled testing data from ỸYY n’s. A common group size is used

in our simulations; i.e., cj = c, and c ∈ {2, 5, 10}. For a fixed c, we randomly assign

the 3000 individuals to one of J = 3000/c groups. With the group membership

identified, we relabel (ỸYY n,xn)’s by (ỸYY ij,xij) where i = 1, . . . , c and j = 1, . . . , J .

The true statuses of the jth pool are calculated as Z̃jk = maxi Ỹijk where k = 1, 2.

Then we generate the pooled testing outcomes by ZZZj = (Zj1, Zj2)T, where Zjk ∼

Bernoulli{Se:kZ̃jk + (1 − Sp:k)(1 − Z̃jk)}. As per the SHL pooling protocol, only if

max(Zj1, Zj2) = 1, we generate retesting outcomes of the ith individual in this group

by YYY ij = (Yij1, Yij2)T, where Yijk ∼ Bernoulli{Se:kỸijk+(1−Sp:k)(1−Ỹijk)}. Collecting

all ZZZj’s and YYY ij’s yields the SHL pooled testing data P . Note that the number of

tests that were used to obtain P is the summation of J and the number of YYY ij’s.

From P and xij’s, we estimate (β1,β2, δ, Se:1, Se:2, Sp:1, Sp:2).

We repeat 500 times the process of generating TTT n’s and P for each c ∈ {2, 5, 10}.

For each set of individual testing data or the SHL pooled testing data, we first treat

the diagnosis results for each infection as the true statues and fit them using our

copula-based multivariate binary regression model. The resulting MLE of θ1 is used

as the initial value of θ1. The initial values of the assay sensitivity and specificity

are chosen to be 0.9. Then we run our GEM algorithm to compute the MLE and use

Louis’ method to construct a 95% confidence interval for each unknown parameter (see

the last paragraph of Section 3.3). In addition to the BIC-type shrinkage estimator,

we also compute an AIC-type (Akaike, 1974) and an ERIC-type (Hui et al., 2015)

estimator using the tuning parameters selected by minimizing

AIC(λ1, λ2) = (θ̂A − θ̃A,λ)TΣ̂AA(θ̂A − θ̃A,λ) + 2{df1,λ + df2,λ}

and

ERIC(λ1, λ2) = (θ̂A − θ̃A,λ)TΣ̂AA(θ̂A − θ̃A,λ) + df1,λ log(N/λ1) + df2,λ log(N/λ2),
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respectively. For individual testing data, slightly modified versions are available in

Appendix B.7.3.

To compare the overall performance of the MLE and three shrinkage estimators,

we consider the prediction error,

PE = N−1
J∑
j=1

cj∑
i=1
{

1∑
y1=0

1∑
y2=0

(p̂ijy1y2 − p∗ijy1y2)2}1/2,

where p∗ijy1y2 ’s are the true cell probabilities and p̂ijy1y2 ’s are the predicted cell prob-

abilities using an estimator of (β1,β2, δ). To evaluate the variable selection perfor-

mance of shrinkage estimators, we define by the selection rate (SR) the proportion

of the true model being exactly selected by a shrinkage estimator. Results from the

500 replications under S1–S3 are summarized in Tables 3.1–3.4.

Tables 1–3 provide summary statistics of the MLEs for S1–S3, respectively. Under

both individual testing and the SHL pooling protocol, the MLEs of the unknown

parameters obtained by our GEM algorithm exhibit little, if any, evidence of bias,

across all considered settings. Regarding the use of Louis’ method, we notice that

the average standard errors are in agreement with the sample standard deviations of

the estimates. In addition, the empirical coverage probabilities for 95% confidence

intervals are predominantly at the nominal level. These results indicate that the

observed data information matrix is estimated correctly via Louis’ method.

To examine the performance of the variable selection, Table 4 provides the SR

(in parenthesis) of each shrinkage estimator across all considered settings. One can

see that our BIC-type estimator performs the best in identifying the true model in

each scenario. For example, in S3 when c = 2, the SR using the BIC criterion is

0.820 which is significantly larger than the ones using the AIC (0.294) and the ERIC

(0.448) criterion. These results demonstrate the advantage of using the BIC criterion

in identifying risk factors that are truly relevant for each infection.
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Table 3.1: Summary statistics of the 500 MLEs obtained under S1, including the sample mean (Mean), the sample standard deviation
(SD), the average of the estimated standard errors (SE), and the empirical coverage (EC) of 95% confidence intervals under either
individual testing (IT) or the SHL pooling with c = 2, 5, 10. The average number of tests (# of tests) under each protocol is also
provided. The prevalence (averaged over 500 repetitions) of the first and second infections are 7.64% and 8.22%, respectively.

IT c = 2 c = 5 c = 10

# of tests 3000 2351 2078 2445

Truth Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE)

β10 -5 -5.08(0.36) 0.94(0.37) -5.06(0.29) 0.94(0.29) -5.06(0.31) 0.94(0.29) -5.07(0.34) 0.95(0.32)
β11 -3 -3.05(0.25) 0.96(0.26) -3.03(0.21) 0.94(0.21) -3.04(0.22) 0.94(0.21) -3.04(0.24) 0.95(0.23)
β12 2 2.03(0.27) 0.94(0.27) 2.02(0.24) 0.94(0.24) 2.02(0.25) 0.94(0.24) 2.03(0.26) 0.95(0.25)
β13 0 -0.01(0.24) 0.95(0.23) -0.01(0.22) 0.95(0.21) -0.01(0.22) 0.95(0.21) -0.01(0.22) 0.94(0.21)
β14 0 0.01(0.38) 0.95(0.39) 0.01(0.34) 0.96(0.35) -0.01(0.35) 0.96(0.35) 0.00(0.37) 0.96(0.36)
β15 0 0.00(0.19) 0.96(0.20) 0.00(0.17) 0.97(0.18) 0.00(0.17) 0.97(0.18) 0.00(0.19) 0.94(0.19)

β20 -5 -5.08(0.37) 0.95(0.37) -5.05(0.28) 0.94(0.30) -5.05(0.30) 0.94(0.30) -5.04(0.33) 0.96(0.32)
β21 -3 -3.04(0.26) 0.95(0.26) -3.03(0.21) 0.94(0.22) -3.03(0.22) 0.94(0.21) -3.02(0.24) 0.95(0.23)
β22 0 -0.01(0.24) 0.94(0.23) -0.01(0.21) 0.93(0.21) 0.00(0.22) 0.93(0.21) -0.01(0.23) 0.94(0.21)
β23 3 3.04(0.33) 0.94(0.32) 3.03(0.27) 0.94(0.27) 3.03(0.29) 0.94(0.27) 3.03(0.30) 0.94(0.29)
β24 0 0.00(0.40) 0.95(0.38) 0.02(0.34) 0.95(0.35) 0.01(0.35) 0.95(0.35) 0.00(0.36) 0.96(0.36)
β25 0 0.01(0.20) 0.95(0.20) 0.00(0.18) 0.94(0.18) 0.00(0.18) 0.94(0.18) 0.00(0.19) 0.95(0.19)

δ 0.3 0.28(0.09) 0.97(0.10) 0.29(0.06) 0.95(0.06) 0.29(0.06) 0.95(0.06) 0.29(0.07) 0.95(0.07)

Se:1 0.95 – – 0.95(0.02) 0.93(0.02) 0.95(0.02) 0.93(0.02) 0.95(0.02) 0.90(0.02)
Se:2 0.95 – – 0.95(0.01) 0.95(0.01) 0.95(0.02) 0.91(0.01) 0.95(0.02) 0.92(0.02)
Sp:1 0.95 – – 0.95(0.01) 0.94(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01)
Sp:2 0.95 – – 0.95(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.93(0.01)
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Table 3.2: Summary statistics of the 500 MLEs obtained under S2, including the sample mean (Mean), the sample standard deviation
(SD), the average of the estimated standard errors (SE), and the empirical coverage (EC) of 95% confidence intervals under either
individual testing (IT) or the SHL pooling with c = 2, 5, 10. The average number of tests (# of tests) under each protocol is also
provided. The prevalence (averaged over 500 repetitions) of the first and the second infections are 6.77% and 9.98%, respectively.

IT c = 2 c = 5 c = 10

# of tests 3000 2493 2312 2678

Truth Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE)

β10 -4 -4.05(0.25) 0.95(0.26) -4.02(0.20) 0.95(0.19) -4.03(0.19) 0.97(0.20) -4.03(0.21) 0.96(0.21)
β11 -2 -2.03(0.19) 0.96(0.20) -2.02(0.15) 0.96(0.15) -2.03(0.16) 0.96(0.16) -2.02(0.17) 0.95(0.17)
β12 2 2.03(0.19) 0.94(0.20) 2.02(0.16) 0.95(0.16) 2.02(0.16) 0.96(0.16) 2.02(0.17) 0.95(0.17)
β13 0 0.00(0.13) 0.95(0.14) 0.00(0.12) 0.95(0.12) 0.00(0.12) 0.96(0.12) 0.00(0.12) 0.95(0.13)
β14 0 0.00(0.13) 0.96(0.14) 0.00(0.12) 0.95(0.12) 0.00(0.12) 0.96(0.12) -0.01(0.13) 0.95(0.13)
β15 0 0.00(0.14) 0.95(0.14) 0.00(0.11) 0.96(0.12) 0.00(0.12) 0.95(0.12) 0.00(0.13) 0.95(0.13)

β20 -5 -5.06(0.36) 0.94(0.35) -5.04(0.26) 0.96(0.27) -5.03(0.28) 0.97(0.29) -5.04(0.32) 0.94(0.33)
β21 -2 -2.04(0.20) 0.95(0.20) -2.03(0.16) 0.97(0.17) -2.02(0.17) 0.97(0.17) -2.03(0.19) 0.95(0.19)
β22 0 0.01(0.13) 0.97(0.13) 0.00(0.12) 0.95(0.12) 0.01(0.12) 0.96(0.12) 0.01(0.13) 0.95(0.13)
β23 -2 -2.04(0.20) 0.95(0.20) -2.03(0.17) 0.96(0.17) -2.02(0.17) 0.95(0.17) -2.02(0.19) 0.94(0.18)
β24 0 0.01(0.14) 0.93(0.13) 0.01(0.12) 0.93(0.12) 0.00(0.12) 0.94(0.12) 0.00(0.13) 0.95(0.13)
β25 0 0.01(0.13) 0.95(0.13) 0.01(0.12) 0.95(0.12) 0.00(0.12) 0.95(0.12) 0.01(0.12) 0.96(0.13)

δ 0.3 0.30(0.08) 0.99(0.11) 0.30(0.06) 0.97(0.07) 0.30(0.07) 0.97(0.07) 0.30(0.08) 0.97(0.08)

Se:1 0.95 – – 0.95(0.02) 0.93(0.02) 0.95(0.02) 0.93(0.02) 0.95(0.02) 0.92(0.02)
Se:2 0.95 – – 0.95(0.02) 0.95(0.01) 0.95(0.02) 0.92(0.01) 0.95(0.02) 0.91(0.02)
Sp:1 0.95 – – 0.95(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.92(0.01)
Sp:2 0.95 – – 0.95(0.01) 0.92(0.01) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.92(0.01)
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Table 3.3: Summary statistics of the 500 MLEs obtained under S3, including the sample mean (Mean), the sample standard deviation
(SD), the average of the estimated standard errors (SE), and the empirical coverage (EC) of 95% confidence intervals under either
individual testing (IT) or the SHL pooling with c = 2, 5, 10. The average number of tests (# of tests) under each protocol is also
provided. The prevalence (averaged over 500 repetitions) of the first and the second infections are 9.97% and 8.54%, respectively.

IT c = 2 c = 5 c = 10

# of tests 3000 2508 2337 2701

Truth Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE)
β10 -5 -5.10(0.39) 0.94(0.36) -5.07(0.30) 0.93(0.27) -5.10(0.33) 0.92(0.30) -5.09(0.36) 0.95(0.34)
β11 -2 -2.04(0.22) 0.94(0.21) -2.03(0.18) 0.95(0.17) -2.05(0.20) 0.93(0.18) -2.04(0.20) 0.94(0.20)
β12 0 0.00(0.13) 0.97(0.14) 0.00(0.12) 0.98(0.13) 0.00(0.13) 0.96(0.13) 0.00(0.13) 0.97(0.14)
β13 -2 -2.04(0.22) 0.93(0.21) -2.03(0.18) 0.94(0.17) -2.04(0.19) 0.94(0.18) -2.04(0.21) 0.93(0.20)
β14 0 0.01(0.14) 0.96(0.14) 0.00(0.12) 0.95(0.13) 0.00(0.13) 0.94(0.13) 0.00(0.13) 0.97(0.14)
β15 -2 -2.05(0.22) 0.94(0.21) -2.04(0.18) 0.94(0.17) -2.05(0.19) 0.93(0.18) -2.05(0.21) 0.92(0.19)
β16 0 0.01(0.14) 0.96(0.14) 0.00(0.13) 0.95(0.13) 0.01(0.13) 0.96(0.13) 0.01(0.14) 0.95(0.14)
β17 2 2.04(0.22) 0.95(0.21) 2.03(0.18) 0.93(0.17) 2.05(0.19) 0.93(0.18) 2.04(0.21) 0.94(0.20)
β18 0 0.00(0.14) 0.96(0.14) 0.00(0.12) 0.96(0.13) 0.00(0.13) 0.95(0.13) 0.01(0.14) 0.96(0.14)
β19 2 2.04(0.21) 0.94(0.21) 2.03(0.18) 0.93(0.17) 2.04(0.19) 0.94(0.18) 2.04(0.20) 0.96(0.20)
β110 0 0.00(0.15) 0.94(0.14) 0.00(0.13) 0.96(0.13) 0.01(0.13) 0.95(0.13) 0.00(0.14) 0.95(0.14)
β20 -6 -6.13(0.49) 0.95(0.48) -6.10(0.36) 0.96(0.36) -6.10(0.41) 0.95(0.39) -6.12(0.43) 0.95(0.43)
β21 -3 -3.07(0.30) 0.95(0.29) -3.05(0.24) 0.94(0.24) -3.05(0.26) 0.94(0.25) -3.06(0.27) 0.94(0.27)
β22 0 0.00(0.16) 0.95(0.16) 0.01(0.14) 0.95(0.14) 0.00(0.15) 0.95(0.15) 0.00(0.15) 0.95(0.15)
β23 -3 -3.07(0.30) 0.96(0.29) -3.05(0.24) 0.94(0.24) -3.05(0.26) 0.94(0.25) -3.06(0.27) 0.94(0.27)
β24 0 0.00(0.16) 0.96(0.16) 0.00(0.13) 0.94(0.14) 0.00(0.14) 0.95(0.15) 0.01(0.15) 0.95(0.16)
β25 2 2.04(0.21) 0.97(0.23) 2.04(0.19) 0.96(0.19) 2.04(0.20) 0.95(0.20) 2.04(0.20) 0.95(0.20)
β26 0 0.01(0.17) 0.94(0.16) 0.01(0.15) 0.93(0.14) 0.01(0.15) 0.95(0.15) 0.00(0.16) 0.94(0.16)
β27 3 3.06(0.29) 0.95(0.29) 3.04(0.24) 0.95(0.24) 3.04(0.26) 0.94(0.25) 3.05(0.27) 0.95(0.27)
β28 0 0.01(0.16) 0.96(0.16) 0.00(0.14) 0.96(0.14) 0.00(0.15) 0.95(0.15) 0.01(0.15) 0.96(0.16)
β29 0 0.00(0.16) 0.95(0.16) -0.01(0.14) 0.94(0.14) -0.01(0.15) 0.95(0.15) -0.01(0.16) 0.96(0.15)
β210 0 0.01(0.16) 0.95(0.16) 0.01(0.14) 0.94(0.14) 0.01(0.15) 0.95(0.15) 0.01(0.15) 0.94(0.16)
δ 0.3 0.29(0.09) 0.98(0.13) 0.28(0.07) 0.99(0.08) 0.29(0.07) 0.98(0.09) 0.29(0.07) 0.99(0.11)
Se:1 0.95 – – 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.02) 0.94(0.01)
Se:2 0.95 – – 0.95(0.01) 0.95(0.01) 0.95(0.02) 0.93(0.01) 0.95(0.02) 0.91(0.02)
Sp:1 0.95 – – 0.95(0.01) 0.96(0.01) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.92(0.01)
Sp:2 0.95 – – 0.95(0.01) 0.96(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01)
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Table 3.4: The average prediction error PE × 100 and the SR value (provided in paren-
thesis) of the MLE and the shrinkage estimates under the AIC, BIC, and ERIC tuning
parameter criterion over 500 replications under S1 – S3 across individual testing (IT) and
the SHL pooling with c = 2, 5 and 10. Recall that the SR (selection rate) is defined to
be the proportion of the true model being exactly selected by a shrinkage estimator. The
highest SR value under each setting is underlined.

IT c = 2 c = 5 c = 10

Setting Estimate PE×100(SR) PE×100(SR) PE×100(SR) PE×100(SR)

S1

MLE 0.148(0.000) 0.126(0.000) 0.130(0.000) 0.142(0.000)
AIC 0.106(0.414) 0.092(0.430) 0.092(0.442) 0.102(0.462)
BIC 0.079(0.910) 0.071(0.908) 0.073(0.926) 0.083(0.898)
ERIC 0.085(0.724) 0.075(0.736) 0.076(0.744) 0.085(0.734)

S2

MLE 0.133(0.000) 0.106(0.000) 0.117(0.000) 0.121(0.000)
AIC 0.095(0.414) 0.074(0.414) 0.084(0.436) 0.087(0.418)
BIC 0.074(0.908) 0.059(0.910) 0.067(0.892) 0.069(0.876)
ERIC 0.084(0.702) 0.064(0.696) 0.074(0.702) 0.074(0.702)

S3

MLE 0.284(0.000) 0.231(0.000) 0.250(0.000) 0.266(0.000)
AIC 0.193(0.266) 0.160(0.294) 0.175(0.274) 0.184(0.298)
BIC 0.158(0.818) 0.130(0.820) 0.145(0.786) 0.153(0.808)
ERIC 0.183(0.428) 0.150(0.448) 0.163(0.420) 0.170(0.448)

Table 4 also provides the average PE×100 values of the MLE and the three shrink-

age estimators across all settings. It is clear that all the shrinkage estimators produce

smaller prediction errors than the MLE. For example, the BIC-type estimator can

reduce almost 50% of the prediction error of the MLE. This is because that the adap-

tive LASSO penalty in (3.7) could eliminate unnecessary risk factors. Furthermore,

because our BIC-type estimator outperforms the other two in term of variable selec-

tion, its prediction errors are the smallest under all settings. In conclusion, using the

BIC-type shrinkage estimator not only provides a large chance of identifying truly

relevant covariates, but also yields a high prediction accuracy.

Finally, we want to see whether the SHL pooling protocol causes a loss of in-

formation and thus compromises regression inference, when compared to individual

testing. To find the answer, we revisit Tables 1–4. This time we focus on the compar-

ison between individual testing and the SHL pooling. Tables 1–3 provide the average

number of tests under each setting. Obviously, the SHL pooling protocol uses fewer
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tests than individual testing (saves about 16% costs). This is an expected appealing

feature of the SHL pooling (Tebbs et al., 2013). And we observe more: (i) In Tables

1–3, the standard deviations obtained using pooling data are uniformly less than the

ones obtained using individual testing, suggesting that the SHL pooling could provide

a less variational MLE; (ii) All the averaged standard errors under the SHL pooling

are smaller than the ones under individual testing, meaning that one could use the

SHL pooled testing data to construct narrower confidence intervals while maintaining

the same nominal level; (iii) The advantage of pooling also holds when comparing

the average PE×100 values in Table 4, indicating that the SHL pooling enables one

to make a better prediction of an individual’s infection probabilities; (iv) In terms of

variable selection, the highest SR value (in Table 4) always occurs at c > 1 under each

setting; that is, using the SHL pooled testing data has a larger chance to identify the

true model. Hence, instead of compromising regression inference, the SHL pooling

produces more precise inference. In addition, one must note that these advantages

are achieved with a less amount of costs and a larger number of parameters to be

estimated. This finding could be very encouraging to laboratories that are not using

pooling (such as the NHPL).

3.6 A CT/NG screening data set

To further encourage the use of pooling, we analyze a data set collected from the

NPHL which currently uses individual testing for the CT/NG screening. We will

illustrate, if switching from individual testing to the two-stage hierarchical pooling

used by the SHL, what benefits could be achieved for regression. To do so, we first

reiterate how the SHL is using the pooling protocol (Tebbs et al., 2013). Only female

swab specimens are screened using the SHL pooling protocol. The testing is carried

out by the TECAN DTS platform with the Aptima Combo 2 assay. The platform

is calibrated for a group size c = 4. The sensitivity and specificity of the assay are
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Se:1 = 0.942 (Se:2 = 0.992) and Sp:1 = 0.976 (Sp:2 = 0.987) for CT (NG), respectively

(Gen-Probe, San Diego).

In 2009, 14530 female swab specimens were tested individually in the NPHL. The

employed assay was also the Aptima Combo 2 Assay. We are provided with the

diagnosed results of each specimen for CT and NG. Based on these diagnoses, the

approximated prevalence of CT and NG are 0.069 and 0.013, respectively. To reveal

the benefits of pooling, we mimic the SHL screening practice in the most realistic

way. We use a group size c = 4 which is used by the SHL. Then we construct

pools by assigning specimens according to their arrival time at the NPHL. Because

the arrival time of specimens at the NPHL are random, our way of pooling is also

random. We treat the diagnoses as “true” statuses and simulate a two-stage group

testing data set using the above testing error rates. For comparison, we also simulate

an individual testing data set using the same testing error rates. The considered

covariates include age, prenatal, symptoms, cervical friability, pelvic inflammatory

disease, cervicitis, multiple partners, new partner in the last 90 days, and contact

with someone who has an STD. All covariates, except age, are binary. With these

covariates on each individual, we first fit the individual diagnoses results by viewing

them as the truth. The resulting estimates are used as the “reference” estimates. We

then fit the individual testing data and the two-stage group testing data using the

regression and variable selection methods previously described. In our analysis, we

standardize age and code dichotomous covariates as either −0.5 or 0.5.

Table 3.5 summarizes the parameter estimates and variable selection results. The

estimates from both testing protocols are close to the “reference” estimates, but the

SEs under c = 4 are uniformly less than the ones under individual testing. The

testing error rates are estimated accurately from the group testing data.

58



Table 3.5: The NPHL screening data analysis: parameter estimates (MLE), estimated standard errors (SE) and variable selection
results (using the AIC, BIC, and ERIC criterion) from the reference estimates (Reference), individual testing estimates (IT) and the
SHL pooling estimates with a group size 4 (c = 4). The number of tests under each is provided as well.

Reference IT c = 4

number of tests – 14530 7737

MLE(SE) AIC BIC ERIC MLE(SE) AIC BIC ERIC MLE(SE) AIC BIC ERIC

CT

Intercept -1.382(0.241) – – – -1.528(0.286) – – – -1.269(0.262) – – –
Age -0.559(0.045) X X X -0.535(0.057) X X X -0.561(0.051) X X X

Prenatal 0.390(0.220) X X X 0.141(0.291) × × × 0.480(0.229) X X X
Symptoms 0.356(0.079) X X X 0.324(0.095) X X X 0.356(0.088) X X X
Cervical F 0.065(0.163) -0.058(0.202) 0.003(0.182)

PID 0.443(0.392) X X X 0.443(0.448) X X X 0.492(0.427) X X X
Cervicitis 0.611(0.106) X X X 0.746(0.118) X X X 0.645(0.116) X X X

Multi Partner 0.476(0.099) X X X 0.522(0.116) X X X 0.532(0.109) X X X
New Partner -0.069(0.091) -0.205(0.116) X -0.067(0.102)
Contact STD 1.006(0.098) X X X 1.023(0.111) X X X 1.048(0.108) X X X

NG

Intercept -2.426(0.416) – – – -2.727(0.595) – – – -2.683(0.507) – – –
Age -0.251(0.083) X X X -0.278(0.112) X X × -0.258(0.087) X X X

Prenatal 0.283(0.591) 0.003(0.929) -0.073(0.750)
Symptoms 1.202(0.164) X X X 1.176(0.219) X X X 1.234(0.174) X X X
Cervical F 0.277(0.288) 0.290(0.327) X X X 0.270(0.301)

PID 1.032(0.496) X X X 0.719(0.635) X X X 0.879(0.554) X X X
Cervicitis 0.625(0.199) X X X 0.746(0.225) X X X 0.712(0.201) X X X

Multi Partner 1.070(0.177) X X X 0.894(0.216) X X X 1.106(0.185) X X X
New Partner -0.130(0.189) -0.060(0.229) -0.127(0.198)
Contact STD 1.405(0.173) X X X 1.208(0.216) X X X 1.402(0.180) X X X

δ 0.573(0.030) – – – 0.604(0.042) – – – 0.563(0.033) – – –

Se:1 = 0.942 – – – – – – – – 0.922(0.016) – – –
Se:2 = 0.992 – – – – – – – – 0.989(0.029) – – –
Sp:1 = 0.976 – – – – – – – – 0.974(0.004) – – –
Sp:2 = 0.987 – – – – – – – – 0.985(0.002) – – –
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In terms of variable selection, the reference shrinkage estimates identified different

sets of significant risk factors for the two infections, where prenatal is significant to CT

but not to NG. The same results are identified by the three shrinkage estimates based

on the group testing data. However, based on the individual testing data, none of

the three shrinkage estimates can select prenatal for CT. These comparisons reinforce

our conclusion that, in addition to a significant cost reduction (i.e., it saves 14530−

7737 = 6793 tests), the two-stage pooling protocol leads to more precise inference than

individual testing while estimating the testing error rates simultaneously. In addition,

we have considered randomly assigning individuals into groups as in Section 3.5 and

used group sizes varying from 2 to 10. Appendix B.8 includes these results which

reinforce the aforementioned conclusion on the advantages of the two-stage pooling

protocol when compared to individual testing. We believe these numerical findings

could encourage more laboratories to consider the two-stage pooling protocol.

3.7 Discussion

Motivated by the SHL CT/NG screening practice, we have developed a regres-

sion method for the two-stage hierarchical pooling data. Our proposed technique

jointly models the unobserved individual disease statuses and produces interpretable

marginal inference for each infection. The assay sensitivity and specificity for each

infection can be estimated as well. In addition, we further developed a shrinkage

estimator to consistently select truly relevant risk factors for each infection.

From the simulation studies and the CT/NG screening data analysis, it is ex-

citing to observe that, as compared to individual testing, the SHL pooling protocol

can significantly reduce cost and yet produce more efficient regression estimators.

An interesting future project would be to theoretically investigate how to construct

groups to obtain the most efficient regression estimators for each infection within a

budget limit. Intuitively, individuals with high probabilities of being infected should
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be tested individually and those with low probabilities could be tested in pools. But

what is the criterion to differentiate between high and low probabilities? How to

know these probabilities before the screening? For those tested in pools, what is the

optimal pool size that should be used for inference? These are interesting but chal-

lenging questions to be answered in future works. Possible guidance could be found

in McMahan et al. (2012a) and Huang et al. (2017).

In our simulation studies, we used a Gumbel copula. We chose it for two reasons.

1) When compared to Gaussian copulas, it has an analytic expression which facilitates

the computation. 2) It is able to deliver robust estimates of the regression coefficients

and misclassification parameters even when the true copula is not Gumbel. To reveal

this robustness, we have included a simulation study in Appendix B.9. In practice,

users are welcome to choose other copulas, such as Gaussian, Clayton, or Frank

(Nelsen, 2007). Besides, the logistic function for gk’s could also be changed to the

inverse of the link in probit or complementary log-log models. Our GEM algorithm

has the generality to incorporate those choices.

Though this work mainly focuses on two infections, the model can be extended

to incorporate more infections. For example, suppose there are three infections. We

have ỸYY ij = (Ỹij1, Ỹij2, Ỹij3)T. A joint model for ỸYY ij|xxxij is built by assuming that

there exists a random vector UUU ij = (Uij1, Uij2, Uij3)T, of which the distribution func-

tion is a three-dimensional copula C(u1, u2, u3|δ), such that the event {Ỹijk = 1|xxxij}

is equivalent to {Uijk ≤ gk(xxxT
ijβk)} for k = 1, 2, 3. Consequently, the marginal re-

gression model (3.1) naturally holds for each disease, and the cell probabilities of

ỸYY ij|xxxij can be calculated in terms of C; e.g., pr(Ỹij1 = 1, Ỹij2 = 1, Ỹij3 = 0|xxxij) =

C{g1(xxxT
ijβ1), g2(xxxT

ijβ2), 1|δ} − C{g1(xxxT
ijβ1), g2(xxxT

ijβ2), g3(xxxT
ijβ3)|δ}. Our GEM algo-

rithm can be generalized to incorporate more than two infections as well. We omit

details but include some simulation results in Appendix B.10 to demonstrate this

generalizability.
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Lastly, we discuss the three assumptions (Assumptions 1–3) on the assay sensi-

tivity and specificity and possible ways to relax them. For Assumption 1, when the

assay utilizes the concentration level of a specific biological marker (biomarker) to

make a diagnosis, mixing a positive specimen with negative ones could dilute the

concentration level and affect the assay sensitivity and specificity significantly when

group size changes. This “dilution effect” can be taken into consideration if the dis-

tribution of the biomarker concentration is provided in advance (Wang et al., 2015;

Wang et al., 2018). To relax Assumption 2, one could use a multinomial distribution

to account for the cross-disease dependency of the testing outcomes when the true

statuses are given. Then the number of misclassification parameters increases from

4 to 12 when the number of diseases is two. One could modify the GEM algorithm

to estimate the twelve parameters along with the regression. However, some of these

parameters may require an impractical large sample size to be accurately estimated.

The last assumption can be relaxed by assuming a covariate-adjusted model for mis-

classification parameters (Janes and Pepe, 2008). But caution must be taken for

model identifiability when the covariate-adjusted misclassification parameters are to

be estimated along with the regression.
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Chapter 4

Estimation in group testing: what can be

thrown away?

Summary: For large-scale screening problems, pooled testing has been demonstrated

to be more efficient than traditional individual testing (see most references in Section

1). However, at present, most laboratories still conduct individual testing protocol

to collect data for estimating infection probabilities of rare diseases. The practical

reason for not using pooled testing might be the complexity of a group testing algo-

rithm. Many group testing algorithms contain multiple stages and require to perform

retesting tests on suspicious individuals (Kim et al., 2007), which complicates the

laboratorians’ work particularly on recording the testing outcome, the structure of

the data, and all the group members. Even when these information are accurately

recorded, the complexity increases the difficulty for the lab technicians to analyze

these highly structured data. To make the analysis of group testing data easier for

the lab, we discuss potential ways to simplify data collection routine and examine

how the regression estimation accuracy would be affected by the use of fewer data.

The simulation studies are conducted under the two-stage Dorfman decoding for a

single infection. It is natural to expect the use of less information would lead to less

accurate estimators. However, when the pool responses are blind, i.e. only the final

diagnoses and group memberships are collected, the regression estimation accuracy

does not sacrifice greatly from using the entire structured group testing data. In

other words, for implementation efficiency, in practice, the laboratory is suggested to
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record only individual diagnoses and group members while performing group testing.

4.1 Model and assumptions

Suppose a total of N individuals need to be examined for one binary characteristic,

and each individual is randomly assigned to one of J non-overlapping pools. For

simplicity, we consider a fixed group size c herein; i.e. cJ = N . With the group

assignments, we let ij denote the ith individual specimen in the jth pool. Then,

we denote the true infection status and the covariates (risk factors and an intercept

term) of the ith individual in the jth pool by a binary variable Ỹij and a (m + 1)-

dimensional vector xij = (1, xij1, . . . , xijm)T, respectively. We assume the Ỹij | xij are

independent across ij and have the following relationship

pr(Ỹij = 1 | xij) = g(xT
ijβ), (4.1)

where g() is a user pre-specified function; e.g. the inverse of logit or probit link.

Throughout the study, we consider one infection Dorfman group testing algorithm.

In the first stage, we denote the testing response of the jth group and specimens

belonging to the jth group by Zj and Gj respectively, for j = 1, · · · , J . When the jth

pool tests positive in the first stage i.e. Zj = 1, we retest the corresponding subjects

through the same testing assay in the second stage, of which testing outcomes are

denoted by Yij’s for i ∈ Gj and j = 1, . . . , J . Classified with errors, the observed

testing outcome might be different from the true infection status. We denote by

Z̃j the true status for the jth pool, where Z̃j = 0 indicates the infection is truly

negative for pool Gj and Z̃j = 1 otherwise. When the assay is perfect, a pool tests

negative only if it is a mix of negative subjects, the relationship of true infection

statuses before and after pooling is Z̃j = maxi∈Gj
Ỹij. The diagnostic ability of testing

assay is described by assay sensitivity and specificity, which are denoted by Se and Sp

respectively. The sensitivity (specificity) is defined as the probability that a specimen
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tests positive (negative) given that it is truly positive (negative). Note that the

specimen could be either in a pooled unit from Stage 1 or an individual subject from

Stage 2. Hence, we have Se = pr(Zj = 1 | Z̃j = 1) = pr(Yij = 1 | Ỹij = 1) and

Sp = pr(Zj = 0 | Z̃j = 0) = pr(Yij = 0 | Ỹij = 0).

To deduce the methodology in next section, we have assumptions enumerated

below. They are commonly used assumptions in group testing literature; see Xie

(2001), Kim et al. (2007), and Wang et al. (2014b).

A1. We assume only one discrimination assay is applied throughout the protocol

and the sensitivity and specificity are constant across stages. In addition, these

misclassification errors do not depend on the pool size nor the proportion of

affected subjects within the pool.

A2. Given the true status, the testing outcome is independent with individual risk

factors; e.g. pr(Yij = 1 | Ỹij = 1,xij,β) = pr(Yij = 1 | Ỹij = 1).

A3. Conditioning on the true statuses, testing outcomes are independent; e.g. pr(Yij =

1, Zj = 1 | Ỹij = 1, Z̃j = 1) = pr(Yij = 1 | Ỹij = 1)pr(Zj = 1 | Z̃j = 1).

4.2 Estimation

Recall that the aim of this study is to discover an efficient data collection strategy for

group testing that can simplify laboratory routine and yet maintain good regression

estimation performance. Because individual final diagnoses are always the final goal

when laboratories are conducting disease screening, we assume that the least infor-

mation that we have to collect under group testing is the disease diagnosis for every

individual. Particularly, under two-stage Dorfman group testing, it comes from Stage

1 if the pool tests negative, otherwise is testing outcome from Stage 2. We denote by

Dij the diagnosis of the ith individual from the jth pool. It is easy to observe that
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Dij = ZjYij. Hence, we have

pr(Dij = 0) = pr(Zj = 0) + pr(Zj = 1, Yij = 0),

and

pr(Dij = 1) = pr(Zj = 1, Yij = 1).

Other than individual diagnoses, some laboratories could also record group assign-

ment information intending to illustrate how pooled testing is performed. In addition

to those two types of information, current data collection strategy of group testing

would also collect pooled testing outcomes in order to describe the protocol structure.

With those accessible information, we consider the following three scenarios S1−S3

from the use of the least required data to the entire data.

S1. Unknown group memberships and pooled outcomes

S2. Unknown pooled outcomes

S3. Known all information

In the next, we provide the estimators of regression coefficients under the above

scenarios.

4.2.1 S1. Unknown group memberships and pooled outcomes

In this subsection, we estimate β from the observed individual diagnoses. Due to

the unknown grouping structure, instead of using ij, we denote individual diagnosis,

true infection status, and individual covariate vector of the nth subject by Dn, Ỹn

and xn respectively. We further assume the Ỹn’s are independent and identically

distributed with a homogeneous prevalence of infection; i.e., Ỹn ∼ Bernoulli(p), where

p = pr(Ỹn = 1), and n = 1, · · · , N . With a population prevalence, we provide the

estimation steps for the unknown parameters (the population prevalence p and the

regression coefficients β) from the observed data {Dn : n = 1, · · · , N}.
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Prevalence estimation

To estimate of the population prevalence p, we consider the method of moment. For

the nth subject, according to the Law of Total Probability (LTP), the first moment

of Dn is

E(Dn) = pr(Dn = 1)

= pr(Dn = 1 | Ỹn = 1)pr(Ỹn = 1) + pr(Dn = 1 | Ỹn = 0)pr(Ỹn = 0). (4.2)

Under the assumption A3,

pr(Dn = 1 | Ỹn = 1) = pr(Zj = 1, Yn = 1 | Ỹn = 1) = S2
e . (4.3)

Applying the LTP again, we have

pr(Dn = 1 | Ỹn = 0) = pr(Zj = 1, Yn = 1 | Ỹn = 0)

= pr(Zj = 1, Yn = 1 | Z̃j = 0, Ỹn = 0)pr(Z̃j = 0 | Ỹn = 0)

+ pr(Zj = 1, Yn = 1 | Z̃j = 1, Ỹn = 0)pr(Z̃j = 1 | Ỹn = 0)

= (1− Sp)2qc−1 + Se(1− Sp)(1− qc−1), (4.4)

where q = 1− p. Combining (4.3) and (4.4), the first moment of Dn in (4.2) has the

explicit formula

E(Dn) = S2
ep+ (1− Sp)q{(1− Sp)qc−1 + Se(1− qc−1)}. (4.5)

With known Se and Sp, an estimator of p could be obtained by minimizing the least

squares objective function ∑J
j=1

∑c
i=1{Dn − E(Dn)}2. Namely, the p̂ is obtained via

p̂ = argmin
p

J∑
j=1

c∑
i=1
{Dn − E(Dn)}2, (4.6)

where E(Dn) is provided in (4.5).
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Coefficients estimation

Next, we demonstrate the method to estimate regression coefficients β in (4.1). In-

corporating covariates information, the first moment of Dn | xn equals

E(Dn | xn) = pr(Dn = 1 | xn)

= pr(Dn = 1 | Ỹn = 1,xn)pr(Ỹn = 1 | xn)

+ pr(Dn = 1 | Ỹn = 0,xn)pr(Ỹn = 0 | xn).

Under the assumption A2, combining the (4.1), (4.3) and (4.4), we have

E(Dn | xn, p) = S2
eg(xT

nβ) + (1− Sp){(1− Sp)qc−1 + Se(1− qc−1)}{1− g(xT
nβ)}.

Having the p̂ provided in (4.6), we simply replace the unknown parameter q in above

equation by q̂ = 1 − p̂. Consequently, the estimator of β could be achieved through

minimizing the least squares objective function ∑J
j=1

∑c
i=1{Dn−E(Dn | xn, p̂)}2 with

respect to β. Hence, the final estimator of β is obtained in the form of

β̂ = argmin
β

J∑
j=1

c∑
i=1
{Dn − S2

eg(xT
nβ)− (1− Sp){(1− Sp)q̂c−1

+ Se(1− q̂c−1)}{1− g(xT
nβ)}}2. (4.7)

4.2.2 S2. Unknown pooled outcomes

In this scenario, in spite of final individual diagnoses, we consider that the information

of group membership are also available to use, however, pooled testing outcomes from

the first stage are still assumed as unknown. Hence, we estimate β from observed

information of {Gj : j = 1, · · · , J} and D = {Dij : i ∈ Gj, j = 1, · · · , J}. The

relationship of observed and latent variables can be described by the conditional
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distributions below.

Ỹij | xij,β ∼ Bernoulli{pij = g(xT
ijβ)},

Zj | Z̃j ∼ Bernoulli{SZ̃j
e (1− Sp)1−Z̃j},

if Zj = 1, Dij | Ỹij ∼ Bernoulli{SỸj
e (1− Sp)1−Ỹj}, else Dij = 0, for i ∈ Gj.

Let Ỹ and x be the collection of Ỹij’s and xij’s respectively. Under the assumptions

in Section 4.1, the joint distribution of the observed data Dij and latent data Ỹij can

be written as

f(D, Ỹ | x,β)

=
J∏
j=1

∏
i∈Gj

f(Ỹij | xij,β)

×
J∏
j=1

I
(

max
i∈Gj

Dij = 0
){

pr(Zj = 0 | Z̃j) + pr(Zj = 1 | Z̃j)
∏
i∈Gj

f(Dij | Ỹij)
}

×
J∏
j=1

I
(

max
i∈Gj

Dij = 1
){

pr(Zj = 1 | Z̃j)
∏
i∈Gj

f(Dij | Ỹij)
}

∝
J∏
j=1

∏
i∈Gj

g(xT
ijβ)Ỹij{1− g(xT

ijβ)}1−Ỹij .

Since Se and Sp are assumed as known, the complete log-likelihood reduces to be

lc(β | Ỹ ,x) =
J∑
j=1

c∑
i=1

[
(1− Ỹij) log{1− g(xT

ijβ)}+ Ỹij log g(xT
ijβ)

]
.

Due to the latency of Ỹij’s, EM approach is applied to estimate β. The algorithm

starts from an initial value of β then finds the maximum likelihood estimator by

applying E-step and M-step iteratively until a convergence. At a current estimator

of the parameters β(d), the E-step calculates

Q(β | β(d)) = E{lc(β | Ỹ ,x) |D,x,β(d)}

=
J∑
j=1

c∑
i=1

pr(Ỹij = 0 |D,x,β(d)) log{1− g(xT
ijβ)}

+ pr(Ỹij = 1 |D,x,β(d)) log g(xT
ijβ)

.
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Because of the independence assumption, the expected true disease status of ith

individual is only related to the information from the jth pool, where i ∈ Gj. Thus,

we have pr(Ỹij = y | D,x,β(d)) = pr(Ỹij = y | Dj,xj,β(d)), where Dj and xj are

the collection of Dij’s and xij’s from the jth pool, respectively. Then, it suffices to

compute

pr(Ỹij = y |Dj,xj,β(d)) = pr(Ỹij = y,Dj | xj,β(d))∑
y′∈{0,1} pr(Ỹij = y′,Dj | xj,β(d))

, (4.8)

for i ∈ Gj. Note that

pr(Ỹij = y,Dj | xj,β(d)) = I(Dj = 0)pr(Zj = 0,Dj, Ỹij = y | xj,β(d))

+ pr(Zj = 1,Dj, Ỹij = y | xj,β(d)). (4.9)

Let pij(β(d)) = g(xT
ijβ

(d)) and qij(β(d)) = 1− pij(β(d)). When Zj = 0, then

pr(Zj = 0,Dj, Ỹij = 0 | xj,β(d)) = pr(Zj = 0, Ỹij = 0 | xj,β(d))

= pr(Zj = 0 | Z̃j = 0)pr(Z̃j = 0, Ỹij = 0 | xj,β(d))

+ pr(Zj = 0 | Z̃j = 1)pr(Z̃j = 1, Ỹij = 0 | xj,β(d))

=
{

1− Se + (Se + Sp − 1)
∏

l∈Gj\{i}
qlj(β(d))

}
qij(β(d)),

(4.10)

and

pr(Zj = 0,Dj, Ỹij = 1 | xj,β(d)) = pr(Zj = 0, Ỹij = 1 | xij,β(d))

= pr(Zj = 0 | Z̃j = 1)pr(Ỹij = 1 | xij,β(d))

= (1− Se)pij(β(d)). (4.11)
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When Zj =1,

pr(Zj = 1,Dj, Ỹij = 0 | xj,β(d))

= pr(Zj = 1 | Z̃j = 0)pr(Z̃j = 0, Ỹij = 0,Dj | xj,β(d))

+ pr(Zj = 1 | Z̃j = 1)pr(Z̃j = 1, Ỹij = 0,Dj | xj,β(d))

= S1−Dij
p (1− Sp)Dijqij(β(d))

(1− Sp)
∏

l∈Gj\{i}
S1−Dlj
p (1− Sp)Dljqlj(β(d))

+ Se

 ∏
l∈Gj\{i}

{
S1−Dlj
p (1− Sp)Dljqlj(β(d)) + (1− Se)1−DljSDlj

e plj(β(d))
}

−
∏

l∈Gj\{i}
S1−Dlj
p (1− Sp)Dljqlj(β(d))

, (4.12)

and

pr(Zj = 1,Dj, Ỹij = 1 | xj,β(d))

= pr(Zj = 1 | Z̃j = 1)pr(Z̃j = 1, Ỹij = 1,Dj | xj,β(d))

= Se(1− Se)1−DijSDij
e pij(β(d))∏

l∈Gj\{i}

{
S1−Dlj
p (1− Sp)Dljqlj(β(d)) + (1− Se)1−DljSDlj

e plj(β(d))
}
. (4.13)

Therefore, combining (4.10) – (4.13) and (4.9) completes the computation of (4.8),

and further finishes the E-step. The M-step updates the β(d) by maximizing Q(β |

β(d)) with respect to β; i.e. β(d+1) = argmax
β
Q(β | β(d)). The final estimator of β is

achieved by repeating the E-step and M-step until reaching a certain criterion.

4.2.3 S3. Unknown all information

We now assume the group memberships, the pooled level results, and individual-level

final diagnoses are all recorded by laboratorians and available to use for estimation.

The method herein is simply the one-dimensional version of the one introduced in

Chapter 3. Again, the EM algorithm is applied to estimate the regression coefficients.

Since we now observe the {Gj : j = 1, · · · , J}, Z = {Zj : j = 1, , J}, and D = {Dij :
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i ∈ Gj, j = 1, · · · , J}, the E-step becomes to compute

Q(β | β(d)) = E{lc(β | Ỹ ,x) | Z,D,x,β(d)}

=
J∑
j=1

c∑
i=1

pr(Ỹij = 0 | Z,D,x,β(d)) log{1− g(xT
ijβ)}

+ pr(Ỹij = 1 | Z,D,x,β(d)) log g(xT
ijβ)

,
at a current estimate of β(d). By the assumption of independence across pools, it

suffices to compute

pr(Ỹij = y | Z,D,xj,β(d)) = pr(Ỹij = y | Zj = z,Dj,xj,β(d))

= pr(Ỹij = y, Zj = z,Dj | xj,β(d))∑
y′∈{0,1} pr(Ỹij = y′, Zj = z,Dj | xj,β(d))

,

for y ∈ {0, 1} and z ∈ {0, 1}. Note that all the required terms have been provided

in (4.10) – (4.13). By combining these probabilities, we accomplish the calculation

in the E-step. In the M-step, the β(d) is updated through maximizing Q(β | β(d))

with updated formula β(d+1) = argmax
β
Q(β | β(d)). Finally, the maximum likelihood

estimator of β is obtained by iteratively repeating the two updating steps until a

numerical convergence.

4.3 Simulation

In this section, we conduct simulation studies to illustrate and compare the perfor-

mance of the proposed estimators over all considered scenarios S1 – S3.

The group testing data are generated with sample size N = 3000. Since the groups

have not constructed yet, we denote the index of subject by n for the nth individual,

for n = 1, · · · , N . We first generate the true individual variables. For each single

subject, we generate a m + 1-dimensional covariate vector xn = (1, xn1, · · · , xnm)T,

where (xn1, · · · , xnm)T is simulated from a multivariate normal distribution with a

correlated variance-covariance matrix Σl1,l2 = 0.9|l1−l2| and 0 ≤ l1, l2 ≤ m. We have
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experimented with model dimensions m ∈ (5, 10) with the corresponding parameter

settings presented below.

• M5: β = (−6,−3,−1,−3, 2, 3)T

• M10: β = (−5, 3, 1,−2, 1, 1,−4, 1,−1,−1, 1)T

• SM10: β = (−5, 3, 0,−1, 0, 0,−4, 0, 0, 1, 0)T

The first two parameter settings experience low-dimensional and high-dimensional

parameters β with m = 5, 10 respectively. The third setting considers sparse pa-

rameters of β. It is worthwhile to point out, the true regression coefficients β are

set to ensure the infectious prevalence being around 8% under each parameter set-

ting. The individual true infection status Ỹn is simulated from a Bernoulli random

variable with the probability of infection computed from (4.1) and an inverse of logit

link; i.e. pr(Ỹn = 1 | xn) = exp(xT
nβ)/{1 + exp(xT

nβ)}. In the next, we mimic

the two-stage Dorfman testing protocol. The individuals are randomly assigned to

J non-overlapping pools. Without loss of generality, we consider a common group

size across pools and c ∈ {2, 5, 10}. Then we use ij to reindex the ith individ-

ual from the jth pool, for i ∈ Gj and j = 1, · · · , J . With pre-specified testing

errors (Se, Sp), the first-stage pooled outcome of the jth pool is generated by Zj ∼

Bernoulli {SeZ̃j+(1−Sp)(1−Z̃j)}, where Z̃j = maxi∈Gj
Ỹij. Only if Zj = 1, the proto-

col proceeds to the second stage, and we generate the retesting outcome of the ith indi-

vidual from positive pools by Yij ∼ Bernoulli {SeỸij+(1−Sp)(1−Ỹij)}. According to

our definition in Section 4.2, the individual diagnoses are recorded as Dij = ZjYij for

i ∈ Gj and j = 1, · · · , J . Finally, the observed testing data are {Dn : n = 1, · · · , N}

for S1, {Dij : i ∈ Gj, j = 1, · · · , J} for S2 and {(Zj, D1j, · · · , Dcj) : j = 1, · · · , J} for

S3.

The simulation is repeated 500 times under each parameter, group size and data

collection setting. To evaluate the overall estimation performance, we use the empir-
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ical mean squared error (MSE), calculated by MSE = E{(β̂ − β∗)T(β̂ − β∗)}, where

β∗ is the true β in the parameter setting which was used to generate data.

The results of parameter settingsM5,M10 and SM10 are reported in Tables 4.1

– 4.3, respectively. For the purpose of comparison, we also mimic the individual test-

ing procedure and provide regression results for all parameter settings. We observe

that the two-stage group testing could reduce up to about 45% of the testing cost

compared to individual testing does. The details of estimation step under individual

testing is provided in Appendix C. As for parameter estimation, in general, the es-

timates are close to the truth exhibiting small bias regardless of simulation settings.

Although the average sample standard deviation increases as group size, it is an ex-

pected phenomenon due to the loss of individual status information while testing

on large pools. Let’s compare the model estimation over considered data collection

settings S1 – S3. One can observe that the MSEs uniformly decrease from S1 to

S2 and S2 to S3, which implies the use of more data would result in a better model

estimation. However, for all simulation settings, S2 beats individual testing in terms

of producing estimates with lower MSEs. Regarding S1 of using purely individual di-

agnoses, we found that the moment estimators do not perform well when the number

of covariates is small (Table 1.1). In contrast, when regressing on a larger number of

covariates (see Tables 4.2 and 4.3), the MSEs of estimator from the “method of mo-

ment” (S1) are greatly improved no matter whether the sparsity of β. In particular,

for some cases, the estimation performance under S1 is even better than that of S2

and individual testing. Therefore, at a concern of estimation stability and practical

efficiency, when performing group testing for screening, we strongly recommend lab-

oratories recording only individual diagnoses (and the group memberships) instead

of keeping track of every testing outcomes.
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Table 4.1: Summary statistics of the estimates under parameter settingM5, data collection scenarios S1 – S3 of two-stage group testing
with c ∈ {2, 5, 10} and individual testing (IT). Reported are the average values over 500 simulation runs, with the standard deviations in
parentheses. The average numbers of test are 2053.40 (c = 2), 1652.48 (c = 5) and 1944.92 (c = 10). The average prevalence of infection
is 7.79%.

c = 2 c = 5 c = 10

IT S1 S2 S3 S1 S2 S3 S1 S2 S3

True Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

β0 -6 -6.14(0.52) -6.17(0.54) -6.11(0.42) -6.10(0.41) -6.14(0.55) -6.11(0.43) -6.10(0.41) -6.16(0.53) -6.10(0.46) -6.12(0.44)
β1 -3 -3.08(0.38) -3.08(0.41) -3.06(0.35) -3.05(0.34) -3.07(0.39) -3.07(0.36) -3.06(0.35) -3.08(0.42) -3.04(0.39) -3.06(0.37)
β2 -1 -1.01(0.40) -1.05(0.39) -1.03(0.34) -1.03(0.33) -1.04(0.40) -1.05(0.38) -1.03(0.37) -1.01(0.42) -1.03(0.41) -1.02(0.39)
β3 -3 -3.09(0.48) -3.07(0.46) -3.06(0.42) -3.06(0.42) -3.05(0.50) -3.05(0.45) -3.04(0.44) 3.08(0.50) 3.06(0.47) 3.05(0.45)
β4 2 2.05(0.42) 2.03(0.42) 2.03(0.38) 2.03(0.38) 2.05(0.47) 2.05(0.41) 2.05(0.40) 2.03(0.44) 2.03(0.41) 2.01(0.39)
β5 3 3.08(0.39) 3.10(0.46) 3.08(0.40) 3.07(0.40) 3.06(0.49) 3.06(0.43) 3.04(0.42) 3.08(0.51) 3.06(0.46) 3.05(0.44)

MSE 1.1809 1.2736 0.8500 0.8190 1.4266 0.9418 0.8899 1.3123 1.0627 0.9357
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Table 4.2: Summary statistics of the estimates under parameter setting M10, data collection scenarios S1 – S3 of two-stage group
testing with c ∈ {2, 5, 10} and individual testing (IT). Reported are the average values over 500 simulation runs, with the standard
deviations in parentheses. The average numbers of test are 2060.25 (c = 2), 1664.83 (c = 5) and 1964.48 (c = 10). The average
prevalence of infection is 7.91%.

c = 2 c = 5 c = 10

IT S1 S2 S3 S1 S2 S3 S1 S2 S3

True Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

β0 -5 -5.09(0.40) -5.13(0.35) -5.09(0.29) -5.10(0.28) -5.08(0.34) -5.11(0.31) -5.11(0.31) -5.10(0.37) -5.08(0.35) -5.13(0.34)
β1 3 3.08(0.37) 3.07(0.32) 3.05(0.31) 3.05(0.30) 3.08(0.32) 3.08(0.32) 3.08(0.31) 3.08(0.34) 3.12(0.38) 3.09(0.36)
β2 1 1.02(0.35) 1.05(0.34) 1.03(0.33) 1.03(0.32) 1.00(0.33) 1.03(0.34) 1.03(0.33) 0.98(0.36) 1.01(0.39) 0.98(0.37)
β3 -2 -2.06(0.40) -2.05(0.38) -2.03(0.37) -2.03(0.36) -2.02(0.33) -2.06(0.35) -2.05(0.34) -2.02(0.36) -2.05(0.38) -2.03(0.37)
β4 1 1.01(0.35) 1.01(0.37) 1.00(0.35) 1.00(0.34) 1.00(0.34) 1.03(0.34) 1.02(0.34) 1.01(0.36) 1.06(0.37) 1.05(0.36)
β5 1 1.05(0.36) 1.02(0.36) 1.02(0.34) 1.02(0.34) 1.00(0.36) 1.01(0.35) 1.01(0.34) 1.02(0.36) 1.06(0.37) 1.05(0.36)
β6 -4 -4.09(0.50) -4.07(0.42) -4.06(0.39) -4.07(0.38) -4.00(0.41) -4.08(0.43) -4.07(0.43) -4.07(0.46) -4.15(0.47) -4.12(0.45)
β7 1 1.01(0.36) 1.01(0.34) 1.01(0.33) 1.01(0.33) 0.99(0.33) 1.03(0.33) 1.02(0.33) 1.02(0.37) 1.05(0.38) 1.03(0.37)
β8 -1 -1.02(0.36) -1.00(0.33) -1.00(0.33) -0.99(0.33) -1.02(0.33) -1.04(0.35) -1.04(0.34) -1.01(0.33) -1.05(0.35) -1.03(0.34)
β9 -1 -1.03(0.39) -1.03(0.33) -1.03(0.32) -1.03(0.32) -1.00(0.34) -1.03(0.34) -1.03(0.34) -1.02(0.35) -1.04(0.36) -1.02(0.35)
β10 1 1.02(0.29) 1.03(0.25) 1.02(0.24) 1.02(0.24) 1.02(0.26) 1.03(0.26) 1.03(0.25) 1.03(0.27) 1.04(0.28) 1.02(0.28)

MSE 1.5978 1.3505 1.2059 1.1770 1.2485 1.3018 1.2669 1.4364 1.5517 1.4693
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Table 4.3: Summary statistics of the estimates under parameter setting SM10, data collection scenarios S1 – S3 of two-stage group
testing with c ∈ {2, 5, 10} and individual testing (IT). Reported are the average values over 500 simulation runs, with the standard
deviations in parentheses. The average numbers of test are 2067.44 (c = 2), 1672.91 (c = 5) and 1983.30 (c = 10). The average
prevalence of infection is 8.02%.

c = 2 c = 5 c = 10

IT S1 S2 S3 S1 S2 S3 S1 S2 S3

True Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

β0 -5 -5.17(0.41) -5.02(0.31) -5.09(0.28) -5.08(0.28) -5.06(0.34) -5.10(0.33) -5.10(0.33) -5.03(0.32) -5.04(0.34) -5.09(0.33)
β1 3 3.10(0.38) 3.02(0.30) 3.05(0.29) 3.05(0.29) 3.04(0.32) 3.06(0.32) 3.05(0.31) 3.08(0.32) 3.04(0.33) 3.08(0.33)
β2 0 0.01(0.35) -0.02(0.32) -0.01(0.32) -0.01(0.32) 0.01(0.33) 0.01(0.33) 0.01(0.33) -0.02(0.36) -0.02(0.36) -0.02(0.35)
β3 -1 -1.05(0.39) -0.98(0.33) -1.01(0.35) -1.01(0.34) -1.03(0.34) -1.05(0.34) -1.04(0.34) -1.00(0.34) -1.03(0.35) -1.02(0.34)
β4 0 0.01(0.36) 0.00(0.32) 0.02(0.33) 0.02(0.33) 0.02(0.31) 0.02(0.33) 0.02(0.33) -0.02(0.32) 0.00(0.35) 0.00(0.34)
β5 0 0.00(0.36) -0.03(0.32) -0.03(0.31) -0.03(0.30) -0.02(0.31) 0.00(0.33) 0.00(0.33) 0.01(0.33) 0.01(0.35) 0.01(0.34)
β6 -4 -4.14(0.52) -3.97(0.38) -4.05(0.39) -4.05(0.39) -4.00(0.42) -4.11(0.42) -4.10(0.41) -3.99(0.39) -4.09(0.46) -4.08(0.45)
β7 0 0.00(0.36) -0.03(0.31) -0.02(0.32) -0.02(0.32) 0.00(0.33) 0.02(0.32) 0.03(0.32) -0.01(0.33) 0.01(0.34) 0.01(0.33)
β8 0 0.02(0.36) 0.01(0.30) 0.01(0.30) 0.01(0.30) -0.01(0.33) -0.01(0.33) -0.01(0.32) -0.01(0.33) -0.01(0.34) -0.01(0.34)
β9 1 1.03(0.37) 1.02(0.31) 1.03(0.31) 1.04(0.30) 0.98(0.33) 1.00(0.33) 1.00(0.33) 0.98(0.34) 1.03(0.36) 1.01(0.35)
β10 0 -0.01(0.25) 0.00(0.25) -0.01(0.25) -0.01(0.24) 0.01(0.25) 0.01(0.24) 0.01(0.23) 0.03(0.25) 0.01(0.26) 0.01(0.25)

MSE 1.6413 1.1024 1.1130 1.0876 1.2093 1.2262 1.1901 1.2067 1.3564 1.3182
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4.4 Analysis of a chlamydia data

In this section, we apply the proposed method to analyze the chlamydia data collected

from the Nebraska Public Health Laboratory (NPHL) in 2009 which implemented the

traditional individual testing protocol for screening. As another participating labo-

ratory of annual chlamydia and gonorrhea screening, the State Hygienic Laboratory

(SHL) in Iowa City has already applied the two-stage group testing protocol for the

purpose of cost reduction. In contrast, the NPHL suffers from the high expense of

using individual testing for this large-scale screening practice. Intending to provide

an alternative option to the NPHL, the analysis focuses on the regression estima-

tion under two-stage Dorfman testing with only a fraction of cost when compared to

current individual testing for understanding how risk factors influence on the status

of infected chlamydia. We will illustrate the benefits by switching from individual

testing to two-stage Dorfman testing, and further discuss the data collection strategy

which is convenient to conduct if the lab decides to use this cost-effective protocol.

The available data consists of 14530 individual diagnoses of female swab specimens

with an overall prevalence of chlamydia being about 6.90%. For the purpose of

comparison, we emulate the individual testing and two-stage group testing protocol of

a common group size of 5, then artificially construct individual testing data and group

testing data by pretending the individual diagnoses as the “true” disease statuses and

with the use of a testing assay sensitivity of 0.942 and a specificity of 0.976. Both

of the misclassification values are obtained from the manufacturer’s document of the

Aptima Combo 2 assay, which is the current screening assay for chlamydia in both

the NPHL and SHL (Gen-Probe, San Diego). We consider 9 covariates including

age, whether in the prenatal period, whether presented with a symptom of infection,

clinical indicators of cervical friability, pelvic inflammatory disease and cervicitis,

three-month sexual history indicators of multiple partners and new partner, as well

as whether the individual had contact with someone having a sexually transmitted
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Table 4.4: Summary statistics of the estimates for the NPHL chlamydia data under
individual testing (IT) and two-stage Dorfman testing of c = 5 and data collection scenarios
S1 – S3 and. Reported are the average values over 500 simulation runs, with the standard
deviations in parentheses. The “Ref” indicates the reference estimates. The average number
of test for c = 5 is 7255.77.

c = 5

IT S1 S2 S3

Ref Mean(SD) Mean(SD) Mean(SD) Mean(SD)

Intercept -1.42 -1.43(0.14) -1.51(0.11) -1.44(0.11) -1.44(0.11)
Age -0.56 -0.55(0.04) -0.53(0.02) -0.56(0.02) -0.56(0.02)

Prenatal 0.40 0.39(0.14) 0.33(0.12) 0.39(0.10) 0.39(0.10)
Symptoms 0.36 0.36(0.05) 0.38(0.04) 0.36(0.04) 0.36(0.04)
Cervical F 0.02 0.02(0.10) -0.13(0.10) 0.06(0.07) 0.07(0.07)

PID 0.38 0.38(0.21) 0.41(0.20) 0.34(0.19) 0.35(0.18)
Cervicitis 0.62 0.64(0.06) 0.72(0.06) 0.62(0.05) 0.62(0.05)

Multi Partner 0.47 0.48(0.06) 0.47(0.05) 0.47(0.05) 0.47(0.04)
New Partner -0.07 -0.11(0.06) -0.19(0.05) -0.07(0.05) -0.07(0.04)
Contact STD 1.00 1.00(0.05) 1.00(0.05) 1.00(0.04) 1.00(0.04)

MSE 0.1144 0.1636 0.0762 0.0712

disease. With those covariates, we fit our proposed method to individual testing

data and two-stage group testing data, then report a summary of estimates from 500

replications in Table 4.4. In addition, we also fit the diagnoses through a logistic

regression and treat the coefficient estimates as a “reference” result seeing Table 4.4.

Here, the MSE is calculated via MSE = E{(β̂ − β#)T(β̂ − β#)}, where β# is the

reference estimates described above.

In Table 4.4, the observation reinforces what we concluded in simulation studies.

First of all, switching to the two-stage Dorfman group testing indeed helps the lab

save nearly half of testing cost with about 7256 required tests compared to 14530

from individual testing. As for regression estimation accuracy, the S2 and S3 both

provide better estimates than individual testing in terms of lower MSEs. Moreover,

the performance of S2 and S3 are similar with only 0.005 difference in the MSE,

which indicates that the compromise in regression estimation is negligibly small if

laboratorians skip recording pooled outcomes.
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4.5 Discussion

In this chapter, we discuss three scenarios of collecting data from group testing design

in practice and provide regression analysis for the corresponding dataset. Our sim-

ulation studies reveal that collecting entire information (group memberships, pooled

testing outcomes, and individual diagnoses) is too complicated and not recommended

when the target is achieving precise regression estimations. Skipping collecting pooled

outcomes can greatly optimize the laboratory process, and yet it does not significantly

compromise the regression estimation. We hope this realistic simplification would

make group testing more recognized in practice and more employed in the future.

Our study is specifically for two-stage Dorfman group testing algorithm of one

infection. To further demonstrate the applicability of simplifying data collection in

our suggested way, the work can be extended for other group testing algorithms like

halve decoding or array-based group testing or to the cases of pooling with multiple

infections.
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Appendix A

Chapter 2 Supplementary Materials

A.1 Proofs from Section 2.3

A.1.1 A description of the proofs of Theorem 2.1

In the following, we denote aN = OP (bN) if aN/bN is bounded in probability, and aN =

oP (bN) if aN/bN converges to zero in probability. We further denote the summation

over all the pools with size c(m) by ∑
|j|=c(m) . Then ∑J

j=1
∑cj

i=1 can be written as∑M
m=1

∑c(m)

i=1
∑
|j|=c(m) . A term of the form ∑

|j|=c(m) Aj indicates that Ajs are from

pools of size c(m). Since the function B(β(1)) = β is a one-to-one mapping from

B(1) = {β(1) ∈ Rp−1 : ‖β(1)‖ < 1} to B, β̂ can be viewed as β̂ = B(β̂(1)) where

β̂(1) is the minimizer of S{B(β(1)), η̂B(β(1))(·)} in B(1). Denote Ĝ(β(1)) as the partial

derivative of S{B(β(1)), η̂B(β(1))(·)} with respect to β(1). It could be written as

Ĝ(β(1)) = −2J T
β

J∑
j=1

{
Zj −

1
cj

cj∑
i=1

η̂β(XXXT
ijβ)

} cj∑
i=1

η̂
(1)
β (XXXT

ijβ),

where J β = ∂B(β(1))/∂β(1) and η̂
(1)
β (XXXTβ) = ∂η̂β(XXXTβ)/∂β. An asymptotically

equivalent version of Ĝ could be written as

G(β(1)) = −2J T
β

J∑
j=1

{
Zj −

1
cj

cj∑
i=1

ηβ(XXXT
ijβ)

} cj∑
i=1

η′β(XXXT
ijβ)

{
Xij − dβ(XXXT

ijβ)
}
,

where dβ(t) = E(XXX | XXXTβ = t). In the next subsection, we derive that (in Lemma

A.3)

sup
X∈X,β(1)∈B(1)

N

|η̂β(XXXTβ)− η0(XXXTβ0)| = Op{(Nh/ logN)−1/2} (A.1)
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and (in Lemma A.4)

sup
β(1)∈B(1)

N

‖Ĝ(β(1))−G(β(1)
0 ) + 2NJ T

0Ω1J 0(β − β0)‖ = op(N1/2), (A.2)

where B(1)
N = {β(1) ∈ B(1) : ‖β(1) − β(1)

0 ‖ ≤ CN−1/2} for some constant C > 0 and

Ω1 = ∑M
m=1 γm/c

(m) ×Ω. Further, Lemma A.5 shows that that
∥∥∥β̂(1) − β(1)

0

∥∥∥ = Op(N−1/2). (A.3)

Consequently,

Ĝ(β̂(1)) = G(β(1)
0 )− 2NJ T

0ΩJ 0(β̂(1) − β(1)
0 ) + op(N1/2).

Since Ĝ(β̂(1)) = 0, we have

N1/2(β̂(1) − β(1)
0 ) = (J T

0Ω1J 0)−1{−N1/2G(β(1)
0 )/2}+ op(1).

Further, we have

−2−1N−1/2G(β(1)
0 ) = J T

0N
−1/2

J∑
j=1

Aj(β0)Bj(β0)

= J T
0

M∑
m=1

(c(m)Jm/N)1/2{c(m)}−1/2J−1/2
m

∑
|j|=c(m)

Aj(β0)Bj(β0)

d→ N(0, σ2J T
0Ω1J 0),

where Aj(β) = Zj−c−1
j

∑cj

i=1 ηβ(XXXT
ijβ) and Bj(β) = ∑cj

i=1 η
′
β(XXXT

ijβ){Xij−dβ(XXXT
ijβ)}.

Then the asymptotic normality of β̂ follows. Combining (A.1) with (A.3) gives

sup
xxx∈X

∣∣∣η̂(xxxTβ̂)− η0(xxxTβ0)
∣∣∣ = Op{(Nh/ logN)−1/2},

which completes the proof of Theorem 2.1. In the next section we prove equations

(A.1), (A.2), and (A.3).

A.1.2 A.1.2 Detailed proofs

Before proceeding to the detailed proofs, we would like to introduce some notations.

We write aN = O(bN) if aN/bN is bounded; aN = o(bN) if aN/bN converges to
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zero; aN ' bN if aN/bN = O(1); aN a.s.→ a if aN converges almost surely to a; and

aN = Or(bN), if E(|aN |r) = O(brN). ET (XXX) denotes the conditional expectation of X

given T . By Cauchy-Schwartz inequality, we have Or(aN)Or(bN) = Or/2(aNbN). Let

Kh(XXXT
ijβ, t; l) = h−1K{(XXXT

ijβ − t)/h}{(XXXT
ijβ − t)/h}l for l = 0, 1, 2.

We first introduce a useful equation which would help us find the bounds for the

centralized rth moments of η̂β(XXXTβ) and η̂(1)
β (XXXTβ). Let X1, . . . , Xn be independent

random variables, and r ≥ 2. Then

E

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
r)
'

n∑
i=1

E (|Xi|r) +
∣∣∣∣∣
n∑
i=1

E(Xi)
∣∣∣∣∣
r

+
{

n∑
i=1

E(X2
i )
}r/2

. (A.4)

For the proof of (A.4) we refer to Petrov (1995).

Proposition A.1. Under Conditions C1–C5, we have, for any β ∈ B and r ≥ 2,

E|η̂β(XXXT
ijβ)− ηβ(XXXT

ijβ)|2 = O(h4 + {Nh}−1)

and

E|η̂′β(XXXT
ijβ)− η′β(XXXT

ijβ)|2 = O(h2 + {Nh3}−1)

over all (i, j)s.

Proof. We only show the result for η̂′β as the first result can be proven similarly, but

more easily. Let XXX be one of XXX ijs. After a little algebra, we obtain

h{η̂′β(XXXTβ)− η′β(XXXTβ)} =ĤN1(XXXTβ,β)SN0(XXXTβ,β)− ĤN0(XXXTβ,β)SN1(XXXTβ,β)
SN0(XXXTβ,β)SN2(XXXTβ,β)− S2

N1(XXXTβ,β) ,

where

ĤNl(t,β) =N−1
J∑
j=1

cj∑
i=1

{
cjZj − (cj − 1)µ̂− ηβ(t)− η′β(t)(XXXT

ijβ − t)
}
Kh(XXXT

ijβ, t; l).

It is easy to see that, for s ∈ {2, 4},

ĤNl(XXXTβ,β) = HNl(XXXTβ,β) +Os(N−1/2),
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where HNl(u,β) is the version of ĤNl(u,β) by replacing µ̂ with µ. Thus, it leaves

us to show that HNl(XXXTβ,β) = Os(h2 + {Nh}−1/2) for s ∈ {2, 4}. To this end, we

rewrite it as

HNl(XXXTβ,β) =
M∑
m=1

c(m)Jm
N

· 1
c(m)

c(m)∑
i=1

HNlmi(XXXTβ,β),

where HNlmi(XXXTβ,β) = ∑
|j|=c(m) HNlmij with HNlmij = J−1

m {cjZj − (cj − 1)µ −

ηβ(XXXTβ) − η′β(XXXTβ)(XXXT
ijβ − XXXTβ)}Kh(XXXT

ijβ, XXX
Tβ; l). By (A.4), for s ∈ {2, 4}, we

have

EXTβ {|HNlmi(XXXTβ,β)|s} '

∣∣∣∣∣∣
∑

|j|=c(m)

EXTβ {HNlmij(XXXTβ,β)}

∣∣∣∣∣∣
s

(A.5)

+
Jm∑
j=1

EXTβ {|HNlmij(XXXTβ,β)|s}+
 Jm∑
j=1

EXTβ

{
H2
Nlmij(XXXTβ,β)

}s/2 . (A.6)

Simple Taylor expansion provides that ∑|j|=c(m) EXTβ {HNlmij(XXXTβ,β)} = O(h2)

which implies that the term (A.5) is also of order O(h2s). Further, note that

EXTβ (|HNlmij|s) = h

Jsmh
s

∫
[{cjZj − (cj − 1)µ− ηβ(XXXTβ)− η′β(XXXTβ)(u−XXXTβ)]s

× h−1Ks

(
u−XXXTβ

h

)(
u−XXXTβ

h

)ls
fβ(u)du

=O(J−sm h1−s),

where fβ is the density of XXXTβ. Therefore, the term (A.6) is of order O(J−s/2m h−s/2).

Consequently, EXTβ {|HNlmi(XXXTβ,β)|s} = O(h2s) + O(J−s/2m h−s/2). Moreover, the

boundedness of X and B yields that E{|HNlmi(XXXTβ,β)|s} = O(h2s + {Jmh}−s/2).

Then

ĤNl(XXXTβ,β) = Os(h2 + {Nh}−1/2),

for s ∈ {2, 4}. Similarly as in Wang et al. (2014b), we can show that for any β ∈ B

and s ≥ 2,

SN0(XXXTβ,β) = fβ(XXXTβ)π0 +Os(h2 + {Nh}−1/2),

SN1(XXXTβ,β) = hf ′β(XXXTβ)π2 +Os(h2 + {Nh}−1/2),
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and

SN2(XXXTβ,β) = fβ(XXXTβ)π2 +Os(h2 + {Nh}−1/2),

where πl =
∫
K(u)uldu, and (see Zhu and Xue, 2006)

inf
xxx∈X

∣∣∣SN0(xxxTβ,β)SN2(xxxTβ,β)− S2
N1(xxxTβ,β)

∣∣∣ ≥ C > 0 almost surely

for some constant C. Then, we have

ĤNl(XXXTβ,β)SNl(XXXTβ,β) = O4(h2 + {Nh}−1/2)O4(1) = O2(h2 + {Nh}−1/2).

Thus we have

E|h{η̂′β(XXXTβ)− η′β(XXXTβ)}|2 = O(h4 + {Nh}−1)

and

E|η̂′β(XXXTβ)− η′β(XXXTβ)|2 = O(h2 + {Nh3}−1).

Proposition A.2. Let B(1)
N = {β(1) ∈ B(1) : ‖β(1) − β(1)

0 ‖ ≤ CN−1/2} for some

constant C > 0. Under Conditions C1–C5, for any β(1) ∈ B(1)
N , we have

E
∥∥∥η̂(1)
β (XXXT

ijβ)− η′β(XXXT
ijβ)

(
XXX ij − dβ(XXXT

ijβ)
)∥∥∥2

= O(h2 + {Nh3}−1)

over all (i, j)s.

Proof. Let X be one of the Xijs. After some algebra, η̂(1)
β (XXXTβ) can be written as

η̂
(1)
β (XXXTβ) = R̂N0(XXXTβ,β)SN2(XXXTβ,β)− R̂N1(XXXTβ,β)SN1(XXXTβ,β)

SN2(XXXTβ,β)SN0(XXXTβ,β)− S2
N1(XXXTβ,β)

+η̂′β(XXXTβ){X − d̂β(XXXTβ)}

where

R̂Nl(XXXTβ,β) =N−1
J∑
j=1

cj∑
i=1
{cjZj − (cj − 1)µ̂− η̂β(XXXTβ)

−η̂′β(XXXTβ)(XXXT
ijβ −XXXTβ)

}
∂{Kh(XXXT

ijβ, XXX
Tβ; l)}/∂β,
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d̂β(XXXTβ) = UN0(XXXTβ,β)SN2(XXXTβ,β)− UN1(XXXTβ,β)SN1(XXXTβ,β)
SN2(XXXTβ,β)SN0(XXXTβ,β)− S2

N1(XXXTβ,β) ,

and

UNl(t,β) = N−1
J∑
j=1

cj∑
i=1

XXX ijKh(XXXT
ijβ, XXX

Tβ; l).

Note that d̂β(XXXTβ) acts like a local linear estimator of dβ(XXXTβ). Similar to the

proof of Proposition A.1, we have ‖d̂β(XXXT
ijβ)− dβ(XXXT

ijβ)‖ = Os(h2 + {Nh}−1/2) for

all (i, j)s and s ≥ 2, and supxxx∈X,β∈B ‖d̂β(xxxTβ) − dβ(xxxTβ)‖ converges to 0 almost

surely. Consequently,

E
∥∥∥η̂′β(XXXT

ijβ)
{
Xij − d̂β(XXXT

ijβ)
}
− η′β(XXXT

ijβ)
{
Xij − dβ(XXXT

ijβ)
}∥∥∥2

= O(h2+{Nh3}−1).

Simple algebra provides that R̂Nl(XXXTβ,β) can be decomposed as following.

R̂Nl(XXXTβ,β)

= RNl(XXXTβ,β) + (µ− µ̂)BN1l(XXXTβ,β)

+ {ηβ(XXXTβ)− η̂β(XXXTβ)}BN2l(XXXTβ,β)

+ h{η′β(XXXTβ)− η̂′β(XXXTβ)}BN3l(XXXTβ,β)

= RNl(XXXTβ,β) + (µ− µ̂)BN1l(XXXTβ,β)

+ ĤN0(XXXTβ,β)SN2(XXXTβ,β)− ĤN1(XXXTβ,β)SN1(XXXTβ,β)
SN0(XXXTβ,β)SN2(XXXTβ,β)− S2

N1(XXXTβ,β) BN2l(XXXTβ,β)

+ ĤN1(XXXTβ,β)SN0(XXXTβ,β)− ĤN0(XXXTβ,β)SN1(XXXTβ,β)
SN0(XXXTβ,β)SN2(XXXTβ,β)− S2

N1(XXXTβ,β) BN3l(XXXTβ,β),

where

RNl(XXXTβ,β) = N−1
J∑
j=1

cj∑
i=1
{cjZj − (cj − 1)µ− ηβ(XXXTβ)

−η′β(XXXTβ)(XXXT
ijβ −XXXTβ)

} ∂Kh(XXXT
ijβ, XXX

Tβ; l)
∂β

,

BN1l(XXXTβ,β) = N−1
J∑
j=1

cj∑
i=1

(cj − 1)
∂Kh(XXXT

ijβ, XXX
Tβ; l)

∂β
,

BN2l(XXXTβ,β) = N−1
J∑
j=1

cj∑
i=1

∂Kh(XXXT
ijβ, XXX

Tβ; l)
∂β

,
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and

BN3l(XXXTβ,β) = N−1
J∑
j=1

cj∑
i=1

(
XXXT

ijβ −XXXTβ

h

)
∂Kh(XXXT

ijβ, XXX
Tβ; l)

∂β
.

It is easy to see that BNil(XXXTβ,β) = Os(1) for i = 1, 2, 3, and s ≥ 2. We also have

shown that µ̂ = µ + Os(N1/2), ĤNl(XXXTβ,β) = Os(h2 + {Nh}−1/2) for s ∈ {2, 4},

SNl(XXXTβ,β) = Os(1) for s ≥ 2, and infxxx∈X |SN0(xxxTβ,β)SN2(xxxTβ,β)−S2
N1(xxxTβ,β)| ≥

C > 0 almost surely. It suffices to show that RNl(XXXTβ,β) = Os(h2 +{Nh3}−1/2) for

s ∈ {2, 4} and β(1) ∈ B(1)
N and thus completes the proof of Proposition A.2.

Rewrite RNl(XXXTβ,β) as

RNl(XXXTβ,β) =
M∑
m=1

c(m)Jm
N

· 1
c(m)

c(m)∑
i=1

RNlmi(XXXTβ,β)

where RNlmi(XXXTβ,β) = ∑
|j|=c(m) RNlmij and RNlmij = J−1

m {cjZj − (cj − 1)µ −

ηβ(XXXTβ)−η′β(XXXTβ)(XXXT
ijβ−XXXTβ)}{(XXX ij−XXX)/h}φh(XXXT

ijβ−XXXTβ; l), where φh(·; l) =

h−1φ(·/h; l) and φ(u; l) = K ′(u)ul +K(u)I(l = 1). By (A.4), for s ∈ {2, 4}, we have

EXTβ {|RNlmi(XXXTβ,β)|s} '

∣∣∣∣∣∣
∑

|j|=c(m)

EXTβ {RNlmij(XXXTβ,β)}

∣∣∣∣∣∣
s

+
Jm∑
j=1

EXTβ {|RNlmij(XXXTβ,β)|s}+
 Jm∑
j=1

EXTβ

{
R2
Nlmij(XXXTβ,β)

}s/2 .
Using the smoothness of ηβ(XXXTβ) and the condition ‖β − β0‖ = O(N−1/2), we can

evaluate EXTβ {RNlmij(XXXTβ,β)} = O(J−1
m h2) since

EXTβ

[
{cjZj − (cj − 1)µ− ηβ(XXXTβ)− η′β(XXXTβ)(XXXT

ijβ −XXXTβ)}

× XXX ij −XXX
h

φh(XXXT
ijβ −XXXTβ; l)

]

= EXTβ

[
{ηβ0(XXXT

ijβ0)− ηβ(XXXTβ)− η′β(XXXTβ)(XXXT
ijβ −XXXTβ)}

× XXX ij −XXX
h

φh(XXXT
ijβ −XXXTβ; l)

]

96



= EXTβ

[
XXX ij −XXX

h
φh(XXXT

ijβ −XXXTβ; l)
]
×O(N−1/2)

+ EXTβ

[
{ηβ(XXXT

ijβ)− ηβ(XXXTβ)− η′β(XXXTβ)(XXXT
ijβ −XXXTβ)}

× XXX ij −XXX
h

φh(XXXT
ijβ −XXXTβ; l)

]

= EXTβ

[
dβ(XXXT

ijβ)− dβ(XXXTβ)
h

φh(XXXT
ijβ −XXXTβ; l)

]
×O(N−1/2)

+ EXTβ

[
{ηβ(XXXT

ijβ)− ηβ(XXXTβ)− η′β(XXXTβ)(XXXT
ijβ −XXXTβ)}

×
dβ(XXXT

ijβ)− dβ(XXXTβ)
h

φh(XXXT
ijβ −XXXTβ; l)

]

= O(N−1/2)−O(h2) = O(h2),

Further EXTβ {|RNlmij(XXXTβ,β)|s} = O(J−sm h1−2s). Thus RNlmi(XXXTβ,β) = Os(h2 +

{Jmh3}−1/2) which finishes the proof of RNl(XXXTβ,β) = Os(h2 + {Nh3}−1/2) for

s ∈ {2, 4} and β(1) ∈ B(1)
N and thus completes the proof of Proposition A.2.

Lemma A.3. Under Conditions C1–C5, we have

sup
xxx∈X,β(1)∈B(1)

N

|η̂β(xxxTβ)− η0(xxxTβ0)| = Op{(Nh/ logN)−1/2}

and

sup
xxx∈X,β(1)∈B(1)

N

∥∥∥η̂(1)
β (xxxTβ)− η′0(xxxTβ0){X − dβ0(xxxTβ0)}

∥∥∥ = Op{(Nh3/ logN)−1/2}

where B(1)
N = {β(1) ∈ B(1) : ‖β(1) − β(1)

0 ‖ ≤ CN−1/2} for some constant C > 0.

Proof. Using Propositions A.1 and A.2, this proof directly follows Lemma A.1 in

Wang et al. (2010).

Lemma A.4. Under Conditions C1–C5, we have

sup
β1∈B(1)

N

∥∥∥Ĝ(β(1))−G(β(1)
0 ) + 2NJ T

0ΩJ 0(β − β0)
∥∥∥ = op(N1/2).
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Proof. We firstly denote Aj(β) = Zj − c−1
j

∑cj

i=1 ηβ(XXXT
ijβ),

Âj(β) = Zj − c−1
j

∑cj

i=1 η̂β(XXXT
ijβ), Bj(β) = ∑cj

i=1 η
′
β(XXXT

ijβ){Xij − dβ(XXXT
ijβ)}, and

B̂j(β) = ∑cj

i=1 η̂
(1)
β (XXXT

ijβ). Then we have Ĝ(β(1)) = −2J T
β

∑J
j=1 Âj(β)B̂j(β) and

G(β) = −2J T
β

∑J
j=1Aj(β)Bj(β). Further we have the following decomposition,

1
2{G(β(1)

0 )− Ĝ(β(1))} = (J T
β −J T

0 )
M∑
m=1

∑
|j|=c(m)

Aj(β0)Bj(β0)

+ J T
β

J∑
j=1

{
Âj(β)− Âj(β0)

}
Bj(β0)

+ J T
β

J∑
j=1

{
Âj(β0)− Aj(β0)

}
Bj(β0)

+ J T
β

J∑
j=1

Aj(β0)
{
B̂j(β)−Bj(β0)

}

+ J T
β

J∑
j=1

{
Âj(β)− Aj(β0)

}
×
{
B̂j(β)−Bj(β0)

}

=I1(β(1)) + I2(β(1)) + I3(β(1)) + I4(β(1)) + I5(β(1)). (A.7)

Since J β−J 0 = O(N−1/2) for all β(1) ∈ B(1)
N , and ∑|j|=c(m) Aj(β0)Bj(β0) is a sum of

identical and independent random variables with mean zero and bounded covariance

matrix,

sup
β(1)∈B(1)

N

∥∥∥I1(β(1))
∥∥∥ = op(N1/2). (A.8)

Considering I2(β(1)), for a suitable β̄(1) ∈ B(1)
N , a Taylor expansion gives

I2(β(1)) = −J T
β


J∑
j=1

c−1
j Bj(β0)B̂j(β̄)T

J β̄(β − β0).

By β̄(1) ∈ B(1)
N and Lemma A.3, we have that supj sup

β(1)∈B(1)
N

‖B̂j(β) − Bj(β0)‖ =

op(1). Then

1
N

J∑
j=1

Bj(β0)B̂j(β̄)T =
M∑
m=1

c(m)Jm
N

× 1
c(m)2 ×

1
Jm

∑
|j|=c(m)

Bj(β0)Bj(β0)T + op(1)

=
M∑
m=1

γm
c(m)2E{Bj(β0)Bj(β0)T}+ op(1)

= Ω1 + op(1).
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Noticing that J β = J 0 +O(N−1/2), J β̄ = J 0 +O(N−1/2), and β−β0 = O(N−1/2),

we obtain

sup
β(1)∈B(1)

N

∥∥∥I2(β(1)) +NJ T
0Ω1J 0(β − β0)

∥∥∥ = op(N1/2). (A.9)

For I3(β(1)), by Lemma A.3 we have∥∥∥∥∥∥
J∑
j=1
{Âj(β0)− Aj(β0)}Bj(β0)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
J∑
j=1

1
cj

cj∑
i=1

{
ηβ0(XXXT

ijβ0)− η̂β0(XXXT
ijβ0)

} cj∑
i=1

η′0(XXXT
ijβ0){XXX ij − dddβ0(XXXT

ijβ0)}

∥∥∥∥∥∥
≤ sup

xxx∈X
|ηβ0(xxxTβ0)− η̂β0(xxxTβ0)| ×

∥∥∥∥∥∥
J∑
j=1

cj∑
i=1

η′0(XXXT
ijβ0){XXX ij − dddβ0(XXXT

ijβ0)}

∥∥∥∥∥∥
= Op{(Nh/ logN)−1/2} ×Op(N1/2) = op(N1/2). (A.10)

Similarly, for I4(β(1)) we have∥∥∥∥∥∥
J∑
j=1

Aj(β0)
{
B̂j(β)−Bj(β0)

}∥∥∥∥∥∥
=

∥∥∥∥∥∥
J∑
j=1

Aj(β0)
cj∑
i=1

{
η̂

(1)
β (XXXT

ijβ)− η′β0(XXXT
ijβ)(XXX ij − dβ0(XXXT

ijβ0)
}∥∥∥∥∥∥ (A.11)

≤

∣∣∣∣∣∣
J∑
j=1

Aj(β0)

∣∣∣∣∣∣×max
m

c(m) × sup
xxx∈X,β(1)∈B(1)

N

∥∥∥η̂(1)
β (xxxTβ)− η′β0(xxxTβ)(xxx− dβ0(xxxTβ0)

∥∥∥
(A.12)

= Op(N1/2)×Op{(Nh3/ logN)−1/2} = op(N1/2). (A.13)

The bound for I5(β(1)) follows Lemma A.3 as

sup
β(1)∈B(1)

N

∥∥∥I5(β(1))
∥∥∥ ≤ J sup

j
sup

β(1)∈B(1)
N

∣∣∣Âj(β)− Aj(β0)
∣∣∣

×p× sup
j

sup
β(1)∈B(1)

N

∥∥∥Ĵ β {Bj(β)−Bj(β0)}
∥∥∥

= J ×Op[{logN/(Nh)}1/2]×Op[{logN/(Nh3)}1/2]

= op(N1/2). (A.14)

Combining (A.7)-(A.14) completes the proof of Lemma A.4.
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Lemma A.5. Under Condition C6, J T
0ΩJ 0 is a positve definite matrix. Further if

Conditions C1–C5 are satisfied, we have

∥∥∥β̂(1) − β(1)
0

∥∥∥ = Op(N−1/2).

Proof. By the definition of Ω, it can be seen that J T
0ΩJ 0 is a positive semidefinite

matrix. It suffices to show that 0 is not one of its eigenvalues. By Condition C6,

(J 0u)TΩ(J 0u) = 0 if and only if J 0u = rβ0 for some constant r > 0 where

J 0 =



− β2√
1−‖β(1)

0 ‖2
· · · − βp√

1−‖β(1)
0 ‖2

1
. . .

1


.

Solving J 0u = rβ0 results in u = 0 and thus r = 0. It is a contradiction to r > 0.

This indicates that J T
0ΩJ 0 is a positive definite matrix and so is J T

0Ω1J 0.

To show ‖β̂(1) − β(1)
0 ‖ = Op(N−1/2), by (6.3.4) on page 163 of Ortega and Rhein-

boldt (1970), which is also used by Weisberg and Welsh (1994) and Wang et al.

(2010), it suffices to show that for any small probability τ , there always exists a

constant C > 0, such that

lim inf
N

P

(
sup
u∈UN

uTĜ(β(1)) < 0
)

= 1− τ, (A.15)

where UN = {u ∈ Rp−1 : (β(1)
0 + u) ∈ B(1), N1/2‖u‖ = C}. Let λmin be the smallest

eigenvalue of J T
0Ω1J 0. Then

uTG(β(1)
0 )− 2NuTJ T

0Ω1J 0u× ≤ ‖N1/2u‖ × ‖N−1/2G(β(1)
0 )‖ − λmin‖N1/2u‖2

= C × ‖N−1/2G(β(1)
0 )‖ − λmin × C2. (A.16)

Noting that (A.16) is a quadratic function in C with λmin > 0 and ‖N−1/2G(β(1)
0 )‖ =

Op(1), for any τ > 0, if C is chosen large enough, we have (A.16) being negative with
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probability at least 1− τ . Further by Lemma A.4, we have

sup
u∈Un

∣∣∣uTĜ(β(1))−
{
uTG(β(1)

0 )− 2NuTJ T
0Ω1J 0u

}∣∣∣ = op(1).

This proves (A.15) and hence completes the proof.

A.2 Additional results from Section 2.4.

This appendix provides a comprehensive summary of the simulation results obtained

from the study described in Section 2.4 of Chapter 2.

A.1: Summary results, (M3)–(M4) when V (Yij | XXXT
ijβ) = 0.52

Table A.1: (M3), fixed N

Table A.2: (M3), fixed J

Table A.3: (M4) when a = 1, fixed N

Table A.4: (M4) when a = 1, fixed J

Table A.5: (M4) when a = 2, fixed N

Table A.6: (M4) when a = 2, fixed J

A.2: Summary results, (M1)–(M4) when V (Yij | XXXT
ijβ) = (0.5XXXT

ijβ)2

Table A.7: (M1), fixed N

Table A.8: (M1), fixed J

Table A.9: (M2), fixed N

Table A.10: (M2), fixed J

Table A.11: (M3), fixed N

Table A.12: (M3), fixed J

Table A.13: (M4) when a = 1, fixed N

Table A.14: (M4) when a = 1, fixed J

Table A.15: (M4) when a = 2, fixed N

Table A.16: (M4) when a = 2, fixed J
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Table A.1: Simulation results of the estimators for (M3) using our proposed method and the parametric method proposed in McMahan
et al. (2016). Presented results include the sample mean and sample standard deviation (provided within the parenthesis) of the 500
estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s (provided in parenthesis)
across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.

Proposed Method Parametric Method

N c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

2500
β01 0.502(0.031) 0.505(0.035) 0.510(0.058) 0.522(0.075) 0.331(0.027) 0.331(0.035) 0.331(0.051) 0.329(0.073)
β02 0.503(0.031) 0.508(0.036) 0.508(0.057) 0.518(0.073) 0.399(0.053) 0.398(0.067) 0.393(0.107) 0.394(0.143)
β03 0.701(0.038) 0.694(0.043) 0.686(0.067) 0.666(0.080) 0.346(0.026) 0.347(0.038) 0.346(0.063) 0.344(0.084)

AEE(MSE×10) 0.313(0.030) 0.312(0.031) 0.337(0.057) 0.339(0.093) 0.633(1.679) 0.635(1.684) 0.653(1.700) 0.677(1.726)

5000
β01 0.499(0.027) 0.500(0.032) 0.508(0.043) 0.513(0.057) 0.332(0.018) 0.332(0.024) 0.333(0.036) 0.334(0.051)
β02 0.498(0.027) 0.498(0.032) 0.506(0.045) 0.508(0.058) 0.397(0.036) 0.397(0.044) 0.404(0.071) 0.407(0.099)
β03 0.707(0.032) 0.706(0.040) 0.693(0.054) 0.684(0.069) 0.346(0.019) 0.345(0.026) 0.342(0.039) 0.341(0.054)

AEE(MSE×10) 0.309(0.024) 0.319(0.025) 0.329(0.033) 0.338(0.093) 0.631(1.681) 0.633(1.684) 0.633(1.691) 0.645(1.703)

(D2)

2500
β01 0.503(0.024) 0.504(0.035) 0.508(0.055) 0.518(0.078) 0.330(0.026) 0.331(0.034) 0.332(0.052) 0.330(0.074)
β02 0.504(0.026) 0.503(0.039) 0.504(0.055) 0.504(0.082) 0.396(0.053) 0.396(0.063) 0.400(0.095) 0.399(0.127)
β03 0.701(0.031) 0.698(0.045) 0.691(0.063) 0.676(0.088) 0.346(0.026) 0.346(0.036) 0.344(0.056) 0.345(0.082)

AEE(MSE×10) 0.305(0.022) 0.316(0.029) 0.331(0.056) 0.355(0.098) 0.636(1.678) 0.637(1.682) 0.647(1.697) 0.667(1.720)

5000
β01 0.502(0.021) 0.503(0.029) 0.505(0.039) 0.514(0.054) 0.332(0.018) 0.333(0.023) 0.332(0.037) 0.331(0.049)
β02 0.503(0.021) 0.503(0.030) 0.506(0.041) 0.508(0.055) 0.397(0.037) 0.397(0.046) 0.395(0.068) 0.392(0.094)
β03 0.703(0.027) 0.700(0.037) 0.695(0.049) 0.684(0.064) 0.346(0.017) 0.346(0.025) 0.346(0.038) 0.343(0.059)

AEE(MSE×10) 0.300(0.014) 0.308(0.020) 0.320(0.030) 0.324(0.045) 0.632(1.682) 0.632(1.685) 0.638(1.692) 0.651(1.704)

(D3)

2500
β01 0.503(0.030) 0.507(0.040) 0.513(0.061) 0.523(0.077) 0.331(0.024) 0.331(0.032) 0.332(0.049) 0.331(0.070)
β02 0.503(0.030) 0.506(0.042) 0.511(0.059) 0.510(0.081) 0.393(0.051) 0.396(0.067) 0.394(0.098) 0.395(0.138)
β03 0.700(0.038) 0.693(0.051) 0.681(0.070) 0.669(0.084) 0.345(0.026) 0.345(0.036) 0.342(0.062) 0.338(0.085)

AEE(MSE×10) 0.310(0.027) 0.320(0.037) 0.327(0.073) 0.344(0.095) 0.638(1.676) 0.638(1.680) 0.654(1.696) 0.679(1.722)

5000
β01 0.501(0.022) 0.502(0.029) 0.507(0.042) 0.513(0.057) 0.331(0.018) 0.331(0.025) 0.331(0.036) 0.330(0.051)
β02 0.502(0.023) 0.502(0.031) 0.506(0.043) 0.510(0.057) 0.401(0.037) 0.400(0.048) 0.400(0.071) 0.398(0.096)
β03 0.704(0.028) 0.702(0.038) 0.693(0.053) 0.682(0.069) 0.345(0.018) 0.347(0.025) 0.349(0.040) 0.349(0.058)

AEE(MSE×10) 0.302(0.016) 0.315(0.021) 0.326(0.032) 0.334(0.049) 0.629(1.683) 0.630(1.686) 0.632(1.693) 0.643(1.705)
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Table A.2: Simulation results of the estimators for (M3) using our proposed method and the parametric method proposed in McMahan
et al. (2016). Presented results include the sample mean and sample standard deviation (provided within the parenthesis) of the 500
estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s (provided in parenthesis)
across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.

Proposed Method Parametric Method

J c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

250
β01 0.518(0.074) 0.518(0.073) 0.518(0.075) 0.524(0.073) 0.327(0.083) 0.337(0.073) 0.331(0.073) 0.330(0.078)
β02 0.513(0.075) 0.512(0.073) 0.515(0.080) 0.518(0.079) 0.406(0.167) 0.398(0.149) 0.395(0.139) 0.390(0.140)
β03 0.671(0.085) 0.672(0.083) 0.669(0.087) 0.662(0.085) 0.344(0.086) 0.349(0.081) 0.346(0.083) 0.337(0.081)

AEE(MSE×10) 0.373(0.226) 0.373(0.125) 0.376(0.109) 0.362(0.083) 0.696(1.700) 0.669(3.399) 0.672(8.633) 0.687(17.36)

500
β01 0.510(0.054) 0.507(0.055) 0.511(0.055) 0.517(0.060) 0.334(0.058) 0.334(0.055) 0.331(0.052) 0.329(0.052)
β02 0.515(0.057) 0.507(0.056) 0.506(0.055) 0.512(0.060) 0.398(0.124) 0.395(0.105) 0.393(0.100) 0.403(0.097)
β03 0.682(0.065) 0.689(0.067) 0.687(0.066) 0.677(0.072) 0.347(0.059) 0.346(0.060) 0.344(0.059) 0.346(0.056)

AEE(MSE×10) 0.343(0.109) 0.361(0.075) 0.367(0.052) 0.368(0.054) 0.658(1.680) 0.651(3.382) 0.652(8.484) 0.646(16.99)

(D2)

250
β01 0.517(0.054) 0.514(0.058) 0.512(0.067) 0.523(0.070) 0.337(0.077) 0.328(0.071) 0.326(0.070) 0.333(0.072)
β02 0.522(0.061) 0.515(0.065) 0.506(0.068) 0.516(0.069) 0.403(0.170) 0.406(0.153) 0.410(0.142) 0.406(0.141)
β03 0.672(0.055) 0.677(0.069) 0.683(0.077) 0.666(0.079) 0.353(0.072) 0.340(0.078) 0.347(0.078) 0.347(0.087)

AEE(MSE×10) 0.471(0.170) 0.388(0.098) 0.388(0.087) 0.367(0.067) 0.673(1.703) 0.684(3.387) 0.669(8.552) 0.666(17.27)

500
β01 0.516(0.042) 0.506(0.052) 0.512(0.054) 0.513(0.056) 0.333(0.056) 0.328(0.050) 0.332(0.051) 0.331(0.054)
β02 0.511(0.046) 0.505(0.054) 0.504(0.054) 0.509(0.055) 0.393(0.119) 0.380(0.095) 0.405(0.100) 0.394(0.095)
β03 0.683(0.046) 0.692(0.064) 0.689(0.063) 0.683(0.065) 0.348(0.056) 0.342(0.056) 0.346(0.057) 0.343(0.054)

AEE(MSE×10) 0.434(0.080) 0.371(0.064) 0.358(0.049) 0.357(0.045) 0.661(1.677) 0.666(3.331) 0.643(8.503) 0.653(16.99)

(D3)

250
β01 0.526(0.072) 0.525(0.072) 0.522(0.074) 0.528(0.071) 0.333(0.085) 0.325(0.074) 0.332(0.072) 0.333(0.072)
β02 0.520(0.069) 0.514(0.074) 0.515(0.075) 0.516(0.073) 0.396(0.164) 0.398(0.151) 0.401(0.140) 0.407(0.144)
β03 0.660(0.083) 0.665(0.081) 0.666(0.087) 0.662(0.076) 0.346(0.083) 0.345(0.083) 0.349(0.084) 0.345(0.082)

AEE(MSE×10) 0.357(0.193) 0.358(0.121) 0.369(0.087) 0.371(0.073) 0.688(1.675) 0.686(3.393) 0.668(8.607) 0.669(17.28)

500
β01 0.509(0.058) 0.510(0.058) 0.511(0.057) 0.516(0.058) 0.332(0.055) 0.333(0.053) 0.335(0.049) 0.337(0.049)
β02 0.508(0.057) 0.507(0.057) 0.511(0.055) 0.512(0.056) 0.406(0.124) 0.402(0.104) 0.398(0.097) 0.402(0.098)
β03 0.686(0.069) 0.687(0.069) 0.684(0.065) 0.678(0.067) 0.348(0.058) 0.344(0.058) 0.347(0.059) 0.351(0.057)

AEE(MSE×10) 0.358(0.121) 0.361(0.080) 0.357(0.059) 0.350(0.048) 0.655(1.696) 0.647(3.387) 0.641(8.511) 0.633(17.04)
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Table A.3: Simulation results of the estimators for (M4) when a = 1 using our proposed method and the parametric method proposed
in McMahan et al. (2016). Presented results include the sample mean and sample standard deviation (provided within the parenthesis)
of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s (provided in
parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.

Proposed Method Parametric Method

N c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

2500
β01 0.500(0.007) 0.501(0.011) 0.501(0.018) 0.501(0.027) 0.480(0.024) 0.480(0.035) 0.479(0.052) 0.479(0.072)
β02 0.500(0.012) 0.500(0.018) 0.497(0.031) 0.496(0.047) 0.397(0.047) 0.400(0.065) 0.402(0.099) 0.402(0.135)
β03 0.707(0.007) 0.706(0.010) 0.707(0.017) 0.707(0.025) 1.020(0.024) 1.020(0.036) 1.021(0.052) 1.018(0.075)

AEE(MSE×10) 0.288(0.016) 0.293(0.021) 0.307(0.035) 0.323(0.050) 0.441(1.475) 0.448(1.480) 0.475(1.494) 0.506(1.518)

5000
β01 0.500(0.005) 0.500(0.008) 0.500(0.013) 0.500(0.018) 0.485(0.016) 0.485(0.022) 0.486(0.036) 0.487(0.050)
β02 0.500(0.009) 0.499(0.012) 0.497(0.023) 0.496(0.033) 0.397(0.034) 0.398(0.044) 0.403(0.068) 0.404(0.096)
β03 0.707(0.005) 0.708(0.006) 0.708(0.012) 0.709(0.017) 1.022(0.017) 1.022(0.026) 1.022(0.039) 1.023(0.059)

AEE(MSE×10) 0.285(0.009) 0.289(0.011) 0.300(0.020) 0.311(0.030) 0.435(1.474) 0.438(1.477) 0.448(1.484) 0.468(1.497)

(D2)

2500
β01 0.500(0.008) 0.500(0.012) 0.501(0.019) 0.500(0.029) 0.481(0.022) 0.482(0.031) 0.482(0.049) 0.485(0.067)
β02 0.499(0.013) 0.499(0.020) 0.496(0.033) 0.494(0.050) 0.395(0.049) 0.396(0.063) 0.398(0.104) 0.400(0.141)
β03 0.708(0.007) 0.707(0.011) 0.708(0.017) 0.708(0.026) 1.020(0.025) 1.020(0.037) 1.020(0.057) 1.020(0.076)

AEE(MSE×10) 0.290(0.017) 0.298(0.022) 0.309(0.037) 0.325(0.052) 0.441(1.477) 0.448(1.482) 0.477(1.497) 0.507(1.519)

5000
β01 0.500(0.005) 0.500(0.007) 0.501(0.012) 0.500(0.019) 0.484(0.016) 0.483(0.023) 0.485(0.035) 0.487(0.050)
β02 0.500(0.010) 0.499(0.013) 0.498(0.022) 0.498(0.033) 0.398(0.033) 0.397(0.045) 0.401(0.065) 0.397(0.098)
β03 0.707(0.005) 0.708(0.007) 0.707(0.012) 0.708(0.018) 1.021(0.018) 1.022(0.025) 1.019(0.042) 1.018(0.057)

AEE(MSE×10) 0.285(0.009) 0.289(0.012) 0.299(0.020) 0.308(0.030) 0.435(1.472) 0.441(1.475) 0.446(1.482) 0.469(1.494)

(D3)

2500
β01 0.500(0.007) 0.501(0.010) 0.501(0.018) 0.500(0.028) 0.483(0.024) 0.483(0.033) 0.484(0.048) 0.488(0.071)
β02 0.499(0.013) 0.499(0.019) 0.497(0.032) 0.496(0.048) 0.400(0.048) 0.400(0.065) 0.397(0.101) 0.396(0.145)
β03 0.708(0.007) 0.707(0.010) 0.708(0.017) 0.707(0.024) 1.018(0.025) 1.019(0.034) 1.020(0.055) 1.020(0.080)

AEE(MSE×10) 0.289(0.017) 0.294(0.022) 0.308(0.036) 0.323(0.051) 0.436(1.477) 0.446(1.482) 0.472(1.496) 0.514(1.523)

5000
β01 0.500(0.005) 0.500(0.007) 0.500(0.012) 0.499(0.016) 0.484(0.016) 0.484(0.023) 0.488(0.036) 0.488(0.051)
β02 0.500(0.010) 0.499(0.013) 0.501(0.022) 0.504(0.027) 0.396(0.034) 0.398(0.046) 0.401(0.070) 0.397(0.096)
β03 0.707(0.005) 0.707(0.007) 0.706(0.012) 0.704(0.016) 1.021(0.018) 1.021(0.025) 1.021(0.043) 1.020(0.060)

AEE(MSE×10) 0.285(0.009) 0.289(0.012) 0.295(0.020) 0.299(0.030) 0.437(1.477) 0.439(1.479) 0.448(1.487) 0.472(1.500)
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Table A.4: Simulation results of the estimators for (M4) when a = 1 using our proposed method and the parametric method proposed
in McMahan et al. (2016). Presented results include the sample mean and sample standard deviation (provided within the parenthesis)
of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s (provided in
parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.

Proposed Method Parametric Method

J c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

250
β01 0.502(0.026) 0.500(0.026) 0.497(0.027) 0.500(0.028) 0.491(0.073) 0.477(0.070) 0.485(0.070) 0.487(0.072)
β02 0.496(0.045) 0.497(0.046) 0.500(0.049) 0.496(0.050) 0.403(0.154) 0.399(0.152) 0.403(0.138) 0.397(0.139)
β03 0.706(0.024) 0.707(0.025) 0.707(0.026) 0.707(0.025) 1.028(0.083) 1.024(0.079) 1.023(0.082) 1.020(0.076)

AEE(MSE×10) 0.327(0.147) 0.325(0.090) 0.330(0.060) 0.327(0.051) 0.524(1.469) 0.525(3.020) 0.509(7.566) 0.512(15.17)

500
β01 0.502(0.018) 0.501(0.018) 0.500(0.018) 0.501(0.018) 0.482(0.051) 0.483(0.052) 0.486(0.048) 0.483(0.051)
β02 0.495(0.032) 0.497(0.032) 0.497(0.031) 0.497(0.033) 0.394(0.113) 0.392(0.098) 0.390(0.100) 0.398(0.093)
β03 0.708(0.016) 0.707(0.017) 0.708(0.017) 0.707(0.018) 1.017(0.061) 1.018(0.054) 1.018(0.056) 1.020(0.057)

AEE(MSE×10) 0.312(0.070) 0.311(0.047) 0.312(0.036) 0.310(0.031) 0.480(1.479) 0.477(2.980) 0.475(7.473) 0.470(14.92)

(D2)

250
β01 0.501(0.025) 0.501(0.025) 0.500(0.026) 0.502(0.027) 0.479(0.074) 0.483(0.070) 0.481(0.070) 0.481(0.070)
β02 0.498(0.044) 0.497(0.044) 0.499(0.045) 0.498(0.047) 0.395(0.144) 0.407(0.140) 0.400(0.130) 0.381(0.135)
β03 0.705(0.024) 0.706(0.025) 0.705(0.024) 0.705(0.026) 1.021(0.078) 1.015(0.081) 1.021(0.080) 1.024(0.080)

AEE(MSE×10) 0.321(0.148) 0.324(0.082) 0.324(0.060) 0.328(0.051) 0.519(1.484) 0.503(3.016) 0.502(7.600) 0.520(15.24)

500
β01 0.499(0.018) 0.501(0.018) 0.500(0.018) 0.500(0.018) 0.485(0.058) 0.487(0.049) 0.486(0.050) 0.481(0.049)
β02 0.499(0.031) 0.501(0.030) 0.499(0.031) 0.498(0.030) 0.394(0.106) 0.401(0.101) 0.404(0.092) 0.399(0.093)
β03 0.707(0.017) 0.705(0.016) 0.707(0.016) 0.707(0.016) 1.023(0.057) 1.022(0.054) 1.019(0.056) 1.023(0.054)

AEE(MSE×10) 0.316(0.077) 0.306(0.045) 0.311(0.036) 0.310(0.031) 0.485(1.479) 0.473(2.958) 0.462(7.459) 0.471(14.93)

(D3)

250
β01 0.499(0.026) 0.500(0.026) 0.500(0.027) 0.500(0.027) 0.488(0.075) 0.483(0.072) 0.484(0.073) 0.483(0.071)
β02 0.502(0.046) 0.496(0.045) 0.497(0.049) 0.496(0.048) 0.397(0.158) 0.401(0.142) 0.400(0.138) 0.400(0.143)
β03 0.704(0.024) 0.708(0.024) 0.706(0.025) 0.707(0.026) 1.026(0.084) 1.024(0.082) 1.021(0.080) 1.018(0.081)

AEE(MSE×10) 0.324(0.148) 0.328(0.088) 0.330(0.060) 0.334(0.051) 0.531(1.485) 0.516(2.997) 0.507(7.570) 0.512(15.20)

500
β01 0.500(0.019) 0.501(0.017) 0.500(0.018) 0.500(0.018) 0.483(0.054) 0.485(0.051) 0.484(0.051) 0.483(0.050)
β02 0.498(0.032) 0.499(0.030) 0.499(0.031) 0.497(0.032) 0.405(0.109) 0.408(0.099) 0.399(0.102) 0.406(0.094)
β03 0.707(0.017) 0.706(0.017) 0.706(0.016) 0.708(0.017) 1.025(0.056) 1.025(0.054) 1.020(0.057) 1.020(0.055)

AEE(MSE×10) 0.318(0.063) 0.309(0.045) 0.312(0.035) 0.310(0.030) 0.484(1.465) 0.470(2.960) 0.476(7.469) 0.464(14.93)
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Table A.5: Simulation results of the estimators for (M4) when a = 2 using our proposed method and the parametric method proposed
in McMahan et al. (2016). Presented results include the sample mean and sample standard deviation (provided within the parenthesis)
of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s (provided in
parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.

Proposed Method Parametric Method

N c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

2500
β01 0.500(0.004) 0.501(0.006) 0.501(0.010) 0.501(0.017) −0.371(0.030) −0.371(0.043) −0.373(0.062) −0.372(0.090)
β02 0.500(0.006) 0.501(0.009) 0.499(0.016) 0.498(0.025) −0.002(0.059) −0.001(0.082) 0.006(0.131) −0.004(0.186)
β03 0.707(0.004) 0.706(0.006) 0.707(0.010) 0.707(0.018) 0.004(0.034) 0.001(0.046) −0.002(0.072) −0.002(0.100)

AEE(MSE×10) 0.282(0.028) 0.284(0.036) 0.293(0.058) 0.301(0.101) 2.076(4.533) 2.079(4.541) 2.076(4.566) 2.085(4.607)

5000
β01 0.500(0.003) 0.500(0.004) 0.500(0.007) 0.501(0.010) −0.369(0.021) −0.371(0.029) −0.372(0.043) −0.370(0.062)
β02 0.500(0.005) 0.500(0.007) 0.499(0.011) 0.499(0.016) 0.000(0.042) −0.002(0.060) 0.004(0.092) 0.010(0.129)
β03 0.707(0.003) 0.707(0.004) 0.708(0.007) 0.707(0.010) 0.000(0.025) 0.001(0.034) 0.000(0.054) −0.006(0.071)

AEE(MSE×10) 0.281(0.017) 0.283(0.022) 0.288(0.036) 0.291(0.052) 2.076(4.541) 2.079(4.546) 2.076(4.558) 2.073(4.578)

(D2)

2500
β01 0.500(0.004) 0.501(0.006) 0.501(0.009) 0.500(0.015) −0.371(0.028) −0.371(0.039) −0.372(0.067) −0.367(0.087)
β02 0.500(0.007) 0.501(0.009) 0.499(0.015) 0.499(0.023) 0.006(0.061) 0.009(0.082) 0.012(0.133) 0.016(0.189)
β03 0.707(0.004) 0.706(0.006) 0.707(0.009) 0.707(0.016) 0.001(0.034) 0.002(0.047) −0.003(0.074) −0.005(0.106)

AEE(MSE×10) 0.282(0.028) 0.284(0.035) 0.291(0.059) 0.301(0.088) 2.071(4.537) 2.068(4.546) 2.069(4.573) 2.063(4.615)

5000
β01 0.500(0.003) 0.500(0.004) 0.501(0.006) 0.501(0.009) −0.370(0.022) −0.370(0.030) −0.370(0.048) −0.375(0.067)
β02 0.500(0.004) 0.500(0.006) 0.499(0.011) 0.498(0.015) 0.003(0.042) −0.001(0.057) 0.000(0.090) 0.002(0.123)
β03 0.707(0.003) 0.707(0.004) 0.707(0.006) 0.708(0.009) −0.001(0.023) 0.000(0.033) 0.002(0.053) 0.003(0.081)

AEE(MSE×10) 0.280(0.015) 0.282(0.021) 0.287(0.036) 0.292(0.054) 2.076(4.539) 2.078(4.543) 2.075(4.556) 2.077(4.579)

(D3)

2500
β01 0.500(0.004) 0.500(0.006) 0.500(0.009) 0.499(0.015) −0.371(0.030) −0.371(0.040) −0.371(0.067) −0.369(0.098)
β02 0.500(0.006) 0.500(0.009) 0.498(0.016) 0.498(0.025) −0.001(0.060) −0.004(0.081) −0.019(0.129) −0.009(0.172)
β03 0.707(0.004) 0.707(0.006) 0.708(0.010) 0.708(0.017) 0.003(0.034) 0.001(0.047) −0.001(0.076) −0.003(0.105)

AEE(MSE×10) 0.282(0.028) 0.285(0.037) 0.292(0.059) 0.302(0.094) 2.076(4.538) 2.081(4.546) 2.098(4.573) 2.088(4.616)

5000
β01 0.500(0.003) 0.500(0.004) 0.500(0.007) 0.499(0.010) −0.371(0.020) −0.373(0.029) −0.372(0.047) −0.372(0.068)
β02 0.500(0.005) 0.500(0.007) 0.500(0.011) 0.501(0.016) −0.004(0.042) −0.004(0.057) −0.009(0.093) −0.008(0.129)
β03 0.707(0.003) 0.707(0.004) 0.707(0.007) 0.707(0.010) 0.001(0.024) 0.001(0.034) −0.001(0.054) −0.003(0.077)

AEE(MSE×10) 0.281(0.016) 0.283(0.021) 0.286(0.036) 0.293(0.054) 2.081(4.540) 2.082(4.544) 2.090(4.557) 2.090(4.580)
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Table A.6: Simulation results of the estimators for (M4) when a = 2 using our proposed method and the parametric method proposed
in McMahan et al. (2016). Presented results include the sample mean and sample standard deviation (provided within the parenthesis)
of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s (provided in
parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.

Proposed Method Parametric Method

J c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

250
β01 0.501(0.013) 0.501(0.014) 0.500(0.014) 0.501(0.014) −0.364(0.093) −0.370(0.090) −0.373(0.092) −0.365(0.092)
β02 0.498(0.023) 0.498(0.022) 0.498(0.025) 0.498(0.023) −0.005(0.191) −0.020(0.177) −0.013(0.175) −0.019(0.180)
β03 0.707(0.015) 0.707(0.014) 0.708(0.015) 0.707(0.015) 0.009(0.108) 0.009(0.110) −0.004(0.108) 0.005(0.111)

AEE(MSE×10) 0.354(0.230) 0.351(0.138) 0.356(0.104) 0.345(0.092) 2.068(4.517) 2.089(9.118) 2.098(22.99) 2.086(46.21)

500
β01 0.501(0.009) 0.500(0.009) 0.500(0.009) 0.501(0.010) −0.372(0.068) −0.374(0.064) −0.368(0.063) −0.371(0.062)
β02 0.498(0.015) 0.499(0.014) 0.498(0.016) 0.499(0.015) −0.007(0.129) 0.004(0.133) −0.009(0.123) 0.002(0.131)
β03 0.707(0.009) 0.708(0.009) 0.708(0.010) 0.707(0.010) −0.003(0.072) −0.003(0.073) 0.000(0.075) 0.002(0.074)

AEE(MSE×10) 0.298(0.113) 0.294(0.076) 0.296(0.062) 0.295(0.051) 2.089(4.522) 2.080(9.101) 2.084(22.86) 2.075(45.82)

(D2)

250
β01 0.502(0.015) 0.501(0.013) 0.501(0.014) 0.500(0.015) −0.371(0.096) −0.376(0.087) −0.372(0.096) −0.374(0.091)
β02 0.497(0.022) 0.497(0.022) 0.498(0.022) 0.500(0.021) −0.003(0.190) −0.011(0.178) −0.002(0.177) −0.001(0.172)
β03 0.707(0.013) 0.708(0.014) 0.707(0.014) 0.707(0.014) 0.001(0.103) −0.007(0.111) −0.004(0.105) −0.007(0.100)

AEE(MSE×10) 0.303(0.375) 0.302(0.130) 0.304(0.101) 0.303(0.090) 2.080(4.496) 2.101(9.107) 2.085(22.93) 2.090(46.02)

500
β01 0.502(0.009) 0.500(0.010) 0.500(0.009) 0.501(0.010) −0.374(0.069) −0.373(0.068) −0.370(0.068) −0.371(0.064)
β02 0.498(0.015) 0.499(0.015) 0.499(0.015) 0.498(0.015) 0.001(0.136) −0.002(0.124) 0.007(0.120) 0.000(0.129)
β03 0.707(0.009) 0.707(0.009) 0.707(0.009) 0.708(0.010) −0.008(0.077) 0.000(0.077) −0.001(0.075) −0.002(0.077)

AEE(MSE×10) 0.293(0.113) 0.294(0.072) 0.294(0.060) 0.295(0.053) 2.088(4.517) 2.082(9.098) 2.072(22.84) 2.081(45.74)

(D3)

250
β01 0.501(0.014) 0.499(0.013) 0.500(0.013) 0.500(0.015) −0.366(0.095) −0.379(0.096) −0.370(0.090) −0.376(0.090)
β02 0.498(0.021) 0.500(0.022) 0.499(0.022) 0.498(0.024) −0.007(0.193) −0.001(0.187) 0.011(0.175) 0.003(0.192)
β03 0.707(0.014) 0.707(0.013) 0.707(0.014) 0.707(0.015) 0.005(0.111) −0.001(0.109) 0.002(0.108) −0.004(0.112)

AEE(MSE×10) 0.306(0.248) 0.303(0.135) 0.301(0.106) 0.306(0.088) 2.076(4.503) 2.088(9.132) 2.064(22.95) 2.085(46.15)

500
β01 0.500(0.009) 0.500(0.009) 0.501(0.009) 0.501(0.010) −0.375(0.068) −0.363(0.066) −0.369(0.064) −0.368(0.065)
β02 0.501(0.014) 0.499(0.015) 0.499(0.016) 0.497(0.016) −0.008(0.136) −0.007(0.134) 0.005(0.127) −0.002(0.128)
β03 0.706(0.008) 0.708(0.009) 0.707(0.010) 0.708(0.010) 0.001(0.075) 0.000(0.078) −0.001(0.074) 0.000(0.072)

AEE(MSE×10) 0.294(0.116) 0.294(0.077) 0.295(0.060) 0.297(0.054) 2.089(4.514) 2.078(9.112) 2.072(22.86) 2.078(45.82)
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Table A.7: Simulation results of the estimators for (M1) using our proposed method and the parametric method proposed in McMahan
et al. (2016) when σ2(t) = (0.5t)2. Presented results include the sample mean and sample standard deviation (provided within the
parenthesis) of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s
(provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.

Proposed Method Parametric Method

N c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

2500
β01 0.500(0.006) 0.500(0.010) 0.500(0.019) 0.499(0.029) 0.501(0.009) 0.502(0.013) 0.501(0.020) 0.501(0.028)
β02 0.501(0.012) 0.500(0.017) 0.500(0.029) 0.501(0.044) 0.500(0.016) 0.500(0.024) 0.501(0.037) 0.501(0.054)
β03 0.706(0.006) 0.706(0.010) 0.706(0.017) 0.705(0.028) 0.708(0.010) 0.708(0.014) 0.709(0.022) 0.708(0.030)

AEE(MSE×10) 0.287(0.003) 0.292(0.002) 0.306(0.002) 0.320(0.003) 0.029(0.001) 0.040(0.002) 0.062(0.004) 0.087(0.008)

5000
β01 0.500(0.004) 0.500(0.007) 0.499(0.012) 0.499(0.024) 0.500(0.007) 0.500(0.009) 0.500(0.013) 0.499(0.019)
β02 0.500(0.008) 0.500(0.012) 0.501(0.020) 0.499(0.033) 0.501(0.012) 0.501(0.016) 0.502(0.025) 0.503(0.036)
β03 0.707(0.004) 0.707(0.007) 0.707(0.012) 0.707(0.021) 0.707(0.007) 0.707(0.010) 0.707(0.016) 0.708(0.022)

AEE(MSE×10) 0.283(0.001) 0.288(0.001) 0.296(0.001) 0.310(0.005) 0.020(0.001) 0.027(0.001) 0.043(0.002) 0.061(0.004)

(D2)

2500
β01 0.500(0.006) 0.500(0.011) 0.500(0.018) 0.500(0.028) 0.500(0.010) 0.500(0.013) 0.500(0.019) 0.500(0.027)
β02 0.502(0.012) 0.500(0.017) 0.500(0.029) 0.499(0.044) 0.502(0.017) 0.499(0.024) 0.499(0.037) 0.501(0.052)
β03 0.706(0.005) 0.707(0.010) 0.706(0.017) 0.705(0.027) 0.707(0.009) 0.707(0.013) 0.707(0.021) 0.706(0.031)

AEE(MSE×10) 0.286(0.003) 0.294(0.002) 0.304(0.002) 0.317(0.003) 0.029(0.001) 0.039(0.002) 0.061(0.004) 0.087(0.007)

5000
β01 0.500(0.004) 0.500(0.017) 0.500(0.013) 0.499(0.023) 0.500(0.007) 0.500(0.009) 0.500(0.013) 0.498(0.018)
β02 0.501(0.008) 0.499(0.020) 0.501(0.021) 0.500(0.033) 0.500(0.013) 0.500(0.017) 0.503(0.027) 0.501(0.035)
β03 0.707(0.004) 0.707(0.014) 0.706(0.012) 0.706(0.022) 0.707(0.007) 0.707(0.010) 0.707(0.016) 0.705(0.022)

AEE(MSE×10) 0.283(0.001) 0.291(0.006) 0.296(0.001) 0.308(0.004) 0.020(0.001) 0.029(0.001) 0.044(0.002) 0.060(0.004)

(D3)

2500
β01 0.498(0.029) 0.500(0.014) 0.499(0.027) 0.502(0.029) 0.500(0.010) 0.501(0.013) 0.500(0.020) 0.499(0.029)
β02 0.498(0.031) 0.499(0.021) 0.497(0.035) 0.499(0.043) 0.499(0.017) 0.499(0.023) 0.500(0.036) 0.501(0.051)
β03 0.708(0.024) 0.707(0.014) 0.708(0.023) 0.704(0.027) 0.707(0.009) 0.707(0.013) 0.707(0.021) 0.706(0.031)

AEE(MSE×10) 0.293(0.016) 0.294(0.003) 0.310(0.009) 0.318(0.003) 0.028(0.001) 0.039(0.002) 0.063(0.004) 0.088(0.008)

5000
β01 0.500(0.004) 0.500(0.007) 0.500(0.012) 0.500(0.018) 0.500(0.006) 0.500(0.009) 0.500(0.014) 0.500(0.019)
β02 0.500(0.008) 0.500(0.013) 0.499(0.020) 0.499(0.030) 0.500(0.012) 0.500(0.017) 0.501(0.026) 0.502(0.036)
β03 0.707(0.004) 0.707(0.007) 0.707(0.012) 0.707(0.019) 0.707(0.007) 0.708(0.009) 0.709(0.016) 0.708(0.022)

AEE(MSE×10) 0.283(0.001) 0.289(0.001) 0.296(0.001) 0.308(0.001) 0.020(0.001) 0.028(0.001) 0.045(0.002) 0.061(0.004)
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Table A.8: Simulation results of the estimators for (M1) using our proposed method and the parametric method proposed in McMahan
et al. (2016) when σ2(t) = (0.5t)2. Presented results include the sample mean and sample standard deviation (provided within the
parenthesis) of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s
(provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.

Proposed Method Parametric Method

J c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

250
β01 0.499(0.021) 0.500(0.026) 0.499(0.026) 0.500(0.029) 0.499(0.029) 0.499(0.028) 0.499(0.027) 0.501(0.027)
β02 0.503(0.040) 0.500(0.042) 0.500(0.042) 0.494(0.045) 0.494(0.056) 0.501(0.053) 0.500(0.050) 0.498(0.051)
β03 0.704(0.018) 0.705(0.024) 0.705(0.025) 0.708(0.028) 0.706(0.030) 0.708(0.029) 0.707(0.030) 0.706(0.030)

AEE(MSE×10) 0.310(0.040) 0.316(0.013) 0.320(0.004) 0.323(0.003) 0.091(0.010) 0.088(0.017) 0.086(0.037) 0.086(0.073)

500
β01 0.500(0.019) 0.500(0.017) 0.499(0.023) 0.500(0.019) 0.499(0.010) 0.500(0.021) 0.499(0.020) 0.499(0.019)
β02 0.499(0.030) 0.502(0.028) 0.498(0.031) 0.500(0.029) 0.500(0.039) 0.501(0.035) 0.498(0.038) 0.499(0.036)
β03 0.707(0.016) 0.705(0.016) 0.707(0.021) 0.707(0.018) 0.707(0.021) 0.707(0.021) 0.707(0.022) 0.707(0.022)

AEE(MSE×10) 0.301(0.019) 0.302(0.006) 0.308(0.006) 0.307(0.001) 0.064(0.005) 0.061(0.008) 0.064(0.020) 0.060(0.036)

(D2)

250
β01 0.499(0.022) 0.499(0.024) 0.499(0.025) 0.499(0.028) 0.502(0.031) 0.500(0.028) 0.498(0.028) 0.501(0.027)
β02 0.505(0.040) 0.501(0.042) 0.498(0.041) 0.500(0.042) 0.503(0.055) 0.498(0.052) 0.502(0.053) 0.503(0.051)
β03 0.703(0.020) 0.705(0.023) 0.707(0.026) 0.705(0.026) 0.710(0.031) 0.709(0.032) 0.707(0.027) 0.709(0.031)

AEE(MSE×10) 0.309(0.048) 0.313(0.011) 0.318(0.005) 0.316(0.003) 0.093(0.011) 0.089(0.017) 0.087(0.037) 0.087(0.074)

500
β01 0.499(0.024) 0.499(0.025) 0.501(0.018) 0.500(0.018) 0.498(0.022) 0.500(0.020) 0.500(0.019) 0.501(0.018)
β02 0.500(0.035) 0.501(0.034) 0.499(0.028) 0.500(0.029) 0.497(0.039) 0.499(0.036) 0.500(0.035) 0.501(0.037)
β03 0.707(0.020) 0.706(0.022) 0.706(0.018) 0.706(0.018) 0.706(0.021) 0.708(0.022) 0.706(0.020) 0.707(0.023)

AEE(MSE×10) 0.305(0.023) 0.305(0.010) 0.304(0.002) 0.305(0.001) 0.066(0.005) 0.062(0.008) 0.060(0.018) 0.064(0.038)

(D3)

250
β01 0.499(0.021) 0.500(0.023) 0.500(0.028) 0.499(0.027) 0.501(0.029) 0.498(0.028) 0.501(0.025) 0.500(0.027)
β02 0.505(0.037) 0.499(0.040) 0.498(0.043) 0.496(0.044) 0.500(0.056) 0.495(0.054) 0.498(0.053) 0.499(0.050)
β03 0.703(0.017) 0.706(0.023) 0.706(0.026) 0.708(0.028) 0.709(0.029) 0.705(0.031) 0.709(0.030) 0.705(0.032)

AEE(MSE×10) 0.310(0.042) 0.317(0.011) 0.322(0.005) 0.323(0.003) 0.091(0.010) 0.091(0.017) 0.085(0.037) 0.087(0.074)

500
β01 0.499(0.021) 0.499(0.017) 0.500(0.018) 0.501(0.019) 0.500(0.021) 0.500(0.020) 0.499(0.020) 0.500(0.018)
β02 0.502(0.032) 0.501(0.029) 0.501(0.028) 0.499(0.029) 0.501(0.039) 0.502(0.037) 0.501(0.036) 0.501(0.036)
β03 0.706(0.018) 0.706(0.016) 0.705(0.018) 0.706(0.018) 0.706(0.021) 0.707(0.022) 0.707(0.022) 0.708(0.022)

AEE(MSE×10) 0.302(0.024) 0.306(0.005) 0.304(0.002) 0.305(0.001) 0.065(0.005) 0.063(0.009) 0.063(0.020) 0.061(0.036)
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Table A.9: Simulation results of the estimators for (M2) using our proposed method and the parametric method proposed in McMahan
et al. (2016) when σ2(t) = (0.5t)2. Presented results include the sample mean and sample standard deviation (provided within the
parenthesis) of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s
(provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.

Proposed Method Parametric Method

N c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

2500
β01 0.500(0.037) 0.504(0.025) 0.503(0.043) 0.507(0.066) 0.000(0.015) 0.001(0.020) −0.001(0.028) 0.000(0.042)
β02 0.502(0.040) 0.506(0.033) 0.505(0.050) 0.502(0.070) 0.000(0.028) 0.000(0.038) −0.005(0.058) −0.005(0.077)
β03 0.703(0.036) 0.698(0.028) 0.696(0.049) 0.690(0.071) 0.001(0.014) 0.001(0.019) 0.001(0.031) 0.000(0.047)

AEE(MSE×10) 0.303(0.023) 0.301(0.010) 0.323(0.015) 0.353(0.025) 1.706(0.671) 1.705(0.672) 1.713(0.677) 1.712(0.686)

5000
β01 0.502(0.018) 0.493(0.047) 0.503(0.028) 0.504(0.047) 0.000(0.011) 0.000(0.014) 0.001(0.021) 0.001(0.028)
β02 0.502(0.018) 0.493(0.047) 0.503(0.028) 0.504(0.047) 0.001(0.021) 0.000(0.027) 0.000(0.041) −0.001(0.057)
β03 0.702(0.018) 0.710(0.048) 0.700(0.034) 0.701(0.053) 0.000(0.011) 0.001(0.015) 0.001(0.023) 0.002(0.032)

AEE(MSE×10) 0.289(0.009) 0.324(0.031) 0.313(0.006) 0.337(0.010) 1.705(0.668) 1.707(0.669) 1.705(0.671) 1.706(0.675)

(D2)

2500
β01 0.498(0.038) 0.501(0.024) 0.502(0.047) 0.506(0.062) 0.000(0.015) 0.001(0.019) 0.002(0.030) 0.003(0.040)
β02 0.500(0.041) 0.506(0.029) 0.503(0.053) 0.502(0.073) 0.000(0.027) 0.000(0.035) 0.001(0.052) −0.003(0.076)
β03 0.705(0.038) 0.700(0.026) 0.698(0.052) 0.692(0.066) 0.000(0.014) 0.000(0.020) 0.000(0.033) 0.001(0.046)

AEE(MSE×10) 0.308(0.025) 0.304(0.009) 0.331(0.017) 0.352(0.019) 1.707(0.668) 1.706(0.669) 1.705(0.674) 1.707(0.682)

5000
β01 0.501(0.022) 0.490(0.054) 0.505(0.031) 0.505(0.046) 0.000(0.010) 0.000(0.013) 0.001(0.020) 0.001(0.028)
β02 0.503(0.023) 0.490(0.056) 0.501(0.033) 0.497(0.049) 0.000(0.020) 0.000(0.027) 0.001(0.039) −0.001(0.053)
β03 0.703(0.022) 0.715(0.055) 0.700(0.033) 0.701(0.051) 0.000(0.009) 0.000(0.014) 0.000(0.025) −0.002(0.033)

AEE(MSE×10) 0.291(0.011) 0.336(0.038) 0.311(0.006) 0.340(0.008) 1.708(0.670) 1.707(0.671) 1.705(0.673) 1.709(0.677)

(D3)

2500
β01 0.500(0.034) 0.503(0.025) 0.499(0.048) 0.504(0.064) −0.001(0.015) 0.000(0.020) 0.000(0.029) −0.002(0.041)
β02 0.500(0.037) 0.504(0.029) 0.499(0.050) 0.499(0.070) 0.000(0.028) 0.002(0.036) 0.003(0.053) 0.004(0.074)
β03 0.704(0.034) 0.700(0.028) 0.702(0.053) 0.695(0.066) 0.000(0.014) 0.000(0.020) −0.001(0.032) 0.000(0.044)

AEE(MSE×10) 0.304(0.021) 0.303(0.009) 0.336(0.020) 0.357(0.022) 1.708(0.670) 1.705(0.671) 1.705(0.676) 1.706(0.683)

5000
β01 0.503(0.017) 0.493(0.045) 0.505(0.030) 0.510(0.043) 0.000(0.011) 0.001(0.014) 0.000(0.019) 0.000(0.027)
β02 0.503(0.018) 0.493(0.047) 0.504(0.034) 0.503(0.048) −0.001(0.020) −0.001(0.026) −0.002(0.037) 0.000(0.051)
β03 0.703(0.016) 0.712(0.046) 0.699(0.035) 0.694(0.049) 0.000(0.010) 0.000(0.015) 0.001(0.023) 0.001(0.031)

AEE(MSE×10) 0.288(0.009) 0.324(0.024) 0.312(0.006) 0.325(0.008) 1.707(0.671) 1.707(0.672) 1.708(0.674) 1.707(0.677)
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Table A.10: Simulation results of the estimators for (M2) using our proposed method and the parametric method proposed in McMahan
et al. (2016) when σ2(t) = (0.5t)2. Presented results include the sample mean and sample standard deviation (provided within the
parenthesis) of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s
(provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.

Proposed Method Parametric Method

J c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

250
β01 0.522(0.054) 0.505(0.065) 0.508(0.067) 0.507(0.068) −0.004(0.047) 0.001(0.044) −0.002(0.043) 0.003(0.040)
β02 0.509(0.067) 0.504(0.069) 0.497(0.071) 0.499(0.072) −0.002(0.089) −0.001(0.084) −0.005(0.081) −0.006(0.078)
β03 0.677(0.041) 0.691(0.062) 0.693(0.067) 0.692(0.070) −0.002(0.043) 0.001(0.045) −0.002(0.045) −0.002(0.045)

AEE(MSE×10) 0.331(0.082) 0.348(0.057) 0.353(0.033) 0.356(0.026) 1.714(0.666) 1.707(1.355) 1.716(3.420) 1.712(6.843)

500
β01 0.511(0.036) 0.508(0.041) 0.502(0.046) 0.505(0.047) 0.001(0.033) 0.002(0.031) −0.001(0.028) 0.002(0.027)
β02 0.512(0.048) 0.503(0.046) 0.500(0.049) 0.503(0.051) 0.000(0.061) −0.003(0.057) 0.002(0.057) −0.002(0.054)
β03 0.686(0.031) 0.695(0.043) 0.700(0.049) 0.697(0.052) 0.000(0.032) 0.002(0.032) −0.002(0.032) −0.001(0.033)

AEE(MSE×10) 0.310(0.038) 0.320(0.023) 0.334(0.019) 0.329(0.011) 1.707(0.670) 1.706(1.338) 1.708(3.375) 1.708(6.754)

(D2)

250
β01 0.518(0.049) 0.501(0.062) 0.507(0.066) 0.507(0.065) −0.001(0.049) 0.004(0.042) −0.004(0.040) 0.002(0.040)
β02 0.517(0.067) 0.507(0.069) 0.504(0.074) 0.497(0.074) −0.008(0.090) −0.003(0.082) −0.006(0.077) 0.002(0.078)
β03 0.675(0.036) 0.689(0.093) 0.689(0.069) 0.694(0.069) −0.002(0.044) 0.001(0.047) 0.002(0.046) −0.001(0.044)

AEE(MSE×10) 0.316(0.094) 0.348(0.054) 0.355(0.030) 0.354(0.021) 1.718(0.669) 1.705(1.356) 1.715(3.405) 1.704(6.827)

500
β01 0.513(0.038) 0.508(0.039) 0.502(0.048) 0.501(0.048) 0.000(0.035) 0.002(0.031) 0.000(0.029) 0.000(0.029)
β02 0.506(0.048) 0.508(0.047) 0.500(0.051) 0.497(0.050) −0.001(0.065) 0.003(0.056) 0.002(0.054) 0.005(0.058)
β03 0.690(0.034) 0.692(0.041) 0.700(0.052) 0.703(0.052) 0.000(0.032) −0.001(0.032) −0.001(0.033) −0.001(0.032)

AEE(MSE×10) 0.313(0.043) 0.322(0.020) 0.332(0.017) 0.335(0.010) 1.709(0.669) 1.703(1.350) 1.705(3.375) 1.704(6.770)

(D3)

250
β01 0.515(0.050) 0.505(0.067) 0.507(0.063) 0.509(0.066) −0.001(0.049) 0.001(0.046) −0.001(0.041) 0.000(0.040)
β02 0.500(0.120) 0.521(0.064) 0.494(0.068) 0.500(0.070) −0.001(0.089) 0.008(0.082) −0.001(0.081) 0.008(0.079)
β03 0.675(0.083) 0.693(0.065) 0.696(0.066) 0.691(0.070) 0.002(0.047) 0.004(0.045) 0.003(0.046) 0.000(0.047)

AEE(MSE×10) 0.314(0.079) 0.352(0.048) 0.356(0.028) 0.353(0.021) 1.708(0.669) 1.694(1.348) 1.706(3.413) 1.698(6.846)

500
β01 0.511(0.037) 0.507(0.043) 0.504(0.045) 0.503(0.044) −0.001(0.033) −0.001(0.031) −0.002(0.030) 0.000(0.029)
β02 0.511(0.045) 0.506(0.048) 0.502(0.050) 0.501(0.048) −0.001(0.058) −0.001(0.059) −0.001(0.053) −0.003(0.053)
β03 0.688(0.030) 0.694(0.044) 0.698(0.049) 0.699(0.049) −0.001(0.032) −0.003(0.031) −0.002(0.031) 0.001(0.030)

AEE(MSE×10) 0.311(0.045) 0.317(0.024) 0.330(0.013) 0.332(0.009) 1.710(0.663) 1.713(1.342) 1.712(3.380) 1.710(6.767)
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Table A.11: Simulation results of the estimators for (M3) using our proposed method and the parametric method proposed in McMahan
et al. (2016) when σ2(t) = (0.5t)2. Presented results include the sample mean and sample standard deviation (provided within the
parenthesis) of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s
(provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.

Proposed Method Parametric Method

N c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

2500
β01 0.505(0.014) 0.504(0.026) 0.499(0.045) 0.503(0.059) 0.333(0.022) 0.333(0.028) 0.334(0.041) 0.336(0.054)
β02 0.506(0.017) 0.504(0.028) 0.498(0.045) 0.496(0.058) 0.398(0.047) 0.396(0.055) 0.398(0.077) 0.398(0.111)
β03 0.698(0.015) 0.700(0.030) 0.704(0.055) 0.700(0.070) 0.346(0.020) 0.346(0.028) 0.343(0.043) 0.341(0.060)

AEE(MSE×10) 0.285(0.018) 0.300(0.029) 0.335(0.051) 0.355(0.074) 0.630(1.683) 0.634(1.686) 0.638(1.694) 0.652(1.709)

5000
β01 0.489(0.053) 0.504(0.017) 0.502(0.032) 0.500(0.047) 0.333(0.014) 0.333(0.019) 0.333(0.027) 0.334(0.037)
β02 0.489(0.052) 0.504(0.019) 0.501(0.033) 0.496(0.045) 0.398(0.031) 0.398(0.038) 0.400(0.056) 0.396(0.077)
β03 0.716(0.054) 0.700(0.021) 0.702(0.039) 0.704(0.057) 0.346(0.013) 0.346(0.019) 0.346(0.030) 0.350(0.042)

AEE(MSE×10) 0.328(0.188) 0.289(0.016) 0.309(0.025) 0.335(0.051) 0.629(1.683) 0.630(1.685) 0.630(1.689) 0.634(1.696)

(D2)

2500
β01 0.506(0.013) 0.501(0.028) 0.498(0.043) 0.499(0.060) 0.332(0.022) 0.333(0.027) 0.330(0.040) 0.331(0.053)
β02 0.508(0.014) 0.504(0.029) 0.499(0.045) 0.495(0.061) 0.398(0.043) 0.398(0.049) 0.401(0.077) 0.397(0.112)
β03 0.697(0.013) 0.702(0.032) 0.704(0.053) 0.703(0.072) 0.346(0.019) 0.346(0.027) 0.346(0.043) 0.344(0.061)

AEE(MSE×10) 0.283(0.016) 0.303(0.031) 0.333(0.057) 0.357(0.084) 0.632(1.677) 0.631(1.680) 0.636(1.688) 0.658(1.703)

5000
β01 0.489(0.051) 0.504(0.016) 0.500(0.035) 0.499(0.043) 0.333(0.014) 0.333(0.019) 0.333(0.029) 0.334(0.040)
β02 0.490(0.052) 0.505(0.018) 0.500(0.037) 0.498(0.047) 0.398(0.030) 0.400(0.038) 0.400(0.054) 0.400(0.072)
β03 0.703(0.027) 0.700(0.037) 0.695(0.049) 0.684(0.064) 0.347(0.013) 0.347(0.019) 0.347(0.030) 0.346(0.043)

AEE(MSE×10) 0.326(0.165) 0.287(0.012) 0.318(0.042) 0.337(0.051) 0.630(1.683) 0.627(1.684) 0.628(1.688) 0.633(1.695)

(D3)

2500
β01 0.507(0.011) 0.505(0.023) 0.502(0.041) 0.505(0.058) 0.333(0.022) 0.334(0.026) 0.332(0.040) 0.332(0.055)
β02 0.507(0.012) 0.505(0.024) 0.500(0.042) 0.501(0.061) 0.398(0.043) 0.399(0.052) 0.398(0.074) 0.397(0.102)
β03 0.697(0.011) 0.698(0.027) 0.701(0.050) 0.694(0.071) 0.347(0.020) 0.347(0.028) 0.346(0.043) 0.346(0.061)

AEE(MSE×10) 0.283(0.011) 0.298(0.020) 0.327(0.041) 0.346(0.074) 0.630(1.682) 0.628(1.685) 0.639(1.693) 0.649(1.707)

5000
β01 0.491(0.050) 0.505(0.014) 0.499(0.036) 0.503(0.044) 0.333(0.014) 0.333(0.018) 0.331(0.027) 0.332(0.037)
β02 0.491(0.050) 0.504(0.015) 0.497(0.038) 0.500(0.045) 0.398(0.030) 0.398(0.037) 0.398(0.053) 0.399(0.074)
β03 0.715(0.052) 0.700(0.017) 0.707(0.044) 0.700(0.054) 0.347(0.013) 0.346(0.018) 0.347(0.030) 0.348(0.044)

AEE(MSE×10) 0.323(0.170) 0.289(0.010) 0.320(0.041) 0.326(0.040) 0.630(1.677) 0.631(1.678) 0.632(1.682) 0.633(1.689)
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Table A.12: Simulation results of the estimators for (M3) using our proposed method and the parametric method proposed in McMahan
et al. (2016) when σ2(t) = (0.5t)2. Presented results include the sample mean and sample standard deviation (provided within the
parenthesis) of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and MSE×10’s
(provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.

Proposed Method Parametric Method

J c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

250
β01 0.519(0.033) 0.510(0.050) 0.505(0.055) 0.500(0.061) 0.327(0.068) 0.334(0.058) 0.335(0.055) 0.332(0.055)
β02 0.523(0.039) 0.509(0.050) 0.503(0.057) 0.497(0.062) 0.390(0.137) 0.400(0.124) 0.403(0.104) 0.405(0.105)
β03 0.673(0.031) 0.687(0.056) 0.694(0.067) 0.700(0.073) 0.344(0.062) 0.349(0.059) 0.351(0.060) 0.348(0.059)

AEE(MSE×10) 0.297(0.102) 0.324(0.084) 0.342(0.069) 0.354(0.094) 0.681(1.630) 0.656(3.375) 0.640(8.550) 0.642(17.13)

500
β01 0.516(0.023) 0.505(0.035) 0.500(0.046) 0.499(0.045) 0.332(0.046) 0.331(0.043) 0.332(0.037) 0.330(0.040)
β02 0.517(0.028) 0.507(0.038) 0.497(0.047) 0.498(0.043) 0.393(0.092) 0.396(0.083) 0.401(0.079) 0.401(0.070)
β03 0.681(0.021) 0.696(0.042) 0.704(0.056) 0.705(0.054) 0.345(0.042) 0.346(0.044) 0.347(0.044) 0.347(0.043)

AEE(MSE×10) 0.289(0.051) 0.313(0.046) 0.338(0.061) 0.330(0.048) 0.649(1.660) 0.643(3.349) 0.637(8.458) 0.633(16.90)

(D2)

250
β01 0.522(0.031) 0.509(0.046) 0.503(0.057) 0.504(0.058) 0.335(0.070) 0.335(0.063) 0.339(0.056) 0.331(0.054)
β02 0.521(0.041) 0.508(0.048) 0.499(0.060) 0.502(0.059) 0.403(0.140) 0.397(0.114) 0.404(0.106) 0.401(0.107)
β03 0.672(0.032) 0.690(0.053) 0.697(0.069) 0.695(0.068) 0.348(0.062) 0.349(0.058) 0.346(0.061) 0.345(0.060)

AEE(MSE×10) 0.296(0.103) 0.323(0.070) 0.346(0.091) 0.345(0.070) 0.664(1.682) 0.650(3.373) 0.640(8.481) 0.652(17.03)

500
β01 0.513(0.024) 0.506(0.037) 0.501(0.042) 0.500(0.045) 0.334(0.047) 0.333(0.042) 0.328(0.038) 0.332(0.038)
β02 0.517(0.028) 0.505(0.040) 0.501(0.045) 0.496(0.045) 0.395(0.095) 0.397(0.084) 0.393(0.076) 0.400(0.072)
β03 0.684(0.022) 0.696(0.044) 0.701(0.052) 0.704(0.055) 0.344(0.041) 0.345(0.042) 0.347(0.042) 0.347(0.045)

AEE(MSE×10) 0.291(0.051) 0.315(0.049) 0.330(0.050) 0.333(0.050) 0.651(1.647) 0.641(3.361) 0.646(8.412) 0.632(16.91)

(D3)

250
β01 0.521(0.034) 0.510(0.048) 0.505(0.054) 0.504(0.059) 0.331(0.069) 0.326(0.060) 0.333(0.055) 0.336(0.056)
β02 0.520(0.042) 0.508(0.047) 0.505(0.057) 0.501(0.059) 0.396(0.132) 0.389(0.121) 0.407(0.113) 0.395(0.105)
β03 0.674(0.031) 0.689(0.053) 0.692(0.066) 0.695(0.072) 0.347(0.060) 0.343(0.059) 0.341(0.062) 0.345(0.059)

AEE(MSE×10) 0.298(0.103) 0.321(0.078) 0.343(0.078) 0.346(0.079) 0.670(1.640) 0.676(3.346) 0.652(8.494) 0.650(17.06)

500
β01 0.517(0.025) 0.503(0.038) 0.500(0.043) 0.500(0.044) 0.333(0.047) 0.334(0.042) 0.332(0.037) 0.335(0.040)
β02 0.514(0.031) 0.505(0.038) 0.500(0.044) 0.498(0.047) 0.399(0.100) 0.403(0.083) 0.401(0.077) 0.406(0.072)
β03 0.682(0.025) 0.698(0.043) 0.702(0.053) 0.704(0.056) 0.347(0.043) 0.349(0.044) 0.346(0.042) 0.347(0.043)

AEE(MSE×10) 0.297(0.055) 0.319(0.053) 0.327(0.054) 0.338(0.047) 0.646(1.675) 0.631(3.389) 0.633(8.484) 0.627(16.96)
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Table A.13: Simulation results of the estimators for (M4) when a = 1 using our proposed method and the parametric method proposed
in McMahan et al. (2016) when σ2(t) = (0.5t)2. Presented results include the sample mean and sample standard deviation (provided
within the parenthesis) of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and
MSE×10’s (provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.

Proposed Method Parametric Method

N c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

2500
β01 0.500(0.003) 0.500(0.005) 0.500(0.009) 0.501(0.014) 0.483(0.018) 0.483(0.024) 0.482(0.035) 0.482(0.046)
β02 0.501(0.005) 0.500(0.009) 0.498(0.016) 0.495(0.027) 0.395(0.039) 0.395(0.049) 0.396(0.075) 0.397(0.099)
β03 0.707(0.002) 0.707(0.004) 0.708(0.008) 0.709(0.014) 1.020(0.018) 1.019(0.025) 1.020(0.040) 1.020(0.060)

AEE(MSE×10) 0.280(0.011) 0.284(0.015) 0.293(0.026) 0.302(0.036) 0.439(1.475) 0.441(1.478) 0.453(1.485) 0.470(1.497)

5000
β01 0.500(0.002) 0.500(0.003) 0.501(0.006) 0.501(0.009) 0.483(0.013) 0.483(0.017) 0.483(0.025) 0.484(0.033)
β02 0.501(0.004) 0.500(0.006) 0.499(0.011) 0.497(0.018) 0.399(0.027) 0.398(0.033) 0.397(0.050) 0.396(0.069)
β03 0.707(0.001) 0.707(0.003) 0.707(0.006) 0.709(0.009) 1.021(0.013) 1.021(0.018) 1.021(0.029) 1.021(0.041)

AEE(MSE×10) 0.279(0.006) 0.282(0.009) 0.286(0.016) 0.294(0.023) 0.433(1.471) 0.436(1.472) 0.442(1.476) 0.452(1.482)

(D2)

2500
β01 0.500(0.003) 0.500(0.005) 0.501(0.009) 0.501(0.015) 0.482(0.019) 0.483(0.025) 0.481(0.035) 0.479(0.050)
β02 0.500(0.005) 0.499(0.008) 0.496(0.016) 0.495(0.027) 0.398(0.038) 0.397(0.051) 0.396(0.074) 0.393(0.102)
β03 0.707(0.002) 0.707(0.004) 0.709(0.008) 0.710(0.013) 1.021(0.018) 1.022(0.027) 1.022(0.040) 1.020(0.057)

AEE(MSE×10) 0.280(0.011) 0.284(0.015) 0.294(0.026) 0.306(0.035) 0.438(1.469) 0.443(1.472) 0.456(1.479) 0.478(1.491)

5000
β01 0.500(0.002) 0.500(0.003) 0.500(0.008) 0.501(0.009) 0.484(0.013) 0.483(0.017) 0.484(0.027) 0.484(0.036)
β02 0.501(0.003) 0.500(0.006) 0.499(0.011) 0.498(0.017) 0.399(0.028) 0.399(0.035) 0.399(0.050) 0.399(0.072)
β03 0.707(0.001) 0.707(0.003) 0.707(0.005) 0.708(0.009) 1.022(0.013) 1.021(0.018) 1.022(0.028) 1.027(0.040)

AEE(MSE×10) 0.279(0.006) 0.281(0.009) 0.287(0.015) 0.291(0.023) 0.434(1.469) 0.435(1.471) 0.443(1.474) 0.456(1.481)

(D3)

2500
β01 0.500(0.002) 0.501(0.005) 0.501(0.009) 0.501(0.014) 0.484(0.019) 0.485(0.024) 0.485(0.039) 0.486(0.053)
β02 0.500(0.005) 0.499(0.009) 0.497(0.016) 0.496(0.027) 0.400(0.038) 0.399(0.048) 0.399(0.072) 0.391(0.097)
β03 0.707(0.002) 0.707(0.004) 0.708(0.008) 0.709(0.014) 1.022(0.018) 1.021(0.024) 1.021(0.040) 1.022(0.057)

AEE(MSE×10) 0.280(0.011) 0.284(0.015) 0.293(0.026) 0.303(0.036) 0.435(1.467) 0.438(1.470) 0.454(1.478) 0.480(1.490)

5000
β01 0.500(0.002) 0.500(0.003) 0.501(0.006) 0.501(0.010) 0.483(0.013) 0.483(0.017) 0.482(0.025) 0.482(0.036)
β02 0.500(0.004) 0.500(0.006) 0.498(0.011) 0.496(0.018) 0.397(0.028) 0.397(0.035) 0.395(0.049) 0.391(0.070)
β03 0.707(0.001) 0.707(0.003) 0.708(0.006) 0.709(0.009) 1.021(0.014) 1.021(0.019) 1.020(0.029) 1.020(0.040)

AEE(MSE×10) 0.279(0.006) 0.282(0.008) 0.288(0.015) 0.295(0.022) 0.434(1.471) 0.437(1.472) 0.444(1.476) 1.482(0.456)
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Table A.14: Simulation results of the estimators for (M4) when a = 1 using our proposed method and the parametric method proposed
in McMahan et al. (2016) when σ2(t) = (0.5t)2. Presented results include the sample mean and sample standard deviation (provided
within the parenthesis) of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and
MSE×10’s (provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.

Proposed Method Parametric Method

J c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

250
β01 0.500(0.009) 0.501(0.012) 0.501(0.014) 0.501(0.014) 0.483(0.062) 0.484(0.057) 0.483(0.048) 0.481(0.053)
β02 0.501(0.018) 0.498(0.022) 0.496(0.026) 0.496(0.028) 0.392(0.128) 0.394(0.116) 0.393(0.102) 0.399(0.100)
β03 0.706(0.007) 0.707(0.011) 0.708(0.013) 0.709(0.014) 1.027(0.056) 1.022(0.061) 1.017(0.059) 1.020(0.057)

AEE(MSE×10) 0.290(0.106) 0.296(0.057) 0.301(0.043) 0.305(0.036) 0.507(1.443) 0.489(2.945) 0.471(7.458) 0.475(14.95)

500
β01 0.500(0.006) 0.501(0.008) 0.500(0.009) 0.501(0.009) 0.482(0.041) 0.482(0.039) 0.482(0.037) 0.484(0.033)
β02 0.501(0.012) 0.498(0.014) 0.498(0.016) 0.496(0.017) 0.396(0.088) 0.398(0.079) 0.397(0.071) 0.399(0.070)
β03 0.706(0.005) 0.708(0.007) 0.708(0.008) 0.709(0.009) 1.021(0.038) 1.023(0.041) 1.021(0.038) 1.020(0.041)

AEE(MSE×10) 0.285(0.048) 0.290(0.032) 0.293(0.026) 0.295(0.023) 0.463(1.469) 0.459(2.943) 0.453(7.397) 0.449(14.84)

(D2)

250
β01 0.500(0.013) 0.500(0.011) 0.501(0.014) 0.501(0.014) 0.482(0.060) 0.483(0.051) 0.482(0.052) 0.485(0.054)
β02 0.500(0.021) 0.500(0.021) 0.496(0.025) 0.496(0.025) 0.398(0.126) 0.399(0.108) 0.394(0.102) 0.397(0.095)
β03 0.706(0.011) 0.706(0.010) 0.709(0.012) 0.708(0.013) 1.021(0.057) 1.023(0.058) 1.023(0.061) 1.022(0.055)

AEE(MSE×10) 0.292(0.099) 0.295(0.058) 0.302(0.044) 0.301(0.035) 0.494(1.449) 0.479(2.953) 0.484(7.457) 0.476(14.94)

500
β01 0.500(0.006) 0.500(0.008) 0.501(0.009) 0.501(0.009) 0.483(0.043) 0.484(0.037) 0.481(0.036) 0.483(0.035)
β02 0.501(0.012) 0.499(0.014) 0.498(0.016) 0.497(0.017) 0.401(0.087) 0.401(0.075) 0.395(0.070) 0.393(0.071)
β03 0.706(0.005) 0.707(0.007) 0.708(0.008) 0.708(0.009) 1.023(0.041) 1.021(0.042) 1.020(0.043) 1.024(0.041)

AEE(MSE×10) 0.286(0.049) 0.290(0.033) 0.292(0.026) 0.294(0.021) 0.461(1.460) 0.451(2.945) 0.453(7.413) 0.460(14.85)

(D3)

250
β01 0.500(0.009) 0.501(0.011) 0.500(0.014) 0.501(0.014) 0.484(0.059) 0.485(0.057) 0.487(0.052) 0.482(0.053)
β02 0.500(0.017) 0.499(0.020) 0.499(0.025) 0.496(0.027) 0.399(0.117) 0.407(0.103) 0.394(0.097) 0.391(0.099)
β03 0.706(0.006) 0.707(0.010) 0.708(0.012) 0.708(0.013) 1.022(0.058) 1.024(0.056) 1.019(0.058) 1.024(0.058)

AEE(MSE×10) 0.290(0.094) 0.295(0.058) 0.299(0.043) 0.302(0.035) 0.490(1.454) 0.478(2.941) 0.475(7.436) 0.483(14.94)

500
β01 0.500(0.010) 0.500(0.008) 0.500(0.009) 0.501(0.010) 0.483(0.041) 0.485(0.039) 0.485(0.036) 0.483(0.036)
β02 0.500(0.014) 0.500(0.014) 0.497(0.016) 0.497(0.018) 0.399(0.087) 0.399(0.082) 0.395(0.074) 0.400(0.073)
β03 0.707(0.010) 0.707(0.007) 0.709(0.008) 0.708(0.009) 1.025(0.039) 1.024(0.044) 1.018(0.040) 1.019(0.041)

AEE(MSE×10) 0.286(0.052) 0.288(0.033) 0.293(0.027) 0.294(0.023) 0.464(1.467) 0.460(2.950) 0.451(7.435) 0.450(14.88)
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Table A.15: Simulation results of the estimators for (M4) when a = 2 using our proposed method and the parametric method proposed
in McMahan et al. (2016) when σ2(t) = (0.5t)2. Presented results include the sample mean and sample standard deviation (provided
within the parenthesis) of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and
MSE×10’s (provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.

Proposed Method Parametric Method

N c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

2500
β01 0.500(0.001) 0.500(0.002) 0.500(0.005) 0.501(0.008) −0.370(0.026) −0.370(0.038) −0.368(0.056) −0.367(0.080)
β02 0.500(0.003) 0.500(0.004) 0.499(0.008) 0.498(0.013) 0.000(0.052) 0.001(0.070) −0.003(0.110) 0.003(0.144)
β03 0.707(0.001) 0.707(0.002) 0.707(0.005) 0.707(0.008) 0.000(0.028) 0.000(0.041) −0.003(0.062) −0.002(0.092)

AEE(MSE×10) 0.278(0.019) 0.280(0.026) 0.284(0.044) 0.290(0.064) 2.078(4.536) 2.075(4.542) 2.081(4.561) 2.073(4.591)

5000
β01 0.500(0.001) 0.500(0.002) 0.500(0.003) 0.500(0.005) −0.371(0.010) −0.370(0.026) −0.372(0.039) −0.373(0.057)
β02 0.500(0.002) 0.500(0.003) 0.499(0.005) 0.499(0.008) 0.000(0.038) −0.002(0.052) −0.001(0.075) 0.003(0.106)
β03 0.707(0.001) 0.707(0.002) 0.708(0.003) 0.708(0.005) 0.003(0.021) 0.003(0.029) 0.000(0.046) 0.000(0.066)

AEE(MSE×10) 0.277(0.011) 0.279(0.016) 0.282(0.028) 0.285(0.041) 2.075(4.538) 2.077(4.541) 2.080(4.551) 2.077(4.566)

(D2)

2500
β01 0.500(0.001) 0.500(0.002) 0.500(0.005) 0.501(0.008) −0.371(0.026) −0.371(0.036) −0.374(0.056) −0.373(0.080)
β02 0.500(0.003) 0.500(0.004) 0.499(0.008) 0.498(0.013) 0.000(0.052) 0.003(0.070) 0.005(0.106) 0.006(0.153)
β03 0.707(0.001) 0.707(0.002) 0.708(0.005) 0.708(0.008) −0.001(0.028) 0.003(0.038) 0.000(0.062) 0.000(0.090)

AEE(MSE×10) 0.278(0.019) 0.280(0.027) 0.285(0.045) 0.289(0.063) 2.079(4.537) 2.076(4.543) 2.076(4.561) 2.074(4.594)

5000
β01 0.500(0.001) 0.500(0.002) 0.500(0.003) 0.500(0.005) −0.372(0.017) −0.372(0.025) −0.370(0.039) −0.373(0.056)
β02 0.500(0.002) 0.500(0.003) 0.499(0.005) 0.498(0.008) 0.000(0.037) 0.001(0.049) 0.001(0.073) −0.001(0.103)
β03 0.707(0.001) 0.707(0.002) 0.708(0.003) 0.708(0.005) 0.001(0.019) 0.002(0.027) 0.003(0.044) 0.002(0.065)

AEE(MSE×10) 0.277(0.010) 0.279(0.015) 0.282(0.027) 0.286(0.040) 2.077(4.536) 2.076(4.539) 2.073(4.548) 2.078(4.563)

(D3)

2500
β01 0.500(0.001) 0.500(0.002) 0.500(0.005) 0.500(0.008) −0.371(0.025) −0.369(0.038) −0.368(0.055) −0.367(0.082)
β02 0.500(0.003) 0.500(0.004) 0.499(0.008) 0.499(0.014) 0.001(0.052) 0.002(0.071) 0.006(0.106) 0.006(0.151)
β03 0.707(0.001) 0.707(0.002) 0.708(0.005) 0.708(0.008) −0.002(0.028) −0.003(0.039) −0.003(0.063) 0.000(0.089)

AEE(MSE×10) 0.278(0.019) 0.280(0.026) 0.284(0.044) 0.289(0.062) 2.079(4.529) 2.077(4.536) 2.071(4.553) 2.067(4.586)

5000
β01 0.500(0.001) 0.500(0.002) 0.500(0.003) 0.500(0.005) −0.372(0.019) −0.372(0.026) −0.374(0.041) −0.373(0.057)
β02 0.500(0.002) 0.500(0.003) 0.499(0.005) 0.499(0.008) −0.004(0.037) −0.004(0.050) −0.003(0.078) −0.002(0.107)
β03 0.707(0.001) 0.707(0.002) 0.707(0.003) 0.708(0.005) 0.001(0.021) 0.001(0.029) 0.000(0.048) 0.004(0.067)

AEE(MSE×10) 0.278(0.011) 0.279(0.015) 0.282(0.027) 0.285(0.039) 2.082(4.537) 2.083(4.540) 2.084(4.550) 2.078(4.565)
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Table A.16: Simulation results of the estimators for (M4) when a = 2 using our proposed method and the parametric method proposed
in McMahan et al. (2016) when σ2(t) = (0.5t)2. Presented results include the sample mean and sample standard deviation (provided
within the parenthesis) of the 500 estimates of β0 = (β01 = 0.5, β02 = 0.5, β03 = 0.707), as well as the sample mean of 500 AEE’s and
MSE×10’s (provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.

Proposed Method Parametric Method

J c = 1 c = 2 c = 5 c = 10 c = 1 c = 2 c = 5 c = 10

(D1)

250
β01 0.500(0.004) 0.501(0.006) 0.501(0.007) 0.501(0.007) −0.367(0.083) −0.369(0.080) −0.374(0.080) −0.374(0.082)
β02 0.501(0.009) 0.499(0.011) 0.499(0.012) 0.498(0.013) 0.001(0.162) 0.007(0.156) 0.012(0.153) −0.011(0.151)
β03 0.707(0.004) 0.707(0.006) 0.707(0.007) 0.708(0.008) −0.001(0.092) 0.005(0.099) −0.002(0.092) −0.005(0.102)

AEE(MSE×10) 0.282(0.170) 0.287(0.093) 0.289(0.077) 0.290(0.066) 2.073(4.482) 2.065(9.094) 2.071(22.92) 2.098(45.97)

500
β01 0.500(0.003) 0.500(0.004) 0.501(0.004) 0.501(0.005) −0.373(0.059) −0.371(0.057) −0.373(0.057) −0.369(0.053)
β02 0.500(0.006) 0.500(0.007) 0.499(0.008) 0.498(0.008) −0.005(0.115) 0.004(0.116) 0.003(0.114) −0.003(0.105)
β03 0.707(0.003) 0.707(0.004) 0.707(0.005) 0.708(0.005) −0.003(0.068) −0.002(0.067) −0.001(0.061) −0.003(0.067)

AEE(MSE×10) 0.281(0.078) 0.283(0.054) 0.284(0.048) 0.285(0.040) 2.088(4.508) 2.076(9.080) 2.078(22.78) 2.081(45.65)

(D2)

250
β01 0.501(0.005) 0.500(0.006) 0.501(0.007) 0.500(0.008) −0.368(0.082) −0.367(0.079) −0.364(0.081) −0.374(0.078)
β02 0.500(0.009) 0.499(0.011) 0.498(0.012) 0.498(0.013) 0.010(0.163) −0.008(0.155) −0.008(0.153) 0.012(0.166)
β03 0.707(0.004) 0.707(0.006) 0.708(0.007) 0.708(0.008) −0.001(0.087) 0.004(0.094) −0.001(0.090) 0.003(0.095)

AEE(MSE×10) 0.283(0.178) 0.287 (0.096) 0.289(0.077) 0.289(0.067) 2.067(4.481) 2.078(9.104) 2.079(22.90) 2.066(45.98)

500
β01 0.500(0.003) 0.501(0.004) 0.500(0.005) 0.500(0.005) −0.375(0.059) −0.372(0.055) −0.374(0.056) −0.372(0.054)
β02 0.500(0.006) 0.499(0.007) 0.499(0.008) 0.499(0.008) −0.005(0.114) 0.004(0.113) 0.002(0.113) −0.004(0.108)
β03 0.707(0.003) 0.707(0.004) 0.708(0.005) 0.708(0.005) 0.004(0.065) −0.002(0.064) 0.001(0.065) 0.004(0.061)

AEE(MSE×10) 0.281(0.078) 0.283(0.053) 0.285(0.044) 0.284(0.040) 2.083(4.494) 2.077(9.095) 2.078(22.82) 2.079(45.67)

(D3)

250
β01 0.501(0.005) 0.501(0.006) 0.500(0.007) 0.500(0.007) −0.363(0.085) −0.371(0.079) −0.369(0.082) −0.368(0.078)
β02 0.499(0.010) 0.499(0.010) 0.498(0.013) 0.498(0.013) −0.002(0.166) −0.027(0.155) −0.001(0.153) −0.002(0.149)
β03 0.707(0.004) 0.707(0.006) 0.708(0.008) 0.708(0.008) 0.007(0.093) −0.003(0.096) 0.000(0.090) 0.000(0.089)

AEE(MSE×10) 0.284(0.173) 0.287(0.098) 0.289(0.075) 0.290(0.069) 2.065(4.472) 2.108(9.086) 2.078(22.92) 2.077(45.87)

500
β01 0.501(0.003) 0.500(0.004) 0.500(0.005) 0.500(0.005) −0.371(0.056) −0.370(0.057) −0.374(0.055) −0.373(0.056)
β02 0.500(0.006) 0.500(0.007) 0.499(0.008) 0.499(0.008) −0.006(0.120) −0.004(0.105) −0.003(0.109) −0.004(0.111)
β03 0.707(0.003) 0.707(0.004) 0.707(0.005) 0.708(0.005) 0.004(0.070) −0.001(0.066) −0.001(0.066) 0.001(0.065)

AEE(MSE×10) 0.282(0.079) 0.283(0.056) 0.284(0.045) 0.285(0.044) 2.079(4.517) 2.083(9.062) 2.085(22.82) 2.083(45.69)
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A.3 Bootstrapping from Section 2.5.2

For notational simplicity, we denote by X j the collection of covariates of individ-

uals in the jth group, for j = 1, . . . , J . The pooled data is then denoted by

{(Zj,X j) : j = 1, . . . , J}. Then we bootstrap the pairs (Zj,X j)’s for M times. At

each time, we denote the bootstrap pooled data by {(Z(m)
j ,X (m)

j ) : j = 1, . . . , J}.

Applying our method on each bootstrap pooled data yields bootstrap estimates

β̂b:m = (β̂b:m,1, . . . , β̂b:m,p)T and η̂b:m(·) for m = 1, . . . ,M . Then, one can estimate

the standard error of β̂j via the sample standard deviation of {β̂b:1,j, . . . , β̂b:M,j}.

To illustrate the performance of the above bootstrapping method, we conducted a

simulation study. One should note that, though bootstrapping is a powerful tool, its

computational cost is huge, especially for simulation studies where 500 replications

are needed. Thus, we only focused on a small proportion of the simulation studies

that we have conducted in Section 2.4 of the Chapter 2. We hope this study could

provide numerical evidences to support the use of it in more complex settings. In this

simulation study, we repeat the simulation in Section 2.4 of the Chapter 2 under the

combination of (D3), (M2), J ∈ {250, 500} and c = 2. Under each, we independently

generated 500 pooled data. On each pooled data, we applied our methodology to

estimate β0 and η0(·) and further used the above bootstrapping method to estimate

the standard errors of our point estimates. The number of bootstrapping isM = 500.

Table A.17 summarizes the simulation results. For making inferences, one can see

that, as J increases from 250 to 500, the average of estimated standard errors (SE)

are all in closer agreement with the sample standard deviation (SD) of our point

estimates, and that all the empirical coverages (ECV) are increasing to the nominal

level. These patterns suggest that the bootstrapping method is a good tool to estimate

the standard errors for making statistical inferences based on our proposed estimators.
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Table A.17: Presented results include the sample mean (Mean) and sample standard
deviation (SD) of the estimates of β from 500 replications, as well as the mean of 500 esti-
mated standard errors (each was obtained from 500 time bootstrapping) and the empirical
coverage (ECV) of the 95% confidence intervals constructed using the estimated standard
errors under the combination of (D3), (M2), J ∈ {250, 500} and c = 2.

Truth J = 250 J = 500

β01 = 0.500 Mean(SD) 0.515(0.126) 0.511(0.084)
ECV(SE) 0.893(0.106) 0.926(0.079)

β02 = 0.500 Mean(SD) 0.491(0.126) 0.501(0.090)
ECV(SE) 0.935(0.121) 0.926(0.086)

β03 = 0.707 Mean(SD) 0.670(0.113) 0.682(0.084)
ECV(SE) 0.898(0.102) 0.906(0.074)
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Appendix B

Chapter 3 Supplementary Materials

In this appendix, we provide a simulation study to demonstrate the impairment on

estimation if ignoring the retesting outcomes (see Section 3.2). We provide a detailed

derivation of the log-likelihood function `(θ|P ,X) and a simulation study to illustrate

the computational advantage of our GEM algorithm over a direct maximization (see

Section 3.3). The E-step of our GEM algorithm and the observed data information

matrix I(θ) are presented in closed forms (see Section 3.3). We provide additional

simulation results for different settings of misclassification parameters, and extend

the proposed method to model individual testing data, where due to identifiability

issues, we keep the assay sensitivity and specificity for both infections as known (see

Section 3.5). We further provide an additional analysis of the NPHL data (see Section

3.6). Lastly, additional simulation studies are provided to reveal the robustness of

using the Gumbel copula and demonstrate the generalizability of our method to three

infections (see Section 3.7).

B.1 Ignoring retesting outcomes

To show how the retesting information improves the estimation accuracy, we extend

the GEM algorithm for the master pool testing responses; i.e., the testing outcomes

solely from Stage 1. Same as the setting S2 of Table 3.2 (where retesting outcomes

from Stage 2 are also considered), we consider

• β1 = (−4,−2, 2, 0, 0, 0)T,β2 = (−5,−2, 0,−2, 0, 0)T and x = (1, x1, · · · , x5)T,
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where x is simulated from N (0,Ω) with [Ω]st = 1 if s = t and [Ω]st = 0.5 if

s 6= t.

The number of individuals is N = 3000, the group size is c ∈ {2, 5, 10}, Se:k = Sp:k =

0.95, for k = 1, 2, and we use the Gumbel copula with δ = 0.3. Due to the lack of

retesting information, keeping the misclassification parameters as unknown results in

identifiability issue. Thus, we have to assume the true values of Se:k’s and Sp:k’s are

provided in advance (which is not realistic) and estimate only βk’s and δ.

The simulation is repeated 500 times at each c, and summary statistics are re-

ported in Table B.1. By comparing to Table 3.2, one can clearly see that if ignore the

retesting outcomes, the estimates exhibit larger bias and larger standard deviations.

This evidence of inferiority becomes much clear as the group size increases.

Table B.1: Summary statistics of the 500 MLEs obtained under S2 and master pool testing,
including the sample mean (Mean), the sample standard deviation (SD), the average of the
estimated standard error (SE) and the empirical coverage (EC) of 95% confidence interval
with c = 2, 5, 10. The prevalence (averaged over 500 repetitions) of the first and the second
infections are 6.77% and 9.98%, respectively.

c = 2 c = 5 c = 10

# tests 1500 750 300

Truth Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE)

β10 -4 -4.04(0.25) 0.99(0.29) -4.07(0.28) 0.99(0.32) -4.15(0.37) 1.00(0.50)
β11 -2 -2.01(0.20) 0.96(0.22) -2.04(0.26) 0.97(0.27) -2.07(0.34) 0.99(0.46)
β12 2 2.03(0.20) 0.97(0.22) 2.05(0.26) 0.98(0.30) 2.09(0.35) 0.98(0.46)
β13 0 -0.01(0.16) 0.94(0.15) -0.02(0.21) 0.93(0.20) -0.03(0.30) 0.95(0.28)
β14 0 -0.01(0.14) 0.96(0.15) 0.01(0.20) 0.94(0.19) -0.01(0.30) 0.95(0.28)
β15 0 0.00(0.14) 0.96(0.15) -0.01(0.19) 0.96(0.19) -0.01(0.29) 0.96(0.28)

β20 -5 -5.05(0.36) 0.97(0.39) -5.11(0.42) 0.99(0.48) -5.25(0.64) 1.00(0.88)
β21 -2 -2.02(0.21) 0.96(0.22) -2.05(0.27) 0.97(0.30) -2.12(0.42) 0.97(0.49)
β22 0 0.00(0.15) 0.96(0.15) 0.02(0.21) 0.93(0.19) 0.01(0.33) 0.95(0.30)
β23 -2 -2.02(0.20) 0.96(0.22) -2.05(0.26) 0.97(0.30) -2.09(0.42) 0.97(0.49)
β24 0 0.010(0.14) 0.96(0.15) 0.00(0.20) 0.95(0.19) 0.02(0.31) 0.95(0.30)
β25 0 -0.01(0.16) 0.94(0.15) 0.00(0.20) 0.95(0.19) -0.01(0.31) 0.95(0.30)

δ 0.3 0.30(0.09) 0.99(0.13) 0.33(0.13) 0.99(0.23) 0.39(0.20) 1.00(0.47)

121



B.2 Derivation of `(θ|P ,X)

With the SHL pooled testing data P and covariates X, we can write the observed

log-likelihood in the form of

`(θ|P ,X) =
J∑
j=1

log pr(Pj|Xj,θ)}, (B.1)

where θ = (θT
1 ,θ

T
2 )T and Xj collects {x1j · · · ,xcjj}. It suffices to calculate pr(Pj|Xj,θ)

for all possible Pj. As described in Section 2, the Pj takes one of two forms, either

ZZZj = (0, 0)T or ZZZj ∈ {(1, 0)T, (0, 1)T, (1, 1)T} and YYY 1j, . . . , YYY cjj. Hence, the probabil-

ity in (B.1) can be decomposed by

pr(Pj|Xj,θ) = I(Zj1 + Zj2 = 0)pr(Zj1 = 0, Zj2 = 0|Xj,θ) (B.2)

+ I(Zj1 + Zj2 > 0)pr(Zj1, Zj2, YYY j|Xj,θ), (B.3)

where YYY j is the collection of YYY 1j, . . . , YYY cjj when Zj1 + Zj2 > 0. Before calculating

(B.2) and (B.3), we denote

M(a1, a2|b1, b2,θ2) = pr(Yij1 = a1, Yij2 = a2|Ỹij1 = b1, Ỹij2 = b2,θ2)

for ak’s, bk’s in {0, 1}. Under the assumptions listed in Section 2, we have

M(a1, a2|b1, b2,θ2) = pr(Zj1 = a1, Zj2 = a2|Z̃j1 = b1, Z̃j2 = b2)

=
2∏

k=1
Sakbk
e:k (1− Se:k)(1−ak)bk(1− Sp:k)ak(1−bk)S

(1−ak)(1−bk)
p:k . (B.4)

Now, we calculate pr(Zj1 = 0, Zj2 = 0|Xj,θ) in (B.2). Using the Law of Total

Probability and Assumption 3, we can write pr(Zj1 = 0, Zj2 = 0|Xj,θ) by

∑
b1,b2∈{0,1}

pr(Zj1 = 0, Zj2 = 0|Z̃j1 = b1, Z̃j2 = b2,θ2)pr(Z̃j1 = b1, Z̃j2 = b2|Xj,θ1)

=
∑

b1,b2∈{0,1}
M(0, 0|b1, b2,θ2)pr(Z̃j1 = b1, Z̃j2 = b2|Xj,θ1). (B.5)
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Because Z̃jk = maxcj

i=1 Ỹijk and YYY ij|xij’s are independent binary random vectors with

cell probabilities being pijy1y2(θ1)’s for y1, y2 ∈ {0, 1},

pr(Z̃j1 = 0,Z̃j2 = 0|Xj,θ1)

=
cj∏
i=1

pr(Ỹij1 = 0, Ỹij2 = 0|xij,θ1) =
cj∏
i=1

pij00(θ1) (B.6)

pr(Z̃j1 = 1,Z̃j2 = 0|Xj,θ1)

= pr(Z̃j2 = 0|Xj,θ1)− pr(Z̃j1 = 0, Z̃j2 = 0|Xj,θ1)

=
cj∏
i=1

pr(Ỹij2 = 0|xij,θ1)−
cj∏
i=1

pij00(θ1)

=
cj∏
i=1
{pij00(θ1) + pij10(θ1)} −

cj∏
i=1

pij00(θ1) (B.7)

pr(Z̃j1 = 0,Z̃j2 = 1|Xj,θ1) =
cj∏
i=1
{pij00(θ1) + pij01(θ1)} −

cj∏
i=1

pij00(θ1), (B.8)

and

pr(Z̃j1 = 1, Z̃j2 = 1|Xj,θ1) = 1−
cj∏
i=1
{pij00(θ1) + pij01(θ1)}

−
cj∏
i=1
{pij00(θ1) + pij10(θ1)}+

cj∏
i=1

pij00(θ1). (B.9)

Plugging (B.4) and (B.6)–(B.9) to (B.5) finishes the calculation of (B.2).

When ZZZj 6= (0, 0)T, the calculation of pr(Zj1, Zj2, YYY j|Xj,θ) in (B.3) follows a

similar pattern. We first rewrite it by

∑
b1,b2∈{0,1}

pr(Zj1, Zj2|Z̃j1 = b1, Z̃j2 = b2,θ2)pr(Z̃j1 = b1, Z̃j2 = b2, YYY j|Xj,θ)

=
∑

b1,b2∈{0,1}
M(Zj1, Zj2|b1, b2,θ2)pr(Z̃j1 = b1, Z̃j2 = b2, YYY j|Xj,θ). (B.10)
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When b1 = b2 = 0, we have

pr(Z̃j1 = 0,Z̃j2 = 0, YYY j|Xj,θ)

=
cj∏
i=1

pr(Ỹij1 = Ỹij2 = 0, Yij1, Yij2|xij,θ)

=
cj∏
i=1

pr(Yij1, Yij2|Ỹij1 = 0, Ỹij2 = 0,θ2)pr(Ỹij1 = 0, Ỹij2 = 0|xij,θ1)

=
cj∏
i=1
M(Yij1, Yij2|0, 0,θ2)pij00(θ1). (B.11)

When b1 = 1 and b2 = 0, we have

pr(Z̃j1 = 1,Z̃j2 = 0, YYY j|Xj,θ)

= pr(Z̃j2 = 0, YYY j|Xj,θ)− pr(Z̃j1 = 0, Z̃j2 = 0, YYY j|Xj,θ)

=
cj∏
i=1

pr(Ỹij2 = 0, Yij1, Yij2|xij,θ)−
cj∏
i=1
M(Yij1, Yij2|0, 0,θ2)pij00(θ1)

=
cj∏
i=1
{M(Yij1, Yij2|0, 0,θ2)pij00(θ1) +M(Yij1, Yij2|1, 0,θ2)pij10(θ1)}

−
cj∏
i=1
M(Yij1, Yij2|0, 0,θ2)pij00(θ1). (B.12)

Similarly, we have

pr(Z̃j1 = 0,Z̃j2 = 1, YYY j|Xj,θ)

=
cj∏
i=1
{M(Yij1, Yij2|0, 0,θ2)pij00(θ1) +M(Yij1, Yij2|0, 1,θ2)pij01(θ1)}

−
cj∏
i=1
M(Yij1, Yij2|0, 0,θ2)pij00(θ1). (B.13)
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Finally,

pr(Z̃j1 = 1, Z̃j2 = 1, YYY j|Xj,θ)

= pr(YYY j|Xj,θ)−
∑

b1+b2<2
pr(Z̃j1 = b1, Z̃j2 = b2, YYY j|Xj,θ)

=
cj∏
i=1

 ∑
y1,y2∈{0,1}

M(Yij1, Yij2|y1, y2,θ2)pijy1y2(θ1)


−

cj∏
i=1
{M(Yij1, Yij2|0, 0,θ2)pij00(θ1) +M(Yij1, Yij2|1, 0,θ2)pij10(θ1)}

−
cj∏
i=1
{M(Yij1, Yij2|0, 0,θ2)pij00(θ1) +M(Yij1, Yij2|0, 1,θ2)pij01(θ1)}

+
cj∏
i=1
M(Yij1, Yij2|0, 0,θ2)pij00(θ1). (B.14)

Combining (B.11)–(B.14) with (B.10) finishes the calculation of (B.3) and thus com-

pletes the derivation of `(θ|P ,X).

B.3 A computational advantage of the GEM algorithm

As it mentioned in Section 3.3, the GEM algorithm can search for the MLE more

efficiently (faster) than maximizing the likelihood directly. To illustrate this numerical

advantage, we compare the computational cost of our GEM algorithm with that of

maximizing the likelihood directly using the function “optim” in R. The simulation

uses the setting S2, N = 3000, c = 2, Se:k = Sp:k = 0.95 for k = 1, 2, and the Gumbel

copula with δ = 0.3. We generate 100 independent sets of the SHL pooled testing

data. On each data set, we search for the MLE using both the GEM algorithm and

the “optim” function in R. The initial values of both methods are chosen to be the

same (as described in Section 3.5), and the stopping criteria are the same as well. We

report summary statistics of the MLEs in Table B.2. We observe that the estimates

obtained from two approaches are almost identical. However, the mean (standard

deviation) of 100 computation times taken by the GEM algorithm is about 39.94

(19.29) seconds, much smaller than that of “optim” function which is 63.60 (58.28)
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seconds. We believe this comparison is sufficient to demonstrate the computational

advantage of the GEM algorithm.

Table B.2: Simulation results for parameter estimation using the GEM algorithm and
the “optim” function. Reported are the sample means (Mean) and the sample standard
deviations (SD) of the 100 MLEs.

GEM algorithm “optim” function

Truth Mean(SD) Mean(SD)

β10 -4 -4.05(0.20) -4.04(0.20)
β11 -2 -2.02(0.16) -2.02(0.16)
β12 2 2.02(0.15) 2.02(0.15)
β13 0 0.00(0.11) 0.00(0.11)
β14 0 0.00(0.11) 0.00(0.11)
β15 0 0.01(0.11) 0.01(0.11)

β20 -5 -5.06(0.29) -5.05(0.29)
β21 -2 -2.03(0.18) -2.02(0.18)
β22 0 0.01(0.11) 0.01(0.11)
β23 -2 -2.03(0.18) -2.02(0.18)
β24 0 -0.02(0.13) -0.02(0.13)
β25 0 0.00(0.12) 0.00(0.12)

δ 0.3 0.30(0.05) 0.30(0.05)

Se:1 0.95 0.95(0.02) 0.95(0.02)
Se:2 0.95 0.95(0.02) 0.95(0.02)
Sp:1 0.95 0.95(0.01) 0.95(0.01)
Sp:2 0.95 0.95(0.01) 0.95(0.01)

B.4 Calculation of the E-step

B.4.1 Explicit formula of η
(d)
ijy1y2

For any y1, y2 ∈ {0, 1}, i = 1, · · · , cj and j = 1, · · · , J , one can calculate that

η
(d)
ijy1y2 = pr(Ỹij1 = y1, Ỹij2 = y2|P ,X,θ(d))

= pr(Ỹij1 = y1, Ỹij2 = y2,Pj|Xj,θ
(d))∑

y1,y2∈{0,1} pr(Ỹij1 = y1, Ỹij2 = y2,Pj|Xj,θ(d))
.

It suffices to compute the pr(Ỹij1 = y1, Ỹij2 = y2,Pj|Xj,θ) for a generic θ and

y1, y2 ∈ {0, 1}. Again, we consider two cases.

The first case is when ZZZj = (0, 0)T. Then pr(Ỹij1 = y1, Ỹij2 = y2,Pj|Xj,θ) =

pr(Ỹij1 = y1, Ỹij2 = y2, Zj1 = Zj2 = 0|Xj,θ). Denote Gj = {1, . . . , cj}. For y1 = 0
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and y2 = 0, using the Law of Total Probability provides that

pr(Ỹij1 = Ỹij2 = Zj1 = Zj2 = 0|Xj,θ)

=
∑

a,b∈{0,1}

{
pr
(
Ỹij1 = Ỹij2 = Zj1 = Zj2 = 0

∣∣∣∣ max
l∈Gj\{i}

Ỹlj1 = a, max
l∈Gj\{i}

Ỹlj2 = b,Xj,θ

)

×pr
(

max
l∈Gj\{i}

Ỹlj1 = a, max
l∈Gj\{i}

Ỹlj2 = b
∣∣∣Xj,θ

)}

=
∑

a,b∈{0,1}
pr
(
Zj1 = 0, Zj2 = 0

∣∣∣∣Z̃j1 = a, Z̃j2 = b,θ2

)
pij00(θ1)γ(−i)

ijab (θ1)

= pij00(θ1)
∑

a,b∈{0,1}
M(0, 0|a, b,θ2)γ(−i)

ijab (θ1), (B.15)

where

γ
(−i)
ijab (θ1) = pr

 max
l∈Gj\{i}

Ỹlj1 = a, max
l∈Gj\{i}

Ỹlj2 = b

∣∣∣∣∣Xj

,
which can be calculated by

γ
(−i)
ij00 (θ1) = pr

 max
l∈Gj\{i}

Ỹlj1 = 0, max
l∈Gj\{i}

Ỹlj2 = 0

∣∣∣∣∣∣Xj

 =
∏

l∈Gj\{i}
plj00(θ1),

γ
(−i)
ij10 (θ1) =

∏
l∈Gj\{i}

{plj00(θ1) + plj10(θ1)} − γ(−i)
ij00 (θ1),

γ
(−i)
ij01 (θ1) =

∏
l∈Gj\{i}

{plj00(θ1) + plj01(θ1)} − γ(−i)
ij00 (θ1),

γ
(−i)
ij11 (θ1) = 1− γ(−i)

ij00 (θ1)− γ(−i)
ij01 (θ1)− γ(−i)

ij10 (θ1).

One can calculate

pr(Ỹij1 = 1, Ỹij2 = 0, Zj1 = Zj2 = 0|Xj,θ)

= pr(Zj1 = Zj2 = 0, Ỹij1 = 1, Ỹij2 = 0, max
l∈Gj\{i}

Ỹlj2 = 0|Xj,θ)

+ pr(Zj1 = Zj2 = 0, Ỹij1 = 1, Ỹij2 = 0, max
l∈Gj\{i}

Ỹlj2 = 1|Xj,θ)

= M(0, 0|1, 0,θ2)pij10(θ1)
{
γ

(−i)
ij00 (θ1) + γ

(−i)
ij10 (θ1)

}
+M(0, 0|1, 1,θ2)pij10(θ1)

{
γ

(−i)
ij01 (θ1) + γ

(−i)
ij11 (θ1)

}
. (B.16)
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Similarly,

pr(Ỹij1 = 0, Ỹij2 = 1, Zj1 = Zj2 = 0|Xj,θ)

= pr(Zj1 = Zj2 = 0, Ỹij1 = 0, Ỹij2 = 1, max
l∈Gj\{i}

Ỹlj1 = 0|Xj,θ)

+ pr(Zj1 = Zj2 = 0, Ỹij1 = 0, Ỹij2 = 1, max
l∈Gj\{i}

Ỹlj1 = 1|Xj,θ)

= M(0, 0|0, 1,θ2)pij01(θ1)
{
γ

(−i)
ij00 (θ1) + γ

(−i)
ij01 (θ1)

}
+M(0, 0|1, 1,θ2)pij01(θ1)

{
γ

(−i)
ij10 (θ1) + γ

(−i)
ij11 (θ1)

}
. (B.17)

Finally,

pr(Ỹij1 = 1, Ỹij2 = 1,Pj) = (1− Se:1)(1− Se:2)pij11(θ1). (B.18)

Combining (B.15)–(B.18) finishes the calculation of η(d)
ijy1y2 when Pj = ZZZj = (0, 0)T.

The second case is when ZZZj 6= (0, 0)T and we observe {Zj1, Zj2, YYY 1j, · · · , YYY cjj}.

Again, we start the calculation of pr(Ỹij1 = y1, Ỹij2 = y2,Pj|Xj,θ) by considering

y1 = y2 = 0; i.e.,

pr(Ỹij1 = 0, Ỹij2 = 0, Zj1, Zj2, YYY 1j, · · · , YYY cjj|Xj,θ)

=
∑

b1,b2∈{0,1}

pr
(
Zj1, Zj2|max

i
Ỹij1 = b1,max

i
Ỹij2 = b2,θ2

)

× pr(Ỹij1 = 0, Ỹij2 = 0, Yij1, Yij2|Xj,θ)

× pr
(
YYY 1j, . . . , YYY i−1,j, YYY i+1,j, . . . , YYY cjj,

max
i∈Gj\{i}

Ỹij1 = b1, max
i∈Gj\{i}

Ỹij2 = b2|Xj,θ
)

= M(Yij1, Yij2|0, 0,θ2)pij00(θ1)
∑

b1,b2∈{0,1}
M(Zj1, Zj2|b1, b2,θ2)ζijb1b2(θ),

(B.19)

where

ζijb1b2(θ) = pr(YYY 1j, . . . , YYY i−1,j, YYY i+1,j, . . . , YYY cjj, max
i∈Gj\{i}

Ỹij1 = b1, max
i∈Gj\{i}

Ỹij2 = b2|Xj,θ)
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which can be calculated by

ζij00(θ) =
∏

l∈Gj\{i}
M(Ylj1, Ylj2|0, 0,θ2)plj00(θ1)

ζij10(θ) =
∏

l∈Gj\{i}
{M(Ylj1, Ylj2|0, 0,θ2)plj00(θ1) +M(Ylj1, Ylj2|1, 0,θ2)plj10(θ1)}

− ζij00(θ)

ζij01(θ) =
∏

l∈Gj\{i}
{M(Ylj1, Ylj2|0, 0,θ2)plj00(θ1) +M(Ylj1, Ylj2|0, 1,θ2)plj01(θ1)}

− ζij00(θ)

ζij11(θ) =
∏

l∈Gj\{i}

 ∑
y1,y2∈{0,1}

M(Ylj1, Ylj2|y1, y2,θ2)pljy1y2(θ1)

− ∑
b1+b2<2

ζijb1b2(θ).

Similarly, we have

pr(Ỹij1 = 1, Ỹij2 = 0, Zj1, Zj2, YYY 1j, · · · , YYY cjj|Xj,θ)

= M(Yij1, Yij2|1, 0,θ2)pij10(θ1)
[
M(Zj1, Zj2|1, 0,θ2)

{
ζij00(θ1) + ζij10(θ1)

}
+M(Zj1, Zj2|1, 1,θ2)

{
ζij01(θ1) + ζij11(θ1)

}]
(B.20)

pr(Ỹij1 = 0, Ỹij2 = 1, Zj1, Zj2, YYY 1j, · · · , YYY cjj|Xj,θ)

= M(Yij1, Yij2|0, 1,θ2)pij01(θ1)
[
M(Zj1, Zj2|0, 1,θ2)

{
ζij00(θ1) + ζij01(θ1)

}
+M(Zj1, Zj2|1, 1,θ2)

{
ζij10(θ1) + ζij11(θ1)

}]
(B.21)

pr(Ỹij1 = 1, Ỹij2 = 1, Zj1, Zj2, YYY 1j, · · · , YYY cjj|Xj,θ)

= M(Yij1, Yij2|1, 1,θ2)pij11(θ1)M(Zj1, Zj2|1, 1,θ2)
∑

a,b∈{0,1}
ζijab(θ). (B.22)

Combining (B.19)–(B.22) finishes the calculation of η(d)
ijy1y2 when ZZZj 6= (0, 0)T.

B.4.2 Explicit formula of η
(d)
P,jk

Recall that η(d)
P,jk = pr(Z̃jk = 1|P ,X,θ(d)). It suffices to calculate

ηj,ab = pr(Z̃j1 = a, Z̃j2 = b|Pj,Xj,θ) = pr(Z̃j1 = a, Z̃j2 = b,Pj|Xj,θ)∑
a,b∈{0,1} pr(Z̃j1 = a, Z̃j2 = b,Pj|Xj,θ)

,
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for any j = 1, · · · , J , a, b ∈ {0, 1} and θ because η(d)
P,j1 = ηj,10 + ηj,11 and η

(d)
P,j2 =

ηj,01 + ηj,11 at θ = θ(d). Again, we calculate the pr(Z̃j1 = a, Z̃j2 = b,Pj|Xj,θ) for

a, b ∈ {0, 1} under two scenarios.

The first one is when Pj = (Zj1, Zj2)T = (0, 0)T. One can easily see that

pr(Z̃j1 = a, Z̃j2 = b,Pj|Xj,θ) = pr(Z̃j1 = a, Z̃j2 = b, Zj1 = 0, Zj2 = 0|Xj,θ)

= M(0, 0|a, b,θ2)pr(Z̃j1 = a, Z̃j2 = b|Xj,θ1), (B.23)

where pr(Z̃j1 = a, Z̃j2 = b|Xj,θ1) has been computed in (B.6) – (B.9).

For the second case where ZZZj 6= (0, 0)T and Pj = {Zj1, Zj2, YYY 1j, · · · , YYY cjj}, we

have

pr(Z̃j1 = a, Z̃j2 = b,Pj|Xj,θ) = pr(Z̃j1 = a, Z̃j2 = b, Zj1, Zj2, YYY j|Xj,θ)

= M(Zj1, Zj2|a, b,θ2)pr(YYY j, Z̃j1 = a, Z̃j2 = b|Xj,θ),

(B.24)

where pr(YYY j, Z̃j1 = a, Z̃j2 = b|Xj,θ) has been computed in (B.11) – (B.14). Com-

bining (B.23) and (B.24) completes the computation of η(d)
P,jk.

B.5 Explicit calculation of I(θ)

Recall that in Section 3, we have presented

I(θ) = −E
{
∂2lc(θ|P , ỸYY ,X)

∂θ∂θT

∣∣∣∣∣P ,X,θ
}
− cov

{
∂lc(θ|P , ỸYY ,X)

∂θ

∣∣∣∣∣P ,X,θ
}
, (B.25)

where

`c(θ|P , ỸYY ,X) = `c1(θ1|ỸYY ,X) + `c2(θ2|P , ỸYY )

with

`c1(θ1|ỸYY ,X) =
J∑
j=1

cj∑
i=1

{
(1− Ỹij1)(1− Ỹij2) log pij00(θ1) + Ỹij1(1− Ỹij2) log pij10(θ1)

+ (1− Ỹij1)Ỹij2 log pij01(θ1) + Ỹij1Ỹij2 log pij11(θ1)
}
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`c2(θ2|P , ỸYY ) =
J∑
j=1

2∑
k=1

{Z̃jkZjk + I(ZZZj 6= (0, 0)T)
cj∑
i=1

ỸijkYijk

}
logSe:k

+
{
Z̃jk(1− Zjk) + I(ZZZj 6= (0, 0)T)

cj∑
i=1

Ỹijk(1− Yijk)
}

log(1− Se:k)

+
{

(1− Z̃jk)(1− Zjk)+I(ZZZj 6= (0, 0)T)
cj∑
i=1

(1−Ỹijk)(1−Yijk)
}

logSp:k

+
{

(1− Z̃jk)Zjk + I(ZZZj 6= (0, 0)T)
cj∑
i=1

(1− Ỹijk)Yijk
}

log(1− Sp:k)
.

In the following, we calculate the expectation term of (B.25) in Appendix B.5.1 and

the covariance term in Appendix B.5.2.

B.5.1 The calculation of expectation term of (B.25)

One can easily calculate that

∂2`(θ|P , ỸYY ,X)
∂θ∂θT

=


∂2`c1(θ1|ỸYY ,X)

∂θ1∂θT
1

0

0 ∂2`c2(θ2|P,ỸYY )
∂θ2∂θT

2

 , (B.26)

where

∂2`c1(θ1|ỸYY ,X)
∂θ1∂θT

1
=

J∑
j=1

cj∑
i=1

{
− (1− Ỹij1)(1− Ỹij2)

p2
ij00(θ1)

{
∂pij00(θ1)

∂θ1

}{
∂pij00(θ1)

∂θ1

}T

− Ỹij1(1− Ỹij2)
p2
ij10(θ1)

{
∂pij10(θ1)

∂θ1

}{
∂pij10(θ1)

∂θ1

}T

− (1− Ỹij1)Ỹij2
p2
ij01(θ1)

{
∂pij01(θ1)

∂θ1

}{
∂pij01(θ1)

∂θ1

}T

− Ỹij1Ỹij2
p2
ij11(θ1)

{
∂pij11(θ1)

∂θ1

}{
∂pij11(θ1)

∂θ1

}T

+ (1− Ỹij1)(1− Ỹij2)
pij00(θ1)

∂2pij00(θ1)
∂θ1∂θT

1

+ Ỹij1(1− Ỹij2)
pij10(θ1)

∂2pij10(θ1)
∂θ1∂θT

1

+ (1− Ỹij1)Ỹij2
pij01(θ1)

∂2pij01(θ1)
∂θ1∂θT

1
+ Ỹij1Ỹij2
pij11(θ1)

∂2pij11(θ1)
∂θ1∂θT

1

}
,

(B.27)
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and

∂2`c2(θ2|P , ỸYY )
∂θ2∂θT

2
=



∂2`c2(θ2|P,ỸYY )
∂S2

e:1
0 0 0

0 ∂2`c2(θ2|P,ỸYY )
∂S2

e:2
0 0

0 0 ∂2`c2(θ2|P,ỸYY )
∂S2

p:1
0

0 0 0 ∂2`c2(θ2|P,ỸYY )
∂S2

p:2


with

∂2`c2(θ2|P , ỸYY )
∂S2

e:k
= 1
S2
e:k(1− Se:k)2


J∑
j=1

[
Z̃jk

{
Zjk(2Se:k − 1)− S2

e:k

}

+I(ZZZj 6= (0, 0)T)
cj∑
i=1

Ỹijk
{
Yijk(2Se:k − 1)− S2

e:k

}]}
(B.28)

∂2`c2(θ2|P , ỸYY )
∂S2

p:k
= 1
S2
p:k(1− Sp:k)2


J∑
j=1

[
(1− Z̃jk)

{
(1− Zjk)(2Sp:k − 1)− S2

p:k

}

+I(ZZZj 6= (0, 0)T)
cj∑
i=i

(1− Ỹijk)
{

(1− Yijk)(2Sp:k − 1)− S2
p:k

}]}
.

(B.29)

A quick inspection of (B.27)–(B.29) shows that, to compute (B.26), it suffices to

calculate

pr(Ỹij1 = y1, Ỹij2 = y2|P ,X,θ) and pr(Z̃j1 = b1, Z̃j2 = b2|P ,X,θ)

for y1, y2, b1, b2 ∈ {0, 1}. These calculations are derived explicitly in Appendix B.4.
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B.5.2 The calculation of the covariance term of (B.25)

Note that first derivative of complete log-likelihood ∂`c(θ|P , ỸYY ,X)/∂θ can be rewrit-

ten as
J∑
j=1

cj∑
i=1

 1
pij00(θ1)

∂pij00(θ1)
∂θ

+ Ỹij1(1− Ỹij2)
{

1
pij10(θ1)

∂pij10(θ1)
∂θ

− 1
pij00(θ1)

∂pij00(θ1)
∂θ

}

+ (1− Ỹij1)Ỹij2
{

1
pij01(θ1)

∂pij01(θ1)
∂θ

− 1
pij00(θ1)

∂pij00(θ1)
∂θ

}

+ Ỹij1Ỹij2

{
1

pij11(θ1)
∂pij11(θ1)

∂θ
− 1
pij00(θ1)

∂pij00(θ1)
∂θ

}
+

J∑
j=1

2∑
k=1

Z̃jk(Zjk − Se:k) +∑
i∈I+ Ỹijk(Yijk − Se:k)

Se:k(1− Se:k)

 ∂Se:k
∂θ

+

(1− Z̃jk)(1− Zjk − Sp:k) +∑
i∈I+(1− Ỹijk)(1− Yijk − Sp:k)

Sp:k(1− Sp:k)

 ∂Sp:k
∂θ

 . (B.30)

For any y1, y2 ∈ {0, 1}, let pppy1y2 denote the collection of all individuals’ cell prob-

abilities for the infection status “y1y2”; i.e., pppy1y2 = (p11y1y2(θ1), · · · , pcJJy1y2(θ1))T,

an N -dimensional vector. For any vector ppp of length m, we denote diag(ppp) by an

m×m-dimensional diagonal matrix with the diagonals being ppp. Then diag{1/pppy1y2}

is an N×N matrix and ∂pppy1y2/∂θ
T is an N×(2p+7) matrix. Furthermore, we denote

ỸYY (k) = (Ỹ11k, · · · , ỸcJJk)T, YYY (k) = (Y11k, · · · , YcJJk)T, c = (c1, · · · , c1︸ ︷︷ ︸
c1

, · · · , cJ · · · , cJ︸ ︷︷ ︸
cJ

)T,

ZZZ(k) = (Z1k, · · · , Z1k︸ ︷︷ ︸
c1

, · · · , ZJk, · · · , ZJk︸ ︷︷ ︸
cJ

)T, and

Z̃(k) = (Z̃1k, · · · , Z̃1k︸ ︷︷ ︸
c1

, · · · , Z̃Jk, · · · , Z̃Jk︸ ︷︷ ︸
cJ

)T.

Additionally, we let 0N×m (1N×m) represents an N ×m zero (one) matrix and denote

“�”(“�”) by the Hadamard product (division), i.e., [AAA � BBB]i,j = [AAA]i,j[BBB]i,j and

[AAA � BBB]i,j = [AAA]i,j/[BBB]i,j. With these notation, we are able to express (B.30) in a

concise matrix form,

∂`c(θ|P , ỸYY ,X)
∂θ

= QQQTVVV +
J∑
j=1

cj∑
i=1

1
pij00(θ1)

∂pij00(θ1)
∂θ
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where

QQQ =



{
diag( 1

p10
)∂p10
∂θT − diag( 1

p00
)∂p00
∂θT

}
N×(2p+7){

diag( 1
p01

)∂p01
∂θT − diag( 1

p00
)∂p00
∂θT

}
N×(2p+7){

diag( 1
p11

)∂p11
∂θT − diag( 1

p00
)∂p00
∂θT

}
N×(2p+7)

1
Se:1(1−Se:1)

{
0N×(2p+3),1N×1,0N×3

}
1

Se:2(1−Se:2)

{
0N×(2p+4),1N×1,0N×2

}
1

Sp:1(1−Sp:1)

{
0N×(2p+5),1N×1,0N×1

}
1

Sp:2(1−Sp:2)

{
0N×(2p+6),1N×1

}


7N×(2p+7)

and VVV =



VVV 1

VVV 2

VVV 3

VVV 4

VVV 5

VVV 6

VVV 7


7N×1

with

VVV 1 = ỸYY (1) � (1− ỸYY (2))

VVV 2 = (1− ỸYY (1))� ỸYY (2)

VVV 3 = ỸYY (1) � ỸYY (2)

VVV 4 = (ZZZ(1) − Se:1)� Z̃(1) � c+ I(ZZZ(1) + ZZZ(2) > 0)� (YYY (1) − Se:1)� ỸYY (1)

VVV 5 = (ZZZ(2) − Se:2)� Z̃(2) � c+ I(ZZZ(1) + ZZZ(2) > 0)� (YYY (2) − Se:2)� ỸYY (2)

VVV 6 = (1− ZZZ(1) − Sp:1)� (1− Z̃(1))� c

+ I(ZZZ(1) + ZZZ(2) > 0)� (1− YYY (1) − Sp:1)� (1− ỸYY (1))

VVV 7 = (1− ZZZ(2) − Sp:2)� (1− Z̃(2))� c

+ I(ZZZ(1) + ZZZ(2) > 0)� (1− YYY (2) − Sp:2)� (1− ỸYY (2)).

Herein, for a vector uuu = (u1, . . . , um)T, I(uuu > 0) = (I(u1 > 0), . . . , I(um > 0))T.

Consequently, we have

cov
{
∂`c(θ|P , ỸYY ,X,θ)

∂θ
|P ,X,θ

}
= QQQTcov(VVV |P ,X,θ)QQQ.

Elements ofQQQ are easy to compute. We only show the derivation of the cov(VVV |P ,X,θ).

By the symmetry of covariance matrix, it suffices to derive

{cov(VVV l1 , VVV l2 |P ,X,θ) : 1 ≤ l1 ≤ l2 ≤ 7}.
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Since all derivations are similar, we only present the calculation of cov(VVV 1, VVV 1|P ,X,θ),

the elements of which are cov(Ỹij1(1− Ỹij2), Ỹi′j′1(1− Ỹi′j′2)|P ,X,θ)’s for all i, i′, j, j′.

Clearly, if j 6= j′, cov(Ỹij1(1− Ỹij2), Ỹi′j′1(1− Ỹi′j′2)|P ,X,θ) = 0 for any i and i′.

This is because groups do not overlap with each other. We focus on

cov(Ỹij1(1− Ỹij2), Ỹi′j1(1− Ỹi′j2)|P ,X,θ)

= pr(Ỹij1 = 1, Ỹij2 = 0, Ỹi′j1 = 1, Ỹi′j2 = 0|Pj,Xj,θ)

− pr(Ỹij1 = 1, Ỹij2 = 0|Pj,Xj,θ)pr(Ỹi′j1 = 1, Ỹi′j2 = 0|Pj,Xj,θ)

for j = 1, . . . , J . The two probabilities pr(Ỹij1 = 1, Ỹij2 = 0|Pj,Xj,θ) and pr(Ỹi′j1 =

1, Ỹi′j2 = 0|Pj,Xj,θ) have been calculated in Appendix B.4. Furthermore,

pr(Ỹij1 = 1, Ỹij2 = 0, Ỹi′j1 = 1, Ỹi′j2 = 0|Pj,Xj,θ)

= pr(Pj|Ỹij1 = 1, Ỹij2 = 0, Ỹi′j1 = 1, Ỹi′j2 = 0,Xj,θ)pij10(θ1)pi′j10(θ1)
pr(Pj|Xj,θ)

where pr(Pj|Xj,θ) = ∑
y1,y2∈{0,1} pr(Ỹij1 = y1, Ỹij2 = y2,Pj|Xj,θ) has also been

computed in Appendix B.4. It remains to calculate pr(Pj|Ỹij1 = 1, Ỹij2 = 0, Ỹi′j1 =

1, Ỹi′j2 = 0,Xj,θ). Again, we consider the two forms of Pj:

• Case 1. Pj = ZZZj = (0, 0)T.

pr(Pj|Ỹij1 = 1, Ỹij2 = 0, Ỹi′j1 = 1, Ỹi′j2 = 0,Xj,θ)

= pr(Zj1 = 0, Zj2 = 0|Ỹij1 = 1, Ỹij2 = 0, Ỹi′j1 = 1, Ỹi′j2 = 0,Xj,θ)

= M(0, 0|1, 0,θ2)pr

 max
l∈Gj\{i,i′}

Ỹlj2 = 0

∣∣∣∣∣∣xij,θ1


+M(0, 0|1, 1,θ2)pr

 max
l∈Gj\{i,i′}

Ỹlj2 = 1

∣∣∣∣∣∣xij,θ1


= M(0, 0|1, 1,θ2)

+ {M(0, 0|1, 0,θ2)−M(0, 0|1, 1,θ2)}
∏

l∈Gj\{i,i′}
{plj10(θ1) + plj00(θ1)}.
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• Case 2. ZZZj 6= (0, 0)T and Pj = (Zj1, Zj2, YYY 1j, · · · , YYY cjj).

pr(Pj|Ỹij1 = 1, Ỹij2 = 0, Ỹi′j1 = 1, Ỹi′j2 = 0,Xj,θ)

=
∑

b2∈{0,1}

pr{Pj

∣∣∣∣Ỹij1 = 1, Ỹij2 = 0, Ỹi′j1 = 1, Ỹi′j2 = 0, max
l∈Gj\{i,i′}

Ỹlj2 = b2,Xj,θ

}

× pr
{

max
l∈Gj\{i,i′}

Ỹlj2 = b2

∣∣∣∣Xj,θ1

}
= pr(Yij1, Yij2|Ỹij1 = 1, Ỹij2 = 0,θ2)pr(Yi′j1, Yi′j2|Ỹi′j1 = 1, Ỹi′j2 = 0,θ2)

×

pr(Zj1, Zj2|Z̃j1 = 1, Z̃j2 = 0,θ2)pr
{

max
l∈Gj\{i,i′}

Ỹlj2 = 0
∣∣∣∣Xj,θ

}

+ pr(Zj1, Zj2|Z̃j1 = 1, Z̃j2 = 1,θ2)pr
{

max
l∈Gj\{i,i′}

Ỹlj2 = 1
∣∣∣∣Xj,θ

}
= M(Yij1, Yij2|1, 0,θ2)M(Yi′j1, Yi′j2|1, 0,θ2)

×

M(Zj1, Zj2|1, 1,θ2) + {M(Zj1, Zj2|1, 0,θ2)−M(Zj1, Zj2|1, 1,θ2)}

×
∏

l∈Gj\{i,i′}
{plj10(θ1) + plj00(θ1)}

.
By now, we have completed the calculation of cov(VVV 1, VVV 1|P ,X,θ). The calculations

of the remaining part of cov(VVV l1 , VVV l2 |P ,X,θ) for 1 ≤ l1 ≤ l2 ≤ 7 follow a similar

pattern and hence are omitted.

B.6 Results at different values of Se:k’s and Sp:k’s

In Section 3.5, we present the simulation results under the case that all the assay sensi-

tivity and specificity are 0.95. Herein, we report additional simulation results at differ-

ent values of Se:k’s and Sp:k’s. We consider following three combinations of testing er-

rors, R1 : (Se:1, Se:2, Sp:1, Sp:2)T = (0.90, 0.95, 0.93, 0.97)T, R2 : (Se:1, Se:2, Sp:1, Sp:2)T =

(0.95, 0.95, 0.99, 0.99)T and R3 : (Se:1, Se:2, Sp:1, Sp:2)T = (0.95, 0.95, 0.999, 0.999)T.

The first one is used to address the case when the sensitivity and specificity are

different across infections. The later two are used to emulate the case when the true
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assay specificity is close to one. We used the setting S2, N = 3000, c = 2, and the

Gumbel copula with δ = 0.3 to generate the SHL pooled testing data. The estimates

from 500 replications are summarized in Table B.4. The results reinforce the conclu-

sions from the original studies (the ones using 0.95 for sensitivity and specificity for

both infections). One can observe that our estimate shows little bias, the estimated

standard error is consistent with the sample standard deviation, and the empirical

coverage is at the nominal level. One might note that for R3, where the specificity

for both infections are 0.999, the empirical coverage of one specificity doesn’t reach

the nominal level. However, our estimate still performs well in terms of exhibiting

little bias. The variable selection results of each considered setting are also provided

in Table B.3, from which we observe the same pattern as in Section 3.5 that the BIC

criterion yields the smallest average prediction error and the highest SR value. In

conclusion, we believe this simulation demonstrates that our methodology can handle

different values of the assay sensitivity and specificity.

Table B.3: The average prediction error PE × 100 and the SR value (provided in paren-
thesis) of the MLE and the shrinkage estimates under the AIC, BIC, and ERIC tuning
parameter selection criterion over 500 replications under R1 − R3 setting and the SHL
pooling with c = 2.

R1 R2 R3

Estimate PE×100(SR) PE×100(SR) PE×100(SR)

MLE 0.135(0.000) 0.111(0.000) 0.106(0.000)
AIC 0.099(0.434) 0.080(0.382) 0.074(0.432)
BIC 0.077(0.910) 0.060(0.882) 0.056(0.894)
ERIC 0.082(0.700) 0.065(0.726) 0.060(0.726)
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Table B.4: Summary statistics of the 500 MLEs obtained under setting S2, R1–R3, and the SHL pooling with c = 2, including the
sample mean (Mean), the sample standard deviation (SD), the average of the estimated standard errors (SE) and the empirical coverage
(EC) of 95% confidence intervals. The prevalence (averaged over 500 repetitions) of the first and the second infections are 6.77% and
9.98%, respectively.

R1 R2 R3

Truth Mean(SD) EC(SE) Truth Mean(SD) EC(SE) Truth Mean(SD) EC(SE)

β10 -4 -4.03(0.24) 0.94(0.23) β10 -4 -4.02(0.17) 0.96(0.17) β10 -4 -4.05(0.16) 0.96(0.17)
β11 -2 -2.02(0.18) 0.95(0.17) β11 -2 -2.01(0.14) 0.95(0.14) β11 -2 -2.03(0.14) 0.94(0.14)
β12 2 2.03(0.18) 0.94(0.17) β12 2 2.01(0.15) 0.95(0.14) β12 2 2.02(0.14) 0.94(0.14)
β13 0 -0.01(0.13) 0.94(0.13) β13 0 0.00(0.12) 0.94(0.11) β13 0 0.00(0.11) 0.94(0.11)
β14 0 0.00(0.13) 0.95(0.13) β14 0 0.00(0.12) 0.94(0.11) β14 0 0.00(0.11) 0.94(0.11)
β15 0 0.00(0.12) 0.96(0.13) β15 0 0.00(0.12) 0.94(0.11) β15 0 0.00(0.11) 0.95(0.11)

β20 -5 -5.04(0.26) 0.96(0.26) β20 -5 -5.05(0.24) 0.96(0.24) β20 -5 -5.04(0.24) 0.97(0.24)
β21 -2 -2.02(0.16) 0.96(0.16) β21 -2 -2.01(0.15) 0.97(0.15) β21 -2 -2.02(0.15) 0.96(0.15)
β22 0 0.00(0.12) 0.93(0.12) β22 0 0.00(0.12) 0.94(0.12) β22 0 0.01(0.11) 0.95(0.11)
β23 -2 -2.02(0.16) 0.96(0.16) β23 -2 -2.03(0.16) 0.95(0.16) β23 -2 -2.02(0.15) 0.96(0.15)
β24 0 0.01(0.12) 0.95(0.12) β24 0 0.00(0.12) 0.95(0.12) β24 0 0.00(0.12) 0.94(0.11)
β25 0 0.00(0.11) 0.96(0.12) β25 0 0.00(0.11) 0.96(0.12) β25 0 0.00(0.11) 0.96(0.11)

δ 0.3 0.29(0.07) 0.97(0.07) δ 0.3 0.29(0.05) 0.96(0.06) δ 0.3 0.29(0.05) 0.96(0.05)

Se:1 0.90 0.90(0.03) 0.95(0.03) Se:1 0.95 0.95(0.02) 0.94(0.02) Se:1 0.95 0.95(0.01) 0.92(0.02)
Se:2 0.95 0.95(0.01) 0.94(0.01) Se:2 0.95 0.95(0.01) 0.94(0.01) Se:2 0.95 0.95(0.01) 0.96(0.01)
Sp:1 0.93 0.93(0.01) 0.95(0.01) Sp:1 0.99 0.95(0.00) 0.93(0.00) Sp:1 0.999 0.998(0.001) 0.996(0.002)
Sp:2 0.97 0.97(0.00) 0.94(0.00) Sp:2 0.99 0.95(0.00) 0.93(0.00) Sp:2 0.999 0.999(0.001) 0.738(0.001)
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B.7 Extension for individual testing

As it discussed in Section 3.5, if the N individuals are tested separately, we de-

note the covariates and the true infection statuses of the nth individual by xn

and ỸYY n = (Ỹn1, Ỹn2)T, respectively, for n = 1, . . . , N . The testing outcomes on

the nth individual’s specimen are denoted by TTT n = (Tn1, Tn2)T; i.e., Tnk = 1(0)

means the individual tests positive (negative) for the kth infection. Because of po-

tential identifiability issues, we solely estimate θ1 from the individual testing data

{(TTT n,xn) : n = 1, . . . , N} via the maximum likelihood estimation. The computation

of the MLE of θ1 is done via the following GEM algorithm.

B.7.1 The GEM algorithm

Similar to the GEM algorithm for the SHL pooling data, we treat the ture individual

statuses as “missing”’ data. Let T be the collection of TTT n’s. The complete log-

likelihood function of θ1 can be written by

`c,IT (θ1|T , ỸYY ,X)

=
N∑
n=1

Ỹn1Ỹn2 log pn11(θ1) + Ỹn1(1− Ỹn2) log pn10(θ1)

+ (1− Ỹn1)Ỹn2 log pn01(θ1) + (1− Ỹn1)(1− Ỹn2) log pn00(θ1)


+

N∑
n=1

log pr(TTT n|ỸYY n),

where pn11(θ1) = C{g1(xT
nβ1), g2(xT

nβ2)|δ}, pn10(θ1) = g1(xT
nβ1)−pn11(θ1), pn01(θ1) =

g2(xT
nβ2)−pn11(θ1), pn00(θ1) = 1−pn11(θ1)−pn10(θ1)−pn01(θ1), and pr(TTT n|ỸYY n) solely

depends on the testing error rates θ2 which are assumed as known in this case. Thus,
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for simplicity, we write

`c,IT (θ1|T , ỸYY ,X) =
N∑
n=1

Ỹn1Ỹn2 log pn11(θ1) + Ỹn1(1− Ỹn2) log pn10(θ1)

+ (1− Ỹn1)Ỹn2 log pn01(θ1) + (1− Ỹn1)(1− Ỹn2) log pn00(θ1)

.
At a current value of θ(d)

1 , the E-step calculates

QIT (θ1|θ(d)
1 ) = E{`c,IT (θ1|T ,X,θ(d)

1 )}.

It is easy to see that

QIT (θ1|θ(d)
1 ) =

N∑
n=1

1∑
y1=0

1∑
y2=0

pr(Ỹn1 = y1, Ỹn2 = y2|TTT n,xn,θ(d)
1 ) log pny1y2(θ1),

where, for y1, y2 ∈ {0, 1},

pr(Ỹn1 = y1,Ỹn2 = y2|TTT n,xn,θ1) = pr(Ỹn1 = y1, Ỹn2 = y2, TTT n)∑
y1,y2∈{0,1} pr(Ỹn1 = y1, Ỹn2 = y2, TTT n)

= M(Tn1, Tn2|y1, y2;θ2)pny1y2(θ1)∑
y1,y2∈{0,1}M(Tn1, Tn2|y1, y2;θ2)pny1y2(θ1) . (B.31)

The following M-step updates θ(d)
1 by θ(d+1)

1 = (β(d+1)
1

T
,β

(d+1)
2

T
, δ(d+1))T where

β
(d+1)
1 = argmax

β1

QIT (β1,β
(d)
2 , δ(d)|θ(d)

1 )

β
(d+1)
2 = argmax

β2

QIT (β(d+1)
1 ,β2, δ

(d)|θ(d)
1 )

δ(d+1) = argmax
δ

QIT (β(d+1)
1 ,β

(d+1)
2 , δ|θ(d)

1 ).

Iterating between the E-step and M-step until a numerical convergence gives the MLE

of θ1.

B.7.2 Louis’s method

The observed data information matrix under individual testing can also be calculated

via Louis’ method as

I(θ1) = −E
{
∂2`c,IT (θ1|T , ỸYY ,X)

∂θ1∂θT
1

∣∣∣∣∣T ,X,θ1

}
− cov

{
∂`c,IT (θ1|T , ỸYY ,X)

∂θ1

∣∣∣∣∣T ,X,θ1

}
.
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The calculation of the expectation term in I(θ1) depends on the probabilities in

(B.31). For the covariance term, we can have

cov
{
∂`c(θ1|TTT , ỸYY ,X)

∂θ1

∣∣∣∣∣T ,X,θ1

}
= QQQT

IT cov(VVV IT |T ,X,θ1)QQQIT ,

where

QQQIT =



{
diag( 1

p10
)∂p10
∂θT

1
− diag( 1

p00
)∂p00
∂θT

1

}
N×(2p+3){

diag( 1
p01

)∂p01
∂θT

1
− diag( 1

p00
)∂p00
∂θT

1

}
N×(2p+3){

diag( 1
p11

)∂p11
∂θT

1
− diag( 1

p00
)∂p00
∂θT

1

}
N×(2p+3)


3N×(2p+3)

,

and

VVV IT =


VVV 1IT

VVV 2IT

VVV 3IT

 =


ỸYY (1) � (1− ỸYY (2))

(1− ỸYY (1))� ỸYY (2)

ỸYY (1) � ỸYY (2)


3N×1

.

Again, the cov(VVV IT |T ,X,θ1) follows a similar but simpler calculation than the one

described in Appendix B.5.2.

B.7.3 Variable selection

Following Section 3.4, we let θA = (β11, · · · , β1p, β21, · · · , β2p)T (θ̂A,IT ) denote the

sub-vector of θ1 (θ̂1IT ) associated with set A and Σ̂AA,IT denote the sub-matrix of

I(θ̂1) indexed by A×A, where A = {2, · · · , p+ 1, p+ 3, · · · , 2p+ 2} indexes all the

slope coefficients. The shrinkage estimator of θA under individual testing is defined

by

θ̃A,λ,IT = argmin
θA

1
2(θ̂A,IT − θA)TΣ̂AA,IT (θ̂A,IT − θA) +

2∑
k=1

λk

p∑
i=1

ωkj|βkj|

,
where ωkj = |β̂kj,IT |−1 and λ1, λ2 ≥ 0 are the tuning parameters which could be

selected by minimizing the following three types of criteria:

• BIC(λ1, λ2) = (θ̂A,IT−θ̃A,λ,IT )TΣ̂AA,IT (θ̂A,IT−θ̃A,λ,IT )+{df1,λ,IT+df2,λ,IT} logN

• AIC(λ1, λ2) = (θ̂A,IT − θ̃A,λ,IT )TΣ̂AA,IT (θ̂A,IT − θ̃A,λ,IT ) + 2{df1,λ,IT + df2,λ,IT}
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• ERIC(λ1, λ2)

= (θ̂A,IT − θ̃A,λ,IT )TΣ̂AA,IT (θ̂A,IT − θ̃A,λ,IT ) +∑2
k=1 dfk,λ,IT log(N/λk)

where dfk,λ,IT is the number of slope coefficients selected by θ̃A,λ,IT for the kth infec-

tion.

B.8 An additional analysis of the NHPL data

In the NHPL data analysis, we assigned individuals to groups of size 4 according

to the analysis date. In this appendix section, we randomly assign individuals into

groups. We let the group sizes vary from 2 to 10. At each group size, we repeat the

process of generating the SHL testing responses and applying our method 500 times.

Box-plots of the 500 estimates at c = 1, 2, . . . , 10 of regression coefficients for CT

and NG, the copula parameter δ, and misclassification parameters Se:k’s and Sp:k’s,

are provided in Figures B.1–B.3. The case c = 1 corresponds to individual testing.

The red solid horizontal line in each figure is the corresponding reference estimate

obtained by using the “true” statuses (see Section 3.6).

As one can see that, when c varies from 2 to 10, the variation in the estimates at

c = 2 is the smallest, indicating the optimal group size for estimation would be 2. Of

course, in practice one has to consider other aspects, for example, the testing cost.

Table B.5 includes the average number of tests for each c. We see that c = 4 yields

the largest amount of cost savings. But no matter which group size c ∈ {2, . . . , 10}

is used, estimates are always better than the one using individual testing in terms

of that estimates at c > 1 are more aligned with the reference line and have smaller

variation than the ones at c = 1.

Table B.5: The average number of tests for each c.

Individual testing c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 c = 10

14530 9750 8198 7791 7798 8007 8293 8616 8955 9296
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Figure B.1: Box-plots of the 500 estimates of regression coefficients for CT across c ∈
{1, . . . , 10}. The solid lines in the figures denote the reference estimates.

1 2 3 4 5 6 7 8 9

-3
.2

-3
.0

-2
.8

-2
.6

-2
.4

-2
.2

-2
.0

-1
.8

Intercept

1 2 3 4 5 6 7 8 9

-0
.3
5

-0
.3
0

-0
.2
5

-0
.2
0

-0
.1
5

-0
.1
0

-0
.0
5

Age

1 2 3 4 5 6 7 8 9

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Prenatal

1 2 3 4 5 6 7 8 9

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Symptoms

1 2 3 4 5 6 7 8 9

-0
.2

0.
0

0.
2

0.
4

0.
6

Cervical F

1 2 3 4 5 6 7 8 9

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

PID

1 2 3 4 5 6 7 8 9

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Cervicitis

1 2 3 4 5 6 7 8 9

0.
8

0.
9

1.
0

1.
1

1.
2

Multi Partner

1 2 3 4 5 6 7 8 9

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

New Partner

1 2 3 4 5 6 7 8 9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Contact STD

Figure B.2: Box-plots of the 500 estimates of regression coefficients for NG across c ∈
{1, . . . , 10}. The solid lines in the figures denote the reference estimates.
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Figure B.3: Box-plots of the 500 estimates of copula parameter δ across c ∈ {1, . . . , 10}
and misclassification parameters Se:k’s and Sp:k’s across c ∈ {2, . . . 10}. The solid lines in
the figures denote the reference estimates.

B.9 Robustness of using Gumbel copulas

Recall that in Section 3.5, we used a Gumbel copula with copula parameter δ =

0.3. To reveal the robustness property, we simulate data from either a Clayton or

a Gaussian copula and estimate the parameters by using a Gumbel copula. More

specifically, we used the Clayton copula Cc(u, v|δc) = (u−δc + v−δc − 1)−1/δc with

δc = 4.667 and Gaussian copula with a correlation coefficient ρ = 0.891. Again, we

consider the setting S2, N = 3000, the group size c ∈ {2, 5, 10}, and Se:k = Sp:k = 0.95

for k = 1, 2.

The results by applying our proposed GEM algorithm with the use of a Gumbel

copula on data simulated from the Clayton and Gaussian copula are presented in

Table B.6 and Table B.7, respectively. Generally speaking, our estimation method

derived under a Gumbel copula could perform well regardless of the true copula. In

spite of the copula parameter, our estimators are almost on the target with a small

bias. The estimation of the copula parameter is largely biased because the copula is

misspecified. To examine the robustness of the variable selection, Table B.8 provides

the average prediction error (PE) and selection rate (SR) of shrinkage estimators

under each simulation setting. The definition of PE and SR are the same as the ones

used in Section 3.5. By comparing to the (S2) results from Table 3.4, the misspeci-

fication of copula indeed increases the model prediction error. Notwithstanding, the
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adaptive LASSO shrinkage estimators still yield a similar level of variable selection

rate. The highest selection rate is again provided by BIC-type estimators and is still

as high as 90% under each considered setting.

Table B.6: Summary statistics of the 500 MLEs obtained under setting S2, Clayton copula
of δc = 4.667 and the SHL pooling with c = 2, 5, 10, including the sample mean (Mean),
the sample standard deviation (SD), the average of the estimated standard errors (SE) and
the empirical coverage (EC) of 95% confidence intervals. The average number of tests (# of
tests) under each protocol is also provided. The prevalence (averaged over 500 repetitions)
of the first and the second infections are 6.77% and 9.97%, respectively.

c = 2 c = 5 c = 10

# tests 2498 2319 2683

Truth Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE)

β10 -4 -4.00(0.19) 0.95(0.19) -3.99(0.20) 0.94(0.19) -3.98(0.22) 0.92(0.20)
β11 -2 -1.99(0.15) 0.94(0.15) -1.98(0.16) 0.93(0.16) -1.98(0.17) 0.93(0.17)
β12 2 2.00(0.16) 0.92(0.15) 1.99(0.16) 0.93(0.16) 1.99(0.18) 0.92(0.17)
β13 0 -0.01(0.11) 0.96(0.12) -0.01(0.11) 0.96(0.12) -0.01(0.12) 0.96(0.12)
β14 0 0.00(0.11) 0.96(0.11) 0.00(0.12) 0.94(0.12) 0.00(0.12) 0.96(0.12)
β15 0 0.00(0.12) 0.95(0.12) 0.00(0.12) 0.95(0.12) 0.00(0.12) 0.96(0.12)

β20 -5 -5.06(0.25) 0.96(0.26) -5.02(0.25) 0.96(0.27) -5.00(0.28) 0.96(0.31)
β21 -2 -2.02(0.15) 0.96(0.16) -2.01(0.16) 0.96(0.17) -2.01(0.17) 0.95(0.18)
β22 0 0.00(0.12) 0.95(0.12) 0.00(0.12) 0.95(0.12) 0.00(0.13) 0.95(0.13)
β23 -2 -2.02(0.16) 0.96(0.16) -2.01(0.16) 0.96(0.17) -2.01(0.17) 0.95(0.18)
β24 0 0.00(0.12) 0.94(0.12) 0.00(0.12) 0.96(0.12) 0.01(0.12) 0.95(0.13)
β25 0 -0.01(0.11) 0.97(0.12) -0.01(0.11) 0.96(0.12) -0.01(0.12) 0.96(0.13)

δ 0.3 0.19(0.03) 0.79(0.08) 0.19(0.03) 0.90(0.08) 0.20(0.04) 0.97(0.10)

Se:1 0.95 0.95(0.02) 0.95(0.02) 0.95(0.02) 0.94(0.02) 0.95(0.02) 0.95(0.02)
Se:2 0.95 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.02) 0.95(0.01)
Sp:1 0.95 0.95(0.01) 0.96(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.90(0.01)
Sp:2 0.95 0.95(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.92(0.01)
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Table B.7: Summary statistics of the 500 MLEs obtained under S2, Gaussian copula of
ρ = 0.891 and the SHL pooling with c = 2, 5, 10, including the sample mean (Mean), the
sample standard deviation (SD), the average of the estimated standard errors (SE) and the
empirical coverage (EC) of 95% confidence intervals. The average number of tests (# of
tests) under each protocol is also provided. The prevalence (averaged over 500 repetitions)
of the first and the second infections are 6.77% and 9.97%, respectively.

c = 2 c = 5 c = 10

# tests 2485 2294 2660

Truth Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE)

β10 -4 -4.03(0.19) 0.95(0.19) -4.02(0.20) 0.95(0.20) -4.02(0.21) 0.95(0.21)
β11 -2 -2.01(0.15) 0.95(0.15) -2.00(0.16) 0.95(0.16) -2.01(0.17) 0.95(0.17)
β12 2 2.02(0.16) 0.95(0.15) 2.01(0.17) 0.95(0.16) 2.01(0.17) 0.94(0.17)
β13 0 0.00(0.11) 0.97(0.12) -0.01(0.12) 0.95(0.12) 0.00(0.12) 0.95(0.12)
β14 0 0.00(0.12) 0.94(0.12) 0.00(0.13) 0.93(0.12) 0.01(0.13) 0.95(0.13)
β15 0 0.00(0.11) 0.96(0.12) 0.00(0.12) 0.96(0.12) -0.01(0.12) 0.96(0.12)

β20 -5 -5.01(0.27) 0.95(0.26) -5.01(0.29) 0.94(0.28) -5.01(0.32) 0.94(0.31)
β21 -2 -2.01(0.17) 0.94(0.16) -2.01(0.18) 0.94(0.17) -2.01(0.19) 0.94(0.18)
β22 0 0.01(0.12) 0.96(0.12) 0.01(0.12) 0.96(0.12) 0.01(0.13) 0.96(0.13)
β23 -2 -2.01(0.16) 0.96(0.16) -2.01(0.18) 0.94(0.17) -2.00(0.19) 0.94(0.18)
β24 0 0.01(0.12) 0.95(0.12) 0.01(0.12) 0.95(0.12) 0.00(0.13) 0.95(0.13)
β25 0 -0.01(0.12) 0.96(0.12) -0.01(0.12) 0.96(0.12) -0.01(0.13) 0.96(0.13)

δ 0.3 0.23(0.05) 0.88(0.07) 0.24(0.05) 0.94(0.07) 0.24(0.06) 0.98(0.09)

Se:1 0.95 0.95(0.02) 0.94(0.02) 0.95(0.02) 0.94(0.02) 0.95(0.02) 0.93(0.02)
Se:2 0.95 0.95(0.02) 0.93(0.01) 0.95(0.02) 0.93(0.01) 0.95(0.02) 0.90(0.01)
Sp:1 0.95 0.95(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.90(0.00)
Sp:2 0.95 0.95(0.01) 0.96(0.01) 0.95(0.01) 0.92(0.01) 0.95(0.01) 0.92(0.00)

Table B.8: The average prediction error PE × 100 and the SR value (provided in paren-
thesis) of the MLE and the shrinkage estimates under the AIC, BIC and ERIC tuning
parameter selection criterion over 500 replications under Clayton and Gaussian copula set-
ting across the SHL pooling with c = 2, 5 and 10.

c = 2 c = 5 c = 10

Copula Estimate PE×100(SR) PE×100(SR) PE×100(SR)

Clayton

MLE 1.829(0.000) 1.839(0.000) 1.844(0.000)
AIC 1.796(0.432) 1.807(0.432) 1.807(0.420)
BIC 1.782(0.902) 1.791(0.888) 1.787(0.906)
ERIC 1.789(0.746) 1.795(0.730) 1.788(0.736)

Gaussian

MLE 0.328(0.000) 0.339(0.000) 0.343(0.000)
AIC 0.296(0.458) 0.306(0.390) 0.306(0.424)
BIC 0.281(0.906) 0.287(0.902) 0.286(0.900)
ERIC 0.291(0.740) 0.297(0.726) 0.294(0.726)
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B.10 A simulation study for three infections

As it described in Section 3.7, our proposed methodology can be generalized to incor-

porate more than two infections. A simulation study is presented here to illustrate this

generalizability. In this simulation, we specify C(u1, u2, u3|δ) = exp{−[(− log u1)1/δ +

(− log u2)1/δ + (− log u3)1/δ]δ} as a three-dimensional Gumbel copula with δ = 0.3 to

model the co-infection probability. Then, we consider the following simulation setting.

Note that regression coefficients β1, β2 and β3 are chosen to make the prevalence of

each infection around 8%.

• β1 = (−4,−2, 2, 0, 0, 0)T,β2 = (−5,−2, 0,−2, 0, 0)T, and β3=(−5,−3, 2, 0, 0, 0)T

• x = (1, x1, · · · , x5)T, where x is simulated from N (0,Ω) with [Ω]st = 1 if s = t

and [Ω]st = 0.5 if s 6= t

In this simulation, we only consider the SHL protocol. The SHL pooled testing

data is generated as follows. We consider a total of N = 3000 individuals need

to be tested for three infections. To form the pool, we use a common group size

denoted by c and c ∈ {2, 5, 10}. The total 3000 individuals are randomly assigned

to J non-overlapping pools, where J = N/c as the number of pools. Denote {ij}

the ith individual in the jth pool. We generate the covariates xij, and calculate

individual-level cell probabilities using the marginal logistic regression model and the

three-dimensional Gumbel copula. Then, individual true infectious statuses ỸYY ij =

(Ỹij1, Ỹij2, Ỹij3)T are generated from a multinomial distribution with its associated cell

probabilities. The true status of the jth pooled specimen for the kth infection can

be calculated as Z̃jk = maxi Ỹijk.

To mimic the SHL protocol, we assume the assay testing sensitivity and speci-

ficity are 0.95 for all infections at both testing stages of the SHL protocol; i.e.

Se:k = Sp:k = 0.95, for k = 1, 2, 3. For the kth infection in the jth pool, we gen-

erate the pooled testing outcome Zjk from a Bernoulli distribution with the suc-
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cess probability of Se:kZ̃jk + (1 − Sp:k)(1 − Z̃jk). According to the SHL protocol, if

maxk Zjk = 1, it proceeds to the second stage. In this situation, we generate the

retesting outcome of the ith individual for kth infection Yijk from a Bernoulli dis-

tribution with the success probability of Se:kỸijk + (1 − Sp:k)(1 − Ỹijk). Finally, the

SHL pooled testing data is a combination of all available Zj = (Zj1, Zj2, Zj3)T and

Yij = (Yij1, Yij2, Yij3)T. With the simulated data, we estimate the unknown param-

eters {β1,β2,β3, δ, Se:1, Se:2, Se:3, Sp:1, Sp:2.Sp:3} through a generalized three-infection

GEM algorithm. The above process is repeated 500 times under all considered sim-

ulation settings.

The results are reported in Table B.9. One can see that the estimates exhibit

little bias and the sample standard derivations are in a reasonable range. Though we

did not use the Louis’ method to estimate the standard errors nor perform marginal

variable selection, we believe that these results are sufficient to demonstrate the gener-

alizability of our GEM algorithm to calculate the MLEs of the regression coefficients,

misclassification parameters and the copula parameter for the case of three infections.
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Table B.9: Summary statistics of the 500 MLEs obtained under our simulation setting
and the SHL pooling with c = 2, 5, 10, including the sample mean (Mean) and the sample
standard deviation (SD). The average number of tests (# of tests) under each setting is
also provided. The average prevalence of the first, the second and the third infections are
6.77%, 9.98%, and 5.89%, respectively.

c = 2 c = 5 c = 10

# tests 2630 2441 2773

Truth Mean(SD) Mean(SD) Mean(SD)

β10 -4 -4.04(0.21) -4.04(0.21) -4.05(0.23)
β11 -2 -2.02(0.16) -2.02(0.16) -2.02(0.17)
β12 2 2.02(0.16) 2.02(0.17) 2.02(0.17)
β13 0 0.01(0.12) 0.01(0.12) 0.00(0.12)
β14 0 0.00(0.11) 0.00(0.12) 0.00(0.13)
β15 0 0.01(0.11) 0.01(0.12) 0.01(0.12)

β20 -5 -5.08(0.28) -5.09(0.29) -5.10(0.32)
β21 -2 -2.03(0.17) -2.03(0.17) -2.04(0.19)
β22 0 -0.01(0.12) 0.00(0.12) 0.00(0.13)
β23 -2 -2.04(0.16) -2.05(0.17) -2.05(0.19)
β24 0 0.00(0.12) -0.01(0.13) 0.00(0.13)
β25 0 0.01(0.12) 0.01(0.13) 0.00(0.13)

β30 -5 -5.08(0.27) -5.09(0.28) -5.07(0.30)
β31 -3 -3.04(0.22) -3.05(0.22) -3.04(0.24)
β32 2 2.03(0.18) 2.03(0.18) 2.02(0.17)
β33 0 0.00(0.13) 0.01(0.14) 0.01(0.14)
β34 0 0.01(0.12) 0.00(0.13) 0.01(0.13)
β35 0 0.00(0.13) 0.00(0.13) 0.00(0.14)

δ 0.3 0.30(0.03) 0.30(0.03) 0.30(0.04)

Se:1 0.95 0.95(0.02) 0.95(0.02) 0.95(0.02)
Se:2 0.95 0.95(0.01) 0.95(0.02) 0.95(0.01)
Se:3 0.95 0.95(0.02) 0.95(0.02) 0.95(0.02)
Sp:1 0.95 0.95(0.01) 0.95(0.01) 0.95(0.01)
Sp:2 0.95 0.95(0.01) 0.95(0.01) 0.95(0.01)
Sp:3 0.95 0.95(0.01) 0.95(0.01) 0.95(0.01)
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Appendix C

Chapter 4 Supplementary Materials

C.1 Estimation for individual testing

In this appendix, we will demonstrate the estimation step when the N individuals

are tested separately. We denote the covariates and the true infection statuses of the

nth individual by xn and Ỹn, respectively, for n = 1, . . . , N . The testing outcome on

the nth individual’s specimen is denoted by Tn; i.e., Tn = 1(0) means the individual

tests positive (negative). The computation of the MLE of β is done via the following

EM algorithm by treating the ture individual statuses as “missing” data.

Because misclassification parameters are assumed as known, the complete likeli-

hood function can be written as

lc,IT (β | Ỹ ,x) =
N∑
n=1

[
(1− Ỹn) log{1− g(xT

nβ)}+ Ỹn log g(xT
nβ)

]
.

At a current value of β(d), the E-step calculatesQIT (β | β(d)) = E{lc,IT (β | Ỹ ,x,β(d))},

where

QIT (β | β(d)) =
N∑
n=1

pr(Ỹn = 0 | Tn,xn,β(d)) log{1− g(xT
nβ)}

+ pr(Ỹn = 1 | Tn,xn,β(d)) log g(xT
nβ)

.
It is easy to observe that

pr(Ỹn = y | Tn,xn,β(d)) = pr(Ỹn = y, Tn | xn,β(d))∑
y′∈{0,1} pr(Ỹn = y′, Tn | xn,β(d))

,
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for y = 0, 1, and

pr(Ỹn = 0, Tn | xn,β(d)) = S1−Tn
p (1− Sp)Tn log{1− g(xT

nβ
(d))}

pr(Ỹn = 1, Tn | xn,β(d)) = (1− Se)1−TnSTn
e log g(xT

nβ
(d)).

The M-step updates β(d) via β(d+1) = argmax
β
QIT (β | β(d)). Iterating between the

E-step and M-step until a numerical converge provides the MLE of β.
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